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1. INTRODUCTION

The properties of conditioned invariance and detectability sub-
spaces have been introduced in [Pereira and Rocha 2017]
for one-dimensional (1D) behavioral continuous time systems,
based on the theory of 1D behavioral observers developed in
[Valcher and Willems 1999] and [Trumpf et al. 2011]. The
definitions proposed in that paper tried to incorporate the ones
given for classical state space systems, [Basile and Marro
1969], [Trentelman et al. 2001] into the behavioral framework
basically by replacing subspaces of the state space by sub-
behaviors of relevant behaviors.

Important contributions to the development of a geometric
theory for discrete multidimensional systems have been made
based on multidimensional state space models such as the (2D)
Fornasini-Marchesini model, [Conte and Perdon 1988].

Here we generalize the behavioral definitions and results of
[Pereira and Rocha 2017] to discrete multidimensional (nD)
systems. Whereas nD conditioned invariance can be defined
and characterized similarly to the 1D case, requiring only
some small technical adjustments, the same does not apply
to nD detectability subspaces. This is due to the fact that an
underlying stability notion is needed, and it is not clear in what
extent the different notions of stability for multidimensional
behavioral systems, see for instance [Valcher 2000], [Pillai
and Shankar 1998] and [Rocha 2008], generalize the definition
given for the one-dimensional case, [Polderman and Willems
1998].
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In this paper we adopt the definition of nD behavioral sta-
bility with respect to a cone S introduced in [Rocha 2008],
which is the discrete counterpart of the definition of [Pillai and
Shankar 1998] for the continuous nD case, since the definition
of [Valcher 2000] is only given for the discrete 2D case and the
corresponding results seem difficult to generalize for n > 2.

The structure of our presentation is as follows. Section 2 con-
tains the background material; nD behavioral observers are
introduced in Section 3, while Sections 4 and 5 are respectively
devoted to conditioned invariance and detectability subspaces;
finally Section 6 contains some concluding remarks.

2. PRELIMINARIES

In this paper we consider discrete multidimensional systems
over Zn with behavior that can be described as the solution set
of a system of linear partial difference equations with constant
coefficients:

H(σ, σ−1)w ≡ 0, (1)

where σ = (σ1, . . . , σn), σ−1 = (σ−11 , . . . , σ−1n ), the σi’s
are the elementary nD shift operators (defined by σiw(k) =
w(k + ei), for k ∈ Zn, where ei is the i-th element of the
canonical basis of Rn),H(s, s−1) is an nD Laurent-polynomial
matrix in the indeterminates s = (s1, . . . , sn), and w - the
system variable - is a vector function with w components that
correspond to the system signals. The behavior Bw described
by (1) is the kernel of the shift operator H(σ, σ−1) acting on
the (vector) signal universe Uw, which is here considered to be
equal to (Rw)Z

n

, i.e.:

B = kerH(σ, σ−1) := {w ∈ Uw | H(σ, σ−1)w ≡ 0}. (2)

For this reason Bw is often referred to as a kernel behavior.
Throughout this paper, the term behavior will always mean
kernel behavior. Moreover, for the sake of simplicity, whenever
no confusion arises, we shall omit the indeterminates (s, s−1)
when writing an nD Laurent-polynomial matrix as well as the



elementary shift operators (σ, σ−1) when writing the corre-
sponding nD shift operator.

It was shown in [Oberst 1990, Zerz 2000] that given two
behaviors B1w and B2w such that B1w = kerH1 ⊂ B2w = kerH2,
there exists an nD Laurent-polynomial matrix E such that:

H2 = EH1. (3)

Moreover, the quotient B2w/B1w has the structure of a behavior
and can be identified with kerM where:

M =

[
E
L

]
, (4)

and L is a minimal left annihilator (MLA) 1 of H1, [Rocha and
Wood 2001].

According to the behavioral approach, the system variable w is
not a priori partitioned into inputs and outputs. However, we
may be interested in splitting it into sub-variables (not neces-
sarily inputs and outputs) depending on the different problems
that we wish to study. In other situations, as for instance when a
system is obtained by the interconnection of other systems, the
overall system variable may be composed by joining the system
variables of the elementary systems, and hence be naturally
divided into sub-variables.

A behavior B(w1,w2) with partioned variable (w1, w2) can be
described by an equation of the type:

H2(σ, σ−1)w2 = H1(σ, σ−1)w1, (5)
where, for i = 1, 2, Hi(s, s

−1) is an nD Laurent-polynomial
matrix of size g×wi, with wi equal to the size of wi and g ∈ N.

According to the variable elimination property obtained in
[Oberst 1990], the projection of B(w1,w2) into (for instance)w2,
defined as:
Π2(B(w1,w2)) = {w2 ∈ (Rw2)

Zn

| ∃w1 : (w1, w2) ∈ B(w1,w2)}
(6)

is also a kernel behavior (with variable w2), say Bw2 . More
concretely, a description of Bw2 may be obtained by applying
to both sides of Equation (5) an operator L(σ, σ−1) such that
L(s, s−1) is a MLA of H1(s, s−1), yielding as description for
Bw2 :

L(σ, σ−1)H2(σ, σ−1)w2 ≡ 0, (7)

i.e., Bw2
= kerLH2. Obviously, the same applies to w1.

One of the behavioral properties that plays a crucial role in this
paper is autonomy. We say that a behavior is autonomous if it
has no free variables, more concretely, its projection on the i-th
component is not free, i.e., if:

Πi(Bw) 6= RZn

, i = 1, . . . , w.

Bw = kerR(σ, σ−1) is autonomous if and only if R(s, s−1)
has full column rank (over R[s, s−1]), [Zerz 2000].

Another important property is stability. As it is well known,
there exist different ways of defining stability for nD systems.
Here we adopt the definition of stability with respect to a
specified stability region introduced in [Rocha 2008], which is
the discrete version of the definition given in [Pillai and Shankar
1998] for the continuous case.
1 Given two nD Laurent-polynomial matrices L and H , L is said to be a
minimal left annihilator of H if L is an annihilator of H , i.e., LH = 0 and,
moreover, any other left annihilator Q of H is such that Q = ML for some
Laurent-polynomial matrix M [Bose 1995].

For this purpose we identify an elementary direction in Zn

with an element d = (d1, . . . , dn) ∈ Zn whose components
are coprime integers, and define a direction in Zn as an inte-
ger linear combination of elementary directions. Moreover, we
define a stability cone in Zn as the set of all positive integer
linear combinations of n linearly independent elementary di-
rections 2 . A half-line associated with a direction d ∈ Zn is
defined as the set of all points of the form αd where α is a
nonnegative integer; clearly, the half-lines in a stability cone S
are the ones associated with the directions d ∈ S. Now, stability
with respect to a stability cone S is defined as follows: given a
stability cone S ⊂ Zn, a (vector) signal w ∈ (Rw)Z

n

is said to
be S-stable if it converges to zero along every half line in S. A
behavior Bw is S-stable if all the signals in Bw are S-stable.

It turns out that every nD kernel behavior Bw ⊂ (Rw)Z
n

which is stable with respect to some stability cone S is a
finite dimensional linear subspace of the trajectory universe,
(Rw)Z

n

, [Rocha 2008]. Finite dimensional nD behaviors are
known as strongly autonomous [Pillai and Shankar 1998]. Thus,
the notion of stability used here excludes the class of infinite
dimensional autonomous behaviors. The definition of stability
used in [Valcher 1998] does not leave out this class of systems,
but is focussed on 2D behaviors and seems to be somewhat
difficult to generalize to the higher dimensional case.

The S-stability of a behavior Bw = kerR(σ, σ−1) can be
characterized in terms of the zeros 3 of the matrix R and the
elementary directions of the stability cone S. It was shown
in [Rocha 2008] that Bw = kerR(σ, σ−1) is S-stable if and
only if |λd| < 1, for every zero λ of R and every elementary
direction d in S, where λd := λk1

1 . . . λkn
n . If this condition

is satisfied we also say that both the zero λ and the Laurent-
polynomial matrix R are S-stable.

3. BEHAVIORAL ND OBSERVERS

Here we adopt the definitions given in [Valcher and Willems
1999] and [Trumpf et al. 2011] for the 1D case.

Let B(w1,w2) be an nD behavior where the system variable
is partitioned into two sub-variables: w1, consisting of the
measured components of the signal, and w2, consisting of the
signal components to be estimated. An observer for w2 from
w1 is a behavior B̂

(w1,ŵ2)
that shares the measured variable w1

with B(w1,w2) and “produces” a variable ŵ2 which is to be seen
as an estimate of w2. The quality of this estimate depends on
the properties of the error e := ŵ2 − w2 or, more precisely, of
the properties of its behavior Be (the error behavior).
Definition 1. Given an nD behavior B(w1,w2), let B̂

(w1,ŵ2)
be a

behavior such that the universe U
ŵ2

coincides with the universe

(Rw2)Z
n

of the variable w2. B̂
(w1,ŵ2)

is said to be:

• a tracking observer for w2 from w1 if Be is autonomous;
• an S-asymptotic observer for w2 from w1 if Be is S-

stable.

Moreover, w2 is said to be trackable from w1 in case a tracking
observer B̂

(w1,ŵ2)
for w2 from w1 exists. If an S-asymptotic

2 Note that, according to this definition, a stability cone is always a “full” cone,
in the sense that it contains a basis of elementary directions.
3 Recall that a zero of R is defined as λ ∈ (C \ {0})n such that
rank R(λ, λ−1) < rank R(s, s−1), where, the first rank is taken over C
and the second one over R[s, s−1].



observer B̂
(w1,ŵ2)

for w2 from w1 exists, w2 is said to be S-
detectable from w1.

An important role in the study of observers is played by the
hidden behavior. If B(w1,w2) is an nD behavior with measured
variablew1 and non-measured variablew2, the hidden behavior
of B(w1,w2) - denoted by Nw2

(
B(w1,w2)

)
- consists of all the

signals w2 that are compatible with w1 ≡ 0, i.e.,
Nw2

(
B(w1,w2)

)
= {w2 | (0, w2) ∈ B(w1,w2)}.

If B(w1,w2) is described by

R2(σ, σ−1)w2 = R1(σ, σ−1)w1, (8)
the hidden behavior is obviously equal to kerR2(σ, σ−1), i.e.,

Nw2

(
B(w1,w2)

)
= kerR2.

Note that kerR2 coincides with the error behavior associated to
the trivial observer

R2(σ, σ−1)ŵ2 = R1(σ, σ−1)w1. (9)
Moreover, this hidden behavior, kerR2, is contained in the error
behavior of any observer for w2 from w1. Indeed, let B̂

(w1,ŵ2)

be such an observer, and suppose that it is described by

R̃2(σ, σ−1)ŵ2 = R̃1(σ, σ−1)w1.

Consider also the corresponding error
e = ŵ2 − w2. (10)

Equations (8), (9) and (10) can be written as−R1 R2 0

−R̃1 0 −R̃2

0 −I I


︸ ︷︷ ︸

[
w1

w2

ŵ2

]
=

[
0
0
I

]
e

R

(11)

and a description for the error behavior Be may be obtained
by eliminating the variables w1, w2 and ŵ2. This is achieved
by applying a MLA of R, say L = [X Y Z], to both sides of
equation (11), which yields

0 = Ze, (12)
and consequently Be = kerZ. But, it follows from the fact that
LR = 0 that XR2 − Z = 0, i.e., Z = XR2. Thus

Nw2

(
B(w1,w2)

)
= kerR2 ⊂ kerZ = Be.

Conversely, it is not difficult to prove that if the hidden behavior
Nw2

(
B(w1,w2)

)
is contained in a behavior E , then E is the error

behavior of some observer for w2 from w1. For this reason E is
called an achievable error behavior. These considerations can
be summarized in the following proposition, cf [Trumpf et al.
2011].
Proposition 2. Given a behavior B(w1,w2), E is an achievable
error behavior with respect to the estimation of w2 from w1 if
and only if Nw2

(
B(w1,w2)

)
⊂ E .

This result states that the hidden behavior Nw2

(
B(w1,w2)

)
is the smallest achievable error behavior with respect to the
estimation of w2 from w1.

Thus, clearly, w2 is trackable from w1 if and only if this hidden
behavior is autonomous.
Corollary 3. Given a behavior B(w1,w2), w2 is trackable from
w1 if and only if Nw2

(
B(w1,w2)

)
is autonomous.

Similarly, it is not difficult to conclude that w2 is S-detectable
from w1 if and only if the hidden behavior is S-stable.

Corollary 4. Given a behavior B(w1,w2), w2 is S-detectable
from w1 if and only if Nw2

(
B(w1,w2)

)
is S-stable.

4. CONDITIONED INVARIANCE

As it is well-known [Basile and Marro 1969, Trentelman et al.
2001], for state space systems, a subspace VX of the state
space X is said to be conditioned invariant if there exists an
observer for the state x modulo VX , which means that X/VX
is an invariant subspace with respect to the corresponding error
dynamics. In behavioral terms, according to the definition of
invariance given in [Pereira and Rocha 2018], this is equivalent
to saying that the quotient of the error behavior E by VX , E/VX ,
is an autonomous behavior.

Inspired by this, together with the definition of conditioned
invariance that we introduced in [Pereira and Rocha 2017], here
we define conditioned invariance for nD behaviors as follows.
Definition 5. Let B(w1,w2) be an nD behavior with measured
variable w1 and to-be-estimated variable w2 in the universe
Uw2

= (Rw2)Z
n

. A behavior V ⊂ Uw2
is said to be conditioned

invariant if there exists an observer behavior B̂
(w1,ŵ2)

for w2

from w1, with ŵ2 ∈ Uw2 , with error behavior Be such that
V ⊂ Be and Be/V is autonomous.

In other words, roughly speaking, V is a conditioned invariant
behavior if there exists a behavioral observer B̂

(w1,ŵ2)
for w2

from w1 which is a tracking observer modulo V .

We next give a necessary and sufficient condition for condi-
tioned invariance.
Proposition 6. Let B(w1,w2) be an nD behavior with measured
variable w1 and to-be-estimated variable w2 in the universe
Uw2

= (Rw2)Z
n

. Assume that B(w1,w2) is described by the
matrix equation

R2(σ, σ−1)w2 = R1(σ, σ−1)w1.

Let further V = kerV (σ, σ−1) be a sub-behavior of Uw2
. Then

V is conditioned invariant if and only if there exists an nD
Laurent-polynomial q(s, s−1) 6= 0 such that

kerR2(σ, σ−1) ⊂ ker q(σ, σ−1)V (σ, σ−1).

Proof.

“If part:” Assume that there exists q(s, s−1) 6= 0 such that
kerR2 ⊂ ker qV =: E . From what was said in Section 2,

E/V = ker

[
qI
L

]
where L is a MLA of V . Since

[
qI
L

]
has full column

rank, then E/V is autonomous. Moreover, note that E is an
achievable error behavior as it contains the hidden behavior
Nw2

(
B(w1,w2)

)
= kerR2 (cf Proposition 2). In this way we

conclude that V is conditioned invariant.

“Only if part:” Assume that V is conditioned invariant. Then
there exists an error behavior E ⊃ Nw2

(
B(w1,w2)

)
= kerR2

such that V ⊂ E and E/V is autonomous.

If E = kerE, this can be translated in terms of Laurent-
polynomial matrices as the existence of Ē(s, s−1) andF (s, s−1)

such that E = ĒR2, E = FV , and
[
F
L

]
(where L is a MLA of

V ) has full column rank.



Let U(s, s−1) be such that Q = U

[
F
L

]
is square and full rank.

Then

QV = U

[
F
L

]
V = U

[
FV
LV

]
= U

[
FV
0

]
=

= U

[
E
0

]
= [U1 U2]

[
E
0

]
= U1E,

where [U1 U2] is obviously a partition of U . Pre-multiplying
the equality QV = U1E by the adjoint matrix Q̃ of Q, one
obtains

Q̃QV = Q̃U1E ⇔ qV = Q̃U1ĒR2 ⇔ qV = NR2,

where q = detQ and N = Q̃U1Ē. This implies that there
exists an nD Laurent polynomial q(s, s−1) such that kerR2 ⊂
ker qV . 2

5. DETECTABILITY SUBSPACES

Similarly to what was done in [Pereira and Rocha 2017], we
define S-detectability subspaces as behaviors modulo which the
error dynamics of a suitable observer is S-stable.
Definition 7. Let B(w1,w2) be an nD behavior with measured
variable w1 and to-be-estimated variable w2 in a universe
Uw2

= (Rw2)Z
n

. Let further S be a stability cone in Zn. A
behavior V ⊂ Uw2

is said to be an S-detectability subspace if
there exists an observer behavior B̂

(w1,ŵ2)
, with ŵ2 ∈ Uw2

with
error behavior Be such that V ⊂ Be and Be/V is S-stable.

The following result characterizes S-detectability subspaces.
Proposition 8. Let B(w1,w2) be an nD behavior with measured
variable w1 and to-be-estimated variable w2 in the universe
Uw2

= (Rw2)Z
n

. Assume that B(w1,w2) is described by the
matrix equation

R2(σ, σ−1)w2 = R1(σ, σ−1)w1.

Let further V = kerV (σ, σ−1) be a sub-behavior of Uw2
. Then

V is an S-detectability subspace if and only if there exists an
nD S-stable Laurent-polynomial matrix Q(s, s−1) such that

kerR2(σ, σ−1) ⊂ kerQ(σ, σ−1)V (σ, σ−1).

Proof.

“If part:” Assume that there exists Q(s, s−1) S-stable Laurent-
polynomial matrix such that kerR2 ⊂ kerQV =: E . Then

E/V = ker

[
Q
L

]
where L is a MLA of V . Since Q is S-stable and ker

[
Q
L

]
=

kerQ ∩ kerL, we conclude that E/V is S-stable. Moreover,
since E contains the hidden behavior, kerR2, E is an achievable
error behavior. Therefore V is an S-detectability subspace.

“Only if part:” Assume now that V is an S-detectability sub-
space. Then, there exists an achievable error behavior E , which
by Proposition 2 contains Nw2

(
B(w1,w2)

)
= kerR2, such

that V ⊂ E and E/V is S-stable. Let E(s, s−1) be such that
E = kerE(σ, σ−1); then there exist nD Laurent-polynomial
matrices Ē(s, s−1) and F (s, s−1) such that E = ĒR2, E =

FV , and
[
F
L

]
(with L a MLA of V ) has kernel E/V . Thus

Q :=

[
F
L

]
must be an S-stable matrix. Now,

QV =

[
F
L

]
V =

[
FV
LV

]
=

[
E
0

]
and hence kerQV = kerE = ker ĒR2, implying that there
exists an S-stable nD Laurent-polynomial matrix Q such that
kerR2 ⊂ kerQV . 2

6. CONCLUSIONS

In this paper we have generalized the 1D definitions of tracking
observer and asymptotic observer as well as the notions of
conditioned invariance and detectability subspaces to the class
of discrete nD behavioral systems.

In order to define asymptotic observers and, subsequently, de-
tectability subspaces, we adopted the behavioral definition of
S-stability introduced in [Rocha 2008]. According to this defi-
nition, a discrete nD behavior which is S-stable must be finite-
dimensional (strongly autonomous). This condition may be too
restrictive and limit the class of systems for which asymptotic
observers exist. The use of other definitions of stability for nD
behaviors is an important issue, to be investigated in future
work.
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