
AAD: Breaking the Primal Barrier

Dmitri Goloubentsev∗, Evgeny Lakshtanov†

Here, we present a new approach for Auto-
matic Adjoint Differentiation with a special fo-
cus on computations where derivatives ∂F (X)

∂X
are

required for multiple instances of vectors X. In
practice, the presented approach is able to cal-
culate all the differentials faster than the primal
(original) C++ program for F . Major application
areas are

• Gradient methods for optimisation problems,
including global model calibration, speech
recognition, deblurring of images and ma-
chine learning in general

• Derivatives of mathematical expectation

• Path-wise sensitivities of SDE

Code Transformation vs Operator Overload-
ing Currently, two main approaches are used for
the Automatic AD tools:

Code Transformation (CT): Analises the com-
puter program which implements function F to
produce a code of the AD method.

Operator Overloading (OO): All mathematical
operations are overloaded in such a way that the
information about a computational graph of F is
saved in the data structure called Tape1. Tape is
used afterwards to process the backward pass of
the AD method.

There are rather succesful CT AAD tools, how-
ever, they limit the available language features
and make the build system more complex. The
need for such a tool is further reflected in the fact

∗MathLogic LTD, London, UK., dmitri@matlogica.com
†CIDMA, Department of Mathematics, University of

Aveiro, Aveiro 3810-193, Portugal and MathLogic LTD,
London, UK., lakshtanov@matlogica.com

1its choice depends on a concrete AAD tool

that there is currently no CT AAD available for
C++. The OO approach usually demonstrates
weaker speed performance due to a runtime over-
head in each iteration. Let us enter into more
details at this point.

Consider a schematic processing of multiple
samples Xi using a standard OO AAD library:

Loop i =0. .N−1
BeginTapeRecording () ;
Y[i] = F(X[i]) ;
StopTapeRecording () ;
dX[i] = Reverse (dY[i] , tape) ;

Next i ;

Each overloaded operator collects information
on valuations, after which the second backwards
pass updates the adjoint variables. This approach
comes with a number of disadvantages:

• OO or/and tape interpretation runtime over-
head for each iteration

• Multithreading is only possible if the origi-
nal function F(X[i]) is thread-safe

• Relying on compiler for CPU vectorization
of a scalar primal function means that vec-
torization is used very sparsely

• F () may perform unnecessary operations that
don’t depend on X, and yet are executed
at each iteration (e.g. mathematical opera-
tions, virtual function calls, dictionary lookups
etc)

• Additional memory is required to store the
Tape data-structure. Its size is proportional
to the number of operations of the primal
function F , which may be prohibitive in some
cases.

1

OO×CT Our innovative idea is to cross2 both
approaches, namely to use the Overloaded Oper-
ators to auto-generate AD-version of the primal
function at run-time. The created AD-functions
can be used for different Xi instead of performing
classic OO AAD approach on each F (Xi).

During the first run of the original function,
every overloaded function - or operator - will gen-
erate instructions for forward and reverse AD-pass.
For instance, consider the function f(a, b, c) =
a ∗ b + c. The first column of the following ta-
ble lists the consecutive calls of atomic valuations
during the execution of the function f(a, b, c).

Valuation → Forward() → Reverse()

Initialization v0=a; v1=b;
Initialization v2=c;
operator * v3=v0*v1; d1+ = d3 * v0;

d0 += d3 * v1;
operator + v4=v3+v2; d2 += d4;

d3 += d4;
Initialization f=v4;
Initialization d0=0; d1=0;
Initialization d2=0; d3=0;

Concatenated entries of the second column form
the body of the Forward pass, while the body of
the Reverse pass is formed by the entries in the
third column in reverse order:

void AD Function
(double a , b , c ,& f ,&d0,&d1,&d2 , d4) {

double v3 , d3 (0) ;
v0=a ; v1=b ; v2=c ;
v3=v0∗v1 ;
v4=v3+v2 ;
f=v4 ;
// Reverse
d2 += d4 ;
d3 += d4 ;
d0 += d3 ∗ v1 ;
d1 += d3 ∗ v0 ;
}

Now all differentials of the function f and its
value at the point (a, b, c) can be computed by
calling

double d0 (0) , d1 (0) , d2 (0) , d4 (1) , f ;

2Not to be confused with AAD of the mixed type, where
the tool does an analysis first and then takes the decision
on what approach should be used in each particular situa-
tion

AD function (a , b , c , f , d0 , d1 , d2 , d4)

Within the proposed framework, the OO is
used for only one sample X, after which the result-
ing program can process multiple input data. Let
us list the immediate benefits of this approach:

• Unlike the classic OO AAD, the AD-function
does not change from one iteration to the
next one. Hence there is no any OO or
tape interpretation run-time overhead per
Xi sample.

• The AD-function is completely segregated
from the user program. All user data are
encapsulated within the AD-function, and
its memory state is limited to vectors v and
d. Thus, multiple samples of X can be pro-
cessed safely in the multithreaded mode.

• The AD-function can be generated to con-
sistently utilize native CPU vectorization to
process 4(8)-double chunks of user data (AVX2
\ AVX512 speed up x4-x8).

• That can lead to a final acceleration of order
8 × #Cores compared to the modern AAD
tools.

• Highly efficient, i.e. operations that don’t
depend on X are not included in the con-
structed AD-function.

• Although additional memory is also required
to store the AD-function, its code remains
static and can be shared between CPU cores.

Combining all the stated benefits one can achieve
a fantastic performance of 0.4 at one core, com-
paring to the original program implemented us-
ing a standard double arithmetics. For anybody
who wishes to play around we prepared a ”pro-
totype” C++ implementation available at www.

matlogica.com free of charge. This prototype
implementation is simplified and cannot work ef-
fectively with large computations. In addition to
a two-pass compilation, the relative compilation

2

www.matlogica.com
www.matlogica.com

time and the volume of memory involved are un-
acceptable for practical use3. Part of the reason
for this is that the size of AAD functions is propor-
tional to the tape i.e. to the linearized (unfolded)
version of the primal algorithm. Below we discuss
how we can address these drawbacks.

A prototype C++ implementation The
code of the prototype library is short and self ex-
planatory. Nevertheless, we found it reasonable
to provide some comments in case it needs fur-
ther clarificaiton. According to the canonical AD,
all variables can be distinguished by their roles as
inputs, intermediates, or outputs. The header file
NaiveAADLib.h defines the active class dagdouble
which transforms each double variable into a node
of a future calculation Directed Acyclic Graph.
c l a s s dagdouble {
pub l i c :

dagdouble () {}
dagdouble (const double& val ,

bool i s I npu t = f a l s e)
: va l (va l) {
indx = getNextVarCounter () ;
i f (! i s I npu t) {

aadAssignConst (indx , va l) ;
} e l s e {

inputIndex . i n s e r t (indx) ;
}

}
dagdouble (const dagdouble& other) :

va l (other . va l) {
indx = getNextVarCounter () ;
aadAssign (indx , other . indx) ;

}
dagdouble& operator =

(const dagdouble& other) {
va l = other . va l ;
indx = getNextVarCounter () ;

aadAssign (indx , other . indx) ;
r e turn ∗ t h i s ;

}
void markAsOutput () {

outputIndex . i n s e r t (indx) ;
}

double va l ;
i n t indx ;

} ;

As an example, we supplied an overloaded ver-
sion of the multiplication operator. Here, we pro-
vide only the scalar version of the code. For the
vector version, the reader is encouraged to consult
the Prototype library source code.
dagdouble operator ∗(const dagdouble& a ,

const dagdouble& b) {
dagdouble r e s ;

3See the relative compilation time benchmarks for pro-
totype and professional AAD-Compilers

r e s . va l = a . va l ∗ b . va l ;
r e s . indx = getNextVarCounter () ;
aadMult (r e s . indx , a . indx , b . indx) ;
r e turn r e s ;

}

void aadMult (i n t r e s indx , i n t a indx ,
i n t b indx) {

s t r i ng s t r eam f s t r , r s t r ;
i f (codeVers ion == ScalarCode) {

f s t r << ”v” << r e s i ndx << ”=” << ”v”
<< a indx << ”∗v” << b indx << ” ; ” ;

r s t r << ”d” << a indx << ”+=” << ”d”
<< r e s i ndx << ”∗v” << b indx << ” ;”
<< ”d” << b indx << ”+=” << ”d”
<< r e s i ndx << ”∗v” << a indx << ” ; ” ;

}
aad func fwd . push back (f s t r . s t r ()) ;
aad func rev . push back (r s t r . s t r ()) ;

}

It creates a new variable (getNextVarCounter())
and writes the corresponding code of the Forward
and Reverse passes (applying aadMult()).

The distribution contains a basic example main.cpp
where the library‘s functioning is carried out by
defining a preprocessor variable
#define USE GENRATED AAD FUNCTION. De-
pending on its value, the user program either gen-
erates a file which contains a newly created AD
function, or uses the earlier generated one.

The included synthetic benchmark test (exam-
ple.cpp) produce the following results:

clang Absolute time Relative factor

AVX2 Primal 83ms 1

AVX2 Adjoint 64ms 0.73

AVX512 Primal 84ms 1

AVX512 Adjoint 39ms 0.46

All of the aforementioned disadvantages of the
prototype approach can be addressed by gener-
ating a binary code directly from OO. This idea
was implemented in AAD-Compiler by MathLogic
LTD.

A JIT AAD-Compiler is a professional ver-
sion of the prototype library. It represents a com-
pletely enabled OO AAD library and offers the
following features:

• Optimized machine binary code generation
optimized for both run-time performance and
quick code generation (patent pending)

• Streaming Compilation (patent pending)

3

• Incremental Checkpointing

• Proprietary AD-Code-Folding Compression

• Support for multiple platforms and C++
compilers

• Support for AVX2 and AVX512 vectoriza-
tion (patent pending)

• Enables multithreaded valuations even when
underlying user program isn’t multithread
safe (patent pending)

The AAD-Compiler has been extensively tested
and documented. Licensing terms distribution can
be found at www.matlogica.com.

AAD-Compiler speed-benchmark results
The benchmark results for the AAD-Compiler are
based on tests of different nature, including ran-
dom synthetic tests, previously published tests such
as LW, Toon or GMM, as well as the standard Fi-
nancial models like LMM or Stochastic Volatility
Calibration model [1],[2],[4].

The first test we consider is based on the open
source benchmark from the article F.Srajer et al.
(2018). Authors test various AAD-tools for the
Gaussian Mixture Model with 2.5M iterations and
get the following results (absolute time of adjoints
in seconds):
variables 5.36e+4 4.29e+5
Manual 3.89e+2 6.16e+3
Finite diff.
Adept C++ 4.09e+3 3.99e+4
ADOLC C++ 1.04e+4
Ceres C++
Tapenade C 1.32e+3 1.59e+4
DiffSharp F#
MuPAD Matlab • •
Julia-F Julia
Julia-F (vect) Julia • •
Autograd Python
Theano Python • •
Theano (vect) Python • •

Authors note that ”The bullet symbolizes that
a tool crashed and no entry means that a tool
did not finish in the time limit. Only tools that

could compute at least one problem instance are
shown.”

We execute the Adept‘s and AAD-Compiler‘s
versions of the GMM with 429 thousands argu-
ments and 2.5M iterations and get the following
absolute time of adjoints (in seconds). The AAD-
Compiler has optionally activated Code compres-
sor, so both cases are presented here.

Tool Compressor AVX2 AVX512

Adept - 2.89e+4 N/A
AADC On 1.3e+3 1.17e+3
AADC Off 2.86e+3 2.86e+3

Note that the huge number of required differ-
entials (0.5M) makes the GMM a memory-bound
problem and memory bandwidth is almost maxed
out at AVX2. For smaller sized problems perfor-
mance scales well with the AVX vector size.

AAD-Compiler Relative time of adjoints
for real world models The following table demon-
strates relative time of the full gradient to the ex-
ecution time of a primal algorithm.
Performance coeff: AVX2 AVX512

Toon 0.25 0.2
Heston 0.37 0.22
LMM 0.35 0.21

Toon benchmark is assumed to run over multiple
input data.

The behaviour of the performance relative time
on the number of CPU cores can be found in the
following table:

LMM 1 Core 4 Cores 8 Cores

AVX2 0.35 0.095 0.05
AVX512 0.21 0.06 0.035

AAD-Compiler Relative compilation time
for various real world and toy models From
the following table one can conclude that compi-
lation time is equivalent to around 400 executions
of the primal algorithm.

Model Relative Compilation time

Heston 970
LMM 650
GMM 700
Toon 240

AAD-Compiler memory-benchmark re-

4

www.matlogica.com

sults
For memory benchmarks we also used the con-

ventional Lax&Wendroff and Toon tests from [1].
Tool Comp. LW Toon GMM

Adept 3mb 24.5mb 23mb
AADC ON 42kb 11.5mb 7mb
AADC OFF 16mb 59.5mb 15mb

AADC’s values are normalized to a single sam-
ple. To obtain the real memory consumption, one
needs to multiply the values by an AVX vector
length.

Forward function. The Forward function
is useful on its own and constitutes a vectorized
replication of the primal algorithm. Similarly to
the complete AD function, it is MT safe even if the
primal algorithm is not. This replication proves
extremely useful if one wishes to use Finite Dif-
ferences, or just accelerate any complex computa-
tions. Given the current trend in using multiple
CPU cores to accelerate computations, this fea-
ture is useful in its own right.

References

[1] Hogan, R. J. 2014. Fast reverse-mode auto-
matic differentiation using expression tem-
plates in C++. ACM Transactions on Math-
ematical Software (TOMS), 40(4), 26.

[2] Srajer, F., Kukelova, Z. and Fitzgibbon, A.
2018. A benchmark of selected algorithmic
differentiation tools on some problems in
computer vision and machine learning. Op-
timization Methods and Software, 33(4-6),
889-906.

[3] AAD-Compiler prototype library. www.

github.com

[4] Goloubentcev, D. and Lakshtanov, E. 2019.
Remarks on stochastic automatic adjoint
differentiation and financial models calibra-
tion. arXiv preprint arXiv:1901.04200.

[5] AAD-Compiler by MathLogics LTD. www.

matlogica.com

5

www.github.com
www.github.com
www.matlogica.com
www.matlogica.com

