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Abstract 10 

Chemisorbent materials, based on porous aminosilicas, are amongst the most 11 

promising adsorbents for direct air capture applications, one of the key technologies 12 

to mitigate carbon emissions. Herein, a critical survey of all reported chemisorbed CO2 13 

species, which may form in aminosilica surfaces, is performed by revisiting and 14 

providing new experimental proofs of assignment of the distinct CO2 species reported 15 

thus far in the literature, highlighting controversial assignments regarding the 16 

existence of chemisorbed CO2 species still under debate. Models of carbamic acid, 17 

alkylammonium carbamate with different conformations and hydrogen bonding 18 

arrangements were ascertained using density functional theory (DFT) methods, 19 

mainly through the comparison of the experimental 13C and 15N NMR chemical shifts 20 

with those obtained computationally. CO2 models with variable number of amines and 21 

silanol groups were also evaluated to explain the effect of amine aggregation in CO2 22 
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speciation under confinement. In addition, other less commonly studied chemisorbed 23 

CO2 species (e.g., alkylammonium bicarbonate, ditethered carbamic acid and 24 

silylpropylcarbamate), largely due to the difficulty in obtaining spectroscopic 25 

identification for those, have also been investigated in great detail. The existence of 26 

either neutral or charged (alkylammonium siloxides) amine groups, prior to CO2 27 

adsorption, is also addressed. This work extends the molecular-level understanding 28 

of chemisorbed CO2 species in amine-oxide hybrid surfaces showing the benefit of 29 

integrating spectroscopy and theoretical approaches. 30 

 31 

Introduction 32 

Given the negative environmental consequences associated with CO2 emissions, a 33 

great effort has been placed in discovering and developing CO2 capture solutions, with 34 

amine-based solid adsorbents emerging as good sorbent materials 1-4. This is 35 

especially the case for low concentration, low temperature, moisture-containing 36 

applications 5-7. In the case of direct air capture 8, companies like Climeworks 9-10 and 37 

Global Thermostat 11-12 are already using solid amine-based sorbents. Some cases of 38 

post-combustion CO2 capture have also been proposed for their application 13-15. 39 

Assessing the type of chemisorbed CO2 structure formed in such porous amine 40 

adsorbents is of paramount importance to design and optimise materials for such 41 

applications. A recent review article carefully expands on the relation between 42 

structure and performance 16. 43 

Many researchers have tried to better understand the nature of the CO2 sorption 44 

process on these materials. Although it is well established that chemical reactions 45 

(chemisorption) occur upon adsorption of CO2 in amine covered surfaces, the type of 46 
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species formed, their stability under different conditions, and the variables influencing 47 

their relative proportions are still under great debate. Over the last decades, many 48 

studies have presented spectroscopic evidence for the different types of CO2-amine 49 

adducts formed, with a plethora of distinct species being proposed, both for 50 

alkylamine-grafted 1-2, 17-35 and polyimine-impregnated mesoporous silicas 3-4, 22, 26, 28, 36-51 

38. The main species identified were ammonium carbamate 1-2, 19, 21, 23-25, 27-31, 33-38, 52 

carbamic acid 17-18, 21, 24-25, 28-38 and ammonium bicarbonate 1-2, 17-18, 22, 29, 33-35, 37-38, with 53 

urea 22, 24, 27-28 and surface-bonded carbamate (silylpropylcarbamate) 23-24, 29, 37 forming 54 

under special conditions. 55 

Traditionally, Fourier-transform infrared (FTIR) spectroscopy has been used as the 56 

leading tool in species identification. More recently, nuclear magnetic resonance 57 

(NMR) has emerged as a powerful alternative 39, able to discriminate not only between 58 

different species 25, 27-28, 30, 34-35, 40-46, but also different conformations of the same 59 

species 32, 47. These studies use mainly 13C NMR, in order to detect CO2-amine 60 

adducts. Many authors, including our group, were able to observe two 13C resonances 61 

around 160-161 and 164-165 ppm (Table S20), typically attributed to carbamic acid 62 

and carbamate ions, respectively, under different experimental conditions and in 63 

different materials 25, 27, 30, 32, 40-45, 47. While carbamic acid formation is typically 64 

attributed to isolated amines, and ammonium carbamates to amine pairs, it has been 65 

shown experimentally and computationally that it is possible to have either paired or 66 

isolated carbamic acid 32, 47. In addition, an extra peak at 153.3 ppm (Table S20) was 67 

observed by our group, which has been attributed to a CO2 species extremely 68 

sensitive to the presence of water, appearing only in absolutely anhydrous conditions. 69 

This resonance has been assigned to the presence of isolated amines reacting with 70 

CO2 to form carbamic acid 47. 71 
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Pinto et al. 25 were the first to use 15N NMR to analyse surface CO2-amine adducts, 72 

but the low abundance of the isotope leads to results with an extremely low signal-to-73 

noise radio. Recent contributions by Jones and co-workers 34-35 used a two-step 74 

synthesis process to enrich the grafted amines in 15N, where 3-bromopropylsilane is 75 

first grafted onto the silica pore surface, and later 15NH3 is made to react with the 76 

grafted chains 48. By means of 15N cross polarization magic-angle spinning (CPMAS) 77 

NMR, three different amine/ammonium species were assigned to the 15N resonances 78 

associated to amine (δN ~ 24 ppm), ammonium siloxide (δN ~ 32 ppm) and ditethered 79 

amine (δN ~ 44 ppm). The latter species appears as an artefact of the unique synthesis 80 

procedure employed. Upon adsorption of CO2, an additional resonance appeared, at 81 

δN ~ 88 ppm, which has been assigned to carbamic acid and ammonium carbamate 82 

species. 83 

Herein, a critical survey of all reported chemisorbed CO2 species formed in primary 84 

amine-modified mesoporous silicas is made, by performing new solid-state NMR 85 

(ssNMR) experiments, assisted by electronic density functional theory (DFT) 86 

modelling calculations. Although some of these CO2 species have been hypothesised 87 

in previous studies, they have never been modelled and this work tries to fill this gap. 88 

This work confirms and, in some cases, disproves experimental resonance 89 

assignments reported in the literature, while revisiting previous DFT models. In 90 

addition, new models are provided which explain the formation of CO2 species under 91 

distinct amine aggregation states. Comparison of experimental and theoretical infrared 92 

spectra are also consistent with these assignments.  93 
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Experimental section  94 

 95 

The approach and methods used in the calculations performed in this work were 96 

described elsewhere 32, 49. Sample preparation and NMR measurements were 97 

performed according to previously reported experimental conditions 32, 47, 50. A detailed 98 

description of the used methods and techniques is provided in the Supporting 99 

Information. 100 

 101 

 102 

Results and Discussion 103 

The most stable structures (i.e., minima on the potential energy surfaces) of the 104 

species modelled in the present work are shown in Figures 1 and S2, and the 105 

corresponding 15N and 13C calculated chemical shifts (CSs) are presented in Tables 1 106 

and S1, respectively. Several starting possibilities for carbonaceous species that may 107 

form in silica functionalized with primary amines were considered; for a complete set 108 

of structural models please refer to Tables S2-14. 109 

 110 

Alkylamine and alkylammonium chains 111 

The calculated 15N CS (Table S1) are in very good agreement with the experimental 112 

values (RMSD ~ 2.5±1.4 ppm). Overall, there is a systematic but small positive shift 113 

in the calculated values compared to the experimental ones. Such cases occasionally 114 

occur when using DFT methods to calculate 15N NMR CSs 51-53, and were also 115 

observed in the case of the aqueous alkylamines considered here to determine a 116 
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reference root-mean-square error (see computational details and calculated values in 117 

Table S25). 118 

The clusters used to model amines and ammoniums consider a single amine and a 119 

single silanol attached to the silica surface (Figure S2), hence simulating a relatively 120 

high amine density but below monolayer coverage. Structural optimisations do not 121 

spontaneously lead to the formation of propylammonium siloxide, an a priori plausible 122 

scenario. Thus, to determine the 15N CS for the ammonium ion, it was necessary to 123 

freeze the three N-H lengths at 1.017 Å (typical N-H distance in primary amines and 124 

ammonia) during geometry optimisation. This suggests that the adsorbed 125 

propylammonium siloxide species (11, Figure S2) is far less stable than the co-126 

adsorbed neutral propylamine and silanol groups onto the silica surface (10, Figure 127 

S2). Indeed, the most stable propylammonium siloxide structure yields a Gibbs free 128 

energy of formation 99.6 kJ/mol higher than the most stable neutral amine model 129 

(Table S15), which suggests that the former species is very unlikely to form under the 130 

conditions assumed in our calculations. This turns out not to be the case in the real 131 

system, as discussed further below. 132 

Among all species listed in Table S1, the single-tethered amine (10, Figure S2) is the 133 

one showing the largest deviation between the calculated and the experimental CS 134 

values, 27.9 and 24 ppm, respectively. This minor overestimation is typical for 15N CS 135 

determination using DFT methods. However, it is still interesting to notice that this 15N 136 

resonance reported by Shimon et al. 35, with lower amine concentrations, is slightly 137 

more shielded when compared to those of Chen et al. 34, with higher amine 138 

concentration. In fact, amine concentrations in Chen et al. are close to monolayer 139 

coverage, so interactions with silanols should be relatively rare. It may thus be that the 140 
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single-silanol, single-amine cluster is more suited to represent the systems of Shimon 141 

et al. 35 than those of Chen et al. 34, from where the 24 ppm value is originally taken. 142 

The calculated propylammonium ion 15N CS (11, Figure S2) is remarkably close to the 143 

experimental value (33.1 and 32 ppm, respectively), which supports the original 144 

assignment 34. Although other contributions have previously hypothesised the 145 

existence of propylammonium siloxide species 24, 31, 36-37, 54, this is the first 146 

computational evidence strongly supporting the presence of this species prior to 147 

contact with CO2. The fact that propylammonium siloxide does not occur 148 

spontaneously (and is, indeed, much less favoured than the neutral species) in our 149 

model, but seems to occur in the real system, may be ascribed to the simplicity of the 150 

model employed. From our experience, complex H-bond networks, involving several 151 

electronegative atoms and protons, are necessary to stabilise proton transfer in these 152 

species. Charged species are often stabilised by water molecules 55; indeed, the 153 

presence of residual water may be fundamental for the formation of propylammonium 154 

cations 34. Therefore, the formation and stabilization of propylammonium siloxide in 155 

the systems studied experimentally can be associated to the presence of either 156 

aggregates of silanols and amines at close distance or moisture. The 15N enrichment 157 

method used by Jones and co-workers generates a ditethered secondary amine 158 

byproduct. The structure model of this species (12, Figure S2) exhibits a calculated 159 

CS extremely close to the respective experimental value (45.1 vs. 44 ppm, 160 

respectively). As hypothesised 34, these species have extremely rigid chains, greatly 161 

limiting the number of stable conformations arising from the DFT optimisations. 162 

The analysis above confirms that both amines and ammonium siloxide ion pairs are 163 

present in aminated silicas, and that under certain synthesis conditions ditethered 164 

amines may form. 165 
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Table 1. Experimental and calculated 13C and 15N CSs for different CO2-amine adducts. 

Calculated values correspond to the structures shown in Figure 1. Experimental 15C CSs 

values were taken from the NMR spectra of Figure 2 and from ref. 46 (in the case of 

ammonium bicarbonate). Experimental 15N CSs were taken from 35. 

Label Species Calculated Experimental SI Tables 

1 Ammonium 
Carbamate 

dC = 163.7 ppm 

dN1 = 90.4 ppm 

dN2 = 34.5 ppm 

dC = 164.3 ppm 

dN1 = 88 ppm 

dN2 = 32 ppm 

Table S6 

21 Structures 

2 
Carbamic Acid 

2 amines, 1 silanol 

dC = 159.3 ppm 

dN1 = 91.2 ppm 

dN2 = 31.7 ppm 

dC = 161.3 ppm 

dN1 = 88 ppm 

dN2 = 24 ppm 

Table S7 

25 Structures 

3 
Carbamic Acid 

2 amines, 0 silanol 

dC = 161.8 ppm 

dN1 = 92.6 ppm 

dN2 = 31.7 ppm 

dC = 161.3 ppm 

dN1 = 88 ppm 

dN2 = 24 ppm 

Table S8 

12 Structures 

4 
Carbamic Acid 
1 amine, 1 silanol 

dC = 158.2 ppm 

dN = 83.3 ppm 

dC = 159.5 ppm 

dN = 88 ppm 

Table S9 

5 Structures 

5 
Carbamic Acid 

1 amine, 5 silanols 

dC = 156.1 ppm 

dN = 96.2 ppm 

dC = 153.7 ppm 

dN = 88 ppm 

Table S10 

16 Structures 

6 
Carbamic Acid 

1 amine, 0 silanols 

dC = 153.8 ppm 

dN = 82.5 ppm 

dC = 152.6 ppm 

dN = 88 ppm 

Table S11 

9 Structures 

7 Ammonium 
Bicarbonate 

dC = 162.0 ppm 

dN = 37.5 ppm 

dC = 162.2 ppm 

dN = 32 ppm 

Table S12 

11 Structures 

8 Silylpropyl-
carbamate 

dC = 147.4 ppm 

dN = 91.9 ppm 

dC = — 

dN = 88 ppm 

Table S13 

4 Structures 

9 Ditethered 
Carbamic Acid 

dC = 158.5 ppm 

dN = 100.2 ppm 

dC = — 

dN = — 

Table S14 

9 Structures 

 166 
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Carbamic acid and propylammonium carbamate  167 

A comprehensive analysis of the CO2 species formed upon reaction of carbon dioxide 168 

with alkylamine/alkylammonium molecules has been performed, based on DFT 169 

calculations with cluster models that include the propylcarbamic acid/propylcarbamate 170 

chain, an unreacted alkylamine/alkylammonium chain and one or more surface silanol 171 

groups (up to five silanol groups), as shown in Figure 1. 172 

13C solid-state NMR enables the distinction between carbamate ion pairs and 173 

carbamic acid, the former with a peak at 160-161 ppm and the latter at 164-165 ppm 174 

25, 32, 34 (Table S20). The calculated 13C CS of the most stable structures representing 175 

these two species have been already reported by us 32. We have recently shown that 176 

propylammonium carbamate ion pairs could be identified by the extreme sensitivity of 177 

13C chemical shift anisotropy (CSA) to proton transfer 47. Moreover a model of 178 

carbamate ion pairs, where proton transfer from a COOH group to a neighbour amine 179 

was forced, could also reproduce well the experimental 13C CSA tensor components 180 

47, albeit at the expense of a high energy (i.e., 30 kJ/mol less stable) carbamate ion 181 

pair model. 182 

  183 
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Figure 1. 2D and 3D structural representations of different CO2-amine adducts. Corresponding 185 

calculated and experimental NMR parameters are presented in Table 1. 3D representations are lowest-186 

energy optimised structures. Stick and ball-and-stick representations denote frozen and fully optimised 187 
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atoms, respectively. Colour code is: white, H; dark grey, C; blue, N; red, O; and light grey, Si. Numbering 188 

as in Table 1. 189 

 190 

It was possible to find in this work, models of carbamic acid and carbamate structures 191 

possessing very similar stabilities (with the latter being less stable than the former by 192 

only 3.6 kJ/mol, Table S16). Several different initial configurations containing 193 

alkylammonium carbamate ion pairs were built albeit the geometry optimisation runs 194 

originated neutral species at the end. Ionic species could only be studied by freezing 195 

the three N-H bond lengths of the ammonium species to 1.017 Å. However, it is worth 196 

mentioning that one of the initial structures (1, Figure 1) led to the formation of the 197 

ammonium carbamate ion pair without imposing geometrical restrictions. Indeed, this 198 

was the only initial model from the dozens studied in this and in our previous works 199 

where the charged species were stable without necessitating to freeze the three N-H 200 

bond lengths of the ammonium species. This shows the important role that hydrogen 201 

networks may have on the stabilisation of the distinct carbonaceous surface species. 202 

In this case, there is a silanol species in the neighbourhood of the carbamate ion that 203 

stabilizes the ammonium carbamate ion pair. In fact, the obtained carbamate ion pair 204 

model exhibited much lower Gibbs energy than those reported in the previous works. 205 

The conformer obtained is thus another strong indication that the commonly observed 206 

13C resonance at δ ~ 164.3 ppm (δcalc = 163.7 ppm), labelled as C in the 13C CPMAS 207 

spectra of Figure 2, corresponds to an alkylammonium carbamate ion pair. The 208 

nitrogen nucleus of the carbamate moiety of the corresponding structure (1) resonates 209 

at δcalc (15N) = 90.4 ppm (δexptl ~ 88 ppm). 210 

15N CPMAS NMR spectra in two recent studies 34-35 have shown that carbamic acid 211 

and propylammonium carbamate contribute to a single resonance at 88 ppm. The 212 
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calculated 15N CS of the various models considered for these two species, which are 213 

listed in Table 1, are in good agreement with this experimental result.  214 

15N{13C} rotational-echo double-resonance (REDOR) data has also been employed to 215 

show that labelled carbon dioxide binds to the amine group, resonating at 88 ppm 216 

(15N), and to derive an internuclear 15N-13C distance of 1.45 Å 34. A similar distance 217 

was obtained by Huang et al. 42. However, in our structural models of carbamic acid 218 

and ammonium carbamate, N-C distances around 1.36-1.37 Å were obtained, a range 219 

that is, nevertheless, in close agreement with the typical distances observed for 220 

carbamate 56-59 and carbamic acid 60-61 crystallographic structures. 221 

 222 

 223 

Figure 2. Left: 13C CPMAS NMR spectra of 13CO2-loaded APTES@SBA-15 (mesoporous silica) with 224 

high (top) and low (bottom) amine loadings. Right: Clusters used to model the different 13C resonances 225 

present in the two spectra. A’ and B’ are used to represent the A and B resonances in the low amine 226 
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loading spectrum (bottom). Colour code for atoms: grey, C; red, O; blue, N; white, H; yellow, Si. The 227 

silica surface model was intentionally faded out to better emphasize the propylamine chains. 228 

Resonance C is associated with model 1 from Figure 1, resonance B with 3, resonance B’ with 4, 229 

resonance A with 5 and resonance A’ with 6. 230 

 231 

Many authors, including us, have tried to investigate how amine loading impacts the 232 

nature of CO2 species formed in silica-based materials 29, 47, 62-63; however, 233 

computational studies modelling CO2 structures in conditions of high- and low-amine 234 

loadings are extremely scarce 42. Whether CO2 species are isolated or establishing 235 

hydrogen bonds with neighbouring amines, with or without the involvement of 236 

hydrogen bonded silanol groups, is still very debatable and very difficult to verify 237 

through experimental evidence. To shed light on this matter, it is highly convenient to 238 

study materials with the highest and lowest (without compromising detection limits 239 

associated to certain spectroscopic techniques) possible amounts of amine coverage 240 

in common silica-based materials. To achieve this goal, two amine-functionalized 241 

SBA-15 materials have been prepared. One where the amine loading is relatively high, 242 

i.e., 2.8 mmol·g-1, and a second where chemical control of amine-amine distances has 243 

been performed through the insertion of “bulky” tert-butylcarbamate protecting group 244 

into 3-aminopropyltriethoxysilane (APTES) prior to the grafting procedure, which is 245 

then readily released upon heating, leaving behind isolated amine groups grafted 246 

within the pores. The synthetic route to accomplish this chemical transformation has 247 

been taken from ref. 47 and yielded 0.5 mmol of amines per gram of SBA-15 material. 248 

This ensures that amines are at least sufficiently spaced from each other. Figure 2 249 

shows how the 13C CPMAS NMR spectra are affected by this modification.  250 
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Figure 2 depicts the full assignment of the 13C resonances in a sample that was 251 

meticulously prepared by packing the NMR rotor (sample holder) under rigorous 252 

conditions that warrant complete absence of moisture and full control of CO2 partial 253 

pressures 47. In materials containing high-amine loadings, it was shown that species 254 

A and B are both associated to carbamic acid 32, 47. Interestingly, while C species 255 

appears approximately at the same CS position, regardless of the amine loading 256 

employed (Figure 2), resonances A and B become slightly shifted to a lower CS region 257 

(A’ and B’) upon amine dilution. The difference is markedly visible for resonance 258 

B→B’, which shifts almost 2 ppm. Note that the intensities of resonances C and B are 259 

inverted with respect to A when the NMR spectra associated to the high- and low-260 

amine loadings are compared. This seems to indicate that paired amines (B and C) 261 

become scarce or vanish upon amine dilution. To check whether the observed 13C 262 

resonance shifts, at low amine loadings, are associated to the loss of paired CO2 263 

species (i.e., only isolated carbamic acid species are favoured), new cluster models 264 

have been generated to calculate 13C CS in various conformations of non-paired 265 

carbamic acid. We denote these new models as B’ and A’ in the rightmost side of 266 

Figure 2.  267 

Isolated carbamic acid (non-paired) was modelled using different silica surface 268 

chemical environments; i) gas phase (i.e., not interacting with any silanol), ii) 269 

interacting with one Si-OH and iii) interacting with an excess of Si-OH (up to five silanol 270 

groups). The lowest-energy models are shown in Figure 1. All the other models 271 

containing different combinations of silanol groups can be found in Tables S7-S11, 272 

ranked by their total energies. 273 

A model capable of reproducing the experimental 13C CS of resonances C (164.3 ppm) 274 

and B (161.3 ppm), could not be reached among the generated non-paired carbamic 275 
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acid models (Table S9-S11), except for much higher-energy clusters from which 276 

resonance B could be modelled. It is remarkable that the two lowest-energy models 277 

obtained for isolated carbamic acid (Table 1 and Figure 1, 4 and 6) fit very well the 278 

experimental CS values of resonances A’ (δexptl = 152.6 ppm vs. δcalc = 153.8 ppm) and 279 

B’ (δexptl = 159.5 ppm vs. δcalc = 158.2 ppm). It should be mentioned that model 6 refers 280 

to a gas phase carbamic acid, which is hypothesised to model a scenario where 281 

hydrogen bonding involving silanol groups is not possible. Note that this was the only 282 

model that best-fit the experimental resonance A’ further supporting the fact that this 283 

isolated CO2 species is not interacting with oxygen atoms in its vicinity. 284 

Although resonances A’ and B’, appearing in the 13C CPMAS NMR spectrum of the 285 

sample treated to quench the pairing of propylamines, are very likely associated with 286 

isolated CO2 species, we shall remain sceptical and cannot disregard the possibility 287 

to form minor quantities of paired amines that could give rise to CO2 species 288 

resonating at similar frequencies. However, given that resonance C does not shift 289 

makes sense because: i) this is the CO2 species associated to ammonium carbamate 290 

ion pairs, where amine pairing is mandatory for its existence, and ii) this resonance 291 

becomes the species with the smallest intensity, which is fully compatible with the idea 292 

of having only a very small quantity of paired amines “surviving” under conditions of 293 

extreme amine dilution.  294 

Overall, the DFT models of “paired” and “isolated” CO2 species seem to explain the 295 

slightly shielded resonances A and B (to become A’ and B’), while C remains in the 296 

same CS upon amine dilution. This leads us to conclude that CO2 speciation can be 297 

far more complex than expected. In fact, several distinct CO2 species can co-exist 298 

depending on the number of silanol groups neighbouring the grafted amines, and on 299 

the possibility of eventual amine-amine pairing. 300 
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 301 

 302 

Figure 3. Typical ranges (filled boxes) of characteristic wavenumbers of carbamic acid and carbamate 303 

ion, collected from experiments in the literature 19, 21, 23-24, 29, 31, 33, 54, 63-66. Corresponding calculated 304 

values from this work (labelling as in Figure 1 and wavenumbers in Table S21) are represented by black 305 

lines. 306 

 307 

A significant number of studies involving CO2 speciation in amine-functionalised silicas 308 

has been performed using FTIR spectroscopy. The DFT models used to compute the 309 

NMR CSs can also be employed in the calculation of vibrational modes to simulate 310 

FTIR spectra that can be compared with the experimental ones. We have made a 311 

comprehensive screening of infrared spectroscopic data from different literature 312 

sources 19, 21, 23-24, 29, 31, 33, 54, 63-66 and compiled the data in the diagram shown in Figure 313 

3. This figure shows wavenumber ranges for some of the characteristic frequencies 314 

collected from literature for carbamic acid and carbamate ion, together with calculated 315 

values from the models shown in Figure 1. Overall, there is a good agreement between 316 
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calculated and experimental values of N-H deformation and C-N stretching in 317 

carbamates, with the calculated value of the latter being slightly lower compared to 318 

the experimental value. For COO- asymmetric and symmetric stretching in the 319 

carbamate ion and C=O stretching vibrations in carbamic acid, there is a significant 320 

overestimation of the wavenumbers relative to the wavenumbers up to ~100 cm-1 321 

(Table S21). The distinct carbamic acid models generate significantly different 322 

estimates for C=O stretching vibration, in a range of 94 cm-1. The carbamic acid (2) 323 

model analogous to that of ammonium carbamate (1) generates an overestimation of 324 

55 cm-1. 325 

Based on the above discussion, it is suggested that both the ion pair ammonium 326 

carbamate and the neutral pair amine-carbamic acid are typically present in aminated 327 

silicas that have come into contact with CO2. Partial charge stabilization in ammonium 328 

carbamate necessitates a network of hydrogen-bonds involving this species, which is 329 

supported by the observation that its 13C NMR resonance is remarkably constant at 330 

164-165 ppm. The intricate network of hydrogen bonds is also compatible with its 331 

resistance to regeneration by vacuum 35. Carbamic acid is suggested to occur on a 332 

range of varying chemical environments. While its characteristic C=O infrared 333 

frequency is tightly range-bound, the 13C resonance can vary significantly with amine 334 

or silanol concentration and moisture. 335 

 336 

Ammonium Bicarbonate  337 

Formation of ammonium bicarbonate on the surface of amine-functionalised silicas, 338 

upon reaction with CO2 and H2O, has been asserted since the onset of the field 1-2. 339 

Working with grafted primary amines, Leal et al. 2 were the first, in 1995, to provide 340 
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some sort of evidence for this claim, by identifying an infrared band at 1384 cm-1 341 

associated to C-O bending in bicarbonate. In 2003, Huang et al. 67 made a similar 342 

identification with a band at 1382 cm-1. Many other groups claimed to have detected 343 

bicarbonate-specific infrared bands 17-18, 20-22, 29, 33, 37-38, 46, 54, 65, 68-69, albeit band 344 

assignments reported in these studies are inconsistent. This led some authors to doubt 345 

whether bicarbonate was even formed in solid amine-functionalised materials 23-24, 70-346 

71. Our own results regarding the computed infrared spectrum of bicarbonate (Figure 347 

S7 and Table S24) provide some support to the previous identifications of ammonium 348 

bicarbonate in samples containing primary amines. In particular, the asymmetric and 349 

symmetric COO- stretching vibrations, identified usually at 1670-1616 cm-1 and 1360-350 

1350 cm-1, respectively, seem to correlate well with calculated frequencies of 1696 351 

cm-1 and 1385 cm-1. 352 

Recent studies show that the use of tertiary amines provides powerful evidence for 353 

the formation of bicarbonate in amine-functionalised silicas. For instance, Lee et al. 46 354 

reported a 13C CS of 162.2 ppm for the carbonyl resonance in bicarbonate; as the 355 

usual chemisorbed CO2 species (carbamic acid and carbamate) are only formed in 356 

primary/secondary amines and not in bulkier amines. The same authors have also 357 

employed 13C{15N} REDOR NMR experiments 34, in materials grafted with primary 358 

amines, suggesting that 10 % of the observed 13C resonance intensity at 165 ppm 359 

could also be associated to ammonium bicarbonate. Still, it is complicated to verify the 360 

presence or absence of ammonium bicarbonate in samples of mesoporous silicas not 361 

fully degassed (i.e., containing water) modified with primary/secondary amines due to 362 

strong resonance overlap with other CO2 species in this 13C CS region.  363 
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Our DFT results lend some support to the experimental 15N CS reported elsewhere 34. 364 

The 15N CS of the most stable structure model of ammonium bicarbonate (7, Table 1) 365 

is somewhat larger than that of ammonium siloxide (11, Table S1), but not enough to 366 

decisively discern it by 15N NMR. Similarly, the calculated 13C CS is relatively close to 367 

the experimental value 46, i.e., 162.0 and 162.2 ppm, respectively.  368 

Our energetic analysis of the bicarbonate stability (Table S18) shows that this species 369 

is 12 kJ/mol less stable than carbamic acid, when using single-amine/single-silanol 370 

clusters. This suggests that formation of carbamic acid under wet conditions is still 371 

favoured. However, this result needs to be taken carefully, as discussed for the 372 

amine/ammonium system (see section “Alkylamine and alkylammonium chains”). In 373 

fact, it is perfectly possible that bicarbonate forms in some samples and not in others, 374 

depending on the kind and concentrations of amines and the type of host material 29, 375 

62-63. This could explain why some authors reported a significant increase in the CO2 376 

adsorption capacity of amine-functionalised materials upon introduction of water into 377 

the system 2-3, 67-69, 72-74, while others did not 19, 24, 70, 75-77.  378 

 379 

Silylpropylcarbamate 380 

Formation of silypropylcarbamate, also known as surface-bonded carbamate, has 381 

been proposed in previous publications 23-24, 29, 37, 63, based on interpretations of 382 

infrared spectra. Identification of this species was made based on infrared bands at 383 

1510 cm-1 and 1714 cm-1. These bands could easily be used to propose the formation 384 

of carbamic acid, as the authors themselves recognise. In addition, they argue 385 

carbamic acid is thermodynamically unstable, and therefore cannot be present, 386 

leaving silylpropylcarbamate as the only other alternative albeit carbamic acid has 387 
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been securely identified in CO2-exposed amine-functionalised silica, using both 388 

infrared 17-18, 21, 24, 29, 31, 33, 36-37, 54, 64-66 and NMR spectroscopy 25, 32, 34. Bacsik et al. 24 389 

have made a more compelling case for the formation of silylpropylcarbamate. They 390 

admitted that samples with low amine concentration might lead to the formation of 391 

carbamic acid, but also added that, with time, the latter species condenses with 392 

surface silanols to form silylpropylcarbamate. The authors grounded this conclusion 393 

on a shift of the vibration associated with the carbonyl peak from 1704 cm-1 to 1715 394 

cm-1, from 2 to 60 min after the introduction of CO2 into the system. Furthermore, the 395 

authors observed that the species at 1715 cm-1 was more common in samples with 396 

low amine loading and persisted upon CO2 evacuation and high temperatures. From 397 

the same group, Aziz et al. 63 used an infrared band at 1700-1695 cm-1 to identify the 398 

presence of carbamic acid and silylpropylcarbamate, being unable to distinguish 399 

between the two. Didas et al. 29 have also postulated the presence of 400 

silylpropylcarbamate, although all the infrared bands used for its identification could 401 

also easily be attributed to carbamic acid. Yu and Chuang 37 mentioned the possibility 402 

of formation of silylpropylcarbamate, without providing any evidence. We have 403 

simulated the infrared spectrum considering a silylpropylcarbamate model (8, Figure 404 

1); the calculated frequencies at 1799 and 1479 cm-1 (Figure S6 and Table S23), 405 

correspond to C=O stretching and N-H bending modes, respectively. These theoretical 406 

vibrational bands do not correlate well with experimental values obtained by the 407 

different authors. Our calculations show that the calculated C=O stretching vibration 408 

for silylpropylcarbamate is overestimated up to ~ 100 cm-1 (1700 vs 1799 cm-1), 409 

considering that the experimental band at ca. 1700 is correctly assigned to this 410 

species. This discrepancy further emphasizes how difficult it is to reach definite 411 
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assignment of CO2 species on such a complex matrix based solely on FTIR 412 

measurements. 413 

Very similar calculated 15N CS ranging from 91.9 to 98.5 ppm (Table S13), were 414 

obtained for models of silylpropylcarbamate; the lower 15N CS limit is rather close to 415 

the experimental value (88 ppm) reported by Shimon et al. 35.The same comparison 416 

cannot be made through 13C CS analysis as there is no 13C resonance that can be 417 

assigned to this species. In fact, according to our lowest energy model (8, Figure 1), 418 

the calculated 13C CS of the silylpropylcarbamate carbonyl yields 147.4 ppm (Table 419 

1), which is well outside the typical range of 13C CS associated to the observed CO2 420 

species (Figure 2 and Table S20). In addition, the energetic analysis of 421 

silylpropylcarbamate (Table S17) shows it to be 30 kJ/mol less stable than carbamic 422 

acid, and 15 kJ/mol less stable than adsorbed CO2, which are significant differences, 423 

suggesting that the formation of silylpropylcarbamate in amine-functionalised silicas is 424 

thermodynamically unfavourable. Therefore, our results do not support the presence 425 

of this species as it was hypothesised by other authors. 426 

 427 

Ditethered carbamic acid 428 

Previous works 34-35 assigned the 15N resonance at 44 ppm to unreactive ditethered 429 

amine (secondary amine) species showing that this species remains unchanged upon 430 

adsorption/desorption of CO2. It was suggested in those works that this could be due 431 

to the rigidity of the ditethered chain, since secondary amines typically readily react 432 

with CO2. Our results show that ditethered carbamic acid lowest-energy model (9, 433 

Figure 1) give rise to a 15N CS at 100.2 ppm, which is ca. 10 ppm higher than those 434 

obtained for single-tethered carbamic acid (δN=91.2 ppm) and alkylammonium 435 
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carbamate (δN = 90.4 ppm) models (Table 1). This is fully consistent with previous 436 

interpretations where the experimental 15N CS of CO2-adducts resonates at δN ~ 88 437 

ppm 34-35, which is quite far from the calculated value (100.2 ppm). The energy penalty 438 

obtained upon the formation of ditethered carbamic acid (9), compared to a free amine 439 

with nearby physisorbed CO2 (12, Figure S2), is 70 kJ/mol (Table S19). Thus, the 440 

formation of ditethered carbamic acid upon adsorption of CO2 into a silica adsorbent 441 

with doubly-grafted amines is excluded. 442 

Since hydrogen bonds are fundamental to stabilise the structure of single-tethered 443 

carbamic acid, ditethered amine motion is probably hindered to such an extent (when 444 

compared to single-tethered amines) that interactions with the surface become 445 

difficult, and can only occur with significant straining of the alkyl chains. The hydrogen 446 

bond stabilising effect thus seems to be missing in ditethered carbamic acid, 447 

explaining the lower stability of this species. A previous study also suggested that 448 

interactions with the surface are central to the stabilisation of amine-CO2 adducts 23. 449 

In summary, in this work, an exhaustive survey of the most relevant atomic level 450 

studies regarding the chemisorbed CO2 structure is provided. We revisit the 451 

experimental proofs of assignment of the distinct chemisorbed CO2 species found thus 452 

far in the literature by debating results obtained from different authors, highlighting, 453 

whenever possible, controversial assignments regarding the existence of certain 454 

chemisorbed CO2 species. A number of structural aspects regarding the formation of 455 

certain CO2 species in mesoporous aminosilicas functionalized with distinct amine 456 

loadings have also been revisited by means of DFT calculations of NMR and FTIR 457 

parameters based on chemisorbed CO2 structure models. In particular, the M06-2X 458 

functional was used to calculate 15N and 13C NMR CSs, FTIR spectra and Gibbs 459 

energies of formation for several CO2 species that may be present in pristine and CO2-460 
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loaded aminosilicas. Several structural models were analysed for the first time while 461 

others were revisited in order to compare experimental and calculated 13C/15N CSs 462 

and vibrational modes. Calculated Gibbs energies of formation were typically good 463 

indicators of the propensity of such species to form, i.e, carbamic acid and carbamate 464 

moieties are slightly more stable than bicarbonate, and significantly more stable than 465 

silylpropylcarbamate or ditethered carbamic acid, in decreasing ordering of stability. 466 

15N CSs confirmed the presence of three possible species of amine/ammonium in the 467 

samples prior to the introduction of CO2 into the system, i.e., amine, ammonium 468 

siloxide and ditethered amine. Calculated 13C CSs, coupled with an experimental 469 

assessment, confirmed the formation of several kinds of carbamic acid/carbamate 470 

moieties, in CO2-loaded materials containing distinct amine loadings. Simulated 471 

infrared spectra of carbamic acid and alkylamonium carbamate compared well with 472 

typical experimental values, confirming these to be the predominant CO2 species.  473 

 474 
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