
Rigid First-Order Hybrid Logic ‹

Patrick Blackburn1, Manuel Martins2, Maŕıa Manzano3, and Antonia Huertas4

1 IKH, Roskilde University, Denmark patrick.rowan.blackburn@gmail.com
2 CIDMA, University of Aveiro, Portugal martins@ua.pt

3 University of Salamanca, Spain mara@usal.es
4 Universitat Oberta de Catalunya, Spain mhuertass@uoc.edu

Abstract. Hybrid logic is usually viewed as a variant of modal logic
in which it is possible to refer to worlds. But when one moves beyond
propositional hybrid logic to first- or higher-order hybrid logic, it becomes
useful to view it as a systematic modal language of rigidification. The key
point is this: @ can be used to rigidify not merely formulas, but other
types of symbol as well. This idea was first explored in first-order hybrid
logic (without function symbols) where @ was used to rigidify the first-
order constants. It has since been used in hybrid type-theory: here one
only has function symbols, but they are of every finite type, and @ can
rigidify any of them. This paper fills the remaining gap: it introduces a
first-order hybrid language which handles function symbols, and allows
predicate symbols to be rigidified. The basic idea is straightforward, but
there is a slight complication: transferring information about rigidity
between the level of terms and formulas. We develop a syntax to deal
with this, provide an axiomatization, and prove a strong completeness
result for a varying domain (actualist) semantics.

Keywords: Hybrid logic · First-order modal logic · Rigidity · Rigid
predicate symbols · Function symbols · Varying domains · Actualist se-
mantics · Henkin models

1 Introduction

Hybrid logic is usually viewed as a variant of modal logic in which it is possible to
refer to worlds. But when one moves beyond propositional hybrid logic to first- or
even higher-order hybrid logic, it becomes more useful to view it as a systematic
modal language of rigidification. Rigidity has long been an important concept in
first-order modal logic: a first-order constant is said to be rigid if it denotes the
same individual in all worlds, and free first-order variables in most first-order

‹ Accepted authors’ manuscript published as: P. Blackburn, M. Martins, M. Manzano,
A. Huertas. Rigid First-Order Hybrid Logic. In: Iemhoff R., Moortgat M., de Queiroz
R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture
Notes in Computer Science, vol 11541, pp 53–69. Springer International Publishing,
2019. [DOI:10.1007/978-3-662-59533-6 4]. The final publication is available at
Springer via https://rd.springer.com/chapter/10.1007/978-3-662-59533-6 4.

2 F. Author et al.

modal logics are interpreted rigidly. But rigidity is also central to hybrid logic,
and it is central at all levels, from the propositional to the type-theoretic.

Recall that propositional hybrid logic makes use of special propositional sym-
bols called nominals (typically written as i, j and k) that are true at exactly one
world in any model: in effect, nominals act as names for the unique world they
are true at. Basic hybrid logic also allows us to write expressions of the form
@ip, which means “evaluate p at the unique world called i”. Read this way, @i

is a modality whose task is to inspect what is going on at the i-world, and see
whether p is true there or not. But @i can also be read as a rigidifier : “form the
rigid proposition @ip out of the proposition p”. Note that @ip is indeed rigid: it
is either true at all worlds, or false at all worlds, depending on whether p is true
or false at the i-world.

As was soon realized, we can use @ to rigidify more than propositions. The
paper [5], which explores first-order hybrid logic, took the first step in this direc-
tion by introducing expressions of the form p@icq. Here c is a first-order constant,
which may denote different individuals in different worlds, and p@icq is the rigid
constant that denotes (at all worlds) whatever it is that c denotes at world i.5 For
example, if we think of c as a (non-rigid) constant that names Donald-Trump in
some world w, and Bernie-Sanders in some other world w1, then, if j is the nomi-
nal that names world w1, p@jcq is a rigid constant that names Bernie-Sanders at
all worlds. On the technical side, it was observed that Henkin-stye model build-
ing techniques could be used to build first-order Kripke models whose frames
were defined using equivalence classes of nominals, and whose domains of quan-
tification were defined using equivalence classes of rigidified constants; this led
to a number of general completeness and interpolation results (see [2,6]).

But the idea of using @ as a general-purpose rigidifier has been most widely
applied in the setting of higher-order hybrid logic. A range of higher-order hy-
brid logics, most based on Church’s theory of simple types, have been defined
(see [1,4,10,9]) and general Henkin-style completeness results for them proved.
Although these systems differ in various ways, they have two points in common.
First, they all allow expressions of the form p@ifq to be formed where f is a
function symbol of any finite type. That is: in the higher-order setting, @ is
totally overloaded — it can rigidify all the types of information that these lan-
guages can describe. Second, the higher-order Kripke models needed to prove
completeness are constructed out the equivalence classes6 of nominals (to de-
fine the frame) and equivalence classes of rigidified function symbols are used to
define the needed function hierarchies.

5 Note that in this paper expressions of the form p@icq were introduced in addition to
expressions of the form @ip. As the authors of this paper put it: they deliberately
overloaded the @ symbol. In this paper, we are going to overload @ even more.
Our basic convention will be to omit the enclosing out brackets when propositional
information is rigidified (as in @ip), and to use enclosing brackets when other types
of information are rigidified (as in p@icq). More on this later.

6 Or sets of rigidified function symbols in the partial type theory explored in [9].

Rigid First-Order Hybrid Logic ‹‹ 3

One gap in this picture remains, and the purpose of this paper is to start
filling it: to strengthen the first-order hybrid language defined in [5] to handle
first-order function symbols and rigidified predicate symbols. There are several
reasons for exploring such languages. For a start, many of the classical con-
ceptual problems surrounding modal logic arise in first-order modal logic. One
could explore them in a higher-order logic, but these are more complex, and bring
new philosophical problems along with them. An expressive first-order hybrid
language — one that makes it possible to rigidify constants, function symbols,
predicate symbols and formulas — offers useful resources for addressing classical
conceptual issues. Rigidifying predicate symbols, for example, allows us to ex-
press precise distinctions: we can talk about the relation of Love with reference
to the pairs of individuals in love in the i-world, that is, p@iLoveq; or we can
specify that we are interested in its denotation in the j-world using p@jLoveq.

There is also a more down-to-earth reason for our interest in this language: it
is rare to see function symbols treated in any detail in discussions of first-order
modal logic. Most authors skate lightly over the omission, and the reader is left
with the impression that extending first-order modal logic to cope with function
is a routine extension of what is already known. This seems misguided. First-
order modal logic raises a wide range of technical and conceptual challenges,
especially if one wants to work with varying domains (that is: with an actualist
semantics). This paper provides a general approach to handling function symbols
in a first-order modal logic with an actualist semantics.

The basic ideas explored in this paper are straightforward and build on previ-
ous work in the hybrid literature (probably [6] and [3] are the two most directly
relevant references). However there is one complication: transferring information
about rigidity between the first-order terms and formulas (this is an issue that
does not arise in the type-theoretic case, where one only has to deal with func-
tion symbols). We cope with this by defining a recursive notion of rigidification,
which keeps the term syntax relatively simple.

We proceed as follows. In Section 2 we define the syntax of our first-order
language of rigidification, and what it means to rigidify a term. In Section 3 we
define a varying domain semantics for our language, and note a basic lemma
about rigid terms. In Section 4 we provide an axiomatisation, and in Section 5
and the Appendix we prove that it is complete. Finally, in Section 6 we sketch
the ways we are developing the work reported here.

2 Rigid first-order hybrid logic

We start with a first-order signatures, consisting of n-ary function and relation
symbols:

Definition 1 (Signature). A first-order signature Σ is a pair ppFuncnqnPN,
pRelnqnPNq, where Funcn and Reln are sets of functional and relational symbols of
arity n, respectively. The indexed elements in either family may be empty, and if
they are all empty, we have the empty signature. The elements of Func0 (if any)

4 F. Author et al.

are called constants, and the elements of Rel0 (if any) are called propositional
symbols.

We intend to use such signatures in a first-order hybrid language, thus we
next to add first-order variables and nominals, and then “rigidify the signature”
by allowing any function or relation symbol (including any constants or propo-
sitional symbols) to be preceded by rigidifying operators of the form @i.

Definition 2. A first-order hybrid similarity type τ is a tuple xΣ,X,NOMy
where Σ is first-order signature, X is a countably infinite set of variables and
NOM is a set of symbols, called nominals. The NOM-rigidification of Σ (with re-
spect to τ) is the signature: @Σ “ pp@FuncnqnPN, p@RelnqnPNq, where @Funcn “
tp@ifq : i P NOM, f P Funcnu and @Reln “ tp@iP q : i P NOM, P P Relnu.

Given a similarity type τ , we define the set of rigid terms, and the set of
terms, as follows:

Definition 3 (Terms). Let τ be a first-order hybrid similarity type.
The set of rigid Σ-terms over τ , @Termpτq, is recursively defined by:

– for any x P X, x P @Termpτq;
– for any f@ P @Funcn, and all terms ti P @Termpτq, i “ 1, . . . , n,
f@pt1, . . . , tnq P @Termpτq.

The set of Σ-terms over τ , Termpτq, is recursively defined by:

– for any x P X, x P Termpτq;
– for any f P Funcn Y@Funcn, and all terms ti P Termpτq, i “ 1, . . . , n,
fpt1, . . . , tnq P Termpτq.

Clearly every rigid term is a term, that is, @Termpτq Ď Termpτq. We call a term
ground if it contains no variables.

The elements of Func0 (that is, constants) will play an important role in the
completeness proof, as we will then expand our language by adding denumerably
many new constants (“Henkin witness constants”) to prove our Lindenbaum
lemma. So it is worth noting that (by the previous definition) elements of the
form p@icq, where c is a constant symbol, are indeed rigid terms (that is, elements
of @Termpτq) as all such expressions belong to @Func0.

Now for an important definition. Given a term t and a nominal i, we can
(recursively) rigidify t at i, as follows:

Definition 4 (Rigidification of a term). Let t P Termpτq and i P NOM. The
rigidification of t at i is the term @it P @Termpτq recursively defined by:

– if t P X, @it :“ t
– if t “ fpt1, . . . , tnq with f P @Funcn, then @it :“ fp@it1, . . . ,@itnq
– if t “ fpt1, . . . , tnq with f P Funcn, then @it :“ p@ifqp@it1, . . . ,@itnq

Rigid First-Order Hybrid Logic ‹‹ 5

To spell this out: first, the rigidification process ignores variables, as they will
always be interpreted rigidly. Second, if the functor prefixing a term is of the
form (@jfq, which means that we have a syntactic guarantee that it is rigid, then
we ignore it and go on to recursively rigidify its arguments. Third, if the functor
prefixing a term is of the form f (that is, we have no syntactic guarantee of its
rigidity) we replace the functor f by the rigid form p@ifq and go on to recursively
rigidify its arguments. Note that for the special case of constants (functions of
arity 0) we have: given a constant c, and nominals i and j, the rigidification of c
with respect to i is p@icq, and the rigidification of c with respect to j is p@jcq. So
the base case of the recursion is simply the rigidification-of-first-order-constants
used in [5]. Also note that when a term t P @Termpτq is rigidified, the result is
simply t itself. That is, rigidification is the identity map on @Termpτq.

Definition 5. The set of Fmpτq of first-order hybrid formulas is the smallest
set such that:

1. NOM Ď Fmpτq;
2. t1 « t2 P Fmpτq, for any t1, t2 P Termpτq
3. P pt1, . . . , tnq P Fmpτq, for any P P Reln Y@Reln and t1, . . . , tn P Termpτq;
4. if ϕ P Fmpτq and i is a nominal, then @iϕ P Fmpτq;
5. if ϕ P Fmpτq, then ϕ,lϕ P Fmpτq;
6. if ϕ P Fmpτq and ψ P Fmpτq then ϕ^ ψ P Fmpτq and ϕ_ ψ P Fmpτq.
7. if x P X and ϕ P Fmpτq, then @xϕ P Fmpτq.

We use familiar abbreviations: ♦ϕ is l ϕ, Dxϕ is @x ϕ, ϕÑ ψ is pϕ^ ψq,
and so on. We define EXISTSptq to be Dx px « tq, provided that x does not occur
in t, as is standard in varying domain approaches to first-order modal logic.

It is worth explicitly noting some of the syntactic distinctions that can be
drawn in this language. Let i and j be nominals, let c and d be constant sym-
bols, and let P be a two-place predicate symbol. Then P pc, dq is a formula, one
that displays no syntactic indications concerning rigidity. P pp@icq, p@jdqq is also
a formula, though this time the two constants it contains have been rigidified.
Furthermore, p@iP qpc, dq is also a formula, though here it is the initial predicate
has been rigidified. Indeed, p@iP qpp@icq, p@jdqq is a formula too, though this
time the predicate and both constants have been rigidified. But there are other
possibilities. In particular, note that @iP pc, dq is also a formula: it is the formula
P pc, dq preceded by @i. Note that this is not the same formula as p@iP qpc, dq.
Indeed, under the semantics we shall shortly define, the two formulas have im-
portantly different properties: @iP pc, dq is guaranteed to be a rigid proposition
(it will either be true at all worlds or false at all worlds) while p@iP qpc, dq may
vary in truth value from world to world.

Hopefully these examples help make our basic bracketing convention clear:
when we combine @i with any formula ϕ (that is: propositional information)
then we write the resulting formula as @iϕ (that is: with no enclosing brackets).
On the other hand, when we combine @i with either a function symbol f , a
constant symbol c, or a predicate symbol P of arity ě 1, then we write the
resulting rigidifications as p@ifq, p@icq and p@iP q respectively (that is: with

6 F. Author et al.

enclosing brackets). In the case of a predicate symbol p of arity 0 (that is: the
propositional symbol p) we write @ip, since propositional symbols are formulas.

However one other point should be emphasized: in statements of lemmas
and axiom schemas we sometimes write expressions of the form @it (for i a
nominal and t a term). Here it is important to recall that such expressions are
not members of the object language, rather they are metalinguistic abbreviation
for the rigidification of t at i as defined by Definition 4.

3 Semantics

We now define a varying domain (actualist) semantics for our language. There
are several choices available; here we simply remark that we have aimed for a
general semantics, and typically follow the decisions made in [8]. We will say
more about this in the paper’s conclusion.

Definition 6 (Skeleton). A skeleton over τ is a tuple M “ pW,Dom, D,Rq,
where W ‰ H, Dom is a nonempty set, D : W Ñ P pDomq such that Dpwq ‰ H
and R ĎW 2. We will usually write Dw for Dpwq.

That is: we have a non-empty set of worlds W , a binary accessibility relation R
between these worlds, a global domain of objects Dom, and a function D which
tells us which elements of these domain elements actually exist at any world w.
We call Dw (for any w P W) a local domain. Local domains can be distinct,
which is why this is a “varying domain” semantics.

Definition 7. A model for a rigid first-order hybrid similarity type τ is a pair
M “ pM, Iq, where M is a skeleton and I is the interpretation function such
that:

– For any i P NOM, Ipiq PW ,
– For any P P Reln and any w PW , IwpP q Ď pDomqn, and
– For any f P Funcnand any w PW , Iwpfq : pDomqn Ñ Dom.

Note that (following [8]) we allow the interpretation of a predicate P to involve
individuals that do not exist in the local domain. Analogously, we interpret
function symbols in a way that lets them take as input entities that do not exist
at the local domain, and to output non-local entities as well. This seems the
simplest and most general starting point, but we’ll say more about this decision
in the paper’s conclusion.

Definition 8. Let M “ pM, Iq be a model and g : X Ñ Dom be a variable
assignment. The interpretation of terms is recursively defined as follows:

– if t P X, rts
M,w,g

“ gptq.
– if t “ fpt1, . . . , tnq, f P Funcn with n ě 0,

rts
M,w,g

“ Iwpfqprt1s
M,w,g

, . . . , rtns
M,w,g

q

Rigid First-Order Hybrid Logic ‹‹ 7

– if t “ p@ifqpt1, . . . , tnq, f P Funcn with n ě 0

rts
M,w,g

“ IIpiqpfqprt1s
M,w,g

, . . . , rtns
M,w,g

q

We can now give the satisfaction definition.

Definition 9. Let M “ pM, Iq be a model, g : X Ñ Dom an assignment and
w PW . Then:

M, w, g (i iff Ipiq “ w

M, w, g (t1 « t2 iff rt1s
M,w,g

“ rt2s
M,w,g

M, w, g (P pt1, . . . , tnq iff prt1s
M,w,g

, . . . , rtns
M,w,g

q P IwpP q,
for P P Reln and t1, . . . , tn P Termpτq

M, w, g (p@iP qpt1, . . . , tnq iff prt1s
M,w,g

, . . . , rtns
M,w,g

q P IIpiqpP q,
for P P Reln and t1, . . . , tn P Termpτq

M, w, g (ϕ iff M, w, g * ϕ
M, w, g (ϕ^ ψ iff M, w, g (ϕ and M, w, g (ψ
M, w, g (@iϕ iff M, Ipiq, g (ϕ
M, w, g (lϕ iff for all w1 PW such that wRw1,M, w1, g (ϕ
M, w, g (@xϕ iff for all d P Dw,M, w, grx ÞÑ ds (ϕ

A formula ϕ is said to be true at a world w under the assignment g if and
only if M, w, g (ϕ. It is valid in a model M, denoted by M (ϕ, if and only
if, for every world w and every assignment g we have that M, w, g (ϕ.

Lemma 1. For every t P Termpτq, every assignment g on M, every world w,
and every nominal i we have that:

rtsM,Ipiq,g “ r@its
M,w,g

Proof. By induction on the structure of t. Recall from Definition 4 that @it is
the (recursively defined) rigidification of term t.

4 Axiomatisation

This section gives an axiomatisation Kτ for first-order hybrid logic, given a
first-order hybrid similarity type τ . We will take all propositional tautologies as
axioms, and in addition:

Distributivity axioms
(Kl) lpϕÑ ψq Ñ plϕÑ lψq.
(K@) @ipϕÑ ψq Ñ p@iϕÑ @iψq.

Quantifier axioms
(Q1) @xpϕÑ ψq Ñ pϕÑ @xψq, where x does not occur free in ϕ.
(Q2) @xϕÑ pEXISTSpτq Ñ ϕp τx qq, where τ is rigid.
(Q3) DyEXISTSpyq

Basic hybrid axioms

8 F. Author et al.

(Ref @) @ii.
(Agree) @i@jϕØ @jϕ.
(Selfdual@) @iϕØ @i ϕ.
(Intro) iÑ pϕØ @iϕq.
(Back) ♦@iϕÑ @iϕ.

Axioms for «
(Ref «) t1 « t1, for all t1 P Termpτq.
(Sym«) pt1 « t2q Ñ pt2 « t1q, for all t1, t2 P Termpτq.
(Trans«)

`

pt1 « t2q ^ pt2 « t3q
˘

Ñ pt1 « t3q, for all t1, t2, t3 P Termpτq.
(Func) pt1 « t11 ^ ...^ tn « t1nq Ñ fpt1, . . . , tnq « fpt11, . . . , t

1
nq,

where f P FuncY@Func, and ti, t
1
i P Termpτq, for i “ 1, . . . , n, n ě 0.

(Pred) pt1 « t11 ^ ...^ tn « t1nq Ñ P pt1, . . . , tnq Ø P pt11 . . . , t
1
nq,

where P P RelY@Rel, and ti, t
1
i P Termpτq, for i “ 1, . . . , n, n ě 0.

Interactions between @ and «
(Rigidify) @ipc « p@icqq, for any constant c.
(K@«) @ipt1 « t2q Ø p@it1 « @it2q, for all t1, t2 P Termpτq.
(Nom«) @ij Ñ p@it « @jtq, t P Termpτq.
(Agree«) @ipt1 « t2q Ø pt1 « t2q, for all t1, t2 P @Termpτq.

Linking formula rigidity with predicate-and-term rigidity
(Shuffle-1) @iP pt1, . . . , tnq Ø p@iP qp@it1, . . . ,@itnq.
(Shuffle-2) @ip@jP qpt1, . . . , tnq Ø p@jP qp@it1, . . . ,@itnq.

As rules of proof we take the following (these proof rules are discussed in
detail in [6], and we shall note some results from this paper in what follows). For
any formulas ϕ and ψ, and any nominals i and j we have:

(MP)
ϕÑ ψ ϕ

ψ

(Gen@)
ϕ

@iϕ

(Genl)
ϕ

lϕ

(Gen@)
ϕ

@xϕ

(Name)
@iϕ

ϕ
, where i does not occur in ϕ.

(BG)
@i♦j Ñ @jϕ

@ilϕ
, if j ‰ i and j does not occur in ϕ.

(Subs)
ϕ

ϕ1
, where ϕ1 is any formula obtained from ϕ by replacing

nominals by nominals and variables by rigidified terms.

As usual, we say that a proof of a formula ϕ is a finite sequence of formulas
such that every formula in the sequence is either an axiom, or is obtained from
previous formula(s) in the sequence using the rules of proof. We write $ ϕ
whenever we have such a sequence and say that ϕ is a Kτ -theorem. If Γ Ytϕu is

Rigid First-Order Hybrid Logic ‹‹ 9

a set of formulas, a proof of ϕ from Γ is a proof of $Kτ pγ1^ . . .^γnq Ñ ϕ where
tγ1, . . . , γnu Ď Γ . A formula ϕ is provable from a set of formulas Γ (officially
written as Γ $Kτ ϕ, though we will usually just write Γ $ ϕ instead) if and
only if there is a proof of ϕ from Γ . The Deduction Theorem holds: Γ Ytϕu $ ψ
iff Γ $ ϕÑ ψ

Proposition 1. The following are all Kτ -theorems:

(K´1
@) $ p@iϕÑ @iψq Ñ @ipϕÑ ψq

(Nom) $ @ij Ñ p@iϕÑ @jϕq
(Sym) $ @ij Ñ @ji
(Bridge) $ @i♦j ^@jϕÑ @i♦ϕ
(Conj) $ @ipϕ^ ψq Ø p@iϕ^@iψq
(Elim) $ pi^@iϕq Ñ ϕ

Proof. See [6].

Proposition 2. The following rules are admissible in Kτ :

(Name1)
iÑ ϕ

ϕ
, where i does not occur in ϕ.

(Paste♦)
p@i♦j ^@jϕq Ñ ψ

@i♦ϕÑ ψ
, if j ‰ i does not occur in ϕ or ψ.

(Paste@)
p@iEXISTSptq ^@iϕp

@it
x qq Ñ ψ

@iDxϕÑ ψ
, t is ground and does not occur in ψ.

Proof. See [6].

Corollary 1. Let Γ Y tϕ,ψu be a set of formulas and i, j nominals. Then:

1. if i does not occur in Γ Y tϕu, then

Γ $ iÑ ϕ ñ Γ $ ϕ.

2. if j ‰ i does not occur in Γ Y tϕ,ψu, then

Γ $ p@i♦j ^@jϕq Ñ ψ ñ Γ $ @i♦ϕÑ ψ.

3. if t is ground and does not occur in Γ Y tϕ,ψu, then

Γ $ pp@iEXISTSptq ^@iϕp
@it

x
qq Ñ ψ ñ Γ $ @iDxϕÑ ψ.

Proof. Immediate from the previous proposition.

10 F. Author et al.

5 Soundness and Completeness

Theorem 1 (Soundness). Every theorem of Kτ is valid. That is, for any for-
mula ϕ P Fmpτq, we have that $ ϕ ñ (ϕ.

Proof. Fairly straightforward. The Distributivity, Quantifier, Basic Hybrid Ax-
ioms and the Axioms for « are all familiar from modal, hybrid, first-order or
equational logic. The soundness of K@«, Nom«, and Agree« rests on Defini-
tions 4 and 8. Note that Shuffle-2 also holds in the special case i “ j. If you
are unfamiliar with hybrid logic, the soundness of the (Name) and (BG) rules
may not be obvious: they are best thought of as analogous to natural deduction
rules (the conclusion of each rule “discharges” a nominal in the premiss) and the
side conditions are important. For detailed discussion of both rules (and some
variants) see [6].

Definition 10. Let Γ Ď Fmpτq.

– Γ is said to be Kτ -inconsistent if Γ $Kτ ϕ for any ϕ P Fmpτq. Otherwise
we say that Γ is Kτ -consistent.

– Γ is maximal Kτ -consistent if Γ is consistent and any set of formulas that
properly extends Γ is Kτ -inconsistent.

– Γ is named if it contains at least one nominal.

– Γ is ♦-saturated if for all @i♦ϕ P Γ , there is a nominal j such that @i♦j
and @jϕ belong to Γ .

– Γ is D-saturated if for all formula @iDxϕ P Γ there is a constant c such that

@ipEXISTSpcqq P Γ and @iϕ
p@icq
x P Γ .

Lemma 2. Let Γ Ď Fmpτq. Then

1. Γ is inconsistent iff there is a formula ϕ such that Γ $ ϕ and Γ $ ϕ.

2. ϕ P Γ then Γ $ ϕ.

3. Γ Y tϕu is inconsistent iff Γ $ ϕ.

4. If Γ is maximal consistent then, Γ $ ϕñ ϕ P Γ.

Proof. Standard.

We are ready to prove the Lindenbaum lemma we require: everyKτ -consistent
set of formulas can be extended to a named, ♦-saturated, D-saturated, maximal
Kτ -consistent set.

Lemma 3 (Lindenbaum). Let pinqnPN and pcnqnPN be countably infinite sets
of new nominals and new constants, respectively. Let τ be the new signature
obtained by extending Σ and NOM with these symbols, and Kτ the first-order
hybrid logic over the extended signature. (Note that by the substitution rule, Kτ

is a conservative extension of Kτ .) Every Kτ -consistent set of formulas Γ can be
extended to a named, ♦-saturated, D-saturated and maximal Kτ -consistent set.

Rigid First-Order Hybrid Logic ‹‹ 11

Proof. Let Γ be a Kτ -consistent set of formulas. We also have pinqnPN and
pcnqnPN, countably infinite sets of new nominals and constants respectively, at
our disposal. We define the set Γ˚ to be

Ť

nPN Γ
n, where:

Γ 0 “ Γ Y ti0u;

Γn`1 “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Γn , if Γn Y tϕnu is inconsistent

Γn Y tϕn,@i♦im,@imψu , if ϕn “ @i♦ψ and Γn Y tϕnu

is consistent

Γn Y tϕn,@ipEXISTSpcmqq,@iψ
@icm
x u , if ϕn “ @iDxψ and Γn Y tϕnu

is consistent,

Γn Y tϕnu , otherwise

In these clauses, im is the first new nominal not occurring in Γn or in ϕn and
cm is the first new constant not in Γn or in ϕn. We now prove by induction that
Γ˚ is Kτ -consistent.

Suppose that Γ 0 is not consistent. Then Γ Yti0u $ K. Hence, by the Deduc-
tion Theorem, Γ $ i0 Ñ K. Since i0 does not occur in Γ Y tϕu, by Corollary 1
clause 1, Γ $ K, which is absurd since Γ is consistent.

Next, assume that Γn is Kτ -consistent and consider ϕn of the form @i♦ψ.
Suppose for the sake of a contradiction that Γn Y tϕnu is consistent, but that
Γn`1 is not. Then Γn Y t@i♦ψ,@i♦im, @imψu $ K. Hence, by the Deduction
Theorem, Γn Y t@i♦ψu $ p@i♦im ^ @imψq Ñ ϕ. By Corollary 1 clause 2,
Γn Y t@i♦ψu $ @i♦ψ Ñ K. Applying modus ponens yields Γn Y t@i♦ψu $ K,
which contradicts our assumption that Γn Y tϕnu is consistent.

Next, assume that Γn is Kτ -consistent and consider ϕn of the form @iDxψ.
Suppose for the sake of a contradiction that Γn Y tϕnu is consistent, but that
Γn`1 is not. This means that

Γn Y tϕn,@ipEXISTSpcmqq,@iψ
p@icmq

x
u $ K.

Then, using the Deduction Theorem, we have that

Γn Y tϕnu $ p@ipEXISTSpcmqq ^@iψ
p@icmq

x
q Ñ K.

Then, using Corollary 1 clause 3, we have that

Γn Y tϕnu $ @iDxψ Ñ K.

Thus, Γn Y tϕnu $ K, contradicting its consistency.

Since Γn is Kτ -consistent for n P N, it follows that Γ˚ :“
Ť

nPN Γ
n is also

Kτ -consistent. Moreover, Γ˚ is also maximal. For suppose for the sake of a
contradiction that it is not: that is, suppose that there exists a formula ϕ R Γ˚

such that Γ˚Ytϕu is Kτ -consistent. Then ϕ “ ϕn, for some n P N, and ΓnYtϕnu
is consistent. Consequently, ϕn P Γ

n`1 which is an absurd since we assumed that
ϕ R Γ˚. So Γ˚ is maximal, and we have proved our Lindenbaum lemma.

12 F. Author et al.

In the sequel, given a Kτ -consistent set of formulas Γ , Γ˚ will denote the
named, ♦-saturated, D-saturated, maximal consistent extension of Γ , defined in
the proof of Lemma 3.

Definition 11. Let Γ be a named, maximal Kτ -consistent set of formulas. Bi-
nary relations „n and „r, over NOM and @Termpτq, respectively, are defined
as follows:

– i „n j ô @ij P Γ , i, j P NOM
– t „r t

1 ô t « t1 P Γ , t, t1 P @Termpτq

Lemma 4. The relations „n and „r are equivalence relations. Moreover, if
tk „r t

1
k for k “ 1, . . . , n, then p@ifqpt1, . . . , tnq „r p@ifqpt

1
1, . . . , t

1
nq.

Proof. The proofs that „n and „r are equivalence relations are straightforwrd
(and standard). The proof of the last statement uses the axiom:

pt1 « t11 ^ ...^ tn « t1nq Ñ fpt1, . . . , tnq « fpt11, . . . , t
1
nq,

where f P Funcn Y@Funcn, n ě 0.

Definition 12. Suppose Γ is a named, ♦-saturated, D-saturated and maximal
Kτ -consistent set of formulas. Then the Henkin structure

MΓ “ ppWΓ ,DomΓ , DΓ , RΓ q, IΓ q

is defined by:

– WΓ “ t|i| : i is a nominalu
– DomΓ

“ t|t| P @Termpτq : t is groundu
– DΓ

|i| “ t|t| P Dom : @iEXISTSptq P Γ u

– |i|RΓ |j| iff @i♦j P Γ
– IΓ

|i|piq “ |i|, for each nominal i

– for each f P Funcn and |t1|, . . . , |tn| P DomΓ ,
IΓ
|i|pfqp|t1|, . . . , |tn|q “ |p@ifqpt1, . . . , tnq|

– for each P P Reln,
IΓ
|i|pP q “ tp|t1|, . . . , |tn|q P DomΓ : p@iP qpt1, . . . , tnq P Γ qu

Let us briefly check this definition. Note that RΓ is well defined. For suppose
i1 P |i|, then @ii

1 P Γ so, if @i♦j P Γ , by pNomq, @i1♦j P Γ . Now suppose
j1 P |j|, then @jj

1 P Γ so, if @i♦j P Γ , by pBridgeq, @i♦j1 P Γ . We leave the
reader to check that the functions and predicate interpretations are well-defined
as well.

With this done, we are ready to state the Truth Lemma which establishes
that the Henkin structure MΓ is the model we are looking for; the Truth Lemma
is stated and proved in the appendix. This leads to:

Theorem 2 (Completeness). Let τ be a first-order hybrid similarity type ϕ
be a sentence and Γ a set of sentences. Then

Γ $ ϕñ Γ (ϕ.

Rigid First-Order Hybrid Logic ‹‹ 13

6 Conclusions and future work

We want to view hybrid logic as a general language of rigidification, and use
it to explore conceptual and technical issues in first-order modal logic; this pa-
per is our first step in this direction. The completeness result just proved takes
us closer to this goal, because it covers not merely the basic logic, but also
completeness with respect to any extension obtained by adding pure axioms or
existential saturation rules (for a definition and detailed discussion of these con-
cepts, see [6]). Adding pure axioms automatically yields completeness for many
different frame conditions (for example, transitivity, reflexivity, and irreflexiv-
ity), and for additional modalities (such as the Priorean tense operators and the
universal modality). More importantly for present purposes, such tools also im-
mediately yield completeness for conditions of particular relevance to first-order
modal logic. To give three such examples from [6], adding the pure axiom

@iEXISTSp@kcq Ñ @jEXISTSp@kcq

gives us a complete axiomatisation for constant domain (possibilist) semantics,
adding

@iEXISTSp@kcq ^@jEXISTSp@kcq Ñ @ij

gives us completeness with respect to the condition that all local domains be
disjoint, and adding the existential saturation rule

if $ @iEXISTSp@jcq Ñ ϕ then $ ϕ,

where i is a nominal distinct from j not occurring in ϕ, gives us completeness
with respect to the class of models in which every object in the domain (that is:
every element of Dom) is also an element of some local domain. Thus the system
defined in this paper already achieves a reasonable degree of generality.

But there are a number of issues that should be explored further. In this paper
we have taken a minimalist approach to rigidification syntax. In particular, we
did not have expressions of the form @it in the object language, we instead used
such expressions as metalinguistic abbreviations for the rigidification of t at i
(as defined in Definition 4). However, having explored this minimal choice, we
are now experimenting with extended versions of the language in which all such
expressions are part of the object language. This seems useful for at least two
reasons.

First, we want to develop and axiomatize richer forms of rigid first-order
hybrid logic which incorporate the Ó binder. This binder is a standard tool in
hybrid logic: it binds nominals to the world of evaluation. For example, Ó i.♦ i
is a formula that is true at any world w in any model if and only if w is an
irreflexive world. Now, when we add the Ó binder to the language explored in
this paper, it will let us bind the nominals in rigidified function and predicate
symbols. This is an extension worth exploring, but it seems more interesting to
add Ó to an extended version of the language in which all expressions of the
form @it are available. Why? Because once we add Ó, it seems both natural and

14 F. Author et al.

desirable to be able to form arbitrary terms of the form Ó i.@it, and this of
course requires that we have all terms of the form @it available (and open for
binding) in the object language.

Similar remarks apply to the other extension we are exploring: a general
treatment of partial functions in a varying domain setting. We have explored
this combination of ideas in the setting of higher-order hybrid logic [9], and are
currently transferring the key ideas down to the first-order setting defined in
this paper. Because the standard hybrid logical results concerning pure axioms
and existential saturation rules still hold in our approach to partiality (which
draws on ideas due to William Farmer [7]), we are confident that this can be
done smoothly, and that the result will be a general first-order modal framework
for working with partiality in an actualist semantics. But, once again, it seems
that this extension may be more usefully carried out in a language in which all
expressions of the form @it are available at the object-level. In this paper we have
interpreted function symbols in a way that lets them take as input entities that
do not exist at the local domain, and to output non-local entities as well. But
this hard-wires a lot into the semantics. We hope to find a flexible language in
which a wide variety of choices about the semantics of functions (and predicates)
can simply be axiomatised using such standard hybrid tools such as pure axioms
and existential saturation rules. Partialising the semantics Farmer-style, adding
object-level expressions of the form @it, and exploring the impact of Ó, seems a
promising route to such a system.

Acknowledgements. The authors are grateful to the Spanish Ministerio de
Economı́a y Competitividad for funding the project Intensionality as a uni-
fier: Logic, Language and Philosophy, FFI2017-82554, hosted by the Universidad
de Salamanca. Patrick Blackburn would also like to thank the Danish Council
for Independent Research (FKK) for funding as part of the project: The Pri-
macy of Tense: A. N. Prior Now and Then. Manuel Martins was also supported
by ERDF, through the COMPETE 2020 Programme, and by FCT, within the
projects POCI-01-0145-FEDER-016692 and UID/MAT/04106/2019.

References

1. Carlos Areces, Patrick Blackburn, Antonia Huertas, and Maŕıa Manzano. Com-
pleteness in hybrid type theory. Journal of Philosophical Logic, 43:209–238, 2014.

2. Carlos Areces, Patrick Blackburn, and Maarten Marx. Repairing the interpolation
theorem in quantified modal logic. Annals of Pure and Applied Logic, 124(1-3):287–
299, 2003.

3. Lúıs S. Barbosa, Manuel A. Martins, and Marta Carreteiro. A hilbert-style axioma-
tisation for equational hybrid logic. Journal of Logic, Language and Information,
23(1):31–52, Mar 2014.

4. Patrick Blackburn, Antonia Huertas, Maŕıa Manzano, and Klaus Frovin Jørgensen.
Henkin and hybrid logic. In The Life and Work of Leon Henkin, pages 279–306.
Springer, 2014.

Rigid First-Order Hybrid Logic ‹‹ 15

5. Patrick Blackburn and Maarten Marx. Tableaux for quantified hybrid logic. In
U. Egly and C. Fernmüller, editors, Automated Reasoning with Analytic Tableaux
and Related Methods, International Conference, TABLEAUX 2002, pages 38–52.
Copenhagen, Denmark, 2002.

6. Patrick Blackburn and Balder ten Cate. Pure extensions, proof rules, and hybrid
axiomatics. Studia Logica, 84:277–322, 2006.

7. William M Farmer. A partial functions version of Church’s simple theory of types.
The Journal of Symbolic Logic, 55(3):1269–1291, 1990.

8. Melvin Fitting and Richard Mendelsohn. First-Order Modal Logic. Springer, 1998.
9. Maria Manzano, Antonia Huertas, Patrick Blackburn, and Manuel Martins. Hybrid

partial type theory. Submitted, 2019.
10. Maria Manzano, Manuel Martins, and Antonia Huertas. Completeness in equa-

tional hybrid propositional type theory. Studia Logica, Oct 2018.

Appendix

This appendix sketches the definitions and lemmas that lead to the Truth Lemma,
and thus to the Completeness Theorem stated in the main text. As a first step,
given an assignment function g on the Henkin structure MΓ defined in Defini-
tion 12, we need an inductive definition of how to substitute a suitable rigid term
for a variables inside terms and formulas; the substitution syntactically mirrors
the assignment function.

We do so as follows. Given a variable assignment g into MΓ (that is, g : X Ñ

DomΓ) we first define a substitution function ĝ : X Ñ @Termpτq in the following
way: for any variable x, we define xĝ :“ tk, where tk is the first rigid ground term
in @Termpτq with lowest k such that gpxq “ |tk|. Here we assume that @Termpτq
is ordered. We extend ĝ to arbitrary terms t by defining: if t “ fpt1, . . . , tnq then

tĝ “ fptĝ1, . . . , t
ĝ
nq.

We extend ĝ to formulas in the following way:

– iĝ :“ i, i P NOM
– pt1 « t2q

ĝ :“ ptĝ1 « tĝ2q, t1, t2 P Termpτq

– pP pt1, . . . , tnqq
ĝ :“ P ptĝ1, . . . , t

ĝ
nq, P P RelnY@Reln and t1, . . . , tn P Termpτq

– p@iϕq
ĝ :“ @ipϕ

ĝq, ϕ P Fmpτq and i P NOM
– p ϕqĝ :“ pϕĝq and p♦ϕqĝ :“ ♦pϕĝq, ϕ P Fmpτq
– pϕ^ψqĝ :“ ϕĝ ^ψĝ and pϕ_ψqĝ :“ ϕĝ _ψĝ, for ϕ P Fmpτq and ψ P Fmpτq
– pDxϕqĝ :“ Dxpϕĝ

x
x q, x P X and ϕ P Fmpτq, where ĝxx “ ĝztpx, ĝpxqquq Y

tpx, xqu)

For any t P Termpτq and any assignment g on MΓ , in what follows we will
simply write tg for tĝ. A similar simplification will be adopted for formulas.

Lemma 5. For any t P Termpτq and any assignment g on MΓ we have

rtsM
Γ ,|i|,g “ |@it

g|

16 F. Author et al.

Proof. By induction on term structure.

(t P X)

rxs
MΓ ,|i|,g

“ gpxq
“ |tk|, where tk is the first ground (and rigid) term in

@Termpτq with lowest k such that gpxq “ |tk|.
“ |@itk|, since tk P @Termpτq, by definition @itk “ tk
“ |@ix

g|

(t “ fpt1, . . . , tnq, f P Funcn, n ě 0)

rfpt1, . . . , tnqs
MΓ ,|i|,g

“ I|i|pfqprt1s
M,|i|,g

, . . . , rtns
M,|i|,g

q

“ I|i|pfqp|@it
g
1|, . . . , |@it

g
n|q (Ind. Hyp.)

“ |p@ifqp@it
g
1, . . . ,@it

g
nq|

“ |@ipfpt
g
1, . . . , t

g
nqq|

“ |@it
g|

(t “ p@jfqpt1, . . . , tnq, f P Funcn, n ě 0)

rp@jfqpt1, . . . , tnqs
MΓ ,|i|,g

“ I|j|pfqprt1s
M,|i|,g

, . . . , rtns
M,|i|,g

q

“ I|j|pfqp|@it
g
1|, . . . , |@it

g
n|q (Ind. Hyp.)

“ |p@jfqp@it
g
1, . . . ,@it

g
nq|

“ |@ipp@jfqpt
g
1, . . . , t

g
nqq|

“ |@it
g|

Lemma 6 (Truth Lemma). For every nominal i, any assignment g on MΓ

and every formula ϕ

MΓ , |i|, g (ϕ ô @iϕ
g P Γ

Proof. The proof proceeds by induction on the complexity of ϕ.

– ϕ “ j
We have that

MΓ˚ , |i|, g (j iff |i| “ |j| iff @ij P Γ iff @ij
g P Γ .

– ϕ “ t1 « t2,
MΓ , |i|, g (t1 « t2 iff rt1s

M,|i|,g
“ rt2s

M,|i|,g

iff |@it
g
1| “ |@it

g
2|, by Lemma 5

iff @it
g
1 „r @it

g
2

iff @it
g
1 « @it

g
2 P Γ

iff @ipt
g
1 « tg2q P Γ , by axiom K@«

iff @ipt1 « t2q
g P Γ

– ϕ “ P pt1, . . . , tnq, with P P Reln Y@Reln and t1, . . . , tn P Termpτq;
If P P Reln:
MΓ , |i|, g (P pt1, . . . , tnq iff prt1s

M,|i|,g
, . . . , rtns

M,|i|,g
q P I|i|pP q

iff p|@it
g
1|, . . . , |@it

g
n|q P I|i|pP q, by Lemma 5

iff p@iP qp@it
g
1, . . . ,@it

g
nq P Γ

iff @ipP pt
g
1, . . . , t

g
nqq P Γ ,

by the Shuffle-1 Axiom
p@iP qp@it1, . . . ,@itnq Ø @ipP pt1, . . . , tnq

iff @ippP pt1, . . . , tnq
gq P Γ

Rigid First-Order Hybrid Logic ‹‹ 17

If P “ p@jSq, with S P Reln:

MΓ , |i|, g (p@jSqpt1, . . . , tnq iff prt1s
M,|i|,g

, . . . , rtns
M,|i|,g

q P I|j|pSq
iff p|@it

g
1|, . . . , |@it

g
n|q P I|j|pSq, by Lemma 5

iff p@jSqp@it
g
1, . . . ,@it

g
nq P Γ

iff @ipp@jSqpt
g
1, . . . , t

g
nqq P Γ ,

by the Shuffle-2 axiom
p@jSqp@it1, . . . ,@itnq Ø @ipp@jSqpt1, . . . , tnq

iff @ippp@jSqpt1, . . . , tnq
gq P Γ

– ϕ “ @jψ.
MΓ , |i|, g (@jψ iff MΓ , |j|, g (ψ

iff @jpψq
g P Γ , IH

iff p@jψq
g P Γ

iff @ip@jψq
g P Γ , by Agree

– ϕ “ ψ.
MΓ , |i|, g (ψ iff MΓ , |i|, g * ψ

iff @ipψq
g R Γ , IH

iff @ipψq
g P Γ , as Γ is maximal consistent

iff @i pψq
g P Γ , by Selfdual@

iff @ip ψq
g P Γ

– ϕ “ ♦ψ.
MΓ , |i|, g (♦ψ iff there is j such that |i|RΓ |j| and MΓ , |j|, g (ψ

iff there is j such that |i|RΓ |j| and @iψ
g P Γ , by IH

iff @i♦ψg P Γ ,
by Bridge (since @i♦j P Γ) and ♦-saturation

iff @ip♦ψqg P Γ

– ϕ “ ψ1 ^ ψ2

MΓ , |i|, g (ψ1 ^ ψ2 iff MΓ , |i|, g (ψ1 and MΓ , |i|, g (ψ2

iff @ipψ1q
g P Γ and @ipψ2q

g P Γ , IH
iff @ipψ1q

g ^@ipψ2q
g P Γ , as Γ is maximal consistent

iff @ippψ1q
g ^ pψ2q

gq P Γ
iff @ipψ1 ^ ψ2q

gq P Γ

– ϕ “ Dxψ.
MΓ , |i|, g (Dxψ iff exists θ P D|i| s.t M, w, grx ÞÑ θs (ϕ

iff exists θ P D|i| s.t @iϕ
grx ÞÑθs P Γ , induction hypothesis

iffp˚q @ipDxϕq
g P Γ

Proof of p˚q
The implication “ñ” holds by the Corollary 1 clause 3.
The implication “ð” holds by D- saturation. @ipDxϕq

g P Γ implies that there
exists a constant c such that @iEXISTSpcq P Γ and pϕqg

x
x px ÞÑ @icq P Γ . So

there is θ :“ @ic P D|i|pbecause @iEXISTSpcq P Γ q s.t @iϕ
grx ÞÑθs P Γ .

Lemma 7. Let Γ be a consistent set of sentences. Then, there is a nominal k
such that for every ϕ P Γ ,

MΓ , |k| (ϕ

18 F. Author et al.

Theorem 3 (Completeness). Let τ be a first-order hybrid similarity type ϕ
be a sentence and Γ a set of sentences. Then

Γ $ ϕñ Γ (ϕ.

	Rigid First-Order Hybrid Logic Accepted authors' manuscript published as: P. Blackburn, M. Martins, M. Manzano, A. Huertas. Rigid First-Order Hybrid Logic. In: Iemhoff R., Moortgat M., de Queiroz R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science, vol 11541, pp 53–69. Springer International Publishing, 2019. [DOI:10.1007/978-3-662-59533-6_4]. The final publication is available at Springer via https://rd.springer.com/chapter/10.1007/978-3-662-59533-6_4.

