
Multinomial logistic regression for prediction of vulnerable road users 

risk injuries based on spatial and temporal assessment 

Mariana Vilaçaa*; Eloísa Macedoa ; Pavlos Tafidisa,1  and Margarida C. Coelhoa  

mvilaca@ua.pt; macedo@ua.pt; pavlostafidis@ua.pt; margarida.coelho@ua.pt 

ORCID: 0000-0002-0839-6869; 0000-0003-1503-1718; 0000-0002-8428-2345; 0000-

0003-3312-191X 

a Centre of Mechanical Technology and Automation, Department of Mechanical 

Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, 

Portugal 

 

*corresponding author 

 

                                                 

1 Current Affiliation: Construction Engineering Research Group, Faculty of Engineering 

Technology, University of Hasselt University, Agoralaan, B-3590 Diepenbeek, Hasselt, 

Belgium. pavlostafidis@uhasselt.be 

mailto:mvilaca@ua.pt
mailto:macedo@ua.pt
https://orcid.org/0000-0002-0839-6869


Multinomial logistic regression for prediction of vulnerable road users 

risk injuries based on spatial and temporal assessment 

Urban areas rapid growth often leads to negative effects such as traffic congestion 

and increasing accident risks due to the expansion in transportation systems. In the 

frame of smart cities, active modes are expected to be promoted to improve living 

conditions. To achieve this goal, it is necessary to reduce the number of vulnerable 

road users (VRUs) injuries. Considering injury severity levels from crashes 

involving VRUs, this paper seeks spatial and temporal patterns between cities and 

presents a model to predict the likelihood of VRUs to be involved in a crash. Kernel 

Density Estimation was applied to identify blackspots based on injury severity 

levels. A Multinomial Logistic Regression model was developed to identify 

statistically significant variables to predict the occurrence of these crashes. Results 

show that target spatial and temporal variables influence the number and severity 

of crashes involving VRUs. This approach can help to enhance road safety policies. 

Keywords: road crashes, injury severity; kernel density estimation, multinomial 

logistic regression, vulnerable road users. 

Introduction 

Road crashes have a huge impact in society representing approximately 3% of the gross 

domestic product. Worldwide, 1.35 million people lost their lives every year in road 

crashes and between 20 and 50 million more people suffered non-fatal injuries (WHO, 

2018). In 2015, 21% of the fatalities in European Union’s roads were pedestrians, while 

8% were cyclists (European Commission, 2016). In Portugal, in 2017, there were 5096 

pedestrians and 1918 cyclists injured representing 20% and 5% of the road fatalities, 

respectively (ANSR, 2017). 

The strategic target for EU road safety for the period of 2011–2020 is to reduce 

the number of road deaths by half (European Comission, 2011). Vulnerable Road Users 

(VRUs) such as pedestrians and cyclists suffer severe consequences in collisions since 

they are unprotected (European Commission, 2018). In order to reduce the number of 

VRU crashes or, at least, the severity of injuries, besides different improvement solutions 



on redesign of infrastructures, solutions for mobility in the framework of smart cities can 

be developed (such as information tools to improve safety by, for instance, identifying 

areas prone to risk). 

It is founded that cities that invest in active modes, such as walking and cycling, 

are reducing traffic congestion, which consequently makes travel times more reliable, 

reduced delays, crashes, increased access to city facilities and services and reduced 

transportation costs (Alliance for Biking & Walking, 2014). Ensuring VRUs road safety 

is also a way of promoting active transport modes, representing health, environment and 

economic positive effects. 

 Several studies have investigated spatial (Dereli & Erdogan, 2017; Jia, Khadka, 

& Kim, 2018; Mohaymany, Shahri, & Mirbagheri, 2013; Soltani & Askari, 2017; Van 

Raemdonck & Macharis, 2014; K. Xie, Ozbay, & Yang, 2019) and temporal patterns 

(Weast, 2018), or even a combination of both (Bao, Liu, & Ukkusuri, 2019; Liu & 

Sharma, 2018; Ma, Chen, & Chen, 2017) in the analysis of road crashes. The recognition 

of risky areas – often called blackspots - is the initial step in traffic safety analysis. A 

crash blackspot can be theoretically defined as any location that has a crash frequency 

significantly higher when compared to other areas (Van Raemdonck & Macharis, 2014). 

The spatial and temporal analysis of road crashes can also take into account the severity 

of the crash or the injury severity level. It was reported in the literature that considering 

the level of injury severity allow to avoid potential statistical problems  and can change 

the idea of what could be a dangerous road zone (Mannering & Bhat, 2014). Additionally 

it is also important to point out that risk areas for crashes involving motor vehicles may 

present different characteristics when compared to areas of greatest risk for VRUs (Wang, 

Huang, & Zeng, 2017)  



Recently, identification of spatial and temporal patterns among road crashes 

involving VRUs has become a hot research topic (Chimba, Musinguzi, & Kidando, 2018; 

Dozza, 2017; Loidl, Traun, & Wallentin, 2016; Lu, Mondschein, Buehler, & Hankey, 

2018; Wang et al., 2017). This can be due to the fact that the number of VRUs fatalities 

and serious injuries have been growing, representing a challenge for both research and 

policymaking (Tiwari, 2018).  

Regarding pedestrian crash patterns a study showed that the probability of severe 

injuries grows for older pedestrians, in males, rural areas, low-speed zones and with poor 

lighting (Senserrick, Boufous, de Rome, Ivers, & Stevenson, 2014). On the other hand, 

shopping and residential areas, pedestrians density is related with a reduction in 

pedestrian injury severity (Prato, Kaplan, Patrier, & Rasmussen, 2018). Regarding 

cyclists, studies revealed that urban roads and signal intersections density increase a crash 

risk (Guo, Osama, & Sayed, 2018). Likewise, presence of retail or service establishments, 

touristic attraction places, and environmental factors (e.g., time information, pavement 

condition and weather) increase the risk of vehicles-bicycle collisions (Prati, Pietrantoni, 

& Fraboni, 2017). On the other hand, posted speed limit and older age of the cyclists are 

related with increase of injury severity (Chen & Shen, 2016). Temporal correlations of 

crash reports revealed that pedestrian’s fatalities occur specially in holiday periods and in 

November and December, while most cyclist fatalities occur in Summer or early Fall 

(Weast, 2018). 

In the literature, predictive models have been developed for estimating the 

likelihood of VRUs to be involved in a crash. Logistic regression models were developed 

to analyze significance of contributing factors of VRUs crashes (Damsere-Derry, Palk, & 

King, 2017; Useche, Montoro, Alonso, & Oviedo-Trespalacios, 2018; Yuan & Chen, 

2017). Yuan & Chen, (2017) revealed that night-time, road intersections, older age and 



vehicle high-speed increase crash severity between VRUs. A prediction model was 

developed based on series of intersection crash models for total, severe, pedestrians and 

cyclist crashes and showed that macro-variables are significant for a rigorous crash 

analysis (Lee, Abdel-Aty, & Cai, 2017). Multinomial Logistic Regression (MLR) models 

have also been developed and showed effectiveness of the MLR approach in crash 

severity modeling (Abdulhafedh, 2017). 

The research contribution of this paper is to perform a spatial and temporal 

analysis of crashes involving VRUs considering severity of injuries, in order to establish 

some pattern between cities with different specificities. A crash prediction model is also 

developed to identify the risk factors that can influence the severity of a VRU when 

involved in a motor-vehicle crash. A database of pedestrian and bicycle crashes was 

evaluated, comparing cities with different population densities and areas. The predictive 

model and spatial analysis are macro-level based and the blackspots are built on the 

density and severity of injuries. This work is built based on three steps: 

1. To evaluate and perform a spatial mapping of blackspots using GIS (geographic 

information system) techniques and statistical data analysis procedures on the 

study areas (taking into account level of injury severity); 

2. To perform a temporal analysis using spider plots, which are often used to reflect 

the trend of influencing variables and to compare multidimensional patterns; 

3. To formulate a crash prediction model based on Multinomial Logistic Regression 

to describe the probability of a crash involving a motor-vehicle and VRU. This is 

important not only to predict crash occurrences in specific blackspots, but also to 

infer the severity of crashes involving VRUs.  



This work intends to be a baseline study supported by a thorough analysis that can 

be used by policy and decision makers and road safety managers in order to clearly 

recognize blackspots and address the most relevant variables that influence VRUs safety.  

Methodology 

In this chapter, a description of methods applied for blackspots identification and 

development of the predictive models is made. Afterwards, case studies and the 

development of crash database is described. The conceptual framework is presented in 

Figure 1. 

Blackspots Identification 

To highlight areas prone to road crashes involving VRUs, geostatistical-based approach 

KDE was applied to obtain patterns based on the level of VRUs injury severity using the 

ArcGIS® software (ERSI - Environmental Sistem Research Institute, 2015).  

KDE is one of the most commonly used methods and revealed to outperform other 

popular methods for spatial analysis of crashes and blackspots identification (Yu, Liu, 

Chen, & Wang, 2014). In this technique, each observation is covered by a kernel, yielding 

a circular-cell-shape neighbourhood, with maximum value at a reference point, 

decreasing to zero at radius (𝑟) distance from it.  

In this study, we used the quartic kernel function (default in ArcGIS), which is 

one of the most commonly used functions. The density estimation using such function 

can be given as  

 𝑓(𝑥, 𝑦) =
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where 𝑓(𝑥, 𝑦) is the density estimation for location (𝑥, 𝑦), 𝑚 is the number of 

observations, 𝐾 is the kernel function defined as 
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with 𝑑𝑖 being the 𝑖-th observation location and 𝐾 a real coefficient.  

The choice of bandwidth r controls the smoothness of the estimated density  (Z. 

Xie & Yan, 2008). Considering the data level of detail and the area of each city under 

study, different radius (bandwidths) were empirically examined and smaller radius 

showed to be reasonably suitable to obtain an unsmooth density distribution, allowing 

smaller scale details. In the present study, the radius was set to approximately 175 meters.  

In order to embed the injury severity level in the data spatial structure, a specific 

weight on each VRU injured observation was considered based on the severity index 

developed by Elvik (2008). This approach establishes different weights for the different 

severity levels: 1 for light injuries, 3 for serious injuries and 5 for fatalities. 

KDE returned nine levels of risk, displayed in a range of grey shades from nearly 

white (Level 9: low-risk area) to black (Level 1: high-risk area), and Kernel density 

surfaces were derived for total injuries for each city.  

Predictive Modelling 

MLR is a predictive analysis that is used to describe data and to explain the relationship 

between the dependent nominal variable and one or more independent variables. In this 

paper, the response variable is categorical; it has two classes related to VRUs: pedestrian 

or cyclist. The set of predictor variables includes VRUs’ gender and age, level of injury 

severity, weekday, time period and weather conditions. By using MLR, one can determine 

the strength of influence that a particular independent variable has upon the type of VRU 

involved in a crash.  We assume that the pedestrian is the reference group since it is the 

class with more injuries. The statistical software SPSS was used (IBM Corp., 2016). 

Considering an MLR model in which the response variable consists of k>=2 



categories, the probability of a given observation x belong to one of the groups yi can be 

estimated by  

𝑃(𝑌 = 𝑦𝑖|𝑥) =
𝑒𝑥𝑝{𝛽𝑖0+𝛽𝑖1𝑥1+𝛽𝑖2𝑥2+⋯+𝛽𝑖𝑛𝑥𝑛}

1+∑ 𝑒𝑥𝑝{𝛽𝑖0+𝛽𝑖1𝑥1+𝛽𝑖2𝑥2+⋯+𝛽𝑖𝑛𝑥𝑛}𝑘−1
𝑖=1

, (4) 

where 𝑖 = 1,2, … , 𝑘 − 1, 𝑥𝑖 is the 𝑖-th independent variable of the data set, and 𝛽𝑖 

represent the estimated model. In particular, the MLR was performed considering a 95% 

confidence interval. Estimation of the parameters of these models was conducted using 

maximum likelihood procedures. The well-known Deviance and Pearson chi-square tests 

were used as goodness-to-fit statistics to evaluate the model fit. The Pseudo-R2 statistic 

was used as a measure on how well the model can predict the dependent variable based 

on the independent variables. The used methods for computing this measure were Cox 

and Snell, Nagelkerke and McFadden, which are most often available in statistical 

software. Finally, a likelihood ratio test was performed for evaluating the effect of each 

of the parameters, providing the weight of each independent variable in the prediction 

model. 

Development of a crash database 

Crash data involving VRUs from three Portuguese cities (Aveiro, Porto and Lisbon) with 

different areas and socio-demographic characteristics (Table 1) were analysed. 

Furthermore, a crash database was conceived. A total of 4439 VRUs-involving crash 

registrations from 2012-2015 were provided by ANSR (Portuguese Authority of Road 

Safety). 4615 VRUs were injured in these crashes. 87% of the injuries are related to motor 

vehicle-pedestrians and 13% to motor vehicle-cyclists crashes. All cities present a 

percentage of light injuries between 90 to 97% of total injuries. Table 2 describes the 

distribution of number of injuries per 10000 inhabitants and per square kilometre for each 

city. 



The crashes database was built and the analysis was focused on the VRU injury 

severity level, which is subdivided into three classes: light injuries, serious injuries, and 

fatalities. According to ANSR, a victim is considered seriously injured if there is the need 

to be at least 24 hours in a hospital but is discharged within 30 days after the crash; 

fatalities involve victims that do not survive within those 30 days (ANSR, 2017).  

The main attributes considered in the forthcoming analyses are: 

 VRU age and injury severity level; 

 Temporal variables: year, month, weekday, time of the day; 

 Weather conditions: good, bad (adverse weather conditions, e.g., rain, fog, snow). 

A more specific analysis is developed focusing on the most severe consequences 

(severe injuries and fatalities) in order to identify patterns between them. This analysis 

considered the attributes mentioned above and a detailed look is given to the following 

ones:  

 VRU Gender (male, female) and presence of the most vulnerable age groups (14 

or younger, and 65 or older); 

 Type of road location (segment, intersection and others); 

 Built environment (area characterization: shopping, touristic, educational, health, 

residential, industrial, services and agriculture). 

Results 

This section presents the results of spatial and temporal analysis, in an attempt to discover 

spatial and temporal patterns among the severely injured and fatal VRUs. Finally, results 

on multinomial logit models are discussed. 

Spatial Analysis 

Crashes involving VRUs were georeferenced and an injury attribute was used to generate 



spatial maps. Figure 2 illustrates the geographic distribution of crashes resulting on VRUs 

injuries by level of severity, highlighting blackspots on each city. KDE was applied to 

analyse spatial distribution of motor-vehicle-VRU crashes. 

Regarding Aveiro, the main blackspot is inside the city centre, including a 

shopping area and one of the main inner-city connection roads. Porto blackspots were 

identified in urban and historical centres, in places involving high number of tourist 

points, churches, stores and train station. Lisbon blackspots are mostly in urban and 

historical centres, close to touristic points, but also around governmental institutions. 

Additionally, in a second level, there is a blackspot covering a train station and a hospital. 

Results suggest blackspots in areas that attract many people and although it can be thought 

as expected, the truth is that this is a compelling situation, since in these specific areas 

vehicles running speed should be low (speed limit equal or less than 50km/h). 

Temporal Analysis 

Considering an annual evolution, Aveiro is the only city presenting a decrease of 2% 

regarding pedestrians’ injuries. Regarding cyclists, Aveiro presents an annual growth rate 

of 11%. Porto presents an annual growth rate of 2% of pedestrians’ injuries and 15% of 

cyclists’ injuries. Annual growth rate in Lisbon is 4% of pedestrians’ and 15% of cyclists’ 

injuries. A closer look regarding pedestrian’s number of injuries shows Lisbon with an 

increase over the years and Aveiro and Porto with a decrease in 2015. Considering injured 

cyclists, the proportion of this class is higher in Aveiro, followed by Porto, and Lisbon. 

Decrease of cyclists injured in 2015 can be explained by the implementation of new 

legislation in 2014, the driver of the motor vehicle is required to leave a minimum lateral 

distance of 1.5 meters between the vehicle and the bicycle. 

Figure 3 shows the monthly evolution of VRUs injured for the cities and years 

under study considering the level of injury severity (light and serious injuries and 



fatalities). A first observation is that the light injuries represent a significant weight when 

compared to the other classes, and thus, contribute more to any analyses. Aveiro has the 

most evident fluctuation during the months of October and November. August, which 

typically is a vacation month, presented lower number of injuries, particularly for Porto 

and Lisbon. Regarding Porto, VRUs injuries’ peak is in September, then decreasing until 

November. Concerning Lisbon data, the highest number of VRUs injuries occur in 

December and October. Considering a global analysis of the three cities, November, 

October and September are the months with higher number of VRUs injuries with around 

1,5 injury/1000 inhabitants.  

Table 3 presents the distribution of VRU injuries for weekday. Regarding Aveiro, 

20% of VRUs injuries occur on Thursdays and 18% during weekend. In Porto, weekends 

still reach lower percentage of injuries, while the riskiest day seems to be Friday with 

18% of injuries. Focusing on Lisbon, crashes involving VRUs injuries occur mostly on 

Thursdays (18%) and Fridays (17%), and weekends represent 17% of injuries. An 

overview of the three cities allow us to conclude that Thursday and Friday are the 

weekdays with more injuries (35% of the total; 2,7 and 2,5 injuries/1000 inhabitants, 

respectively). 

Figure 4 shows distribution of vehicle-pedestrian and -cyclist crashes for different 

hours, during weekdays. Spider plots for Aveiro suggest most vehicle-pedestrian crashes 

occur on Monday with peak hours at 8am and 5pm, while for cyclists most critical days 

are Thursday, at 1pm, and Mondays at 8am. For pedestrians, peak hours for Porto seems 

to be 6pm on Mondays, 5pm and 7pm on Fridays, and 9am and 6pm on Wednesdays. 

Regarding cyclists, peaks are clearly at 7pm on Thursdays and there is also a peak at 4pm 

on Wednesdays. In Lisbon, number of weekend pedestrians-involving crashes is smaller 

when compared to other days. Typically, Thursdays have peak hours in terms of crashes 



between 8am and 9am, and 5pm to 6pm, while on Wednesdays, peaks are at 9am and 

11am, and between 5pm and 6pm. For cyclists, Thursday at 9am and 7pm, Saturday at 

11am, Tuesday at 4pm and Monday at 6pm represent the most critical time periods. 

Results of the three cities revealed that the worst hours considering pedestrians injuries 

are between 5pm to 7pm and for cyclist at 1pm and, as for pedestrians, from 5pm to 7pm. 

This is explained by VRUs daily routines and peak hours with higher traffic volumes. 

Figure 5 presents distribution of injuries according to different age groups. 

Specifically, in Aveiro, school age group of pedestrians (<15 yr. old) reveals a peak in 

crashes at 8am and most crashes occur after 4pm for pedestrians between 18 and 49 years 

of age. For pedestrians with 65+ years, 8am and 10-11am are critical periods. Cyclists 

between 25 and 49 years are involved in a higher number of crashes at 10am, 1pm and 

7pm. For older cyclists, 11am is a critical hour. Patterns for pedestrian-involving crashes 

can be visualized at 8am for school age, between 5pm and 8pm for 18-24 and 25-49 age 

groups, during morning for 65+. Part of the reason of these results may be due to existence 

of schools, University and hospital close to city center, which involve many daily trips. 

Comparing to Aveiro, distinct patterns can be pointed in Porto. Pedestrians of 65+ clearly 

presented the biggest number of injuries and have a first high-risk time at 9am, as well as 

the working age group (25-64). However, other critical times for older pedestrians are 

11am and 6pm, while the working age group has a peak between 5pm and 7pm. Many 

vehicle-cyclist crashes involve working age group, with peaks between 9am and 11am, 

3pm and 4pm, and also at 7pm. These findings suggest off-peak traffic hours are also 

important in crashes involving older pedestrians, since their daily routines are not 

restricted to working hours. In Lisbon, most of crashes involve pedestrians on working 

age group and 65+ groups, with morning peaks between 8am and 9am, and 8am and 

11am, respectively. During afternoon, working age group has peaks in terms of crashes 



around lunch time and between 4 to 8pm, and older pedestrians present a peak at 5pm. 

For cyclists between 25 and 49 years of age, there are more crashes at 8am and 12am, as 

well as between 4-7pm, which can be explained by the existence of schools, general 

services and offices in city center. 

Analysis of Severely Injured and Fatal occurrences 

A closer look to severely injured and fatal occurrences is given considering the 

importance to find patterns between the most severe consequences. 

Aveiro presents a higher proportion in the number of serious injuries and fatalities 

(11% considering pedestrians’ injuries and 9% considering cyclists injuries). Regarding 

Porto and Lisbon these percentages are for pedestrians’ injuries 3% and 7%, respectively. 

Regarding cyclists injuries Porto did not present any serious or fatal crash and Lisbon 

presented a percentage of 5%.  

Month evolution (Figure 3) revealed that May and February are the months with 

highest serious injuries and fatalities, respectively, for the city of Aveiro. For Porto, 

February has the highest number of serious injuries, while the months of September, 

November and December present more fatalities. In Lisbon, serious injuries occur in May 

and January recorded the highest number of fatalities. As a general overview, January 

and February seem to be the months with more fatalities among all cities. 

Regarding the distribution of VRU injuries for weekdays (Table 3) Aveiro present 

the most severe injuries (serious and fatal) on Mondays. For Porto, Wednesday and 

Thursday present the huge percentage of serious injuries and fatalities (4%). Lisbon, 

Sunday present the highest percentage (9%) of severe injuries. A general overview 

highlight Thursday and Friday the most critical weekdays in what concern high VRUs 

injury severity levels. 

Considering VRUs gender, results show that in Aveiro and Lisbon almost 80% 



and 90%, respectively, are male cyclists. The trend concerning male pedestrians is more 

balanced in Porto and Lisbon, representing 54% and 57%, respectively, while in Aveiro 

more than 70% of the injuries occur with female pedestrians. 

Regarding the most vulnerable age groups, results show that 7% of the injured 

pedestrians in Porto and Lisbon are children, while in Aveiro this percentage raises up to 

28%. Half of the elderly pedestrians involved in crashes in Porto are severely injured or 

fatalities, while in Lisbon such value drops to 38%. Aveiro presented the smallest 

percentage (17%). Considering cyclists, Aveiro presented a massive 43% of elderly 

cyclists between the severely injured and fatalities, while Lisbon present 6%. Aveiro does 

not present any severely injured or dead child cyclist, while Lisbon presents almost 20% 

cyclists severely injured or dead. 

With respect to type of road locations, results show that, for serious injuries and 

fatalities of pedestrians for all cities, 33-65% occur in segments and 28-41% in 

intersections. About cyclists, results revealed that around 42% occur in segments and 

49% in intersections. A residual percentage of the severe and fatal injuries occur in 

roundabouts for all cities. 

The following spider plots illustrate the temporal distribution of severely injured 

and dead VRUs considering different road types: straight segments, roundabouts, 

intersections, or other road location (parking lot road, private road, etc.) – Figures 6 and 

7. 

A closer look on some road specificities allows to conclude that more than 40% 

of the pedestrian-motor vehicle crashes occur in the presence of crosswalks; in particular, 

Porto presented the worst scenario with almost 60%. Porto presents the highest 

percentage of crashes occurring in the presence of traffic lights (almost 40%), followed 

by Lisbon with 25%, while Aveiro presented the smallest percentage (3%). None of the 



records involving severely injured and dead cyclists describe occurrences close to cycle 

lanes, however 8% of the total crashes involving light injured cyclists occurred close to 

these facilities. 

Figure 8 illustrates the relative proportion of severely injured and dead VRUs for 

each particular city taking into account aspects of built environment. Regarding built 

environment, results show that Aveiro and Lisbon present the highest number in 

residential areas (34% and 40%, respectively). There are also relevant percentages of 

crashes in agricultural and industrial areas in Aveiro (19% and 16%, respectively); this 

can be explained by the higher speed limit (in the roads close to industrial areas) and the 

lack of sidewalks in agricultural areas. On the other hand, Lisbon areas has a higher 

exposure of VRUs exposure in touristic (23%) and service (17%) areas. Porto presents a 

quite different daunting trend with 28% of the most severe crashes occurring in 

educational areas, 24% in residential areas, and 15% in touristic points. Shopping areas 

can be associated to 6-8% of the severely injured and dead VRUs for all cities. 

Multivariate Model Analysis 

In this section, MLR models involving vehicle-VRU crashes for each city are presented. 

Table 4 presents the overall statistical significance values of each developed model. 

Results suggest appropriate fits to the models and show that the variables added 

to the model are statistically significantly (Sig.<0.05) and improve the model for each 

city (i.e., the obtained models significantly predict the response variable). Results on the 

quality of fitting the data (goodness-to-fit) reveal that the model fits well the data for 

Porto and Lisbon, while for Aveiro the results of both measures of goodness-to-fit are 

different, yet Pearson chi-square statistic shows the model fits the data as well. The 

pseudo-R2 statistics permits to assess the predictive strength of the obtained MLR 

models. The best measure is obtained for the Nagelkerke’s R2: 37%, 39% and 29% for 



Aveiro, Porto and Lisbon, respectively, meaning that the obtained models are able to 

explain these percentages of data variability. Finally, regarding statistics related to the 

model parameters, VRU gender, age group, and weather conditions are statistically 

significant for all models. 

Conclusion 

This paper presented a spatial and temporal analysis of crashes involving motor-vehicles 

and VRUs considering severity of injuries, in an attempt to highlight some patterns 

between cities of different specificities. Moreover, assessing which factors can influence 

the level of injury severity of a VRU was also reported. 

The main findings allow to conclude that most injuries occur in surrounding areas 

of high attraction places, such as train stations, shopping and touristic points, where speed 

limits are relatively low. Intersections are the singularity type with more serious injuries 

and fatal cyclists, while road segments seem to be more dangerous for pedestrians. More 

than 40% of the pedestrian crashes occur in the vicinity of crosswalks. A general 

overview on the built environment allows to conclude that areas with more impact are 

residential, educational and touristic zones.  In a medium-sized city, as Aveiro, 

pedestrians from the active age and female groups are the most vulnerable. However, for 

Porto and Lisbon, elderly people are the most vulnerable both in injury number and in 

severity; in these cities, cyclists in the active age are more likely to be involved in a crash. 

The developed MLR models for each city revealed that VRU gender and age, as well as 

weather conditions, are statistically significant variables to predict this type of crashes. 

Despite the findings achieved so far, some limitations should be taken into 

account and addressed in future research. First, data of pedestrians and cyclists’ exposure 

by age and gender could give a better perspective of the result. Secondly, a micro level 



study can be attempted with additional information related to vehicle details, road 

characteristics and driver profile information. 

This work intends to be useful for policy and decision makers, as well as road 

safety managers, in order to clearly recognize blackspots and improve VRUs safety. This 

is even more important in an era where driverless vehicles are about to be implemented, 

and the way they will circulate in the urban space and interact with VRUs is of utmost 

important. 
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TABLES  



Table 1. Socio-demographic characteristics from the case studies cities [Comunidade 

Intermunicipal da Região de Aveiro (CIRA), 2012; INE, 2011, 2017]. 

 

Population 

(inhabitants) 

Area 

(km2) 

Percentage of trips (%) Road network by 

district 

(km) 
Walking Cycling 

Aveiro 78450 197.6 21.0 2.7 611 

Porto 237591 41.4 21.6 0.2 896 

Lisbon 547733 100.0 19.4 0.2 843 

 

  



Table 2. Distribution of VRU injuries in the case studies. 

 

Injuries per 10000 inhabitants Injuries per km2 

Pedestrians Cyclists Pedestrians Cyclists 

Aveiro 21 20 1 1 

Porto 51 6 30 4 

Lisbon 49 6 27 3 

  



 Table 3. Consequences of road crashes involving VRU, for each severity level, along the 

different days of the week 

 

  

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total 

A
v

ei
ro

 

Light Injury 46 47 44 56 41 29 24 287 

Serious Injury 6 2 2 6 6 3 0 25 

Fatal 2 0 1 1 1 1 1 7 

TOTAL 54 49 47 63 48 33 25 319 

 
 

        

P
o

rt
o
 

Light Injury 213 181 220 219 230 133 91 1287 

Serious Injury 4 4 5 7 3 4 2 29 

Fatal 3 2 4 3 4 1 0 17 

TOTAL 220 187 229 229 237 138 93 1333 

 
 

        

L
is

b
o
n

 

Light Injury 408 444 468 491 467 260 213 2751 

Serious Injury 21 29 26 28 36 17 18 175 

Fatal 5 7 4 8 6 3 4 37 

TOTAL 434 480 498 527 509 280 235 2963 



Table 4. Overall statistical significance values for the independent variables. 

a) Model Fitting Information  d) Likelihood Ratio Tests 

 

Model 

Model 

Fitting 

Criteria 

Likelihood Ratio Tests 

 

 

Effect 

Model 

Fitting 

Criteria 

Likelihood Ratio 

Tests 

 -2 Log 

Likelihood 

Chi-

Square 
df Sig. 

 

 

-2 Log 

Likelihood 

Chi- 

Square 
df Sig. 

 
Aveiro         

 

A
v

ei
ro

 

VRU 

Gender 
337.782 59.677 1 0 

  278.105 104.15 19 0.000 
 VRU Age 

Group 
297.152 19.047 5 0.002 

 
Porto         

 Injury 

Severity 
280.222 2.117 2 0.347 

  336.391 261.812 19 0.000  Weekday 290.388 12.283 6 0.056 

 
Lisbon         

 Time 

Period 
285.086 6.981 4 0.137 

 
 681.761 449.502 19 0.000 

 
Weather 

Conditions 
290.286 12.182 1 0 

 

b) 

 

Goodness-to-Fit 

P
o

rt
o
 

VRU 

Gender 
466.126 129.735 1 0 

 
  Chi-Square df Sig. 

 VRU Age 

Group 
408.275 71.883 5 0 

 

Aveiro 
Pearson 217.684 191 0.09 

 Injury 

Severity 
342.571 6.18 2 0.045 

 Deviance 233.861 191 0.019  Weekday 358.881 22.49 6 0.001 

 

Porto 

Pearson 463.113 439 0.206 
 Time 

Period 
357.194 20.803 4 0 

 

Deviance 225.366 439 1 

 
Weather 

Conditions 
340.832 4.44 1 0.035 

 

Lisbon 

Pearson 539.061 679 1 

 

L
is

b
o

n
 

VRU 

Gender 
918.833 237.072 1 0 

 
Deviance 413.721 679 1 

 VRU Age 

Group 
849.876 168.115 5 0 

 

c)   
Pseudo R Square 

Injury 

Severity 
685.963 4.201 2 0.122 

   Cox and Snell Nagelkerke McFadden   Weekday 694.182 12.421 6 0.053 

 
Aveiro 0.279 0.371 0.236 

 

 Time 

Period 
699.874 18.113 4 0.001 

 
Porto 0.178 0.385 0.316  

 Weather 

Conditions 
687.117 5.355 1 0.021 

 Lisbon 0.141 0.293 0.231   
      

 

  



Figures Caption List 

Figure 1. Conceptual framework for the study: overview of spatial and temporal analysis 

methodology. 

Figure 2. Spatial distribution of crashes involving VRUs based on level of severity injury. 

Figure 3. Monthly evolution of number of VRUs injured on road crashes based on level 

of severity injury (2012-2015) 

Figure 4. Temporal distribution of vehicle-pedestrian and -cyclist crashes across different 

days (2012-2015). 

Figure 5. Temporal distribution of vehicle-pedestrian and -cyclist crashes for different 

age groups (2012-2015). 

Figure 6. Temporal distribution of severely injured and dead pedestrians by type of road 

location for Aveiro, Porto and Lisbon. 

Figure 7. Temporal distribution of severely injured and dead cyclists by type of road 
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Figures  



 

Figure 1. Conceptual framework for the study: overview of spatial and temporal 

analysis methodology. 

  



 

Figure 2. Spatial distribution of crashes involving VRUs based on level of severity 

injury  



 

Figure 3. Monthly evolution of number of VRUs injured on road crashes based on level 

of severity injury (2012-2015) 

  



 

Figure 4. Temporal distribution of vehicle-pedestrian and -cyclist crashes across 

different days (2012-2015). 

  



 

Figure 5. Temporal distribution of vehicle-pedestrian and -cyclist crashes for different 

age groups (2012-2015). 

  



 

Figure 6. Temporal distribution of severely injured and dead pedestrians by type of road 

location for Aveiro, Porto and Lisbon. 

  



 

Figure 7. Temporal distribution of severely injured and dead cyclists by type of road 

location for Aveiro and Lisbon. 

  



 

Figure 8. Relative proportion of severely injured and dead VRUs for each city under 

study for the build environment. 

 

 

 


