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ABSTRACT 

Road traffic poses negative externalities on society and represents a key challenge in sustainable 

transportation. However, the existing literature about the assessment of traffic externalities 

drawn on a common measure is scarce. 

This paper develops a sustainability indicator that integrates traffic-related externalities as 

means of traffic congestion, noise, greenhouse gases (GHG) and nitrogen oxides emissions, 

health impacts and road crash related costs, and adjusted to local contexts of vulnerability.  

Traffic, road crashes, acoustic and vehicle dynamic data were collected from one real-world 

intercity corridor pair comprising three alternative routes. The site-specific operations were 

characterized using a modeling platform of traffic, emissions, noise and air quality. A specific 

methodology is applied for each road traffic externality and translated in a single factor – 

external cost.  

The results indicated that road crashes presented the largest share in the partly rural/urban 

route while GHG emissions had the highest contribution in external costs for the highway routes. 

Also, the distribution of external cost component varied according to the type of road, mostly 

due to different levels of exposed inhabitants. 

This paper offers a line of research that produced a method for decision-makers with a reliable 

and flexible cost analysis aimed at reducing the negative impacts of road traffic. It also 

encourages the design of eco-traffic management policies considering the perspective of 

drivers, commuters and population.  
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1. INTRODUCTION AND RESEARCH OBJECTIVES 

Road traffic poses negative externalities on society, thereby representing one of the key 

challenges in sustainable transportation nowadays. In 2016, road transportation accounted for 



73% and 83% of transportation greenhouse gases (GHG) emissions in the European Union (EU) 

(EEA, 2017b) and in the United States (US) (EPA, 2018), respectively. Long term-projections for 

carbon dioxide (CO2) emissions concerning the passenger transportation in cities of over 300 

000 inhabitants show an increase up to 27% in 2050 compared with 2015 levels (Chen and 

Kauppila, 2017). 

Besides GHG emissions, road transportation has long-lasting negative impacts on road safety, 

human health and wellbeing. Road traffic crashes within EU claimed approximately 25,650 

fatalities in 2016 (ERSO, 2018); 54% of these occurred at rural roads (ERSO, 2018). Also, road 

transportation is one of the major sources of some harmful air pollutants such as particulate 

matter (PM), nitrogen oxides (NOX) and carbon monoxides (CO) (EEA, 2018a). Around 39% of 

total NOX came from road transportation (EU member states), which represented the highest 

share of that gas in 2015 (EEA, 2017a). This sector is, by far, the dominant source of traffic noise 

in Europe, representing almost 90% of total noise emissions (EEA, 2018b). Approximately 29 

million living in main roads outside urban areas in EU-28 were exposed to average day-evening-

night noise levels (Lden) exceeding 55 dBA (EEA, 2018b). Traffic noise causes nuisance, stress 

reactions, sleep disturbance, and it also has negative effects on health, such as cardiovascular 

diseases (WHO, 2011). 

Understanding the most cost-effective strategies to mitigate both traffic congestion and 

environmental related costs in road trips has been pointed out as one of the critical issues in 

transportation for the next 20 years (National Academies of Sciences, 2018). The overall size of 

transportation external costs is estimated at around 7% of the EU Gross Domestic Product (EC, 

2018). In this context, a more efficient use of existing infrastructure is essential to reduce road 

transportation externalities (EC, 2011). 

  

However, there are some answered questions about the quantification of external costs namely: 

• What would be the cost of a given route if drivers had to pay for their choices? 

• Why would a driver have to choose the route with lowest emissions if local population 

could be at higher risk exposure to other traffic externalities? 

• If drivers shift towards a fast route but with high traffic volumes and resulting pollutant 

emissions, then what would be the benefits in terms of overall costs compared to slower 

routes?  

For this purpose, a simulation-based approach was conducted combining a methodology for 

estimating GHG (CO2 and Volatile Organic Compounds –VOCs), NOX and PM emissions, air 

quality (PM concentrations) and noise using a microscopic traffic simulation tool together with 

road crashes historical data in a real origin-destination (N-S and S-N) pair between Aveiro and 

Estarreja, Portugal. The location comprised three alternative routes, as follows: i) partly 

rural/urban; ii) low-traffic-volume highway with electronic pay tolls; and iii) high-traffic-volume 

highway with both conventional and electronic pay tolls. The proposed methodology allows to 



build a link-based sustainability indicator that can be updated in real-time through a set of 

information sources and translated into a monetary value. 

This research intends to contribute for decision making by traffic management entities in the 

following aspects: 

• To endow the current navigation platforms with reliable and flexible cost analysis which 

takes into account local-specific needs; 

• To include other variables in order to assess their impact on the magnitude and share of 

traffic externalities according to the type of road; 

• To encourage the design of eco-traffic management policies considering the perspective 

of drivers, commuters and population. 

The remainder of the paper is organized as follows. Section 2 presents a review of scientific 

literature regarding the integration of road traffic externalities. In Section 3, the methodology 

for traffic, vehicular emissions, air quality and noise modeling, and calibration and validation of 

the simulation platform are presented, as well as the procedure for developing the proposed 

sustainability indicator. Section 4 describes the real-world intercity corridor, data collection and 

main modeling tasks. Subsequently, the results are used to assess the sustainable indicator in 

the candidate case study (Section 5). In all comparisons, the focus will be on range of each cost 

component value along routes, and potential trade-off among them. The final section outlines 

the main research findings and contributions and points out some future research needs 

(Section 6). 

 

2. LITERATURE REVIEW 

Internalizing the external costs of transportation has been an important concern for policy 

development and transportation research. According to Korzhenevych et al. (2014), 

internalization of transportation externalities can be based on quantifying in monetary values 

the associated impacts on society and environment, such as congestion, traffic noise, air 

pollution, greenhouse effects and road crashes. This degree of damage widely depends on the 

geographic conditions, intensity of traffic and population exposed (Yeh, 2013).  

Negative externalities in the road transportation sector constitute an important development 

issue with socioeconomic costs (Cecchel et al., 2018) which are known to lead to welfare losses 

market inefficiencies (Kickhöfer and Kern, 2015). Usually, transportation users only account for 

marginal private costs, which may lead to welfare losses, since marginal social costs are 

neglected. To overcome such issues, some authors have been proposed to internalize the 

difference between generalized prices and marginal social costs by a tool [e.g. (Friesz et al., 

2004; Small and Verhoef, 2007)]. However, they focused only on congestion effects. Road 

vehicles also give rise to side effects such as the productivity losses due to lives lost in road 

crashes, health costs caused by air or the abatements costs due to climate impacts (Bandeira et 

al., 2018a; Int Panis et al., 2004; Korzhenevych et al., 2014; Yeh, 2013). 



Despite its relevance, the existing literature about the assessment of traffic externalities drawn 

on a common measure (e.g., sustainability indicator) is scarce (Bandeira et al., 2014; El-Rashidy 

and Grant-Muller, 2015; Kickhöfer and Nagel, 2016; Sdoukopoulos et al., 2019; Torrao et al., 

2016) and mostly focused in urban areas (Bandeira et al., 2018b; Sampaio et al., 2019; Tafidis et 

al., 2017; Yeh, 2013). Torrao et al. (2016) developed a safety, energy efficiency and green 

indicator based on crash consequences and type, and vehicle characteristics. The models neither 

accounted with impacts of changes in modal operation, nor included traffic volume as input. 

Kickhöfer and Nagel (2016) used an agent-based model to internalize air quality costs taking into 

account both traffic congestion and vehicle characteristics, but they focused only roads in urban 

areas. 

Although rural roads represent 80% of the total road network length in developing countries 

(Rivera et al., 2015), the development of link-based indicators reflecting traffic-related impacts 

for this type of roads is little explored. El-Rashidy and Grant-Muller (2015) introduced a fuzzy 

logic model for assessing the mobility of road transportation networks. The model incorporated 

a physical connectivity attribute and traffic condition as mobility attributes and was successful 

tested for different intercity routes. Fernandes et al. (2018) analyzed the impacts of partial-

metering strategies at a rural corridor near a shopping mall to reduce emissions, noise and user 

perspective costs. The proposed system resulted in improvements (up to 13%) compared to the 

unmetered conditions. Recently, Chang et al. (2018) developed a road pricing model that 

integrated travel time, CO2 emissions and safety costs by combining them on a green safety 

indicator for evaluating the level of service in freeway traffic. However, the authors discarded 

impacts of local pollutants, such as PM.  

Link-based indicators can be applied into advanced traffic management systems as vehicle 

routing problems, but existing literature around this topic is mostly focused on the use of 

empirical models for route choice optimization in urban areas (Ćirović et al., 2014; Jovanović et 

al., 2014; Pamučar et al., 2016a; Pamucar and Goran Ćirović, 2018; Pamučar et al., 2016b). 

Thus, the following gaps in the literature review were revealed: i) none of the prior studies 

developed a sustainability indicator for integrating traffic externalities according to the road 

type, i.e., urban, rural and highway; ii) little is known about the impacts of site operational 

characteristics on each externality cost value; iii) few studies applied reliable methods for 

gathering the number of exposure people, who are directly affected to noise, NOX and PM. 

The novelty of this research relies in the following aspects: 

i) To use a simulation-based approach for quantifying and assessing external costs of road 

traffic at urban, rural and highway scales; 

ii) To include a trade-off analysis among traffic externalities; 

iii) To i    3VSP = v [1. 1a+9.81sin(arctan( )) 0.132] 0.00302grade v  mplement more 

effective eco-friendly and sustainable routing systems to include social, environmental 

and economic sustainable goals.  

 



 

3. METHODOLOGY 

The core idea of the methodology was to use and test a modeling platform to evaluate external 

costs of road transportation at a segment level. It proceeded in five steps, illustrated in FIGURE 

1. The development of the sustainability indicator involved first, collecting traffic volumes, noise, 

vehicle dynamic (second-by-second speed, acceleration and slope), crash data and population 

per unit square from one real-world intercity corridor. Second, the modeling platform was 

calibrated and validated, and then, studied location was divided into multiple sub-segments 

according to the road type. Finally, external costs of road transportation (Korzhenevych et al., 

2014) were computed to obtain the sustainability performance measure in monetary values. 

 

FIGURE 1 Overview of the research methodology (PGV – Passenger Gasoline Vehicles; PDV – 

Passenger Diesel Vehicles; LCDV – Light Commercial Diesel Vehicles; HDV – Heavy Duty Vehicles; 

HCM – Highway Capacity Manual; VSP – Vehicle Specific Power; EMEP/EEA – European 

Monitoring and Evaluation Programme by European Environmental Agency; CONC – 

Concentrations). 

 

3.1. Modeling Platform 

3.1.1. Road Traffic Modeling 

VISSIM9.0 (PTV AG, 2016) (which stands for Verkehr In Städten SIMulationsmodell) was used to 

model road traffic operations, for four main reasons: 1) it allows setting several behavior 

parameters to reflect site-specific driving habits; 2) it accounts the variations in both vehicle 

speed and acceleration-deceleration profiles at rural and urban roundabouts and traffic lights, 

interchange ramps or conventional tolls (PTV AG, 2016); 3) it includes a calibration and validation 

of traffic-related metrics to set realistic representations of road traffic operations at urban 

(Fernandes et al., 2015), rural (Fernandes et al., 2018) and highway (Abou-Senna et al., 2013; 

Fontes et al., 2014; Fries et al., 2017) roads; 4) it exports vehicle dynamic and traffic volume (by 

vehicle type and segment-by-segment) data at high time resolutions that can be used by 

emission (Abou-Senna et al., 2013; Fernandes et al., 2015; Fontes et al., 2014), noise (Fernandes 

et al., 2018), and geo-processing tolls and air quality models (Borrego et al., 2016; Dias et al., 

2018). 

 

3.1.2. Pollutant Emissions 

CO2 and NOX generated by Light Duty vehicles – LDV, i.e., PGV, PDV and LCDV were estimated 

using the VSP-based modeling approach that provides instantaneous vehicle power per unit 



mass (US EPA, 2002). This regression-based model is sensitive to changes in vehicle dynamic 

data and offers significant explanatory power for vehicle energy use and emissions rates IOVs 

(Hu et al., 2016). The use of VSP is justified because a speed-based approach as EMEP/EEA 

methodology, per se, is less robust to assess emissions of traffic singularities (roundabouts, 

traffic lights, toll plazas or stop-controlled intersections) and driving behavior states 

(acceleration, overtaking or gap acceptance) which in turn have impact on GHG and NOX 

external costs. VSP values are stratified into 14 bins, which in turn correspond to an emission 

factor on a second-by-second basis (US EPA, 2002). VSP is a function of speed, acceleration-

deceleration and slope, as shown in Equation 1 for LDV (US EPA, 2002): 

   3VSP = v [1.1a + 9.81sin(arctan( )) 0.132] 0.00302grade v ,      (1) 

where v is the instantaneous speed (m/s); a represents the instantaneous 

acceleration/deceleration (m/s2), and grade is the road slope (in decimal fraction). 

Since VSP accounts for changes in vehicle dynamic with high resolution time, it shows as proper 

methodology for the quantification of exhaust emissions generated by PGV (Anya et al., 2013), 

PDV (Coelho et al., 2009), and LCDV (Coelho et al., 2009). A good body of literature has 

documented the effective use of VSP in assessing vehicular emissions in real-world urban, rural 

and highway routes (Anya et al., 2013; Coelho et al., 2009; Khan and Frey, 2018).  

To obtain emissions estimates for HDV (CO2, NOX, VOCs and PM) and LDV (PM and VOCs), the 

EMEP/EEA method was used (EEA, 2013). It uses emission factors for diesel HDV from Euro I to 

VI emission standards and engine capacities as a function of the average speed (EEA, 2013). It 

must be stressed that EMEP/EEA is less robust to analysis emissions in traffic interruptions (e.g., 

roundabouts, toll plazas and traffic lights) that are characterized by high stop and go episodes 

(Coelho et al., 2014; Vicente et al., 2018). For instance, if this methodology was the only used, 

then the vehicular emissions would be underestimated. 

A GUI application in MATLAB was conceived and developed to compute second-by-second LDV 

and HDV dynamics data from VISSIM output (speed, acceleration and slope). LDV and HDV 

emissions were summed up and further assigned to a segment. Then, such information 

incorporated on a GIS platform to assess pollutant concentrations, as described in the following 

section. 

 

3.1.3. Air Quality 

The air quality at the urban scale were evaluated by applying the air quality modeling system 

URBan AIR (URBAIR) (Borrego et al., 2014; Valente et al., 2014). The URBAIR model is an 

improved version of the second generation Gaussian model POLARIS developed by Borrego et 

al. (1997), differing from traditional Gaussian dispersion models in what concerns its dispersion 

parameters, which have a continuous variation with the atmospheric stability, and it accounts 

for building-induced dispersion mechanisms. 



This steady state atmospheric dispersion model is based on boundary layer scaling parameters 

and is suitable to be used for distances up to about 10 km from the source. The URBAIR 

modelling system is designed to be modular and includes the pre-processing of land use and 

urban elements geometry (GIS-based), meteorological conditions and air pollutant emissions, 

coupled with a dispersion module. The system framework is designed in such a way that the 

inputs/outputs of the different modules are shared and linked along the modeling process. 

The meteorological model calculates a set of meteorological parameters, such as atmospheric 

turbulence characteristics, mixing height, friction velocity, Monin-Obukhov length and surface 

heat flux, using as initial conditions, or measured data. Since the topography and build-up 

structure characteristics have a significant influence on the dispersion of atmospheric pollutants, 

particularly in urban areas, URBAIR also requires characterization of the spatial variation of 

terrain surface elevation, buildings 3D coordinates and roads 2D coordinates. For simplicity, 

buildings can be assembled based on proximity and geometry criteria. 

URBAIR considers different types of source emissions, namely, area, volume, point (such as 

industrial facilities and combustion activities for residential and services sectors) and line 

sources (road traffic emissions). As outputs, URBAIR provides air quality patterns for a given 

spatial domain (with up to about 50 km from the domain center) and time period (e.g., hourly, 

daily, one year or multiple years) for different air pollutants, namely: PM10, Nitrogen dioxide 

(NO2), Sulfur dioxide (SO2) and CO. 

URBAIR model has been widely applied and extensively tested, having showed capability to 

produce robust and realistic results. Recent works showed its usefulness and capability to 

perform air quality studies at urban scale (Borrego et al., 2016; Dias et al., 2018).  

In this study, URBAIR model was selected for two main reasons: 1) it is designed to assess the 

impact of urban planning and traffic management on air quality; 2) it is an advanced Gaussian 

model that has been enhanced with several major features, mainly the treatment of road traffic 

emissions and 3D urban elements. 

 

3.1.4. Noise 

The prediction of noise levels was made using a numerical approach developed by Quartieri et 

al. (2010). This procedure relates directly the acoustical energy sent to a receiver to the number 

of vehicles, to the source-receiver distance and to the mean traffic speed. The above information 

is used to assess source power levels and then, equivalent noise levels for a particular segment 

k (Leq,k), which are obtained at a fixed distance d, according to the distance between the road 

axis and the receiver. Equation 2 gives the hourly equivalent noise level by segment (Guarnaccia, 

2013): 

     , 10log(  ) 53.6 26.8log 20log 46.563eq k LDV HDV kL V nV v d ,    (2) 



where Leq, k is the segment-specific equivalent noise level (dBA);  VLDV and VHDV are the hourly 

LDV and HDV, respectively, volumes (vph); n represents the acoustic equivalent, i.e., the number 

of LDV that produce the same noise of a HDV; vk is the segment-specific average speed (km.h-

1); d – Distance between the road axis and the receiver (m) (Quartieri et al., 2010). 

The advantage of this type of semi dynamic noise model is that only information about vehicle 

speed and traffic volumes for a given segment is needed. This means that there is no need of 

new noise equation for every other region or country. 

To obtain day-evening-night level (Lden,k) on a segment k (dBA), the hourly segment-specific 

equivalent level (Leq,k) was assumed to be the same during all day. This is a conservative 

assumption since during the night traffic noise is usually lower than during daytime (EEA, 2018b). 

Thus, Lden was computed using Equation 3: 

   
        

   

, , , 5 10

10 10 10
, 

1
10log 12 10 4 10 8 10

24

eq k eq k eq kL L L

den kL ,     (3) 

 

3.1.5. Calibration and Validation 

The modeling platform was calibrated and validated using field data collected from the studied 

location. The data were divided in training (70%) and testing (30%) sets (Liu et al., 2017), 

randomly selected before calibration procedure. The following strategy was used: 

• Capacity Calibration – Simulated and observed traffic volumes were compared for each 

monitoring point. The stopping criterion for this step was: at least 85% must meet the 

criteria of GEH (acronym for Geoffrey E. Havers) < 4 (Yu and Fan, 2017); 

• Route Choice and Noise Calibration – Simulated travel time per each route as well as noise 

were compared against the training data. The procedure stops when the difference in 

sample mean was not statistically significant within a 95% confidence level (p-value < 

0.05); 

• Route Choice and Noise Validation – Site-specific simulated and testing set of travel time 

and noise were compared with 10 random seed runs (Winnie et al., 2014). 

 

3.2. Sustainability Indicator 

The proposed sustainability indicator is intended to account monetary costs per vehicle (€.veh-

1) from road transportation activities in terms of: 1) congestion; 2) noise; 3) GHG; 4) NOX; 5) 

health impacts; and 6) road crashes. The following paragraphs describe in detail each cost 

component calculations. 

 

3.2.1. Traffic Congestion 



For a given segment, depending on the road type, congestion level is represented by the volume-

to-capacity ratio defined as V/C, where the volume V is the mixed traffic (expressed in passenger 

car units per hour – pcu.h-1 per lane length) which takes into account HDV adjustment factors 

as suggested by the Highway Capacity Manual Sixth Edition (HCM, 2016), and the capacity C is 

the theoretical maximum traffic volume along segment which is estimated according to the type 

of facility (HCM, 2016), as follows: 

Urban and Rural Segments – 1 600 pcu.h-1 per lane; 

Highway Segments – 2 500 pcu.h-1 per lane; 

Weaving, On-ramp, Off-ramp and Basic Segments – 2 200 pcu.h-1 per lane (HCM, 2016). 

 

Each segment-specific V/C ratio results in five congestion levels, as follows (Korzhenevych et al., 

2014): 1 (free-flow) – V/C < 0.25; 2 – if 0.25 < V/C < 0.50; 3 – 0.50 < V/C < 0.75; 4 (near capacity) 

– 0.75 < V/C < 1; 5 (over capacity) V/C > 1. Each level is then, associated to a congestion cost 

(CCk) on a segment that can be adjusted to the local conditions, road type and vehicle type 

(Korzhenevych et al., 2014), as given by Equations 4 to 7: 
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where TCk is the traffic congestion cost on a segment k (€.veh-1); cLDV and cHDV are the local 

congestion costs for LDV and HDV, respectively, depending on the V/C according to the type of 

road (urban, rural and highway) (€/veh.km); lk is the length of the segment k (km); and Li is the 

level of congestion, which also depends on the V/C (i = 1,…,5). 

 

3.2.2. Noise 

The approach for estimating segment-specific noise costs is based on the cost of noise in €/dBA 

per exposed person and per hour of the local population potentially exposed to a certain noise 

range considering the LDV and HDV traffic in kilometers traveled, as given by Equation 8:  
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where Nk is the noise cost on a segment k (€.veh-1); CLden, k is the cost of a given day-evening-

night noise level Lden,k (€/dBA per person and per year) adjusted to the local conditions and 

type of road (Korzhenevych et al., 2014); popk is the number of individuals potentially exposed 

to the noise level Lden, k (inhabitants per km of segment length) that is represented by local 

population; and a and b are equal to 365 (number of days) and 24 (number of hours), 

respectively. 

 

3.2.3. GHG 

In this paper, CO2 and VOCs emissions were considered for the cost quantification related with 

the impact of GHG on environment, human health and economy. The cost estimation procedure 

involved three steps: 1) to compute emissions to the overall network according to the share of 

LDV and HDV; 2) to assign emissions to a segment; 3) to calculate segment-specific emission 

costs based in the costs provided in using Equation 9: 
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where GHGk is the GHG cost on a segment k (€.veh-1); α1 is the local damage cost of CO2 

(Korzhenevych et al., 2014) (€.g-1); vj is the share of the vehicle type j in the LDV vehicle park 

fleet; efCO2, j, k  is the CO2 emission factor vehicle type j in the second of travel i on segment k 

(g.s-1); ECO2, HDV, k represents the HDV CO2 emissions on a segment k (g.s-1); Nk is the travel 

time on segment k (s); α 2 is the local damage cost of VOCs (Korzhenevych et al., 2014) (€.g-1); 

EVOCs, LDV, k represents the LDV VOCs emissions on a segment k (g.s-1); and EVOCs, HDV, k 

represents the HDV VOCs emissions on a segment k (g.s-1). 

 

3.2.4. NOX  

The quantification of NOX costs accounts for the impacts on local population which is 

represented by the ratio between segment population and national population densities, as 

given by Equation 10:  
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where NOXk is the NOX cost on a segment k (€.veh-1); β is the local damage cost of NOX 

(Korzhenevych et al., 2014) (€.g-1); Dk is the number of individuals for segment k per square 

kilometer; DN is the national population density; efNOX, j, k  is the NOX emission factor vehicle 

type j in the second of travel i on segment k (g.s-1); and ENOX, HDV, k represents the HDV NOX 

emissions on a segment k (g.s-1).  

 

3.2.5. Health Impacts 

Currently, it is well known that air pollution, mainly by the form of particles with an aerodynamic 

diameter smaller than 10 μm (PM10), is an important incentive for the development and 

exacerbation of respiratory diseases, such as asthma, chronic obstructive pulmonary disease or 

lung cancer, as well as a substantial impact on cardiovascular disease (Costa et al., 2014; Rückerl 

et al., 2011).  

The evaluation of the health cost linked to the health impacts can be performed by multiplying 

the Years of Life Lost (YOLL) value by its associated economic value. Vlachokostas et al. (2012)  

suggest the average value of 52 000€ by YOLL. Based on the achieved air quality state for a 

specific situation, the health impact cost on a segment k, related with PM10 on an hourly basis 

may be computed using Equation 11: 
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where HIk represents the health impacts cost on a segment k (€.veh-1); CRF is the correlation 

coefficient between the PM10 concentration variation and the probability of experiencing or 

avoiding a specific health indicator, which was set to 0.0004 YOLL/(person.year.µg.m-3) (EC, 

2006); pop30,k is the number of individuals potentially exposed over 30 years (inhabitants per 

km of segment length); and ck is the average PM10 concentration on a segment k (µg.m-3). 

 

3.2.6. Road Crashes 

The level of external crash costs depends not only on the crash severity, but also on the 

insurance system, i.e., social costs of traffic-related crashes (Korzhenevych et al., 2014). These 

costs can be obtained by applying an adjusted risk that involves the following cost components: 

i) death and injury due to an accident for the person exposed to risk; ii) for the relatives and 



friends of the person exposed to risk; and iii) crash cost for the rest of the society. These 

considerations are summarized in Equation 12: 
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where RCk is the road crash cost on a segment k (€.veh-1); XF, XSI, XLI are the annual numbers 

of fatalities, serious and light injury cases, respectively, on a segment k; and SCF, SCSI, SCLI 

represent the average social accident costs (€) for crashes involving fatalities, serious and light 

injuries, respectively, adjusted to local conditions. 

 

3.2.7. External Cost by segment and by route 

The total external cost on a segment k is defined as the sum of the above cost components for 

a segment, and denoted as ECk (€.veh-1), as expressed by Equation 13: 

 

      .k k k k Xk K kEC TC N GHG NO HI RC       (13) 

 

Lastly, the external cost associated to a route r for a specific travelling direction, here denoted 

by ECr (€.veh-1), is the sum of costs for all segments k Mr, where Mr  is the set of segments along 

the route r, along that path, as given in Equation 14: 
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4. CASE STUDY 

An origin-destination (South to North; North to South) pair, comprising three parallel alternative 

routes, was sought out for this research. Prior research carried out in this area have shown that 

road type has impact on pollutant emissions (Bandeira et al., 2013). This intercity corridor 

provides a direct connection between Aveiro and Estarreja (Portugal) and is near a high-density 

industrial complex with moderate HDV traffic; hence, the air quality and traffic-related noise can 

represent an important issue, especially for local population. These routes were chosen based 

on their different specificities. The routes include urban (with speed (s) limits in the range 0≤ s 

≤50 km/h), rural (50≤ s ≤90 km/h) and highway (90≤ s ≤120 km/h) trip sections (FIGURE 2-b). R1 

is partly conducted on a rural (63%) and urban (37%) roads, while R2 is mostly a low-traffic-

volume section (75%) traversing A29 highway, which has 2 lanes on each direction and an 

electronic pay toll system. Approximately 65% of R3 is on a high-traffic-volume section along A1 

highway, with 2 lanes on each direction, and it includes both conventional and electronic pay 



toll systems. Average daily traffic (ADT) on A1 and A29 study segments is about 39 950 and 11 

700, respectively (IMT, 2019). It must be noted that the classification of roads was based on 

posted speed limits and also on population density (Korzhenevych et al., 2014).   

 

FIGURE 2 Study Domain: a) Routes Aerial View; b) Type of Road; c) Data Monitoring Points. 

Background Map Source [Open Street Maps]. 

 

4.1. Data collection 

Traffic data were collected in morning (7:00AM-10AM), off-peak (11AM-2PM) and evening peak 

(5PM-7PM) during six typical weekdays in May and June 2018 under dry and windless weather. 

Traffic volume manual counting was performed in 15-min time intervals (in both travelling 

directions) at specific sites and video cameras were used to collect intersection-specific demand 

and turning split distributions. ADT volumes for A1 and A29 highways were retrieved from the 

Institute for Mobility and Transport (IMT, 2019), and complemented with the available images 

of video cameras installed at the top of highway bridges. A total of 42 monitoring points 

(including intersection entry and exit points) were evaluated in the studied location, allowing an 

accurate assignment of road traffic along the overall network. 

Sound pressure levels were measured using an integrating sound level meter RION-NL52 (0.1-s 

basis) installed in 14 locations points of the study network, as depicted in FIGURE 2-c. To account 

for variability in noise values, tests were conducted in cruise speed (N2/N3), acceleration 

(N1/N4/N6/N9) and highway (bridges – N10/N11/N13/N14; wayside – N12) points. The 

microphone was in the acoustic field at 1.5 m from the ground (height of tripod) and at 7.5 m 

and 15 m from the main road axis in R1 and R2-R3, respectively. More than 50 data sets of 15-

min (equivalent continuous sound level – Leq and respective arterial traffic) were collected. 

Six routes across the study domain were covered using GNSS data-logger and On-Board 

Diagnostic (OBD-II) system in nine equipped LDV (gasoline and diesel) and six different drivers 

to record vehicle speed in 1-s interval. These routes are defined as follows: i) North to South 

(R1); ii) South to North (R1); iii) North to South (R2); iv) South to North (R2); v) North to South 

(R3); vi) South to North (R3). Prior to on-road dynamic tests, the minimum number of travel time 

trips was determined for each route. Thus, taking into account the ADT observed in R2 [vehicles 

per lane <15 000 (IMT, 2019)] and R3 [15 000<vehicles per lane<20 000 (IMT, 2019)] and traffic 

signal density (<3TL/1.6 km) in R1, the minimum sample size is 8 (Turner, 1998). Almost 1 300 

km of road coverage data over the course of 22h were collected (90 GNSS travel time trips – 15 

per route). 

Air quality within the study area was estimated for a simulation domain defined over the road 

traffic network, with dimensions of 13 x 16 km2, as shown in FIGURE 2-b. Since the road traffic 

emissions have been calculated with a high level of detail, a mesh resolution of 20 x 20 m2 have 

been used (in a total of 717 213 cells). Road traffic emissions were estimated following the 



methodology described in Section 2.1.2. The contribution of industrial areas and point sources 

inside the domain (e.g., some bakeries using wood burning ovens or residential combustion), 

were accounted as suburban background. The URBAIR domain covers the densely urbanized 

areas near the road network (located in a radius of 5 km from the highway road) allowing for 

the calculation of the health impacts. According to the methodology described in Section 2.2.5, 

the simulations were carried out for PM10. 

Crash data involving motor vehicles along R1, R2 and R3 were gathered for 3-years’ time period 

between 2015 and 2017 (ANSR, 2017). This period was selected for two main reasons: 1) A29 

highway had no tolls until September 2010. After tolls introduction, the segment traffic dropped 

more than half (IMT, 2011); 2) lack of precise GPS coordinates before 2015 in order to assign to 

a specific segment. For the purpose of this study, crashes involving motor vehicles involving 

injuries and/or fatalities were selected and georeferenced on ArcGIS 10.5.0.6491 (ERSI, 2016). 

The database covered a total of 68 crash observations. 

 

4.2. Case Study Coding 

Posted speed limits along the study domain and gap acceptance (critical and follow-up 

headways) in roundabout approaches were considered taking into account local driving habits 

(Vasconcelos et al., 2013). The dwell time distribution at conventional pay tolls was assumed to 

be same for all gates (6.8-9.6 s) (Coelho et al., 2005). The simulation runs lasted 90 minutes with 

a 30-min warm-up period to load traffic onto the road network. The simulation network in 

VISSIM is exhibited in FIGURE 2. 

CO2 and NOX emission rates for LDV were based on a local car fleet (EMISIA, 2017): 39% (1.4L: 

33%, 1.8L: 5.95%, 2.2L: 0.05%) LDGV, 40% LDDV (1.9L), and 21% LDDT (2.5L). Since the terrain is 

flat in the study area, the effect of slope (Equation 1) was ignored.  

Concerning the EMEP/EEA methodology, the least squares fitting technique was used to find the 

data best-fitting curve to relate segment-specific average speed and emissions generated by 

local HDV and LDV taking into account the above car fleet composition (EMISIA, 2017) and 

considering representatives vehicles and their emission standards, the annual activity (vehicle 

kilometers traveled per year), and engine size and capacity of the vehicle. Bus activity was also 

ignored since it represented less than 1% of corridor-specific traffic. 

 

4.3. Segments Definition 

The study domain was divided into multiple segments to compute each cost component and 

associated external cost by route. This level of segmentation was motivated by differences in 

type of road, downstream traffic control treatment, traffic volumes, number of crashes and 

number of lanes. The proposed segmentation is exhibited in FIGURE 3 a-c and includes each 

travelling direction. To account the number of individuals potentially exposed (popk), the 



population density per square kilometer along the study domain (Statistics of Portugal, 2018) 

was used. For the purpose of the analysis, popk was computed based on the percent of segment 

within each square in FIGURE 4. TABLE 1 describes segment-specific information, including 

corresponding route and type of road. 

 

FIGURE 3 Segments definition by route: a) R1: b) R2; c) R3. Background Map Source [Open Street 

Maps].   

 

TABLE 1 Key characteristics of proposed segments. 

FIGURE 4 Local population density per square kilometer (Statistics of Portugal, 2018). Source 

[ArcGIS].   

 

4.4. Marginal cost factors 

The marginal cost factors for the proposed sustainability indicator defined in Section 2.2 are 

presented in TABLE 2 and TABLE 3 for congestion and noise components, respectively, according 

to the site-specific conditions. These values, provided in Korzhenevych et al. (2014, are used to 

express transportation externalities into monetary terms for road trip sections in Portugal (year 

2010). Concerning the emissions and road crashes, the following values were adopted 

(Korzhenevych et al., 2014): c1 = 9×10-5 €.g-1; c2 = 1 048×10-6 €.g-1; c3 = 1 957×10-6 €.g-1; SCF 

= 1 505 000 €; SCSI = 210 000 €; and SCSI = 13 800 €. The population density (DN) was 112 

inhabitants per kilometer square (Statistics of Portugal, 2018). 

 

TABLE 2 Marginal cost factors for congestion according to the type of road (Korzhenevych et al., 

2014). 

 

TABLE 3 Marginal cost factors for noise exposure (Korzhenevych et al., 2014).  

 

5. RESULTS AND DISCUSSION  

In this section, the main results from the field data are analyzed (Section 4.1) followed by the 

calibration and validation of the modeling platform (Section 4.2), and finally, a representation 

of the external costs for the studied location is presented (Section 4.3). 

 

5.1. Field Data  

The analysis of field data suggested the peak hour occurred between 5:30-6:30PM. Thus, such 

period was selected for the assessment of road transportation external costs. 



The hourly traffic volumes distribution (both travelling directions) along the study domain is 

shown in FIGURE 5. The number of vehicles in R1 ranged from 922 to 1 108 vph on rural roads. 

The difference in the number of vehicles on urban area (from 1 276 to 780 vph) was due to the 

fact that a portion of traffic diverted from R1 to the downtown city center. Field results suggest 

that the R3 traffic volumes are three times higher than R2 values. This happens because R3 

serves through-traffic between Northbound and Southbound, and it is the main interchange for 

Eastbound-Westbound traffic. It is worth to notice that HDV represented nearly 3%, 4% and 9% 

of R1, R2 and R3 traffic composition, respectively, in the studied location. 

 

FIGURE 5 Traffic Volumes between 5:30-6:30PM. Background Map Source [Open Street Maps]. 

FIGURE 6 depicts the spatial distribution of 68 crashes, which took into account the level of injury 

severity (95 light injuries; 1 serious injury and 1 fatality). Several conclusions about the crash 

database can be drawn: 1) approximately 47% of crashes occurred in rural trip sections which 

corresponds to 42% of the travel distance across the corridor; 2) albeit short, urban section had 

11 crashes involving motor vehicles, which was about 16% of crash occurrences in only 6% of 

overall study domain length; 3) 49% and 37% of light injuries were observed in highway and rural 

trip sections, respectively; 4) R1 had both the highest number of crash observations (41) and 

highest number of light injuries (47), and it also recorded one fatal crash; and 5) main blackspots 

were located in influence area of roundabouts and traffic lights along R1 (e.g., segments 2-17, 

3-16, 4-15 and 8-9) and R3 highway trip sections (e.g., segments 9-20).  

 

FIGURE 6 Spatial distribution of crashes based on level of injury severity: a) Light injury: b) 

Serious Injury; and c) Fatality. Background Map Source [Open Street Maps]. 

 

5.2. Calibration and Validation 

The statistical indicators of the modeling platform showed solid results. For traffic, the 

calibration target suggested in the literature was accomplished, i.e., GEH was lower than 4 in 39 

out of 42 monitoring points (93%) (Yu and Fan, 2017). It should be emphasized that HDV traffic 

distributions were used in the traffic modeling. 

The comparison of simulated and training travel time was performed using 30 floating car runs. 

The relative difference in average travel time was lower than 5% (p-value > 0.05, and thus, not 

statistically significant), as shown in TABLE 4. During calibration, vehicle speed distributions, 

critical headways at roundabouts, and green times and cycle length at traffic lights were 

adjusted to fit travel time data. The comparison of testing and estimated travel time sets also 

demonstrated good degree of consistency (1-6%, depending on the route); no route showed 

significant differences at a 95% confidence level (p-value between 0.10 and 0.67). 

 

TABLE 4 Summary of Calibration and validation of travel times. 

 



It was also found that the noise estimates using the proposed methodology (Quartieri et al., 

2010) matched the field measurements (training test). Under high noise values, the model tends 

to overestimate experimental data. This happens because field measurements taken at bridges 

end up being affected by a screening due to the bridge itself, even considering diffraction, i.e., 

noise emitted by vehicles outside the viewing angle of sound level meter. The predicted 

coefficient of determination (R2) was almost 80% for simulated Leq using a linear regression 

analysis (FIGURE 7a-b). An identical trend was observed for noise validation (testing set fit 

simulated data in 84%). 

 

FIGURE 7 Noise methodology: a) Calibration; b) Validation. 

5.3. External Costs 

This section presents the main results regarding external costs associated to the road traffic with 

existing conditions. The sum of each segment costs (EC) along each route confirmed R2 as the 

best option for the study domain (FIGURE 8 a-f). For instance, if one driver chooses R2 from 

south to north direction, then one could save 28% and 32% in external costs when compared 

with R1 and R3, respectively. Since vehicles were subjected to stop-and-go situations at 

conventional pay tolls (impact on emissions as demonstrated by Coelho et al. (2005) together 

with moderate traffic volumes in some of its segments, high external costs were observed for 

R3. For instance, segment with pay tolls accounted for approximately 10% of route external 

costs. 

The analysis of the distribution of cost components along R1 showed the largest share 

corresponded to the RC-related costs; they represented around 31% and 30% of external costs 

in south-north and north-south directions, respectively. GHG showed as the largest contributor 

to external costs (40-45%, depending on travelling direction) in R2. For the latter route, results 

indicated the share of RC in south-north direction (16%) was higher than in north-south (9%). 

This happened because one crash involving a serious injury was recorded in segment 4, resulting 

thus in high social costs (see Section 3.4 for those details). Almost half of external costs along R3 

were based on GHG emissions, and more than 18% based on NOX. This was due to the fact HDV 

traffic is relevant in that route. In turn, other externalities (HI and TC) had slight impacts.  

 

FIGURE 8 Distribution of external costs by route: a) South to North (R1); b) North to South (R1); 

c) South to North (R2); d) North to South (R2); e) South to North (R3); f) North to South (R3). 

 

The distribution of cost components differed from the type of road (FIGURE 9 a-c). The highest 

share of external costs per vehicle, which was about 33% of traffic-related costs in urban 

sections, was due to noise generated by road traffic. This happened because N is very sensitive 

to changes in potentially exposed population, which is clearly high in urban segments. Albeit 

small, NOX and PM10 represented together 35% of costs in urban areas thereby, reflecting its 

impacts on local population. The findings from rural sections suggested a different trend (GHG 



accounted for 33% of external costs, followed by RC, with 30%). Concerning the highway, it is 

interesting to note that GHG represented around 74% of the external costs, while N and NOX 

had small impacts (⁓10% each). From FIGURE 9, and as expected, traffic congestion had a small 

expression in external costs regardless of the type of road, which can be explained by the level 

of congestion along the study domain (Li <4) (Korzhenevych et al., 2014). 

 

FIGURE 9 Distribution of external costs by type of road: a) urban; b) rural; c) highway. 

 

FIGURE 10 a-c exhibits the hotspot costs (TCK) location by segment and route. Analysis results 

showed links with highest costs (red color) were found in segments 2-17 of R1, segments 5-12 

of R2 and segments 9-20 of R3. They represented nearly 27%, 39% and 28% of the R1, R2 and 

R3 total costs, respectively. The different colors observed in North-South and South-North 

directions along R2 and R3 was due to the difference in the number of crashes. Rural segments 

had high costs contributing thus with 62% of total costs along R1, which was mostly explained 

by the number of crash observations and resulting injury severity at those segments. 

 

FIGURE 10 Distribution of external costs by segment: a) R1; b) R2; c) R3. 

 

The learning gained from the test of the proposed sustainability indicator in the real-world case 

study is promising, which makes possible its integration in current eco-routing systems using the 

methodology of this paper and apply it to any route. The sustainability indicator was capable of 

reflecting each externality weight in costs and identifying trade-off concerning the selection of 

different routes with different purposes. On the one side, if drivers are guided to a route with 

less GHG emissions, they can be guided to roads with higher noise or air quality levels, 

confirming thus, the relevance for a quantification of potential population exposure. On the 

other side, a faster route (e.g., R3) may not represent lower external costs when compared to a 

slower one, emission and road crashes costs could be significant in some of its stretches when 

levels of traffic flows are significant. In these circumstances, the eco-routing information should 

be provided for ensuring both marginal private and social costs.  

 

6. CONCLUSIONS 

.The integration of road traffic impacts in one single indicator was one major drawback for the 

use of advance traffic management systems for estimating external costs. This paper developed 

a sustainability indicator for quantifying traffic externalities as means of traffic congestion, 

noise, GHG, NOX, health impacts and road crash related costs. The proposed methodology was 

tested in a commuting corridor with three main alternative routes. 

Low-traffic-volume highway yielded 28% and 32% lower external costs than other routes. Road 

crash costs presented the largest share along the partly rural/urban route while GHG costs were 

most significant in routes with highway trip sections. For the road-level analysis, some 



differences in the distribution of external costs can be highlighted. The share of noise and NOX 

in external costs were only significant in urban roads mostly due to higher potentially exposed 

population in those areas.  

This research has both scientific and societal contributions. Regarding the scientific contribution, 

it allows incorporating other variables to assess their impact on the magnitude and share of 

traffic externalities according to the type of road. Some of these include the variation in the 

number of circulating lanes, posted speed limits, traffic control treatment design, emission limit 

values, car fleet distributions or meteorological forecasts. Regarding the societal contribution, it 

allows endowing current navigation platforms with reliable and flexible cost analysis that 

accommodate local-specific needs and encouraging the design of eco-traffic management 

policies considering the perspective of drivers, commuters  and population. For instance, this 

methodology can be embedded in the transportation infrastructure to enable authorities to 

identify and prevent polluting or noisy vehicles from entering in sensitive areas, thus reducing 

the effects of the non-respect of tolerance limits. Other societal contribution is the support of 

future road pricing schemes that include a given cost value related with road traffic externalities. 

Undoubtedly, given the complexity of the proposed integrated approach, which alludes to areas 

of large-size transportation modeling, short time analysis, pollutant emissions, noise and 

concentrations calculations, potentially population affected to some traffic externalities, and 

size of crash database, several simplifications were made. These, in turn, yield three main 

limitations of the paper. First, on-road exposure can reach a substantial share in noise, NOX and 

heath impact costs, but the approach in this paper assumed a fixed value (local population 

density). This may yield a bias in the actual and average exposure population which can vary 

along the day (e.g., high in urban areas during working hours, low after working hours). Second, 

the saturation values adopted for urban roads discarded the impacts of downstream 

intersections since segment-specific length was large. Since capacity is influenced by a 

downstream intersection in short segments, the incorporation of capacity models according to 

the traffic control operational characteristics (e.g., traffic light, conventional roundabouts, stop-

controlled intersections) would be useful. Third, the analysis of indicator based on one hour with 

no variations in turning split distributions among routes. This may not represent in deep the 

magnitude of each cost component. Thus, the analysis of different time periods (e.g., covering 

all 24 h of a week) would improve the quantification of each externality. 

Future research will be mostly focused on the use of the upcoming 5G technologies to couple 

the traffic information with impacts modeling analysis and crowdsourcing technology for tuning 

real-time potential exposure values during different periods of the day. Testing of the developed 

sustainability indicator in metropolitan corridors with high traffic volumes and vehicle 

compositions variations, and population exposure could be useful to identify differences among 

traffic externalities. Furthermore, the incorporation and optimization of corridor-specific pricing 

strategies (e.g., pay tolls) on costs would also be addressed. “Although some external costs 

varied according to the population density from link to link, the sustainability indicator 

developed in this paper assumed an equal weight for all cost components which may not 



correspond for local authorities and road users’ preferences. Such aspects must be considered 

during the development of sustainable indicator by defining a specific weight for each external 

cost.  
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FIGURE 1 Overview of the research methodology (PGV – Passenger Gasoline 
Vehicles, PDV – Passenger Diesel Vehicles, LCDV – Light Commercial Diesel 
Vehicles; HDV – Heavy Duty Vehicles; HCM – Highway Capacity Manual; VSP – 
Vehicle Specific Power; EMEP/EEA – European Monitoring and Evaluation Programme 
by European Environmental Agency; CONC – Concentrations).  
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FIGURE 2 Study Domain: a) Routes Aerial View; b) Type of Road; c) Data Monitoring 
Points. Background Map Source [Open Street Maps]. 
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FIGURE 3 Segments definition by route: a) R1: b) R2; c) R3. Background Map Source 
[Open Street Maps].    
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FIGURE 4 Local population density per square kilometer (Statistics of Portugal, 
2018). Source [ArcGIS].   
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FIGURE 5 Traffic Volumes between 5:30-6:00PM. Background Map Source [Open 
Street Maps].  
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FIGURE 6 Spatial distribution of crashes based on level of injury severity: a) Light injury: 
b) Serious Injury; and c) Fatality. Background Map Source [Open Street Maps].   
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Note – p-value of F-test (ANOVA) performed in R2 coefficient was 0 in both linear regression models, 

indicating statistical significance; estimated values were computed by adopting an average acoustic 

equivalent (n) value of 8. 

FIGURE 7 Noise methodology: a) Calibration; b) Validation. 
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FIGURE 8 Distribution of external costs by route: a) South to North (R1); b) North to 
South (R1); c) South to North (R2); d) North to South (R2); e) South to North (R3); f) 
North to South (R3).  
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FIGURE 9 Distribution of external costs by type of road: a) urban; b) rural; c) highway. 
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FIGURE 10 Distribution of external costs by route: a) R1; b) R2; and c) R3.  
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TABLE 1 Key characteristics of proposed segments 

Route 

South-North North-South 

Segment 
ID 

Type of 
Road 

Length a 

[km] 

Segment 
ID 

Type of 
Road 

Length a 
[km] 

R1 

1 Rural 0.56 10 Rural 0.33 

2 Rural 2.97 11 Rural 1.45 

3 Rural 2.23 12 Urban 1.72 

4 Rural 1.59 13 Urban 0.69 

5 Urban 0.35 14 Urban 0.34 

6 Urban 0.69 15 Rural 1.59 

7 Urban 1.73 16 Rural 2.23 

8 Rural 1.51 17 Rural 2.97 

9 Rural 0.26 18 Rural 0.53 

R2 

1 Rural 0.22 9 Rural 0.33 

2 Rural 0.56 10 Rural 0.49 

3 Highway 0.41 11 Rural 1.03 

4 Rural 1.49 12 Highway 10.90 

5 Highway 11.00 13 Rural 1.06 

6 Rural 0.64 14 Highway 0.50 

7 Rural 0.47 15 Rural 0.38 

8 Rural 0.26 16 Rural 0.53 

R3 

1 Rural 0.22 15 Rural 0.33 

2 Rural 0.56 16 Rural 0.49 

3 Highway 0.41 17 Rural 1.03 

4 Highway 0.96 18 Rural 0.86 

5 Highway 0.83 19 Rural 0.66 

6 Rural 0.85 20 Highway 9.49 

7 Rural 0.99 21 Rural 0.60 

8 Rural 0.75 22 Rural 0.89 

9 Highway 9.48 23 Rural 0.58 

10 Rural 1.10 24 Highway 1.04 

11 Rural 0.56 25 Highway 1.03 

12 Rural 0.89 26 Highway 0.50 

13 Rural 0.47 27 Rural 0.38 

14 Rural 0.26 28 Rural 0.53 

Note – a) Length by direction
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TABLE 2 Marginal cost factors for congestion according to the type of road 
(Korzhenevych et al., 2014) 

Parameter V/C Li 
Urban 

(€ct/vkm) 
Rural 

(€ct/vkm) 
Highway 
(€ct/vkm) 

CLDV 

0 1 0.0 0.0 0.0 

0.25 2 0.0 0.0 0.0 

0.5 3 0.0 0.0 0.0 

0.75 4 3.8 1.4 1.0 

1 5 5.9 4.7 2.4 

CHDV 

0 1 0.1 0.1 0.0 

0.25 2 0.1 0.1 0.0 

0.5 3 0.1 0.1 0.0 

0.75 4 7.2 2.7 2.0 

1 5 11.2 9.0 4.6 

 

 

TABLE 3 Marginal cost factors for noise exposure (Korzhenevych et al., 2014) 

Lden, k 

(dBA) 

CLden, k 

(€/dBA per person and per 
year) 

51 6 

55 29 

60 56 

65 84 

70 113 

75 187 

Note – Values within threshold intervals are computed using linear interpolation 

 

TABLE 4 Summary of Calibration and validation of travel times 

Model Route 
Observed 

Travel Time [s] 
Simulated 

Travel Time [s] 
p-value 

Calibrated 
(Training Set) 

N→S (R1) 984 ± 57 992 ± 50 0.78 

S→N (R1) 965 ± 64 987 ± 28 0.85 

N→S (R2) 605 ± 44 631 ± 31 0.13 

S→N (R2) 589 ± 39 606 ± 16 0.26 

N→S (R3) 732 ± 29 745 ± 38 0.37 

S→N (R3) 760 ± 32 784 ± 33 0.11 

Validated 
(Testing Set) 

N→S (R1) 968 ± 67 950 ± 23 0.58 

S→N (R1) 997 ± 124 1,018 ± 23 0.69 

N→S (R2) 585 ± 23 620 ± 14 0.16 

S→N (R2) 611 ± 15 608 ± 14 0.76 

N→S (R3) 752 ± 20 758 ± 26 0.73 

S→N (R3) 760 ± 4 608 ± 18 0.10 

Note: N→S North to South; S→N South to North 

 


