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palavras-chave 
 
 
resumo 

 

Contaminantes emergentes, stress oxidativo, genotoxicidade, sobrevivência, 
reprodução, multigeração, avaliação de risco, nanomaterial, invertebrados de 
solo, oligochaeta, in vitro.  
 
A crescente utilização de nanomateriais (NMs) numa grande variedade de 
setores é devida às melhores e mais inovadoras propriedades que estes 
podem oferecer, por exemplo, à indústria de uso final ou à biomedicina. A 
libertação de NMs no ambiente durante o seu ciclo de vida é um cenário 
actual. Ao entrarem no ambiente, os NMs irão interagir com os organismos, e 
apesar dos crescentes esforços para fornecer resultados conclusivos sobre a 
segurança dos NMs, o seu impacto ainda é pouco conhecido, particularmente 
no compartimento terrestre. Existem várias lacunas no conhecimento que 
necessitam de ser preenchidas de forma a entender melhor os mecanismos 
que levam à toxicidade dos NMs; assim, esta tese pretende aumentar o 
conhecimento dos efeitos de NMs selecionados em invertebrados de solo. 
Perceber o mecanismo de acção dos NMs é a chave para estratégias safer-by-
design, fundamentais para melhorar a sustentabilidade da nanotecnologia.  
A avaliação dos efeitos dos NMs foi realizada a vários níveis de organização 
biológica, cobrindo diferentes endpoints, que, sendo integrados, permitem 
perceber os mecanismos de toxicidade. Os efeitos a longo-prazo e 
multigeneracionais foram também considerados, uma vez que são possíveis 
cenários de exposição aos NMs. Os NMs selecionados – prata (Ag), liga de 
carboneto de tungsténio-cobalto (WCCo) e o caso estudo de óxido de cobre 
(CuO) (usando diferentes modificações da superfície), juntamente com os 
correspondentes sais, foram usados a diferentes níveis: molecular (stress 
oxidativo e genotoxicidade) e do organismo (sobrevivência e reprodução). Os 
invertebrados modelo de solo Enchytraeus crypticus e Eisenia fetida foram 
usados em  exposições in vivo e in vitro, respectivamente.   
Concentrações sub-letais de Ag NMs induziram efeitos bioquímicos (de stress 
oxidativo e genotoxicidade) em E. crypticus, distintos e mais tardios 
comparados com a forma não-nano (AgNO3). Enquanto diferentes respostas 
apontam para efeitos nano-específicos, a possível dissolução de Ag NMs e 
consequente toxicidade induzida pelos iões também pode ocorrer. WCCo NMs 
comprometeram a reprodução de E. crypticus de forma superior comparado 
com CoCl2 (assumindo concentrações de Co semelhantes). Menores 
concentrações de Co na interface solo-água e a menor internalização de Co 
nos organismos expostos a WCCo, sugere que a toxicidade resulta do efeito 
combinado entre WC e Co. Apesar da internalização de Co, a exposição 
multigeneracional não aumentou a toxicidade em termos de sobrevivência e 
reprodução. A monitorização da quantidade de Co nos organismos aponta 
para a eliminação e armazenamento como estratégias de detoxificação nos 
organismos expostos a WCCo NMs e CoCl2, respectivamente. Os CuO NMs  
não diminuíram a viabilidade das células dos sistema imunitário de Eisenia 
fetida, quer na forma pristina ou com diferentes modificações da superfície. A 
interacção com as biomoléculas presentes no fluido celómico terá levado à 
formação de uma corona nativa que interferiu com o potencial de toxicidade, 
independentemente da modificação da superfície, mas o impacto dessa 
interação não é claro. Alguns aspectos técnicos necessitam de otimização 
devido à possibilidade dos efeitos terem sido subestimados, mas este constitui 
um sistema de teste promissor para a bateria de testes in vitro.    
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abstract 

 

Emerging contaminants, oxidative stress, genotoxicity, survival, reproduction, 
multigeneration, risk assessment, nanomaterial , soil invertebrates, 
oligochaeta, in vitro. 
 
 
The growing use of nanomaterials (NMs) in a wide variety of fields is due to the 
better and innovative properties that they can offer to, e.g., the end-use 
industry or biomedicine. The release of NMs into the environment during their 
life-cycle is an actual scenario. Reaching the environment, the NMs will interact 
with the organisms, but despite the growing efforts to provide conclusive results 
on the safety of NMs, their impact is still poorly understood, particularly in the 
terrestrial compartment. There are many knowledge gaps that need to be 
covered to better understand the mechanisms that drive NMs toxicity, hence 
this thesis aims to increase the knowledge on the effects of selected NMs in 
soil invertebrates. Understanding NMs mode of action is key to safer-by-design 
strategies that will contribute to improve nanotechnology sustainability. 
Effect assessment of NMs was done at several levels of biological organization, 
covering different endpoints, which can be integrated in order to understand the 
toxicity mechanisms. Further, long-term and multigenerational effects were also 
considered, as they are likely scenarios for NMs exposure. Selected NMs - 
silver (Ag), tungsten carbide cobalt (WCCo) and copper oxide (CuO) case 
study (using different surface modifications), along with the corresponding salt 
forms, were tested at different levels: molecular (oxidative stress and 
genotoxicity) and organism (survival and reproduction). The standard soil 
invertebrates Enchytraeus crypticus and Eiseina fetida were used for in vivo 
and in vitro exposures, respectively.   
Sub-lethal concentrations of Ag NMs induced distinct and later biochemical 
effects (oxidative stress and genotoxicity) in E. crypticus compared to the non-
nano form (AgNO3). While different responses point to nano-specific effects, 
possible dissolution of Ag NMs and consequent ion-driven toxicity can also be 
occurring. WCCo NMs impaired reproduction in E. crypticus, at a higher extent 
compared to CoCl2 (assuming similar Co concentrations). The lower Co 
concentrations in the soil:water interface and lower uptake in WCCo exposed 
organisms suggest that toxicity resulted from a combined effect between WC 
and Co. Multigenerational exposure did not increase toxicity in terms of survival 
and reproduction, in spite of Co internalization. Monitoring of Co body burden 
pointed to Co elimination and storage as the detoxifying strategies in WCCo 
and CoCl2 exposed organisms, respectively. CuO NMs did not decrease 
viability of Eisenia fetida’s immune cells, either in the pristine form or with 
different surface modifications. The interaction with the biomolecules present in 
the coelomic fluid may have led to the formation of a native corona that 
interfered with the toxic potential, independently of the surface modification, but 
the impact of such interaction is unclear. Some technical aspects need further 
optimization due to the possibility that the effects could have been 
underestimated, but this constitutes a promising test system for in vitro testing 
battery. 
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INTRODUCTION AND OUTLINE OF THE THESIS 

 

Nanomaterials (NMs) can be roughly defined as materials with one or more dimensions in 

the 1-100 nm range, and their higher surface to volume ratio endow them distinct physico-

chemical properties (e.g. electrochemical reactivity, possible surface functionalisation) 

from the bulk materials (Ahlbom et al., 2008). Such properties have given NMs potential 

for application in a myriad of fields such as electronics (Mahian et al., 2013), cosmetics 

(Mu and Sprando, 2010), biomedicine (Pankhurst et al., 2003), bioremediation (Liu, 2006), 

etc., which has pushed the field of nanotechnology to grow at an increasing, yet 

concerning, pace. It’s highly likely that at any stage of their life-time NMs can enter the 

environment via air, water and soil, and interaction with organisms is therefore an actual 

scenario (Gupta et al., 2015). In fact, Europe is expected to release to the different 

environmental compartments about 50.000 tons/year of NMs and their transformation 

products (Keller et al., 2013). The risk assessment on NMs has been a major concern for 

researchers, however the hazard related to NMs applications is still far from being 

definitively addressed, hence, research on the toxicity of NMs is a pressing matter.   

 

The present thesis aims to provide additional information on the risk that NMs pose to the 

organisms, by studying the effects of selected nano-materials in soil invertebrates. This 

introductory chapter was divided in 5 sections, in order to provide a contextualization of 

the studies performed, being divided as follows: 

1. Nanotechnology 

2. Gaps and challenges in Nanotoxicology 

3. Environmental hazard of Nanomaterials – Soil Ecotoxicology 

4. Test materials 

5. Test organisms 

6. Thesis structure 
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1. NANOTOXICOLOGY 

 

Given the possible interaction of NMs with living organisms, extensive research has been 

done to assess the risk of NMs using different model organisms and different materials. 

Nanotoxicological studies have exponentially increased in the last decades, providing 

much information on the NMs toxicity mechanisms, but the information available is still not 

enough to correctly evaluate NMs safety as many aspect of the mechanisms of action are 

still poorly understood.  

The ability to cross biological internal barriers, such the lung epithelium (Yacobi et al., 

2007) or the blood-brain barrier (Kreuter et al., 1995), due to their nano-size has proven 

NMs to be a threaten to living organisms. Once inside the organism, the NMs can be 

translocated to other parts of the body and be taken up by cells by different mechanisms 

(Chithrani et al., 2006; De Jong et al., 2008), with implications to the normal cellular 

metabolism.  

Of the molecular-level endpoints related to NMs toxicity mechanisms, two of the most 

relevant are detailed:  

 

I. OXIDATIVE STRESS 

 

Generally speaking, NMs-derived toxicity is thought to occur primarily via enhanced 

generation of reactive oxygen species (ROS) that disturbs the redox status of the cell, 

activating oxidative stress (Choi et al., 2010; Dasari et al., 2013). ROS include superoxide 

anion (O2
•-) and hydroxyl (•OH) radicals, hydrogen peroxide (H2O2) and singlet oxygen (½ 

O2) that, when in excess, can disturb the normal functioning of the cell (Apel and Hirt, 

2004). To prevent cellular ROS accumulation, cells have an antioxidant system composed 

of enzymes (e.g. catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase 

(GPx)) and low molecular mass compounds scavengers (e.g. glutathione, 

metallothioneins) that counteracts overproduction of ROS by converting them into non 

radical products (Pisoschi and Pop, 2015) (Fig.1).    
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Figure 1: Schematic overview of the detoxifying enzimatic reactions where radicals (in 

red) are converted to stable compounds (in green). Main enzymes are shown in bold grey: 

SOD – SuperOxide Dismutase, CAT – CATalase, GPx – Glutathione PeroXidase, GR – 

Glutathione Reductase, Glutathione S-Transferase.  

 

When the antioxidant system fails to balance ROS production, radicals can interfere with 

biomolecules causing secondary cellular injuries, such as, cell membrane (Jeng and 

Swanson, 2006) and DNA damage (Ahamed et al., 2008), mitochondrial membrane 

permeability alteration (Hussain et al., 2005) and inflammation (Yazdi et al., 2010) (Fig.2). 

If the cell defenses are not enough to overcome the cellular injuries, it can ultimately lead 

to cell death, either via apoptosis (Choi et al., 2010; Hsin et al., 2008) or necrosis (Pan et 

al., 2009). Nonetheless, NMs toxicity may also be directly related to NMs, i.e., oxidative 

stress-independent. For instance, carbonaceous NMs may physically interact with cell 

membranes (Hirano et al. 2008) and the cytoskeleton (Holt et al. 2010), compromising the 

normal cell functions.  
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Figure 2: Main cellular events involved in nanomaterials toxicity (adapted from Sanvicens 

et al. (2008)), where Reactive Oxygen Species (ROS) imbalance is pointed as the 

initiating event that leads to subsequent cellular effects.     

 

Given the pivotal role of ROS production in the NMs toxicity mechanism, evaluation of 

oxidative stress was included in the studies of this thesis to understand toxicity of selected 

NMs (Chapter I).  

 

II. DNA DAMAGE 

DNA damage has been also linked to NMs toxicity (Fig. 2) and primarily genotoxicity can 

be a direct or indirect consequence of NMs cellular internalization: 

a. Direct interaction with DNA or chromosomes is facilitated by NMs small size that 

allow them to cross the nuclear membrane, or by the disappearance of the 

nuclear membrane during mitosis, potentially affecting DNA replication and 

mitosis (An et al., 2010; Yang et al., 2009).  

b. DNA-ROS and/or DNA-released transition metals interaction (Asharani et al., 

2009), NMs interference with nuclear proteins (Chen and von Mikecz, 2005) 

and deregulation of mitotic check points (Huang et al., 2009) are ways of 

indirect NMs genotoxicity. 

Secondary genotoxicity may also arise when DNA is indirectly damaged by ROS 

overproduced not by the cell itself but by inflammatory cells (Trouiller et al., 2009).  
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Such damages in the DNA will profoundly affect the correct functioning of the cells, 

especially if the damage is done in the germline cells due to the potential to change 

heritable characteristics. Hence, genotoxicity is another endpoint usually included in NMs 

toxicology studies, and will also be in the scope of the present thesis (Chapter II).  

 

Because the effects of NMs on a molecular level will interfere with higher levels of 

biological organisation, organism-level endpoints are also needed to understand the NMs 

impact. In fact, most of data available in regulatory risk assessment involves animal 

testing using standardized protocols and guidelines developed by international 

organizations such as Organisation for Economic Co-operation and Development (OECD) 

and the International Organization for Standardization (ISO), that focus on organism level 

endpoints - e.g. survival, reproduction, growth. Obtaining and integrating data across 

multiple levels of organization is of paramount importance, for a more precise and 

predictive risk assessment approach, which is a present challenge (Sturla et al., 2014). In 

the present thesis, survival and reproduction were the organism-level endpoints selected 

for NMs testing (Chapter III and IV).   

 

2. GAPS AND CHALLENGES IN NANOTOXICOLOGY 

 

Despite the growth of nanotoxicology in the last decades, the current uncertainty in NMs 

safety is due to the existing gaps in knowledge that still concern researchers in the field 

(see (Amorim et al., 2016; Dhawan and Sharma, 2010; Fadeel et al., 2015; Hu et al., 

2016)), some of which are addressed in the present and following sections.  

Research has shown that NMs toxicity is, in fact, multiparametric, i.e. toxicity of a 

particular NMs can be modulated by several factors, such as, intrinsic physicochemical 

characteristics (Ispas et al., 2009; Uski et al., 2017) and the biological media (Lesniak et 

al., 2012). Nonetheless, multiparametric testing is usually hampered by logistic limitations, 

thus, for the purpose of this thesis, only the effect on the surface coating will be 

considered. The coating on NMs surface can have a major impact in the biological effects, 

as changes in the surface will influence the mechanisms for cellular entry and, 

consequently, the cytotoxicity (Javed et al., 2017; Schaeublin et al., 2011; Xia et al., 

2009). Even though surface engineering is key to design safer NMs and nano-enable 

products, results still fail to predict the behaviour and fate in living organisms and no clear 

correlations could be established (Hussain et al., 2015). It is also included in the present 
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thesis a study for effect comparison of differently coated NMs to understand toxicity’s 

modulation (Chapter V). 

 

Another current challenge in understanding NMs mode of action is related to the origin of 

the toxicity. Many studies with metallic NMs have attributed the toxicity to the released 

ions delivered by the NMs upon intracellular dissolution. Such “Trojan-horse” effect was 

proposed for several NMs such as silver (Ag) (Park et al., 2010) or copper oxide (CuO) 

(Studer et al., 2010); however, in other cases, the sole action of the ions doesn’t explain 

the whole toxicity, as effect comparison with salt forms also point to a direct NP-specific 

effect (e.g. Ag NMs (Bicho et al., 2016; Chae et al., 2009) or CuO NMs (Cho et al., 2012; 

Gomes et al., 2015). Thus, and having in mind the role that the ions may display in NMs 

toxicity, in this thesis the biological effects exerted by the NMs were compared to those of 

the equivalent ions.  

 

3. ENVIRONMENTAL HAZARD OF NANOMATERIALS – SOIL ECOTOXICOLOGY 

 

Soil is considered a sink where NMs can be released and accumulate over time (Cornelis 

et al., 2014). This poses a threat to soil organisms, particularly the invertebrates, that are 

of prime importance in the soil ecosystem, by, for instance, maintaining the nutrient cycle, 

mixing minerals and organic matter and sustaining the porosity and structure of the soil), 

this way influencing other soil organisms’ habitats (Jouquet et al., 2006; Lavelle et al., 

2006). 

The majority of the in vivo studies using soil-dwelling organisms focus on short-term 

exposures to NMs e.g. the standard toxicity tests for acute or short chronic effects. 

However, the release of NMs and NMs-containing products to the environment is more 

related to slower, continuous processes, which make low-dose, chronic and 

multigenerational exposures considered a most likely and relevant scenario (Amorim et 

al., 2016; Comfort and Braydich-Stolle, 2014; Diez-Ortiz et al., 2015) but such studies are 

still very limited mainly due to the time they require. Considering only acute, short-term 

effects will not allow the correct understanding of the toxicity mechanisms and consequent 

risk assessment, as delayed toxicity, transgenerational effects or even the recovery ability 

of the organisms can be overlooked. Hence, this thesis was also intended to include in the 

current paradigm most likely scenarios of exposure to NMs, by considering prolonged 

exposure periods in established test guidelines (Chapter III) and the potential for 

multigenerational toxicity (Chapter IV).  
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One additional difficulty when considering soil exposures to NMs is the characterization 

and fate within the soil matrixes. NMs properties and bioavailability can be affected by the 

soil characteristics, such as the ionic strength, pH or organic matter, but may also vary 

depending on the organism and route of uptake (Cornelis et al., 2014; Shoults-Wilson et 

al., 2011). Hence, relating the behaviour of NMs in the soil compartment (and the 

consequent bioavailability) with the biological effects is of major importance in the risk 

assessment, however, the current lack of proper techniques and/or equipment difficult 

such task (Amorim et al., 2016; Gomes et al., 2015). When considering soft-bodied soil 

invertebrates, two possible routes for NMs entry in the organism are at play, one of which 

being the gastrointestinal tract (via ingestion of contaminated soil particles and food), and 

the other dermal uptake (via the skin) (Garcia-Velasco et al., 2016; Laycock et al., 2015). 

As these organisms are exposed to NMs in both the soil and the soil:pore water, it 

becomes also important to understand which is the critical soil constituent to understand 

NMs bioavailability. Even though it’s not possible in these studies to fully characterize the 

NMs, chemical analyses in the soil, the soil:water biofilm and in the organisms were 

performed to add to the interpretation of NMs toxicity (Chapter III and IV).      

 

4. TEST MATERIALS 

 

The materials used in this thesis were selected based on relevance given the long-time, 

widespread use (Ag NMs and CuO NMs) and the potential for environmental release 

(WCCo NP):  

 

Silver nanomaterials (Ag NMs) are the most widely used NMs, mostly owed to the 

antimicrobial property (Rai et al., 2009). They can be applied in a myriad of consumer 

items, e.g. house holding products (Zhang et al., 2007), textiles (Emam et al., 2013) or 

paints (Holtz et al., 2012) and in medical equipment (Cheng et al., 2004).  

   

Copper Oxide nanomaterials (CuO NMs) have applications in antimicrobial preparations 

(Ren et al., 2009), heat-transfer fluids (Chang et al., 2011), electrochemical and bio 

sensors (Luo et al., 2006), and batteries (Park et al., 2009).  
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Tungsten Carbide Cobalt (WCCo) are a class of cemented carbides of great interest to 

several industrial fields, as it increases hardness and wear resistance in cutting and 

drilling tools (Prakash, 1995; Yao et al., 1998).  

 

 

5. TEST ORGANISMS 

 

Enchytraeids (Oligochaeta, Enchytraeidae) are extremely relevant ecotoxicological 

models with established guidelines (ISO, 2014; OECD, 2016). The species Enchytraeus 

crypticus in particular present several advantages over other enchytraeid species (e.g., 

shorter generation and test time) (Castro-Ferreira et al., 2012), and numerous molecular 

and organism-level endpoints are currently available for this species. Molecular-level 

techniques already implemented include evaluation of energy reserves (Gomes et al., 

2015), oxidative stress (Ribeiro et al., 2015), genotoxicity (Maria et al., 2017), 

transcriptomics (Castro-Ferreira et al., 2014) and metabolomics (Maria et al., 2018). A full 

life cycle test was also developed, allowing the discrimination of effects in early 

developmental stages (Bicho et al., 2015), and more recently, a multigenerational test was 

optimized (Bicho et al., 2017a). As several biological organization levels endpoints were 

optimized for E. crypticus, integration of the different results will aid in the construction of 

Adverse Outcome Pathways (AOP) for NMs, important to completely understand the 

toxicity mechanisms (Ankley et al., 2010), and was already proposed for CuO NMs (Bicho 

et al., 2017b). 

 

6. THESIS STRUCTURE 

 

The present thesis will be structured in five chapters, each covering a particular study 

related to NMs toxicity: 

 

Chapter I: “Oxidative stress mechanisms caused by Ag nanoparticles (NM300K) are 

different from AgNO3: effects in the soil invertebrate Enchytraeus crypticus” published in 

the International Journal of Environmental Research and Public Health, 12, (2015), 9589-

9602.  

This study aimed to assess the effect of silver nanoparticles (Ag NMs) in terms of 

oxidative stress in the enchytraeid E. crypticus. The salt AgNO3 was also tested to 

ascertain the source of toxicity.  
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Chapter II: “Silver (nano)materials cause genotoxicity in Enchytraeus crypticus – as 

determined by the comet assay” published in Environmental Toxicology and Chemistry, 

37(1), (2018), 184-191. This work was a follow-up of Chapter I.  

Knowing the oxidative potential of Ag NMs, the genotoxic effect was studied using the 

comet assay, a tool that was not yet implemented in E. crypticus. First, the Comet assay 

was optimized, and then validated using organisms previously exposed to Ag NMs and 

AgNO3.  

 

Chapter III: “Fate and effect of nano tungsten carbide cobalt (WCCo) in the soil 

environment: observing a nanoparticle specific toxicity in Enchytraeus crypticus” published 

in Environmental Science and Technology, 52 (19), (2018), 11394-11401.  

This study aimed to assess the effect of the nanomaterial Tungsten Carbide Cobalt 

(WCCo) in E. crypticus, in terms of survival and reproduction, with a prolonged exposure 

period to evaluate longer term effects in total population. To understand the potential role 

of cobalt ions, the salt CoCl2 was used for effect comparison. 

 

Chapter IV: “Multigenerational exposure to Cobalt (CoCl2) and WCCo nanoparticles in 

Enchytraeus crypticus” – submitted in Nanotoxicology (major revisions).  

This study focused on another level of long term effects of WCCo and CoCl2 in E. 

crypticus, using a multigenerational exposure. The occurrence of transgenerational 

toxicity was also considered, and the two last generations were reared in non-

contaminated soil.   

 

Chapter V: “Cell in vitro testing with soil invertebrates - challenges and opportunities to 

model the effect of nanomaterials – CuO surface modified case study” - submitted.  

This in vitro study assessed the cytotoxicity of different coatings in copper oxide NMs 

(CuO NMs) in a particular type of immune cells – coelomocytes to understand the 

potential modulatory effect of the surface coating.  The cells were extracted from the 

earthworm Eisenia fetida. 
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ABSTRACT 

 

The mechanisms of toxicity of Ag nanoparticles (NMs) are unclear in particular in the 

terrestrial environment. In this study the effects of AgNP (Ag NM300K) were assessed in 

the soil worm Enchytraeus crypticus in terms of oxidative stress, using a range of 

biochemical markers [Catalase (CAT), Glutathione Peroxidase (GPx), Glutathione S-

Transferase (GST), Glutathione Reductase (GR), Total Glutathione (TG), Metallothionein 

(MT), Lipid Peroxidation (LPO)]. E. crypticus were exposed during 3 and 7 days (d) to the 

reproduction EC20, EC50 and EC80 of both AgNP and AgNO3. AgNO3 induced oxidative 

stress earlier (3d) than AgNP (7d), both leading to LPO despite the activation of the anti-

redox system. MT increased only for AgNP. The Correspondence Analysis showed a 

clear separation between AgNO3 and AgNP, with e.g. CAT being the main descriptor for 

AgNP for day 7. LPO, GST and GPx were for both 3 and 7 days associated with AgNO3, 

whereas MT and TG were associated with the AgNP. The present can reflect a delay in 

effects of AgNP compared to AgNO3 due to the release of Ag+ ions from the particles, 

although this does not fully explain the observed differences. 

 

Keywords: antioxidant system; reactive oxygen species; metallothionein; lipid damage; 

soil 

 

INTRODUCTION 

 

In addition to the bactericidal properties, silver nanoparticles (Ag NPs) have been reported 

to cause in vitro and in vivo effects in organisms other than bacteria, e.g. in vertebrates 

[Danio rerio and Mus musculus (Ghosh et al., 2012; Massarsky et al., 2013)] and 

invertebrates [Drosophila melanogaster, Caenorhabditis elegans, and Eisenia fetida 

(Ahamed et al., 2010; Ahn et al., 2014; Hayashi et al., 2013).  

AgNP toxicity has been mostly attributed to the generation of reactive oxygen species 

(ROS) in cells (Ahamed et al., 2010; Arora et al., 2008; Choi et al., 2010). Park et al. 

(2010) proposed that Ag NPs’ toxicity may partly follow a Trojan-horse type mechanism 

i.e. AgNP are taken up by the cell as particles and dissolution occurs inside the cell 

causing a high local concentration of Ag+, however there may also be an external 

dissolution of AgNP with subsequent ion related Ag+ toxicity. Hence, it seems that both 

particulate and ion-based mechanism of action may be at play, as further discussed by 

other authors (Gomes et al., 2013; Hayashi et al., 2012; Yang et al., 2012).  
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Few studies have been performed on terrestrial oligochaetes. For example, the time-

response tests with Eisenia andrei (Hayashi et al., 2013), a 7-day tests with E. fetida 

(Kwak et al., 2014), or the growth and survival test with Lumbricus rubellus (van der Ploeg 

et al., 2014). Recently, a study on the oxidative stress response in E. fetida (Gomes et al., 

2015a) comparing short- and longer-term (4 and 28 days) exposure period showed a time 

dependent response and differences in the redox mechanisms sequence between Ag salt 

and Ag nano. Despite the activation of the anti-redox enzymes for both Ag forms, lipid 

peroxidation occurred for longer-term exposures. Further, Hayashi et al. (2013) showed a 

faster induction of oxidative stress markers in E. fetida when exposed to Ag salt than 

when exposed to Ag NPs. More comprehensive differential gene expression response 

was studied in Enchytraeus albidus (Gomes et al., 2013), linking short to longer term 

effect, i.e. gene and reproduction. The authors highlight that testing of Ag NPs seem to 

require longer exposure period to be comparable in terms of effect/risk assessment with 

other chemicals.  

In the present study we aimed to characterize the antioxidant system in the omnipresent 

standard soil species Enchytraeus crypticus (Castro-Ferreira et al., 2012; ISO, 2005; 

OECD, 2004a) exposed to AgNP. This involved the exposure to dispersed Ag NPs 

(NM300K, JRC standard particles) and Ag salt (AgNO3) at the reproduction effect 

concentration (EC20, EC50 and EC80) during a short time series exposure: 0, 3 and 7 

days. A set of oxidative stress biomarkers was used, which included catalase (CAT), 

glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase 

(GST) activities, the total glutathione (TG), metallothionein (MT) and lipid peroxidation 

(LPO) levels. 

 

MATERIALS AND METHODS 

 

Test organism 

 

Enchytraeus crypticus (Oligochaeta: Enchytraeidae) were maintained in laboratory 

conditions, 19 ± 1 °C and 16:8 h (light:dark) photoperiod regime in agar plates, consisting 

of a sterile mixture of four solutions (CaCl2.2H2O, MgSO4, KCl, NaHCO3) and Bacti-Agar 

medium as a substrate. The animals were fed on autoclaved dried oats. Adult organisms 

with visible clitellum and similar size were selected for the experiment. 
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Test Materials  

 

The AgNO3 (high-grade, 98.5–99.9% purity) was purchased from Sigma–Aldrich (USA). 

The silver nanoparticles (Ag NPs) used were the standard reference materials Ag 

NM300K from the European Commission Joint Research Centre (JRC), fully 

characterized (Klein et al., 2011). The Ag NM300K is dispersed in 4% polyoxyethylene 

glycerol triolaete and polyoxyethylene (20) sorbitan mono-laurate (Tween 20), thus the 

dispersant was also tested alone. 

 

Test soil and spiking 

 

The natural standard soil LUFA 2.2 (Speyer, Germany) was used and has the following 

main characteristics: grain size distribution of 7.2 % clay, 8 % silt and 77.5 % sand, pH 

(CaCl2) = 5.5, water holding capacity (WHC) of 45 g/100 g, a cation exchange capacity 

(CEC) of 10 meq/100 g, and an organic carbon (OC) content of 1.77%. 

The soil was dried (72 h, 80 ºC) before use. Spiking was performed as aqueous solution 

onto pre-moistened soil and homogeneously mixed. The soil was left to equilibrate for 3 

days prior test start. For AgNP spiking was performed individually per replicate. Test 

concentrations used (Table 1) corresponded to the EC20, EC50 and EC80 for 

reproduction. The control soil was prepared by adding deionized water to adjust to the 

adequate moisture content (50% of the WHCmax). A control dispersant was also 

performed by adding the equivalent to the maximum dispersant volume as added with the 

AgNP spiking. 

 

Table 1: Test exposure concentrations of AgNO3 and AgNP, corresponding to the 

estimated reproduction effect concentrations (ECs), expressed as mg Ag / kg soil dry 

weight. 

Test material EC20 EC50 EC80 

AgNO3 45 60 96 

AgNP (NM 300K) 60 170 225 

 

Test procedures  

 

Test procedures followed the standard Enchytraeid Reproduction Test (ERT) guideline 

(OECD, 2004a). In short, each replicate consisted of a glass vessel (Ø 4 cm, 45 ml 
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volume) containing 20 g soil ww (wet weight) with food supply.  Fifty organisms were 

added in each test vessel and covered with a lid with small holes. Test conditions were 20 

± 1 ºC and 16:8 h photoperiod. Five replicates per treatment were used. At each sampling 

time (0, 3 and 7 days), organisms were carefully collected from soil, rinsed in water, 

introduced into a microtube, weighed, frozen in liquid nitrogen and stored at -80 ºC until 

further analysis. 

 

Biochemical analysis 

 

Procedures followed the described for E. albidus (Gomes et al., 2012) with adaptations. 

Pools of 40 organisms were homogenized using an ultrasonic homogenizer (Sonifier 250, 

Branson sonicator) in 2000 µl of potassium phosphate buffer (0.1 mM, pH 7.4 containing 

EDTA 1 mM and DTT 1 mM). Part of the homogenate (150 µl) was separately stored (- 80 

ºC) with 2.5 µl BHT (2,6-dieter-butyl-4-metylphenol) 4 % in methanol to block tissue 

oxidation for later LPO measurement. The rest of the homogenate was centrifuged at 

10.000g for 20 min at 4 °C and the post mitochondrial supernatant (PMS) was kept at - 80 

ºC for further analysis. All biomarkers procedures were based spectrometric methods and 

a Thermo Scientific, Multiskan Spectrum microplate reader was used. Protein 

concentration was assayed using the Bradford method (Bradford, 1976), adapted from 

BioRad’s Bradford microassay set up in a 96-well flat bottom plate, using bovine γ - 

globuline as a standard. Catalase (CAT) activity was measured following the method of 

Clairborne (1985) as described by Giri et al. (1996). Changes in absorbance were 

recorded at 240 nm and CAT activity was calculated in terms of µmol H2O2 consumed 

min-1 mg-1 protein. Glutathione Reductase (GR) activity was measured in accordance to 

the method of Carlberg and Mannervik (1975) being quantified by the NADPH loss at 340 

nm and expressed as nmol of NADP+ formed min-1 mg-1 protein. Glutathione S-

Transferase (GST) activity was assessed using 1-chloro-2,4- dinitrobenzene (CDNB) as 

substrate according to the method of Habig et al. (1974). The enzyme activity was 

recorded at 340 nm and calculated as nmol GS-DNB conjugate min-1 mg-1 protein. 

Total Glutathione (TG) levels were measured at 412 nm, using the recycling reaction of 

reduced glutathione (GSH) with dithionitrobenzoate (DTNB) in the presence of GR excess 

(Baker et al., 1990; Tietze, 1969). The results were expressed as nmol of 5-thio-2-

nitrobenzoic acid (TNB) formed min-1 mg-1 protein. Lipid Peroxidation (LPO) occurrence 

was evaluated according to the procedure of Ohkawa (1979) and Bird et al. (1984), as 

adapted by Wilhelm Filho et al. (2001). Absorbance was measured at 535 nm and results 
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were expressed as µmol of thiobarbituric acid reactive substances (TBARS) formed per 

milligram of fresh weight. 

Metallothionein (MT) levels were determined by using the method described by Viarengo 

et al. (1997). Briefly, 500 µL of the PMS was added to 500 µL 95 % ethanol with 8 % 

chloroform. After mixing it was centrifuged at 6000 × g for 10 min at 4 ºC. 50 µL RNA, 10 

µL HCl and 1.2 mL of cold ethanol were added to the 700 µL of the supernatant (S6) and 

frozen for 15 min at -80 ºC. After centrifuging at 6000 × g for 1 min (at 4 ºC) the 

supernatant was removed and the pellet was re-suspended in 300 µL of 87 % ethanol in 1 

% chloroform. The last centrifuge step was repeated and the pellet was re-suspended in 

150 µL NaCl, 150 µL HCl containing 4 mM ethylenediaminetetra acetic acid (EDTA) and 

300 µL Ellmans reactive with 0.4 mM DTNB, 2 M NaCl and 0.2 M potassium phosphate 

with a pH 8. After 5 min, the absorbance was read at 412 nm. 1 mM GSH in 0.1 M HCl 

was used as a standard and the amount of MT was expressed as nmol mg-1 protein. 

 

Data analysis 

 

Univariate one-way analysis of variance (ANOVA) followed by Dunnets’ Post-Hoc test 

(p<0.05) (SigmaPlot, 1997) was used to test differences between treatments (between 

day 0 and 3 and 7 and, between control and concentrations). 

Multivariate analysis was done to explore the patterns in correlations between the data, 

using Correspondence Analysis (CA) including all treatments and also when divided per 

days. The analysis was performed using the software SAS enterprise guide 5.1 (SAS 

Enterprise Guide 5.1, 2012). To compensate for the different scales of the biomarkers, the 

response was normalised using several different normalisation methods all giving the 

same pattern; in the present normalisation based on averaging is displayed. 

 

RESULTS 

 

Materials characterisation 

 

As mentioned, in methods, the silver nanoparticles (Ag NPs) used were the standard 

reference materials Ag NM300K from the European Commission Joint Research Centre 

(JRC), fully characterized (Klein et al., 2011). In short, Ag NM300K are spherical and 

consist of a colloidal dispersion with a nominal silver content of 10.2 w/w %, dispersed in 

4% w/w of polyoxyethylene glycerol trioleate and polyoxyethylene (20) sorbitan mono-
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laurat (Tween 20), having > 99 % number of particles with a nominal size of about 15 nm, 

with no coating. Transmisson Electron Microscopy (TEM) indicated a size of 17 ± 8 nm. 

Smaller nanoparticles of about 5 nm are also present.    

 

Biological characterisation 

 

The results obtained for the various biomarkers (univariate) can be depicted in figure 1. 
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Figure 1: Results from Enchytraeus crypticus exposed to Ag NM300K [60 (EC20), 

170 (EC50) and 225 (EC80) mg Ag/Kg soil] and AgNO3 [45 (EC20), 60 (EC50) and 

96 (EC80) mg Ag/Kg soil], as sampled at 0-3-7 days, in terms of Catalase (CAT), 

Glutathione Peroxidase (GPx), Glutathione S-Transferase (GST), Glutathione 

Reductase (GR), Total Glutathione (TG), Metalothionein (MT) and Lipid Peroxidation 

(LPO). Values are expressed as mean ± standard error (n=5). * (p<0.05, Dunnets’) 

for differences between control and treatments.  

Summarising, CAT shows a significant increase at the AgNP_EC20_7d, whereas for 

AgNO3 mostly the EC80_3d is increased but all is balanced at 7d. GPx and GR seems to 

have a bell shape pattern for the Ag salt between 0-3-7 days, being most pronounced for 

AgNO3_EC20. For AgNP an increase is observed for GPx at AgNP_EC50_7d; GR shows 

a bell shape (0-3-7d) for EC50 exposure and the opposite shape for the EC80. GST 

shows a steady increase from 0-7d for both Ag forms, but with higher absolute values for 

AgNO3. TG shows bell shape (0-3-7d) for AgNP for all ECs whereas for AgNO3 changes 

are minor. MT exhibits a small increase and stabilization for AgNO3 along the test period 

for all tested ECs. For AgNP there is a continuous increase in MT levels from 0-7 days, 

this being highest for the EC80_7d.  LPO levels are increased for AgNP_EC20_7d. For 

AgNO3, LPO levels get back to normal after an increase at day 3 (significant for EC50). 

The multivariate analysis of the data (Correspondence Analysis) enabled an identification 

of the overall differences between the AgNO3 and AgNP exposures (Fig 2A), with a clear 

separation of the AgNO3 and AgNP. It should be noted that whereas Fig. 1 shows mean 

values and standard errors, the multivariate plot displays the individual replicates. When 

treating the days separately (Fig 2B, C), an even clearer difference was observed. 

Whereas CAT has no importance for the separation between the exposures on day 3 it 

was the main descriptor for AgNP for the day 7. LPO, GST and GPx were for both days 

associated with AgNO3, whereas MT and TG was associated with the AgNP over both 

days. 
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Figure 2: Correspondence analysis of data from Enchytraeus crypticus exposed to AgNP 

(Ag NM300K) [60 (EC20), 170 (EC50) and 225 (EC80) mg Ag/Kg soil] and AgNO3 [45 

(EC20), 60 (EC50) and 96 (EC80) mg Ag/Kg soil], as sampled at 0-3-7 days (designated 

T_0, T_3 and T_7), in terms of Catalase (CAT), Glutathione Peroxidase (GPx), 

Glutathione S-Transferase (GST), Glutathione Reductase (GR), Total Glutathione (TG), 

Metalothionein (MT) and Lipid Peroxidation (LPO). CE: Confidence Ellipses. 
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DISCUSSION 

 

The results show different biomarker response-patterns for organisms exposed to AgNP 

and to AgNO3, both across all time-points and within each time-point. In the following we 

first discuss responses to each of the materials and then compare the responses across 

materials. 

 

AgNO3 mechanisms 

 

At low concentration, GPx was increased during the entire exposure period with a peak 

response after 3 days. The CAT activity also peaked after 3 days but was only generated 

by the EC80 exposures. Since both CAT and GPx are related to H2O2 cleavage, it seems 

that GPx is the initial response, concentration wise, whereas CAT is activated at higher 

oxidation level [i.e. assuming that higher oxidation level is linked to higher exposure 

concentrations levels]. The cooperation between CAT and GPx has been suggested by 

Baud et al. (2004) when the action of the enzymes by themselves is not enough for H2O2 

clearance, being both required in the process. Moreover, for higher cellular H2O2 

concentrations, GPx activity is mandatory to avoid CAT inactivation, as also seen in the 

present experiment. The cellular presence of lipid peroxides and other hydroperoxides 

can also act as stimulant substrates of GPx. In addition, the lower trend in the GPx activity 

for higher concentrations (EC50 and EC80) could reflect the occurrence of hormesis, i.e., 

an overcompensation response to low dose is elicited (Calabrese, 2008). This effect has 

been reported in several studies regarding Ag toxicity, and for both forms (Arora et al., 

2008; Braydich-Stolle et al., 2005; Kawata et al., 2009; Xiu et al., 2012).  

The increase in GST activity for EC20 and EC80 may be due to the conjugation of GSH 

with Ag+ ions. Induction in GST genes for both AgNP and Ag+ was reported in E. fetida 

after 7 d exposure to 100 mg Ag/kg (Tsyusko et al., 2012). A concentration-dependent 

increase in GST activity was found in E. fetida after 14 d exposure to AgNO3 (Hu et al., 

2012). Considering that antioxidant enzyme’s activities didn’t change for EC50 at 7 d, but 

TG values were increased, possibly Ag+ were forming complexes with GSH molecules.  

All tested concentrations promptly elevated GR activity, which should increase the GSH 

levels due to the recycling reaction of GSSG. However, TG content does not reflect this, 

as only EC80 caused an increase in TG levels. It is known that GSH can interact with 

certain metal ions, having high affinity to Ag and complexes can be formed (Wang and 

Ballatori, 1998). Considering that neither GPx nor GST is requiring GSH in EC50 and 
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EC80 exposures, GSH could be directly binding to Ag+ ions and perform an alternative 

mechanism of response against oxidative stress. An increase in GR activity coupled with 

the occurrence of Ag+ chelation by GSH was also proposed for E. fetida (75-100 mg 

Ag/kg, 4 days exposure) (Gomes et al., 2015a). For EC20, since GPx activity increased, 

this enzyme is using GSH to detoxify the cells, also explaining the higher increase in GR 

activity observed.  

Considering the increase in GST and GPx activity for EC20 associated with TG content 

decrease, this must reflect a severe fall in GSH levels, since it’s been mobilized by both 

enzymes. As to EC80, the increase in GST activity and TG levels seems to be a 

consequence of the conversion of GSH into GSSG. Regarding the higher TG levels (plus 

the increase in GST and GR activities), we propose two hypotheses/mechanisms for Ag+ 

scavenger: 1. The endogenous GSH was mobilized to scavenger Ag+ and/or 2. The 

increase in MT levels to scavenge Ag+ occurred between 4-6d followed by a decrease at 

day 7. A similar pattern was reported for Folsomia candida (EC50 of Cu and Cd, 0-10 

days exposure), where an induction in MT levels was measured after 6 days followed by a 

decrease (Maria et al., 2014). It is known that Ag has a strong affinity to MT and, since the 

used method detects unbound MT, MT could had been bound to Ag+ before day 3, hence 

earlier than for AgNP and not detected in the present design. In summary, despite the 

activated antioxidant mechanisms by E. crypticus to avoid oxidative damage, this was not 

enough to prevent LPO for AgNO3_EC50_3d. On the other hand, the mechanism to 

protect the cells from LPO was more efficient for EC20 and EC80 during the test period. 

 

Ag NPs mechanisms 

 

For the AgNP exposed organisms, the early decline in CAT and GPx activities could have 

led to an accumulation of H2O2 in the cells and contributed to an antioxidant system 

imbalance seen as enzyme “deactivation/lost” through denaturation process by the ROS 

build-up inside the cell, i.e. AgNP-induced oxidative damage. Nevertheless, CAT and GPx 

activities increased after 7d, although for different exposure concentration, which indicates 

the induction of protein biosynthesis and further activation of other antioxidant enzymes, 

e.g. GST and GR as observed here, but also an increase in cellular GSH contents which 

also counteract the ROS action and in this way prevent denaturation of proteins (e.g. 

enzymes). An increase in GST activity was also observed in E. fetida (20-500 mg 

AgNP/kg, 14 d exposure) (Hu et al., 2012) and in Chiromonus riparius at the mRNA level 

(0.2–1 AgNP mg/L, 24 hour exposure) (Nair et al., 2013). The increase pattern in GST 
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activity is similar between AgNP and Ag salt and could be due to Ag+ ions, i.e. that AgNP 

is either dissolved in the media or inside the worm. However, there is no clear knowledge 

of the possible degree of dissolution for Ag NM300K in soils, e.g. van der Ploeg et al.  

(2014) report lower Ag in soil pore-water following AgNP exposure compared to AgNO3 

(without specifying whether this is ions or nanomaterial). In the same study, the AgNP 

were attached to the worms, with bioaccumulation factors being lower for AgNP exposed 

worms compared to Ag salt exposed worms. Schlich et al. (2013) used Diffusion Gradient 

Thin-films (DGT) and detected equivalent amount of Ag in pore water (it is presently 

unclear how much AgNP will diffuse into the DGT, as particulate matter is known to enter 

DGTs (Van Leeuwen, 2011). Considering that a possible detoxification route of Ag+ ions 

involves elimination via conjugation to GSH in a reaction catalysed by GST, this could 

explain the increase in its activity. Also, it could be acting in response to CAT and GPx 

failure, which suggest a later action of Ag NPs. 

While GR activity was induced, GST maintained unaltered after the initial activation for 

EC50 exposure, maybe due to a mobilization of GSH as non-enzymatic antioxidant 

substrate, functioning by quenching intracellular ROS, albeit it was not sufficient to 

neutralize them since inhibition in CAT and GPx activities were observed. Consequently, a 

robust increase in the ratio GSH /GSSG content (TG increased) was observed possibly 

due to the presence of GSH. Higher GSH levels were also reported in E. fetida (Hu et al., 

2012). The decrease in TG for EC50_7d may be related to the GPx and GST increased 

activities that generated GSSG through GSH oxidation in the cells. 

The potential release of Ag+ does not seem to be linked to the increase in MT for 

AgNP_7d given the observations of much lower values for AgNO3. An increase in MT 

mRNA expression was also observed in exposure to AgNP in zebrafish (Choi et al., 2010) 

and in E. fetida (Hayashi et al., 2013; Tsyusko et al., 2012). The increase of MT must be 

linked to the observed TG decrease despite the increase in GST and GR activities. 

Hence, we consider that the decrease in the ratio GSH/GSSG (implying less available 

GSH) triggered an increase in the levels of MT (another thiol substrate) in order to reduce 

the oxidant Ag+ action. However, despite these mechanisms, LPO still occurred after 7d. 

 

Comparison of Ag Nano and Ag Salt Mechanisms 

 

As seen above, results show different biomarker response-patterns for organisms 

exposed to AgNP and AgNO3, both across all time-points and within each time-point. For 

AgNO3 oxidative stress is associated by an initial activation of enzymes like CAT, GR and 
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GPx, and causing LPO, followed by a decreased importance of GR and GPx at day 7. For 

AgNP oxidative stress is associated with the increased activities/levels of e.g., GPx, GST, 

TG but especially CAT from 0–7 d, although the activated mechanisms are not sufficient 

to avoid LPO as measured at EC20_7d. The lower LPO at EC50 and EC80 was possibly 

related with earlier induction of antioxidant enzymes for these concentrations, however 

this didn’t occur in AgNO3 exposed animals, resulting in higher LPO levels. 

It is known that oxidative stress can be directly induced by the active surface of Ag NPs 

(He et al., 2012). An alternative, may be a combined possibility, is that the present study 

reflects a delay in the effects of AgNP compared to AgNO3 due to the release of Ag+ ions 

from the particles either externally (e.g., in soil) or internally (e.g., in lysosomes), although 

this is presently impossible to verify for NM300K; it would probably require a soil Bio 

Ligand Model (BLM) kind of approach to the possible ratio between dissolution and uptake 

rates. The degree of toxicity caused be the soluble fraction (Ag+) and the particulate 

fraction is unclear and likely vary from experiment to experiment depending on conditions, 

see e.g., Baalousha et al. (2009) who argued that not all toxicity is caused by the soluble 

part. In a research covering the immunological effects of AgNP in human monocytes it 

was proposed that the release of Ag+ generates the production of hydroxyl radicals in 

acidic endo/lysosomes (Yang et al., 2012). Moreover, Ag NPs can exert their toxicity by 

entering the cells and releasing large amounts of Ag+, a Trojan-horse type mechanism 

(Autrup et al., 2012; Park et al., 2010). Hence, the observed effect can partly be due to 

slower Ag+ release from AgNP (outside or inside the organism), which also leads to a 

change in the order of cascade of events and hence potentiates different effects. 

Figure 3 shows a schematic representation of the events. As can be seen, there are some 

common features between AgNP and AgNO3 in terms of activated enzymes. Variation is 

observed in terms of time of activation, which by itself can create a different cascade of 

events. Moreover, the variation can be observed in terms of the induced levels per 

concentration and per material. Particular differences include e.g., for AgNP the increased 

CAT and MT. 
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Figure 3: Schematic representation of the redox events in the cell when exposed to AgNP 

and AgNO3 (variation in concentration is signalled in the arrows from low to high (EC20-

50-80), top to bottom respectively) and along various time periods (0-3-7 days). Cell at 

time 0 (left) indicates the general set of existing reactions that occur involving the 

measured markers in the present study. CAT: Catalase, GPx: Glutathione Peroxidase, 

GST: Glutathione S-Transferase, GR: Glutathione Reductase, TG: Total Glutathione, MT: 

Metallothyonein, LPO: Lipid Peroxidation.  

 

CONCLUSIONS 

 

Comparison between exposure to AgNP and AgNO3 in E. crypticus showed dissimilar 

oxidative stress responses, e.g., a delayed increase in the antioxidant enzymes 

responses (CAT, GST, GPx) for Ag NPs exposure (7 d) compared to AgNO3 (3 d), initial 

LPO damage for AgNO3 followed by stabilization, whereas for AgNP LPO occurred after 7 

d, MT increased only in organisms exposed to Ag NPs. The present can partly reflect a 

delay in effects of AgNP compared to AgNO3 due to the slower release of Ag+ ions from 
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the Ag particles, i.e., AgNP acts as a continuous source of Ag+ to the soil pore-water 

although this possible dissolution is still unclear. 
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ABSTRACT 

 

Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. 

Since adopting the standard test for survival and reproduction, a number of additional 

tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a 

genotoxicity tool and endpoint have not been used; hence, the goals of the present study 

included optimization of the in vivo alkaline comet assay in Enchytraeus crypticus. 

Further, the effect of silver nanomaterial (Ag NM300K, dispersed, 15 nm) was tested and 

compared with silver nitrate. Hydrogen peroxide was used as a positive control. The 

various steps were optimized. The fully detailed standard operating procedure is 

presented. Silver materials caused genotoxicity, this being differentiated for the nano and 

non-nano forms. Silver nitrate caused genotoxicity after 3 d of exposure in a dose-related 

manner, although after 7 d the effects were either reduced or repaired. Ag NM300K 

caused higher genotoxicity after 7 d for the lowest concentration, highlighting a potential 

nonmonotonic dose–response effect. Overall, the comet assay showed the power to 

discriminate effects between materials and also toxicity at low relevant doses. 

 

Keywords: single cell gel electrophoresis (SCGE); genetic damage indicator (GDI); 

metallic nanoparticle; soil invertebrate 

 

INTRODUCTION 

 

Injuries to DNA can be caused either by direct interaction of the toxicant and/or its 

metabolites with the DNA or by secondary interaction (e.g., toxicant-induced reactive 

oxygen species [ROS] generation leading to DNA adducts) (Ahmad et al., 2006; 

Kermanizadeh et al., 2015). Such genotoxicity may be mitigated through an increase of 

DNA repair, antioxidant counteraction, and cell renewal (Kermanizadeh et al., 2015). 

Although genotoxicity has been reported for various biota (Fontanetti et al., 2011) on 

exposure to contaminants, it has not been described in enchytraeids. Enchytraeids 

represent many key species for soil ecosystems, which is also why some of these species 

are used as standard organisms in soil toxicology. For these organisms, a wide range of 

tools is available at the organism level, for example, the reproduction test and the full–life 

cycle test, including endpoints like hatching and growth (Bicho et al., 2016; Castro-

Ferreira et al., 2012; Gomes et al., 2013). Moreover, biochemical/molecular level tools 

that describe the mechanism of toxicity are also available, including endpoints like cellular 
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energy allocation (Gomes et al., 2015c), oxidative stress (Ribeiro et al., 2015), and 

transcriptomics (Castro-Ferreira et al., 2014; Gomes et al., 2013). Hence, the addition of a 

genotoxicity tool (such as the comet assay) will be valuable for a better understanding of 

the mechanisms of toxicity, from starting events to later full-organism effects, through 

adverse outcome pathways. 

 

Genotoxicity evaluation via the comet assay was described in a range of other terrestrial 

invertebrates, including nematodes and earthworms. For the earthworm Eisenia fetida 

these studies include genotoxicity caused, for example, by metals (e.g., Lourenço et al. 

(2011)). A few soil animal studies have dealt with the genotoxic effects of nanomaterials, 

like (in vitro and in vivo) studies with E. fetida exposed to TiO2 (Hu et al., 2010), ZnO 

(Gupta et al., 2014; Hu et al., 2010), and CdSe/ZnS quantum dots (Saez et al., 2015) as 

well as in vitro studies on the nematode Caenorhabditis elegans exposed to silver (Ag) 

(Chatterjee et al., 2014b, 2014a; Hunt et al., 2013). 

 

In the present study we aimed to implement, optimize, and use the comet assay in 

Enchytraeus crypticus. For the assay we used Ag exposure because it is well known to 

cause DNA damage (Asharani et al., 2009b). We compared the comet induction between 

free Ag (following exposure to an Ag salt) to that of an Ag-based nanomaterial (Ag 

NM300K, a referential type nanomaterial from the Joint Research Centre). We have 

ample additional experience with the effects of Ag nanomaterial in enchytraeids, namely 

transcriptomics (Gomes et al., 2017), cellular energy allocation (Gomes et al., 2015), and 

oxidative stress (Ribeiro et al., 2015). 

 

Enchytraeus crypticus were exposed for a range of days (0, 3, and 7 d, based on previous 

cell studies (Ribeiro et al., 2015)) using the same reproduction effect concentrations (ECs) 

for silver nitrate (AgNO3) and Ag NM300K (i.e., 20, 50, and 80% reproduction ECs [EC20, 

EC50, EC80, respectively]) (Bicho et al., 2016). The hypotheses tested were as follows: 1) 

Ag materials cause genotoxicity in the tested sublethal range, and 2) an exposure time of 

3 to 7 d is sufficient to assess the comet effects. 
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MATERIALS AND METHODS 

 

Test organisms 

 

The test species E. crypticus (Oligochaeta: Enchytraeidae) was used. Cultures were kept 

in agar plates, consisting of Bacti-Agar medium (Oxoid; Agar No. 1) and a sterilized 

mixture of 4 different salt solutions at final concentrations of 2 mM CaCl2 · 2H2O, 1 mM 

MgSO4, 0.08 mM KCl, and 0.75 mM NaHCO3. Organisms were fed ad libitum with ground 

autoclaved oatmeal twice per week and maintained in the laboratory under controlled 

conditions (at 19 °C and a 16:8-h light:dark photoperiod). Adults with visible clitellum and 

similar size were selected for the experiments. 

 

Test soil 

 

Standard LUFA 2.2 natural soil (Speyer) was used. The main characteristics can be 

described as follows: pH (0.01 M CaCl2) 5.5, organic matter = 1.77%, cation exchange 

capacity = 10.1 meq/100 g, maximum water holding capacity = 41.8 %, and grain size 

distribution of 7.3% clay (<0.002 mm), 13.8% silt (0.002–0.05 mm), and 78.9% sand 

(0.05–2.0 mm). 

 

Test materials and spiking 

 

The reference Ag nanomaterial (Ag NM300K) and AgNO3 (>99% purity; Sigma-Aldrich) 

were used. The Ag NM300K, from the European Commission Joint Research Centre, was 

fully characterized (Klein et al., 2011). In short, Ag NM300K particles were spherical and 

consisted of a colloidal dispersion with a nominal Ag content of 10.2% w/w, dispersed in 

4% w/w of polyoxyethylene glycerol trioleate and polyoxyethylene (20) sorbitan 

monolaurate (Tween 20), having >99% of particles with a nominal size of approximately 

15 nm, with no coating. Transmission electron microscopy (TEM) indicated a size of 

17 ± 8 nm. Smaller nanoparticles of approximately 5 nm were also present. The dispersant 

(as dispersant control) was also tested alone. 

 

Test concentrations were selected based on the reproduction ECx values, as summarized 

in Table 1. Test chemicals were spiked onto premoistened soil as aqueous solution. Stock 

aqueous solution was prepared and serially diluted. For AgNO3 soil batches per 
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concentration were homogeneously mixed and divided over replicates. Spiking of Ag 

NM300K was done per individual replicate. The dispersant control was made by adding 

the same volume of dispersant to soil as used with the highest concentration of Ag 

NM300K. Soil was allowed to equilibrate for 3 d prior to test start. Soil moisture content 

was adjusted to 50% of the maximum water holding capacity. 

 

Table 1: Selected test concentrations (milligrams of Ag per kilogram dry wt of soil LUFA 

2.2)a 

Test materials EC20 EC50 EC80 

AgNO3 45 60 96 

Ag NM300K 60 170 225 

 
a Effect concentrations for Enchytraeus crypticus exposure based on Bicho et al., (2016).  

EC20, EC50 and EC80 = effect concentration reduced E. crypticus reproductive output by 

20, 50 and 80 %, respectively, within 95 % confidence intervals. 

 

Test procedures 

 

Pretest optimization steps. Five aspects were considered for the optimization process: 1) 

number of test organisms tested in pools of 20 and 40, 3 replicates performed; 2) 

disaggregation methods, enchytraeids were disaggregated using either scissor or the 

Ultra-Turrax device (Ystral; model X-1020); 3) matrix fractionation method, the cellular 

suspension was dispersed by applying the “gravity” method, centrifugation (150 g for 

4 min, 4 °C) keeping the supernatant, or the pellet (“gravity” term means waiting for 10 s 

after chopping for settling of big fragments in the microtube); 4) in vitro positive control, 

hydrogen peroxide (H2O2) 75 µM (15 and 30 min of exposure) was used to test the 

suitability as positive control genotoxicity in E. crypticus cellular suspension; and 5) effect 

of soil particles, sampling the enchytraeids from the test vessels (with soil) was done 

including washing 5 times with cold distilled water with maintenance for 20–30 min on ice 

and directly from the soil without washing, prior transference to cold phosphate-buffered 

saline (PBS). Details can be found in the Supporting Information as standard operating 

procedure. 
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The comet assay was performed according to Collins (2004) and Guilherme et al. (2010). 

At this point (i.e., after having the data from the pretest optimization), it was decided that 

the best experimental approach was to find at least 100 nonoverlapping nucleoids per gel. 

 

To ensure cell viability, as needed to proceed for comet analysis, we followed Collins's 

(2004) recommendation, in which the control cells must present comets with a 

background (low) level of breaks (i.e., mostly class 0, or ∼ 10% of DNA in the tail). 

Although not used in the present study, the trypan blue test can check cell viability. Cells 

with permeable/damaged membranes, which are considered trypan blue test–positive, 

may recover and survive, being in fact false trypan blue test–positive (Collins, 2004) and 

hence not recommended. 

 

In vivo exposure. The procedures followed the standard guidelines (ISO, 2014; OECD, 

2004a) with adaptations. In short, 40 adult enchytraeids collected from cultures were 

selected and introduced in each test vessel containing 20 g of moist soil and food supply. 

Tests were performed at 19 ± 1 °C (standard error [SE]; n = 7) and a 16:8-h light:dark 

photoperiod. Four replicates per treatment were used. Sampling was done at days 0, 3, 

and 7. Enchytraeids were carefully collected from the soil, rinsed (5 times) in a Petri dish 

with cold deionized water, maintained for 20 to 30 min, and transferred to 200 µL of cold 

PBS (on ice). Afterward, enchytraeids were chopped (scissors), 10 to 15 times; 

resuspended once in PBS; and left (10 s) for the larger fragments to deposit/settle in the 

microtube. Cellular suspension preparation and the next procedure (comet assay) were 

performed under dimmed light condition to prevent additional DNA damage. 

 

Genotoxicity evaluation—Comet assay. An alkaline version of the comet assay was used 

(Collins, 2004; Guilherme et al., 2010) with minor modifications, allowing the separation of 

strand breaks (single-strand and double-strand breaks of the supercoiled DNA) to migrate 

out of the nucleus during electrophoresis. Briefly, 40 µL of cold cell suspension was mixed 

with 140 µL of 1% low–melting point agarose at 37 °C. The final low–melting point agarose 

content was 0.6%. Immediately, 2 gel replicates of 70 µL each were placed on one glass 

microscope slide precoated with 1% normal–melting point agarose. Slides used as in vitro 

positive controls (organisms from culture) were made with H2O2 75 µM. Then, slides were 

immersed in a lysis solution, placed in a tank with electrophoresis buffer for alkaline 

treatment (20 min), neutralized (using PBS), and washed (using distillate water). After air-

drying, gels were stained for further visualization. Lastly, one slide with 2 replicate gels 
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(100 nucleoids/gel were scored) was observed for each pool (4 biological 

replicates/condition). The detailed standard operating procedure is included as Supporting 

Information. 

 

Data analysis 

 

A visual classification of nucleoids was performed to evaluate the DNA damage 

considering 5 comet classes, according to the tail intensity and length, from 0 (no tail) to 4 

(almost all DNA in tail) (Collins, 2004) (Figure 1). The total score expressed as a genetic 

damage indicator was calculated multiplying the mean percentage of nucleoids in each 

class by the corresponding factor as follows: 

 

Genetic damage indicator (arbitrary units) = (%nucleoids class 0 x 0) + (%nucleoids class 

1) + (%nucleoids class 2 x 2) + (%nucleoids class 3 x 3) + (%nucleoids class 4 x 4)  

 

 

 

Figure 1: The DNA damage classes from Enchytraeus crypticus nucleoids (x400 

magnification): (a) class 0, no damage; (b) class 1; (c) class 2; (d) class 3; and (e) class 4. 

 

Results were expressed as arbitrary units because they can be associated with the 

relative tail intensity that is a function of break frequency, on a scale of 0 to 400 per 100 

scored nucleoids (as average value for the 2 gels observed per pool). Besides the genetic 

damage indicator, the frequency of nucleoids observed in each comet class was 

expressed (Azqueta et al., 2009), and the subtotal frequency of nucleoids with medium 

(class 2), high (class 3), and complete (class 4) damaged DNA was also calculated 

(2 + 3 + 4) (Çavaş and Könen, 2007; Palus et al., 1999). 

 

Statistical analysis used SigmaPlot Ver 11.0 software. Data were tested for normality and 

homogeneity of variance using the Kolmogorov-Smirnov and the Levene tests, 

respectively. One-way analysis of variance followed by Dunnett's post hoc test (p < 0.05) 

was used to compare the treatments (Ag NM300K and AgNO3) with the controls (control 
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or dispersant), within the same exposure period. To compare different concentrations 

(EC20, EC50, and EC80) within the same exposure duration, Tukey's test was used. 

 

RESULTS AND DISCUSSION 

 

Optimization 

 

Results from the tested enchytraeid cell extraction methods are reported in Table 2. 

These data are related to the first 3 points that were considered for the pretest 

optimization process (number, disaggregation, and matrix fractionation methods). 

 

Table 2: Nucleoids number during the optimization procedure a 

 No. 

organisms 

Ultra-Turrax b,d Scissor c,d 

i. 1
st
 Sp e ii. 2

nd
  Sp f iii. Pellet g i. 1

st
 Sp e ii. 2

nd
  Sp f iii. Pellet g 

20 0.0±0.0 0.0±0.0 0.0±0.0 64±36.9 2±0.9 83±47.8 

40 0.3±0.19 0.0±0.0 0.0±0.0 216±124.7 11±6.3 277±159.9 

a Optimizing process in whole Enchytraeus crypticus. 
b Disaggregated method: ultra-turrax. 

c Disaggregated method : scissor. 

d Values are expressed as average ± standard error (SE) [n=3 slides, two gels/pool/slide]. 

e, f, g Fractions:  i. 1st Sp- first supernatant (by gravity) e, ii. 2nd Sp- second supernatant (by 

centrifugation) f and iii. Pellet (at 150 g, 4 min at 4 ºC) g. 

No.= number. 

 

All cell categories were present in the suspension because whole organisms were used 

for extraction. Hence, the selected method required a pool of 40 organisms cut by scissor, 

where nucleoids were visible and in sufficient number. Moreover, the design fits well in 

studies on biochemical effects using E. crypticus (Ribeiro et al., 2015), where 40 

organisms provided sufficient levels of total protein for oxidative stress measurements. 

 

The Ultra-Turrax method caused more cell injuries than scissors and exposed the nuclear 

material to the endonuclease action. This resulted in deteriorated DNA during the 

fragmentation process, explaining the absence of nucleoids (Table 2). Thus, the scissor 

method was preferred and caused less cell destruction (e.g., nuclear membrane 

disruption) before the lysis step. 
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More than 100 nucleoids, the required minimum number for the genetic damage indicator, 

were observed at the combinations using pools of 40 organisms, manually chopped with 

scissors. The cellular suspension was obtained by gravity and using the pellet (Table 2). 

Despite a high number (average of 216) of nucleoids, these were not densely packed in 

the gel (i.e., tails were not imbricated), allowing us to choose randomly nonoverlapping 

comets. On the contrary, the background noise observed in the pellet as colored granules 

and disrupted membranes did not allow the counting of nucleoids (although in a higher 

number). Indeed, a higher occurrence of orange ovoid structures was observed when 

compared with the first supernatant (Figure 2). These colored granules (orange) may be 

related to coelomocytes (Franchini and Marchetti, 2006), which appear in the coelomic 

cavity of E. crypticus (Hess, 1970; Schmelz et al., 2000). Also, the observed color 

suggested absorption of the dye ethidium bromide. Without the dye, using fresh cell 

suspensions (absence of low–melting point agarose), the cells (only eleocytes, 

granulocytes) were light green, which may be a result of the autofluorescence of internal 

granules (Cholewa et al., 2006). 

 

 

 

Figure 2: Visualization (x400 magnification) of colored granules (a) and comets (b, class 

2; c, class 4) from Enchytraeus crypticus agarose slides prepared by the pellet obtained 

using scissor as the disaggregation tool and by centrifuging at 1500 g for 4 min at 4 ºC as 

the matrix fractionation process. 
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In addition, the second supernatant had the lowest nucleoid number, probably because 

the cells in this fraction were settled in the pellet. 

 

Overall, based on the optimization process, fresh cell preparations were made using a 

pool of 40 whole organisms chopped and the first supernatant. In the present study the 

achieved baselines, 152 arbitrary units (as genetic damage indicator) were in the same 

range as the ones found in the liver of Anguilla anguilla (Marques et al., 2014) using the 

same method (scissor). In addition, DNA damage in coelomocytes of E. fetida 

(control/unexposed) was found in the same range as in the present study (≈175 arbitrary 

units) (Lourenço et al., 2011). Also, according to Collins (2004), we saw that control cells 

presented comets with a background (low) level of breaks. 

 

As shown for controls, genetic damage indicator values were the same for organisms 

collected from culture (agar) plates and from test vessels with soil, 152 and 156 nucleoids 

respectively; hence, these matrix properties (agar vs soil) did not cause variation for DNA 

damage. 

 

Despite the occurrence of colored granules (dyed by ethidium bromide) in organisms from 

both agar and soil, ovoid structures resembling coccus were only found for soil (Figure 3). 

However, this aspect did not prevent the counting of nucleoids because sites where they 

occurred were ignored and only clear fields of “coccoid” structures were used (100 per 

gel).  

 

 

Figure 3: Visualization (x100 magnification) of background noise represented by the 

filamentous (a) or dispersed (b) structures (ovoid) from Enchytraeus crypticus agarose 

slides prepared by the scissor method and the first supernatant (by gravity).  

 

The genetic damage indicator values for H2O2 75 µM exposure (positive control) were 

significantly higher compared to 0 min (p < 0.05), confirming this concentration as an 

effective positive control for the comet assay. In addition, no differences were found 
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between 15 and 30 min of in vitro exposure (p > 0.05). This typical DNA damage–inducing 

agent has been applied as a positive control by several authors (Benhusein et al., 2010; 

Guilherme et al., 2012). Specifically, 75 µM H2O2 was reported in studies on 

coelomocytes, hemocytes, and cell lines (Cheung et al., 2006; Fuchs et al., 2011). The 

present data showed that using the present positive control, the DNA damage ranged 

from 150 (± 90; SE) genetic damage indicator at time 0 (not exposed) to 281 (± 162; SE), 

and 258 (± 149; SE) genetic damage indicators at 15 and 30 min, respectively (p < 0.05 vs 

time 0) for 3 replicates/condition. However, a study using HepG2 cells (Benhusein et al., 

2010) reported an increase in DNA damage with increasing time of incubation, 5 and 

60 min to H2O2 75 µM. Moreover, higher H2O2 concentrations (0.01–0.05–0.1–0.5–1 mM) 

compared to 75 µM were not lethal in thyroid cells (Driessens et al., 2009). A study with 

extruded coelomocytes of E. fetida also used H2O2 as a positive control for DNA 

fragmentation (e.g., H2O2 200 µM, 60 min) (Lourenço et al., 2011). 

 

Genotoxicity evaluation—Comet assay 

 

Exposure of E. crypticus to the selected ECs caused no mortality (survival ≥98%) 

regardless of the period (3 or 7 d). 

 

 

Figure 4: The DNA damage measured as genetic damage indicator (arbitrary units) after 

standard (alkaline) comet assay (average_standard error) in whole Enchytraeus crypticus 

exposed to AgNO3 (A) and Ag NM300K (B), (EC20, EC50, and EC80) for 0, 3, and 7 d. 

Statistically different (p<0.05): (a) versus control or dispersant control within the same 

exposure duration; (A) versus same treated group along time exposures. a.u. = arbitrary 
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units; CT = control; D = dispersant control; ECx = x% effect concentration; GDI = genetic 

damage indicator. 

 

Results regarding AgNO3 and Ag NM300K genotoxicity can be seen in Figure 4. Control 

and dispersant control did not differ (p > 0.05). Thus, further comparisons were done 

versus control. Control values were stable along the entire test duration (Figure 4A,B). 

The genotoxic potential of AgNO3 (Figure 4A) was shown after 3 d as observed by an 

increase in DNA damage for the EC50 and EC80. After 7 d, there was a decrease, and 

only EC50 was still high, although also reduced, compared to 3 d (p < 0.05; Figure 4A). 

Moreover, an early DNA damage (2 + 3 + 4) increment was observed for both EC50 and 

EC80 of AgNO3 (Figure 5A). Particularly, on day 3, the most frequent class of damage for 

EC50 and EC80 was 2 and 4, respectively. The highest degree of nucleoid damage (as 

enlarged comet tail) for the highest EC (Figure 5A) was shown, although both ECs caused 

a similar intensity in DNA damage (as genetic damage indicator values; Figure 4A). At the 

end of exposure (7 d), a reduction in damage may be seen through the most frequent type 

of nucleoid damage, that is, class 1, concomitantly with a decrease in genetic damage 

indicator values for EC50 and EC80 (Figure 4A). In particular, the predominant classes of 

damage frequency were classes 1 for EC20, 2 for EC50, and 1 and 4 for EC80 after 3-d 

exposure (Figure 5A). Hence, the observed time-related reduction of DNA damage in 

AgNO3 EC80 (7 d; i.e., class 1 is predominant) suggests the occurrence of DNA repair 

and/or catabolism of damaged cells. 

Exposure to Ag NM300K caused a genotoxic effect only after 7 d for the EC20 and EC50 

(Figure 4A). Moreover, DNA damage was the highest for the EC20 exposure compared 

with EC50 and EC80. The present data suggest the possibility of early activation of 

detoxifying mechanisms in the organisms exposed to higher doses. In particular, it is 

known from a previous study (Ribeiro et al., 2015) with the same nanomaterials that 

metallothionein levels were increased in E. crypticus exposed to EC80 (7 d). Besides, 

there was a generally higher antioxidant enzymatic response to higher ECs (EC50 and 

EC80, 7 d) (Ribeiro et al., 2015). A similar relationship between concentration and 

damage was also reported by Asharani et al. (2008) in embryos of zebrafish (Danio rerio) 

where apoptosis and necrosis were associated with lower Ag nanomaterial concentration. 

Conversely, there are also examples of increasing damage with increasing Ag 

nanomaterial as observed either in Lumbricus terrestris (as apoptosis) (Lapied et al., 

2010) or in Nereis diversicolor (as tail moment and intensities) (Cong et al., 2014, 2011). 
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In these specific cases, the Ag nanomaterial properties (e.g., size, morphology, coatings) 

and the biological entities may be the source of varying results. 
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Figure 5: Mean frequencies of each DNA damage class and subtotal of damaged 

nucleoids, measured by comet assay in whole Enchytraeus crypticus exposed to AgNO3 

(A) and Ag NM300K (B), (EC20, EC50, and EC80), dispersant control, and deionized 

water (control) for 3 and 7 d (bars with dashed lines). Statistically different (p<0.05) versus 

control within the same exposure duration. P = predominant class for genotoxicity; CT = 

control (CT0 = organisms from agar culture); D = dispersant control; ECx = x% effect 

concentration. 

 

As shown in Figure 5B, nucleoids from class 1 were the most represented (i.e., 

predominant) in each Ag NM300K group (EC20, EC50, and EC80) for 3- and 7-d 

exposure. Regarding the frequency of individual classes of DNA damage, only after 7 d 

did they significantly change. Thus, class 1 decreased (p < 0.05) in EC50 and EC80, 

whereas an increase (p < 0.05) in the frequencies of classes 2 and 3 was observed in 

EC50. Furthermore, for EC20, class 3 and 4 frequencies were also augmented (p < 0.05), 

suggesting some repair capacity patent in the EC50 and EC80 exposures (based on 

classes of damage analysis). Despite the differences in damage classes of both ECs (20 

and 50), their subtotal values were higher (p < 0.05; Figure 5B). 

Differences of genotoxicity between Ag materials are likely related to either a higher 

dissolution rate of salt (compared with nanomaterial) or a lower bioavailability of 

agglomerated nanomaterial, at higher concentrations. As shown in Bicho et al. (2016), 
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there was a nonmonotonic dose response for Ag NM300K, with a much higher effect 

caused at 20 mg/kg. This is corroborated in the present results (7 d). 

Overall, genotoxicity effects of Ag nanomaterial and Ag salt have been reported in aquatic 

invertebrates (Cong et al., 2014, 2011; Park and Choi, 2010), vertebrate embryos 

(Asharani et al., 2008; Bar‐Ilan et al., 2009), and cell lines (Asharani et al., 2009a, 2009b; 

Lim et al., 2012; Park et al., 2011), being absent for soil invertebrates. These studies 

reported that DNA damage potency variations may depend on the organism, physical and 

chemical Ag nanomaterial properties, doses, and time/route of exposures. Cong et al. 

(2014, 2011) showed increased genotoxicity with increased Ag salt and Ag nanomaterial 

concentrations for N. diversicolor coelomocytes, where Ag nanomaterial had the higher 

genotoxic effect. On the other hand, Asharani et al. (2008, 2009a) showed that Ag 

nanomaterial internalization in the mitochondria and nucleus may lead to ROS generation 

(by mitochondrial chain disruption) and, consequently, DNA damage. 

A previous study with E. crypticus (Ribeiro et al., 2015) showed lipid peroxidation after 7-d 

exposure to Ag NM300K (EC20), whereas this response occurred earlier for AgNO3 

(EC50) after 3 d. Thus, Ag+ can induce oxidative stress (Asharani et al., 2009a, 2009b) 

via the interaction with sulfhydryl groups of enzymes, and probably these ions can interact 

with DNA by either covalent binding to DNA [(Hossain and Huq, 2002) or cell division and 

DNA synthesis inhibition (Hidalgo and Domınguez, 1998; Singh et al., 2009) causing 

damage. 

 

CONCLUSIONS 

 

An in vivo comet assay was optimized and tested in E. crypticus for the first time. A 

genotoxic effect was confirmed for Ag materials, being different for the nano and non-

nano forms. Genotoxicity was caused by AgNO3 after 3 d of exposure for the EC50 and 

EC80 levels (after 7 d, effects were repaired), whereas effects of Ag NM300K were 

apparent after 7 d for the EC20. In summary, the comet assay demonstrated different 

genotoxicity for ECs below those showing effects on E. crypticus reproduction, namely the 

EC50 (AgNO3) and EC20 (Ag NM300K). 

 

SUPPORTING INFORMATION 

 

The supporting information are available on the Wiley Online Library at DOI: 3944. 
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SUPPORTING INFORMATION 

 

 

Standard operating procedure (SOP) 

 

- Comet assay for Enchytraeus crypticus: endpoint genotoxicity.  

 

MATERIALS 

 

1. Preparation of solutions 

 

• Phosphate-buffered saline – PBS 1X, pH 7.4: Sodium chloride (NaCl) 0.137M, 

Potassium chloride (KCl) 0.0027 M, di-Sodium hydrogen phosphate (Na2HPO4) 10 

mM, Potassium dihydrogen phosphate (KH2PO4) 1.8 mM in ultra-pure (u. p) water. 

Adjust pH at 7.4. Keep solution at 4 ºC for one month. 

• Lysis solution (base solution), pH 10:  Sodium chloride (NaCl) 2.5M, 

ethylenediaminetetraacetic acid (EDTA) 0.1 M and 

tris(hydroxymethyl)aminomethane (Tris) 10 mM. Adjust pH at 10. Keep at 4 ºC 

protected from light for one month.  

• Lysis solution (fresh solution), pH >13: 20 mL Dimethylsulfoxide (DMSO), 2 mL 

Triton – X100 and 180 mL lysis solution (base solution). Keep at 4 ºC protected 

from the light.  

�NOTE Prepare on the experiment day. 

• Denaturation and electrophoresis solution: Sodium hydroxide (NaOH) 8M and 

EDTA 0.1 M in cold ultra-pure (u.p.) water. Keep at 4ºC protected from light.  

�NOTE Prepare on the experiment day. 

• Normal melting point agarose (NMPA) 1 %: Solution for slide pre-coating. Dissolve 

in u.p. water at 80 ºC. Let it to cold (65-70 ºC) and immediately spread into slides 

(frosted-end microscope slides) and dry-air during 12 h.  

�NOTE Slides can be prepared and stored with desiccant. 

• Low melting point agarose (LMPA) 1 %: Solution for slide coating.  

Dissolve in u.p. water at 80 ºC. Distribute aliquots of 750 µL into microtubes. Keep 

at 4 ºC protected from the light.  

�NOTE: LMPA can be prepared and stored at 4 ºC. 
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• Ethidium bromide: EtBr 10 mg/ mL (stock solution) (in u.p. water). Keep at 4 ºC 

protected from the light. Diluted (1: 500) in order to get 20 µg / mL at the moment 

of slide staining.  

�CAUTION EtBr is carcinogenic! 

�NOTE Stock solution can be prepared and stored at 4 ºC. 

 Hydrogen peroxide (H2O2) 75 µM in PBS 1X.  

�NOTE Prepared on the experiment day. 

 

2. Equipment 

• Disposable plastic microtubes (1.5 mL). 

• Thermo-block (dry bath) for melting agarose at 90 °C and maintaining agarose at 

37 °C. 

• Frosted-end microscope slides (25 mm × 75 mm).  

• Glass coverslips (18 mm x 18 mm).  

• Covered glass containers for slide lysis and wash. 

• Covered plastic container for slide storage. 

• Horizontal gel electrophoresis chamber and power supply. 

• Epifluorescence microscope with 25× objective and filter set for blue-green 

excitation if using ethidium bromide to stain DNA [excitation (absorption) at 482 nm 

and emission at 616 nm (red-orange)]. 

 

 

PROCEDURE 

1. Sample preparation 

 

I. Collect live and intact Enchytraeus crypticus organisms (pool of 40) from the 

exposure in soil (ISO, 2014; OECD, 2016)] and wash five times with cold 

deionised water. Leave them at deionised water for 20 to 30 min.  

�NOTE Enchytraeids collection must be performed gently to ensure the well-

being of organisms and the washing step is important to remove attached soil 

particles and other. 

II. Place the pool into a microtube with 200 µL cold PBS 1X (on ice) and chop with a 

scissor 10 to 15 times, re-suspending once with a micropipette and leave 10 s for 

the larger fragments to deposit/settle in the microtube.  
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�NOTE This cell suspension must be maintained on ice until its use in the comet 

assay. These steps and the next (comet assay) must be performed under dimmed 

light condition to prevent additional DNA damage.  

 

2. Comet assay 

 

III.  Collect 40 µL of cold cell suspension mixing with 140 µL of 1% LMPA at 37 ºC.  

�NOTE Few seconds prior the collection of the 40 µL, do the resuspension (1 

time) again, wait 10 s and collect an aliquot of cell suspension. The microtube 

containing LMPA must be on thermo-block (37 ºC). LMP temperature is very 

important, since an elevation of one more degree can directly damage the cells.  

IV. Proceed immediately, in order to avoid agarose solidification, placing two gel 

replicates of 70 µL each on one glass microscope slide pre-coated with 1 % 

NMPA. A glass coverslip is placed on each gel, and slides were kept in the fridge 

at 4 ºC (5 min).  

V. At this stage, slides to use as in vitro positive controls can be made. Cellular 

suspension is obtained from control group and prepared in accordance of previous 

point (2. III and IV). After this, add 25 µL H2O2 75 µM, place the glass coverslip 

and expose for 15 min at 4 ºC.  

�NOTE Control slides (as negative control) are also made in a similar way, but 

without the addition of the pro-oxidant (H2O2). 

VI. Remove the coverslip (gently) and immerse slides in cold freshly prepared lysis 

solution at 4 °C, for 1 up to 24 h.  

VII. Immerse slides in an electrophoresis tank in a proper cold and new 

electrophoresis buffer to alkaline treatment (20 min). Perform electrophoresis step 

using same buffer during 15 min at voltage of 25 V and a current of 300 mA.  

�NOTE The tank is placed on a tray containing ice to ensure cold temperature 

for suitable denaturation and electrophoresis processes. This process and next 

(e.g., slide staining and analyses) must occur at dimmed light condition. 

VIII. Neutralize slides in cold PBS 1X (10 min at 4 ºC) and wash with cold distillate 

water (10 min at 4 ºC).  

IX. Air-dry slides, place them in a vertical position (20 ± 1 ºC in dark, overnight). 

 

3. Slide staining 
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X. Stain gels adding 25 µL of EtBr (20 µg/mL) directly onto the slide, place a small 

glass cover for immediate visualization.  

�NOTE Slides maintain a good fluorescent image for at least 3 - 4 d when kept in 

dark conditions, 4 ºC and 40-50 % of humidity. 

 

4. Slide analysis 

 

XI. Observe one slide with two replicate gels (100 nucleoids / gel were scored) for 

each pool (e.g., 4 biological replicates / condition) through fluorescence 

microscope (×400 magnification).   

XII. Perform a visual classification of nucleoids to evaluate the DNA damage into five 

comet classes, according to the tail intensity and length, from 0 (no tail) to 4 

(almost all DNA in tail) (Figure 1) (Collins, 2004; García et al., 2004). 

 

 Fig. 1. Nucleoids classification:  a) class 0 (no damage); b) class 1; c) class 2, d) class 3 

and e) class 4 (Collins, 2004; García et al., 2004) (×400 magnification).  

 

 

REFERENCES  

 

Collins, A.R., 2004. The comet assay for DNA damage and repair. Mol. Biotechnol. 26, 

249. 

 

García, O., Mandina, T., Lamadrid, A.I., Diaz, A., Remigio, A., Gonzalez, Y., Piloto, J., 

Gonzalez, J.E., Alvarez, A., 2004. Sensitivity and variability of visual scoring in the comet 

assay: results of an inter-laboratory scoring exercise with the use of silver staining. Mutat. 

Res. Mol. Mech. Mutagen. 556, 25–34. 

 

ISO, I.O. for S.S.Q., 2014. Soil quality—Effects of contaminants on Enchytraeidae 

(Enchytraeus sp.)—Determination of effects on reproduction. ISO 16387. 

 



82 
 

OECD, 2016. Test No. 220: Enchytraeid Reproduction Test / Organisation for Economic 

Co-operation and Development, OECD Guidelines for the Testing of Chemicals, Section 

2,. Paris: OECD Publishing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

 

 

 

 

 

 

 

 

 

CHAPTER III 

 

Fate and effect of nano tungsten carbide cobalt (WCCo) in the soil 

environment: observing a nanoparticle specific toxicity in Enchytraeus 

crypticus  

 

Maria J. Ribeiro1, Vera L. Maria 1, Amadeu M.V.M. Soares1, Janeck J. Scott-Fordsmand2 

and Mónica J.B. Amorim1 

 

1Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of 

Aveiro, 3810-193 Aveiro, 

Portugal 2 Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, 

Denmark. 

 

 

Published in Environmental Science and Technology 52 (19) (2018) 11394-11401. 

DOI: 10.1021/acs.est.8b02537 

 

 

 

 

 

 

 

 

 



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

ABSTRACT 

 

Tungsten carbide cobalt (WCCo) nanoparticles (NPs) are widely used in hard metal 

industries. Pulmonary diseases and risk of cancer are associated with occupational 

exposure, but knowledge about the environmental fate and effects is virtually absent. In 

this study, the fate and effects of crystalline WCCo NPs, WC, and Co2+ were assessed in 

the soil model Enchytraeus crypticus, following the standard Enchytraeid Reproduction 

Test (ERT). An additional 28 day exposure period compared to the ERT (i.e., a total of 56 

days) was performed to assess longer-term effects. WCCo NPs affected reproduction at a 

concentration higher than the corresponding Co based (EC50 = 1500 mg WCCo/kg, 

equivalent to 128 mg Co/kg). WC showed no negative effect up to 1000 mg W/kg. 

Maximum uptake of Co was 10-fold higher for CoCl2 compared to WCCo exposed 

organisms. Overall toxicity seems to be due to a combined effect between WC and Co. 

This is supported by the soil bioavailable fraction and biological tissue measurements. 

Last, results highlight the need to consider longer exposure period of NPs for comparable 

methods standardized for conventional chemicals. 

 

Keywords: Nanotoxicology; invertebrates; hard metals; long-term exposure; soil 
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INTRODUCTION 

 

Tungsten carbide cobalt (WCCo) is a hard composite metal which has mechanical 

properties of great interest to the mining and drilling industries (Prakash, 1995), among 

others. Its properties increase hardness, durability and wear resistance of materials, 

improving the lifetime of industrial machinery (Yao et al., 1998). During production and 

usage, release (e.g., aerosolization) of WCCo can result in high levels of tungsten carbide 

and cobalt of varying sizes in, for example, the production facilities (Day et al., 2009; 

Stefaniak et al., 2009) and the surrounding areas due to emission (Abraham and Hunt, 

1995; Sheppard et al., 2007). WCCo containing products may also, due to general 

decomposition (e.g., wear and tear), release particles into the environment. 

It is known that WCCo can be toxic, for example, WCCo occupational exposure has been 

associated with pulmonary toxicity and increased risk of cancer, being classified as 

“probably carcinogenic to humans” (group 2A) by the International Agency for Research 

on Cancer (IARC) (IARC, 2006). General toxicity of WCCo particles is attributed to 

production of activated oxygen species (AOS) due to oxidation of cobalt (Co) catalyzed at 

the surface of tungsten carbide (WC) (Lison et al., 1995), which can damage proteins, 

lipids and DNA in the cell. 

As the name indicates, the technically important part of WCCo particles is the W 

(tungsten) in the form of WC (tungsten carbide) and Co (cobalt) content. 

Ecotoxicological studies showed that W is toxic to fish (Strigul et al., 2010), plants 

(Adamakis et al., 2011; Kennedy et al., 2012), soil invertebrates, (Eisenia fetida (Inouye et 

al., 2006; Strigul et al., 2009), Otala lacteal (Kennedy et al., 2012)) and marine 

invertebrates (Daphnia magna (Strigul et al., 2009)). The mechanism of action is still 

unclear but it has been proposed that, even though W is not carcinogenic per se, it is able 

to potentiate tumorigenic effects of other compounds by disrupting phosphate-dependent 

cell signaling pathways (Johnson et al., 2010). Also W in the form of WC was found to 

negatively affect cell viability (Kühnel et al., 2009), interfere with voltage gated sodium 

channels in neurons (Shan et al., 2013, 2012), induce apoptosis (Lombaert et al., 2004) 

and inflammation (Huaux et al., 1995). Conversely, some studies revealed absent or mild 

toxicity of W or WC compounds, being difficult to establish an accurate toxicological 

profile. For instance, no impact on different cell lines’ viability was found by Bastian et al. 

(2009) with nano-WC or W (as Na2WO4.2H2O), whereas mild cytotoxicity was found with 

W exposure in rat liver cells (BRL 3A) (Hussain et al., 2005). In vivo instillation of µm-WC 
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had no effect on the production of the inflammatory mediators (Huaux et al., 1995), nor on 

the acute pulmonary responses of rats (Lasfargues et al., 1992). 

Cobalt (Co) is an essential component of the vitamin B12 necessary in biological 

processes such as DNA synthesis (Schrauzer, 1968; Stutzenberger, 1974). However, 

mammalian models show that when in excess, Co induces oxidative stress (Moorhouse et 

al., 1985; Zou et al., 2001), genotoxicity (Anard et al., 1997), inhibition of the DNA repair 

system (Hartwig et al., 1991), apoptosis (Zou et al., 2001) and upregulation of hypoxia-

inducible factor HIF-1α (Yuan et al., 2003). 

Besides the fact that WC and Co are able to cause toxicity on their own, it is reported that, 

when combined, toxicity is potentiated (Busch et al., 2010; Kühnel et al., 2009; Lombaert 

et al., 2013). Studies with WCCo (Lison and Lauwerys, 1992) and WCCo nanoparticles 

(NPs) (Bastian et al., 2009) showed that the increased toxicity of WCCo could not be 

explained by available Co present in WCCo, since the particle led to a markedly higher 

toxicity than observed with a combined WC and Co2+ exposure. Further, Busch et al. 

(2010) studied the expression profile of human keratinocytes exposed to WCCo NPs, WC 

and Co, and found no differences in transcription, indicating combinatory effects of WC 

and Co. Studies on the mammalian toxicity of WCCo NPs are scarce and mostly focused 

in in vitro models, and they are virtually absent for environmental species. In cell lines, 

cytotoxicity was observed with WCCo NP concentrations from 8 µg/mL (Bastian et al., 

2009) with the occurrence of apoptosis at higher concentrations, such as 1000 µg/mL 

(Armstead et al., 2014) or 40 – 100 µg/cm2 (Zhao et al., 2013). Lower (sub-lethal) 

concentrations were observed to cause increased inflammation (1 – 100 µg/mL (Armstead 

and Li, 2016), and genotoxicity (60 - 120 µg/mL, 5 – 75 µg/mL (Paget et al., 2015)). 

No acute local pulmonary and systemic inflammation in Sprague-Dawley rats was 

reported, after a 24-hour intra-tracheal instillation of 0-500 µg WCCo NP/rat (Armstead et 

al., 2015) . 

For Folsomia candida no effects were observed for WCCo NP in terms of survival or 

reproduction after 28 days of exposure up to 6400 mg WCCo/kg soil DW (Noordhoek et 

al., 2018) although the authors highlighted the importance of exploring longer exposure 

times. Implementation of long-term effect studies has been previously described as a 

major concern regarding the hazard assessment of NPs (Amorim et al., 2016; Baalousha 

et al., 2016), which is not covered by the current testing paradigm. 

Hence, the present study aimed to assess the effects of crystalline WCCo NPs in the 

environment, using the standard and ecologically relevant soil model Enchytraeus 

crypticus. The Co salt CoCl2 was also tested to infer about the effects that are due to the 
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Co fraction in WCCo, as well as WC alone. The survival and reproduction are determined 

after 28 days as in the standard guideline (OECD, 2004a) and an additional 28 days 

exposure period was tested to assess longer term effects in the population. 

 

MATERIALS AND METHODS 

 

Test organism 

 

The test species Enchytraeus crypticus (Oligochaeta: Enchytraeidae) was used. Cultures 

have been kept in agar plates for several years at the University of Aveiro. For details 

please see Bicho et al. (2015). Synchronized cultures were prepared, briefly, mature 

adults (well-developed clitellum) are transferred to fresh agar plates to lay cocoons, being 

removed after 2 days. Synchronized juveniles with 17-19 days old were used.  

 

Test soil 

 

The standard LUFA 2.2 natural soil (Speyer, Germany) was used. The main 

characteristics are: pH (0.01 M CaCl2) of 5.5, 1.78% organic matter, 10 mequiv/100 g 

CEC (cation exchange capacity), 43.3% WHC (water holding capacity), 7.9% clay, 16.3% 

silt, and 75.8% sand regarding grain size distribution. 

 

Test materials and spiking 

 

Nanostructured Tungsten Carbide Cobalt powder (WCCo NP), cobalt chloride 

(CoCl2.6H2O, 98% purity, Sigma-Aldrich) and Tungsten (IV) Carbide (WC, 2 µm powder, 

99% purity, Sigma-Aldrich) were used. Full characterisation was performed, for details see 

Table 1. 

For WCCo NPs, tested concentrations were 0−200−400−800−1200−1600 mg WCCo/kg 

soil dry weight (DW), and 0−48−96−192−240−288 mg Co/kg soil (DW) for CoCl2, selected 

to correspond to the equivalent concentration of Co in the WCCo NPs (according to 

producers’ MSDS). Quantification and revised information showed that WCCo has ca. 8% 

Co (and not 12%), hence 0−200−400−800−1200−1600 mg WCCo/kg soil DW 

corresponds to 0−17−33−66−100−133 mg Co/kg soil DW of the WCCo. For WC, tested 

concentrations were 0−30−100−300−1000 mg W/kg soil DW. 
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WCCo NPs and WC was directly mixed with the dried soil following the recommended for 

dry powder nondispersible nanomaterials (OECD, 2012). Moisture was adjusted to 50% of 

the maximum water holding capacity (maxWHC). The spiking of the soil was done per 

individual replicate to ensure total raw amounts per replicate. The test chemical CoCl2 was 

prepared as stock aqueous solution, serially diluted and spiked onto the premoistened 

soil. The total amount of soil per concentration were homogeneously mixed and split onto 

replicates. Soil equilibrated for 1 day prior test start for both materials. Soil was sampled 

to quantify Co at days 0, 1, 7, 14, 21, and 28 days and stored at −20 °C until further 

analysis. Additional time points for CoCl2 included 0.13 (8 h) and 3 days, due to the 

expected faster oxidation compared to the NPs. 

 

Test procedures 

 

The standard guideline (ISO, 2014; OECD, 2004a) was followed, with some adaptations 

as described in Bicho et al. (2015). Briefly, 10 synchronized age organisms were 

introduced in each test container (⌀4 cm) with 20 g of moist soil and food supply (24 ± 1 

mg, autoclaved rolled oats). Test ran during 28 days at 20 °C and 16:8h photoperiod. 

Food (12 ± 1 mg) and water were replenished every week. Four replicates per treatment 

were used, plus one without organisms for abiotic factors measurement (e.g., pH, 

materials characterization). At test end, to extract organisms from soil and counting, 

replicates were fixated with 96% ethanol and Bengal rose (1% solution in ethanol). 

Samples were sieved through three meshes (0.6, 0.2, 0.1 mm) to separate individuals 

from most of the soil and facilitate counting using a stereo microscope. End points 

included survival and reproduction (number of adults and juveniles, respectively). 

Additionally, 1 replicate was performed for control and higher concentrations (0−1600 mg 

WCCo/kg and 0−288 mg Co/kg, and for all concentrations of WC), to monitor days 7, 14, 

and 21. For the 56 days exposure, four extra replicates were done (0−1600 mg WCCo/kg 

and 0−192 mg Co/kg), and hence, larger test containers (⌀5.5 cm) were used with 40 g of 

soil per replicate because of the expected higher density of organisms. For these 

replicates, at day 28, adults were carefully removed from the soil, after which the soil was 

left, replenishing water and food weekly. Adult organisms were sampled for analysis of Co 

content after 28 days of exposure, being carefully retrieved from the soil, depurated in 

reconstituted ISO water (OECD, 2004b) (for 24 h), snap-frozen in liquid nitrogen and 

stored at −80 °C until further analysis. 

 



91 
 

Exposure characterization 

 

Materials were fully characterized as produced, for details see Table 1. Cobalt 

concentration in the experiment samples in soil, soil:water extracts, and organisms’ body 

was measured using Atomic Absorption Spectrometer (AAS, PerkinElmer 4100, 

Ueberlingen, Germany). The soil (1 g dry weight) was digested using 65% HNO3 and 

heated up to 120 °C until all brown fumes were gone (Scott-Fordsmand et al., 2000). 

The soil:water extract was the supernatant of a (1:5) soil:water solution, mixed for 5 min at 

250 rpm (lab shaker) and then let settle for 2 h. One mL of the solution was digested 

following the same procedure as used for soil. The exposed organisms were dried at 80 

°C and weighed. The digestion followed the same procedure. Before analysis, all samples 

were resuspended in 2% HNO3. A biological standard reference sample (standard lobster 

tissue TORT-1, Marine Analytical Chemistry Standards Program, Division of Chemistry, 

National Research Council Canada), and a soil standard reference sample (Loam soil 

C74−06, Laboratory of the Government Chemist, United Kingdom) were used. 

 

Data analysis  

 

One-way analysis of variance (ANOVA) followed by Dunnett’s comparison posthoc test (p 

< 0.05) was used to evaluate differences between effects in controls and treatments 

(SigmaPlot, 1997). Effect concentrations (ECx) were estimated modelling data to logistic 

or threshold sigmoid 2 parameters regression models, as indicated in Table 2, using the 

Toxicity Relationship Analysis Program (TRAP v1.22) software. 

 

RESULTS 

 

Exposure characterization 

 

Nanomaterials were fully characterized as synthesized using a suite if instruments (Table 

1). 

 

Table 1: Characterisation of WCCo NPs as synthesised. ICP-MS: Inductively Coupled 

Plasma Mass Spectrometry (Perkin Elmer NexION 300D; Perkin Elmer Optima 2100); 

TEM: Transmission Electron Microscope (FEI Tecnai 12 G2); XRD: X-ray Diffraction 

(Philips PW 1830); IEP: IsoElectric Point; DLS: Dynamic Light Scattering (Malvern Zsizer 
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Nano); BET: Brunauer−Emmett−Teller (Quantachrome Autosorb iQ); ELS: Electrophoretic 

Light Scattering (Malvern Zsizer Nano); FT-IR: Fourier- Transform Infrared Spectroscopy 

(Spectrum One Perkin Elmer (Waltham, MA, USA)); RAMAN (Xantus-1); XPS: Xray 

Photoelectron Spectroscopy (Perkin Elmer 5600ci). 

characteristics WCCo NP instrument 

Source NBM Nanomaterialia, Italy  

Composition (%) 

Tungsten carbide (WC<88% Wt.,  

CAS 12070-12-1) 

Cobalt (Co=8.32% Wt.,  

CAS 744-48-4) 

ICP - MS 

Primary Size distribution [nm] 

Average (Min‐Max) 

Mode [nm] (1stand 3rd quartile) 

170 (23-1446) 

 

48  (69; 280) 

TEM 

Crystalline size (Average) [nm] 15.4 XRD 

IEP <2 pH 

Dispersability in water: D50 

[nm];  

Average Agglomeration 

Number (AAN) 

182.8 ± 21.5;  

31 
DLS 

Specific Surface Area [m2.g-1] 6.6±0.4 BET 

Z-potential [mV] 7.1±0.5 ELS 

Structure O-W-O 

FTIR 

and/or 

RAMAN 

Pore size [nm] Non-porous BET 

Surface Chemistry  

[atomic fraction] 

Co=0.08±0.01 

W=0.05±0.01 

O=0.31±0.03 

C=0.56±0.05 

XPS 

 

 

Measurements of total Co after soil spiking showed a recovery of 67−115% Co for both 

CoCl2 and WCCo NP compared to the nominal concentrations. 
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The soil:water extracts−soil solution−measurements along the time series (Figure 1A) 

showed an increase of Co immediately after spiking and up to 7 days, after which it 

tended to decrease and stabilize. 

 

 

Figure 1: Total cobalt in soil solution, obtained from the enchytraeid reproduction test 

experiment performed in LUFA 2.2 soil spiked with CoCl2 and WCCo NP (mg Co/kg soil 

DW). A: as a function of time (sample days 0, 1, 7, 14, 21, and 28 days, with additional 

time points for CoCl2: 0.13 (8 h) and 3 days). B: as a function of concentrations 

0−48−96−192−240−288 mg Co/kg DW for CoCl2, and 0−17−33−66−100−133 mg Co/kg 

DW for WCCo NP. Values are expressed as average ± standard error (AV ± SE). 
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The results for CoCl2 (Figure 1B) indicated a dependence of the concentration, that is, 

there was relatively higher Co in solution in higher concentration, that is, more than the 

relative difference between concentrations. 

 

Biological characterisation 

 

Results of the Enchytraeid Reproduction Test (ERT) can be observed in Figure 2. 

 

 

Figure 2: Survival and reproduction of Enchytraeus crypticus exposed in LUFA 2.2 soil to 

Co (mg Co/kg soil DW of CoCl2), WC (mg W/kg soil DW) and WCCo NP (results 

expressed as mg Co/kg soil DW for comparability). Values are expressed as average ± 

standard error (AV ± SE). The lines represent the model fit to data. * p < 0.05, Dunnett’s 

test. 

 

The validity criteria were fulfilled according to the OECD 220 guideline (OECD, 2004a), 

that is, in control adults’ mortality was <20%, the number of juveniles was >50, and 

coefficient of variation <50%. For CoCl2, the pH decreased with concentration, from 6.4 to 

5.8 for 0- 288 mg CoCl2/kg soil DW respectively; for WCCo pH was ca. 5.5. pH variation 

between test start and test end was below ±0.5 for both materials. 

 

Exposure to CoCl2 showed a concentration-dependent response, with significant impact 

on both reproduction and survival. Exposure to WCCo NP caused no effect in survival and 

a significant decrease in reproduction with 1600 mg WCCo/kg (p < 0.05), this being ca. 

EC50. Considering that WCCo NP has 8.3% Co, the toxicity was higher if the 

corresponding Co content is compared, that is, if ECx would be estimated based on the 

Co in WCCo. Exposure to WC caused a positive effect with ca. 20% increase in 
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reproduction from 100 mg WC/kg soil DW. The Effect Concentration (ECx) estimates are 

presented in Table 2. 

 

Table 2. Summary of the effect concentrations (EC) for Enchytraeus crypticus when 

exposed to WCCo NPs and CoCl2 in LUFA 2.2 soil.a 

 

test material endpoint EC10 EC20 EC50 EC80 model and 

parameters 

CoCl2  

(mg Co/ 

kg soil DW) 

Survival 241  

(235-246)  

250  

(243-252) 

260  

(256-265) 

270  

(259-280) 

Thresh sig 2 par 

S: 0.0282;  

Y0: 9.9 

Reproduction 166  

(119-213) 

177  

(159-195) 

200  

(159-195) 

215 

(195-235) 

Log 2 par 

S: 0.0017;  

Y0: 737.4 

WC (mg 

W/kg soil 

DW) 

Survival n.e. n.e. n.e. n.e.  

 Reproduction n.e. n.e. n.e. n.e.  

WCCo NP 

(mg WCCo/ 

kg soil DW) 

Survival n.e. n.e. n.e. n.e.  

Reproduction 1200 

(863-1607) 

1300 

(1084-1609) 

1500  

(1412-1661) 

1700 

(1517-1936) 

Log 2 par  

S: 0.0023;  

Y0: 639.8 

WCCo NP 

(mg Co/ 

kg soil DW) 

Reproduction  104 

(70 – 139) 

113 

(89 – 137) 

128 

(117 – 139) 

143 

(124 – 162) 

Log 2 par  

S: 0.01;  

Y0: 668.7 

aResults show estimates for survival and reproduction, with the corresponding 95% 
confidence intervals (in brackets). Model and parameters include the values for slope (S) 
and interception (Y0). n.e.: no effect. 
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Internal measurements of Co in E. crypticus after exposure for 28 days (Figure 3) showed 

that the body concentration increased up to a maximum of ca. 600 µg/g body DW for 

exposure to 192 mg Co/kg soil DW of CoCl2, with higher variation here than for other 

concentrations. 
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Figure 3: Total cobalt in Enchytraeus crypticus, obtained from the enchytraeid 

reproduction test experiment performed in LUFA 2.2 soil spiked with (A) CoCl2 and (B) 

WCCo NP (mg Co/kg soil DW) after 28 days. Values are expressed as average ± 

standard error (AV ± SE). 

 

The results from the monitoring along time can be seen in Figure 4. 

 

Figure 4: Results of the exposure monitoring of Enchytraeus crypticus in LUFA 2.2 soil in 

terms of total number of individuals at days 0, 7, 14, 21, 28, and 56 to (A) 0−192−288 mg 

Co/kg soil DW of CoCl2, (B) 0−30−100−300−1000 mg W/kg soil DW and (C) 0−1600 mg 

WCCo NP/kg soil DW. Values are expressed as average ± standard error (AV ± SE). * p < 

0.05 (between control and treatment). 
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For the tested concentrations (ca. EC50) the “population growth curve” was similar 

between CoCl2 and WCCo NP (28 days) although the impact was relatively higher after 56 

days for WCCo NPs. There was an indication of a delay in development as apparent from 

results on day 21, where the control organisms already reproduced but not the WCCo NP 

(or CoCl2) exposed. Testing of WC showed an increase of population growth compared to 

control at day 28 which became more pronounced at day 56. Details on the full dose-

range exposure can be found in SI Figure S2. 

 

DISCUSSION 

 

For both CoCl2 and WCCo NPs reproduction was affected while 100% survival was 

observed for the adults, indicating a specific reproductive effect. Considering the 

concentration of Co and associated toxicity, WCCo NP was relatively more toxic than 

CoCl2 (the highest concentration tested of 1600 mg WCCo NP/kg soil DW equivalent to 

133 mg Co/kg soil DW, was ca. EC50). Tested alone WC did not show any negative effect 

on reproduction or mortality up to 1000 mg W/kg soil DW, in fact there was approximately 

20% increase in the reproductive output. Similarly, other studies with W confirmed low 

toxicity (Bamford et. al, 2011, Inouye et. al, 2006, Strigul et al. 2009). Hence, this shows 

that there must be some additional (synergistic) effect for Co when in WCCo, for example, 

that Co was more available when present in WCCo or that there is a NP specific effect. 

Previous studies on CoCl2 with Enchytraeus albidus (Lock et al., 2006) in a 14 day 

exposure for acute effects showed a similar LC50 (LC50 = 227 mg Co/kg). For the 

springtail Folsomia candida (Lock et al., 2004; Noordhoek et al., 2018), the EC50 for 

reproduction was ca. 450 mg Co/kg soil DW (LC50 of 620 mg Co/kg soil DW, that is, 2 

fold higher than for E. crypticus). No effects on survival and reproduction with WCCo NP 

were reported in F. candida, even for concentrations up to 6400 mg WCCo/kg soil DW 

(Noordhoek et al., 2018). Cobalt is known to be an oxidative stress inducing agent, hence, 

the observed effects in both survival and reproduction in E. crypticus could be the result of 

irreversible impairment of the antioxidant strategies, this for concentrations above 192 mg 

Co/kg. 

The CoCl2 selected concentrations in our study represent a (although lower) range of Co 

in WCCo NP, and show that the toxicity of WCCo NP is not fully explained by Co. Our 

results suggest that the combination with WC in particles significantly potentiated Co 

toxicity, or changed speciation and/or availability, or that there is a NP specific effect. The 

NP effect may be both an enhancement of the Co effect or a direct NP effect. Both 
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Soil:Water concentration and internal organisms’ Co measurements indicate that Co was 

less available and less taken up in WCCo exposure than in CoCl2 (much higher internal 

uptake), hence does not support the increased availability of Co for the WCCo (see also 

SI). Noordhoek et al. (2018) found lower Co values in the pore-water from WCCo NP 

spiked soil which could indicate Co is more strongly bound in WCCo, hence the toxicity 

must be caused by a combined effect within the WCCo compound/NPs. As the soil water 

concentration fluctuate over the experiments, it is difficult to calculate a single soil:water 

based ECx (i.e., what soil*water concentration to choose). We estimated the exposure in 

two different ways, that is, using the average soil:water concentration over time (i.e., for 

each total exposure concentration) and the integrated soil:water concentration (i.e., area 

under the curve, (Westlake, 1973), see SI Figure S1 for details). Both soil:water exposure 

methods showed the EC50 for CoCl2 4 times higher than WCCo, for example, the EC50 

was 98 mg Co/L.d for CoCl2 and 24 mg Co/L.d for WCCo, hence again indicating that 

toxicity is not explained by soil:water concentration/content. Other studies have reported 

that doping WC with Co has resulted in increased toxicity compared to W, WC or Co 

alone, both at nano scale (Bastian et al., 2009; Kühnel et al., 2009) and micro scale 

(Anard et al., 1997; Lison et al., 1995). Moreover, WC tested together with Co in a 

nonparticulate form (WC with added Co2+) seems to elicit a reduced toxic response 

compared to that observed for the particulate form, for example, cell viability (Bastian et 

al., 2009; Lison and Lauwerys, 1992) or genotoxicity (Anard et al., 1997), meaning that 

the presence of WCCo as a particle is necessary for the combinatorial toxic effect. This is 

in contrast to studies with metallic nanoparticles (e.g., Ag, Ni, Cu) which often show 

similar or higher toxicity of the salt compared to the nanoform (Bicho et al., 2017; Gomes 

et al., 2013; Santos et al., 2017). Additional analysis in terms of local distribution of W and 

Co would be of interest, for example, nanotomography coupled with X-ray fluorescence 

imaging (Cagno et. al, 2017), as it could provide additional evidence of the combined 

effect and target organs. 

It has been argued that longer exposure periods may be required for nanoparticles 

exposure for an equivalent comparison to conventional chemicals, and this has been 

reported (Gonçalves et al., 2017). Although it is commonly agreed that longer exposure 

period may be required, there is at present no recommendation for the best or standard 

way to approach the challenge. There are several implications in terms of practical 

feasibility, for example, a simple extension of the exposure time of the standard tests will 

not do, let alone that the time required is more, but unclear how much more is enough for 

a worst case scenario. Detailed dose and time series samplings would be required to 
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assess longer-term effects. The results on the time scan monitoring here performed (even 

if for a reduced number of treatments and replicates) showed relatively similar trends for 

population growth exposed to both materials. We could argue that the time-period of 56 

days was perhaps not long enough. Another practical problem is due to the fact that the 

test design here implemented yields the total number of organisms. This means, in this 

case, that the number includes more than one reproductive cycle (multigenerational) and 

a combination of adults and juveniles of various sizes. To overcome this issue, the 

multigenerational effect should be targeted in a dedicated design to be able to 

discriminate effects. For instance, in the present results at 56 days, we can also speculate 

that a selection of the most resistant organisms can occur and perhaps lead to higher 

reproduction rates because there was no control in the starting number of juveniles at day 

28. For example, for E. crypticus, the use of a full life cycle test is a good improvement to 

the standard method as it provides longer exposure (46 instead of 21−28 days), many 

additional end points (hatching, growth, maturation, besides survival and reproduction) 

and the organisms are exposed from an earlier life stage (cocoons instead of adults), 

hence increased sensitivity stages are targeted. Full life cycle studies have been 

implemented for Ag (Bicho et al., 2016), Cu (Bicho et al., 2017) or Ni (Santos et al., 2017) 

and delivered considerable more in-depth understanding on the mechanisms or elements 

deriving toxicity.  

 

CONCLUSIONS 

 

To conclude, the present study showed that WCCo NPs caused toxicity in E. crypticus, 

(EC50 = 1500 mg WCCo/kg soil DW) being more toxic than the equivalent toxicity of Co 

alone (via CoCl2) or WC alone, and hence toxicity must be due to a nanospecific effect or 

a combined effect of WC and Co. Results highlight the need to consider longer exposure 

period of NPs for comparable methods standardized for conventional chemicals. 
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SUPPORTING INFORMATION 

 

 

Figure S1: Survival and reproduction of Enchytraeus crypticus exposed in LUFA 2.2 soil 

to (A) CoCl2 and (B) WCCo NP expressed as AUC - Area Under the Curve (values 

obtained from the area under the curve Measured Co in soil-water extract (mg Co/L) vs 

time (days)). Values are expressed as average ± standard error (AV±SE). The lines 

represent the model fit to data. * p<0.05, Dunnett’s test.  

 

To obtain a more complete measure of exposure in the soil water, the soil water 

concentration was cumulated over time. Accumulation over time was done by integrating 

the area under the curve (AUC) in Figure S1 i.e. 0-28 days [assuming a linear 

intrapolation between the individual sampling times, i.e. the lines shown]. The AUC show 

that WCCo was 4-fold more toxic than CoCl2, when expressing both as Co concentrations. 
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Figure S2: Results of the exposure monitoring of Enchytraeus crypticus in LUFA 2.2 soil 

in terms of total number of individuals at days 0, 7, 14, 21, 28 and 56 to 0-30-100-300-

1000 mg W / kg soil DW. Values are expressed as average ± standard error (AV±SE). 

 

 

Figure S3: Representative TEM micrograph and measured particle size distributions for 

WCCo. 
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ABSTRACT 

 

Cobalt and cobalt nanoparticles have many applications, e.g. in the hard metal industry 

and in tires. The assessment of long term effects is crucial, as these materials are 

persistent. For many organism groups, multigenerational (MG) exposure is a highly 

relevant scenario for persistent materials. In this study, the biological effect of CoCl2 (salt) 

and Tungsten Carbide Cobalt nanoparticles (WCCo NPs) exposure was assessed in a 

MG test (4 generations in spiked + 2 generations in clean soil) using the OECD/ISO 

standard soil test species Enchytraeus crypticus. To ensure trans-generational survival, 

sub-lethal concentrations were used to assess the MG impact. Multigenerational exposure 

did not increase toxicity (survival, reproduction). There was an increase in reproduction at 

low concentrations of Co. Materials were characterised in the exposure media and the 

organisms in terms of Co content. Uptake of Co occurred from exposure to both CoCl2 

and WCCo, although without toxicity for WCCo. Cobalt from CoCl2 exposure seemed to 

be stored, whereas for WCCo it was eliminated. 

 

Keywords: Environmental toxicology, long-term exposure, transgenerational, uptake, 

terrestrial 
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INTRODUCTION  

 

Cobalt (Co) and Co-based nanoparticles are used in the production of highly resistant 

alloys. For example, Tungsten Carbide Cobalt nanoparticles (WCCo NPs) are a class of 

cemented carbides used in various applications, e.g. in the hard metal industry (Yao et al., 

1998), endowing the products with increased wear resistance (Upadhyaya, 1998). The 

release of WCCo NPs during production and wear and tear has been associated with 

pulmonary diseases and risk of cancer (Armstead and Li, 2016; Day et al., 2009; 

Stefaniak et al., 2009). In vitro studies have shown toxicity to be related to oxidative stress 

(Armstead et al., 2014; Liu et al., 2015) and other cellular effects, such as DNA damage 

(Paget et al., 2015) or apoptosis (Zhao et al., 2013). Results from in vivo exposures are 

limited, with some studies studies indicating no effect, e.g. no effect on survival and 

reproduction in the hard bodied soil invertebrate Folsomia candida (Collembola) exposed 

in one generation (soil concentrations up to 6400 mg WCCo NP/kg soil dryweight (DW)) 

(Noordhoek et al., 2018). Other studies show effect, e.g. in the soft bodied soil 

invertebrate Enchytraeus crypticus, where the reproduction EC50 was ca. 1600 mg WCCo 

NP/kg soil dry weight (DW) (Ribeiro et al., 2018). These studies mainly deal with standard 

exposure duration, i.e. according to OECD standards (21 days for Enchytraeids), but 

many organisms are exposed for multiple generations, mostly the species with short 

generation time or life cycle. This is an important, but less covered, aspect, in fact, among 

one of the challenges for the risk assessment of nanomaterials (NMs) is the 

implementation of realistic exposure scenarios (e.g. long term, low dose exposures) (Hu 

et al., 2016; van Gestel, 2012). To date, the only study covering multigenerational effects 

of NPs in soil organisms was performed using the model species E. crypticus exposed to 

CuO NPs and CuCl2 (Bicho et al., 2017). Effects in reproduction differed between Cu 

forms, developing increased tolerance to CuCl2 (with transgenerational toxicity) and 

increased effect with CuO NMs along generations. The toxicological mechanisms in a 

multigenerational exposure of persistent materials, such as many NMs, may involve 

physiological responses (acclimation), genetic change (adaptation) (Janssens et al., 2009) 

or epigenetics modifications (Mirbahai and Chipman, 2014). When such phenotypic 

changes occur, the tolerance can either have costs for the organism or be lost in the 

absence of the stressor (Marinković et al., 2012; Sun et al., 2014). Experimental MG 

designs should therefore include a transfer to clean media to assess transgenerational 

effects. For instance, in Drosophila melanogaster exposed to AgNPs, there was a 

recovery in fecundity over 10 generations, following an initial decrease in fecundity  
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(Panacek et al., 2011). As mentioned, transgenerational effects can occur when the 

organism is transferred to a stressor-free environment (Heard and Martienssen, 2014). 

The soil compartment is a sink where released NPs can accumulate, potentially affecting 

soil dwelling organisms (Cornelis et al., 2014). This highlights the importance of long term 

exposure testing and is a current gap for hazard prediction and risk assessment. Hence, 

we here studied the multigenerational exposure to WCCo NPs and CoCl2 in E. crypticus, 

assessing survival and reproduction using a 4 + 2 design, i.e. 4 generations in spiked soil 

with a transfer toof 2 generations into clean soil to evaluate recovery. Exposure media 

was characterized in terms of total and water extractable Co content and organisms for 

internal Co content in all generations.  

 

 

MATERIALS AND METHODS  

 

Test organisms  

 

The test species Enchytraeus crypticus (Oligochaeta: Enchytraeidae) was used. Cultures 

had been kept for several years at the University of Aveiro. For details, please see Bicho 

et al. (2015). Synchronized cultures were prepared. Briefly, mature adults (well developed 

clitellum) were transferred to fresh agar plates to lay cocoons, being removed after 2 

days. Synchronized juveniles with 17-19 days old were used. 

 

Test soil  

 

The standard LUFA 2.2 natural soil (Speyer, Germany) was used. Its main characteristics 

are presented in Table 1. 

 
Table 1. Summary of the main characteristics of the test soil, including pH, organic carbon 

(OC),  cation exchange capacity (CEC), maximum water holding capacity (maxWHC) and 

grain size distribution. 

 

Soil  pH 

(0.01 M CaCl2) 

OC 

(%) 

CEC 

(meq/100g) 

maxWHC 

(%) 

Grain size distribution 

(mm) 

LUFA 2.2 5.5 1.61 10.0 43.3 7.9 clay (<0.002) 

16.3 silt (0.002-0.05) 

75.8 sand (0.05-2.0) 
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Test materials and spiking  

 

Nanostructured Tungsten Carbide Cobalt powder (WCCo NP) and cobalt chloride  

(CoCl2.6H2O, 98% purity, Sigma-Aldrich) were used. Full characterisation was  performed, 

for details see Table 2.  

The test concentrations were 0-1200-1500 mg WCCo NPs/kg soil dry weight (DW) (0-100-

120 mg Co/kg equivalent) and 0-110-180 mg Co/kg soil DW for CoCl2, selected among 

sub-lethal concentrations based on the reproduction EC10 and EC50 (Ribeiro et al., 

2018). 

WCCo NPs were directly mixed with the dried soil following the recommendation for dry 

powder non-dispersible nanomaterials (OECD, 2012). Moisture was adjusted to 50% of 

the maximum water holding capacity (maxWHC). The spiking of the soil was done per 

individual replicate to ensure total raw amounts per replicate. The test chemical CoCl2 was 

prepared as stock aqueous solution, serially diluted and spiked onto the pre-moistened 

soil. The total amount of soil per concentration was homogeneously mixed and split onto 

replicates. Soil equilibrated for 1 day prior test start for both materials. Sampling of soil 

(and animals) was done to quantify Co at each sampling point and stored at -20 ºC until 

further analysis. 

 

Exposure characterization 

 

Cobalt concentration in soil and adult organisms was measured using Atomic Absorption 

Spectrometer (AAS, Perkin Elmer 4100, Ueberlingen, Germany). For the total Co in soil, 

the soil (1 g dry weight) was digested using 65% HNO3 and heated up to 120 ºC until all 

brown fumes disappeared (Scott-Fordsmand et al., 2000).  

For the bioavailable Co in soil, the soil:water extract was used, this being the supernatant 

of a (1:5) soil:water solution, mixed for 5 min at 250 rpm (lab shaker) and then let settle for 

2h. One mL of the solution was digested following the same procedure as used for soil. 

The exposed organisms were dried at 80ºC and weighed. The digestion followed the  

same procedure. A biological standard reference sample (standard lobster tissue TORT- 

1, Marine Analytical Chemistry Standards Program, Division of Chemistry, National  

Research Council Canada) and a soil standard reference sample (Loam soil C74-06, 

Laboratory of the Government Chemist, United Kingdom) were used. 
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Test procedures 

 

The standard guideline (ISO, 2014; OECD, 2016) was followed, with some adaptations as 

described in Bicho et al. (2017). Briefly, forty (40) juveniles (17-18 days’ synchronized 

age) per replicate were used. Organisms were collected and introduced in the test vessels 

containing 40 g of moist soil and food supply. For each generation, the tests ran for a 

period of 32 days at 20 ºC and 16:8 h photoperiod. In total, six generations were exposed 

to CoCl2 and seven to WCCo NPs, hence, the total test duration was 224 (CoCl2) and 256 

(WCCo NPs) days, corresponding to 4 + 2 and 5 + 2 generations (spiked soil + clean soil) 

[5+2 was a technical error since the aim was 4+2]. Food and water were replenished 

weekly. Six replicates per treatment were used, except for the higher concentration, where 

10 replicates were used to ensure enough numbers of organisms for next generation 

exposure and analysis. At the end of each generation, deionized water was added to each 

replicate and soil was left to deposit for 20 min; after this, organisms (adults and juveniles) 

were carefully transferred to freshly made reconstituted ISO water (OECD, 2004a) for 

depuration and stored after 1 day. From each replicate, adults (n = 20) and juveniles of 

large and medium size (n = 400) were sampled, snap-frozen in liquid nitrogen, and kept at 

-80 ºC for further analysis. Juveniles of medium size (n = 40) were collected and 

transferred to freshly spiked or non-spiked soil for another generation and so forth.  

The replicates were fixated with 96 % ethanol and Bengal red (1 % solution in ethanol), 

and the organisms were sieved through 3 size meshes (0.6, 0.2, 0.1 mm) to separate  

organisms from most of the soil, providing three rough size classes: between 0.1 and 0.2 

mm as small, between 0.2 and 0.6 as medium and larger than 0.6 as large. Counting was 

performed using a stereo microscope. 

 

Data analysis 

 

One-way analysis of variance (ANOVA) followed by Dunnett´s comparison post-hoc test 

(p ≤ 0.05) were used to assess differences between the control and the treatments in  

each generation, and for differences between F0 and Fx (SigmaPlot, 1997). 

 

RESULTS 

 

Exposure Characterization 
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Characterisation of the pristine materials, i.e. as synthesized, was performed using a suite 

of techniques for various aspects, for details please see Table 2. 

 

Table 2: Characterisation of WCCo NPs (Source: FP7 SUN: Sustainable 

Nanotechnologies). TEM: Transmission Electron Microscope; XRD: X-Ray Diffraction; 

DLS: Dynamic Light Scattering; BET: Brunauer, Emmett and Teller; ELS: Electrophoretic 

Light Scattering; FTIR: Fourier-Transform Infrared Spectroscopy; XPS: X-ray 

Photoelectron Spectroscopy. 

Characteristics WCCo NP Technique 

Source NBM Nanomaterialia, Italy  

Composition (%) 

Tungsten carbide (WC<88% Wt.,  

CAS 12070-12-1) 

Cobalt (Co=8.32% Wt.,  

CAS 744-48-4) 

ICP -MS 

Primary Size distribution [nm] 

Average (Min‐Max) 

Mode [nm] (1st and 3rd quartile) 

170 (23-1446) 

 

48 (69; 280) 

TEM 

Crystalline size (Average) [nm] 15.4 XRD 

Iso Electric Point (pH) <2 pH 

Dispersability in water: D50 [nm];  

Average Agglomeration Number (AAN) 

182.8 ± 21.5;  

31 
DLS 

Specific Surface Area [m2.g-1] 6.6±0.4 BET 

Z-potential [mV] 7.1±0.5 ELS 

Structure O-W-O 

FTIR 

and/or 

RAMAN 

Pore size [nm] Non-porous BET 

Surface Chemistry  

[atomic fraction] 

Co=0.08±0.01 

W=0.05±0.01 

O=0.31±0.03 

C=0.56±0.05 

XPS 

 

The total Co measured in the soil showed good recovery between nominal and measured 

concentrations, this being ca. 110 ± 8% and 114 ± 4% of the nominal total added 

concentration for CoCl2 and WCCo, respectively. There was no significant variation 
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between day 0 and 32 of each generation cycle. Soil:water extract Co measurements (fig. 

1) showed Co solubilization shortly after spiking (first 3 days) with increase of Co ions in 

soil solution, followed by a stabilization and decrease. For similar added concentrations, 

there was more Co in soil solution for CoCl2. 

 

 

Figure 1: Total Cobalt in soil solution, obtained from the enchytraeid reproduction test 

experiment performed in LUFA 2.2 soil spiked with CoCl2 (0-96-192 mg Co/kg soil DW) 

and WCCo NP (0-1200-1600 mg WCCo/kg soil DW) at sample days 0, 1, 7, 14, 21 and 28 

days, with additional time points for CoCl2: 0.13 (8 hours) and 3 days. Values are 

expressed as average ± standard error (AV±SE). Adapted from Ribeiro et al. (2018). 

 

Effect characterisation 

 

The validity criteria were fulfilled (for the comparable F0-F1 generation) according to the 

OECD 220 guideline (OECD, 2004b), i.e. for juveniles the coefficient of variation was < 20 

%, the number of juveniles was ≥ 50 and adult mortality was ≤ 20 %. For CoCl2, the pH 

was ca. 6 and for WCCo ca. 6.3. Variation between test start and test end was below ±0.3 

for both materials. 

 

Multigenerational effects of WCCo NP and CoCl2 on survival and reproduction in 

Enchytraeus crypticus are depicted in figure 2. 
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Figure 2: Multigenerational effects of WCCo NP (0-1200-1500 mg WCCo NP/kg, 0-100-

120 mg Co/kg soil DW equivalent) and CoCl2 (0-110-180 mg Co NP/kg soil DW) in 

Enchytraeus crypticus in terms of survival (A) and reproduction (B), in LUFA 2.2 soil. 

Values are expressed as % normalized to the control average ± standard error (AV±SE). 

*: p < 0.05 (between control and treatment); #: p<0.05 (between F0 and Fx). 

 

Adult survival was affected within the normal expected variation (<20%) for both test 

materials and was similar to controls. For CoCl2, reproduction was affected negatively by 

180 mg Co/kg soil DW from F1-F3, after which it increased to values similar to control. 

Exposure to 110 mg Co/kg soil DW caused an improvement in reproduction compared to 

control, significantly higher in F5.  
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For MG exposure to WCCo, reproduction was higher compared to control with both tested 

concentrations, also after transfer to clean soil.  

 

Data in terms of size ranges (Fig. 3) seems to show a skewed distribution with relatively 

more large (and medium) then small organisms. In terms of Co effects, e.g. for CoCl2, 110 

mg Co/kg exposure in F3, F4 and F7, there was tendency towards relatively more 

organisms of medium size compared to small and large. For WCCo, a similar impact 

occurred for 120 mg Co/kg exposure in F2, F3 and F5. 

 

 

Figure 3: Multigenerational effects of WCCo NP (0-1200-1500 mg WCCo NP/kg, 0-100-

120 mg Co/kg soil DW equivalent) and CoCl2 (0-110-180 mg Co NP/kg soil DW) in 

Enchytraeus crypticus in terms of size: Small ≤ 0.1 mm; 0.1 ≤ Medium ≤ 0.2 mm; 0.2 ≤ 

Large ≤ 0.6 mm. Values are expressed as average ± standard error (AV±SE). #: p < 0.05 

(between F0 and Fx).  

 

Internal Co body burdens in E. crypticus, as measured in all generations (fig. 4), showed 

that exposure to higher concentration had corresponding higher uptake. For CoCl2, Co 

levels were maintained throughout the MG exposure, although there was an increase of 

uptake to the lower concentration and a peak at F3 for 180 mg Co/kg soil. Transfer to 

clean soil for 2 generations did not decrease the prior levels. For WCCo, the Co uptake 

was relatively lower than for the similar CoCl2 exposure. For WCCo, a major difference in 

the pattern was observed for the highest concentration (120 mg Co/kg soil equivalent, of 
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WCCo), where an increase occured from F0 to F1-F2, after which there was a continuous 

decrease and complete elimination after transfer to clean media. MG exposure to ca. 100 

mg Co/kg soil (of WCCo) caused a smaller increase followed by a decrease from F3 

onwards.       

 

 

Figure 4: Cobalt quantification in Enchytraeus crypticus adults of each multigenerational 

exposure to CoCl2 (0-110-180 mg/kg soil DW) and WCCo NP (0-1200-1500 mg WCCo/kg 

soil DW, 0-100-120 mg Co/kg soil equivalent). Values are expressed as average ± 

standard error (AV±SE). *: p < 0.05 (between control and treatment, (one-way ANOVA 

and Dunnett’s post-hoc test); #: p < 0.05 (between F0 and Fx). 

 

DISCUSSION 

 

Multigenerational exposure to sub-lethal concentrations of CoCl2 and WCCo NP did not 

affect long-term survival, which was not surprising since the dose was sub-lethal. On the 

other hand, the result could have been a cumulative effect along generations and multiple 

exposures. 

Results from exposure to the estimated reproduction EC50 for CoCl2 were in agreement 

with previous results, but for WCCo the EC50 showed lower effect than predicted (Ribeiro 

et al., 2018). The tested concentration (1600 mg WCCo/kg soil DW) caused ca. 50% 

reduction in the reproduction, whereas the concentration tested in this study (1500 mg 

WCCo/kg soil DW), i.e. 100 mg/kg lower, caused no impact on reproduction. This could 

be the reason that the shift between no effect and effect occurs between this 
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concentration range. Exposure was confirmed via the organisms’ body burdens, as well 

the soil measurements and the increase between low to higher concentration in the soil.  

For CoCl2, for the exposure to 180 mg Co/kg soil DW the reproduction was negatively 

affected until F3, after which there was a recovery and organisms increased their 

reproduction to values similar to control levels. This is similar to what has been seen in 

multigenerational exposure to other nanoparticles, i.e. initial toxicity followed by the 

development of tolerance e.g. for Caenorhabditis. elegans to quantum dots (Contreras et 

al., 2013) and for Drosophila melanogaster to AgNPs (Panacek et al., 2011). Other 

studies showed no tolerance, e.g. for CuO NMs in E. crypticus (Bicho et al., 2017), TiO2 

NPs in D. magna (Jacobasch et al., 2014) or AuNPs in C. elegans (Moon et al., 2017). 

Since a peak in Co uptake was measured in F3 organisms (ca. 250 mg/kg body DW), this 

suggests that the higher accumulation triggered the activation of a Co detoxification 

response mechanism which then remained activated in the subsequent generations. The 

size data indicated a shift to a relatively higher number of medium and large size 

organisms (compared to small). Although this is a well-known population survival strategy, 

the detoxification mechanism did not seem related to changes in energy allocation 

between growth and reproduction (Calow, 1991). Further, the detoxification must have 

involved internal Co immobilization (and not its elimination) because Co body burdens 

showed that the internal Co concentration remained around 120 mg/kg body DW 

throughout the test, including when transferred to clean media. Detoxifying strategies, 

such as Co storage in metal-sequestrating organelles of oligochaetes immune cells 

(chloragocytes) (Morgan et al., 2002), have been reported. For the 110 mg Co/kg soil 

exposure, there was a continuous higher reproductive output compared to the control, 

indicating a hormetic effect either though slight intoxication or because the organisms 

benefited from a slightly higher Co availability. The transfer of Co to generations in clean 

media seems rather peculiar, but may relate to an altered homeostatic requirement. 

Cobalt is known to be an essential element, e.g. as part of vitamin B12 and with a role in 

various biochemical reactions, hence, organisms have conserved mechanisms and 

biological reactions involving Co. 

In contrast to what happened for the highest concentration CoCl2, but similar to the 110 

mg Co/Kg exposure, the exposure to WCCo NPs caused an improvement in reproduction 

that was relatively stable throughout the generations. The Co body burdens showed that 

Co internal concentration increased from F0 to F2, up to ca. 150 mg Co/kg body DW, i.e. 

up to values of internal Co that caused 50% decrease reproduction in exposure to CoCl2. 

Hence, Co uptake did not seem to cause population effects. Soil water extract analysis 
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showed that there was comparatively more Co in soil solution for the CoCl2 exposure than 

for WCCo NPs spiked soils at similar concentrations. Hence, internalized Co may come 

from different soil fractions, depending on whether it is CoCl2 or WCCo, e.g. for CoCl2 the 

uptake is from the soil solution, whereas for the NPs the Co maybe attached to the soil 

particles and ingested (either as attached ions or as attached NPs). In any case, even 

though E. crypticus was exposed to similar Co concentrations and had internalized Co, 

they appear to have a highly effective detoxifying mechanism towards WCCo that 

prevented Co to accumulate in the body along generations. 

Although not analyzed, no typical epigenetic effect patterns were observed, i.e. toxicity in 

exposed generations being transferred to non-exposed generations (Heard and 

Martienssen, 2014). This was suggested to be the case e.g. for Caenorhabditis elegans 

MG exposure to silver (Schultz et al., 2016), although this was not confirmed. 

Enchytraeids have ca. 1.4% global methylation (Noordhoek et al., 2017) and, hence, this 

could be one of the epigenetics mechanisms. 

  

CONCLUSIONS 

 

Uptake of Co occurred from exposure to both CoCl2 and WCCo, although without  toxicity 

(reproduction decrease) for WCCo despite similar Co internal levels. Cobalt from CoCl2 

exposure must be stored, and possibly there is a higher physiological requirement 

induced, whereas for WCCo it was eliminated over generations and following transfer to 

clean media. The increase in reproduction with Co low doses shows evidence of the 

essentiality of the element. Multigenerational exposure to these sub-lethal concentrations 

did not increase toxicity (survival, reproduction), although we cannot exclude effects from 

other physiological endpoints. 
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ABSTRACT 

 

Soil invertebrates (in vivo) have been widely used in ecotoxicology studies for decades, 

although their use as in vitro models, albeit promising, has not been pursued as much. 

The immune cells of earthworms (coelomocytes) and the coelomic fluid can be used and 

are a highly relevant in vitro system. Although it has been tested before, to cover the 

testing of nanomaterials (NMs) several challenges should be considered. NMs 

characteristics (dispersibility, agglomeration, etc.) can interfere with the common in vitro 

methodologies, not only during exposure, but also during the measurements. We have 

here assessed the effect of the CuO NMs case study, using surface modified particles, 

functionalized for safe-by-design strategies with ascorbate, citrate, polyethylenimine and 

polyvinylpyrrolidinone, plus the pristine CuO NMs and copper chloride (CuCl2) for 

comparison. Eisenia fetida’s coelomocytes were exposed for 24h via the coelomic fluid. 

Changes in cell viability were evaluated using flow cytometry, with 7-aminoactinomycin D 

(7-AAD) and propidium iodide (PI) dyes. CuCl2 affected cell viability in a dose-related 

manner, although only observed with PI. No mortality was observed for any of the CuO 

NMs. Test materials interfere with the cell count characterization (e.g. it was not possible 

to discriminate between amoebocytes and eleocytes due to overlap with test materials), 

hence, effects can be underestimated. This preliminary screening showed the potential 

usage of the standard earthworm model as an in vitro standard. Further detailed in vitro 

studies are needed using other NMs towards the implementation and standardization. 

Additional cell endpoints can be assessed making it a high content tool for mechanistic 

understanding. 

 

Keywords: earthworms; flow cytometry; coelomocytes; surface modification; safe by 

design; copper oxide nanoparticles 

 

INTRODUCTION 

 

Nanomaterials (NMs) display distinct physical-chemical properties with added value and 

have been increasingly used in a wide variety of fields (Liu, 2006; Pankhurst et al., 2003). 

The potential environmental risks of engineered NMs are still not fully clear, although 

research in nanotoxicology has developed significantly during recent decades. The 

current risk assessment (RA) framework for NMs still follows most of the standards 

previously established for conventional chemicals. It has been long argued that these 
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require adaptations that can reflect worst case scenarios for NMs (Kroll et al., 2009; Tiede 

et al., 2009). The dual nature of NMs, being a particle with physical properties and also a 

chemical, makes it difficult to relate observed toxicity and its cause and, hence, the 

associated risks. For instance, it is not always clear how many of the ions released from 

metal-based NMs are the source of toxicity and how much the NMs contribute and have a 

specific role themselves (Beer et al., 2012; Gomes et al., 2015). Often, researchers 

attempt to estimate the release by measuring the ion concentration in order to differentiate 

between chemical (ions) and particulate toxicity. However, the actual release and even 

the part that causes toxicity is this often very difficult to measure (Gomes et al., 2015). To 

get a better handle on some of the toxicity issues, a favorable approach would be to have 

a diverse biological set of methods, each highlighting certain topics. One approach is in 

vitro testing, which often is faster and more cost-effective than in vivo testing: in vitro 

further allows for simultaneous screening of different parameters by focusing on the 

individual cell pathways of toxicity (Niles et al., 2009). The majority of in vitro studies deal 

with cells from bacteria, fish, human or mouse-derived cellular models, and do not cover 

several other key organism groups. For instance, few studies deal with key terrestrial 

invertebrates, although they in the bigger cases are excellent candidates for in vitro 

testing (Hayashi et al. 2013). Many biological processes are conserved across mammals 

and invertebrates, e.g. the primary immune system, which also supports the use of 

invertebrates as surrogates for cross-species extrapolation to humans (Cooper and Roch, 

2003; Lagadic and Caquet, 1998). Further, the fact that these are invertebrates, hence a 

3R complying alternative model, makes them an even more important option.  

Although few studies, earthworms have been shown useful in in vitro models. For 

example via exposure to Ag NMs, (Hayashi et al., 2012) illustrated that during in vitro 

exposure the biological response of Eisenia fetida’s coelomocytes was similar to that of 

human acute monocytic leukemia cell line cells (THP-1) in RPMI-1640 medium. They 

observed that the cytotoxicity (WST-8 assay), ROS occurrence (flow cytometry) and gene 

expression (qPCR) responses were conserved mechanisms (Hayashi et al. 2012). Other 

examples include the worm species, Lumbricus terrestris (Fugère et al., 1996), where 

metal-specific toxicity was observed for Hg, Cd, Zn and Pb using in vitro exposure, i.e. 

high decrease in viability and phagocytic activity (Hg), lower decrease in viability and high 

decrease in phagocytic activity (Zn, Cd), and no decrease in viability or phagocytic activity 

(Pb). 

However, in vitro studies also have issues, e.g. the toxicology can be low on the 

ecological realism, especially when a variety of cell culture media are used that do not 
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reflect in vivo conditions. This can be an even more important issue for NM hazard 

assessment, given the high reactivity and interaction with the biomolecules present in the 

biological fluids and “corona” formation (Lynch et al., 2009; Monopoli et al., 2012). The 

use of native fluids for cell culture is a good approach for mimicking the real biological 

environment, but it is often difficult to obtain. However, the biomolecule composition will 

differ and so will the interactions with the NMs and the outcome (Maiorano et al., 2010).  

Surface modification has been widely used as a strategy to minimize NPs-biomolecule 

interactions in safe-by-design strategies for NMs stabilization (Tejamaya et al., 2012), but 

such changes will additionally influence the fate and effect of NMs (Javed et al., 2017; 

Meyer et al., 2010; Su et al., 2009). For instance, coatings that enable NMs with a positive 

surface charge are likely to improve biocompatibility with the negatively charged cellular 

membrane thus promoting cellular uptake with implications for cytotoxicity (Harush-

Frenkel et al., 2007; Yue et al., 2011). However, predictive risk assessment is still 

hampered by contradictory results that show coating-independent toxicity (Bastos et al., 

2017; Zhang et al., 2015). Hence, a shift in the current paradigm is necessary to cover the 

interactions of the NMs with the native biological fluid components allowing a correct 

prediction to in vivo effects. 

Hence, in the present study we have assessed the cell viability of the standard earthworm 

test species Eisenia fetida (OECD, 2016) using the coelomocytes and the respective 

coelomic fluid. Copper oxide NMs were tested, including pristine and surface modified 

NMs (ascorbate, citrate, polyethylenimine and poly(vinylpyrrolidinone), as developed by 

(Ortelli et al., 2017) for safe by design strategy, plus a Cu salt (CuCl2) for comparison. 

   

 

MATERIALS AND METHODS 

 

Test materials, spiking and characterization 

 

Pristine copper oxide nanomaterials (PRI CuO NMs) (PlasmaChem GmbH, Germany), 

CuO NMs with four different surface modifications: citrate (CIT), ascorbate (ASC), 

polyvinylpyrrolidone (PVP) and polyethylenimine (PEI), were used plus copper (II) chloride 

dihydrate (CuCl2.2H2O > 99.9% purity, Sigma-Aldrich) for comparison. Coated CuO NPs 

were synthetized from commercial CuO nanopowder (PlasmaChem GmbH, Germany) 

and prepared according to Ortelli et al. (2017). Morphological characterization of pristine 

CuO NMs by STEM analysis showed that CuO NMs were spherical and mono-dispersed 
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with a primary nanoparticle average diameter of 12 ± 8 nm (N=50) (for full characterization 

details see table S1). Stock working solutions of 10 mg Cu/L in phosphate buffered-saline 

(PBS: 0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium 

chloride, pH 7.4; Sigma-Aldrich, Cat. No. P4417) were used. Characterization in different 

media (Table 1) is provided. 
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Table 1: Charaterization of pristine and surface modified CuO NMs samples dispersed in Milli-Q water (pH = 6.5), Phosphate Buffered 

Saline (PBS) (pH = 7.4) and biological media DMEM – (Dulbecco's Modified Eagle Medium) (pH = 8.2), including ζ-potentials (mV), 

hydrodynamic diameter (nm), sedimentation, velocity (µm /sec), Cudissolved/CuOtotal weight ratio (%) after 24 h at 25 °C (from (Ortelli et al., 

2017)). CIT: Citrate; ASC: Ascorbate; PVP: Polyvinylpyrrolidone; PEI: Polyethylenimine; PRI: Pristine. The reversal of the CuO pristine 

surface charge sign is due to the presence of phosphate ions (PO4
3−) used in the sample preparation, which are specifically adsorbed 

onto the CuO NMs surface. 

 

 CuO 
 

ζ-potential 
(mV) 

hydrodynamic diameter  
(nm) 

sedimentation velocity  
(µm /sec) 

Cudissolved/CuOtotal weight ratio 
(%) 

Milli-Q PBS DMEM Milli-Q PBS DMEM Milli-Q PBS DMEM Milli-Q PBS DMEM 
PRI-PO4

3-  -9.1 ± 0.4 -2.3 ± 2.1 -8.2 ± 7.4 1093 ± 50 2756 ± 347 55 ± 6 0.12 0.43 0.04 0.2 (1.1) <0.3 (0.1) 67 (0.5) 
CIT -18.0 ± 0.3 -3.4 ± 1.2 -9.7 ± 0.6 368 ± 10 271 ± 43 37 ± 2 0.1 0.08 0.03 2 (0.5) 1.8 (0.4) 69 (1.0) 

ASC  -17.4 ± 0.3 -8.1 ± 0.1 -9.2 ± 0.2 122 ± 1.4 1314 ± 525 73 ± 21 0.0 0.0 0.01 2 (0.5) <0.3 (0.1) 65 (0.4) 

PEI  +28.3 ± 0.7 +13.8 ± 0.1 -10.1 ± 0.7 247 ± 14 209 ± 16 45 ± 14 0.05 0.03 0.1 2.8 (0.6) 2.5 (0.6) 67 (0.5) 
PVP -8.1 ± 2.3 -0.9 ± 0.7 -9.4 ± 0.8 797 ± 84 2765 ± 432 53 ± 25 0.06 0.2 0.03 0.2 (1.0) <0.3 (0.1) 66 (1.3) 
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The CuO NM solutions were serially diluted from stock solutions in freshly extracted 

coelomic fluid in the following concentrations: 0-5-10-50-100-500 µg CuO NM - 

coated/mL, 0-1-5-10-50-100-500 µg CuO NM/mL and 0-1-5-10-50-100 µg Cu/mL for 

CuCl2. 

 

Cell and coelomic fluid extraction 

 

Eisenia fetida (Oligochaeta, Lumbricidae) earthworms were kept in culture in OECD 

artificial soil, fed ad libitum with horse manure and under controlled conditions at 18 ºC 

and a photoperiod of 16:8 (light:dark). Selected organisms had similar size (300 - 600 mg) 

and developed clitellum, as described in OECD standard 222 (OECD,2016). Earthworms 

were carefully sampled from culture, cleaned with 1X PBS and were transferred to a petri 

dish with filter paper moistened with PBS for about 1 hour for gut purge. The posterior 

body part of the worms was massaged to allow expulsion of the content of the gut 

intestinal tract. Pools of 3-4 worms were subsequently used to obtain the necessary 

cellular density. Worms were gently placed on a glass petri dish with sterile PBS (1 

mL/worm) and an electric current was applied using a 9 V battery for 6 cycles of 2 

seconds. The cell suspension was transferred to a centrifuge tube and 1% penicillin-

streptomycin and 1% amphotericin was added. Cells were counted in a hemocytometer in 

order to obtain a density of 106 cell/mL, which was seeded in siliconized tubes and left for 

24h (dark, 20 ºC) to allow acclimation.  

Coelomic fluid extraction, used for toxicity exposure, followed the same extraction 

procedure as for the cells, after which it was filtered through a 0.2 µm filter to remove cells 

and supplemented with 1% penicillin-streptomycin and 1% amphotericin. The protein 

concentration was measured (Biowave DNA Life Science Spectrophotometer) and set to 

100 µg protein/mL to normalize the protein content. A control with only coelomic fluid was 

included as well as a control without cells for each treatment to verify NMs interference. 

Interaction of NMs with coelomic biomolecules was allowed for 24h (dark, 4ºC).  

 

In vitro test procedures and flow cytometry  

 

After removal of the medium by centrifugation (5 minutes at 1500 rpm), coelomocytes 

were exposed to 200 µL of each treatment for 24h and flow cytometry analysis was 

carried out afterwards. Three independent assays were performed for each test material, 

using a different pool of worms and the respective batches of coelomic fluid.  
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For the flow cytometry analysis, 7-aminoactinomycin D (7-AAD; Sigma-Aldrich) and 

propidium iodide (PI; Sigma-Aldrich), both DNA intercalating fluorescent dyes, were used 

to assess cell viability and membrane integrity. As these cannot enter cells with intact 

membranes, measurements will correspond to staining dead cells or cells with 

compromised membranes. Briefly, cells were loaded with 4 µL PI and 8 µL 7AAD and 

were immediately analyzed by flow cytometry (NovoCyte Flow Cytometer). The 488 nm 

laser was used for excitation; 7AAD was detected in BL4 (675/30) and PI in BL3 (615/24). 

For auto-compensation, unstained and singly stained cells were processed. In each 

replicate, a minimum of 10000 events were gated. To exclude interference of NMs and 

debris, the solutions with each concentration and treatment were gated out of the 

analysis, i.e. for each cell exposure concentration there was an equivalent exposure 

concentration without cells which was used for gating. 

 

Data treatment 

 

Flow cytometry data were analyzed using FlowLogic® Software (Affymetrix), and viability 

was normalized to control values. One-way analysis of variance (ANOVA) followed by 

Dunnett's comparison post-hoc test (p<0.05) was used to assess differences between 

controls and treatments (SigmaPlot, 1997).   

 

RESULTS 

 

Results of the flow cytometry analysis for cell viability are shown in figure 1. 
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Figure 1: Viability of Eisenia fetida’s coelomocytes after 24 hour exposure in coelomic 

fluid to 0-500 µg Cu/mL range of different CuO NMs - pristine (PRI) and coated (citrate 

(CIT), ascorbate (ASC), polyvinylpyrrolidone (PVP), polyethylenimine (PEI)), plus CuCl2. 

7-AAD: 7-aminoactinomycin D PI: propidium iodide. Values are expressed as % 

normalized to the control average ± standard error (AV±SE) (n=3). *: p<0.05 (between 

control and treatment).  

 

CuCl2 affected cell viability in a dose-related manner (shown with PI), whereas none of the 

CuO NMs caused a significant negative impact.  

Representative histograms of the analysis are shown in figure 2. Since displacement of 

the peaks were observed for some CuO NMs treated samples (i.e. displaced compared to 

the respective controls), dead populations were only considered after appearance of a 

second peak. 
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Figure 2: Representative histograms and viability analysis of cells stained with A: 7-

aminoactinomycin D (7AAD) and B: Propidium Iodide (PI). CIT: citrate, PEI: 

polyethylenimine, PVP: polyvinylpyrrolidone CuO NMs. 

 

Figure 3 shows the interference of the tested materials with the cells’ signals. The total 

coelomocyte population was considered, as it was not possible to discriminate between 

different populations (amoebocytes and eleocytes) in this case: the process used to 

exclude materials also excludes part of the coelomocytes population (eleocytes) due to 

overlap. 

Control Control 

CIT 

PVP 

PEI 

A. 7AAD 

CIT 

PEI 
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Figure 3: Representation of the overlap between test materials (NMs/CuCl2) and cells 

signal. Spectra of materials alone in (A) PVP-CuO NMs. Spectra of the samples 

containing the cells exposed to the materials for (B) PVP CuO NMs.  

 

DISCUSSION 

 

The present study indicates a difference in toxicity between CuCl2 and CuO NMs in 

regards to total Eisenia fetida’s coelomocytes population. Whereas CuCl2 showed some 

toxicity, no mortality was observed for the particles at similar concentrations. Previous 

studies have shown that CuO NMs interfered with the immune system in the earthworm 

Metaphire posthum (Annelida: Clitellata: Oligochaeta) exposed via the soil (up to 1 g CuO 

NMs/kg soil) (Gautam et al., 2018). The authors reported sublethal effects, such as 

decreased phagocytic or catalase activity, but without cell viability decrease. Hence, this 

confirms that cell viability (a lethal effect) can be less sensitive. However, it may be 

difficult in our study to rule out viability decrease, especially for eleocytes, which in general 

in the FSC-SSC plot occupy the exact same areas that we gated based on particle 

concentration. Another relevant aspect is the exposure, which can be tested via 1) the 

whole organism exposure (via soil, realistic) and posteriori cell extraction for 

measurements or 2) via the cells in the in vitro system (via the coelomic fluid, artificial). 

Both methods have their pros and cons and ideally should both be included.   

CuO NMs can also disturb the immune system in mammals, for instance by interfering 

with macrophages’ normal functions (Triboulet et al., 2015) or recruiting and activating 

neutrophils (Kim et al., 2011). Studies with human or mouse-derived cells exposed to CuO 

NMs have described decreased viability (Akhtar et al., 2016; Boyles et al., 2016), 

occurrence of oxidative stress (Akhtar et al., 2016; Niska et al., 2015), DNA damage 

(Ahamed et al., 2010), inflammation (Ko et al., 2016) and cell death via apoptosis (Niska 

 A. PVP CuO NMs B. PVP CuO NMs + cells 
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et al., 2015) or necrosis (Rodhe et al., 2015). Earthworm cells (coelomocytes) could be 

comparatively less sensitive to CuO NMs, as organisms may have to deal with high Cu 

concentration when ingesting decayed organic material. Gupta and colleagues (2014) 

reported uptake of zinc oxide ZnO NPs up to 3 mg/L in E. fetida’s coelomocytes without 

induction of DNA damage. E. fetida was further proposed as a ZnO NPs scavanger, when 

aggregation and clustering of ZnO NPs up to the micron-size were observed in 

coelomocytes, possibly due to ZnO NPs interaction with fulvic compound and humic 

substances of the coelomic fluid imparting considerable implications in the toxicological 

profile due to loss of the nano size (Yadav, 2017).  

Although there was a concentration response interaction (especially based on PI) 

between CuCl2 and cell viability, this happened at relative high concentrations. The “low” 

decrease with high concentrations can be interpreted in light of Cu being an essential 

element acting as cofactor for several enzymatic reactions (Festa and Thiele, 2011; Lalioti 

et al., 2009) and, hence, highly regulated until high doses. Either way, we should bare in 

mind the interference between the test material and the cell signals, which resulted in a 

final lower cell count (figure 3) due to exclusion of the overlapping events related to CuCl2 

alone. Additionally, the sensitivity of E. fetida’s coelomocytes to Cu has already been 

shown in vivo (Homa et al., 2007; Scott‐Fordsmand et al., 2000), hence, in vitro effects 

can be underestimated here.  

The importance of CuO NMs surface modifications for toxicity could not be discriminated, 

since no cell mortality was observed. Again, considering that certain cell populations 

(especially eleocytes) may have been gated out. The characterization study showed that 

despite the different surface charge provided by the coatings (negative for CIT and ASC, 

positive for PEI and neutral for PVP), the interaction with proteins and amino acids 

present in the biological media (DMEM and MEM) regulated the behaviour of CuO NMs to 

a similar state, i.e. all zeta potential values were leveraged and no agglomeration 

occurred for any CuO NMs (Ortelli et al., 2017). Also, higher dissolution rates (ca. 66 % 

Cudissolved/CuOtotal ratio) were found in biological media compared to e.g. PBS (2.5-0.3%) 

(Ortelli et al., 2017), hence, based on this we would expect toxicity to occur via Cu ions. 

Cytotoxicity of the same ASC, CIT, PEI and PVP-coated CuO NMs was reported in 

RAW264.7 macrophages with concentrations up to 60 µg Cu/mL (Líbalová et al., 2018); 

however, since no correlation could be found between measured intracellular Cu and the 

cytotoxic effect, a simple interpretation of toxicity based on Cu dissolution was rejected. 

This suggested that CuO NMs may induce toxicity in a nano-specific manner. 

Inconsistencies in the results in regard to different coatings were also found for Ag NMs. 
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For instance, CIT was found to be more toxic in mammalian cells than polyethylene glycol 

(PEG) (Bastos et al., 2016) and PVP (Begum et al., 2016; Wang et al., 2014), but higher 

sensitivity towards PEG compared to CIT coating was found in human cells (Tlotleng et 

al., 2016). Hence, variability and scarcity in the results so far hamper the prediction based 

on surface changes.  

It is worth mentioning that we have here used the coelomic fluid instead of an artificial 

media, providing a more realistic scenario by mimicking the in vivo environment. Hayashi 

et al. (2013) showed the relevance of using physiological relevant fluids in in vitro testing, 

as this increased Ag NMs interaction and consequent accumulation in coelomocytes with 

E. fetida’s coelomic proteins compared to non-native proteins. In an in vivo exposure with 

Eisenia andrei exposed for 7 days to CIT-coated Ag NMs in soil (Kwak et al., 2014), the in 

vitro results showed increased aggregation and dissolution with coelomic fluid compared 

to water, and mild cytotoxicity for CIT-coated Ag NMs with negligible effect of dissolved Ag 

ions. The artificial biological fluids also show the multiparametric nature of NPs toxicity. 

For instance, in human keratinocytes selective synergistic toxicity was found between 

simulated interstitial fluid and CuO NPs, but that was not the case with TiO2 NPs, and 

increased agglomeration and deposition occurred with both NPs compared to traditional 

RPMI media (Cathe et al., 2017). Also, protein interaction with graphene oxide was found 

to mitigate the cytotoxicity in A549 cells (Hu et al., 2011).  

We hypothesize that the interactions with the coelomic proteins may interfere with the 

potential toxicity of NPs, possibly in a nano-specific manner and independently of the 

coating. It is possible that lack of mortality is related to challenges of the test design and 

interference of the NMs in the cell count. 

 

In vitro challenges and way forward 

 

Flow cytometry presents data analysis challenges (Kroll et al., 2009), especially when 

event count overlaps between test material and cell signal. This means that cell signals 

may have to be discarded, as it was not possible to discriminate between cells and 

particles. Flow cytometry is still one of the best techniques to provide a (more) reliable and 

sensitive analysis (Kumar et al., 2015), and several alternative dyes can be combined to 

improve results, although it is also well known that dyes bind to particles.  

Another important aspect is the exposure period, often too short to allow cell interaction 

and impact measurement. Time series and longer exposures should be conducted, 

although this is not always possible without continuous cell lines and long-term cell 
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viability is an issue. Continuous cell lines, which can proliferate indefinitely, carry practical 

advantages, but primary cell lines, isolated directly and with limited lifespan, may have 

increased relevancy and potential. Results from a comet assay (in vitro, genotoxicity) in 

Enchytraeus crypticus (Maria et al., 2017) showed that effects of Ag NMs occurred later 

compared to  AgNO3.  

For in vitro exposure to NMs, the NMs agglomeration in cell media is a reoccurring matter 

that must be taken into account when interpreting results. However, since cell media is a 

complex media, it is difficult to get good measures of agglomeration. It is worth while 

considering alternative exposure methods, e.g. the use of a tube rotator could improve a 

more homogeneous exposure and prevent cell and NMs sedimentation.  

 

CONCLUSIONS 

 

In the present study, Eisenia fetida’s coemolocytes viability was negatively affected by 

CuCl2, but not by CuO NMs, irrespective of the surface modification. However, a key 

observation here was the rather large overlap between spectra for particles and for cells, 

which meant that when compensating for NMs in a sample, cells may indeed be also 

compensated (“gated out”). The use of the coelomic fluid may have further mitigated the 

toxicity of the NPs due to the formation of a native corona, showing the importance of 

using relevant biological media for real biomolecule-NPs interactions. The current 

methodology challenges and way forward were discussed.    
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SUPPORTING INFORMATION 

 

Table S1: Physical-chemical characteristics of the pristine CuO NMs. 

 

Characteristics Pristine CuO NMs 

Manufacturer  Plasma chem   
CAS number  1317-38-0 
Primary size distribution (average)   3 – 35 (12) 
Mode (1st quartile – 3rd quartile) [nm]   10 (9.2 – 14)  
Shape Semi-spherical 
Average crystallite size [nm] 9.3 
Crystallite phases (%) Tenorite 100 % 
Dispersibility in water: D50 [nm]; 
Average Agglomeration Number (AAN) 

135.5 ± 4.6 
346 

Dispersibility in modified MEM: D50 [nm]; 
Average Agglomeration Number (AAN) 

85.2 ± 2.7 
77 

Z-potential in UP water [mV] +28.1 ± 0.6 
IsoElectric Point (pH) 10.3 
Photocatalysis: photon efficiency  1.5x10-4 

Specific Surface Area [m2 g/1] 47.0 ± 1.7 

Pore sizes [nm] 
13.5 ± 1.6 (BJH) 
23.0 ± 0.9 (AVG) 

Surface chemistry [atomic fraction] Cu = 0.46±0.05: O = 0.47±0.05; C = 0.07±0.01 
Chemical impurities [mg kg/1] Na: 505 ± 30; Pb: 36 ± 2; Ag: 13 ± 4 
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The molecular effects of silver nanomaterials (Ag NMs) and the salt silver nitrate (AgNO3) 

were assessed in E. crypticus, in terms of oxidative stress (Chapter I) and genotoxicity 

(Chapter II). An earlier activation of the antioxidant mechanisms was found for AgNO3 in 

comparison to Ag NMs; however, it was not enough to prevent lipid peroxidation (LPO). 

The same outcome (increase in LPO levels), was observed later for Ag NMs despite the 

enzymatic activation, that failed in counteracting the ROS imbalance. In terms of 

genotoxicity, again earlier toxicity was induced by AgNO3 and the non-monotonic 

response observed with Ag NMs highlights the risk of exposure to lower-doses of NMs. 

The later response, both in terms of oxidative stress and genotoxicity, suggests that 

toxicity of Ag NMs could be related to slower dissolution rates, but a nano-specific effect 

cannot be discarded given the different effects of the two Ag forms. These studies provide 

important information regarding the Ag NMs toxicity mechanism in E. crypticus, 

suggesting that oxidative stress is an initiating toxic event which leads to downstream 

effects, namely DNA damage. This is in line with the mode of action described for other 

NMs, but it is necessary to evaluate other molecular level endpoints to further understand 

the cascade of events that leads to organism level effects.  

The Comet assay for genotoxicity evaluation is now included in the array of techniques 

available to assess toxicity in E. crypticus and will hopefully benefit future risk assessment 

studies. Of particular interest will be the integration of this endpoint in Adverse Outcome 

Pathways (AOP), providing further in-depth understanding of the effect of NMs through 

several levels of biological organisation.  

 

The effect of Tungsten carbide cobalt nanomaterials (WCCo NMs) and cobalt chloride 

(CoCl2) assessed in E. crypticus, in terms of survival and reproduction (Chapter III) 

showed a specific reproductive effect of WCCo, and higher toxicity compared to CoCl2, for 

comparable Co concentrations. The exposure characterization provided important 

information to understand WCCo toxicity. Quantification of Co in the soil:water biofilm 

(considered an entry route for soil invertebrates) and in the organisms revealed lower Co 

uptake in WCCo exposure, suggesting a nano-specific or synergistic effect between WC 

and Co. NMs toxicity testing has been performed using standardized tests developed for 

conventional chemicals but, and as Chapter I and II show, toxicity of NMs may require 

longer exposure periods, hence effects can be underestimated. Long-term exposure is a 

relevant scenario for NMs that is not covered in the current paradigm. The concept of 

long-term is still vague and involve other aspects, such as multigenerational effects, 

hence only doubling the exposure period was limited in assessing the true long-term 
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effects of WCCo and CoCl2. Nonetheless, it constitutes a preliminary step in order to fill 

this gap in knowledge.  

Multigenerational exposure is scarcely done and was within the scope of the present 

thesis (Chapter IV). Sublethal concentrations of WCCo NMs didn’t impair survival nor 

reproduction across generations, while the decrease in reproduction induced by CoCl2 

was counteracted in next generations. Uptake of Co was dose-dependent for both 

chemicals, and while it was maintained throughout the test for CoCl2, it gradually levelled 

to control values for WCCo NMs. Results suggest an effective detoxifying mechanism that 

allowed WCCo-exposed organisms to eliminate the Co, while with CoCl2, it might have 

been stored. Transgenerational toxicity was not detected after transference to clean soil, 

but as only organism-level endpoints (survival and reproduction) were used, other 

endpoints (e.g., global DNA methylation changes) should also be analysed to account for 

such effect at lower, more sensitive levels.    

Taken together, these results suggest that E. crypticus is able to cope with continuous 

exposure to lower sub-lethal WCCo NMs concentrations (e.g. up to EC50), without 

impairment in survival or reproduction, at least during the exposure period tested. If it 

happens at expenses of other physiological functions, or if it is a result of unintentional 

selection of more resistant organisms, still needs further clarification.   

The current procedures and guidelines used in NMs risk assessment provide information 

that may not account for the true implications of NMs exposure and effects (e.g. long-term 

effects), the current paradigm needs to change in order to achieve more relevant 

understanding of the NMs impact.   

Copper based nanomaterials (Cu NMs) with different coatings and copper chloride (CuCl2) 

were used as a case study to understand the modulatory effect of surface modification 

(Chapter V). The immune system is an important line of defence for NMs, hence immune 

cells (coelomocytes) of the earthworm Eisenia fetida were used and their viability was 

assessed. No artificial culture media was used, instead, the native coelomic fluid was 

extracted to mimic the biological environment. The formation of a biomolecule corona 

naturally occurs when NMs become in contact with biological fluids. It is possible that the 

lack of toxicity may be related to the interaction with coelomic proteins and other 

components present in the fluid, that is, the formation of a protein “corona”. However, the 

composition of the corona is expected to vary with time and among the different surface 

modifications, and the corona characterization would be important to understand changes 

in the NMs behaviour. It is possible that the effects could be underestimated due to 

challenges in the test design. For instance, increased time could be necessary to show 
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NMs effect (as reported for Ag NMs in Chapters I and II), hence the 24h exposure used 

could be too short. Flow cytometry was used in this study, and is currently one of the best 

alternative techniques to common spectrophotometric-based assays that struggle with 

NMs interference. It is highly relevant in NMs testing, since multi-parameters can be asses 

in one single analysis, this way minimizing technical variability.  

The technical issues encountered in this case study need to be addressed for future 

reliable NMs testing but this system is a promising approach to adapt the current in vitro 

testing for more relevant NMs exposures, accounting for the interactions between NMs 

and biomolecules that occur in vivo. As it cannot account for all in vivo features, the aim is 

not to replace NMs in vivo testing, at least all of it, but to provide additional information 

that may explain in vivo effects. For instance, molecular mechanisms that may be missed 

in the time windows of in vivo tests may be detected in in vitro using shorter-time frames. 

 

In conclusion, the results here presented provide valuable information to increase the 

knowledge on the selected NMs effects, namely: 

• NMs toxicity can be related to nano-specific effects and/or released ions. Slower 

dissolution rates for NMs may lead to later effects that may be missed when using 

short exposures.  

• The exposure periods currently used in NMs testing may not be enough to predict 

long-term, multigenerational effects. 

An effort was made to address some of the current gaps in nano(eco)toxicology, pushing 

the nano research one step closer to answers.  

 

Some recommendations for future testing: 

• The testing of NMs toxicity should consist of a multi-endpoint approach, but it is 

often not possible to cover different levels of biological organization in a single test. 

Hence, the integration of different endpoints can also be made, providing the 

cascade of events that explains the NMs toxicity mechanisms toxicity.   

• The use of realistic scenarios is necessary to understand the risk of exposure to 

NMs, and the current standard tests used for NMs toxicity evaluation can (and 

need to) be adapted to cover long-term, persistent effects of NMs.  

• The use of in vitro testing to predict in vivo effects is undeniably attractive, 

considering the lower costs and time that the first require, however, it is still 

challenging. A possible strategy to address this issue involves the use of native 

biological fluids in in vitro exposures, as the use of artificial culture media greatly 
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limits the interactions that are likely to occur between NMs and the organisms’ 

biomolecules.      

 

 

 


