
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Arménio
Ferreira Baptista

Gestão Digital de Múltiplos Monitores de
Publicidade

Digital Management of Multiple Advertising
Displays

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Arménio
Ferreira Baptista

Gestão Digital de Múltiplos Monitores de
Publicidade

Digital Management of Multiple Advertising
Displays

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor An-
tónio José Ribeiro Neves, Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro e de Alina Liliana
Trifan, Bolseira Pós-Doutoramento do Instituto de Engenharia Eletrónica e In-
formática de Aveiro da Universidade de Aveiro.

Dedico este trabalho à minha mãe pelo incansável apoio e encoraja-
mento durante estes cinco anos.

o júri / the jury

presidente / president Prof. Doutor Paulo Miguel de Jesus Dias
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Luís Filipe Pinto de Almeida Teixeira
Professor Auxiliar do Departamento de Engenharia Informática da Faculdade de Engenharia da

Universidade do Porto

Prof. Doutor António José Ribeiro Neves
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Um agradecimento especial para os meus orientadores, Professor Doutor An-
tónio Neves e Alina Trifan, por todo o apoio, disponibilidade e conhecimento
que me proporcionaram e transmitiram, a qual nada disto seria possível sem
eles.
À minha família o mais sincero obrigado pelo apoio e motivação que me de-
ram, não só na elaboração desta tese, mas também ao longo do meu per-
curso universitário, sempre acreditando nas minhas capacidades e decisões.
Aos meus colegas e sempre amigos, um agradecimento por todos os momen-
tos que me proporcionaram e espírito de entreajuda ao longo desta nossa
etapa.

Palavras Chave Adaptação de conteúdos, Digital signage, Gestão de conteúdos digitais, Mul-
timédia, Plataforma baseada em núvem, Publicidade.

Resumo A explosão tecnológica que temos experenciado na última década tem tido
impacto sobre o setor do retalho de várias formas. Cativar o público-alvo atra-
vés de estratégias de publicidade, no processo de retalho e aprimorando a
sua experiência tem sido um desiderato nesta indústria há bastante tempo.
A tecnologia recente possibilita seguir abordagens nunca antes vistas para
atingir estes objetivos. Nesta dissertação, é apresentada uma solução ba-
seada em várias estações autónomas (sejam estáticas, como monitores,
ou até móveis, como robôs autónomos) que podem ser usadas em qual-
quer publicidade de conteúdos multimédia de uma ou várias entidades.
A parte central da solução apresentada é um servidor Web capaz
de armazenar os conteúdos carregados, que expõe uma página web
para a sua gestão. Utilizadores registados podem gerir e distri-
buir os conteúdos pelos terminais conectados (ou agentes), sendo o
único requisito uma ligação de rede entre o servidor e os agentes.
Apresentamos, também, resultados deste sistema dentro de vários eventos
de investigação que tiveram lugar no ambiente académico local. O sistema
foi usado com o objetivo de automatizar a disseminação e publicitação de tra-
balhos de investigação locais. Por fim, é expectável extender o seu uso no
setor do retalho numa tentativa de impactar a publicidade moderna.

Keywords Advertising, Content adaptation, Cloud-based platform, Digital Contents Man-
agement, Digital signage, Multimedia.

Abstract The technological boom that we have been experiencing in the last decade
has impacted the retail sector in several ways. Captivating customers
through smart advertising, engaging them in the retail process and en-
hancing their experience has been a long-time desideratum in this industry.
Recent technology makes it possible to follow unprecedented approaches
for achieving these goals. In this thesis, we present a solution
based on a series of autonomous stations (either static, such as
monitors, or mobile, such as autonomous robots) that can be used
in any type of multimedia advertising across one or multiple entities.
The main core of the presented solution is a Web Server that can
store the uploaded contents, which exposes a web dashboard for their
management. Registered users can manage and distribute the con-
tents through the connected terminals (or agents), being the only re-
quirement a network connection between the server and the agents.
We present results of this system within several research events that took
place within the local academic environment. The system was used with the
aim of automatizing the dissemination and advertising of local research works.
Ultimately, we expect to extend its use to the retail sector in an attempt to im-
pact modern advertising.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1

1.1 Thesis structure . 2

2 Related work 3

2.1 Similar systems . 4

3 Architecture 7

3.1 Web Server . 7

3.1.1 Flask . 8

3.1.2 Django . 8

3.1.3 Decision . 8

3.2 Multimedia contents transformation . 9

3.2.1 OpenCV . 9

3.2.2 Python Imaging Library (PIL) . 9

3.2.3 MoviePy . 10

3.2.4 FFmpeg . 10

3.2.5 Decision . 10

3.3 Database . 10

3.3.1 SQLite . 10

3.3.2 MySQL . 11

3.3.3 MPEG-21 format . 11

3.3.4 Decision . 11

3.4 Other support Python libraries . 11

i

3.5 Files format support . 12

3.5.1 Image formats support . 12

3.5.2 Video formats support . 13

3.5.3 Presentation formats support . 13

3.6 Permissions . 13

4 Digital Management of Multimedia Contents 15

4.1 Resources division . 15

4.2 Users permissions . 16

4.2.1 Resource level . 17

4.2.2 Object level . 17

4.3 Web server . 18

4.3.1 Files upload and validation . 18

4.3.2 Portable Document Format (PDF) transformations 18

4.3.3 Power Point transformations . 19

4.3.4 Timelines creation . 19

4.3.5 Views creation . 19

4.4 Dashboard . 20

4.5 Multimedia contents processing . 21

4.6 Agents . 23

4.6.1 Life cycle . 23

4.7 Web Server and Raspberry Pi communication . 25

4.8 Database implementation . 26

5 Case studies 29

5.1 Case studies . 29

5.1.1 Institute of Electronics and Informatics Engineering of Aveiro (IEETA) monitors 29

5.1.2 Students@DETI . 30

6 Conclusion 33

6.1 Future work . 33

References 35

ii

List of Figures

1.1 IEETA monitor demonstration. 2

2.1 Digital signage example in Times Square, New York. 3

2.2 Yodeck digital signage solution. 4

2.3 JCDecaux billboard. 5

3.1 System architecture. 7

3.2 Flask and Django popularity in StackOverflow questions. 9

4.1 Resources composition. 16

4.2 Users permissions. 16

4.3 User creation web page. 17

4.4 Modification of object level permissions of a Content. 18

4.5 Dashboard Views web page with an unconfigured View. 19

4.6 Dashboard home example. 20

4.7 Visualization of Contents, Timelines and Views. 21

4.8 Edition of a Timeline. 21

4.9 Pillarboxing and letterboxing effects. 22

4.10 Types of aspect ratios. 22

4.11 Monitor life cycle. 24

4.12 Raspberry Pi terminal output. It is visible, from the output, that the video was successfully

downloaded. 25

4.13 Database object-relational mapping diagram. 27

5.1 Final result of a monitor in IEETA. 30

5.2 Demonstration and exhibition of the system at Students@DETI, using a vertical monitor. 31

iii

List of Tables

3.1 Python libraries used in this work. 12

v

Glossary

PDF Portable Document Format
OpenCV Open Source Computer Vision Library
JPEG Joint Photographic Experts Group
PNG Portable Network Graphics
PDF Portable Document Format
AVI Audio Video Interleave
PIL Python Imaging Library
SQL Structured Query Language
URL Uniform Resource Locator
CSRF Cross-site request forgery

HTML Hypertext Markup Language

CSS Cascading Style Sheets

sTIC Serviços de Tecnologias de Informação e
Comunicação

VPN Virtual private network

IEETA Institute of Electronics and Informatics
Engineering of Aveiro

ACL Access Control List

RBAC Role-based Access Control

HTTP Hypertext Transfer Protocol

vii

CHAPTER 1
Introduction

One of the keys to the success of the retail industry passes by advertising to the general public,
mainly by using marketing strategies [1]. The technological evolution, more and more, has an
important role in the marketing and the advertise of products [2]. In [3], experimental results
show that sales in supermarkets are enhanced when digital displays are used.

Additionally, the technological evolution also opened doors which would never be possible
some decades ago, not only due to computing speed, but also due to cheaper hardware.
This progress allows the companies to take a chance on digital advertising, by using digital
components instead of physical posters.

Not only the digital advertising is much more appealing to the general public, making
the impact of the contents much bigger, but also the maintenance of these terminals can be
smaller than the physical ones.

This thesis emerged from the need to have a distribution system of multimedia contents
in order to display them in a series of monitors, being the two main motivations the IEETA
monitors used for research dissemination and the academic conferences hosted in the University
of Aveiro which usually make use of monitors to display some contents and projects. These
are the two main applications of the system, although, the system is portable to use in any
department of the University due to the Eduroam network. Also, the system is useful to be
used in any occasion needing the advertisement of contents.

In addition to the main motivations of this thesis, the applications of the system can reach
the retail or any area needing advertisement.

Concerning the IEETA monitors, in Figure 1.1 is presented an application of the system in
a monitor hosted in IEETA. The monitors are used to display contents to welcome the visitors
of the institute. The contents were being displayed using a USB flash drive directly connected
to each monitor, which by itself can be a headache to update or upload new contents, forcing
the manual configuration of each monitor.

Regarding the conferences, the monitors are used to display some e-posters in the coffee
break zone, allowing the visitors to read and present the papers between oral presentations.

1

Figure 1.1: IEETA monitor demonstration.

We also tested the use of an Android App to control the monitors, giving the users the
possibility to interact with the posters, which is a valuable feature in these cases. The constant
requests from the responsible of the events for a way to display contents in monitors lead us
to this proposal.

Therefore, the main focus of this thesis is to propose a solution to control multimedia
resources and display them using a unique platform, which provides the management and
manipulation over the resources in order to produce a final content which fits the screen
resolution of the monitor associated to a terminal, making the appropriate transformations,
and distribute them across a network of terminals.

This solution allows the control, maintenance, composition and division of the multimedia
resources across the stations, displaying the information that the user selects into the different
terminals. It also proposes a solution to control the permissions to the resources for each user
logged in the platform.

1.1 Thesis structure

This thesis is divided into six major chapters, Introduction and Conclusion included. The
remaining chapters are the following:

• Related work - includes existent similar systems and approaches the term Digital Signage.
• Architecture - includes the main requisites of the system, some technological tools and

decisions made regarding these tools.
• Digital Management of Multimedia Contents - includes the development process of the

system.
• Case studies - includes results and case studies used to test the system.

2

CHAPTER 2
Related work

The core concept of this distribution advertising system can be compared to some systems or
approaches used in the present. In the past, most of the systems used a manual configuration
to display the contents, being necessary for a person to move to the location and place the
content in the display.

However, the technological evolution allowed the companies to adopt new and more
advanced and appellative ways of advertising. Due to this growth, several areas and terms
emerged, being the term Digital Signage the one that fits this proposal.

The term Digital Signage is widely used and is present in our day by day. It is defined as
remotely managed digital display typically tied in with sales, advertising and marketing [4].
It can also be defined as a network of electronic displays that are centrally managed and
individually addressable for the display of text, animated or video messages for advertising,
information, entertainment and merchandising to targeted audiences.

There are several systems and products supporting this technology as we can see in most
of the existent advertisement displays presented in a wide area of establishments, as illustrated
in Figure 2.1, such as: airports, food chains, outdoor sites, shopping malls, etc.

Figure 2.1: Digital Signage example in Times Square, New York.

3

2.1 Similar systems

In this section, some similar systems are presented having into consideration the similarity and
application of our proposed system. Although, every presented system belongs to companies
specialized in building Digital Signage solutions as a product. Therefore, all these solutions
are paid and the implementation behind them are unknown.

Yodeck

Yodeck [5] is the most similar system compared to our project. Their system consists on
a software solution to manage a series of monitors using only their product: a Raspberry
PI called "Yodeck Playbox", which brings a MicroSD card containing proprietary Yodeck
software. The user only needs to buy the Raspberry PI and connect it to a monitor, create an
account, upload the multimedia contents to the platform and associate these contents to a
virtual monitor. Their solution divides the contents into 4 categories:

• Media - contents uploaded to the system, like image files, video files, documents or web
site addresses.

• Playlists - set of media with a predefined duration to create an image slideshow or a
video

• Widgets - small widgets that display useful info, like RSS feed, a clock, etc.
• Shows - set of media, playlists and widgets which can be associated to a virtual monitor

(i.e. a Raspberry PI).

Figure 2.2: Yodeck digital signage solution [6].

Xarevision

Xarevision [7] is a leading company in technologies for retail and operates the biggest in-store
digital network in Portugal, reaching over 40% of the active population. It administers broad
digital networks of centrally managed displays and also create differentiated interactive media,
like gesture recognition, georeferencing and individual addressing.

Their technologies apply mainly in the retail industry and offer three products:

• Queue management - this product offers management solutions to apply, for example, in
supermarkets. They are present in almost big surfaces and are used to optimize waiting
times and increase the customer service. Generally, it is composed of a ticket dispenser
and a customer calling screen.

4

• New media - features like gesture recognition, georeferencing and individual addressing.
And also the remote control and supervision of the distributed networks across the
country.

• Digital Signage and Corporate TV - last but not least, the digital signage solution,
which applies to this thesis. Their solution passes by supporting the client from the
begging to the end of the implementation, providing the installation of hardware plus
network management, supporting content creation and updating, as well as uninterrupted
technical monitoring during the project’s entire lifetime.

JCDecaux

JCDecaux [8] is probably the most recognized advertising company in the world in outdoor
sites. Despite there isn’t any specific detail about the development and implementation of
their terminals, it is interesting to refer it because of the distributed advertising system they
possess.

Their main products are the billboards presented in some bus stops, although they also
have some digital products presented mainly in some shopping malls. This project aims to
produce a distributed system similar to these digital billboards, being an autonomous one.

Figure 2.3: JCDecaux billboard [9].

Enplug

Enplug [10] is a digital signage software company that provides the disclosure of contents. It
supports social contents, like Youtube and Instagram feeds, RSS feeds, digital menus, Google
calendars, graphics and videos.

NoviSign

NoviSign [11] is a digital signage software company with a cloud-based solution with Windows,
Android and Chrome OS players support. It has an online control dashboard - Studio, allowing
the creation, edition and management of digital contents from any browser, as well as updating
the screens in real time. It supports a variety of widgets, like text, images, video, RSS, games,
polls, social widgets and many more. Also, it may be integrated with camera (face recognition),
RFID reader, barcode and sensors for triggering ads/events/slides.

5

Mvix

Mvix [12] offers digital signage systems with a portable physical module, similar to a Raspberry
Pi [13], which has a pre-loaded content management software capable of communication with
a cloud-based server. Also, it offers a web-based software for creating, editing and updating
digital signage templates. It includes content apps and widgets which enable users to display
a large variety of content including HD videos and images, live web pages, RSS feeds, media
animations and more. This digital signage solution also supports playlist management,
comprehensive calendar-based scheduling, and a multi-role user management.

ScreenCloud

ScreenCloud [14] is a digital signage solution that can turn almost any screen to display
multimedia contents. It offers compatibility with a large variety of devices, such as: Google
Chromebit, Amazon Fire TV, Google Chromebox, Android TV, Apple Mac Mini, Mi Box,
etc. But it also offers compatibility to display contents in iPads and tablets. The scheduling,
management and upload of contents is made using a Web Browser.

6

CHAPTER 3
Architecture

Having three main groups of agents (web server, terminals and control dashboard) with the
need to communicate between them in order to control, manage and display the contents, the
architecture illustrated in Figure 3.1 emerged.

Figure 3.1: System architecture.

This architecture makes the web server the main core of our system, being the central
point of communication and control.

3.1 Web Server

When confronted with the development of a multimedia distributed system, we decided to use
a web framework. The main advantage of this decision was the applications that a web server
can have in our system, mainly the management of the multimedia resources by regular users
of the system.

7

When building a web interface using a web framework, there are several aspects to count,
like the database to use, the way to expose the interface, the session management or even the
code reuse.

In order to expose the web interface and the need to implement a Web Server and also
due to our experience with Python, it was considered the use of two different web frameworks,
both free and open source.

3.1.1 Flask

Flask [15] is a lightweight and versatile web framework. Lightweight in the way that does not
need much effort to expose a web interface and versatile in that it gives a lot of freedom to
the users to adapt it to their needs and expand it through a series of available applications.

3.1.2 Django

Unlike Flask, Django [16] has a predefined design of development which the developers
have to follow in order to deploy a web server. Django acts like a quick solution for web
development [17], making use of its predefined design to deliver a fast way to develop the idea
directly to the application.

Django’s scalability allows the developers to add, remove, combine and share applications
between different projects, making the process of web development pretty fast by reusing
applications already developed.

Also, Django provides security mechanisms in order for the developers to focus more
on implementation and less on security issues: SQL injection, cross-site request forgery,
clickjacking and cross-site scripting [17], as well as an embedded administration dashboard to
control the database models and users authentication.

3.1.3 Decision

Django is one of the most powerful web frameworks and by being released earlier than Flask
(2005 and 2010, respectively), his popularity and community support is much higher, as
illustrated in Figure 3.2.

Both web frameworks have a steady growth and offer a great option for building a web
platform. Since the main focus of the system is the manipulation of the multimedia contents,
we wanted a web framework with a straight-forward way solution.

Django provides this solution, having an obvious way to develop a web server, allowing us
to focus more on the main goal. Also, the administration dashboard proved to be very useful
to test the system and the documentation is a plus.

8

Figure 3.2: Flask and Django popularity in StackOverflow questions [18]
.

3.2 Multimedia contents transformation

Developing a system with the capability to transform the uploaded multimedia contents
requires the use of libraries capable of manipulating these contents, mainly through the
manipulation of frames from the contents (i.e. images, videos, PDFs).

The purposes of this manipulation is the need to convert the files between formats to a
predefined one, better fit the resolution and aspect ratio of the frames to the monitor and to
merge all the contents into one final video to be displayed in the monitors.

In order to do this, we considered the following described during the next sections.

3.2.1 OpenCV

Open Source Computer Vision Library (OpenCV) is an open source computer vision and
machine learning software library [19]. It has a large amount of implemented algorithms in
several areas, although the part that concerns our project is the image and video manipulation.
It allows us to transform the frames of the images or videos, create videos from several contents
and save the final content into many formats.

3.2.2 Python Imaging Library (PIL)

Python Imaging Library (PIL) [20] is a Python library with image processing capabilities
and a large image formats compatibility, being the last commit dated to 2011. This library
became deprecated mainly because of the Python version 3 incompatibility.

Although, Alex Clark and some contributors forked the PIL library and extended some
functionalities in order to create Pillow [21], providing the compatibility with Python version
3.

The main reason that made us exclude the usage of this library was it only supports image
files and, to use it, we would need another library to manipulate the videos.

9

3.2.3 MoviePy

MoviePy [22] is a Python library with video processing capabilities. It allows cutting,
concatenations, title insertions, video compositing, video processing and creation of custom
effects.

This library would fit our project but, due to the missing transformation of the video
frames (i.e. resizing and padding), it was eventually excluded for most of the tasks. However,
it was used to validate the uploaded videos.

3.2.4 FFmpeg

FFmpeg is the leading multimedia framework to handle audio and video files, able to decode,
encode, transcode, mux, demux, stream, filter and play [23] almost any multimedia content.
The FFmpeg command line tool is a very fast video and audio converter which is capable
of receiving several input files (or streams) and apply the desired transformations. It also
accepts image files as input, which is an important aspect in our system.

When applied to our system, it can be very useful in the transformation of the contents,
not only by supporting a very large number of formats and codecs, but also applying padding
and scaling effects and concatenation.

3.2.5 Decision

After analyzing the mentioned tools, we opted to use FFmpeg. Besides the support of almost
every video and image format, it also allows the concatenation, padding and scaling effects
with the use of a command.

For example, the process of fitting a certain resolution is automatic, being only need to
specify the desired resolution and it handles and transforms the contents to better fit the
desired one. Also, the software allows to fully customize the desired operation.

The process can be somehow slow if the amount of frames and their transformations
involves a lot of steps, however, the easy to use execution and the automatic process makes it
worth it.

3.3 Database

Our system needs to store data associated to the multimedia contents, but also the informations
about the users and respective permissions. As the information of the multimedia contents
are associated to each other, we decided to use a relational database management system
(RDBMS), which facilitates fetching data due to the relations of the objects.

Due to our experience using Structured Query Language (SQL), we opted for the use of
a database engine with embedded SQL support. So, we considered the following relational
database engines, all supported by Django.

3.3.1 SQLite

SQLite [24] is a database engine with embedded SQL with great speed and reliability. It
focuses in keeping a tradeoff between memory usage and speed. This database engine differs

10

mainly from the others by the way the database is stored - in a file. This characteristic enables
the portability of the database only by copying the file to other file system.

3.3.2 MySQL

MySQL [25] is also a database engine with embedded SQL, although MySQL provides a
database server in order to operate over the data. The high usage of this database makes it a
good option because of the support it can offer.

3.3.3 MPEG-21 format

ISO/IEC 21000 (MPEG-21) [26] defines an open framework for multimedia delivery and
consumption, with both the content creator and content consumer as focal points. The vision
for MPEG-21 is to define a multimedia framework to enable transparent and augmented
use of multimedia resources across a wide range of networks and devices used by different
communities.

The MPEG-21 Multimedia Framework is based on two essential concepts: the definition
of a fundamental unit of distribution and transaction (the Digital Item) and the concept
of Users interacting with Digital Items. The Digital Items can be considered the "what" of
the Multimedia Framework (e.g. a video collection, a music album) and the Users can be
considered the "who" of the Multimedia Framework.

It is interesting to refer this framework due to the application it has in this thesis. The
framework provides mechanisms to identify Digital Items, IP related to the Digital Items and
Description schemes, using identifiers to link the Digital Items, which defines the Digital Item
Declaration (DID).

3.3.4 Decision

The usage of MPEG-21 was discarded mostly due to the fact that we wanted a video as a
final product and MPEG-21 is used mostly to define mechanisms to store contents. So, the
decision of which database to use was not one of the most important decisions to take due to
the portability that Django offers. However, we chose to use SQLite3 because of the database
being saved in a file, making the debug and test of the system easier and the needlessness of
installing a database engine in the server.

3.4 Other support Python libraries

When using Python as a programming language, one of the main advantages are the support
libraries associated, easy to install and to use. In the following table (Table 3.1) are listed
the most relevant Python libraries used in the project. Each one of them have a specific task
in the system.

11

Python Library Description

imghdr [27] Determines the type of image contained in a file or byte stream. It is used
in this project to validate when a file with an image extension is uploaded
(.jpeg or .png).

PyPDF2 [28] Designed specially to operate over a PDF file. It is used in this project to
validate when a file with PDF extension is uploaded.

pdf2image [29] Reads a PDF file and converts it into a PIL Image object. It is used to
convert the PDF files to image, to be later converted in a slideshow video.

python-pptx [30] It is an handler for Microsoft PowerPoint files (.pptx), that allows to
create and modify the presentations. Although, in our project, it is only
used to validate the uploaded files.

ffmpy [31] It is a command line wrapper to FFmpeg [23]. It uses the Python
subprocess [32] module to execute the commands.

screeninfo [33] It is a module to fetch the location and the resolution of the physical
screens connected. In our project, it is used to fetch the resolution of the
screens connected to the Raspberry Pi devices.

netifaces [34] It is a module to fetch all the interfaces connected to the local device. So,
it is used in this project to find a suitable MAC address of the Raspberry
PI.

requests [35] It is a module designed to send HTTP requests. In our system, it is useful
to send the HTTP GET and HTTP POST requests from the Raspberry
PI to the server.

Table 3.1: Python libraries used in this work.

3.5 Files format support

One of the essential requisites of the system is the capacity to upload, store and transform the
files to be displayed later. The compatibility of the system with the formats of the files needs
to be considered, not only to validate the uploaded file, but also to assure the compatibility
with the library chosen to operate over these files.

We considered the upload of three types of files: image, video and presentation files. These
types grant a large range over the needs of the users by creating slideshows with predefined
duration with the images and presentations and also by concatenating videos, creating the
final video product.

3.5.1 Image formats support

For images, we opted for two of the most used image formats:

• Joint Photographic Experts Group (JPEG) [36] (.jpeg) - JPEG is a lossy based image
format, but also supports lossless compression.

• Portable Network Graphics (PNG) [37] (.png) - PNG is a lossless based image format.

Both formats are used at a worldwide scale and cover a wide range of contents.

12

3.5.2 Video formats support

For videos, the system supports two video formats, being both a multimedia container format
which may contain both audio and video data:

• Audio Video Interleave (AVI) [38] (.avi) - AVI is a multimedia container format created
by Microsoft.

• MP4 [39] (.mp4) - MP4 is also a multimedia container and one of the most used video
formats.

All the video codecs supported by FFmpeg can be used (ex. H.264 [40], H.265 [41], just to
name a few).

3.5.3 Presentation formats support

In the case of the presentation formats, we decided to support PDF and PowerPoint files
(.ppt and .pptx extensions) due to the large usage. The developed system supports files with
multiple pages (or slides).

3.6 Permissions

When confronted with the idea of multiple user access and different contents uploaded from
each user, the first barrier to break down was how to block certain users from changing the
contents from others. Secondly, how to define these permissions and who should change these
permissions.

The first approach was to define roles for each user, with each role having certain predefined
permissions, following a Role-based Access Control (RBAC) [42]. The second approach was
to define permissions over the objects created, following an Access Control List (ACL). This
approach will be later explained in the Section 4.2.

13

CHAPTER 4
Digital Management of Multimedia

Contents

This chapter exposes the solution of the system and the decisions made during the development
and implementation, focusing also on the technical part. This chapter is based on the article
that resulted from the development of this thesis [43].

4.1 Resources division

One of the first challenges of this project was how to divide the uploaded multimedia contents
and how to associate them to different monitors. Another challenge was how to reuse these
contents or set of contents in order to create different sequences.

So, in order to organize these contents, we decided to create three different components,
each one with a defined purpose:

• Contents - base element of the multimedia resources, which is basically an item uploaded
by a user (i.e. a video, image, presentation, etc.).

• Timelines - set of Contents with a predefined sequence, much similar to a video composed
of different Contents. If the Content is an image or a presentation, the user may define
the duration for each image or slide to be presented in the Timeline.

• Views - set of Timelines with a predefined sequence to be displayed. This component
is associated to a physical terminal and represents it in the system. The only way to
create a View is with the connection of a terminal.

This division between the resources gives freedom to the users to create and dispose
multimedia contents into any order and consequently display them. It also allows the users to
reuse the Timelines in different Views without the need to recreate them again, as illustrated
in Figure 4.1.

15

Figure 4.1: Resources composition.

4.2 Users permissions

Having a system with access for a variety of users needs a control policy in order to keep the
privacy and discretion of the multimedia contents between users, blocking the modification of
resources not owned by that user.

In order to restrict the improper access of the users to the multimedia resources, an
authentication system is proposed with different credentials and permission levels for the users.
Therefore, before accessing the control dashboard, the system asks for the authentication
credentials of the user. Django [16] has an user authentication system, which facilitated the
implementation of the authentication system.

The system has two main levels of permissions: role based permissions and users permis-
sions, illustrated in Figure 4.2.

Figure 4.2: Users permissions.

The role based permissions (Section 3.6) has two roles: administrator and regular user.

16

The administrator has access and control over every resource and access to a section in the
dashboard that allows the management of the regular users (creation, edition, deletion and
permissions). So, the system has two types of users (roles):

• Administrator: user responsible to manage the users access to the dashboard and
their permissions for each resource. Additionally, the manager can add, edit and delete
any resource, having no restrictions for his actions.

• Regular User: user with permissions predefined by the administrator and only with
access to the resources predefined by those permissions.

There is a sub-level of permissions for regular users with two distinct levels: resource level
and object level. The resource level refers to the different resources presented in Section 4.1.
The object level refers to an object, which is a resource (i.e. Content, Timeline or View). The
administrator manages these permissions through the web dashboard.

4.2.1 Resource level

The resource level has three different types of permissions: Contents, Timelines and Views.
When creating an user, the administrator fills out a form with some basic information
associated to the user, as illustrated in Figure 4.3. Note that this form has three checkbox
fields, each one for a resource (Content, Timeline and View). These checkboxes are the
permissions at resource level of the user being created and will define which resources the
user can create and edit.

Only the allowed resources will be displayed in the left navigation bar of the interface of
the corresponding user. That is, a user with no permissions over Contents, will only have
view access to the Timelines and Views tab in the left navigation bar.

Figure 4.3: User creation web page.

4.2.2 Object level

The object level refers to which objects from the resources the user can access. By default,
the user only has access to the objects he has created, although, the administrator can give
access to a certain object to an user, following an ACL(Section 3.6). This list of permissions
is associated to an object and has the permissions of each user to that object.

In Figure 4.7, there is a padlock for each object of the table. This padlock redirects to a
page where the administrator edits the permissions over the respective object, as in Figure 4.4.
This page lists all users with resource level permission over the resource of the object, so the
administrator can grant access to that object.

17

Figure 4.4: Modification of object level permissions of a Content.

This permission is particularly useful if some resource needs to be complemented by
another content from a different user.

The users with Timelines and Views permissions can view all the underlying resources in
order to create a Timeline or View, that is:

• To create a View, the user can use any of the underlying Timelines.
• To create a Timeline, the user can use any of the underlying Contents.

These blocking permissions allow, not only the creation of users to a specific task, but
also provide the cooperation of users to a final multimedia product. As an example of specific
tasks we can think of giving Content and Timeline permissions (Resource level) to a designer
responsible to provide multimedia contents to the system or giving View permissions to a
user responsible to the monitors inside of a specific building.

4.3 Web server

This chapter explains the main processes that the Web server executes and the workflows it
uses to achieve the final product.

4.3.1 Files upload and validation

When a file is uploaded with the File Upload of Django, the web server saves the file and starts
the validation of it. It starts by validating the extension of the file by checking if the extension
is supported. Depending if the extension is validated or not, the Web server validates the
uploaded file according to its format.

• Image format - for image validation, the imghdr 3.1 Python library is used.
• Video format - for video validation, the moviepy 3.2.3 Python library is used.
• PDF format - for PDF validation, the PyPDF2 3.1 Python library is used.
• PPT format - for PPT validation, the catppt [44] Linux command is used.
• PPTX format - for PPTX validation, the python-pptx 3.1 Python library is used.

If the file is valid, the web server returns the acknowledge to the user. Otherwise, the file
is deleted and an error is returned to the user.

4.3.2 PDF transformations

In order to create a video from a PDF file and due to the requirements of FFmpeg, which
needs files in image or video format, the web server converts every slide of the PDF to an
image file. These images are saved in a directory and all the names are saved in a text file.

18

FFmpeg reads the text file and creates the video with the specified duration by the user
for each slide. In the end, all the images are deleted and the video file is saved.

4.3.3 Power Point transformations

The conversion process of the Power Point to video is an extension of the PDF transfor-
mation(Section 4.3.2). The Power Point file is converted to PDF with the command line
LibreOffice [45] converter and then it follows the PDF transformation.

4.3.4 Timelines creation

The creation of a Timeline is straightforward and intuitive to the users. The process passes
by accessing the Timeline tab and clicking the Add button. To create a Timeline, the user
only needs to input a name for the Timeline and the Contents associated to it.

After the submission, the web Server starts the creation of the preview of the Timeline
with a predefined 400x300px video resolution. This preview will be available in the edition of
the Timeline after the process is completed.

4.3.5 Views creation

The process of creating a View is made automatically with the connection of a Raspberry Pi,
being portable to another platform but optimized to Raspbian. The View will be displayed
in the dashboard with an empty name and with a false configured flag, as in Figure 4.5. In
other words, the View has to be configured in order to display contents and to distinguish
one from the others.

Figure 4.5: Dashboard Views web page with an unconfigured View.

Upon the configuration of a View, if it has Timelines associated, the server begins the
process to create the MP4 file associated to the view. This file is compressed using the H.264
standard [40], encoded with YUV420 at 25 frames per second, as all underlying videos of the
Timeline.

To better fit the resolution associated to the monitor, all the Contents are adapted to this
resolution. That is, when a View is configured with Timelines associated, the system goes
through all the Contents associated to these Timelines and makes the changes needed to fit
the screen resolution, Content by Content.

To create, manipulate and merge these files, we chose the FFmpeg library since it has
compatibility with all major video and image formats. The FFmpeg library adapts the
Contents using mostly padding and resize transformations. When iterating over the frames
of the Contents, the FFmpeg library resizes the frames which have different size from the
resolution and applies padding to keep the Contents aspect ratio. This process will be
explained in detail in Section 4.5.

19

4.4 Dashboard

As explained in Section 4.3, the system makes use of the Django web Framework to serve the
website.

The dashboard was designed with the Resources and Permissions in mind in order to
facilitate the interaction of the users. So, the dashboard gives control over four main resources:
Contents, Timelines, Views and Users, having a navigation bar with these resources, as
illustrated in Figure 4.6.

Figure 4.6: Dashboard home example.

As noticeable in Figure 4.6, the dashboard has a top navigation bar, which has a dropdown
button so the user can edit his personal informations or logout, and a left navigation bar
with four possible navigations. This left navigation bar only shows the possible navigations
to which the user has access. Only the users with permissions over the resources can access
and control the respective resource and only the administrator can edit these permissions and
have access to the Users page.

When accessing a resource from the left Navigation bar, one of the pages presented in
Figure 4.7 (except User) is displayed. This page allows the visualization over the existing
Contents, Timelines or Views that the user has access. It also allows to create (except for
Views as explained in Section 4.3), edit or delete a resource and, if the user is the administrator,
to edit the permissions (object level) of the users to that resource.

The dashboard was built using three known technologies: Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS) and JavaScript. This triad allows to create interfaces
using HTML for structure, CSS for styling and JavaScript to control the flow of some elements.

When editing a resource, a form is displayed so the user can edit the data associated to
the resource. In the case of Contents, the form contains two fields: the name of the Content
and a file upload button.

However, when editing a Timeline or a View (Figure 4.8), a table with the Contents or
Timelines associated to the resource, respectively, is displayed. This table allows the addition
of objects from the dropdown button. Moreover, the objects from the table can be dragged
and dropped into the intended order. When editing a Timeline, the table also has a duration
input field for each image or presentation Content. By filling in this field the user can specify
the intended duration for each image or slide that will be part of the Timeline. In addition,

20

Figure 4.7: Visualization of Contents, Timelines and Views.

a preview window displaying the video reproduced from the last Timeline submission is
available.

Figure 4.8: Edition of a Timeline.

4.5 Multimedia contents processing

As present in Section 3.5, the system supports three types of files: audio, video and presentation.
One of the main cores of this project is the process behind the transformation of the

contents. The transformation process is mainly made by the FFmpeg library [23].
But, before explaining the FFmpeg transformations, it is important to refer 3 effects:

letterboxing, pillarboxing and windowboxing [46]. These effects result mainly when some
content is being displayed but the aspect ratio of the content and the monitor is different, which

21

usually results from a resize transformation followed by image padding (padding introduces
new pixels around an image, like a border), as in Figure 4.9.

Figure 4.9: Pillarboxing and letterboxing effects [47].

Figure 4.10: Types of aspect ratios.

These effects occur when the aspect ratios of the contents and the display is different. In
Figure 4.10 the most common aspect ratios are presented.

Letterboxing consists in the transformation of frames with widescreen aspect ratio (16:9)
to a NTSC/PAL video ratio (4:3) while preserving the frames original aspect ratio. This
transformation consists of an image padding transformation both on top and bottom of the
frames.

On the contrary, the pillarboxing effect consists in the transformation of a standard-width
video format into a widescreen aspect ratio by applying image padding into the frames both
on left and right.

Windowboxing consists of the combination of both effects: letterboxing and pillarboxing.
This is noticeable when the frames of a video are centered in the screen with a padding effect
all around them. This happens when the resolution of the screen is bigger than the frames
and no resize transformation is used.

However, the windowboxing effect never occurs because the frames are always resized to a
resolution, making the final frame equal the vertical or horizontal size of the resolution.

Using FFmpeg with the arguments:

• scale and force_original_aspect_ratio

22

• pad

makes it possible to apply the intended transformations to the frames.
The scale parameter allows to specify the scale resolution to apply into the frames, while

using the force_original_aspect_ratio allows to maintain the original aspect ratio of the
images. This transformation will upscale the frames, if the resolution of the screen is bigger
than the frames, and downscale, in the opposite situation. The pad parameter allows to apply
padding to the frames after the scale transformation. When the frames of the Contents have
a different aspect ratio of the screen, the letterboxing and pillarboxing are perceptible.

4.6 Agents

The need to display the contents in the monitors and the need to have a terminal capable
to communicate with the Web Server lead us to choose a Raspberry Pi [13] to integrate the
distributed system.

This equipment has enough processing capabilities to display the contents with a low need
for space area and low energy dependency. It also has a 802.11b/g/n/ac networking interface
to communicate over Wi-Fi in order to download the contents from the Web Server.

To test the system, we used the Raspberry Pi Model 3B+, which needs a proper power
plug to connect the power supply, otherwise the Raspberry Pi will shut down on boot. We
also tested the system using a Raspberry Pi Model 3B and, on the contrary of Model 3B+, it
does not need a proper power supply, that is, it only needs a Micro-USB connector as power
supply (present in almost every LCD or monitor).

4.6.1 Life cycle

Concerning the development of the Raspberry Pi system, the communication with the Web
Server is made over HTTP requests and, as most of the case studies were in the Eduroam
network (which does not allow peer-to-peer communication), all the communication requests
must come from the Raspberry Pi to the Web Server and not vice-versa.

This lead us to create a life cycle of the system, using a Python script to control the
display and the communication. When the Raspberry Pi starts, the script runs on boot and
goes through a series of steps in order to register in the server (if it is the first time connecting)
and download the video.

This life cycle, as illustrated in Figure 4.11, is divided in four major states.

23

Figure 4.11: Monitor life cycle.

State 1 - send_init_info()

In this state, the script tries to fetch some data to send it to the Web Server, namely:
• MAC Address - using the netifaces [34] Python library to fetch it, this information

allows the server to distinguish uniquely the different terminals and allows the user to
know which View is associated to a terminal.

• Screen resolution - using the screeninfo [33] Python library to fetch it, it is used to adapt
the Contents associated with some View to its screen resolution.

To fetch the MAC address, the script tries to fetch the address associated to the Ethernet
interface and if it fails, tries to fetch the address associated to the ’wlan0’ interface, which
is the default wireless interface. If both cases fail, it tries to fetch the address associated to
another wireless interface present in the list of interfaces.

To fetch the screen resolution, screeninfo [33] fetches the size and location of every physical
screen connected. The script chooses the screen resolution of the default monitor. If it fails,
the script waits for a period of time and tries to fetch it again, that is, when a monitor is duly
connected.

After this, it sends the information to the Web Server with a HTTP Post Request. The
server, after receiving this information, checks if the MAC address already exists and returns
the path in the server to the video corresponding to that View.

State 2 - get_video()

The second state after fetching the path to the corresponding video, is responsible to download
the video from the Web Server with a HTTP GET request and store it in the file system of
the Raspberry Pi. If it fails (if the View wasn’t configured yet or the server is down), the
terminal waits thirty seconds by default, and tries to download it again. This loop is repeated
until the video successfully downloads.

State 3 - play_video()

The third state is only responsible to launch the process with the video player in order to
play the video in the monitor.

To play the video, the Omxplayer is used, which is a command line OMX player specifically
made for the Raspberry Pi’s GPU [48]. The player is launched with the following command
line flags:

24

• -g - used to generate the log file.
• -b - used to set background to color black.
• –no-osd - used to hide some status information on the screen.
• –loop - used to repeat the video indefinitely.

State 4 - check_for_changes()

The fourth and final state is repeated infinitely and is responsible to poll the web Server, sixty
seconds by default, to check for any changes in the View. If any changes are detected, the
script jumps back to State 2 to download the video and continue the cycle, as in Figure 4.11.

If by any case the Internet connection is broken, it continues to poll the server until a
response is obtained. While this happens, the previously downloaded video continues to be
played, which means that the video is always displayed, even with no Internet connection,
after a successful download.

In Figure 4.12, the terminal output of a Raspberry Pi, since the connection with the server
until the video is successfully downloaded, is presented. As this was just a test, the execution
of the program stops when the video is downloaded. In a normal situation, the execution
continues with State 4.

Figure 4.12: Raspberry Pi terminal output. It is visible, from the output, that the video was
successfully downloaded.

4.7 Web Server and Raspberry Pi communication

The communication between the web server and the Raspberry Pi is made with HTTP GET
and HTTP POST Requests from the Raspberry Pi to the web server.

Since the system was designed to be deployed in the Eduroam network and as it does not
allow peer-to-peer communication, all the requests must come from the agents to the server.

The Web Server exposes three specific Uniform Resource Locator (URL) for the terminals
to make the requests:

• login/ - used to authenticate.
• monitor/new_monitor/ - used to register in the system or/and fetch the URL from the

corresponding video.
• monitor/check_for_changes/ - used to check for changes in the View.

25

Every request to the Web Server requires the terminal to log into the system in order
to get the Cross-site request forgery (CSRF) token, provided by Django, to protect against
Cross Site Request Forgeries attacks.

A CSRF hole is when a malicious site can cause a visitor’s browser to make a request to
the server that causes a change on the server. The server thinks that because the request
comes with the user’s cookies and that the user wanted to submit that form [49].

According to the Django documentation: This type of attack occurs when a malicious
website contains a link, a form button or some JavaScript that is intended to perform some
action on your website, using the credentials of a logged-in user who visits the malicious site
in their browser [50].

The CSRF middleware and template tag of Django provides automatic mechanisms to
protect against this type of attacks.

4.8 Database implementation

Django provides an easy-to-use database-access API. The API, by creating Django Models [51]
like a Python class, maps each model to a single database table. This process abstracts the
creation of the database tables from the developer and is the same for any database engine.

Regarding the application of Django Models in our project, we tried to make use of the
authentication system that Django provides, making an extension of the existing User model
by adding three boolean fields: one for each of the resources of Section 4.1, representing the
permissions at resource level of Section 4.2.1. These extended models are the users that have
access to the dashboard.

Also, we created three models for each resource and two more to link the resources related
to each other, as illustrated in Figure 4.13.

The diagram, created using the Django Extensions collection [52], illustrates the tables
existent in the database and their relations. There are three groups of relations to highlight:

• Firstly, the relations between the User table and the Content and Timeline tables. These
relations define the creators of the objects and are “one to many” relations because a
user may have many objects but an object only has one creator.

• Secondly, the relations between the UserProfile table and the Content, View and Timeline
tables. These relations are used to define the ACL permissions over the objects. They
are “many to many” relations because a user may have permission over a variety of
objects and an object may have different users with access to itself.

• Lastly, the relations between the Content, View and Timeline and TimelineContents
and ViewTimelines. These relations define the Contents of a Timeline and the Timelines
of a View. As the Timelines may have many Contents and the Views may have many
Timelines, the relation is “many to many”.

26

Figure 4.13: Database object-relational mapping diagram.

27

CHAPTER 5
Case studies

This chapter presents the main results obtained by using the the system we proposed. To test
the system, we used a virtual machine provided by Serviços de Tecnologias de Informação e
Comunicação (sTIC) of the University of Aveiro as the Web Server. This makes the server
available to all the terminals inside the Eduroam network, making the system portable and
usable in any department and the access to the dashboard possible in any local with Internet
connection (using Virtual private network (VPN)). The server has the Hypertext Transfer
Protocol (HTTP) Port (number 80) open in order to enable requests from other hosts inside
the Eduroam network.

5.1 Case studies

The system was tested in two environments: IEETA and Students@DETI [53]. Both environ-
ments require the dissemination of multimedia contents. The following sections explain the
procedure and details about each one.

5.1.1 IEETA monitors

Since the application of monitors across IEETA, the display of multimedia contents used a
USB flash drive to store the contents and connect it to the monitor. The process of updating
the contents passed by removing the USB flash drive and manually update the contents using
for example a computer.

Then, the need to automatize and speed up this process contributed to the emergence of
this thesis.

In Figure 5.1, we can see a real Full HD monitor (1920x1080 px of resolution and a 1.78:1
aspect ratio) with a Raspberry PI single board connected to the developed system displaying
the final output: the video stream for that View.

The building has three monitors spread across the area. As use case, we used the three
monitors connected with a Raspberry Pi and to test the monitors we used the following
Contents.

29

Figure 5.1: Final result of a monitor in IEETA.

• 7 PDFs with 15 seconds of display.
• 3 Power Point’s with 5 seconds for each slide.
• 2 videos with MP4 format.

All of these Contents were composed in one Timeline, resulting in a video with 1 hour
and 51 minutes. The system was updating automatically the video if any changes were made
only with a delay (the time of creation of the video on the server and the time of polling and
download).

5.1.2 Students@DETI

Every year, there is an exhibition hosted in the Electronics, Telematics and Informatics
Department of University of Aveiro with projects from teachers and students. This year, we
deployed our system in three spots of the event in order to test and advertise it.

The system displayed multimedia contents uploaded by the organizer of the event with
contents relevant to the event, mainly PDF’s, Power Points and videos.

Two of the three spots were using a projector to display the multimedia contents into
a wall, one in the entrance of the event and the other one in a hall. These two spots were
displaying three PDF Contents with 15 seconds for each slide converted to a Timeline.

The other spot was a smaller monitor in a table where the project was in exhibition. The
monitor was displaying some posters from the different projects present in the event. As the
posters had a vertical orientation, we changed the orientation of the Raspberry Pi and the
server made the changes automatically to better fit the monitor. Figure 5.2 monitor was
displaying a Timeline with 15 PDF posters with 10 seconds for each one.

We only noticed one problem due to the weak signal of the wireless network, making the
agent unable to communicate with the server, but with some adjusts the signal was reached
and everything ran as expected.

30

Figure 5.2: Demonstration and exhibition of the system at Students@DETI, using a vertical monitor.

31

CHAPTER 6
Conclusion

The main goal of this thesis was to propose a solution to manage multiple multimedia contents
in order to display them in multiple monitors. The system we have presented, as a whole, is
operational and ready to manage the upload of multimedia contents and display them. It
implies the existence of a computer to host the server (with proper image and video processing
capability), monitors to display the contents, single boards to connect to the monitor (like a
Raspberry Pi) and, of course, network connection between the server and the terminals.

Overviewing the system and the results in a whole, we can assume the objectives mentioned
in the Introduction were generally accomplished. However, there are many aspects to improve
and features to add.

The case studies gave us feedback to guide the system to meet the needs and requirements
in the practice. Several other events have been organized at the University of Aveiro and one
of the requirements was the user interaction with the displays, allowing to skip or pause the
presentations.

Nevertheless, the events where the system operated were a success and the further work
on this project can improve these features and give a more complete solution to meet these
kind of requirements.

6.1 Future work

A global overview over the results highlights some features that we intend to improve, as
future work. Such features are:

• The aspect of the dashboard that needs to be more appealing and intuitive to the user.
It could display for example, snapshots of the Contents and an easier way to upload
them (like drag and drop upload).

• A more intuitive way to organize the Contents, Timelines and Views. As the system
grows and the number of users and events too, a way to organize these resources is
needed, for example by creating a tag for each resource. This way, we could filter the
resources by event, building, etc.

33

• A more advanced Timeline editor in order to give the user a greater control over the
sequence of Contents.

• The capability to fetch information in real time about the monitor in order to show the
status in the dashboard; Moreover, making it possible to run certain commands over
the monitor, like turn on and turnoff would be a desired improvement of this work.

• Support the change of the orientation of the display, for example to use a monitor with
a vertical orientation without changing the orientation manually in the agent.

In the future, as the system improves, we intend to expand the supported formats of
Contents, like supporting audio files. This enhancement of the system would eventually imply
a reformulation of Timelines creation in the dashboard.

Another interesting feature that we plan to develop is the support for the interaction
between the target audience and the system, either by a physical contact or even by voice or
gesture control. This interaction would allow the user to pause and skip contents, for example.

34

References

[1] A. Di Rienzo, F. Garzotto, P. Cremonesi, C. Frà, and M. Valla, «Towards a smart retail environment»,
in Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, ACM,
2015, pp. 779–782.

[2] N. I. Bruce, B. Murthi, and R. C. Rao, «A dynamic model for digital advertising: The effects of creative
format, message content, and targeting on engagement», Journal of Marketing Research, vol. 54, no. 2,
pp. 202–218, 2017.

[3] A. L. Roggeveen, J. Nordfält, and D. Grewal, «Do digital displays enhance sales? role of retail format
and message content», Journal of Retailing, vol. 92, no. 1, pp. 122–131, 2016.

[4] J. Schaeffler, Digital signage: Software, networks, advertising, and displays: A primer for understanding
the business. Taylor & Francis, 2012, isbn: 9781136031533. [Online]. Available: https://books.google.
pt/books?id=9ZUrt7-igxQC.

[5] Yodeck official website. https://www.yodeck.com/, Accessed: 2018-05-30.

[6] Yodeck digital signage solution. https://www.yodeck.com/wp-content/uploads/2015/12/yodeck-04-
2.png, Accessed: 2018-06-08.

[7] Xarevision, https://www.xarevision.pt/, Accessed: 2018-07-30.

[8] JCDecaux official website. http://www.jcdecaux.com/, Accessed: 2018-05-30.

[9] JCDecaux billboard. http://www.jcdecaux.com/sites/default/files/styles/left/jcd_asset_
small/4885/public/assets/image/2016/10/jcdecaux-stockholm.jpg, Accessed: 2018-05-30.

[10] Enplug, https://www.enplug.com/, Accessed: 2018-06-30.

[11] NoviSign, https://www.novisign.com/, Accessed: 2018-06-30.

[12] Mvix, http://www.mvixusa.com/systems/, Accessed: 2018-06-30.

[13] Raspberry PI official website. https://www.raspberrypi.org/, Accessed: 2018-05-22.

[14] ScreenCloud, https://screen.cloud/, Accessed: 2018-06-30.

[15] Flask official website. http://flask.pocoo.org/, Accessed: 2018-05-22.

[16] Django official website. https://djangoproject.com, Accessed: 2018-05-22.

[17] Advantages and disadvantages of Django. https://hackernoon.com/advantages-and-disadvantages-
of-django-499b1e20a2c5, Accessed: 2018-06-05.

[18] Flask and Django popularity in StackOverflow questions. https://s3.amazonaws.com/codementor_
content/2017-Feb/Flask+vs+Django+Popularity, Accessed: 2018-06-05.

[19] OpenCV official website. https://opencv.org/, Accessed: 2018-05-22.

[20] Python Imaging Library official website. http://www.pythonware.com/products/pil/, Accessed:
2018-05-22.

[21] Pillow, https://github.com/python-pillow/Pillow, Accessed: 2018-05-22.

35

https://books.google.pt/books?id=9ZUrt7-igxQC
https://books.google.pt/books?id=9ZUrt7-igxQC
https://www.yodeck.com/
https://www.yodeck.com/wp-content/uploads/2015/12/yodeck-04-2.png
https://www.yodeck.com/wp-content/uploads/2015/12/yodeck-04-2.png
https://www.xarevision.pt/
http://www.jcdecaux.com/
http://www.jcdecaux.com/sites/default/files/styles/left/jcd_asset_small/4885/public/assets/image/2016/10/jcdecaux-stockholm.jpg
http://www.jcdecaux.com/sites/default/files/styles/left/jcd_asset_small/4885/public/assets/image/2016/10/jcdecaux-stockholm.jpg
https://www.enplug.com/
https://www.novisign.com/
http://www.mvixusa.com/systems/
https://www.raspberrypi.org/
https://screen.cloud/
http://flask.pocoo.org/
https://djangoproject.com
https://hackernoon.com/advantages-and-disadvantages-of-django-499b1e20a2c5
https://hackernoon.com/advantages-and-disadvantages-of-django-499b1e20a2c5
https://s3.amazonaws.com/codementor_content/2017-Feb/Flask+vs+Django+Popularity
https://s3.amazonaws.com/codementor_content/2017-Feb/Flask+vs+Django+Popularity
https://opencv.org/
http://www.pythonware.com/products/pil/
https://github.com/python-pillow/Pillow

[22] MoviePy, https://zulko.github.io/moviepy/, Accessed: 2018-05-22.

[23] FFmpeg official website. https://www.ffmpeg.org/, Accessed: 2018-05-29.

[24] SQLite official website. https://www.sqlite.org/index.html, Accessed: 2018-05-28.

[25] MySQL official website. https://www.mysql.com/, Accessed: 2018-05-28.

[26] «Information technology – Multimedia framework (MPEG-21) – Part 3: Digital Item Identification;
Information technology – Multimedia framework (MPEG-21) – Part 1: Vision, Technologies and Strategy;
Information technology – Multimedia framework (MPEG-21) – Part 2: Digital Item Declaration»,
International Organization for Standardization, Standard, 2003, 2004 and 2005.

[27] Python imghdr, https://docs.python.org/3.4/librar/imghdr.html, Accessed: 2018-05-28.

[28] Python PyPDF2, http://mstamy2.github.io/PyPDF2/, Accessed: 2018-05-28.

[29] Python pdf2image, https://github.com/Belval/pdf2image, Accessed: 2018-05-29.

[30] Python python-pptx, https://github.com/scanny/python-pptx, Accessed: 2018-05-29.

[31] Python ffmpy, https://github.com/Ch00k/ffmpy, Accessed: 2018-05-29.

[32] Python subprocess, https://docs.python.org/3/library/subprocess.html, Accessed: 2018-05-29.

[33] Python screeninfo, https://github.com/rr-/screeninfo, Accessed: 2018-05-29.

[34] Python netifaces, https://github.com/al45tair/netifaces, Accessed: 2018-05-29.

[35] Python requests, https://github.com/requests/requests, Accessed: 2018-05-29.

[36] G. K. Wallace, «The jpeg still picture compression standard», IEEE transactions on consumer electronics,
vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[37] C. Wilbur, «Png: The definitive guide», Journal of Computing in Higher Education, vol. 12, no. 2,
pp. 94–97, 2001.

[38] Audio Video Interleave (AVI), https://msdn.microsoft.com/en-us/library/windows/desktop/
dd318187(v=vs.85).aspx, Accessed: 2018-05-28.

[39] MPEG-4, https://mpeg.chiariglione.org/standards/mpeg-4, Accessed: 2018-05-28.

[40] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, «Overview of the h. 264/avc video coding
standard», IEEE Transactions on circuits and systems for video technology, vol. 13, no. 7, pp. 560–576,
2003.

[41] V. Sze, M. Budagavi, and G. J. Sullivan, «High efficiency video coding (hevc)», Integrated Circuit and
Systems, Algorithms and Architectures. Springer, vol. 39, p. 40, 2014.

[42] R. S. Sandhu, Role-based Access Control. 1998, vol. 46, pp. 237–286, isbn: 0120121468.

[43] Baptista, Arménio and Trifan, Alina and Neves, António, «Digital Management of Multiple Advertising
Displays», International Conference on Autonomic and Autonomous Systems, 2018.

[44] catppt command, https://linux.die.net/man/1/catppt, Accessed: 2018-07-01.

[45] LibreOffice, https://www.libreoffice.org/, Accessed: 2018-07-01.

[46] C. Poynton, Digital video and hd: Algorithms and interfaces. Elsevier, 2012.

[47] Pillarboxing and letterboxing effects. https://cdn2.desu-usergeneratedcontent.xyz/g/image/1517/
46/1517465156572.jpg, Accessed: 2018-06-06.

[48] Omxplayer Github page. https://github.com/popcornmix/omxplayer, Accessed: 2018-05-31.

[49] Cross-site request forgery, https://www.squarefree.com/securitytips/web- developers.html,
Accessed: 2018-07-02.

36

https://zulko.github.io/moviepy/
https://www.ffmpeg.org/
https://www.sqlite.org/index.html
https://www.mysql.com/
https://docs.python.org/3.4/librar/imghdr.html
http://mstamy2.github.io/PyPDF2/
https://github.com/Belval/pdf2image
https://github.com/scanny/python-pptx
https://github.com/Ch00k/ffmpy
https://docs.python.org/3/library/subprocess.html
https://github.com/rr-/screeninfo
https://github.com/al45tair/netifaces
https://github.com/requests/requests
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318187(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318187(v=vs.85).aspx
https://mpeg.chiariglione.org/standards/mpeg-4
https://linux.die.net/man/1/catppt
https://www.libreoffice.org/
https://cdn2.desu-usergeneratedcontent.xyz/g/image/1517/46/1517465156572.jpg
https://cdn2.desu-usergeneratedcontent.xyz/g/image/1517/46/1517465156572.jpg
https://github.com/popcornmix/omxplayer
https://www.squarefree.com/securitytips/web-developers.html

[50] Django’s Cross Site Request Forgery protection. https://docs.djangoproject.com/en/2.0/ref/csrf/,
Accessed: 2018-05-31.

[51] Django Models documentation. https://docs.djangoproject.com/en/2.0/topics/db/models/,
Accessed: 2018-06-05.

[52] Django Extensions collection. https://github.com/django- extensions/django- extensions, Ac-
cessed: 2018-07-02.

[53] Students@DETI website. http://studentsandteachersdeti.web.ua.pt/, Accessed: 2018-07-09.

37

https://docs.djangoproject.com/en/2.0/ref/csrf/
https://docs.djangoproject.com/en/2.0/topics/db/models/
https://github.com/django-extensions/django-extensions
http://studentsandteachersdeti.web.ua.pt/

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Thesis structure

	Related work
	Similar systems

	Architecture
	Web Server
	Flask
	Django
	Decision

	Multimedia contents transformation
	OpenCV
	Python Imaging Library (PIL)
	MoviePy
	FFmpeg
	Decision

	Database
	SQLite
	MySQL
	MPEG-21 format
	Decision

	Other support Python libraries
	Files format support
	Image formats support
	Video formats support
	Presentation formats support

	Permissions

	Digital Management of Multimedia Contents
	Resources division
	Users permissions
	Resource level
	Object level

	Web server
	Files upload and validation
	PDF transformations
	Power Point transformations
	Timelines creation
	Views creation

	Dashboard
	Multimedia contents processing
	Agents
	Life cycle

	Web Server and Raspberry Pi communication
	Database implementation

	Case studies
	Case studies
	IEETA monitors
	Students@DETI

	Conclusion
	Future work

	References

