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Resumo 
 

 

A prática de exercício tem vindo a ser aclamada pela sua capacidade em induzir 
múltiplas adaptações benéficas, não só em indivíduos saudáveis, como também 
em pacientes diagnosticados com um largo conjunto de patologias, incluindo 
cancro. No contexto da caquexia associada ao cancro (CC), contudo, o exercício 
pode representar uma “espada de dois gumes”. Se por um lado os pacientes 
podem beneficiar dos muitos efeitos benéficos induzidos pela prática de 
exercício, por outro lado, evidencias apontam o exercício como um promotor do 
acastanhamento que ocorre no tecido adiposo branco (WAT). De facto, o 
exercício parece ser capaz de induzir a expressão da UCP1 e da PGC-1α, o que 
pode contribuir para aumentar o gasto energético experienciado pelos 
indivíduos com CC. Esta aparente dicotomia faz do exercício físico uma variável 
interessante e crucial a ser estudada ao nível do tecido adiposo no âmbito na 
caquexia associada ao cancro. O objetivo do presente trabalho foi, portanto, 
avaliar o impacto do exercício de endurance nas remodelações que ocorrem no 
tecido adiposo branco na caquexia relacionada com o cancro. Para tal, um 
protocolo de exercício em tapete rolante foi implementado em dois modelos pré-
clínicos, de cancro da mama e da próstata, usando ratos Sprague-Dawley e 
ratos Wistar Unilever, respetivamente. Foram recolhidas amostras de tecido 
retroperitoneal e o seu conteúdo proteico, no que diz respeito a marcadores de 
acastanhamento e metabolismo, foi analisado. Foi ainda realizada uma 
avaliação histológica em ratos com caquexia associada ao cancro da próstata, 
com o objetivo de analisar a área e o número de adipócitos, bem como outros 
processos de remodelação a ocorrerem no tecido adiposo branco. Os resultados 
obtidos sugerem que o exercício de endurance não piora nem melhora o 
dispêndio energético que é exibido na caquexia associada ao cancro, já que não 
foram detetadas alterações nos níveis de expressão dos marcadores analisados 
nos animais com caquexia em resposta ao exercício. Não obstante, alterações 
ao nível da morfologia dos adipócitos, caracterizadas por uma diminuição das, 
foi notada nos animais sujeitos ao protocolo de exercício de endurance. Estas 
evidencias experimentais realçam a capacidade do exercício em induzir 
adaptações no tecido adiposo e evidenciam a prática de exercício como uma 
ferramenta potencialmente benéfica no controlo da caquexia associada ao 
cancro. 
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Abstract 

 

Exercise training has been claimed for its capability of inducing several beneficial 

adaptations, not only on healthy individuals, but also on a large range of 

pathologies, cancer included. In the cancer cachexia (CC) set, however, exercise 

may represent a “double-edged sword”. If by one hand patients may benefit from 

the many healthy effects induced by exercise training, by other hand, some 

evidences are pointing exercise as a promoter of the browning that occurs in 

white adipose tissue (WAT). Indeed, exercise seems to be capable of upregulate 

the expression of UCP1 and PGC-1α, which can contribute to further enhance 

the energy expenditure experienced by subjects with CC. This apparent 

dichotomy makes exercise an interesting and crucial variable to be studied on 

adipose tissue remodeling level in the cancer cachexia set. The aim of the 

present study was to evaluate the impact of endurance exercise on the WAT 

remodeling taking place on cancer-related cachexia. To do it so, a treadmill 

exercise protocol was implemented in two pre-clinical models, of mammary and 

prostate cancer using female Sprague-Dawley rats and male Wistar Unilever 

rats, respectively. Retroperitoneal tissue samples were collected and its protein 

content, regarding some selected markers of browning and metabolism, were 

analyzed. In addition, a histological evaluation, aiming to analyze the cross-

sectional area and adipocytes number, as well as other remodeling process 

occurring on WAT, was performed on rats bearing prostate cancer. The obtained 

results suggested that endurance exercise does not worsen or ameliorates the 

energy expenditure and the metabolic impairment scenario taking over WAT in 

cancer cachexia, once no alterations were detected in the expression levels of 

the analyzed markers. Nevertheless, alterations regarding adipocytes 

morphology, characterized by a significant decrease of adipocytes areas, was 

notice for the animals subjected to the endurance exercise protocol. These 

findings highlight exercise capacity in inducing adaptations on the adipose tissue 

and evidence exercise practice as a potential beneficial tool on the managing of 

cancer cachexia.  
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The formal definition of cachexia has been subject of alterations as new information’s 

come to light. The current most accepted definition states that cachexia describes a 

complex multifactorial syndrome associated with an underlying disease and characterized 

by an ongoing loss of skeletal muscle associated with or without loss of adipose tissue 

and increased protein catabolism [1,2]. The main clinical features displayed in this 

condition include not only an involuntary and progressive weight loss in adults or growth 

failure in children, as well as a reduced physical function and decreased survival [3,4]. 

Anorexia, inflammation, insulin resistance, and impaired protein, carbohydrate and lipid 

metabolism are also frequently related to this syndrome [3,5]. Even though cachexia is 

recognized to be a serious consequence of many chronic diseases such as cancer, chronic 

obstructive pulmonary disease (COPD), sepsis, chronic heart failure, acquired 

immunodeficiency and multiple sclerosis, it continues to be frequently undiagnosed and 

rarely treated [6,7]. Accordingly to a recent consensus, cachexia should be diagnosed 

whenever a patient presents a body weight loss of at least 5% during the previous 12 

months or less [3,8]. The time frame may be disease-specific, being reported to be shorter 

in cancer patients (3 to 6 months) and longer in COPD (12 months) [3]. A body mass 

index (BMI) of < 20.0 Kg/m2 may also be used as a key factor to diagnose cachexia in 

cases where a history of weight loss cannot be accessed [1,3].  In addition to weight loss, 

at least 3 of the following 5 parameters must be identified: decreased muscle strength; 

fatigue; anorexia; low fat-free mass index; and an abnormal biochemistry (such as 

increased inflammatory markers anemia and low serum albumin) [3].  

In the scope of cancer, cachexia has been pointed, for a long time, as a significant adverse 

outcome, often associated with poor responses to chemotherapy and poor prognosis [1,9]. 

It affects around 50 to 80% of cancer patients, depends on the tumor type, and may 

account for up 20% of cancer deaths [10]. In some cases, cachexia arises as one of the 

earliest manifestations of the tumor-host interaction [11], and may markedly affect 

patients quality of life. The highest frequency seems to appear in patients with pancreatic 

or gastric cancer, while patients with non-Hodgkin’s lymphoma, breast cancer, acute 

nonlymphocytic leukemia, and sarcomas are reported to be the ones with the lowest 

frequency of weight loss [7,12]. Although cancer cachexia (CC) is more incident in some 

types of tumors, its extent may present variations from host to host bearing the same type 

of tumor [11].  In situations of advanced stages, when patients often present a severe 

muscle and adipose tissue wasting, signs of a reduced physical performance and 

metastatic refractory disease with reduced tolerance to anticancer therapy, even a 
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multimodal approach intended to regain function and lean tissue is unlikely to be 

successful [1]. In order to easily recognize and efficiently counteract the progression of 

this disease, a better understanding of the pathogenesis and the implementation of novel 

therapies becomes crucial.  

 

1.1. The role of inflammation in cancer cachexia 

Multiple processes consort with the progression of cancer cachexia to force important 

metabolic changes and often leading to anorexia, decreased physical activity and an 

abnormal metabolic response regarding protein, lipid, and carbohydrate metabolism [3]. 

A proposed path for the development of cancer cachexia states that there are alterations 

in substrate mobilization driven by inflammation, that is currently considered a cancer 

hallmark [13]. Indeed, numerous pro-inflammatory cytokines are released in response to 

cancer cachexia-related inflammation and due to a tumor-induced activation of the host 

immune system [14]. These cytokines are thought to have important roles in the 

pathological mechanisms of CC and include the tumor necrosis factor-α (TNF-α), 

interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, parathyroid hormone-related peptides 

(PTHrP) and the macrophage migratory factor (MIF) [10,14]. They share some of the 

same metabolic effects and their activities are closely correlated, often presenting 

synergistic effects [14]. These cytokines are transported across the blood-brain barrier 

and interact with brain endothelial cells causing the release of substances that affect 

appetite, contributing to the anorectic state that is often identified in cachectic patients 

[15,16]. They are likely to be the primary catabolic triggers of skeletal muscle loss, 

inducing signaling pathways that upregulate enzymes involved in skeletal muscle protein 

turnover [17,18]. Currently, the analysis of the C-reactive protein (CRP), an acute-phase 

response (APR) protein, is considered to be an accurate method to measure the impact of 

pro-inflammatory cytokines burst, serving as an index of these proteins activity and 

allowing to investigate the potential role that they may have in several aspects of the 

cachectic syndrome [19].  Due to their importance in the CC etiology, these mediators are 

important targets in the current research for therapeutics and to reach a better 

comprehension of adipose tissue remodeling and skeletal muscle loss.  
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1.1.1. Pro-inflammatory cytokines – an integrated view in CC 

It is of general acceptance that the genesis of cancer cachexia is strongly associated with 

the inflammatory status promoted by the tumor, contributing to many of the observed 

features[14]. TNF-α, for instance, a powerful cytokine involved in the maintenance of the 

immune system and inflammation, has been subject of extensive studies in the scope of 

cancer cachexia. This pro-inflammatory cytokine can be released by activated 

macrophages or by other types of cells, such as neutrophils, mast cells, CD4+, eosinophils 

and neurons [20]. TNF-α is reported to promote apoptotic cell death, inflammatory 

response and to induce a direct catabolic effect on skeletal muscle, leading to the loss of 

this tissue through the induction of the ubiquitin-proteasome system (UPS) [20]. Indeed, 

increased levels of both free and conjugated ubiquitin and mRNA ubiquitin were detected 

in rats’ limb muscles after an intravenous injection of TNF-α, supporting the idea of an 

induced muscle catabolism stimulated by this cytokine [21]. At a cellular level, a wide 

number of pathways can be mediated by TNF-α to promote complex post-receptor 

signaling events. Out of them, the nuclear factor kappa B (NF-κB)-induced catabolic 

signaling is thought to be a key path in protein degradation in cachexia [20]. In this 

pathway, TNF-α activates the NF-κB, a primary mediator in the control of transcription 

and an important signaling applicant during catabolism [22]. This activation occurs in 

skeletal muscle cells through the binding of TNF-α to the type 1 TNF-α receptor 

(TNFR1), that has been linked to protein loss by affecting the expression of genes 

involved in the regulation of the UPS [20,21]. Indeed, mice transplanted with Lewis 

carcinoma lacking TNFR1 showed decreased muscle wasting when compared with wild-

type mice and suggested an involvement of this type of receptor in muscle protein 

degradation rather than type 2 TNF-α receptor [23]. Normally, TNF-α is not detected in 

plasma or serum of healthy individuals, but it can be detected in most cancer patients, 

especially in those with advanced disease and poor prognosis [24]. A study conducted by 

Pfitzenmaier et al. [25] in a group of patients with advanced prostate carcinoma and 

diagnosed with cachexia, revealed a significant elevation on the serum levels of TNF-α, 

as well as of IL-6 and IL-8 when compared with those without cachexia, supporting the 

idea that these cytokines involvement in cachexia development. Furthermore, a pairwise 

correlation between the levels of TNF-α and IL-8 was also found, establishing the idea of 

a coordinate expression regulation [25]. In addition to induce protein breakdown, other 

important roles have been associated with TNF-α activity in the scope of CC. This 
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cytokine seems to be capable of stimulating gluconeogenesis and lipolysis and to decrease 

the levels of protein synthesis, lipogenesis and glycogen synthesis [10,24,26]. It has also 

been reported that TNF-α can stimulate the expression of the uncoupling proteins (UCP)-

2 and UCP3 in the skeletal muscle, and induce the expression of IL-1 [7,27–29]. In 

adipose tissue, particularly, TNF-α was reported to downregulate the expression of some 

transcription factors, such as peroxisome proliferator-activated receptor γ (PPARγ), 

retinoid X receptor α (RXRα) and CCAAT enhancer binding protein α (C/EBPα) [30]. 

These are essential for adipocyte function and differentiation, and therefore, these 

findings expose the role of TNF-α in adipose tissue loss by inhibiting lipogenesis.  

Even though TNF-α is widely recognized to be an important player in cachexia 

progression, as it contributes to induce many of the clinical features seen in this condition, 

it has been demonstrated that the inhibition of this mediator activity, by itself, cannot stop 

or reverse cancer cachexia. For this reason, there is a wide agreement that TNF-α may be 

involved but is not the only responsible for the effects observed [31]. In fact, levels of IL-

1, another pro-inflammatory cytokine, are also generally found increased in cachectic 

patients [14]. This cytokine has been reported to cause similar effects to the ones 

described for TNF-α, such as the promotion of an anorexic state [14,15]. Indeed, IL-1 can 

contribute to increase the concentration of tryptophan in plasma, which in turn leads to 

an increase in serotonin levels. High levels of serotonin can cause an early satiety and 

suppression of hunger [32]. When it comes to TNF-α, the anorexic state is stimulated by 

the enhanced production of the corticotrophin-releasing hormone, and the consequent 

suppression of food intake [20]. IL-1 is also capable of stimulate the production of IL-6, 

whose levels are usually increased in cachectic patients and may have different functions 

in the organism defense by regulating the immune response [7,33]. Further evidences 

were given by Soda et al. [34], who described serum levels of IL-6 35% lower in non-

cachectic mice relative to the cachectic ones. These findings led to the conclusion that IL-

6 may be an enabler for the development CC, although, and similarly to TNF-α, cannot 

by itself induce all the observed symptoms [34]. Furthermore, circulating levels of IL-6 

have been related to weight loss, reduced survival and an induced APR, stimulated by the 

liver in cancer patients [35–37]. Other studies also implicate IFN-γ, a cytokine produced 

by activated T-cells and macrophages, as an important player in cancer cachexia [38]. 

This protein has proven to stimulate the release of free fatty acids (FFA) from adipocytes 

by inhibiting the activity of the lipoprotein lipase (LPL) [39,40]. Additionally, in cultures 

of rats adipocytes, IFN-γ demonstrated the ability to inhibit the activity of the enzyme 
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glycerol phosphate dehydrogenase, that is involved in lipogenesis, thus contributing to 

the adipose tissue wasting [41]. A study conducted by Matthys et al. [42] in mice 

inoculated with chinese hamster ovary (CHO)/IFN-γ cells, has shown that this cytokine 

enhances body weight loss and reduce food intake. These features were not observed in 

the control group that was only inoculated with CHO cells, evidencing the role of IFN-γ 

as an inducer of cachexia [42]. Even though IFN-γ is widely recognized for having a 

prominent role in CC development, the idea that this cytokine does not work alone seems 

to be very clear [38,42]. In fact, it very well stablished that the effects caused by the 

systemic inflammation are an outcome from the interplay of various cytokines such TNF-

α, IL-6, IL-1 and IFN-γ, leading not only to an increased proteolysis and lipolysis, but 

also influencing the rates of energy expenditure and food intake [14,25,31,38,42–47].  

 

1.2. Energy balance disruption associated to CC 

Cancer cachexia is a type of energy balance disorder in which energy intake is decreased 

and/or resting energy expenditure (REE) is increased [7]. The contributions of both intake 

and expenditure are related to the type and stage of the tumor [7]. Patients with pancreatic 

and lung cancer often indicate an elevated REE, while in opposition, patients with gastric 

and colorectal cancer are reported to have no elevation in the REE [46,48]. Even though 

alterations in energy intake are often associated with cachectic patients, the increased 

energy expenditure has been reported as the one that mostly contributes to the wasting 

syndrome [49]. These findings are supported by patients on total parental nutrition, and 

therefore with a controlled energy intake, that still lose weight and present symptoms of 

cachexia [49]. 

The molecular mechanisms underlying energy expenditure, and therefore contributing to 

the involuntary weight loss, can be of different types. About 70% of the total energy 

expenditure in sedentary people arises from the REE [7]. One example is the lactate 

recycling associated with Cori Cycle that occurs between the liver and the tumor mass 

[18]. Indeed, most cancer cells are glycolytic, using glycolysis to generate ATP over 

mitochondrial oxidative phosphorylation, even when the oxygen supply is not 

compromised [50,51]. This phenomenon is called Warburg effect [52], also known as 

aerobic glycolysis. In tumor cells, glucose is converted into lactic acid, an energy-

inefficient process that ends up to requier about 40 times more glucose than if it was 

completely oxidized through the citric acid cycle [7]. In addition, the lactate passes from 



Impact of exercise training on white adipose tissue remodeling in cancer cachexia 
 

7 
 

the tumor to the liver, where it is resynthesized into glucose, in another inefficient process. 

It takes 6 mol of ATP to generate 1 mol of glucose from 2 mol of lactic acid. Higher rates 

of glucose synthesis and recycling have been observed in patients with metastatic 

colorectal cancer than in subjects without cancer that suffer from weight loss [53]. 

Moreover, the increased energy expenditure may also emerge as a consequence of 

mitochondrial DNA mutations, a scenario often observed in cancer patients that may 

prevent the use of Krebs cycle to fully oxidize the pyruvic acid, leading cancer cells to 

resynthesize lactate and rely almost exclusively upon glycolysis.  [55, 56, 57]. The 

consequently use of Cori Cycle to regenerate glucose leads to an increased energy 

expenditure. Recent studies have also been pointing cachexia-related alterations in 

adipose tissue as significant contributors to the energy expenditure. In fact, an increased 

REE have been consistently reported and justified as a consequence of the enhanced 

thermogenesis that takes over adipose tissue in the progression of CC [28]. In this case, 

the upregulation of uncoupling proteins, which mediate proton leakage across the inner 

mitochondrial membrane, thus disrupting mitochondrial ATP synthesis, is thought to 

constitute the determinant factor [7]. 

 

1.3. Skeletal muscle loss underlying CC   

Cancer cachexia is invariably associated with skeletal muscle loss and atrophy. It is 

estimated that almost one-third of the deaths in cancer patients are related to muscle 

catabolism and weakness, especially when the respiratory muscles are involved [55]. In 

healthy individuals, a balance in skeletal muscle metabolism, that accounts for nearly half 

of whole-body protein mass, is maintained through catabolic and anabolic processes that 

occur concomitantly [18]. The result is a continuous renewal of muscle protein without a 

net change in the global muscle mass [7]. Several studies in cachectic patients provide 

evidence for a decreased protein synthesis, an inhibited uptake of amino acids and an 

increased protein degradation, particularly, the myofibrillar proteins actin and myosin, as 

a reason for the muscle wasting [55–59]. However, the relative importance of both 

processes has not reached a consensus.  

One of the most studied proteolytic pathways in the scope of CC, and considered to be 

the predominant player in the degradation of the myofibrillar proteins, is the ATP 

dependent ubiquitin/proteasome pathway [57]. This system has been consistently 

reported to be hyperactive in several animal models of cancer cachexia, revealing 
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increased mRNA levels of ubiquitin and proteasome subunits, as wells as increased 

proteasome activity being detected [60,61]. Supporting evidence for the role of UPS are 

given by muscle biopsies from cachectic gastric patients, that showed an elevated 

expression of ubiquitin mRNA and the 20S proteasome subunits, and also an increased 

activity in the muscle proteasome activity [62]. Moreover, skeletal muscle seems to be 

selective in the degradation of specific proteins rather than general. For instance, 

cachectic-induced mice by colon-26 tumors showed that myosin heavy chain was 

selectively reduced above all the others, what was correlated with wasting [63]. In 

addition, using the same model, was also reported degradation of the respiratory muscles, 

what may suggest cachexia as an increasing factor for the risk of respiratory failure [64]. 

This enhanced activity for the UPS is thought to be mediated by the activation of the 

FoxO and the NF-κB transcription factors through the induction of the key atrogenes 

MuRF-1 and MAFbx, which are responsible for the selective polyubiquitination of 

proteins targeted for degradation [55]. Furthermore, FoxO transcription factors may 

additionally suppress the PI3K/Akt pathway, and therefore inhibit protein synthesis  [55]. 

Protein degradation through the autophagic-lysosomal system (ALS) is also getting a lot 

of attention in the context of CC. Indeed, autophagy is thought to play a central role in 

the regulation of muscle homeostasis, either constitutively or as a response to different 

stimuli such as fasting and exercise [65]. An inefficient autophagic process may lead to 

an impaired turnover of cellular components with an accumulation of misfolded and 

aggregated proteins and dysfunctional organelles [65]. Recent findings have suggested an 

impaired autophagosome clearance in the skeletal muscle of cachectic patients [65,66]. 

Abnormalities in the dystrophin glycoprotein complex (DGC), a membrane structure that 

connects the cytoskeleton of a muscle fiber to the extracellular matrix and is involved in 

muscular dystrophy, has been implied in the wasting noticed in cachectic patients [67]. 

In fact, studies performed in muscles from cachectic mice and gastrointestinal cancer 

patients revealed reduced levels of DGC with an increased glycosylation of DGC 

proteins, suggesting an important role of DGC abnormalities in the muscle atrophy [67]. 

Furthermore, the proteolysis-inducing factor (PIF), whose levels have been found 

elevated in cachectic patients [68,69], seems capable of inhibiting protein synthesis and 

to stimulate protein degradation by inducing the expression of components of the UPS 

through the activation of the transcription factor NF-κB [70]. This activation involves the 

phosphorylation of RNA-dependent protein kinases, leading to the inhibition of protein 

synthesis [71]. 
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Several intracellular signals, that can be modulated by inflammatory cytokines secreted 

either by immune cells or tumor-derived, are also involved in the protein turnover that 

becomes compromised in the development of the wasting process [72,73]. The NF-κB 

and the JAK/STAT, when triggered by pro-inflammatory or pro-cachectic cytokines such 

TNF-α, IL-6, and IL-1, are two established pathways that can lead to muscle wasting [73]. 

Additionally, and beside all the factors inducing skeletal muscle atrophy, the study of the 

mechanisms underlying muscle hypertrophy has also been providing important insights 

into the processes leading to muscle loss. Multiple reports have implied the insulin-like 

growth factor 1 (IGF-1) pathway as an inducer of protein synthesis and satellite cells 

proliferation and differentiation [55,72]. From a molecular perspective, IGF-1 activates 

the insulin receptor substrate 1, which through the PI3K-Akt pathway can induce protein 

synthesis via the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 

3β (GSK3β) [72]. Furthermore, the activation of the PI3K/Akt/mTOR pathway may also 

result in the down-regulation of MuRF-1 and MAFbx by the inhibition of FoxO, resulting 

in a decreased protein degradation [73]. A study performed by Thomas L. Schmitt et. al 

in muscle and liver biopsies from 16 patients undergoing pancreatectomy for the suspect 

of carcinoma, revealed that the muscle samples from cachectic patients presented 

decreased levels of the Akt protein, as well as a reduced phosphorylation of the 

transcription factors FoxO1 and FoxO3a [73]. Decreased levels of phosphorylated protein 

kinases from mTOR were also found, what led to the idea of a cachexia-associated loss 

of Akt-dependent signaling in human skeletal muscle, with a decreased activity of 

regulators of protein synthesis and increased protein degradation [73]. 

Even though substantial amounts of studies have already been conducted in animals 

aiming to characterize and understand the molecular mechanism of muscle wasting in 

CC, there is still the need of more research on human tissue samples to clarify the 

signaling pathways and to confirm some pre-selected drug targets.  

 

1.4. Principal features of White and brown adipose tissue 

Adipose tissue (AT) functions as a central metabolic organ in the regulation of the whole-

body energy homeostasis. In conditions of nutrient abundance, AT stores the excess in 

the form of neutral lipids [74]. By opposition, in conditions of nutrient depletion  AT 

supplies nutrients to other tissue through lipolysis [74]. It is possible to identify two major 

types of adipose tissue in humans: white adipose tissue (WAT), that is mainly responsible 
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of providing insulation and energy storage; and brown adipose tissue (BAT), a specialized 

form that participates in non-shivering thermogenesis through lipid oxidation [75,76]. 

BAT is mainly present in neonates and is gradually replaced by WAT with aging [77]. 

However, and despite to what has been thought for quite some time, it is also present and 

functional in adults, exhibiting higher masses in females [78,79]. Compared with WAT, 

BAT presents a rich vascularization, abundant mitochondria and multilocular lipid 

droplet [80]. The characteristic brown color of BAT is due to a high mitochondrial 

density, which is necessary to support the high levels of lipid oxidation and heat 

generation [75]. BAT also expresses elevated levels of UCP1, a mitochondrial protein 

responsible for dissipating energy as heat instead of producing ATP [28]. When activated, 

UCP1 allows the FFA to flip-flop across the inner and outer mitochondrial leaflets, 

increasing its permeability and the bypassing of ATP-synthase, thereby allowing the 

electrochemical energy to dissipate as heat and resulting in thermogenesis [81]. 

The realization that brown functional adipose tissue does exist in adult humans, and that 

is possible to promote the switch from white into brown tissue under the action of specific 

conditions and mediators, has brought into light a new line of investigation aiming to 

develop new therapies based on adipose tissue itself.  

 

1.4.1. Adipose tissue remodeling during cancer cachexia 

In response to alterations in energy balance, adipose tissue can rapidly and dynamically 

undergo morphological and molecular changes. Some of these alterations have been 

reported to occur within adipose tissue depots during the progression of cancer cachexia, 

and even though there are some conflicting evidence regarding the relative contribution 

of lean versus fat loss, the current knowledge seems to indicate that AT loss precedes and 

occurs more rapidly than muscle wasting [82,83]. Additional studies, performed in 

cachectic patients with colorectal and lung cancer, documented accelerating rates of loss 

for all fat depots in terminal stages, within 3 to 7 months before death. However, clinical 

studies aiming to characterize changes in advanced cancer patients are limited due to 

ethical issues in obtaining AT biopsies from this group of patients. So, most studies are 

performed on patients with early staged operable tumors [47]. Alternatively, animal 

models can be used [84,85]. 

In addition to mature adipocytes, adipose tissue also contains endothelial cells, 

preadipocytes, mast cells and immune cells. Collectively, during the progressions of CC, 
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each of these elements contribute to the alterations that progressively occur in the tissue 

and in the extracellular matrix components [14,86]. One of the most relevant changes is 

undoubtedly the enhanced lipolysis, normally associated with an increased turnover of 

glycerol and FFA, and a decreased volume (but not the number) of adipocytes [85,87]. 

This process is mediated by the lipid mobilizing factor (LMF), a tumor-induced catabolic 

factor that directly affects adipocytes of WAT and stimulates lipolysis, leading to the 

release of FFA and glycerol in a cyclic-AMP (cAMP)- dependent process [88]. LMF 

binds with high affinity to β3-adrenergic receptors [89], which have already been studied 

in the cancer cachexia set and suggested to be elevated and to play an important role in 

the regulation of lipolysis and energy expenditure [90]. A similar effect has been reported 

for the zinc α2-glycoprotein (ZAG), whose production by WAT is enhanced in some 

cachectic patients. This protein is capable of stimulating glycerol release and increase 

UCP1 expression in BAT by activating β3-adrenoreceptors [91,92]. Thus, LMF and ZAG 

not only increase lipid mobilization but also lead to substrate utilization through the 

stimulation of the mitochondrial oxidative pathway in BAT, further contributing to the 

energy expenditure observed in cachectic patients [88,93]. 

When it comes to morphological alterations, and complementarily to the marked loss of 

WAT due to lipolysis, shrunken and heterogeneous in size adipocytes were reported in 

cancer cachexia [85]. An increased fibrosis in the tissue matrix and other numerous 

alterations were also detected in the ultrastructural components of adipocytes. Cell 

membrane reveals irregular cytoplasmic projections, and the mitochondria are different 

from the typical WAT mitochondria, being electron dense and with an increased cristae 

[85]. The transcription of the key adipogenic factors PPARγ, C/EBP β e α and the 

SREBP-1c were also reported very decreased, what may inhibit lipogenesis and disrupt 

new adipocytes recruitment [85,94]. These findings highlight the existence of pronounced 

molecular and morphological alterations within WAT during the progression of cancer 

cachexia, revealing an impairment in the formation and lipid storage. Furthermore, 

inflammatory cell infiltration, primarily represented by macrophages and monocytes, 

have also been reported, which can further contribute to the inflammatory state noticed 

and lead to a set of negative effects on the tissue, including adipocytes death [95]. 

The systemic inflammation, characterized by an increase of pro-inflammatory cytokines, 

is also closely related to many of the alterations occurring in adipose tissue [14]. The 

serum levels of TNF-α have been demonstrated to be positively correlated with adipocyte 

size and volume, as well as with a stimulated lipolysis and a suppressed activity of LPL, 
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needed for the hydrolysis of fatty acids from plasma lipoproteins [96]. Moreover, IL-1 

and IFN-γ can directly stimulate lipolysis, and along with IL-6, further contribute to 

inhibiting the expression of LPL mRNA [7]. TNF-α has also been reported to prevent 

preadipocytes differentiation and inhibit the expression of lipogenic transcription factors 

[96,97]. Additionally, the chronic inflammation that characterizes CC, particularly the 

increased levels of IL-6, can enhance the expression of UCP1 in WAT, leading to the 

tissue browning, increased lipid mobilization and energy expenditure [98]. 

 

1.4.2. How adipokines interplay with CC 

Besides its primary role in storing excess lipids, AT defines a major endocrine organ, 

secreting hormones and adipokines capable of modulating appetite and nutrient 

metabolism [99]. Therefore, alterations in AT mass may lead to significant effects on 

organism energy homeostasis. Among the CC set of players, alterations on adipokines 

levels have been fundamentally implied in the regulation of appetite and inflammatory 

status [99]. Leptin, the first discovered adipokine and a key mediator in the regulation of 

body mass, has indeed been proven to have its own role in the development of CC [100]. 

Its main functions have been reported to be the suppression of food intake and the 

stimulation of energy expenditure [101]. This hormone is produced by the obese gene in 

differentiated adipocytes in proportion to fat mass and acts in the central nervous system 

by inhibiting the orexigenic pathways, with a decreased expression of the neuropeptide 

Y (NPY),  and by stimulating anorexigenic pathways [100]. Moreover, leptin may affect 

several metabolic pathways, such as GH signaling and lipogenesis [102,103]. Normally, 

leptin presents higher levels among females and its secretion is regulated not only by food 

intake but also by insulin, glucocorticoids and catecholamines [104–106]. In fact, the 

transport of leptin to the brain seems to increase by pretreatment with glucose and insulin 

and to be reduced by fasting [107,108]. Moreover, it also seems to be influenced by the 

presence of leptin binding proteins in the blood such as CRP, that limits leptin receptor 

binding and the transport across the blood-brain barrier [109]. In fact, a correlation 

between the levels of CRP and leptin have already been established. Some in vitro studies 

reported that leptin is able to promote CRP production from hepatocytes and endothelial 

cells and suggested that in vivo leptin administration may modulate plasma CRP levels 

[110,111]. Additionally, it has also been shown that CRP directly binds leptin in 

extracellular settings, thus impairing its biological properties [110]. Indeed, some patients 
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with CC exhibit significantly decreased levels of leptin when compared to cancer patients 

without cachexia and healthy controls [112]. However, this decrease is thought not to 

trigger a compensatory mechanism in order to promote food intake or diminish energy 

expenditure [100]. This lack of response has been attributed to a hypothalamic 

inflammation, that causes a reduced response of leptin targets to the diminished levels of 

this adipokine [100]. In addition, an intracerebroventricular administration of leptin in 

rats seems to induce the expression of UCP1, UCP2, and UCP3, what may contribute to 

the increased energy inefficiency [113]. The relation between leptin and cancer cachexia 

is still, however, somewhat hypothetical, with several studies showing contradictory 

results [112,114,115].  

Another member of the adipocyte-secreted proteins, and also an important body weight 

regulator is adiponectin, which is exclusively secreted by adipose tissue [116]. Such as 

leptin, adiponectin serum levels are gender dependent, being normally higher in females 

[117]. Its circulating levels have been reported to be inversely correlated with body 

weight and to be reduced in situations of insulin resistance [118]. In fact, the 

administration of adiponectin has been shown to increase glucose uptake by muscles and 

increase insulin sensitivity [119]. In several tissues, such as liver and muscles, an 

increased fatty-acid oxidation, as well as a stimulated expression of uncoupling proteins 

and thermogenesis have also been attributed to adiponectin action [119,120]. Even though 

the mechanisms that coordinate the regulation of this adipokine still poorly understood, 

some evidences suggest a down-regulation of this molecule by TNF-α [121]. An inverse 

correlation between the circulating levels of adiponectin and both free and total leptin 

concentration in cancer patients have also been reported, with a suggested antagonizing 

action of adiponectin on leptin effects after weight loss [95]. In cancer patients exhibiting 

signs of cachexia, some contradictory data regarding adiponectin serum levels have been 

presented. In fact, a study conducted by Jamieson et al. [122] reported low levels of 

adiponectin in individuals with advanced lung cancer who experienced weight loss, whilst 

a different study, performed by Kim at al. [101] in lung and colorectal cancer patients, 

revealed no significant differences between the cachectic and the non-cachectic subjects. 

Opposite results were obtained by Batista Jr. et al [99], that reported significantly higher 

plasma adiponectin levels in cachectic cancer patients when compared to stable weight 

cancer patients. An explanation to these controversial data may pass through the 

realization that the adiponectin levels may differ with the location and stage of the tumor, 

as well as with other variables such as age, gender, BMI and the fat depot in analysis [99]. 
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Indeed, higher levels of adiponectin were detected especially in the subcutaneous rather 

than in the visceral adipose tissue and thought to be a result of a specific fat depot 

alteration, such as increased production of TNF-α and IL-6 [99].  

In addition to leptin and adiponectin, some other hormones such as resistin and ghrelin 

have also been arousing much interest in the scope of CC. Resistin, for instance, is an 

adipose tissue-derived hormone that has been suggested to be capable of inducing 

endothelial cell proliferation and to promote angiogenesis by upregulating VEGF 

expression [123]. Furthermore, processes like the regulation of glucose homeostasis, 

adipogenesis and the modulation of the inflammatory response have also been reported 

to be under the action of resistin activity [124]. Even though increased levels of resistin 

were associated with an increased risk of cancer and several inflammatory processes, 

there are a limited number of studies regarding the interplay between resistin and the 

pathophysiology of CC, as well as a clear perception of the link between body weight loss 

and appetite [95,124]. Ghrelin, by another side, has been a target of extensive studies in 

the CC context.  This peptide is mostly produced by the stomach and its main properties 

have been cited to be the regulation of food intake [125]. Ghrelin is able to stimulate the 

secretion of the growth hormone (GH) through the growth hormone secretagogue 

receptor (GHSR), and to inhibit the production of anorectic pro-inflammatory cytokines, 

such as IL-1, IL-6 and TNF-α, which may help to overcome some of the symptoms 

observed in CC, in addition to anorexia [126]. Furthermore, the GH, whose release is 

induced by ghrelin, regulates the levels of insulin-like growth factors (IGF)-1, therefore 

promoting the preservation of protein stores at the expense of fat utilization during periods 

of caloric restriction [125]. Indeed, the GH and IGF-1 are recognized to be the major 

metabolic mediators in the regulation of energy balance [125].  Moreover, ghrelin seems 

to be a powerful orexigenic factor, promoting food intake and inducing adiposity. Li et 

al. [127] observed in human umbilical vein endothelial cells treated with and without 

TNF-α, that ghrelin was capable of inhibiting both basal and TNF-α-induced activation 

of the NF-κB, a transcription factor involved in the production of some pro-inflammatory 

cytokines and in the regulation of skeletal muscle protein degradation [128]. In some CC 

patients, the circulating levels of ghrelin (both acylated and deacylated forms) have been 

reported elevated, what may represent a compensatory response to the negative energy 

balance state underlying the disease [129,130].  Data obtained by others also support the 

favorable effects of ghrelin in minimizing the inflammatory status and the muscle loss 

that occurs in patients with cachexia  [131,132]. Additionally, a chronic repeated 
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treatment with ghrelin in mice demonstrated its ability to promote adiposity and to 

decrease the expression of UCP-1 in BAT [84]. 

Ghrelin seems, indeed, a beneficial factor to counteract some of the cachexia symptoms 

and a promisor therapeutic target, enclosing the potential to increase appetite, muscle 

mass, and adiposity, and to decrease thermogenesis in BAT by lowering the UCP-1 levels. 

Although, further studies still vital to understand the influence of this mediator on tumor 

growth, since ghrelin may increase growth factors such the GH and IGF-1, and therefore, 

promote cancer to further expand [125]. A better understanding of how leptin and 

adiponectin levels may vary according to the type and location of the tumor and the 

molecular pathways underlying its action in CC are still required and of great interest, 

since these cytokines are exclusively secreted from adipose tissue and may serve as 

important biomarkers in staging CC and in following fat alterations. 

 

1.4.3. Browning of adipose tissue – a novel feature in energy expenditure on 

CC 

Increased energy expenditure is one of the most relevant features in CC, and has been 

closely associated with AT activity [48,98]. Attending to the origin and the anatomic 

features, it is possible to identify two types of thermogenic adipocytes: brown and beige 

cells [133]. In both, sugars and lipids are burned to generate heat instead of ATP, and to 

maintain body temperature through adaptive thermogenesis [98,134]. Brown and beige 

cells express high levels of UCP1 to allow the uncoupling of mitochondrial respiration 

and present a high mitochondrial density [133,134]. While brown adipose cells are the 

major content of BAT, beige cells are present within white fat depots and have a 

molecular signature of their own that includes the expression of Tbx1, Tmem26, and 

Cd137 gene markers, that are not expressed in brown adipocytes [135]. When stimulated 

either by cold exposure, sympathetic stimulation mediated by the β3-adrenoreceptor, 

exercise, or by a long treatment with PPARγ agonists, an increased expression of 

thermogenic genes and in the number of beige cells can be triggered [134,136]. This 

process is often called “browning” of WAT, and the beige adipocytes formed express 

levels of UCP1 in similar amounts to the ones of brown adipocytes and present 

thermogenic capacity [135,137]. The overexpression of UCP-1 is probably the major 

event triggering the conversion of white into brown adipocytes [138]. This protein is 

located in the inner mitochondrial membrane and is thought to be activated via the PKA-
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p38 mitogen-activated protein kinase (MAPK) signaling pathway, that induces the 

phosphorylation and activation of transactivators of UCP-1 [138,139]. Once active, this 

protein acts as a proton channel and uncouple the ATP production by the ATP synthase. 

Moreover, FFA are thought to be potent activators of UCP-1, what further supports the 

high levels detected for this protein in cancer cachexia, since an increased lipolysis is one 

of the main features of the syndrome (Figure 1) [138,140]. There are two proposed 

hypotheses that have been trying to explain the beige adipocytes differentiation: one of 

them, states that beige adipocytes are formed by transdifferentiation from mature white 

adipocytes; the second hypothesis postulate that the differentiation of beige adipocytes is 

mediated by specific precursors [141–144]. There are also some reports indicating that 

beige adipocytes derived from exposure to cold stimulation can be reverted to typical 

adipocytes once the stimulus is finished [143]. If once again stimulated by cold exposure, 

they can turn again into beige adipocytes, suggesting a potential for repeated 

transdifferentiation of white adipocytes into beige adipocytes [143]. Even though the 

brown adipocyte is the thermogenic unit of BAT, its activity is dependent on a proper 

stimulation and an adequate supply of oxygen and substrates through the capillaries 

surrounding each cell [145]. Furthermore, and despite that brown adipocytes constitute 

the major content in volume of BAT, the largest number of cells within adipose tissue are 

represented by endothelial and interstitial cells, as well as preadipocytes [145]. Under 

conditions of increased thermogenic stimulation, these cells can proliferate and 

differentiate to form, not only new brown adipocytes but also new capillaries and terminal 

nerves in order to properly support the new demands. In fact, VEGF-A, a strong 

angiogenic factor, is found overexpressed in BAT [81]. This marker of vascularization 

has been correlated with the induction of adipose tissue browning, an increased 

vascularization and an up-regulated expression of both UCP1 and the peroxisome 

proliferators-activated receptor gamma coactivator-1α (PGC-1α) in BAT, thus increasing 

thermogenesis and energy expenditure [81,146]. These alterations are intended to support 

the high energy consumption of BAT, control adipose tissue expansion and the overall 

metabolic health [81]. Supporting this idea, a study conducted in mice with adipose VEGF 

deletion, revealed a reduced adipose vascular density, increased hypoxia, apoptosis, and 

inflammation. In contrast, induction of VEGF expression led to an increased adipose 

vasculature and reduced hypoxia [81]. These findings clearly highlight the essential role 

of VEGF signaling for a proper adipose function, although, its importance in the CC set 

still yet to be completely understood. It is important to acknowledge that even though 
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VEGF seems to be essential for a healthy adipose function, it is also an important factor 

involved in tumorigenesis by stimulating proliferative signaling pathways [146]. In fact, 

increased levels of VEGF have been found in obese patients, and its possible involvement 

in the obesity-cancer link has been put into discussion [147]. Therefore, further studies 

aiming to understand and characterize the role of this marker in the CC scope are still 

needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recent studies have identified the parathyroid hormone-related protein (PTHrP), a tumor-

derived polypeptide involved in calcium homeostasis, as an inducer of thermogenic gene 

expression, and therefore, a promoter in the browning of adipose tissue [147,148]. In fact, 

PTHrP seems to potently induce UCP1 mRNA in similar amounts to noradrenaline, the 

 

Figure 1- Schematic overview of the molecular mechanisms and signaling pathways leading to 

the browning of the adipose tissue. Signaling molecules tumor-derived, produced by the SNS and 

muscles are able to trigger signaling pathways leading to the WAT browning. The catecholamines 

Adrenalin (A) and Noradrenalin (NA) through the activation of β-adrenoreceptors (β-AR) are also 

able to enhance thermogenesis either by stimulating the production of FFA or by promoting the 

expression of PGC-1α via the p38 MAPK pathway. Similarly, cytokines such IL-6 and TNF-α, and 

other factors LMF, ZAG and VEGF can activate PKA and may also be able to induce thermogenesis 

and WAT browning. PTHrP has also been proven to cause WAT browning, however the mechanisms 

of its action are still unknown. 
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classic thermogenic catecholamine produced by the sympathetic nervous system [147]. 

Furthermore, PTHR knockout mice revealed not only resistance to cachexia driven by 

tumors, but also an improvement in muscle strength and a preserved muscle mass, 

highlighting its role in other features observed in CC, such as muscle atrophy, and thus 

suggesting a possible crosstalk mechanism between the loss of AT and skeletal muscle 

[149,150]. In fact, elevated levels of PTHrP were found in patients with metastatic 

colorectal and lung cancer exhibiting signs of cachexia [151]. Supporting evidences were 

given in studies performed with mice bearing tumors in which the neutralization of PTHrP 

or loss of its receptor in fat cells resulted in a blockage of the browning process and the 

tumor-induced hypermetabolism as well as in the promotion of adipose tissue wasting 

[150,151]. Therefore, PTHrP plays an important role in cancer cachexia, promoting 

energy expenditure by stimulating the expression of thermogenic genes in AT [151]. 

An important relation between IL-6 and WAT browning has also been established, as 

represented in Figure 1. When an IL-6-deficient colon cancer tumor was implanted in 

mice, WAT browning became significantly impaired [98]. It was reported that IL-6 is 

required for maximal induction of UCP1 in subcutaneous WAT [98]. Indeed IL-6 plays 

an important role in the browning of AT, although, it has been suggested to be less 

important than PTHrP [98]. 

Attending to the thermogenic properties and the high levels of UCP1 expressed, brown 

and beige cells are capable to dissipate energy to produce heat, resulting in an increased 

energy inefficiency [152]. There are some evidences reporting the existence of activated 

brown fat in some patients diagnosed with cachexia, including large peri-adrenal brown 

fat depots and increased UCP1 expression in white fat tissue, what may contribute to the 

increased energy expenditure that characterizes the syndrome [151,152]. 

 

1.4.4. Regulation of the lipolytic pathway 

Lipolysis in adipocytes is achieved by a sequential action of some lipases, such hormone 

sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), that have been found 

increased in the cachexia syndrome [153]. ATGL, since its discovery in 2004, has been 

well accepted to mediate the initial step of triglyceride breakdown, leading to the 

formation of diacylglyceride (DAG) and FFA [153,154]. This process is continued by the 

intervention of HSL and monoglyceride lipase (MGL), that further completes the 

hydrolysis to produce additional FFAs and glycerol, being released to the vasculature to 
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be used by other tissues during energy shortage [153]. These lipases are key regulators of 

the lipolytic pathway, precisely determining the rates in which each of the breakdowns 

occurs [153,155]. Therefore, alterations in the expression of these molecules are often 

detected in cachectic patients, supporting the altered lipolysis rates that characterize this 

syndrome. Several signals, either hormonal or biochemical, are able to modulate the 

activity of lipolytic enzymes and other accessory proteins, therefore allowing an adequate 

response of AT to changes in energy requirements. Under conditions of a negative energy 

balance, such as fasting and exercise, lipolysis is primarily stimulated upon the release 

of, especially, adrenaline and noradrenaline, to activate the β-adrenergic receptors on the 

surface of adipocytes [155,156]. By turn, the activation of the receptors causes the GS 

subunit of G-protein to interact with adenylyl cyclase, whose activation leads to the 

conversion of ATP into cAMP, resulting in an increase of the intracellular cAMP levels 

(Figure 1) [155]. This messenger is able to promote the phosphorylation of both HSL and 

perilipin-1 via protein kinase A [155]. The phosphorylated HSL is then translocated from 

the cytosol to the surface of lipid droplets to induce lipolysis, while the phosphorylated 

perilipin-1 enables the docking of the phosphorylated HSL and promotes the activation 

of ATGL, thus initiating the lipolytic cascade and providing DAG to the action of HSL 

[155]. Indeed, it is currently well accepted that a coordinate regulation of ATGL and HSL 

is fundamental to control AT lipolysis in situations of high energy demand. The 

expression of HSL mRNA and protein, as well as the ratio of plasma glycerol/body fat 

(an index of in vivo lipolysis), have been found elevated in cancer cachexia [140]. A 

similar result regarding the mRNA expression, however, has not been obtained for 

ATGL, that revealed no significant differences between cachectic cancer patients and 

controls [140]. This result is thought to be due to a lack of translation between ATGL 

mRNA expression and enzyme activity since its function is regulated by post-translation 

modifications [157,158]. In fact, elevated activities have been reported for both HSL and 

ATGL in the AT of cachectic patients compared to non-cancer and cancer patients 

without cachexia [159]. Furthermore, the inhibition of lipolysis through genetic ablation 

of ATGL and HSL has proven to ameliorate some features displayed in cancer-associated 

cachexia [159]. In fact, both HSL and ATGL deficient mice with tumors were reported 

to be protected against increased WAT lipolysis, although, in different extents [153,159]. 

Indeed, ATGL seems to play a more prominent role in AT lipolysis than HSL [159,160]. 

Supporting evidences are given by Das et al. [159], in a study conducted on ATGL-

deficient mice with cachexia-inducing Lewis Lung carcinomas or B16 melanomas, that 



Impact of exercise training on white adipose tissue remodeling in cancer cachexia 
 

20 
 

in addition to the increased protection against WAT lipolysis, also reported an enhanced 

resistance to myocyte apoptosis and proteasomal muscle degradation for both HSL and 

ATGL-deficient mice, although, in an extensive degree to the last ones. These findings 

support the critical role that ATGL seems to play in cancer cachexia and suggest the idea 

of a cross-talk between adipose tissue and muscle during the progression of cachexia.  

In addition to catecholamines, there are other factors that can modulate HSL and ATGL 

activities to regulate lipolysis in adipocytes. These factors include natriuretic peptides, 

that signals through guanylyl cyclase and cGMP, and insulin, that is able to down-regulate 

the expression of both HSL and ATGL via the anabolic signaling of Akt/PKB 

[153,155,156]. It is the balance kept by the anabolic and catabolic factors that determine 

the net lipid flux in adipocytes, as well as the aberrant lipid turnover that occurs in 

pathological diseases, such cachexia, when this balance is disrupted [155]. Even though 

much has recently been revealed in spite of how these lipases contribute to the adipose 

tissue remodeling, the signaling mechanisms involved in fat loss still poorly understood. 

Furthermore, little is known about the interplay between the systemic inflammation and 

the enhanced lipolysis in cancer cachexia, and therefore, more studies are essential. 

Moreover, AMP-activated protein kinase (AMPK) has also been reported as being 

capable to phosphorylate both ATGL and HSL, however with different outcomes 

[153,161,162]. AMPK is reported to inhibit HSL by a Ser565 phosphorylation, 

preventing protein kinase A phosphorylation at Ser563 and Ser660 under stimulatory 

conditions [162]. ATGL, in turn, is activated when phosphorylated by AMPK at Ser406 

[160,163]. The overall outcome of AMPK activity is a suppressive effect on FA oxidation 

and energy usage within adipose tissue, by lowering the lipolysis rates [161,162]. Even 

though during states of low cellular energy, AMPK is normally activated in the peripheral 

tissues, the cachectic condition seems to be accompanied by an inactivation of AMPK, 

thus preventing its beneficial role in counteracting the chronic lipolysis taking place in 

cachexia [162]. Interestingly, Rohm et al. [162] developed an AMPK-stabilizing peptide, 

the ACIP, which was able to ameliorate WAT wasting in vitro and in vivo by shielding 

the Cidea targeted interaction surface on AMPK, proposing ACIP as a preserver of 

AMPK activity in WAT and a promisor therapeutic agent for cachexia.   
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1.5. Exercise training in the modulation of CC 

Indeed, several studies have already associated exercise training with anti-inflammatory 

properties [164–166]. In this context, and since systemic inflammation is considered to 

be one hallmark of cancer cachexia, playing a significant role in many of the symptoms 

that characterize this condition, exercise might be seen as a potential strategy in 

counteracting the progression of cachexia [51,167,168]. In fact, it is well established that 

acute exercise induces an immune response, leading to an increased production of 

cytokines that are involved in the acute-phase response and of those that limit the 

inflammatory status, as represented in Figure 2 [164–166,169]. Increased levels of IL-6 

in circulation have consistently been reported following exercise training [166,169]. This 

is the first cytokine detected in circulation during exercise, and increases with the duration 

and intensity of the training and with the muscle recruitment, declining in the post-

exercise period [169–171]. Even though often associated to inflammatory responses, 

some data report that IL-6 does not induce inflammation directly and even present anti-

inflammatory properties by exerting inhibitory effects on pro-inflammatory cytokines 

such as TNF-α and IL-1 [164,172]. In fact, the infusion of elevated levels of IL-6 and the 

practice of exercise were demonstrated by Starkie et al. [172] to attenuate endotoxin-

induced increases in TNF-α. Furthermore, the stimulation of IL-1 receptor antagonist and 

IL-10, a very important anti-inflammatory cytokine, has also been shown for IL-6, further 

supporting the anti-inflammatory effect of exercise [173]. The IL-10/ TNF-α ratio, an 

indicator of individual’s inflammatory status and disease-related morbidity [174], has 

been reported increased in WAT from rats during exercise, promoting an anti-

inflammatory environment in adipose tissue and further emphasizing a beneficial role for 

exercise [175].  

Moreover, resistance exercise can be a powerful stimulant of protein synthesis, leading 

to an increase of muscle fiber area and stimulating both myofibrillar and mitochondrial 

protein synthesis [176,177]. In fact, the concentration of IGF-1 mRNA, an important 

regulator of protein synthesis in skeletal muscle and an inducer of hypertrophy, was found 

increased after resistance exercise (Figure 2) [178]. IGF-1 is thought to act through a 

highly conserved signaling pathway involving a cascade of intracellular components. The 

binding of IGF-1 to its receptor leads to the activation of the protein kinase B (PKB), also 

known as AKT, having as intermediate step the activation of the phosphatidylinositol-3-

kinase (PI3K) [179]. In turn, the activated AKT is responsible for mediating cell growth 
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and survival in a different set of tissues [180]. Indeed, AKT has been reported to be 

capable of inhibiting protein degradation by repressing the transcription factors of the 

FoxO family and to stimulate protein synthesis via the mTOR and GSK3β [181]. In this 

context, resistance exercise leads to an increase of IGF-1 levels, that have been reported 

to be downregulated in cancer cachexia [181], which in turn stimulates protein synthesis 

and induce hypertrophy. Supporting this idea, the use of rapamycin, an inhibitor of 

mTOR, has shown to be capable of completely block muscle hypertrophy [182].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Schematic overview of how exercise training impact may modulate cancer cachexia. 

Exercise may counteract the systemic inflammation that characterizes CC by inducing the release of 

IL-6, IL-10 and IL-1 receptor agonist and by reducing the levels of TNF-α. Since pro-inflammatory 

cytokines are associated with adipose tissue wasting, it may lead to the preservation of the tissue. 

Furthermore, through the increase of IGF-1 levels, exercise training promotes an increased protein 

synthesis and a decreased protein degradation by stimulating the UPS. Exercise training also enhance 

the browning of WAT either by increasing the mitochondrial biogenesis, through the expression of 

PGC-1α and Tfam, or by enhancing the expression of the UCP-1. Exercise can also promote the 

browning of WAT either by sympathetic stimulation, through the action of catecholamines, or by 

stimulating the release of hypothalamic neurotropic factors. Taken together this alteration may lead to 

an increased thermogenesis and consequently, an enhanced energy expenditure.   
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For quite some time exercise has been postulated to cause adaptations in WAT, including 

a decrease in adipocyte size and lipid content, and an increase in mitochondrial biogenesis 

and activity [183,184]. Recently, exercise has been reported to promote the expression of 

beige adipocytes in WAT, especially in subcutaneous WAT, with a markedly increased 

expression of UCP1 [185,186], as represented in Figure 2. Although the mechanisms 

underlying the beiging of WAT cells as a result of physical exercise are still not fully 

understood, some hypotheses have already been suggested. Among them, one states that 

exercise can increase sympathetic innervation in subcutaneous WAT, what can be 

responsible for the beiging that takes place in the cells of this type of tissue; another one 

suggests that exercise training induces the beiging as a response to the increased secretion 

of hypothalamic neurotropic factor [80,187]. Indeed, moderate to high-intensity 

endurance training has been proven to enhance SNS activity, causing the release of 

catecholamines and, as a result, stimulating the browning of white adipose tissue and 

promoting whole-body energy expenditure [95]. Furthermore, markers of vascularization 

such as VEGFA and PGDF, as well as the number of blood vessels, are also found 

increased in the subcutaneous WAT from exercised animals and thought to be mediated 

by the increased sympathetic innervation [95,188]. Additionally, irisin, a cleaved form of 

FNDC5 and a major inducer of the beneficial properties of exercise, has also been found 

increased following exercise training [189]. Exercise is thought to promote increases in 

irisin levels by up-regulating PGC-1α expression in skeletal muscle, causing the release 

of irisin from this tissue by myocytes into the circulation [95,189]. In turn, irisin can act 

on adipose tissue, preferentially on the subcutaneous WAT, and cause the browning of 

the tissue by increasing the expression of UCP-1 and other thermogenic genes [189]. In 

fact, some clinical studies have been confirming the positive correlation between the 

increased levels of FNDC5 and the circulating irisin with exercise training, although, the 

role of irisin is still creating some controversy among the research community, since a 

consistently increase of FNDC5 and irisin has not been detected after endurance exercise 

in humans [95,190,191]. 

Moreover, exercise training is reported to increase PGC-1α and the mitochondrial 

transcription factor A (Tfam) mRNA expression, as well as COX IV and citrate synthase 

activity in both epididymal and retroperitoneal fat pads, promoting mitochondrial 

biogenesis and improving its function (Figure 2) [184,192]. However, even though the 

up-regulation of PGC-1α after exercise is thought to be necessary to increase the 

mitochondrial biogenesis, an enhanced expression of Tfam is not always detected. After 
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a 2 hours bout of acute exercise, Sutherland et al. [193] reported an elevated expression 

of PGC-1α, but not of Tfam. This finding is thought to be related with a delayed induction 

of Tfam expression, that is expected to reach its peak after a 12 hours exposure, and 

therefore evidencing a lack of effect for this transcription factor immediately following 

acute exercise [192]. Alterations in the mitochondrial gene expression in subcutaneous 

WAT also seem to arise as a response to several training program durations and 

modalities [95]. Furthermore, the mitochondrial activity, that was accessed by measuring 

the activity of the enzyme cytochrome c oxidase from the respiratory chain, and the 

enzyme malate dehydrogenase from the tricarboxylic acid cycle, were also significantly 

increased in the visceral WAT of rats in response to 10 weeks of swim training [95,194]. 
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Our aim was to study the influence of exercise training on the white adipose tissue 

remodeling associated to cancer-related cachexia. To fulfill our goal, we evaluated the 

impact of 35 and 55 weeks of treadmill endurance exercise on retroperitoneal adipose 

tissue collected from two pre-clinical models of cancer, breast and prostate cancer, 

focusing on thermogenic alterations, metabolism regulation, mitochondrial biogenesis 

and morphological adaptations. 
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3.1. Experimental design 

In order to evaluate the effect of exercise training on cancer-induced WAT remodeling, 

histological and biochemical analysis were performed through the assessment of the 

expression of target proteins, following the sequence of steps summarized in the figure 3.  

 

 

 

 

In the present work two different studies using distinct pre-clinical models of cancer were 

conducted. The Study 1 was performed using WAT samples from retroperitoneal tissue 

of rats with mammary tumors. In Study 2, WAT samples from a pre-clinical model of 

prostate cancer were used. In this study, a morphometric analysis of retroperitoneal 

adipose tissue was conducted and some molecular players putatively modulated by cancer 

and/or exercise training were assessed by western blotting. In both studies, four 

experimental groups were considered (n=4 per group): control and sedentary, control and 

exercised, with cancer and sedentary, with cancer and exercised. The exercise program 

was distinct in both studies (described below). 

 

Figure 3- Schematic overview of the selected experimental design followed in the present work.  
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3.1.1. Study 1 – Induction of mammary tumorigenesis and implementation of 

exercise training 

Fifty female Sprague-Dawley rats were obtained at the age of 38 days from Harlan 

(Barcelona, Spain). During the experimental protocol, animals were housed in groups of 

4 rats per cage under controlled conditions at 22 ± 2 ºC and 60 ± 5% of relative humidity 

with 12/12 h dark-light cycle, with free access to food (standard laboratory diet 4RF21® 

(Mucedola, Italy)) and water. After a week of acclimatization, the animals were randomly 

divided into four experimental groups: Control Sedentary (CONT + SED, n=10), N-

Methyl-N-nitrosourea (MNU) Sedentary (MNU + SED, n=15), Control Exercised 

(CONT + EX, n=10) and MNU Exercised (MNU + EX, n=15). The animal protocol was 

approved by the Portuguese Ethics Committee for Animal Experimentation, Direção 

Geral de Alimentação e Veterinária (license number 008961) and was performed in 

accordance to European Parliament Directive 2010/63/EU. Mammary tumorigenesis was 

chemically induced by the administration of MNU (N-Methyl-N-nitrosourea, ISOPAC®, 

Sigma chemical Co., Spain). At the age of 50 days, rats from MNU groups were 

intraperitoneally (i.p.) injected with a single dose of 50 mg MNU/Kg body weight. Rats 

from CONT groups were i.p. injected with a single dose of vehicle.  

Animals from EX groups started a treadmill training protocol (Treadmill Control LE 

8710, Harvard Apparatus, USA) at 52 days of age. In the first two weeks, exercise 

duration and treadmill speed were gradually increased until reaching 60 min per day at 

20 m per min, 5 days per week, which was maintained for 35 weeks. 

At the end of the experimental protocol, animals were sacrificed with ketamine/xylazine 

(Imalgen® and Rompun®, respectively) and blood was collected for serum preparation, 

mammary tumors were counted and collected for histological analysis and retroperitoneal 

adipose tissue was removed and prepared for biochemical analysis.  

 

3.1.2. Study 2- Induction of prostate cancer and implementation of exercise 

training 

Forty Wistar Unilever (WU) male rats were purchased from the Charles River 

Laboratories company (France) ate the age of 4 weeks. After arriving, rats were placed 

in quarantine for two weeks and randomly housed in 5 cages. The animals were randomly 

divided in four experimental groups: Control Sedentary (CONT+SED), PCa Sedentary 

(PCa+SED), Control Exercised (CONT+EX) and PCa Exercised (PCa+EX) and kepted 
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in Trás-Os-Montes e Alto Douro University (UTAD) bioterium under controlled 

conditions at 18±2ºC and a relative humidity of 55±5% with 12/12 h dark-light cycle. The 

animal protocol was authorized by the Responsible Organ of animal well-being from 

UTAD and by the General Direction of Veterinary Alimentation (license nº 021326). In 

order to chemically induce prostate lesions in 20 rats (PCa groups), a subcutaneous 

injection of flutamide was administered (20 mg/kg, prepared in 10% of propylene glycol 

and 5% of ethanol) during 21 consecutive days. Two days following the flutamide 

administration, a subcutaneous injection of testosterone propionate was performed (100 

mg/Kg, dissolved in starch oil (Sigma)). After two days, an i.p. administration of MNU 

(30 mg/Kg prepared in citrate buffer 0,1 M, pH 4,8) was given. Fifteen days after MNU 

administration, subcutaneous implants with crystalline testosterone (Sigma) were placed 

in the interscapular region through a small incision followed by suture. This procedure 

was performed under anesthesia (75mg/Kg of ketamin and xilazin) and the implants were 

prepared with medium silicone tubes, 4 cm filled with testosterone, and the extremities 

sealed with medical glue (G.E. RTV-108).  

The animals from EX groups were exercised since six weeks old in a leveled treadmill 

(Treadmill Control LE 8710, Harvard Apparatus, USA) for 50 weeks. The exercise 

program included five days per week, 30 minutes per day during the first week 

(habituation period) and then 60 minutes per day until the end. The speed of treadmill 

was set for 70% of the maximal speed capacity of the animals with PCa and every fifteen 

days the speed capacity was re-evaluated to correct the exercise intensity.  

At the end of the protocol, animals were sacrificed using an overdosage of ketamin and 

xilazin, followed by a cardiac puncture exsanguination. The blood was collected and 

centrifugated to obtain serum, and the prostates collected for anatomopathological 

analysis and retroperitoneal adipose tissue was weighed and stored for histological and 

biochemical analysis.  

 

3.3.3.2.  Adipose tissue preparation for biochemical analysis 

A portion (~40-50 mg – Study 1; ~20 mg- Study 2) of retroperitoneal adipose tissue was 

homogenized in homogenization buffer (8 M urea, 2 M thiourea, 2 % CHAPS, 50 mM 

DTT, 2 % ampholytes pH 3-10, 1 % NP-40 supplemented with the protease inhibitor 

PMSF (200 mM)), in the proportion of 20 mg of tissue/mL of buffer, using a Teflon pestle 

on a motor-driven Potter-Elvehjem glass homogenizer at 0-4ºC. The protein content of 
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the adipose tissue homogenate was assayed with the Bio-Rad RC-DC method, following 

the instructions of the manufacturer, using bovine serum albumin (BSA) as a standard 

and then the samples were preserved at -80ºC. 

 

3.4.3.3.  SDS-PAGE and Western blot analysis 

Equal amounts of protein (20 μg) from each sample were dissolved in loading buffer (0.5 

M Tris-HCl pH 6.8, 4 % (w/v) SDS, 15 % (v/v) glycerol, 1 mg/mL bromophenol blue 

and 20 % (v/v) β-mercaptoethanol) and heated 5 minutes at 100 ⁰C and then 

electrophoresed on a 12.5% SDS-PAGE prepared as described by Laemmli. Gels were 

run for 45 minutes at 180 V in running buffer (250 mM glycine, 25 mM Tris, pH 8.6 and 

0.1 % (w/v) SDS) and the resolved proteins were blotted onto a nitrocellulose membrane 

(Whatman®, Protan®) in transfer buffer (25 mM Tris, 192 mM glycine, pH 8.3 and 20% 

methanol) during 2 h at 200 mA. Then, nonspecific binding was blocked with 5% (w/v) 

nonfat dry milk in TBS-T (100 mM Tris, 1.5 mM NaCl, pH 8.0 and 0.5% Tween 20) for 

1 h at room temperature with mild shaking. The membrane was incubated with primary 

antibody diluted 1:1000 in 5% (w/v) nonfat dry milk in TBS-T (rabbit anti-HSL, ab45422, 

abcam; rabbit anti-VEGFA, ab46154, abcam; rabbit anti-UCP1, ab10983, abcam; rabbit 

anti-FNDC5 (irisin), ab174833, abcam; rabbit anti-ETFDH, ab91508; rabbit anti-PGC-

1alpha, ab54481; anti-mtTFA, ab47548;  rabbit anti-GAPDH, ab9485, abcam; rabbit anti-

Adiponectin, ab22554, abcam; rabbit anti-ATGL, ab99532, abcam). After a 2 h 

incubation at room temperature with agitation, the membrane was washed 3 times with 

TBS-T during 10 min each, to remove the unbonded antibody, and incubated with anti-

mouse or anti-rabbit IgG peroxidase secondary antibody (NA931 or NA934, respectively 

from GE Healthcare, UK) diluted 1:1000 in 5% (w/v) nonfat dry milk in TBST for 1 h at 

room temperature. After, once again, washed 3 times, 10 min. each, with TBST, 

immunoreactive bands were detected with enhanced chemiluminescence reagents (ECL, 

WesternBright™ ECL, advansta, CA, USA) according to the manufacturer's procedure 

and images were recorded using X-ray films (Kodak Biomax Light Film, Sigma®, St. 

Louis, USA). Films were scanned in Molecular Imager Gel Doc XR + System (Bio-

Rad®, Hercules, CA,) and semi-quantitative analysis of optical density (OD) was 

performed with and QuantityOne® 1-D Analysis Software version 4.6.3 (Bio-Rad®, 

Hercules, CA, USA). For mtTFA, Irisin, ETFDH, GAPDH, HSL and VEGF (Study 2) 

the detection method used was the fluorescent one, once this technique is more sensitive 
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then chemiluminescence. In this protocol after the first 2h incubation using a primary 

antibody, a second wash was performed during 1h using a fluorescent secondary 

antibody. The membranes were than washed 3 times with TBS-T and the fluorescence of 

membranes was automatically measured using the Odyssey Infrared Imaging System (LI-

COR® Biosciences, US). Protein loading was controlled by Ponceau S staining once the 

content of cytoskeletal proteins was found to be modulated by the conditions in study. 

 

3.5.3.4.  Histological analysis 

Rats retroperitoneal pieces of adipose tissue collected within Study 2 were included in 

paraffin. The paraffin blocks were sectioned onto 5 μm sections using a manual 

microtome. For each sample two glass slides were prepared with three cuts per slide. One 

of the two glass slides of each sample was deparaffinized in xylol, dehydrated with 

alcohol in decreasing concentrations (100%, 95% and 75%) and stained with 

haematoxylin and eosin (H&E). The same procedure was applied to the other glass slide, 

although, instead of being stained with H&E, a Sirius Red staining was performed in 

order to access the collagen fiber content. Both glass slides of each sample were then 

examined in a bright-field optical microscopy and digital images were captured using 

ZEN Microscopy software. For the samples stained with H&E, a quantification of the 

number, using the automated cell counting system software AdipoCount by CSBIO, and 

adipocytes size, using ImageJ basic software for digital image processing, was performed, 

and the data analyzed. The cell perimeter and sectional area were measured in 100 

adipocytes per field (three random fields for one rat and five animals per group). For the 

samples stained with Sirius Red, due to the friability of the tissue, it was only possible to 

perform a qualitative analysis. 

 

3.6.3.5.  Data analysis 

Values are given as mean ± standard deviation (SD) for all variables. Significant 

differences between the groups were evaluated using Kruskal-Wallis test followed by 

Dunn’s multiple comparisons post hoc test. The statistical significance between the four 

analyzed groups were measured based on P-value and the results were considered 

significantly different when P-value˂0.05. Statistical analysis was performed with Graph 

Pad Prism software (version 6.01). 
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4. Results 
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4.1.Study 1 – Influence of exercise and/or mammary tumorigenesis on adipose 

tissue remodeling  

 

4.1.1. Characterization of rat’s response to MNU administration and/or 

endurance training 

The administration of MNU induced mammary lesions in 100% of the animals and there 

were no alterations in the food intake. No histopathological changes in the mammary 

tissue were observed in control animals (CONT+SED and CONT+EX groups). 

Endurance training modulated tumor development with lower incidence of mammary 

lesions observed in the MNU+EX than in MNU+SED group (54 vs. 75 lesions, 

respectively), and less malignant lesions, as already reported [195].  

MNU administration induced a significant loss of body weight (p<0.05) on sedentary 

animals compared with the ones from the control sedentary group (CONT+SED). A 

significant decreased body weight was also found on exercised MNU-injected animals 

(p<0.05) compared to the control exercised (CONT+EX) group (Table 1). No significant 

alterations on body weight were induced by exercise in the control group (CONT+EX).  

 

 

Regarding gastrocnemius mass, MNU induced a significant decrease (p<0.05) in the 

muscle mass on sedentary animals (MNU+SED) compared to the control sedentary group 

(Table 1). It was also detected a significant (p<0.05) lower gastrocnemius mass on MNU-

injected animals following endurance exercise (MNU+EX) compared to the exercised 

ones from the control group (Table 1). No significant differences on gastrocnemius-to-

body weigh were detected between the analyzed groups as response to both exercise and 

Experimental 
Group 

CONT+SED MNU+SED CONT+EX MNU+EX 

Body weight (g) 298.29±13.59 273.20±16.62*(a) 313.74±24.51 267.45±27.77*(b) 

Gastrocnemius 
(g) 

3.94±0.28 3.50±0.31*(a) 4.15±0.25 3.36±0.62*(b) 

Gastrocnemius-
to-body weight 

(mg g-1) 
13.38±0.73 13.08±0.2 13.39±0.49 12.43±1.89 

Table 1- Characterization of animal’s response to MNU-induced muscle wasting and /or 

endurance training regarding body weight, gastrocnemius mass and gastrocnemius-to-body 

weight ratio. The results are presented as mean ± standard deviation. 

*p<0.05; (a) vs CONT+SED; (b) vs CONT+EX 
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mammary tumors (Table 1), which suggest that body weight loss was related to muscle 

mass loss.  

Data concerning adipose tissue mass was not collected in this study, although, attending 

that the loss of adipose tissue is reported to precede the loss of muscle in cachexia [158], 

one can speculate that animals also presented alterations towards a reduced adipose tissue 

mass.   

 

4.1.2. Effect of exercise and/or cancer in the browning of WAT 

The browning of adipose tissue is a key feature in the adaptations to cancer and to exercise 

training [98]. Therefore, to access the contribution of mammary tumorigenesis and/or 

exercise to the WAT browning, the expression of some major makers of this process, such 

as UCP1 and PGC-1α, were assessed by a Western blot analysis and results are presented 

in Figure 4.  

B A 

C D 
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UCP1 is probably the major marker of the browning displayed on adipose tissue, once 

this protein is responsible for the uncoupling of the respiratory chain that ultimately leads 

to energy expenditure [137]. The combination of both exercise and mammary 

tumorigenesis led to significant increases on UCP1 expression levels (p<0.001 vs. 

CONT+SED). The role of exercise as an inducer of UCP1 expression was also 

highlighted, once exercised animals from the control group reveal significant lower UCP1 

levels compared to the exercised ones undergoing mammary tumorigenesis (p<0.05). 

Curiously, no significant differences were found for exercised MNU-injected rats 

compared to sedentary ones (vs MNU+SED).  

A different scenario was found for PGC1-α, a marker of mitochondrial biogenesis [196]. 

Increased levels on PGC1-α expression levels were only found for sedentary tumor-

bearing rats (p<0.05 vs. CONT+SED; Figure 4-B). No expression differences were 

observed among the remaining groups for PGC1-α. Moreover, no significant differences 

were detected for TFAM expression levels (p>0.05; Figure 4-C) neither for irisin levels 

(p>0.05; Figure 4-D), despite a tendency towards increased irisin levels for trained tumor-

bearing rats.  

 

4.1.3. Influence of exercise training and/or cancer on the adipose tissue 

metabolic status 

In order to evaluate the effect of mammary tumorigenesis and/or exercise training on 

adipose tissue metabolic status, western blotting analysis of OXPHOS complexes 

subunits was performed. The expression levels of GAPDH were also measured using the 

same approach and the ratio GAPDH:ATP synthase was calculated as a rough marker of 

tissue’s glycolytic profile. The results are presented in the figure 5. 

 

 

Figure 4- Effect of MNU-induced mammary tumorigenesis and/or exercise training on the 

expression levels of UCP-1 (A), PGC1-alpha (B); TFAM (C) and Irisin (D) in retroperitoneal 

tissue. A representative image of the immunoblot obtained is presented above the graphic. The values 

are presented as mean ± standard deviation and expressed in arbitrary units of OD (Arbitrary Units). 

*p<0.05; ***p<0.001. 
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No significant expression differences between groups were found for any of the analyzed 

protein targets (p>0.05), evidencing no alteration on the mitochondrial respiratory chain 

profile (Figure 5- A, B, C and D). Curiously, the expression levels of GAPDH obtained 

also revealed no significant alterations (p<0.05) in response to both exercise and the 

presence of mammary tumors (Figure 5-E). When the ratio between GAPDH:ATP 

synthase alpha subunit expression levels was calculated (Figure 5-F), no significant 

differences were evidenced for both exercised and cancer-induced animals (p<0.05). 

The expression levels of ETFDH, the enzyme that links β-oxidation with the oxidative 

phosphorylation, were also evaluated by Western Blot; however, no significant 

differences were noticed among groups (Figure 6A). In addition, the expression levels of 

HSL and ATGL, some major markers key regulatory protein of lipolysis, were also 

accessed using the same approach.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5- Effect of endurance exercise training and/or mammary tumors on the adipose tissue 

OXPHOS subunits and GAPDH levels.  The Expression levels of Complex II iron sulfur subunit 

B (A); complex III subunit 2 (B); complex IV subunit 1 (C); complex V subunit 5 (D); GAPDH (E) 

were measured by Western Blot. a representative image of the immunoblot obtained is presented 

above the graphic for each protein assayed. The ratio between GAPDH and ATP synthase alpha 

subunit is also presented (F). Values are presented as mean ± standard deviation and expressed in 

arbitrary units of OD (Arbitrary Units) for A, B, C, D and E.  
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Regarding the regulation of the lipolytic path, a clear increase of HSL expression was 

detected following 35 weeks of exercise training either in health as in tumor-bearing 

animals (p<0.05 for MNU+EX vs CONT+SED; p<0.001 for CONT+EX vs 

CONT+SED). The presence of mammary tumors also induced a significant increase in 

the expression of HSL (p<0.01 for MNU+SED vs. CONT+SED; Figure 6-B). In addition 

to HSL, the levels of ATGL, also a key regulator of the lipolytic pathway, were also 

accessed. The results obtained, however, were not significant (p>0.05; Figure 6-C). 

 

4.1.4. Influence of exercise training and/or mammary tumors on adipose 

tissue vascularization 

In order to have some insights of the impact of cancer and/or exercise training in the 

angiogenesis taking place in the adipose tissue, the expression of VEGF was assessed by 

Western blot. Results are presented in the figure 7. 

 

 

 

  

Figure 6- Effect of exercise training and/or mammary tumors on adipose tissue ETFDH (A); 

HSL (B) and ATGL (C) levels. A representative image of the immunoblot obtained is presented 

above the graphic. The values are presented as mean ± standard deviation and expressed in arbitrary 

units of OD (Arbitrary Units). *p<0.05; **p<0.01; ***p<0.001  



Impact of exercise training on white adipose tissue remodeling in cancer cachexia 
 

40 
 

 

All the groups showed significant differences when compared to the control sedentary 

one (p<0.05- Figure 7). Curiously, it seems that even though exercise training and cancer 

induced an overexpression of VEGF, their combined action did not modify the expression 

levels of the protein, since the MNU+EX group presented similar levels to MNU+SED 

and CONT+EX. 

 

 

4.2. Study 2 – Influence of exercise and/or prostate cancer on adipose tissue 

remodeling  

 

4.2.1. Characterization of rat’s response to prostate cancer and/or 

endurance training 

Fifty-five weeks after PCa induction pre-neoplastic and neoplastic prostate lesions were 

observed in all animals. Invasive carcinomas alone or associated to prostatic 

intraepithelial neoplasia (PIN) and/or dysplasia were observed in both sedentary and 

exercised animals, even though, the exercised ones developed more multiple neoplastic 

and pre-neoplastic lesions. Regarding control groups, a small number of animals 

developed pre-neoplastic or neoplastic lesions; however, some exercised control animals 

developed invasive carcinomas (data not shown). Animals from PCa groups exhibited 

testosterone serum levels significantly higher than CONT groups (13% and 19% higher 

in the case of PCa+SED and PCa+EX, respectively; data not shown), which in agreement 

with the PCa induction protocol [197]. 

The induction of PCa led to significant lower body weights on both sedentary (p<0.01) 

and exercised (p<0.0001) animals compared to the control sedentary ones (CONT+SED). 

Animals from the control group also exhibit significant decreases on body weight 

(p<0.0001) in response to endurance exercise (Table 2). The major differences on body 

weight were presented by exercised tumor-bearing animals. Indeed, these animals 

revealed significant lower body weights when compared to the control sedentary group 

(p<0.0001) and to the control exercised group (p<0.0001). Regarding adipose tissue, 

Figure 7- Effect of MNU and/or exercise training on the expression levels of VEGF in 

retroperitoneal adipose tissue A representative image of the immunoblot obtained is presented above 

the graphic. The values are presented as mean ± standard deviation and expressed in arbitrary units 

of OD (Arbitrary Units). *p<0.05; **p<0.01. 
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animals exhibit significant differences for both retroperitoneal and mesenteric tissue 

(Table 2). Retroperitoneal tissue mass presented significant lower values only for 

exercised animals with PCa (p<0.05 for PCa+EX vs PCa+SED) and no significant 

differences were notice for the retroperitoneal-to-body weight ratio. Mesenteric tissue 

mass presented significant lower values as response to both exercise and PCa induction 

(p<0.01 for PCa+SED vs CONT+SED; p<0.0001 for CONT+EX vs CONT+SED). 

Moreover, the ratio mesenteric-to-body weight also revealed significant differences as 

response to both exercise and PCa induction (Table 2). 

Regarding muscle mass, neither endurance exercise nor PCa led to significant differences 

concerning gastrocnemius muscle mass. However, a significant decrease on the ratio 

gastrocnemius-to-body weight was presented by exercised animals with PCa compared 

to the ones from the control sedentary groups (p<0.05). A significant increased ratio 

gastrocnemius-to-body weight (p<0.01) was exhibited for the animals from the control 

group as response to exercise compared to the control sedentary ones. 

 

 

 

 

Experimental 

Group 
CONT+SED PCa+SED CONT+EX PCa+EX 

Body weight (g) 541.80±44.94 
494.60±35.44  

*(a) 

434.80±29.70 
****(a) 

427.20±39.30  
****(a); ****(b) 

Retroperitoneal 

tissue (g) 
0.94±0.38 0.76±0.35 0.55±0.26 

0.43±0.27  
**(a); *(b) 

Mesenteric tissue 

(g) 
11.84±3.27 

9.07±1.80 
**(a) 

5.79±1.71 
****(a) 

3.56±1.09 
****(a); ****(b); *(c) 

Gastrocnemius 

(g) 
4.41±0.30 4.44±0.28 4.39±0.33 4.11±0.82 

Retroperitoneal-

to-body weight 

(mg g-1) 

1.73±0.69 1.56±0.76 1.31±0.72 1.04±0.69 

Mesenteric-to-

body weight  

(mg g-1) 

21.63±5.04 18.38±3.47 
13.25±3.55 

****(a) 

8.44±2.45  
****(a); ****(b); **(c) 

Gastrocnemius-

to-body weight 

 (mg g-1) 

8.76±0.61 9.01±0.73 10.09±0.42 **(a) 
9.62±1.78  

*(a) 

Table 2- Characterization of animal’s response to PCa induction and /or endurance training 

regarding body weight, retroperitoneal mass, mesenteric mass, gastrocnemius mass, 

retroperitoneal-to-body weight ratio, mesenteric-to-body weight ratio and gastrocnemius-

to-body weight ratio. The results are presented as mean ± standard deviation. 

*p<0.05; **p<0.01; ****p<0.0001 (a) vs CONT+SED; (b) vs PCa+SED; (c) vs CONT+EX 
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4.2.2. Effect of exercise and/or prostate cancer in adipocytes morphology  

 In order to address the morphological alterations induced by exercise training and 

prostate cancer in the retroperitoneal adipose tissue, histological images were captured 

(40x ampliation) and analyzed. Representative images from each group and the measured 

cross-sectional area are presented in Figure 8. 
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Regarding adipocytes areas (Figure 8-C), endurance exercise induced significant 

decreases (p<0.0001- CONT+SED vs CONT+EX), and even overcome the effect 

promoted by prostate cancer (p<0.0001- CONT+EX vs PCa+EX), that also evidenced to 

induce decreases in adipocytes area (p<0.0001- CONT+SED vs PCa+SED). In fact, the 

mean adipocytes area presented by the sedentary PCa animals was significantly higher 

(p<0.0001) than the one exhibit by the exercised PCa group. In addition, a significant 

decrease in adipocytes area was found for the control exercised group compared to the 

Figure 8- Effect of endurance exercise and /or PCa on adipose tissue morphology. A and B are 

representative images of the retroperitoneal adipose tissue morphology. Images from row A and B 

were photographed (40x amplification) in a light microscope after a H&E and Sirius Red staining, 

respectively. The presented images are divided into columns accordingly to the respective group 

from which they were obtained. Adipocytes cross-sectional area were measured (C) and the values 

presented as mean ± standard deviation and expressed in μm2. ***p<0.001; ****p<0.0001. 

 

CONT+SED PCa+SED CONT+EX PCa+EX 

A 

B 

C 

20μm 20μm 20μm 20μm 
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exercised PCa one. In overall, exercise has showed to induce decreases in adipocytes 

areas and increases in adipocytes number. 

A qualitative analysis of the images stained with H&E (Figure 8-A) also confirmed the 

scenario displayed by the quantitative analysis. Indeed, adipocytes from exercised 

animals were smaller and numerous compared to the sedentary groups. In addition, 

adipocytes from the PCa groups seemed to be more heterogeneous in size and number, 

effect that seemed to be counteracted by endurance exercise (Standard Deviation of 

adipocytes area 28% lower for PCa+EX than for PCa+SED – Figure 8 C; Standard 

Deviation of adipocytes number 25% lower for PCa+EX than for PCa+SED – Figure 8 

D). Exercised and PCa animals also evidenced a richer vascularization and, curiously, an 

increased amount of collagen deposition was also evidenced (Figure 8-B).  

In order to have a molecular insight of the results from the histological analysis and 

attending to the significant differences regarding VEGF expression displayed by rats with 

mammary tumors (Figure 7), the levels of this protein were also analyzed in this study.  

Results are presented in the figure 9. 

 

 

 

 

The results reveal no significant expression differences for VEGF between groups 

(p>0.05; Figure 9). 

 

 

Figure 9- Expression levels of VEGF obtained by Western Blotting analysis of 

retroperitoneal adipose tissue. A representative image of the immunoblot obtained is presented 

above the graphic. The values are presented as mean ± standard deviation and expressed in 

arbitrary units of OD (Arbitrary Units).  
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4.2.3. Effect of exercise and/or cancer in the metabolic status of cachectic 

subjects 

Attending to the significant differences found in study 1, HSL expression levels were also 

accessed on adipose tissue from rats with PCa. The results are presented in Figure 10. 

 

 

 

 

 

 

 

 

 

 

The results obtained revealed no significant differences for HSL expression levels 

(p>0.05) following exercise training or as response to PCa (Figure 10).  

 

 

 

 

Figure 10- Effect of exercise training and/or PCa on expression levels of HSL obtained by 

Western Blot analysis of retroperitoneal adipose tissue. A representative image of the immunoblot 

obtained is presented above the graphic. The values are presented as mean ± standard deviation and 

expressed in arbitrary units of OD (Arbitrary Units).  
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5. Discussion 
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Exercise training has been evidencing to be a promising beneficial tool in counteracting 

low-grade inflammatory conditions, such as cancer cachexia. However, a limited amount 

of information, that is essentially hypothetical and somehow controversial, is currently 

known about how exercise training induces adaptations on WAT in this syndrome. In 

order to further comprehend the role of exercise and/or cancer in the remodeling processes 

occurring on WAT in cancer associated cachexia, a pre-clinical study of mammary 

tumorigenesis was performed using the MNU animal model. MNU carcinogen has often 

been used to induce mammary tumor and is recognized for providing a useful model to 

study mammary carcinogenesis [198]. Indeed, this model has proven to mimic several 

aspects displayed in human breast cancer, such as tumor’s histopathology, origin and 

chronic inflammation, evidencing this model to be appropriate to study the influence of 

exercise training on the cancer-related cachexia set [198]. Mammary tumorigenesis 

induced by MNU injection led to an 8.4% lower body weight on female Sprague-Dawley 

rats (Table1), a value that is currently consider on humans as a sign of mild to moderate 

cachexia [4]. This decrease was related to a reduced gastrocnemius muscle mass [195], a 

finding that has already been reported on the cachexia set and that has been correlated 

with reduced physical performance on cancer patients [199]. This loss of muscle was 

particularly notorious on exercised animals undergoing mammary tumorigenesis, since 

the gastrocnemius-to-body weight ratio found for this group exhibit the lowest value. 

Findings from previous studies of our research group using the same animal model, 

reported less malignant mammary lesion on rats, as well as decreased tumor weights 

[195].  These effects were associated to the positive anti-inflammatory effects of exercise 

training, as it was capable to prevent increases in the pro-inflammatory cytokine TWEAK 

[195]. In addition, in the present work, a moderate intensity treadmill training was 

selected to induce adaptations on adipose tissue, including the promotion of WAT 

browning, which has been consistently reported [189,193,200]. In this regard, our results 

didn’t evidence endurance exercise to induce significant alterations on cachectic rats 

undergoing mammary tumorigenesis (Figure 4). The cancer-induced increased 

thermogenic capacity of the tissue didn’t seem to be promoted by exercise training, once 

no differences were found for UCP1, PGC-1α and irisin expression levels (Figure 4-A 

and D). In addition, a lack of effect was also exhibit in the mitochondrial biogenesis, 

which was evidenced by the unaltered PGC-1α and TFAM levels (Figure 4-B and C). 

PGC-1α is reported to be required for the exercise training-induced UCP1 expression on 

adipose tissue [201], which may justify, at some extension, the lack of response showed 
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by UCP1 following endurance exercise (Figure 4-A), once no alterations on PGC-1α were 

detected (Figure 4-B). A similar reason may be in the basis of the lack of response 

demonstrated by irisin levels to endurance exercise (Figure 4-D), once increased irisin 

levels are thought to be dependent of an up-regulation of PGC-1α [189]. Even though no 

effect was detected as response to exercise, increased expression levels of PGC-1α were 

found in the MNU sedentary group. This trend was not followed by the mitochondrial 

complexes, which expression levels weren’t affected (Figure 5-A to D). In fact, no 

alterations on adipose tissue metabolism were evidenced. In addition to the mitochondrial 

complexes, no differences were found in the expression levels of GAPDH and the 

GAPDH:ATP synthase ratio (Figure 5- E and F, respectively). When ETFDH expressions 

levels were analyzed, no evidences pointing for an altered β-oxidation were revealed 

(Figure 6-A). Taken together, these results may suggest that glycolysis and β-oxidation 

do not contribute to WAT remodeling promoted by cancer and/or exercise. Even though, 

the analysis of the mitochondrial complex’s activity are still necessary, once may not exist 

a correlation between the expression and the activity levels. Our results, given HSL levels, 

support the contribution of lipolysis in the CC-related remodeling, as previously reported 

[140]. Indeed, even though ATGL expression has been consistently reported as being 

modulated by cancer and exercise [154,159,202], no alterations induced by exercise or 

MNU were detected in this protein expression levels (Figure 6-C). HSL, by other hand, 

showed higher expression levels in response to both exercise and cancer in animals with 

mammary tumors, although, endurance exercise did not seem to affect significantly HSL 

levels (Figure 6-B).  For the sedentary MNU rats, the obtained results may be explained 

by the inflammatory status induced by cancer. Indeed, TNF-α, a proinflammatory 

molecule often found overexpressed in the CC set, has been reported to induce lipolysis 

and even downregulate the expression of both ATGL and HSL [4]. The mechanism 

behind this process, however, is still unknown. In addition, TNF-α may also induce the 

phosphorylation of perilipin-1 in the sequence of an increase in cAMP levels that activates 

PKA, what may induce HSL phosphorylation and its translocation to the lipid droplet, 

further increasing lipolysis [203]. Indeed, increased levels were found for HSL in animals 

undergoing mammary tumorigenesis (Figure 6-B). Once both exercise and cancer have 

been consistently reported to promote an extensive vascular network in a differenced set 

of tissue, including adipose tissue [204,205], VEGF expression levels were measured, 

since this protein is reported to be a potent angiogenic factor. In the mammary 

tumorigenesis increased VEGF expression levels were found in exercised and cancer-



Impact of exercise training on white adipose tissue remodeling in cancer cachexia 
 

49 
 

induced animals (Figure 7). No effect was, however, evidenced for endurance exercise 

on animals induced with mammary tumors. A possible explanation may arise from other 

factors, rather than VEGF, to promote adipose tissue vascularization. Indeed, along with 

VEGF, PGDF, a growth factor that plays an important role in blood vessel formation, 

have also been reported to increase in subcutaneous WAT from exercised animals [188].  

 

Regarding the pre-clinical study conducted on rats with PCa, body weight results showed 

lower values following endurance exercise and PCa development. The presence of 

prostate cancer influenced rats body weight by inducing a decrease of 8.7%, a value that 

in humans indicates signs of mild to moderate cachexia [4]. Adipose tissue depots exhibit 

significant lower mass values as consequence of both endurance exercise and PCa. These 

results not only evidence the capability of the selected training program to induce 

adaptations on adipose tissue, as it also supports the current idea that adipose tissue loss 

underlies CC [57]. Moreover, the mass of gastrocnemius muscle didn’t reveal significant 

differences between the analyzed groups, which supports the idea that the loss of adipose 

tissue precedes the loss of muscle in cancer cachexia [158]. To assess possible 

morphological alterations on adipose tissue morphology, a histological analysis was 

performed on the retroperitoneal tissue pad. This analysis revealed reduced adipocytes 

areas for the exercised and PCa animals. This effect has already been reported in the CC 

set [85], although, our study gives evidences of an intensified effect as consequence of 

endurance exercise. Indeed, several data have been suggested that smaller adipocytes are 

a frequent outcome of cachexia development and thought to result from an increased 

lipolysis and a decreased lipid accretion [83,85]. In this context, and to have some insights 

about how exercise influences the lipolysis occurring in prostate cancer-associated 

cachexia, HSL levels were measured in this study. Even though a decreased adipocytes 

area was possible to detect after endurance exercise, and thought to be correlated with 

higher lipolysis rates, HSL expression levels do not corroborated this idea, since no 

significant alteration were induced neither by exercise or prostate cancer. This effect, 

similarly to the one describer in the previous study, may be related with altered lipolysis 

regulation. Furthermore, the histological analysis also suggested increased amounts of 

connective tissue surrounding the adipocytes of exercised animals, including the ones 

with PCa (Figure 8-B), as well as evidences of a richer vascularization. In this context 

and aiming to evaluate if a possible correlation between the obtained images and the 
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molecular expression could be stablished, the levels of VEGF were assessed. Even though 

images suggest an increased vascularization for exercised and PCa induced rats, VEGF 

levels were not found. These findings may support other players, such as PGDF, as 

promoters of adipose tissue vascularization [188], what should be further explored.  

It should be noticed that the pre-clinical study using rats induced with prostate cancer was 

performed intending to gain additional molecular e morphological insights of endurance 

exercise effect on PCa-related cachexia. Due to issues of time, some major marker of 

browning, such as UCP1 and PGC-1α, were not assessed, although preliminary results 

are pointing for increased expression levels of UCP-1 in a similar patter to the one 

encountered in the mammary tumorigenesis model.  
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6. Conclusion and further 

perspectives 
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In order to evaluate the effect of endurance exercise in the WAT remodeling e on cancer, 

two pre-clinical studies were performed on rats with prostate and mammary 

tumorigenesis. The obtained results led to following conclusions: 

i) Endurance exercise did not promote adipose tissue thermogenic capacity 

in cachectic rats undergoing mammary tumorigenesis, once no difference 

was detected for the expression levels of UCP1 and PGC-1α; and did not 

influenced retroperitoneal adipose tissue metabolic status. 

ii) Endurance exercise induced morphological alterations on adipose tissue 

by reducing adipocytes areas. This feature was correlated with a stimulated 

lipolysis in the breast cancer study, given the induced HSL expression 

levels. 

Taken together, data suggests that endurance exercise does not worsen or 

ameliorates cancer-induced energy expenditure. These results may highlight exercise as 

a promising approach in counteracting cancer cachexia attending to its known anti-

inflammatory properties and its capability of improving muscle strength. However, 

further studies aiming to uncover the signaling pathways mediating CC effects must be 

performed.  
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