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Abstract

Water availability is paramount in the responsesoil invertebrates towards stress
situations. This study aimed to evaluate the effettforecasted soil moisture scenarios
on the avoidance behavior of two invertebrate gsefthe arthropoBfolsomia candida
and the soft-bodied oligochaeachytraeus crypticysin soils degraded by different
types of anthropogenic metal(loid) contaminationinjng soil and agricultural soil
affected by industrial chemical wastes). Differentl moisture contents (expressed as
% of the soil water holding capacity, WHC) were leated: 50% (standard soil
moisture conditions for soil invertebrates’ tesi&% (to simulate increasing soil water
availability after intense rainfalls and/or floopgdp%, 30%, 25% and 20% (to simulate
decreasing soil water availability during droughtslvertebrates’ avoidance behavior
and changes in soil porewater major ions and nmetd§ were assessed after 48 h
exposure. Soil incubations induced a general skitalibn/mobilization of porewater
major ions, while higher soil acidity favored thelubilization/mobilization of
porewater metal(loid)s, especially at 75% WHg&hlsomia candidapreferred soils
moistened at 50% WHC, regardless the soils wertaatnated or not and the changing
soil porewater characteristidsnchytraeus crypticuavoided metal(loid) contamination,
but this depended on the soil moisture conditiond the corresponding changes in
porewater characteristics: enchytraeids lost tbapacity to avoid contaminated soils
under water stress situations (75% and 20-25% WHGQ),also when contaminated
soils had greater water availability than contmlss Therefore, forecasted soil moisture
scenarios induced by global warming changed soileywater composition and

invertebrates capacity to avoid metal(loid)-contaaed soils.
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Capsule: Forecasted soil moisture scenarios altered inveates’ avoidance behavior

towards field metal(loid) contamination

Keywords. Global warming; Multiple stressors; Metal(loid) aakability; Folsomia

candida; Enchytraeus crypticus
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1. Introduction

Global warming is changing Earth’s hydrological leycAmong others, we are
facing important alterations in precipitation patte (e.g., increasing frequency and
intensity of extreme events), higher evapotransipmarates and changes in soil runoff
and moisture (Bates et al., 2008; Sheffield et2012; IPCC, 2013, 2014; Forzieri et
al., 2014). Future climate projections for Europedict increasing risk of flash flood
events throughout the continent, while southerropemwill be also susceptible to more
severe and prolonged dry spells (Bates et al., ;2008C, 2013, 2014; Forzieri et al.,
2014). The Mediterranean region is among those mpaee to suffer water stress and
continued drought intensification; the IPCC preslief0-20% of soil moisture decrease

by the end of the 21st century (Bates et al., 2008)

Water availability is a key factor in terrestriaiosystems; their response against
water stress often involves complex interactionsiotic and abiotic processes. This
situation might be compromised in degraded ecomstesuch as those affected by
anthropogenic metal(loid) contamination, where Bwihg organisms have to deal with
already unfavorable conditions (i.e., multi-stressmvironments). In such degraded
areas soil moisture alterations might modify thepomse of organisms, directly
influencing their performance and/or indirectly nifgishg key soil parameters (e.g.,
metal(loid) availability and salinity; Peijnenbuemnd Jager, 2003; Holsmtrup et al.,
2010; Karmakar et al., 2016). Among the organidgmas may be more affected are soill
invertebrates since they live in close contact withe water, being highly dependent on
the surrounding available water and the substadeelved (e.g. metal(loid)s and

salts).
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In the last years, the evaluation of invertebratesiidance behavior has become a
usual first-screening tool to assess the adveffeetefof contaminants as well as the
habitat potential of natural, uncontaminated ortaonnated soils (e.g., Hund-Rinke et
al., 2003; Natal-da-Luz et al., 2004; Loureiro let 2005; Sousa et al., 2008; Owojori et
al., 2014). This is because avoidance tests arsitisen short-time consuming (few
days), cost-effective and ecological relevant (IX008, 2011). In these tests the
avoidance or preference response of organisms dswaistress situation is measured.
Soil invertebrates have chemical and mechanicat@gnorgans allowing them to
escape from harmful conditions and/or move to mianerable places (Slifer and
Sekhon, 1978; Edwards and Bohlen, 1992; Lukka@lgt2005; Curry and Schmidt,
2007). Despite the importance of water availabilityhe response of soil invertebrates
towards stress situations, avoidance behavior tasts normally performed under
optimal soil moisture conditions (ISO, 2008, 20IHywever, no studies have evaluated
how invertebrates’ avoidance behavior may be affédty soil moisture alterations

induced by global warming.

The aim of the present study was to assess thetefbé forecasted soil moisture
scenarios on the avoidance behavior response ofimaael soil invertebrate species
(the arthropod Folsomia candidaand the soft-bodied oligochaetEnchytraeus
crypticug in natural soils affected by anthropogenic médalj-contamination. To
achieve this goal avoidance behavior tests wertoqpeed at different soil moisture
contents simulating changes in soil water avaitghilue to intense rainfalls/floods and
drought situations in two terrestrial ecosystemgraded by different types of
anthropogenic activities. Moreover, invertebrateshavior under different soil moisture
conditions was related to changes in soil porewsdaénity (electrical conductivity and

major ions) and metal(loid)s. We hypothesized tgtnging soil moisture content and
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the corresponding changes in soil porewater chenatits would affect the behavior of

soil invertebrates, and that this would dependheninivertebrate species.

2. Material and methods

2.1. Test soils

Two soils affected by anthropogenic activities weedected in central-northern
Portugal (Figure S1, Supplementary material): d #o@m Bragal mining district
(hereafter mining soil), and a soil from an agtictdl field close to the Estarreja
Chemical Complex (hereafter agricultural soil). Thming district of Bracal (Sever do
Vouga, Northeast of Aveiro) was mainly exploited féb during the 19th and 20th
centuries, and its activity ceased in 1958 (Alla865; Cerveira, 1966). Several waste
dumps containing high metal(loid) concentrationma@ in the area affecting the
surrounding ecosystems (Anjos et al., 2012; Vidahle 2012). The municipality of
Estarreja (Northeast of Aveiro) is a clear exampfean area affected by intense
industrial contamination. From the middle of the2@entury the Estarreja Chemical
Complex has produced several tons of solid andidiquastes containing high
metal(loid) concentrations (e.g., As, Hg, Pb angd #rat have reached the nearby
ecosystems (Costa and Jesus-Rydin, 2001; Inacial.et 2014), including the

surrounding agricultural fields (Rodrigues et 2012).

A composite soil sample per location was taken bixing three randomly
distributed subsamples (top 20 cm). Samples werdrigd, sieved (2 mm mesh) and
homogenized before being completely characterired @3). Soil pH (in water and
0.01M CaC)) and electrical conductivity (EC) in water weretedenined in 1:5 w:v
suspensions after shaking for 2 h at 200 rpm. THhevps measured with a WTW-pH

330i/set meter and the EC with a WTW 3110/set métee water extracts were filtered
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through nylon membrane syringe filters (0.4 pore diameter; Albet-JNY) and
analyzed for dissolved organic carbon (DOC), takiakolved nitrogen (TDN), major
ions (CI, NOy, SQ%, Na', K*, C&" and Md") and metal(loid)s (Al, As, Cd, Cu, Fe,
Mn, Ni, Pb, Sb and Zn; samples were acidified vatllrop of concentrated HND
DOC and TDN concentrations were determined witlaagomatic TOC analyzer (TOC-
VCSH Shimadzu), major ions with an ion chromatobgep (Metrohm 861) and
metal(loid)s by inductively coupled plasma mas<gpenetry (ICP-MS; Agilent 7900).
The 0.01M CaGl extracts were also filtered (0.45 um pore diameteridified (one
drop of concentrated HN{pand analyzed for metal(loid)s (Al, As, Cd, Cu, Fmn, Ni,
Pb, Sb and Zn; ICP-MS). Water and 0.01M Ga@xtractable metal(loid)
concentrations were used to evaluate soil metd)(lvailability (Ernst, 1996; Houba et
al., 2000; Menzies et al., 2007). Cation excharggacity (CEC) was determined by
saturation of the soil exchange complex with 1N ;CBONH, pH 7.0 and
displacement of the adsorbed NHwith 10% NaCl (Chapman, 1965). Ammonium
concentration was measured with a Lambda 25 UVAf&ctrometer (Perkin Elmer) at
A=670 nm (NEIKER, 2005). Water holding capacity (WH#&as determined in porous
base glass cylinders after soil saturation withewdbr 3 h followed by 2 h of water
excess removal (ISO, 1998). Particle size distidoutwas determined by the
Bouyouco’s densimeter method (Gee and Bauder, 1888) aliquots were ground in
an Agatha mortar for the determination of totalamig carbon (TOC), total nitrogen
(TN), total metal(loi)s (Al, As, Cd, Co, Cr, Cu, Fdg, Mn, Ni, Pb, Sb and Zn) and
mineralogical composition. TOC and TN concentratiomere determined with an
automatic TOC analyzer (TOC-VCSH Shimadzu) andltatatal(loid)s by X-ray

fluorescence (Bruker S4 Pioneer). Soil mineraldgamanposition was determined by
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semi-quantitative estimation of the crystallinectran by power X-ray diffraction

(Bruker-AXS D8-Advance diffractometer).

Based on total metal(loid) concentrations, the uislity Index (SoQl) developed
by the Canadian Council of Ministers of the Enviremt (CCME) for screening
contaminated soils and their relative hazard wasutzied for each test soil (CCME,
2007b). Its calculation was based on the comparisbnthe total metal(loid)
concentrations measured with the Canadian Soil ifQu&luidelines that establishes
threshold values for total metal(loid) concentmasi@ccording to the use of the territory
(agricultural, residential/parkland, commercial amdustrial) and the necessary level of
protection (CCME, 2007a). Calculation details axailable in the Supplementary

material.

2.2. Soil invertebrate test species

The model test specidalsomia candidawillem 1902 (phylum Uniramia, class
Collembola, family Isotomidae) artehchytraeus crypticug/estheide and Graefe 1992
(phylum Annelida, class Oligochaeta, family Enchgidae) were selected to perform
the avoidance behavior tests. Both invertebrateigpeplay a key role in terrestrial
ecosystems by participating in the biogeochemicallimg of organic matter and
nutrients, soil bioturbation and soil structure noyement (Didden, 1993; Didden and
Rombke, 2001; Fountain and Hopkin, 2005). Theysariéable bioindicators of stress

conditions.

Soil invertebrates were cultured at the UniversifyAveiro (Aveiro, Portugal)
under laboratory conditiong-olsomia candidacultures were maintained on moist
plaster of Paris mixed with activated charcoal (&iv) at 20 £ 2 °C and 16:8 h

light:dark photoperiod (ISO, 1999). Once a weekuwek were fed with granulated dry
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baker's yeast Saccharomyces cerevigaeand substrate was remoistened. Age-
synchronized organisms were used for avoidancevimthiasts (1ISO, 1999). For this
candida adults were separated from the main culture, planenew containers and
allowed to lay eggs for 3 d. Adults were then regthweggs were allowed to hatch and
10-12 d old juveniles were used for testiBgchytraeus crypticusultures were kept in
agar medium prepared with agueous soil extracBdat 2 °C and complete darkness.
Cultures were fed once a week with a mixture ofeeatl, dry yeast, yolk powder, fish
oil and milk. Sexually mature organisms (clearlgibie clitellum) and of approximately

1 cm length were used for the tests.
2.3. Avoidance behavior tests

Avoidance behavior of. candidaandE. crypticuswas evaluated according to the
standardized 1SO 17512 guidelines (ISO, 2008, 20Augidance tests were performed
in two-section vessels consisting on cylindricalgpic containers (8 cm diameter x 6 cm
height) divided into two equal sections by a rentealastic split (~1 mm thickness).
Each section was filled with 25 g of moistened,smile with the test soil and the other
one with a clean soil (control soil). Dual contr@i®th sections filled with control soil)
were also performed. Lufa 2.2 soil (sandy loamuextpH in HO ~5.8, pH in 0.01M
CaCl ~5.3, EC ~0.1 dS thand WHC of ~45%; Speyer, Germany) was used asatont
soil. Its selection as control soil was based oer fhct of presenting similar

characteristics in terms of texture, pH and EC tiha@test soils.

Avoidance tests were performed at different soilstuse contents (expressed as %
of the soil WHC): 50% (standard soil moisture comteecommended by ISO
guidelines); 75% (to simulate increasing soil wadeailability after intense rainfalls

and/or floods); 40%, 30%, 25% and 20% (to simutbtereasing soil water availability
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during droughts). Two types of avoidance tests vpendormed: i) test soil vs. control
soil both at the same soil moisture content; 8t @il vs. control soil both at different
soil moisture contents. The first type of testewltd checking whether invertebrates’
avoidance behavior towards metal(loid)-contaminaeils could change under water
stress situations (intense rainfalls/floods andudghts), while the second one allowed
inferring which factor (anthropogenic contaminatiemd/or soil moisture content) was
the main responsible for invertebrates’ behaviatannwvater stress situations. Ten soill
moisture content combinations were performed ialt(iest soil WHC vs. control soil
WHC): 1) 75% vs. 75%, 2) 50% vs. 50% (standard swilsture conditions), 3) 40%
vs. 40%, 4) 30% vs. 30%, 5) 25% vs. 25%, 6) 2092080, 7) 50% vs. 75%, 8) 50%
vS. 25%, 9) 75% vs. 50%, and 10) 25% vs. 50%; hia&tes per test soil/invertebrate
species/moisture content combination were usedl)n®&asture content combinations 7,
8, 9 and 10 were selected based on the resultsegbrevious ones. Dual control tests
(control soil vs. control soil) were also performatdthe different soil moisture content
combinations established (5 and 10 replicates weed per invertebrate species for soil

moisture content combinations 1 to 6 and 7 to é§pectively).

Once prepared the two-section vessels the plasliicvgas carefully removed, the
base of the test containers was gently tapped ¢odav physical gap between both
sections and to ensure direct contact between, swits organisms were placed in the
soil midline (20 individuals foiF. candidaand 10 individuals foE. crypticu3. The
experimental containers were covered with perfaratastic lids and kept for 48 h at 20
+ 2 °C and 16:8 h light:dark photoperiod. After A8he plastic split was carefully
reintroduced and the number of surviving organigmeach section was recorded. In
the case oF. candida both sections were filled with water at the samme and the soil

was gently stirred to enable organisms to float la@aounted by eye. In the casebof

10



213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

crypticus the soil of each section was transferred to afdbGsieve, water was added to
remove most soil particles and organisms were euufity eye. Organisms in the

midline were counted as 0.5 for each vessel section
Avoidance behavior was calculated using the folt@mpmequation:
A=(C-T)/N*100 (Eq. 1)

where A is avoidance (%), C is the number of orgiasi in the control soil, T is the
number of organisms in the test soil, and N istttal number of surviving organisms.
Positive values indicate that organisms avoided tdst soil (avoidance response),
negative values that organisms preferred the tab{(@meference response), and zeros

that organisms were equally distributed in bottisas (neutral response).
2.4. Soil porewater analyses

In parallel to avoidance behavior tests perforntedifeerent moisture contents both
in test and control soils (moisture content comtiames 7, 8, 9 and 10), test soil samples
without organisms were incubated at 75%, 50% ar¥d ¥8HC for 48 h at 20 £ 2 °C
and 16:8 h light:dark photoperiod to assess thkiente of these three moisture
conditions on soil porewater characteristics andirthrelation with invertebrates’
behavior (4 replicates per test soil/moisture cointerere used). After the 48 h
incubation period soils were saturated with watertilureaching 100% WHC,
immediately centrifuged for 5 min at 5000 rpm ahé supernatant filtered through
nylon membrane syringe filters (0.4 pore diameter; Albet-JNY). Porewater pH and
EC were measured with a WTW-pH 330i/set meter and/ BV 3110/set meter,
respectively. The concentration of major ions (805, SQZ, Na', K*, C&" and Md")
and metal(loid) (As, Cd, Cu, Fe, Mn, Ni, Pb and gamples were acidified with a drop

of concentrated HN¢) was analyzed by ion chromatography (Metrohm &61g ICP-
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MS (Agilent 7900), respectively. To discard elensesblubilized/mobilized due to the
porewater extraction process, initial dry soil séeanon-incubated soil samples) were
directly saturated with water at 100% WHC, cengéd for 5 min at 5000 rpm and
filtered supernatants analyzed for pH, EC, majorsi@and metal(loid) as described

above (hereafter blanks).

2.5. Statistical analyses

The avoidance behavior response of both invertels@é¢cies towards each test soil
in each soil moisture content combination tested awaluated by Fisher's exact test,
comparing the observed organism distribution with expected distribution where
avoidance response was not present (null hypo)h@éadal da Luz et al., 2004). One-
tailed tests were used for avoidance response dewast soils (the null hypothesis
considered that half of the organisms stayed ind@besoil) and two-tailed tests for dual
control tests (the null hypothesis considered amakqgrganism distribution between
both vessel sections). Statistical analyses wertonpeed with GraphPad Software;

significant differences at p<0.05.

For each test soil, one-way ANOVA followed by Baméi post hoc test was used
to check for differences in porewater parameteks @C, major ions and metal(loid)s)
among soil moisture contents (75% WHC, 50% WHC, 28844C and blanks). The
relationships among porewater parameters were aealu through Pearson’
correlations. Statistical analyses were performeth WBM SPSS Statistics 22 and
differences were considered significant at p<OM#ta were log-transformed when they
failed to pass the Leven’s test for the homogeneiftyariances. When soil samples
incubated at 75%, 50% and 25% WHC had significaighdr concentrations of

porewater major ions/metal(loid)s than blanks wsuased that elements were more

12
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easily solubilized/mobilized during soil incubat®orHowever, in the opposite situation,
we assumed that porewater major ions/metal(loidgsevin less solubilized/mobilized
forms during soil incubations. This could be arnneation of the porewater conditions
of test soils to which invertebrates would haverbeeposed during avoidance behavior

tests at 75%, 50% and 25% soil WHC.
3. Reaults
3.1. Test soils characterization

General soil characterization data are shown irleT8h (Supplementary material).
Both test soils had loamy sand texture (~77-86%l sa8-16% silt and ~6-7% clay) and
acidic pH (mining soil ~6.1 in water and ~5.9 i®DM CaC}; agricultural soil ~5.6 in
water and ~4.8 in 0.01M Cafll They were considered non saline soils (EC ~(31d&
m™), with the mining soil showing higher EC valuearitthe agricultural soil due to the
greater concentration of some major ions (11-18 Figher for SGF, C&* and Md™).
The content of TOC was higher in the mining so##§+ng kg mining soil vs. ~26 mg
kg agricultural soil), while both soils showed simildN levels (~2 mg kg).
However, the agricultural soil presented greateilCDdhd TDN concentrations than the
mining soil (3 and 2 fold higher, respectively).tBaest soils showed low CEC values

(~8-10 cmal kg*) and a WHC of ~37-40%.

Total metal(loid) concentrations were consideretligh in both test soils (Table 1),
with the mining soil showing the highest levels €@, Cr, Fe, Mn, Ni, Pb, Sb and Zn,
while the agricultural soil for As and Hg. Consider the total metal(loid)
concentrations analyzed and the Canadian Soil ualiidelines (CCME, 2007a), the
resulting SoQl was 17.1 for the mining soil and 718or the agricultural soil

(Supplementary material). Concerning metal(loidysracted with water and 0.01M
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CaCl, there were differences between both test soilsemiging on the element
considered and the extractant used (Table 1). Véénacted with water, the mining
soil showed the highest concentrations of Cd, RiaRd Zn, while the agricultural soil
of Al, As, Cu, Fe and Sb. For 0.01M CaGixtractions, the mining soil showed the
highest concentrations of Cd, Ni and Pb and thealgural soil of Al, As, Cu, Fe, Mn,

Sb and Zn.

The major minerals identified in the test soils evédata not shown): mining soil,
~60% quartz, ~27% muscovite-2M1, ~9% albite, ~4%rie-serpentine, ~1% calcite
and ~0.5% dolomite; agricultural soil, ~67% musted@M1, ~22% chlorite-serpentine,

~7% quartz, 3% albite, ~1% maricopaite and <0.5%abfite and plattnerite.
3.2. Changes in soil porewater pH, EC, major iond anetal(loid)s
3.2.1. Mining soil

No differences were found in porewater pH amond smisture contents (75%,
50% and 25% WHC), including blanks (~6.4-6.5; TaBly Supplementary material).
Porewater EC significantly (p<0.05) increased wittreasing soil moisture content in
samples incubated for 48 h (from ~0.8 dS at 25% WHC to ~1.4 dS ™at 75%
WHC), the blanks showing similar EC values to 508d 85% WHC treatments (Table
S2, Supplementary material). The EC values weraifgigntly correlated with
porewater S¢F, K', C&* and Md* concentrations $0.560, p<0.05; Table S3,
Supplementary material), with the samples incubatetb% WHC showing significant
(p<0.05) higher concentrations (Table S2, Suppleéamgnmaterial). On the contrary,
soil incubation at 25% WHC led to significant (p&®) lower porewater SO, C&*

and Md" concentrations (Table S2, Supplementary material).
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Unlike most major ions, soil samples incubated 48r h at different moisture
contents (75%, 50% and 25% WHC) showed lower pamw@ncentrations of some
metal(loid)s compared to blanks (significant difieces for As, Cu and Pb in samples
incubated at 75%, 50% and 25% WHC and for Cd, MiAmin those incubated at 50%
and 25% WHC, p<0.05; Table S2, Supplementary nadjerSignificant positive
correlations were found among the concentrationstheke metal(loid)s ¥0.535,
p<0.05; Table S3, Supplementary material). On tlentrary, porewater Mn
concentrations significantly (p<0.05) increasedhwsoil incubation at 75% WHC
(Table S2, Supplementary material), Mn being sigaiftly correlated with EC values
(r=0.905, p<0.05) and GISQ?, K*, C&* and Md* concentrations $0.552, p<0.05)

(Table S3, Supplementary material).
3.2.2. Agricultural soil

Significant (p<0.05) higher pH values in porewategre found in soil samples
incubated for 48 h at different moisture contef&%, 50% and 25% WHC) compared
to blanks (~5.4 for blanks vs. ~5.9-6.0 for incwaohtsoil samples; Table S4,
Supplementary material). No differences were foumdporewater EC among soll
moisture contents, including blanks (~0.1-0.2 dS; riTable S4, Supplementary
material), and no significant correlations wererfdibetween EC and porewater major
ions (Table S5, Supplementary material). Neverlesoil incubation at different
moisture contents (75%, 50% and 25% WHC) resulted greater porewater
concentrations of GISQ?, Na and K compared to blanks (significant for CBQ?*
and K in samples incubated at 75%, 50% and 25% WHC andN& at 50% WHC,
p<0.05; Table S4, Supplementary material). A simiésult was found for porewater

NO3z concentrations in soil samples incubated at 50% 2606 WHC (significant
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332 higher compared to blanks; p<0.05), while soil ipetion at 75% WHC led to

333  significantly lower NQ concentrations (Table S4, Supplementary material).

334 Soil samples incubated for 48 h at 75% WHC showgdifgcant (p<0.05) higher

335 porewater concentrations of As, Cu, Fe, Mn and &bpared to the other moisture
336 content treatments, including blanks (Table S4,pBmpentary material). Significant
337 positive correlations were found among the conegioins of these metal(loid)s
338 (r>0.527, p<0.05; Table S5, Supplementary materiak).\4, soil incubation, regardless
339 of the moisture content (75%, 50% and 25% WHC)ulted in significant higher

340 porewater concentrations compared to blanks, asaseor Mn at 50% WHC (Table

341  S4, Supplementary material).

342  3.3. Soil invertebrates’ avoidance behavior

343  3.3.1. Validity of avoidance behavior tests

344 The validity of the avoidance behavior tests wasckkd according to the following
345 criteria established by the ISO guidelines (ISO0&02011): survival >80% foF.
346 candidaand >90% folE. crypticus and homogeneous distribution of organisms in dual
347  control tests (40-60% of surviving organisms inheaection of the test vessel). In all
348 the avoidance tests performed, the survivaFotandidh andE. crypticuswas>90%
349 and>86%, respectively (Tables S6, S7 and S8, Supplementaterial). In dual control
350 tests (only Lufa 2.2 soil), both invertebrate speghowed a homogeneous distribution
351 when both vessel sections were moistened at thee 3A#HC (Tables S6 and S7,
352  Supplementary material), with the only exceptionEofcrypticusat 20% soil WHC
353  (significant higher number of organisms in one bé tsections of the test vessel,
354  p<0.05). However, this was not the case of duatrobtests performed with different

355 moisture contents in each vessel section.FFarandida ~68-78% of individuals had a
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significant (p<0.05) preference for the section stemed at 50% WHC (Table S6,
Supplementary material). On the contraBy, crypticus had a variable response:
organisms showed a homogeneous distribution betwgeetions when facing 50%
WHC vs. 75% WHC, while ~69% of organisms signifitgnp<0.05) preferred the
section moistened at 50% WHC when facing 50% WHC2&%6 WHC (Table S7,

Supplementary material).

3.3.2. Avoidance behavior tests with similar mastontent in test and control soils

When avoidance tests were performed at the sam&um®icontent both in test and
control soils,F. candidadid not avoid the mining and agricultural soilsnost of the
cases (a higher number of organisms was founde@rdhsel section containing the test
soils; Figure 1). This response was more pronouirtélde presence of the agricultural
soil, with F. candidapreferring significantly (p<0.05) the test soilem\vthe control in
most of the moisture contents tested (~23-81% efepence; Figure 1). When the
mining soil was present. candidaavoided it at 30% WHC (~26% of avoidance;
significant, p<0.05), while organisms showed a r&utr preference response for the
test soil at the rest of the moisture contentstegsignificant preference at 75% and

20% soil WHC, p<0.05; Figure 1).

In the case OE. crypticus its response was highly dependent on the soistuie
content tested (Figure 1). Organisms significarfy0.05) avoided the mining soil
when moistened at 50%, 40% and 30% WHC (~27-66%awfidance) and the
agricultural soil at 50% and 40% WHC (~32-68% obigance) (Figure 1). However,
this was not the case & crypticusexposed to higher (75% WHC) or lower (20-25%

WHC) soil moisture contents (Figure 1), with organs showing a preference for the
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vessel section containing the test soil (significenthe agricultural soil at 75% and

25% WHC, p<0.05; ~36-39% of preference).

3.3.3. Avoidance behavior tests with different muoéscontents in test and control soils

When avoidance tests were performed at differenston@ contents both in test and
control soilsF. candich showed a preference for the vessel section meidtat 50%
WHC (Figure 2). This behavior was significant (@3%). in all the moisture content
combinations tested with the agricultural soil (<®% of preference for 50% soil
WHC; Figure 2). In the case of the mining soil thieference was only significant
(p<0.05) in the moisture content combination test & 25% WHC vs. control soil at

50% WHC (~51% of preference for 50% soil WHC; Fey@).

Enchytraeus crypticusvoided both the mining and agricultural soils whbey
were moistened at 50% WHC and the control soil atag5% WHC (~10% and ~63%
of avoidance in the mining and agricultural sogspectively; significant for the
agricultural soil, p<0.05), but the contrary happenvhen the control soil was at 25%
WHC (~36% and ~9% of preference in the mining agdcaltural soil, respectively;
significant for the mining soil, p<0.05) (Figure. Zowever, when both test soils were
moistened at 75% or 25% WHC and the control soib@% WHC E. crypticus

significantly (p<0.05) avoided the test soils (<BiB% of avoidance; Figure 2).

4. Discussion

4.1. Contamination status of the test soils

Both test soils presented high total metal(loid)aatrations (Table 1), especially
when comparing with background levels reported riatural Portuguese soils not

affected by anthropogenic contamination (Table Sgplementary material; Inacio et
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al., 2008). The mining soil greatly exceeded tHesels in particular for Al (~3-fold),
As (~10-fold), Cu (~14-fold), Ni (~3-fold), Pb (~@&old) and Zn (~24-fold). In the
case of the agricultural soil total Al, As, Cu, Hgb and Zn concentrations also
surpassed the background levels reported by Irgi@b (2008), especially for As (~64-

fold), Hg (~1600-fold) and Pb (~33-fold).

No national policy exists in Portugal concerning tkgulation and management of
contaminated soils; the Portuguese Government newords the use of the Canadian
Soil Quality Guidelines (Table S9, Supplementaryenal; CCME, 2007a). Following
these guidelines, both test soils were highly coirtated by several metal(loid)s:
mining soil (As, Cr, Cu, Ni, Pb, Sb and Zn); agtiatal soil (As, Cu, Hg, Pb and Zn).
Moreover, according to the SoQI calculated (~17{4d&h test soil presented very high

level of concern due to metal(loid) contaminatiposing a high environmental risk.

Despite the fact that both test soils presentetl total metal(loid) concentrations,
metal(loid) availability (evaluated through waterde0.01M CaCl extractions) depends
on other soil properties such as pH, salinity, organatter and texture (Allen, 2002;
Lanno et al., 2004). Water and/or 0.01M GCaé&itractable metal(loid)s were relatively
high in both test soils (Table 1), although thegamted for less than 1% of the total
element concentration. This was not the case oBMhZn extracted with 0.01M CaCl
in the agricultural soil (~2.5% and ~3.4%, respagti). When comparing the
percentages of metal(loid)s extracted with watet @®1M Cad] respect to the total
concentrations, greater availability was shown Hy agricultural soil (~1.2-20.1 and
~2.2-21.5 fold higher with water and 0.01M CgaQéspectively) in relation to its higher

acidity (Table S1, Supplementary material).

4.2. Effects of soil moisture content on soil patw composition
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Soil incubation for 48 h induced changes in theep@ter composition of both test
soils (Tables S2 and S4, Supplementary materidies@ changes depended on the
moisture content tested (75%, 50% and 25% WHC)vamck different depending on

the soil type.

For the mining soil, its incubation at 75% WHC fee® higher salt
solubilization/mobilization, compared with non-im@ated soil samples (Figure 3), as
shown by the higher porewater concentrations ofesomajor ions (C) SQ?, K*, C&*
and Md") and therefore higher EC (Table S2, Supplementasterial). When
incubated at lower soil moisture contents (50% a&#h WHC) no differences were
observed for major ions, except in the case ofSC&* and Md* that showed lower
solubilization/maobilization in porewater at 25% WHOmpared to non-incubated soil
samples (Figure 3). On the contrary, most meta$oiAs, Cd, Cu, Ni, Pb and Zn)
showed lower solubilization/mobilization in poreeatwhen soil samples were
incubated, regardless of the soil moisture con(Eigure 3). This is in line with the
findings of Gonzalez-Alcaraz and van Gestel (20469 found decreasing Cd and Zn
concentrations in the porewater of a slightly aciining soil incubated for 21 d under
controlled conditions of soil moisture content aaidtemperature. Among others, the
authors related these changes to the precipitabgmecipitation of metals with
carbonates (Simén et al., 2005) and/or their imiizgtion due to the disruption and
reformation of organo-mineral complexes after atigoil dry samples being rewetted
(Haynes and Swift, 1991). This was not the casklfthe samples incubated at 75%
WHC showing greater solubilization/mobilization thanon-incubated soil samples

(Figure 3) in relation to the great mobility ofslkelement (Reddy and DelLaune, 2008).

In the case of the agricultural soil, its incubatidid not induce changes in the

salinity of the porewater (Table S4, Supplementaagerial) although some major ions
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(CI, SO and K) showed greater solubilization/mobilization, comggh to non-
incubated soil samples, regardless of the soil im@scontent (Figure 3). This was not
the case of N® which concentration in porewater decreased wheragrticultural soil
was incubated at 75% WHC while it increased at %08 25% WHC (Figure 3; Table
S4, Supplementary material). The high organic mattatent of this soil could have
stimulated microbial activity during soil incubatiofavoring oxygen depletion due to
the high soil moisture content (75% WHC) and thsslof NQ  via denitrification
(Vepraskas and Faulkner, 2001; Reddy and DelLaud@8)2 Similar to some major
ions, and opposite to what happened in the miniad, $he incubation of the
agricultural soil resulted in higher solubilizatiorobilization of most metal(loid)s in
porewater, compared to non-incubated soil samplgsecially at 75% WHC (As, Cu,
Fe, Mn, Ni and Pb; Figure 3). The dissolution dffelzsserved for Mn in the mining soil
at 75% WHC could be increased in the agricultucgl ©xygen depletion during soil
incubation at 75% WHC could lead to the dissolutadnFe and Mn oxy-hydroxides
(Vepraskas and Faulkner, 2001; Reddy and DelLaud@3)2 as shown by the high
concentration of these metals in the pore watethef agricultural soil (Table S4,
Supplementary material). The mobilization of As,, Gli and Pb could be favored by
this phenomenon since Fe and Mn oxy-hydroxides robrihe retention of other
metal(loid)s in soil (Tack et al., 2006; Du Laingag, 2007). Unlike the mining soil, the
higher acidity of the agricultural soil could cdbtrte to keep these metal(loid)s in

solution.
4.3. Effects of soil moisture content on invertédsaavoidance behavior

Avoidance behavior towards contaminated test sbffered between invertebrate
species, and was related to the soil type and thistune content tested (Figures 1 and
2).
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In general, when avoidance tests were performéideatame moisture content both
in test and control soils, the arthropBdcandidapreferred the contaminated test soils
(Figure 1), regardless their high total and avd@abetal(loid) concentrations (Table 1).
Our results agree with previous studies (Natal-da-ket al., 2009; Bori et al., 2016,
2017) and could be related to the relatively rasis¢ of collembolans to metal(loid)
contamination (Fountain and Hopkin, 2001, 2005)e Tgreference response bf
candida was more pronounced for the agricultural soil, ratation to the greater
concentrations of DOC and TDN shown by this soibi[E S1, Supplementary
material). Natal-da-Luz et al. (2008, 2009) alredolynd a preference d¥. candida
towards soils with high content of organic mattdoreover, in this type of tests, soil
moisture content and the corresponding changes arewater major ions and
metal(loid)s (Tables S2 and S4, Supplementary ma#itedid not seem to have any
influence on the behavior oF. candida since its preference response towards
contaminated test soils occurred at different noogstevels (Figure 1). However, when
avoidance tests were performed at different soiistnee contents in both vessel
sectionsF. candidabehaved differently. In such tedts candidashowed a preference
for the soil moistened at 50% WHC (dual controtgemnd tests involving contaminated
test soils; Figure 2 and Table S6, Supplementariema®). Therefore soil moisture
content was the main factor controlling the behawbF. candidawhen having the
option to choose between different moisture levelgganisms clearly avoided flood
and drought situations, regardless whether thenssl contaminated or not. This agrees
with Domene et al. (2011) who found soil moisturentent as the only factor
contributing to explainF. candida avoidance behavior when comparing soils with

different properties.
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Unlike collembolanE. crypticuswas more sensitive to metal(loid)s and avoided
both contaminated test soils but only at certaimstnoe contents. When avoidance tests
were performed at the same moisture content botesinand control soilg. crypticus
significantly avoided metal(loid) contaminationtire range of 50% to 30% WHC (~27-
68% of avoidance; Figure 1). The capacity of ddfdrenchytraeid speciel.(crypticus
and Enchytraeus albidysto avoid metal(loid)s has been previously shownokher
authors, both in Lufa 2.2 soil spiked with singleltiple metal salts (e.g., Cu{EZnCh,
CdCbk; Amorim et al., 2008a,b; Loureiro et al., 20095 an mixtures of Lufa 2.2 soil
with metal(loid)-enriched wastes (Kob®iva et a., 2010). All these studies were
performed at 40-60% WHC, similar to the moisturage in which we found an
avoidance response Bf crypticustowards the contaminated test soils. However, when
E. crypticuswas exposed to higher (75% WHC) or lower (20-25%®Y soil moisture
conditions it was not able to avoid metal(loid) tamination, organisms showing both
preference or neutral response towards the congedntest soils (Figure 1). This
response could be related to the high vulnerakolitgnchytraeid species to water stress
conditions because of their highly permeable skindberg et al., 2002; Maraldo et al.,
2008). In fact, organisms exposed to 75% or 20-28PAC had a different appearance
to those at 50% to 30% WHC (author’'s visual obs#omg). At 20-25% WHC
enchytraeids appeared rolled-up on themselves, ofaste times on the soil surface.
This behavior could have been a strategy to dihibisdy dehydration, as it has been
reported for earthworm species (a closely relatedum) under soil desiccation
situations (Jiménez et al., 2000; Blume et al.,620The severe stress induced by the
intense drought conditions at 20-25% WHC could himeeenchytraeids to lose their
capacity to avoid the contaminated test soils. @a tontrary, at 75% WHC,

enchytraeids had a bloated translucent appearaossibly indicating a disruption of
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the organism’s water balance. Moreover, the chawopserved in the soil porewater
composition in terms of major ions and/or metat{Jei could have interfered with the
behavior ofE. crypticustowards the contaminated test soils, especiallgniihcreasing

the soil moisture content (75% WHC). In the caseth@ mining soil, the highest
solubilization/mobilization of porewater major ioascurring at 75% WHC could favor
the disruption of the organism osmotic homeostasishytraeids losing their capacity
to avoid metal(loid) contamination. In the casetloé agricultural soil, the highest
concentration of porewater metal(loid)s solubilimedbilized at 75% WHC could

induce greater toxic effects on enchytraeids aodsequently, an alteration of their

avoidance capacity towards metal(loid)-contaminagtats.

The importance of soil water availability on endhgid performance was
demonstrated in those tests performed at diffesmit moisture contents both in
contaminated and control soils (Figure 2). In thaseE. crypticus avoided both
contaminated test soils in all the moisture comtoams tested (>10% of avoidance),
except when the control soil had lower soil moistaontent (contaminated soil at 50%
WHC vs. control soil at 25% WHC; ~9-36% of prefezepn ThereforeE. crypticus
could avoid metal(loid) contamination when havihg tption to choose for a clean soil
with adequate moisture content, but not when tharob soil showed higher water
deficiency than the contaminated soil. This repoihted out that soil moisture content
was the main factor controlling. crypticusavoidance behavior towards metal(loid)-

contaminated soils under water stress situations.

5. Conclusions

Soil incubation under controlled soil moisture aanl temperature conditions

induced changes in porewater salinity (major iong tnerefore EC) and metal(loid)s.
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These changes differed between soil types and depean the moisture content at
which the soils were incubated. A general soluilan/mobilization of porewater
major ions was observed compared to non-incubadéddsamples, while higher soil
acidity favored the solubilization/mobilization wfetal(loid)s in porewater, especially at
higher soil moisture levels (75% soil WHC). The rabdoil invertebrate species
selected Kolsomia candidaand Enchytraeus crypticysdiffered in their avoidance
response towards anthropogenic metal(loid)-contatadh soils. In generd. candida
preferred soils moistened at 50% WHC (standard reoikture conditions), regardless
whether the soil was contaminated or not and tlagimg soil porewater composition.
On the contraryE. crypticusavoided soil contamination, but its capacity waghly
dependent on the soil moisture conditions and pnebly the corresponding porewater
changes. Enchytraeids lost their capacity to aveatial(loid)-contaminated soils under
extreme water stress situations (intense rainfigiigis and drought conditions
simulated by 75% and 20-25% soil WHC, respectivebyt also when contaminated
soils had greater water content than control sditerefore, the present study shows
that the forecasted soil moisture alterations ieduay global warming may change soil
porewater salinity and metal(loid) concentrationd ¢he capacity of soil invertebrates
to avoid metal(loid)-contaminated soils. This is@ief major concern considering both
the toxicity risks of contaminated soils and thevimmmental implications that the
observed invertebrate behavioral response woulde ham the functionality of

anthropogenic-degraded ecosystems.
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Figure captions

Figure 1. Avoidance behavior dfolsomia candideandEnchytraeus crypticus tests
performed for 48 h at the same soil moisture cdanexpressed as % of the soil water
holding capacity, WHC) both in test and controllsdtest soil WHC vs. control soil
WHC). Lufa 2.2 soil was used as control soil. Data average = SD (n = 5). Positive
values indicate test soil avoidance, negative \&alast soil preference, and zeros neutral
response. Asterisks (*) indicate significant diffieces in test and control soils (Fisher’s

one-tailed exact test, p<0.05).

Figure 2. Avoidance behavior ofolsomia candidaand Enchytraeus crypticus tests
performed for 48 h at different soil moisture carite(expressed as % of the soil water
holding capacity, WHC) both in test and controllsdtest soil WHC v. control soil
WHC). Lufa 2.2 soil was used as control soil. Datta average + SD (n = 5). Positive
values indicate test soil avoidance, negative \satast soil preference, and zeros neutral
response. Asterisks (*) indicate significant diffieces in test and control soils (Fisher’s

one-tailed exact test, p<0.05).

Figure 3. Porewater major ions and metal(loid)s in testssoitubated for 48 h at 75%,
50% and 25% water holding capacity (WHC). Dark grelpr represents that incubated
soil samples showed significant higher porewaterceatrations than non-incubated
soil samples (blanks), light grey color that incidoiasoil samples showed significant
lower concentrations than non-incubated soil sasy@ed white color that there were
no differences between incubated and non-incubaedl samples. Significant

differences tested by one-way ANOVA with Bonferrpioisthoc test (p<0.05).
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Table 1. Metal(loid) concentrations (total, water extrat¢abnd 0.01M CaGlextractable)
in the test soils from central-northern Portugak(age + SD; n = 3). d.l. (detection limit).
Other details from the soils are available in #d.t

Soil parameter Mining soil Agricultural soil
Total metal(loid)s — mg kg

Al 90,297 = 497 70,603 + 7490

As 473 £ 47 3087 + 968

Cd <d.l <d.l.

Co 42.2+17.8 14.0+2.8

Cr 137 +8 72.0+8.2

Cu 640 + 46 753 + 204

Fe 95,990 * 3096 34,613 + 8035

Hg <d.l. 127 £ 35

Mn 847 + 30 375+ 87

Ni 174+ 4 35.3+6.1

Pb 32,067 + 2401 1480 + 419

Sb 167 £ 15 <d.l

Zn 2551 + 129 977 + 287
Water extractable metal(loid)s (1:5 w:v) — pgkg

Al <d.l. (2.50) 1570 + 269

As <d.l. (1.25) 6228 + 146

Cd 26.1+4.1 <d.l. (1.25)

Cu 23.2+9.1 548 + 16

Fe 314 + 147 1508 + 466

Mn 867 + 24 633 + 122

Ni 159 +7 70.0+5.2

Pb 1264 + 424 150 £ 59

Sb 52.1+3.5 139+ 2

Zn 3324 + 73 1517 £ 46
0.01M Cac4 extractable metal(loid)s (1:5 w:v) —
ug kg*

Al <d.l. (2.50) 2396 + 50

As <d.l. (1.25) 1782 £ 82

Cd 260 + 8 152 +1

Cu 25.1+7.8 635 + 51

Fe 195 + 45 500 £ 136

Mn 3038 + 26 9275 + 477

Ni 693 £ 18 306 +8

Pb 14,221 + 469 350 + 20

Sb 37.3+£28 88.6+7.5

Zn 16,366 + 94 32,855 + 1137
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Figure 2

test soil vs. control soil
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Highlights

1. Forecasted soil moisture scenarios changegsivater major ions and metal(loid)s
2. Forecasted soil moisture scenarios alteredraitebrates’ avoidance behavior

3. F. candida preferred soils moistened at 50% WHC regardlegslff@d) contamination
4. E. crypticus avoided metal(loid) contamination depending ohsmiisture conditions

5. E. crypticus did not avoid metal(loid) contamination under watess situations



