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resumo 
 
 

O cancro do pâncreas é uma das doenças mais letais do mundo. A melhor 
esperança para reduzir a mortalidade provocada por este cancro reside no 
diagnóstico e tratamento precoces, mormente na deteção de lesões que 
podem conduzir ao seu desenvolvimento. Por outro lado, as terapias 
tradicionalmente aplicadas para combater o cancro do pâncreas têm vários 
inconvenientes, relacionados nomeadamente com uma eficácia limitada, 
toxicidade para os pacientes e aquisição de resistência aos medicamentos. 
Para contrariar esta tendência, tem sido dedicado um maior esforço na 
descoberta de novos fármacos anti-cancro pancreático, a partir de recursos 
naturais biológicos. Neste âmbito, organismos provenientes de ambientes 
marinhos (e.g., microorganismos simbiontes, algas, invertebrados) possuem 
um amplo potencial genético para a biossíntese de compostos naturais. No 
entanto, os ecossistemas marinhos estão ainda consideravelmente sub-
explorados para este propósito. Os simbiontes bacterianos marinhos, em 
particular, podem produzir vários metabolitos secundários com alto interesse 
biotecnológico, especialmente para aplicações biomédicas como as 
direcionadas para o tratamento anticancerígeno. Portanto, os principais 
objetivos deste trabalho foram: (1) desenvolver uma breve revisão sobre o 
cancro do pâncreas e suas atuais terapias, bem como sobre os produtos 
naturais bioativos e vias biossintéticas existentes em microorganismos 
marinhos; (2) desvendar o potencial de simbiontes bacterianos isolados de 
cnidários marinhos para sintetizar compostos bioativos contra o cancro do 
pâncreas. Algumas bactérias têm o potencial de sintetizar novos produtos 
através da atividade das enzimas policetídeo sintases (PKS), sintetases 
peptídicas não ribossomais (NRPS), ou uma combinação de ambas. Estas 
enzimas multifuncionais produtoras de policetídeos (PKs), péptidos não 
ribossomais (NRPs) ou híbridos PKs-NRPs podem ter várias estruturas 
químicas e bioatividades (e.g., antimicrobiana, antioxidante, anti-inflamatória, 
anticancerígena). O rastreio molecular de fragmentos do gene NRPS em 
simbiontes bacterianos marinhos de cnidários evidenciou a sua presença em 
22,3% dos isolados, os quais pertencem aos filos Proteobacteria e 
Actinobacteria. A maioria das sequências de aminoácidos obtidas para o grupo 
de bactérias selecionadas por serem potenciais produtores de NRPs, 
apresentou uma homologia relativamente elevada em relação a sequências de 
aminoácidos depositadas para NRPS. Além disso, os extratos preparados a 
partir das frações celulares e sobrenadante de culturas das bactérias 
selecionadas inibiram significativamente a atividade de uma linha celular 
humana de adenocarcinoma do ducto pancreático, mediante o ensaio MTT. 
Assim, o potencial anticancerígeno dos simbiontes bacterianos de cnidários 
demonstrou ser promissor, pelo que o seu estudo deve ser mais aprofundado 
no futuro. 
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abstract 
 
 
 

Pancreatic cancer is one of the deadliest diseases in the world. The best hope 
for reducing mortality by cancer lies in its early diagnosis and treatment, 
namely in the detection of lesions that can evolve into cancer stages. On the 
other hand, traditionally applied therapeutics to fight pancreatic cancer have 
several drawbacks, namely related with limited efficacy, toxicity to patients, 
and acquisition of drug resistance. As to counteract this trend, a greater effort 
has been devoted to the discovery of new anti-pancreatic cancer drugs from 
biological natural resources. In this context, organisms from marine 
environments (e.g., microbial symbionts, algae, invertebrates) possess a wide 
genetic potential for the biosynthesis of natural compounds. However, marine 
ecosystems are yet severely overlooked for that purpose. Marine bacterial 
symbionts, in particular, can produce several secondary metabolites with high 
biotechnological interest, especially for biomedical applications like those 
directed to anticancer treatment. Therefore, the major goals of this work were 
to: (1) develop a brief review on pancreatic cancer and current therapeutics, as 
well as on the pool of natural products and associated biosynthetic pathways in
marine microbes; (2) unravel the potential of bacterial symbionts isolated from 
marine cnidarians to synthesize bioactive compounds against pancreatic 
cancer. Some bacteria have the potential to synthesize new products through 
the activity of the modular enzymes polyketide synthases (PKS), nonribosomal 
peptide synthetases (NRPS), or a combination of both. These multifunctional 
enzymes are involved in the production of polyketides (PKs), nonribosomal 
peptides (NRPs) or PKs-NRPs hybrid compounds that can have various 
chemical structures and bioactivities (e.g., antimicrobial, antioxidant, anti-
inflammatory, anticancer). The molecular screening of NRPS gene fragments 
in marine bacterial symbionts of cnidarians showed their presence in 22.3% of 
the isolates, which belong to Proteobacteria and Actinobacteria phyla. Most 
aminoacid sequences obtained for a selected group of these potential NRPs-
bacterial producers presented a relatively high homology with deposited 
aminoacid sequences of NRPS clusters. Furthermore, crude extracts prepared 
from the cell and cell-free fractions of cultures from the selected bacteria could 
generally significantly inhibit the activity of a human pancreatic ductal 
adenocarcinoma cell line, according to the MTT assay. Thereby, the anticancer 
potential of cnidarian bacterial symbionts was promising, hence reinforcing the 
need for deepening its study in the future.  
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1-Pancreatic cancer: what is it and how it evolves? 
 

Pancreatic cancer is estimated to be the 7th deadliest cancer in the world in 20181, due to 

its fast progress, high malignancy and early metastasis, making therapeutics efficacy practically 

impossible for most patients2,3. Early detection gives hope for a cure, but its lack of symptoms 

transforms pancreatic cancer diagnosis quite difficult and unsuccessful3.  

 

1.1-Epidemiology & etiology 
 

1.1.1- Incidence and mortality rates 
 

Pancreatic ductal adenocarcinoma (PDAC) and its variants is responsible for 85-90% of all 

pancreatic neoplasms, being thereby most commonly called as pancreatic cancer4. Globally, there 

is a prediction for the year of 2018 of about 458,918 new cases of pancreatic cancer, representing 

2.5% of all cancers, and 432,242 deaths (4.5% of all cancers deaths)1. According to GLOBOCAN 

statistics for the year 2012, 338,000 new cases (2.4% of all cancers) and 331,000 deaths (4% of all 

cancers deaths) were recorded5, what clearly suggests an increased impact of this disease. 

Pancreatic cancer incidence rate for men and women is around 5.5 individuals per 100,000 and 

4.0 individuals per each 100,000, respectively1. For both sexes, however, it has been observed an 

increasing incidence of pancreatic cancer with age, and most diagnosed cases occur after the 55 

years of age6,7. In what concerns its worldwide incidence, this disease has been mostly diagnosed 

in developed countries, where 55.5% of new cases occurred in the year of 20125. For 2018, is 

estimated higher incidence rates for both genders in Eastern Europe (9.9 per 100,000 men, and 

5.8 per 100,000 women) and Western Europe (9.5 per 100,000 men, and 7.2 per 100,000 

women), comparatively to those previewed for Northern America (8.7 per 100,000 men, and 6.5 

per 100,000 women) and Australia/New Zealand (7.4 per 100,000 men, and 6.4 per 100,000 

women)1. 

 

 1.1.3- Risk factors 
 

Among the risk factors for PDAC development, they can be roughly divided into intrinsic 

and extrinsic factors. As intrinsic factors, genetic mutations at different genes like KRAS (encode 

for proteins that normally promote the abnormal proliferation of cancer cells8,9), Tp53 (tumour 

suppressor gene that when is mutated enhances tumour growth9 through the control of DNA 
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damage responses), BRCA1/BRCA2 (associated with the regulation of DNA repair10), PALB2 

(chromatin adaptor for BRCA2 and promotes the connection between BRCA1 and BRCA211) and 

CDKN2A12 (tumour suppressor gene that when altered causes chromosomic mutations leading to 

tumor growth13), can trigger PDAC carcinogenesis9. Similarly, several pancreatic diseases may 

promote PDAC pathogenesis. The most concerning one is diabetes, as far as it arises from the 

dysregulation of pancreatic function. On the other hand, diabetes can be a manifestation of PDAC, 

especially in the case of type I (chronic) diabetic patients. However, type II diabetes can indeed be 

a major pancreatic cancer triggering factor, because it increases the risk of hyperglycaemia due to 

the impairment of glucose levels in blood14,15, which increase cancer risk by guaranteeing the 

prevalence and evolution of KRAS mutations15,16. Chronic pancreatitis also provides an increased 

risk of advancing into PDAC as a result of a large number of cell divisions due to the disruption of 

DNA repair systems17. Obesity may as well promote the appearance of PDAC since adipose tissues 

may boost inflammatory and hormonal responses, besides the potential disruption of the energy 

balance related with an increase of food consumption18 and induction of chronic 

hyperinsulinemia19,20. Inherited genetic susceptibility is also a PDAC risk factor, existing the 

possibility of familial pancreatic cancer associated with susceptibility loci20. Age, gender, blood 

group and ethnicity (related to the incidence among countries/continents) constitute as well 

intrinsic factors affecting PDAC development and incidence4.  

Additional external or behavioural factors associated with PDAC are dietary habits, 

alcohol consumption and smoking7,21,22, being the last one a great contribution to the occurrence 

of DNA damages/mutations in pancreatic cells that further promote initiation and proliferation of 

PDAC23,24.  

 

1.1.4- Types of pancreatic cancer by their location 
 

Malignant pancreatic tumours can be classified according to their location, i.e., in the 

exocrine (ductal or acinar cancers) or endocrine pancreas25. As aforementioned, the exocrine 

ductal epithelial adenocarcinoma is responsible for about 90% of the cases4, while the endocrine 

cancer is more rare25. The two types are heterogeneous and have different histological and 

clinical features, as well as different epidemiologic expression26. It is also possible to find a 

combined tumour with exocrine and endocrine location, although this is not very frequent. This 

pancreatic cancer type is usually characterized by an exocrine-ductal component, in which the 

endocrine tumour may represent ca. one third to one half of the total tumour25.  
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1.2- Diagnosis  
 

Current diagnostic techniques of PDAC rely on imaging and/or blood analyses. Among the 

available imaging tests there are computerized tomography scanning, magnetic resonance 

imaging, endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. 

However, these are expensive, may be invasive, require more time for achieving the results and 

cannot accurately detect tiny lesions at a premalignant stage27. In turn, the most common blood 

(serum) biomarkers known for pancreatic cancer diagnosis and monitoring of response to 

therapeutics are proteins/epitopes like CA 19.9, CA50, CA125, Laminin gamma C and CEA28,29. 

Nevertheless, these markers may present drawbacks related with low sensitivity and uncertainty 

to accurately detect PDAC. For instance, CA 19.9 is not expressed in Lewis-negative phenotype 

(Lewis antigen system based on chromosome 19/Lewis gene) and may even give false positives in 

the presence of obstructive jaundice30.  

So, the currently available diagnostic tools and markers fail to provide the occurrence of 

PDAC within a safe period for its effective treatment, what combined with its strong metastatic 

behaviour and resistance to current therapies, makes it a life-threatening disease. Therefore, 

there is an urgent need for an ideal biomarker that facilitates pancreatic cancer detection. In this 

context, there are three main steps that need to be performed for an early detection and 

treatment of pancreatic cancer. The first is to distinguish the lesions that leads to advanced 

pancreatic cancers. Second, there should be an opportunity to detect those curable lesions 

through the creation of a sensitive screening test capable of responding along the disease 

progression time. Third, the disease prevalence in the population must be high enough to be 

accurately screened by the tests3. 

 The search for new biomarkers towards the early diagnosis of PDAC may rely on crucial 

pathways or mechanisms responsible for its proliferation, namely the formation of pre-metastic 

niches, which precedes distant metastasis from primary tumour site. Exosomes are microvesicles 

derived from pancreatic lesions that have a role in the formation of pre-metastatic niches in 

liver31 and other body locations like breast and lungs32. The Kupffer cells (KCs) in the liver 

phagocytize exosomes from the blood stream, hence activating fibrotic pathways and pro-

inflammatory responses (e.g., synthesis of fibronectin and transforming growth factor β) leading 

to a metastatic microenvironment31. The circulating exosomes can therefore be explored as 

biomarkers for pancreatic cancer, though the cellular and molecular mechanisms by which 

exosomes alter metastasis are yet to be established. Some experiments in mice carrying PDAC had 

focused on how the upregulation of migration inhibitory factor is a main event during cancer 
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progression, which can be detected in exosomes isolated from the plasma of mice and patients 

with PDAC31.  

 

1.3 -Biology and carcinogenesis  
 

1.3.1- Carcinogenesis  
 
 

Pancreatic cancer possess a multifaceted biology and its current knowledge assumes that 

it is constituted by several components, such as pancreatic cancer somatic cells and stem cells, 

and the tumour stroma33. In particular, the pancreatic cancer stellate cells (i.e., myofibroblasts), 

are the main components of the tumour stroma33. In what concerns cancer stem cells in the 

primary tumour, they have been pointed out as the responsible for shorter patients’ survival, 

resistance to chemo- and radiotherapies, as well as for the increasing of PDAC metastatic 

potential34,35.  

Pancreatic cancer may begin with a with gene mutation(s) and/or pancreatic lesions. In 

what regards genetic mutations in normal pancreatic cells, they may target genes involved in 

several signalling pathways like RAS-ERK signalling (extracellular signal-regulated kinase 

signalling pathway) , G1/S phase transition (checkpoint in cell cycle), DNA damage response, TGFβ 

(transforming growth factor beta ) signalling, SWI/SNF (SWItch/Sucrose Non-Fermentable) 

pathway, KMT2 (family of methyltransferases), cell stress response, axonal guidance, RNA 

splicing, homophilic cell adhesion36,37. Regarding the inherited genetic susceptibility, the disabling 

of DNA repair system-encoding genes (e.g., BRCA1, BRCA2, Fanconi anaemia FANCC and FANCG, 

ataxia telangiectasia mutated genes) have been associated with an increased risk of PDAC38,39. 

Also mutation on genes involved in cell division cycle [e.g., the genes cyclin-dependent kinase 

inhibitor 2A (CDKN2A)15,38,40, nuclear receptor subfamily 5 group A member 2 (NR5A2), telomerase 

reverse transcriptase (TERT), zinc ring finger 3 (ZNFR3) and TP63]41–43 have been studied. Overall, 

a single mutation alone is not enough for tumour development15 due to the poor proliferation 

capacity of the pancreatic tissue44. As such, cells divide and increase their number, ending up in 

cellular populations with the same driver gene mutation, leading to clonal expansion. Hence, the 

tumour propagates upon increasing cell divisions, consequently enabling the accumulation of 

somatic alterations15,45 that are responsible for pancreatic cancer heterogeneity. The (population 

of) cells carrying mutations can afterwards cross the surrounding membrane and disperse to 

other near or distant locations/organs, hence forming metastases. For that, pre-metastatic niches 
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are developed through several events that help establishing the tumour microenvironment in 

distant metastatic sites, thereby leading the flux of cancer cells from the primary tumour to those 

sites, while simultaneously guaranteeing the survival of the newly arrived metastatic cells46,47. As 

briefly referred in the previous section, metastatic cells may rely on tumour-derived 

exosomes48,49, which are microvesicles (ca. 30-150 nm diameter) of endocytic origin constituted 

by extracellular matrix components50–54, with a key role on intercellular communication between 

cancer cells and their respective microenvironment. Exosomes abundance has been normally 

correlated with tumour malignancy55, since they contribute for the successful adhesion and 

colonization of circulating cells into other tissues56, hence mediating the process of metastases 

dissemination and  tumour development/proliferation15.  

There are evidences that premalignant lesions in normal ductal epithelium, such as 

Pancreatic Intraepithelial Neoplasia (PanIN), have also a strong involvement in cancer 

development57, though 16 to 45% of them are not associated with invasive carcinomas58,59. These 

lesions occur and start in the small ducts of the exocrine pancreas33. According to their neoplastic 

progression and stage, they may be classified as PanIN-1 (low grade), PanIN-2 (medium grade) or 

PanIN-3 (high grade)60,61. The PanIN-1 lesions are observed in normal pancreatic tissues, whilst 

PanIN-2 occur in the tissue of neoplastic pancreata, and PanIN3 lesions are usually associated 

with an established pancreatic cancer. The mutations responsible for PanIN progression into a 

carcinoma frequently rely on the activation of KRAS2 oncogene (most frequent and it occurs in 

95% of pancreatic tumors), and inactivation of tumour suppressor genes such as CDKN2A, INK4A, 

TP53 and DPC4/SMAD415,34,62,63. Although PanIN are major cancer-inducing lesions, other 

pancreatic neoplasic lesions may be indeed precursors of invasive carcinomas, namely the 

intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasms (MCN)3.  

The biochemical and metabolic traits associated with PDAC development highlight the 

capacity of changes in cell functions that are needed for tumour initiation and progression64.  A 

such, besides the high energetic (i.e., ATP) and biochemical (several macromolecules) 

requirements to support PDAC proliferation, tumour microenvironment partly sustained by 

desmoplastic stromal reactions is also an extremely relevant influencing factor. The stroma is the 

connective and structural part of a tissue, but in PDAC the characteristic desmoplastic stroma is 

enhanced comparatively to the epithelial counterpart of the tumour, being responsible for the 

hypoxic and low nutrient loads determined in PDAC metabolic features65–67. Moreover, PDAC is 

indeed typically characterized by a fibroinflammatory microenvironment, which induce T cells 

that possess a mechanism of p38 protein kinase activation (MAPK)68, which lead to an enhanced 
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production of cytokines69,70. The  microenvironment of PDAC is the major source of tumour-

promoting cytokines that cause angiogenesis, metastasis, and resistance to chemotherapy and 

disruption of the host defences71–73. Angiogenesis, in particular, promotes the formation of a 

dense blood vessels net what is very important towards the growth, invasion and metastasization 

of the tumours, as far as it provides nutrients and oxygen to the tumour cells74,75. Furthermore, 

angiogenesis entails the proliferation and migration of endothelial cells. Some growth factors are 

part of tumour angiogenesis such as the fibroblast growth factor, epidermal growth factor, 

vascular endothelial growth factor, placental growth factor, tumour necrosis factor-alfa (TNF-α), 

and angiogenin 76–78.  

1.3.2- Apoptosis pathway 
 
 Together with the cancer pathways mentioned above, other pathways like Hedgehog 

pathway, integrin signalling, JNK, Wnt-β-caterin, Small GTPases and mainly apoptosis67, have very 

important roles in PDAC development. Herein is described the apoptosis pathway in particular 

since it is one of the first mechanisms that act against cell dysregulation in our system, and hence 

give some information on how the disease can be treated. Besides, apoptosis functions in 

combination with the other signalling pathways, therefore maximizing its potential to eliminate 

cancer cells79. Plus, it is a natural mechanism to prevent cancer dissemination by killing the 

dysregulated cells, but it can also influence cell mutations when cancer cells can escape from 

programmed cell death80. So, apoptosis is not always a safe pathway, and can actually favour 

disease proliferation under certain circumstances79.  

Apoptosis is a natural programmed cell death that emerges from two specific pathways in 

cells. The first is extrinsic to the cell and depends on its surface receptors. The second is an 

intrinsic pathway lead by mitochondria-produced molecules81. A strong therapeutic strategy is to 

block the apoptosis pathways in cancer cells78,82. Some peptides are responsible to induce 

apoptosis in such cells, which makes them potential targets of treatment. Necrosis is another 

relevant natural cell death pathway, though not programmed. Necrosis involves the degeneration 

of cell cytoplasm, causing the release of cytoplasmic contents78,83,84. Apoptosis and necrosis can 

be originated by physical traumas to the cells or pathological cell damages85,86.  

In the human body are generated radicals called reactive oxygen species (ROS), such as 

the superoxide anion (O-
2), hydrogen peroxide (H2O2), hydroxyl radical (OH) which are derived 

from oxygen metabolism and help to balance the oxidative homeostasis in normal cells87,88. 

Therefore, depending on its levels, ROS can either be beneficial for cell functioning or harmful81,89. 
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Free radicals and ROS produced in normal cell metabolism are beneficial (at reasonable 

concentrations) because of the regulation of intracellular redox signalling90–92. Some ROS can even 

induce the production of anticancer molecules like phenethylisothiocyanate, which promote 

pathways committed to the selective killing of cancer cells81. However, if the antioxidant systems 

are inhibited and/or an excess of ROS is produced in response to oxidative stress scenarios, then a 

loss of cellular functions and even apoptosis may take place93. Pancreatic cancer cells create 

medium levels of ROS to operate in their proliferation, migration and metastasis. Nevertheless, if 

ROS levels are too high it can promote PDAC cell death, because they create an adverse 

environment81,94–96. 

Some natural compounds influence apoptosis by interacting with different signalling 

pathways targets, like transcription factors, protein kinases, angiogenesis, and inflammatory 

cytokines that are often unbalanced in cancer stages81. Available studies confirm that using 

Nimbolide (a plant secondary metabolite) to induce overexpressed levels of ROS could inhibit 

pancreatic cancer proliferation and migratory capacity through the regulation of apoptosis and 

autophagy15. Besides natural compounds, we possess our own proteins that function like tumour 

suppressor p53 that is a known example of protein responsible for protecting genome stability 

and have a very important role in the control of cell cycle, apoptosis, maintenance of genomic 

integrity and DNA repair in response to cell stress97,98. When p53 is activated it attaches to 

regulatory molecules that enhances the expression of specific genes leading cells response against 

tumour formation9. 

 

1.4- Pancreatic cancer therapeutics 
 

Surgery remains the most used method for controlling pancreatic cancer in an attempt of 

therapeutic cure, because there is still no effective treatment and the available disease 

screening/diagnostic methods are not robust enough to detect pancreatic cancer at a more 

curative stage78,99. Notwithstanding, in some cases PDAC surgery may be supported by adjuvant 

therapies that usually include chemotherapeutic treatments relying on the administration of e.g., 

gemcitabine or 5-fluorouracil (5-FU). However, some studies were explored the effect of 

combining these drugs with other chemotherapeutics like capecitabine, pemetrexed, erlotinib, 

irinotecan, exatecan, and/or targeted therapies78,100–102, though they revealed not to be effective 

yet. 
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One of the major problems tailoring therapeutic effectiveness is the different cancer 

phenotypes, which may develop resistance to anticancer compounds or even to pro-apoptotic 

effects. Therefore, it is important to have this into consideration, and gather a robust knowledge 

on PDAC phenotypes of each tumour for applying adjusted and more precise therapeutics103.  

In this context, targeted therapies (e.g., hormone therapy, immunotherapy) have been 

the target of many studies for that purpose as already referred, though it is yet on its infancy. A 

variety of bioactive peptides capable of modulating immune responses can be explored as new 

anticancer drugs and used towards cancer immunotherapy103. Those peptides can provide many 

advantages relatively to conventional chemotherapeutics, such as high selectivity, favourable 

pharmacokinetic action, easy to access tumor sites, generally low toxicity and immunogenicity. 

although they have a weakness due to their limited stability and difficulties in penetrating cell 

membranes103.  

Bacterially-based therapies have also been raising interest among the biomedical 

scientific community. Some bacteria like Salmonella typhimurium A1-R have been explored to 

help suppress tumour growth. The action of bacteria does not involve exerting a direct cytotoxic 

effect on tumour cells, but instead inducing the expression of anticancer agents through 

chemotaxis104. Notwithstanding, Salmonella may induce negative side-effects due to infection 

development105. Thereby, major challenges should be addressed regarding toxicity, ability to 

specifically reach the tumour site and attain regions not easily reachable by current treatments105, 

bacteria proliferation in tumour microenvironment and capacity to be genetically engineered105. 

Anyway, bacteria are offering and opening new therapeutic possibilities, which have been also 

associated with their enormous potential of biosynthesis of bioactive secondary metabolites or 

natural products. The combination of these bacterially-based therapies with chemotherapeutic 

agents can indeed contributes to a new era of alternative PDAC treatments in the future. 

 

2- Search for new anti-PDAC natural products 
 

Nowadays, novel compounds have been urgently claimed by clinics in order to overcome 

the limitations of current PDAC therapeutics, which range from toxicological side-effects, low 

specificity and efficacy, to multidrug resistance105. As such, focusing the discovery of new drugs on 

natural resources has been encouraged again, particularly by the pharmaceutical industry, given 

the need to find novel chemical structures with enhanced anticancer activity, more easily 

absorbed, stable, less toxic and highly tumour-specific. In a chemical perspective, natural products 
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are broadly considered as molecules with varied structures and molecular weights that belong to 

different chemical classes (e.g., peptides, fatty acids, nucleosides) and may present, besides 

anticancer activity, antifungal, antiviral, antibiotic, anti-inflammatory and/or antioxidant 

activities106. Given their variety and range of potential applications, the number of studies 

devoted to the search of bioactive natural products synthesized by living organisms from different 

environmental sources has been increasingly rising in the last decades80. The aquatic107 or 

terrestrial environments108 are two major compartments targeted for searching natural 

compounds. In particular, ecosystems characterized by extreme conditions of temperature, pH, 

pressure, oxygen availability, nutrient loads and contamination profiles109, or even under-explored 

environments (e.g., the marine environment108) may offer great pharmaceutical opportunities. 

This is because the organisms inhabiting such extreme environments developed genetic, 

metabolic and physiological adaptations to withstand harsh conditions. Thereby, different 

organisms have been explored for their potential to synthesize bioactive molecules through a 

secondary metabolism that often results from that evolutionary selection or adaptation110. 

Although the ecological role of the secondary metabolites may not be thoroughly disclosed or 

known for many organisms, it has been referred their role on organisms’ responses as to endure 

and proliferate under stressful conditions (e.g., acidic pH, chemical contamination)111 and species 

interrelations (e.g., interspecies competition, quorum sensing111, microbial pathogens)112,113.  

Among the organisms producing bioactive compounds with anti-PDAC activity, plants 

have been demonstrating a great potential. Curcumin, which was isolated from a turmeric plant, 

has antitumor, antioxidant and anti-inflammatory properties112. The anticancer properties of 

curcumin are derived from its capacity to block the transcriptional nuclear factor kappa beta 

(NFkb), which is a cancer cell regulator in inflammatory, proliferation, apoptosis and multidrug 

resistance114. In fact, a curcumin analogue, GO-Y030, has been found to be even more active 

against STAT3115, a signal transducer and activator of transcription 3 that is associated with 

promotion of metastasis in PDAC115. Capsaicin, which is the main compound of chilli pepper 

plants, has been used to fight multidrug resistance. Capsaicin targets Trx-ASK1 (apoptosis signal-

regulating kinase) to induce apoptosis in BxPC-3 cells, a line of pancreatic adenocarcinoma cells106. 

Mogroside V was another compound isolated from a Chinese plant that inhibits the survival of 

PANC-1 cells, leading to apoptosis by blocking cell division at the G0/G1 phase116. It also 

upregulates genes like CDKN1A (that is controlled by p53) and CDKN1B functioning as cyclin 

kinase inhibitors and tumour suppressors. It is suggested that Mogroside V can indeed control 

PDAC growth by angiogenesis inhibition through the VEGF (vascular endothelial growth factor)-
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dependent mechanism116. In fact, since Mogroside V can be daily consumed as a food sweetener, 

it may be used as a preventive natural treatment against PDAC116.  

Great part of the work developed recently has also been directed to get further 

knowledge on the secondary metabolites produced by bacteria, mainly from Actinobacteria 

phylum117. The biosynthesis of natural products by bacteria is sustained by different enzymes, 

being the most known, the polyketide synthases (PKS)118 and nonribosomal peptide synthetases 

(NRPS)119. These multifunctional and modular enzymes mediate the production of polyketides 

(PKs) and nonribossomal peptides (NRPs) compounds120. For more details on these biosynthetic 

pathways and genetic machinery, please see Chapter II. 

 

2.1- Marine sources of natural compounds 
 
 

The marine ecosystem corresponds to 95% of the Earth biosphere and has been pointed 

out as a great provider of multiple sources of bioactive natural compounds121,122 Among the 

marine organisms, bacteria, cyanobacteria, archaea, fungi, micro- and macroalgae, and even 

invertebrates have been explored for the extraction and purification of natural compounds that 

exhibit several properties with significant biological activities, such as anticancer, anti-

inflammatory, antiviral, antibacterial and anticoagulant112,123. Overall, despite some of the marine 

natural products discovered so far present anti-PDAC activity, the potential of marine ecosystems 

to provide additional drug options is far from being deeply known or covered. 

 

2.1.1- Bacteria and Archaea 
 

Among the marine microbes, representatives of Archaea and Eubacteria kingdoms have 

been investigated for new and diverse metabolites with bioactivity112. Although these microbial 

groups are geographically ubiquitous, Archaea are often identified in extreme environmental 

conditions like in deep sea and thermal vents112. But bacteria can also withstand a wide range of 

environments and hostile conditions110. Given their adaptations, marine bacteria evolved abilities 

associated with the production of many secondary metabolites. Different peptides synthesized by 

bacteria revealed to be promising compounds for medical applications, for example, lasso 

peptides124, bacteriocins like microcins, colicins and lantibiotics124, and nonribosomal peptides like 

cyanobacterial peptides112. Cyanobacteria were found to produce anabaena peptides (from 

Anabaena sp.), cyanopeptolins (a class of oligopeptides produced by Microcystis), aeruginosins 
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(protease inhibitors produced by Microcystis aeruginosa) and microviridins (serine protease 

inhibitors produced by various genera of cyanobacteria)112.  Other type of bacteria, Myxobacteria, 

have a complex life cycle and are proved to be a useful source of natural compounds with huge 

potential for new drugs125. In marine Actinobacteria, the genus Streptomyces produces almost 

80% of the natural compounds of Actinomycete126. Streptomyces species are producers of 

compounds with some properties like antifungal (e.g., natamycin), antibacterial (e.g., 

streptomycin), and antiparasitic (e.g., ivermectin) activities194-196. Against PDAC, was particularly 

found capsimycins derived from Streptomyces xiamenensis that induced cytotoxicity against 

several pancreatic cancer cell lines129.  

 

2.1.2- Fungi 
 

Marine fungi as Acremonium, Aspergillus, Fusarium, Epicoccum and others genera130 often 

live as symbionts of marine algae or invertebrates112,123, evidencing the ability to synthesize 

several compound like PKs, alkaloids112,131, sesquiterpenes112, and aromatic compounds23,132. 

These natural products were discovered to induce cytotoxic, neuroactive, antibacterial, antiviral 

and antifungal activities131,133. Penicillium chrysogenum is a penicillin producer, whilst Penincillium 

griseofulvum is a producer of griseofulvin (for antifungal treatment) and are the most studied 

biosynthetic fungi130. Another marine fungi representative of the genus Trichoderma are also 

producers of several different bioactive metabolites, like the antimycobacterial aminolipoptide 

trichoderins134 and the antifungal trichodermaketone A135. Varioxepine is a recently discovered 

alkaloid isolated from the endophytic fungus Paecilomyces variotii (lives in association with an 

algae) that has activity against the phyto-pathogenic fungus Fusarium graminearum136. 

 

2.1.3- Algae  
 

 
 Algae are photosynthetic organisms, and major producers of biomass and organic 

products in the marine environment112. Marine microalgae include five groups, Chlorophyta, 

Chrysophyta, Pyrrhophyta, Euglenophyta and Cyanophyta112. Microalgae are considered a great 

source of natural bioactive compounds, namely carotenoids, which constitute several food 

products23,137. Carotenoids produced by microalgae can act on oxidative stress by diminishing free 

radicals and ROS, which have been pointed out as drivers of many human diseases88, such as 

Alzheimer, Parkinson and other neurological diseases, as well as cancer, among others88. β-
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carotene from Dunaliella salina is a well-known carotenoid produced by this marine microalgae, 

with antioxidant properties and hence used to remove free radicals88.  

 Marine macroalgae can normally be utilized as vegetables, medicines, fertilizers, and raw 

materials in different industries, given their anticancer, anticoagulant, and nutritional 

properties112. Natural products from these macro organisms include polysaccharides (e.g., from 

Rhodophyta), which can present anticoagulant properties by interfering with fibrin 

polymerization, what is usually essential for blood coagulation112. Included in the polysaccharides 

studied from macroalgae, fucoidans (from brown algae), carrageenan (from red algae) and ulvan 

(from green algae) can have significant roles in cancer control and have been investigated for that 

purpose138. 

2.1.4- Invertebrates and their symbionts 
 

Among the marine invertebrates, tunicates (phylum Chordata), cnidarians (phylum 

Cnidaria), and especially sponges (phylum Porifera)113 may produce a diverse classes of 

compounds, like terpenes, sterols, fatty acids, cyclic peptides, amino acid derivatives and 

alkaloids23. Some of the invertebrate-derived marine drugs have already been approved or are in 

tests phase. For example, aplidine (approved in March 2018) is a depsipeptide originally isolated 

from de tunicate Aplidium albicans121 that possess anticancer activity but it was removed from 

market in December 14th 2018 for its lack of activity range. Jorumycin is an alkaloid from the 

mollusc Jorunna funebris and has been applied in schizophrenia cases107. The marine sponge 

Oceanapia sp. produces the antibacterial C14 acetylenic acid that is a fatty acid and is effective 

against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtillis and Staphyloccocus aureus132. 

From a sponge of the genus Leiodermatium was extracted leiodermatolide, a polyketide with 

antibiotic capacity that exhibits cytotoxicity against several pancreatic cancer cell lines, like AsPC-

1, PANC-1, BxPC-3 and MIA PaCa-2139.  

When it was realized that marine invertebrates harbour many bacterial symbionts, the 

source of bioactive compounds was thought to be also of bacterial origin. Tetrodotoxin is capable 

to treat neuropathic pain and is in phase III trials140. Nojirimycin, originally isolated from the 

sponge symbionts Streptomyces roseochromogenes and Streptomyces lavendulae, is a natural 

product abundantly used to fight type II diabetes141. Bacillus tequilensis isolated from the sponge 

Sarcotragus fasciculatus has β-glucosidase inhibitors also with anti-diabetic potential142. 

Pseudomonas piscicida from the sponge Hymeniacidon perleve has Norharman (from β-carbolins 

compound class) with anti-microbial activity143. Some compounds with anti-tumorigenic potential 
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like Yondelis® (drug approved in 2007 in Europe by the European Medicines Agency) can be used 

in the treatment of ovarian and breast cancers, melanomas, soft tissue sarcomas, being extracted 

from bacterial symbionts of marine invertebrates144.  

Similarly to sponges, the cnidarians are also quite distributed in seas and oceans 

worldwide145,146. They possess specialized cells (cnidocytes) that are used to kill preys for feeding 

purposes, as well as to guarantee their defence and movement147. The phylum Cnidaria is divided 

into Anthozoa that includes sea anemones and corals, and Medusozoa, which includes classes like 

Staurozoa, Hydrozoa, Schyphozoa and Cubozoa112. Hydrozoan species can host bacteria as part of 

their tissues148. The symbiotic bacterial community is specific, for example, of each Hydra species 

(a well-known hydrozoan) and their endoderm is structured as to fight bacterial pathogens 

through the production of antimicrobial peptides, thereby constituting an alternative for the 

absence of a physical barrier149,150. In extracts of Hydra, Hydramacin-1 is a peptide obtained with 

high antimicrobial activity145. This peptide seems to be enhanced by other microbial products, like 

lipopolysaccharides (LPS), which have antibacterial activity against Bacillus megaterium, 

Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae strains, but barely shows activity 

against Pseudomonas aeruginosa145. Regarding medusozoans, jellyfish like Pelagia notiluca have 

also been approached in some studies focusing on the isolation of compounds151. Moreover, a 

symbiont isolated from the jellyfish Cyanea capillata belonging to Pseudomonas sp. genus, could 

synthesize the antimicrobial protein CAP-1 that is highly inhibitory of the growth of marine 

pathogenic microorganisms like Vibrio vulnificus152. CAP-1, however, is not cytotoxic to human 

tumoural and normal cells of the skin152. Notwithstanding, this bioactive potential should be 

further analysed against other targets and applications.  

 

3- Objectives and structure  
 

              This work had two major objectives. One of them intended to perform the state-of-the-art 

regarding pancreatic cancer, as well as its main therapeutic approaches and gaps that can be 

potentially fulfilled by the discovery of new bioactive natural compounds produced through 

specific biosynthetic pathways, especially occurring in living resources of the marine environment. 

The other aim is to unravel the potential of bacterial symbionts isolated from marine cnidarians to 

synthesize bioactive compounds against PDAC. In order to accomplish these goals, the following 

specific objectives were established: 
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● to make a literature review on pancrea c cancer e ology, epidemiology, diagnosis, biology, 

carcinogenesis and current treatments, as well as on the discovery of novel natural products, 

especially from the marine environment; 

● to summarize the biosynthetic pathways sustained by NRPS and PKS, and the bacterially-

synthesized NRPs and PKs natural compounds; 

● to screen the poten al bioac vity of bacteria isolated from cnidarians sampled in the Atlantic 

Ocean, through the application of a molecular approach and testing of crude extracts against a 

pancreatic ductal adenocarcinoma cell line. 

 

 This document is thereby structured in chapters that are lined with these objectives, 

being some of the chapters organized in a paper-directed format: 

● Chapter I: General Introduction 

● Chapter II: NRPS, PKS and hybrid genes – structure, derived marine natural compounds, and 

genetic engineering 

● Chapter III: Screening of marine bacteria for the potential biosynthesis of NRPs bioactive 

compounds against pancreatic cancer 

● Chapter IV:  Final Considera ons 

 

4- Scientific outputs during the MSc research 
 
Poster - Scientific poster entitled as “Potential of marine bacteria to synthesize bioactive 

compounds for medical application”. Authors: Mafalda Tabuada, Carlos Moura, Amadeu M.V.M. 

Soares, Catarina R. Marques. Poster presented at the IV Post-Grad Symposium in Biomedicine, 

ibiMed, UA. p. 59. 

 

Review/ research articles: 

Chapter I and II- A review paper will be prepared from the state-of-the art and literature search 

performed for the topics focused in chapters I and II. 

 

Chapter III- An original research paper will be submitted to the international peer-reviewed 

scientific journal Research in Microbiology, being the title: “Screening of marine bacteria for the 

potential biosynthesis of NRPS bioactive compounds”. 
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NRPS, PKS and hybrid genes – structure, derived marine natural 
compounds, and genetic engineering 
 

 

Abstract 
Nonribosomal peptides (NRPS), polyketide synthases (PKS) and NRPS/PKS hybrids are 

genes that became known for encoding huge and complex modular enzymes involved in the 

microbial synthesis of secondary metabolites. These secondary metabolites are natural products 

with important ecological and biological activities that may serve a broad use for medical and 

industrial purposes. According to their bioactivity or properties they may be antibiotics, 

siderophores, surfactants, anticancer substances, immunosuppressive and anti-inflammatory 

compounds. Given the relevance of these genes, the present chapter focus on PKS, NRPS and 

hybrids structure and biosynthesis, their occurrence in marine microbes, mediation of the 

biosynthesis of marine natural products, and on the main advancements with regard to the 

genetic engineering of those modular enzymes as producers of natural compounds derived from 

marine bacteria.  

 

 

Key-words: enzymes, nonribossomal peptides, polyketides, bioactive compounds, marine bacteria 
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 Structure and biosynthesis of NRPS and PKS enzymes 
 
 

The nonribosomal peptide synthetases (NRPS) and polyketides synthases (PKS) are 

multimodular enzymes with remarkable structural diversity that sustain the biosynthesis of many 

secondary metabolites or natural products, broadly referred as nonribosomal peptides (NRPs) and 

polyketides (PKs), respectively. The NRPs- and PKs-encoding genes and genetic machinery are 

hence frequently found in the three domains of life represented by Bacteria, Archaea and 

Eukarya153.  

Overall, their biosynthetic pathways rely on sequential metabolic steps mediated by each 

module of NRPS or PKS enzymes, which resulting organization of the monomers in the 

compounds produced depend on the organization of the modules composing the enzymes154. The 

chemical structural unit (or monomers) incorporated by NRPS and PKS modules is an aminoacid 

(for peptide synthesis) or a carboxylic acid (e.g., for fatty acid synthesis where monomers are acyl-

CoA), respectively155. The great variability and arrangement of the enzymes modules and, 

consequently, of the monomers and their combinations, definitely contribute to the wide 

diversity of NRPs and PKs compounds, in terms of size and chemical structure120. Indeed, such 

diverse chemical structures of NRPS- and PKS-based products, coupled to the possibility of 

interacting with different (bio)molecular targets/receptors, provides a wide range of bioactivities 

relevant for different applications156. A major relevance of these compounds is that they may 

present a variety of biological activities with high pharmaceutical interest157, besides other 

properties relevant for other applications158.  

The number of NRPS modules (or catalytic units) depend on the number of aminoacids to 

be synthesized, but each one can be divided into three major domains: (i) the adenylation (A) 

domain with properties that allow the identification and activation of certain amino acid residues 

which are then transported to the second domain; (ii) the peptidyl carrier protein (PCP) (or 

thiolation domain); (iii) the condensation domain (C) that catalyzes the formation of C-N bonds for 

the binding of the aminoacid to the elongated oligopeptide, and transport this oligopeptide to the 

next module158–160 (Fig. 1a). The termination module contains a thioesterase (TE) domain 

responsible for the release of the peptide/protein via hydrolysis or cyclization118,119,154,161,162. 

Additional domains can be present in each module of NRPS enzymes that catalyse aminoacids 

epimerization, reduction, oxidation, methylation (Fig. 1a). As such, each module add one 

monomer to the elongated oligopeptide chain, until being synthesized the final peptide/protein 

(Fig. 1a).  
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Although NRPS is normally referred as modular enzymes, 10% of bacteria gene clusters 

were found to codify nonmodular enzymes, what was associated with an evolutionary trend 

mediated by horizontal gene transfer153. Nonmodular enzymes are not organized in modules, but 

in catalytic domains which codify separate proteins. Nonmodular NRPS occur in biosynthetic 

pathways of siderophores, such as those peptides synthesized from adenylation (EntE, VibE) or 

condensation (VibH) domains respectively in enterobactin and vibriobactin biosynthetic 

pathways163,164. Natural products synthesized by NRPS can be arranged according to their 

biological activities. Different NRPS-derived products have antibiotic and antifungal activities, like 

tyrocidine, bacitracin, surfactin, vancomycin, fengycin, telomycin, griselimycin, nannocystin A165 

(Table 1). Lipopeptides are amphiphilic compounds, such as the surfactin produced by Bacillus 

subtilis, which can easily penetrate the microbial cell membrane and cause its disruption, thereby 

facilitating its use as an antimicrobial166. Cyclic peptides like nannocystin A have a huge 

antiproliferative and antitumor activity, targeting the translation factor 1 of eukaryotic cells167. 

The cyclic depsipeptide griselimycin was proved to possess strong activity against Mycobacterium 

tuberculosis168–170.  
PKSs are subdivided into three groups, type I, type II and type III, according to the 

structure of the modular enzyme. Type I PKS modular enzymes, however, are the most known 

and represented in the microbial secondary metabolism171. They consist of multi-enzyme 

complexes derived from various functional catalytic units or domains in each module (as 

explained above)158. Type I-PKS can yet be divided into interactive (one sole organized module 

that is iteratively synthesized until the final peptide; e.g., erythromycin172) or modular (different 

modules, i.e., each module corresponding to different set of domains are subsequently 

synthesized up to the final peptide; e.g., lovastatin172) enzymes (Fig. 1b). Similarly to NRPS, the 

type I PKS modules contain three domains: (i) acetyltransferase (AT); (ii) ketosynthase (KS); and 

(iii) acyl carrier protein (ACP). These domains are essential for PKS elongation. The AT domain 

adds the monomers malonyl or methylmalonyl-CoA. The KS unit is responsible for the C-C binding 

and linkage of the building blocks to the oligopeptide chain. The ACP domain is similar to the PCP 

domain in NRPS, and works as a support for the synthesis of PKS by promoting a covalent binding 

of the elongated chain of monomers158 (Fig. 1b). Alternative domains suchlike ketoreductase (KR), 

dehydratase (DH), enoyl reductase (ER), and methyltransferase (MT) may also be organized into 

PKS modules173 (Fig. 1b). Type I PKSs are responsible for the biosynthesis of complex and short 

polyketides like macrolides, polyether and polyenes169,170,174 (Table 1). The Type II PKS are mono- 

or bifunctional enzymes composing a stable complex175. They have a unique characteristic that is 



Chapter II – NRPS & PKS genes 
 

22 
 

their high amino acid sequence homology and highly conserved gene sequences176. This type of 

PKSs in bacteria produce aromatic polyketides, like oxytetracycline and pradimicin159. Type III PKS 

are small homodimer enzymes that have been more associated with the secondary metabolism of 

plants, though also identified in some bacteria. Among the compounds they produce there are 

chalcones, pyrones, acridones, phloroglucinols, stilbenes, and resorcinolic lipids157. 

Fig.1a: Example of the modular organization in NRPS, with adenylation (A), peptidyl carrier protein (PCP), 
epimerization (E), N-methylation (M) and termination (TE) domains118,119,154,161,162 

Figure 1b: Example of the modular organization of type I PKS modules, with adenyl-transferase (AT), ayl 
carrier protein (ACP), ketosynthase (KS), dehydratase (DH), enoylreductase (ER), ketoreductase (KR) and 
termination (TE) domains173. 
 

The combination of PKS and NRPS in a biosynthetic cluster, leads to the synthesis of 

PK/NRP hybrids. This type of compounds can be broadly divided into two classes according to 

their synthesis. One includes the hybrids that are separately synthesized by NRPS and PKS 

enzymes, and afterwards combined into a final hybrid compound. The other class involves the 
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Examples of compounds Chemical class/structure

Surfactin Cyclic l ipopeptide

Tyrocidine Cyclic decapeptides Anticancer

Vancomycin Glycosylated peptide Antibiotic

Fengycin Lipopetide Antibiotic

Bacitracin Cyclic peptide

Telomycin Lipopetide Antibiotic

Nannocystin A Macrolactone peptide Anticancer

Griselimycin Cyclic peptide Antibiotic

Erythromycin Macrolides

type I
Nanchangmycin, monensin, 
nigericin, tetronomycin Polyethers Antifungal, phytotoxic

Rapamycin Polyenes

type II Lipopetide biosurfactants Antimicrobial, antibiofi lm

Glicopeptide biosurfactants Antimicrobial

Various polyketides Aromatic polyketides

C21 heptaketide Chalcones Antibiotic

type III Salinipyrone A Pyrones Anticancer

Triazoleacridone Acridones Anticancer

C18 heptaketide Phloroglucinol

Equisetin, Pseurotin A Tetramic acids Antifungal, neurogenic

Enzymes

NRPS

NRPS/PKS 
hybrids

PKS

Antithrombotic, profibrinolytic, anticoagulant

Anti-inflammatory, antioxidant

Antifungal, anticancer, immunosuppressive

Antibiotic, antifungal , anticancer

Antibiotic, antifungal

Antibiotic, antifungal , antiviral, hemolytic

Activities

Biosurfactants

peptide-polyketide products that are directly synthesized from the functionally combined NRPS 

and PKS enzymes177 (Table 1).   

 

Table 1: Examples of bioactive compounds associated with NRPS, PKS and NRPS/PKS hybrids. 

 

Marine environment as a pool of PKS/NRPS genes 
 

Marine natural products have been isolated and identified from different marine 

organisms like macroalgae, sponges, tunicates143. However, several studies have been focusing on 

the potential of microbial symbionts that live in association with marine invertebrates towards 

the production of bioactive secondary metabolites193. One of the strategies followed for the 

discovery of new natural products is based on the culture of microorganisms and screening of 

their bioactive potential. But with the onset of next generation (sequencing) tools together with 

the revolution of bioinformatics tools, other frameworks have been conducted, which reveal a 

diversity of silent gene clusters in marine microbes that potentially encode a tremendous range of 

bioactive metabolites159 These molecular- and genetic-based technologies help to overcome 
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culture difficulties, while simultaneously help to uncover the hidden biosynthetic potential in 

marine (microbial) resources. Notwithstanding the natural synthesis and isolation of the 

compounds are limited or compromised if the microorganisms are uncultured. As such, other 

studies performed the bioprospection of microbes biosynthetic abilities through a preliminary 

molecular screening, before going into the application of compounds extraction procedures153. 

For instance, sequencing and genome mining techniques has been used to identify biosynthetic 

gene clusters encoding NRPS, PKS and NRPS-PKS hybrids in the genomes of marine bacteria, such 

as Gram-negative representatives of the Alpha- and Gammaproteobacteria clades194. Vibrio, 

Roseobacter and Pseudoalteromonas evidenced several bioactive metabolites capable of inducing 

chitinolytic, iron quenching (siderophore production) and/or quorum sensing properties111,195 

Brito et al.155, started by doing a molecular screening of the genes encoding NRPS and PKS 

enzymes in marine cyanobacteria isolated from the Portuguese coastline (Atlantic Ocean). The 

authors found a greater presence of PKS genes than NRPS. Moreover, some cyanobacteria could 

synthesize natural compounds (analogues of known and unknown compounds; e.g., antanapeptin 

C, dolastatin 16, malyngamides cluster, and cyanotoxins as nodularin and microcystin) under 

laboratorial conditions, as determined by LC-MS and molecular networking. The metabolite 

barbamide was also isolated from a marine cyanobacteria (Lyngbya majuscula), which 

biosynthetic gene cluster (bar) encodes a hybrid PKS-NRPS enzymatic system184,198,199. 

Furthermore, it encompasses unusual aspects, specifically, the A and PCP domains of NRPS for 

leucine/trichloro leucine are encoded in separated open reading frames198, and the PKS module of 

this cluster is split into two proteins (BarE/BarF)200. Although there is a co-linear arrangement of 

PKS-NRPS systems, the produced natural compounds are constrained by complex protein-protein 

interactions185. NRPS and PKS genes in marine microbes have been frequently detected in 

bacterial representatives of Proteobacteria, Actinobacteria, Firmicutes and Cyanobacteria, and in 

Ascomycota fungi153. Marine Actinobacteria, in particular, enclose a vast pool of unexplored 

bioactive products. For instance, Salinispora tropica evidenced a complex metabolome of 

secondary metabolites201. Later on, it was concluded that it can produce natural compounds 

(salinosporamide A and B) through a hybrid PKS-NRPS pathway using the building blocks acetate, 

β-hydroxy-2’-cyclohexenylalanine, and either butyrate or a tetrose-derived chlorinated molecule. 

These compounds present various activities, namely anti-cancer activity196,197,202,203. 
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Biotechnological applications and genetic engineering of PKS/NRPS 
 

Although the culture of bacteria for natural products bioprospection is a valuable 

biotechnological avenue, it may bring some limitations if their production at large scale is 

intended. One major limitation concerns bacteria domestication, which may gradually lead to the 

reduction of NRPs and PKs gene expression and synthesis, as far as laboratorial culture conditions 

fail to reproduce environmental conditions that promote the expression of an adaptive secondary 

metabolism109. Furthermore, the chemical structures of naturally-obtained compounds may not 

be biocompatible or provide a stable activity, especially if a pharmacological application is 

required. However, the determination of NRPS, PKS and hybrids genetic diversity and machinery, 

the chemical structure of the assembled compounds, mechanistic/enzymatic pathways, and 

networks, can provide information for the generation of new chemicals, through the application 

of genetic engineering tools118,204.  

The engineering of PKS-NRPS hybrids may take advantage of the natural diverse chemical 

structures/compositions of the compounds, in order to produce new customized chemicals that 

may be difficult to obtain through artificial chemical synthesis205–207. NRPS can be indeed 

engineered to achieve optimized natural products with enhanced bioactivity, and help with 

pharmaceutical needs to fight different diseases204. As such, NRPS gene clusters were already re-

designed. A first attempt was made on surfactin synthetase, being the natural A-PCP domains 

(responsible for leucine addition) replaced by others of bacterial and fungal origin208. The 

haemolytic capacity of the altered surfactin was kept, though peptide production was not greatly 

increased. The discovery of gene sequences encoding a link (composed by aminoacids with no 

particular function) between NRPS domains allowed their exploitation for engineering enzymatic 

fusions without losing the integrity/activity of enzymes209. Also, the engineering of NRPS A 

domain-specificity by the introduction of site-mutations of substrate amino acids, provides an 

option for the manipulation of NRPS biosynthetic clusters towards the creation of new 

antibiotics126. 

Another strategy that has been exploited for the controlled biosynthesis of new 

compounds relies on the heterologous expression of NRPS, PKS or NRPS-PKS hybrid gene clusters, 

either identified via metagenome analysis or previously engineered209, by bacterial vectors like 

Streptomyces, which genetic machinery may be tailored to overexpress and produce the 

compounds210. Streptomyces toyocaensis NRRL 15009, which is the producer of the non-

glycosylated “glycopeptide” A47934, is an expression vector capable of synthesizing hybrid 

glycopeptide antibiotics211,212. Genome mining of this species revealed its reduced size, and the 
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presence of only four NRPS, one type II PKS and none type I PKS gene clusters. These genetic 

features highlight the value of S. toyocaensis NRRL 15009 for the heterologous expression of 

cryptic NRPS gene clusters213. Awakawa et al.185 also re-designed the biosynthesis of modular 

NRPS/PKS hybrids producing the antimycins JBIR-06 (tri-lactone) and neoantimycin (tetra-lactone) 

through heterologous expression, hence resulting in novel antimycin analogues. These 

approaches mostly consider the modular organization and structure of the chemicals synthesized 

by particular Actinomycetes, but it requires their validation in other bacterial systems (e.g., 

marine-derived species) and their respective NRPS/PKS assemblies193. Other example was the 

engineering of Streptomyces avermitilis (synthesizes avermectin) and Saccharopolyspora 

erythraea (synthesizes erythromycin) PKSs to produce spinosyn derivatives. The specificities of 

erythromycin and avermectin loading modules allowed the generation of hybrid PKs, which once 

replaced by the spinosyn loading module lead to the production of novel spinosyn analogues with 

new and/or enhanced activity for insect control202,214. Hence the modular organization of 

erythromycin and avermectin PKS provided the means to employ genetic engineering and custom 

the chemical structures of their products in a targeted way.  

Thus, the success of biosynthetic engineering approaches in the production of a wide 

range of novel compounds has been accomplished. Therefore, the creation of optimized novel 

compounds, not known in nature, is likely to soon assume a breakthrough in biotechnology and a 

major relevance in clinics, as well as other sectors (e.g., industry).  

 

Conclusions 
 

The complex modular enzymes PKS, NRPS and PKS-NRPS hybrids are ubiquitously and 

diversely catalysing the synthesis of natural polyketides, peptides or polyketide-peptide 

compounds, respectively, by microbes from different environments. The marine environment, 

however, is believed to harbour a large pool of yet unknown biosynthetic microorganisms. As 

such, a great effort has been lately devoted to the search of novel marine compounds that could 

help with the lack of therapeutics for different diseases (e.g., bacterial infections, cancer) or drugs 

to control multi-resistant bacteria, as well as with the need of compounds to serve different 

industrial, agricultural or environmental processes/services. As the laboratorial culture of 

microbes may present several limitations to mimic the environmental traits stimulating the 

production of PKs, NRPs and hybrid compounds, new approaches have been searching towards 

their large and controlled production for different (bio)technological applications. In this context, 
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genetic engineering together with next-generation sequencing and bioinformatics tools is 

contributing to the re-design of the naturally-occurring enzymes/compounds and biosynthetic 

pathways. Consequently, new compounds or analogues have been generated with optimized 

structures, stability and enhanced activities, tailoring new opportunities for supplying 

environmental, technological and social requirements.  
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Screening of marine bacteria for the potential biosynthesis of NRPs 
bioactive compounds against pancreatic cancer  
 

Abstract 
 

The high malignancy of pancreatic cancer together with the severe limitations of the 

currently available treatments, namely involving drug resistance and inefficacy, the search for 

new anticancer drugs from natural sources has been claimed. Natural products that can modulate 

multidrug resistance have characteristics such as lower toxicity due to potentially high tumour 

selectivity, which may offer attractive opportunities. Therefore, the aim of this work is to apply a 

molecular approach to screen for the biosynthetic genetic potential, as well as, the bioactivity of 

crude extracts of marine bacterial symbionts isolated from cnidarians. Among the strains tested, 

in 39 was amplified a conserved region of the nonribosomal peptide synthetase (NRPS) A 

domaingenes. These bacteria were mainly assigned to the Proteobacteria and Actinobacteria 

phyla. Fourteen were selected given their ease of culture and the success on NRPS gene 

fragments amplification. The greatest part of them proved to harbour genes of NRPS biosynthetic 

cluster with high homology, and the crude extracts (cell and cell-free fractions) were generally 

cytotoxic to Capan-1 human pancreatic ductal adenocarcinoma cell line, as indicated by the MTT 

assay. The results were promising and gave the confirmation of association between the presence 

of NRPS in marine bacteria and potential production of bioactive compounds with anti-cancer 

activity.  

 
 
Key-words: molecular screening, biosynthetic gene, crude extracts, bacterial symbionts, 

cnidarians, pancreatic ductal adenocarcinoma, MTT assay 

 

Introduction 
 

Although pancreatic ductal adenocarcinoma (PDAC) is ranked in the 7th position among 

the deadly cancers in the world1, it is a quite threatening cancer given its silent and quick 

progression and metastization, low responsiveness to current therapeutics, high probability of 

recurrence after surgery, and a great ability to develop multidrug resistance. In order to cope with 

these clinical hurdles, some effort has been put towards the discovery of new drugs to fight PDAC.  

Natural products synthesized by living organisms can present anticancer bioactivity and 

simultaneously be less toxic than conventional chemotherapeutic drugs (e.g., gemcitabine), if 
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highly specific for targeting the tumour site. The testing of natural compounds against PDAC has 

been increasing, and several reports have been highlighting specific compounds capable of being 

used as potential adjuvant therapeutic drugs (e.g., curcumin and capsaicin)105,115 resents a 

thorough review on the natural compounds that have been tested in combination with current 

chemotherapeutic pharmaceuticals in preclinical and clinical trials, with the aim of controlling 

PDAC progression.  

Microbes, and bacteria in particular, can be promising producers of anticancer natural 

compounds, once many of them evolved a secondary metabolism to sustain different biological 

and eco-physiological adaptations, which lead to the formation of metabolites with peculiar 

bioactivities with interest for medical applications, like cancer treatment215. Under this context, 

marine bacteria and bacterial symbionts living in association with invertebrates are major sources 

of natural compounds, evidencing a widely unknown resistome205 and metabolome217. Hence, the 

sequenced environmental microbial genomes so far had revealed that a potential diversity of 

novel bioactive compounds exists207,218,219, what broadens the horizons regarding new compounds 

discovery. among the chemical classes of compounds lately explored, nonribsomal peptides 

(NRPs) synthesized through the action of modular and multifunctional enzymes broadly named as 

nonribsomal peptides synthetases (NRPS), have been a great opportunity for the development of 

novel anticancer medicines, like bleomycin in preclinical trials and primarily isolated from 

Streptomyces verticillus220. The multiple modules and domains composing the modular NRPS 

enzymes, as well as the diversity of the genetic machinery and biosynthetic gene clusters 

encoding NRPS194, renders an enhanced relevance given the diverse chemical structures and 

activities that can consequently arise156,209,221. Deep-sea marine bacterial strains, symbionts of 

sponges, tunicates or cnidarians and been evidencing a genome enriched in NRPS clusters126,222. 

Moreover, bacteria from different phyla well known to produce secondary metabolites, especially 

Actinobacteria, have been screened for NRPS gene clusters117, and the possible products 

associated to NRPS sequences have also been predicted145. According to a study, marine 

actinomycetes that potentially synthesize anti-cancer compounds possess a certain diversity of 

NRPS gene clusters210. Notwithstanding, many bioactive compounds produced by marine bacteria 

are related to a combined activity of both NRPS and polyketides, as the hybrid compounds can 

offer enhanced and more specific activities223. Despite the great discoveries that have been 

reached and efforts to unravel new anticancer natural drugs, the marine environments are still 

greatly overlooked and underrated122. Multiple marine ecological niches yet to be screened 

enclose promising genetic and biosynthetic diversities with potential relevance to fight PDAC. 
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Thereby, the aim of this work is to screen for the biosynthetic potential of marine bacteria 

isolated from cnidarian species through the use of molecular techniques directed to the 

amplification of NRPS gene fragments. Furthermore, in a way to confirm the production and 

activity of compounds produced by the NRPS-harbouring marine bacteria, their crude extracts 

were tested against a human PDAC cell line.  
 

Materials and Methods 

Bacterial symbionts, culture and storage conditions 
 

The bacterial strains used in this study were previously isolated from nine cnidarian 

individuals, which were sampled in the Atlantic Ocean. The bacterial isolates were individually 

grown in marine agar plates at room temperature (20 ± 2ºC), being stored every time needed in 

15% glycerol at -80ºC.   

Molecular screening of NRPS gene fragments 
 

 In order to identify the potential of bacterial isolates to synthesize bioactive secondary 

metabolites, the presence of genes encoding NRPS were screened through polymerase chain 

reaction (PCR). For that, a set of degenerate primers targeting conserved genetic regions of the 

adenylation domain (A) of NRPS was used. A total of 175 bacterial strains isolated from all the 

cnidarians hosts were subjected to this molecular screening approach. Before PCR, bacterial 

genomic DNA (gDNA) was extracted by heat lysis at 105ºC during 5 minutes in a dry bath, 

followed by a cooling step at 4ºC for at least 15 minutes. The NRPS genes were PCR-amplified 

from bacterial gDNA using the degenerate primers A2F (5’-AAGGCNGGCGSBGCSTAYSTGCC-3’) and 

A3R (5’TTGGGBIKBCCGGTSGINCCSGAGGTG-3’). Reactions for NRPS were performed in a final 

volume of 25 µL containing ca. 20 ng of gDNA, 400 pmol of each primer and 12.5 µL of Dream Taq 

Master Mix. The PCR run was conducted in a C-1000 Touch™ Thermal cycler from Bio-Rad, 

according to the next profile for NRPS: 4 min at 95°C, and 30 cycles 1 min at 95°C, 1 min at 70°C 

and 1 min at 72°C, followed by 10 min at 72°C. It was applied an agarose gel electrophoresis (CS-

300V, Frilabo) for the separation of the PCR products in a 1% agarose gel. The amplicons were 

then observed in an UV Transilluminator Chemidoc XRS+ (Bio-Rad). The PCR amplicons were 

purified with a PCR-product purification kit and sequenced. The nucleotidic sequences were 

converted into aminoacid sequences and compared with available protein databases in BlastP®. 

The annotation was performed based in NCBI non-redundant protein database. Bacterial strains 
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that did not present culture constraints and for which was possible to get high amplification of the 

A domain-encoding amplicons, were selected for the preparation of crude extracts. 

Bacterial identification through 16S rRNA gene sequencing 
 

The 16S rDNA gene was amplified from gDNA (extracted as previously described) through 

the primers 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1522R (5’-AAGGAGGTGATCCAGCC-3’) 224. 

Reactions for 16S were performed with the Dream Taq Master Mix for a final volume of 25 µL 

containing ca. 20 ng of gDNA and 0.3 µM of each primer. The PCR run was conducted for 9 min at 

94°C, followed by 29 cycles of 30s at 94°C, 30s at 56°C and 90s at 72°C, and a final elongation step 

of 10 min at 72°C. The 16S amplicons were separated in an electrophoresis (see above), being the 

corresponding band excised from the gel, purified with a DNA purification kit, and subjected to 

Sanger sequencing. The nucleotide sequences were compared with NCBI database entries using 

BlastN® program. 

Preparation of bacteria crude extracts 
 

The bacteria previously selected (i.e., presenting an intense band of A-domain amplicons) 

were grown in Marine broth at 23ºC up to the stationary phase. The obtained bacterial 

suspension was centrifuged to separate cells from the supernatant, thereby obtaining cell and 

cell-free fractions, which were extracted with acetone (2:1) and ethyl acetate (1:1), respectively. 

After incubation with agitation, the solvent layer of cell and cell-free fractions were separated and 

evaporated in a BÜCHI rotary evaporator at 40ºC. The dried crude extracts were weighted, 

dissolved in DMSO and stored in aliquots at -20ºC.  

 

 

 

 

 

 

 

 
Fig.2: Representation of the metabolite extraction process with A) decantation, B) evaporation and C) 
obtained extract. 
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Cancer cell line culture and MTT assay 
 

The human PDAC cell line Capan-1 was cultivated in RPMI medium supplemented with 

FBS 10% and maintained at 37ºC and 5% CO2, being used for the assays at ca. 70% confluence. 

The prepared crude extracts from both bacterial fractions were tested for their cytotoxicity 

against Capan-1 cells through the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium 

bromide] colorimetric assay. This functional assay allows determining the impact of the extracts 

on the activity of mitochondrial enzymes, which catalyse the reduction of MTT to formazan, 

hence forming violet crystals that can be spectrophotometrically measured225 at 550-590 nm. 

Before performing the assay with the bacterial extracts, the conditions for running it were 

optimized in regard to: (i) initial cell density (1x103, 5x103, 1x104 and 5x104 cell/mL); (ii) DMSO 

concentration [0%, 0.5%, 0.8%, 1% and 2% (v/v)] since extracts were dissolved in DMSO, (iii) 

measuring times after dissolution of formazan crystals (5 min, 10 min and 15 min after adding the 

solvent to dissolve formazan crystals), (iv) measured wavelengths (500, 540, 570, 590, 650 nm). 

From a 70% confluent cell culture was prepared a cell suspension, which cell density was counted 

in a Neubauer chamber. The different cell densities were prepared in RPMI medium added with 

FBS and dispensed in the respective 96-well cell culture microplates, for cells attachment during 

approximately 24h (see culture conditions above). Then the culture medium was removed and 

replaced my DMSO-containing medium (200 µL) at the appropriate concentrations. Four 

experimental replicates were considered per cell density and DMSO concentration, being empty 

wells used as a blank. After 24h exposure under the same culture conditions, the MTT assay was 

initiated for about 2-3h. At the end of this exposure time, the MTT solution was discarded and the 

formazan crystals were dissolved with concentrated DMSO. After 5, 10 and 15 min was measured 

the optical density at 500, 540, 570, 590 and 650 nm, being the latter used to correct any 

potential effect associated with turbidity that should not be accounted for the measurement of 

the biological parameter. 

At the light of the optimization outcome, the cytotoxicity assay performed with the crude 

extracts (cell and cell-free fractions) was performed with 1% of extract per well, and an increased 

initial cell density of 7x104 cell/mL due to the low absorbances obtained with 5x104 cell/mL. In this 

assay were also included: a blank, a negative control (cells + culture medium) and a solvent 

control (cells + culture medium with 1% DMSO). For each treatment (i.e., controls and extracts) 

were tested four technical replicates (i.e., 4 wells) and two experimental replicates (i.e., 2 

microplates). Cell seeding, attachment time, duration and conditions of exposure to bacterial 
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extracts was performed as for the optimization assays. The spectrophotometric measurements 

were made after 5 min dissolution at 570 nm and 650 nm.  

To the spectrophotometric readings was removed the absorbances obtained in the blank 

and at 650 nm. After this treatment, the average and standard deviation of the four technical 

replicates and the two experimental replicates were computed and depicted in charts. A one-way 

analysis of variances (ANOVA) followed by the post-hoc multicomparison Dunnett’s test were 

applied to detect statistically significant differences on cells viability exposed to DMSO 

concentrations or bacterial extracts in relation to that of the control (α = 0.05). Statistical analyses 

were performed in SigmaPlot® v14 software.  

 

Results and discussion 
 

On the search for novel biomedical drugs from marine bacteria, besides getting 

knowledge on their potential biosynthetic abilities (e.g., by genome mining) it is also relevant to 

realize if they are actually expressed. For that, the isolation and culture of the bacteria can be a 

crucial step to explore the production of natural compounds and get more information on the 

biosynthetic bacteria (e.g., taxonomic identification). In this context, it was followed a molecular 

strategy for detecting the presence of NRPS-encoding genes in the gDNA of the marine bacterial 

strains isolated from cnidarian species193.  

 

Detection of NRPS A domain  
 

From the screening of 175 bacterial strains for NRPS gene fragments presence, 39 were 

positive (=22%) (Table 2). This value is approximate to those reported in other studies focusing on 

bacteria from marine sediments (30% of positives)158 or from sea sponges (with 13% positives)219. 

These percentages are however a rough and very relative estimation that depend on much factors 

like the ecological niche and environmental conditions, extraction and isolation methods, primers 

used and gene sequences targeted. Indeed, some studies got much higher percentage of NRPS-

positive bacteria (63%) from marine sediments117. However, none of the mentioned studies 

developed this type of screening in bacteria isolated from cnidarians, what represents a promising 

and pioneer outcome towards the possibility of prospecting bioactive compounds. 

All cnidarians had symbionts harbouring NRPS genes, although the number of NRPS-

positive bacteria from each host is not very uniform along the cnidarian individuals, which can be  
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Fig.3: Percentage of bacteria presenting NRPS gene fragments in each group of cnidarians considered.  
 
 
ranked by decreasing order as CN2 > CN3 > CN9 > CN5/CN8 > CN6 > CN1 > CN7 (Fig. 3). CN4 

(Tables 2 and 3; not plotted) presented 100% percentage of bacteria potentially producing 

bioactive compounds, however this group only possessed one bacterial clone. This outcome is in 

line with the potential production of NRPs by symbionts of different cnidarians. A jellyfish 

symbiont, Pseudomonas sp., was found to be a producer of CAP-1 protein, an antimicrobial 

compound that has also the capacity to inhibit several marine microorganisms like pathogenic 

Vibrio species152. Soft-corals have also been found to contribute to a new source of antibiotics 

based on the presence of NRPS genes in bacterial symbionts (e.g., Pseudomonas sp.), which are 

not harmful for the host, but in turn have activity against Streptococcus equi226. Some beneficial 

symbiotic microbes have indeed proved to produce antifungal compounds in the tissue surface of 

hydrozoan species149. In cnidarians like Aglaophenia sp., Vibrio species can have an important 

ecological role to this type of  organisms227, and in the present study, Vibrio spp. were identified in 

CN3, CN6 and CN9 cnidarians. Obelia sp. have the capacity to gather bacteria in their gastric 

cavity228. Bacteria makes part of Obelia “diet”, while they filtrate them to their stomach cavity and 

use them as bacteriophages228. In the present study, Pseudomonas spp. are well represented in 

CN2, CN4 and CN7 cnidarian groups with four different species, namely Pseudomonas alcaliphila 

in CN7 group (Table 3) that has the capacity of biodegrading bile acids and use them as a carbon 

source229.   
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Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS Clones NRPS
M85 (+) M58 (+) M1 (-) M157 (+) M130 (-) M154 (-) M99 (-) M123 (+) M25 (-) M49 (-) M158 (-) M70 (-)
M86 (-) M59 (-) M2 (-) M131 (-) M155 (-) M100 (-) M124 (-) M26 (-) M50 (-) M159 (+) M71 (+)
M87 (-) M60 (+) M3 (-) M132 (-) M156 (-) M101 (+) M125 (+) M27 (-) M51 (+) M160 (-) M72 (+)
M88 (-) M61 (+) M4 (-) M133 (+) M102 (-) M126 (-) M28 (-) M52 (-) M161 (-) M73 (-)
M89 (-) M62 (-) M5 (+) M134 (-) M103 (-) M127 (-) M29 (-) M53 (+) M162 (-) M74 (-)
M90 (-) M63 (-) M6 (+) M135 (-) M104 (-) M128 (-) M30 (-) M54 (-) M163 (-) M75 (-)
M91 (-) M64 (-) M7 (-) M136 (-) M105 (-) M129 (+) M31 (-) M55 (-) M164 (-) M76 (-)
M92 (-) M65 (-) M8 (-) M137 (-) M106 (-) M32 (-) M56 (-) M165 (+) M77 (-)
M93 (-) M66 (-) M9 (-) M138 (+) M107 (-) M33 (-) M57 (-) M166 (-) M78 (-)
M94 (-) M67 (-) M10 (+) M139 (+) M108 (-) M34 (-) M167 (+) M79 (-)
M95 (+) M68 (+) M11 (-) M140 (-) M109 (-) M35 (-) M168 (-) M80 (+)
M96 (-) M69 (-) M12 (-) M141 (+) M110 (-) M36 (-) M169 (+) M81 (-)
M97 (-) M13 (-) M142 (-) M111 (-) M37 (-) M170 (-) M82 (+)
M98 (-) M14 (-) M143 (-) M112 (-) M38 (-) M171 (-) M83 (-)

M15 (+) M144 (-) M113 (-) M39 (-) M172 (-) M84 (-)
M16 (-) M145 (-) M114 (-) M40 (+) M173 (+)
M17 (-) M146 (+) M115 (+) M41 (-) M174 (-)
M18 (-) M147 (-) M116 (-) M42 (+) M175 (-)
M19 (+) M148 (-) M117 (-) M43 (-)
M20 (-) M149 (+) M118 (-) M44 (-)
M21 (+) M150 (-) M119 (-) M45 (-)
M22 (-) M151 (-) M120 (-) M46 (-)
M23 (+) M152 (-) M121 (+) M47 (-)
M24 (-) M153 (-) M122 (-) M48 (-)

CN4 CN8CN3CN2 CN9CN1 CN5 CN6 CN7

 
 
Table 2: Bacterial clones isolated and screened for NRPS gene fragments. (+) stands for the positive and (-) for the negative presence of the NRPS A domain gene 
fragment; CN# - cnidarian individual number (#); ns - not screened. 
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Identification of NRPS-positive bacteria 
 

For all the 16S rRNA gene sequences of the bacteria evidencing NRPS gene fragments, an 

homology between 81% and 99% was achieved (Table 3) to the closest relative in BLASTn. It has 

been defended that 98% is the limit below which two species are considered to be different, 

whilst below 95% may indicate it is a new species230. NRPS genes have been often found in the 

phyla Proteobacteria, Actinobacteria, Firmicutes and Cyanobacteria153,159. In the present study, it 

was possible to observe a distribution of the marine bacterial strains between the Proteobacteria 

and Actinobacteria phyla only (Table 3). Besides, Proteobacteria strains were assigned to 

Alphaproteobacteria or Gammaproteobacteria classes. The four principal genera observed among 

the NRPS gene fragments-harbouring strains were Ruegeria, Pseudomonas, Halomonas, 

Pseudoalteromonas and Vibrio. The remaining genera retrieved from the 16S rRNA sequencing 

analysis were Dietzia, Brachybacterium, Erythrobacter, Rhodococcus, Psychrobacter, Kribella, 

Pseudoalteromonas, Paracoccus, Sulfitobacter, Microbacterium, Brevibaterium, Cobetia and 

Alteromonas. This diversity is in accordance with currently available or consulted literature. The 

Vibrio and Pseudoalteromonas genera have been found to present NRPs- and NRP/PK hybrids-

encoding genes194. In the same study, the genus with most NRPS clusters was Pseudoalteromonas, 

which strains proved to have antibacterial activity194. In another study devoted to the screening of 

NRPS- and PKS-encoding  genes in marine bacteria living in symbiosis with invertebrates, the 

authors verified that Sulfitobacter, Paracoccus and Vibrio were among the potential biosynthetic 

strains221. It is also common to find Ruegeria and Pseudomonas representatives as producers of 

antimicrobial compounds (e.g., cyclic peptides) with proved activity against other bacteria121. 

Halomonas species were already reported to possess both PKS and NRPS genes231,232. 

Alteromonas, Sulfitobacter and Halomonas strains were proved to genetically carry and express at 

least one of the genes, and in the case of bacteria from Sulfitobacter and Halomonas genera 

showed to be able to induce high anticancer activity231. In relation to the other genera mentioned, 

the lack of bibliography suggests that they are poorly studied and highlight an unexplored 

resource for natural product discovery. 
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Cnidarian Clone Phylotype Closest relative phylotype in BlastN Class Phylum Homology (%)

M85 Rhodococcus yunnanensis Rhodococcus yunnanensis  YIM 70056 Actinobacteria Actinobacteria 96

M95 Psychrobacter celer Psychrobacter celer SW-238 Gammaproteobacteria Proteobacteria 93

M68 Rhodococcus cercidiphylli Rhodococcus cercidiphylli YIM 65003 Actinobacteria Actinobacteria 95

M60 Pseudomonas monteili Pseudomonas monteili  CIP 104883 Gammaproteobacteria Proteobacteria 98

M61 Pseudomonas monteili Pseudomonas monteili CIP 104883 Gammaproteobacteria Proteobacteria 97

M58 Alteromonas addita Alteromonas addita  R10SW13 Gammaproteobacteria Proteobacteria 98

M23 Vibrio gigantis Vibrio gigantis  LGP 13 Gammaproteobacteria Proteobacteria 98

M10 Ruegeria pelagia Ruegeria pelagia  NBRC 102038  Alphaproteobacteria Proteobacteria 99

M15 Ruegeria pelagia Ruegeria pelagia  NBRC 102038  Alphaproteobacteria Proteobacteria 97

M5 Ruegeria pelagia Ruegeria pelagia  NBRC 102038  Alphaproteobacteria Proteobacteria 96

M6 Dietzia maris Dietzia maris  AUCM A-593 Actinobacteria Actinobacteria 97

M21 Brachybacterium paraconglomeratum Brachybacterium paraconglomeratum  LMG 19861 Actinobacteria Actinobacteria 98

M19 Erythrobacter flavus Erythrobacter flavus  SW-46  Alphaproteobacteria Proteobacteria 96

CN4 M157 Pseudomonas plecoglossicida Pseudomonas plecoglossicida  FPC951 Gammaproteobacteria Proteobacteria 95

M146 Halomonas meridiana Halomonas meridiana DSM 5425 Gammaproteobacteria Proteobacteria 98

M149 Halomonas meridiana Halomonas meridiana  DSM 5425 Gammaproteobacteria Proteobacteria 97

M141 Halomonas meridiana Halomonas meridiana  DSM 5425 Gammaproteobacteria Proteobacteria 95

M139 Sulfitobacter faviae Sulfitobacter faviae  S5-53  Alphaproteobacteria Proteobacteria 81

M138 Rhodococcus yunnanensis Rhodococcus yunnanensis  YIM 70056 Actinobacteria Actinobacteria 97

M133 Halomonas denitrificans Halomonas denitrificans  M29 Gammaproteobacteria Proteobacteria 88

M115 Psychrobacter pacificensis Psychrobacter pacificensis NIBH P2K6 Gammaproteobacteria Proteobacteria 97

M101 Vibrio gigantis Vibrio gigantis  LGP 13 Gammaproteobacteria Proteobacteria 96

M123 Pseudoalteromonas flavipulchra Pseudoalteromonas flavipulchra  NCIMB 2033 Gammaproteobacteria Proteobacteria 97

M121 Pseudoalteromonas flavipulchra Pseudoalteromonas flavipulchra  NCIMB 2033 Gammaproteobacteria Proteobacteria 98

M125 Paracoccus rhizosphaerae Paracoccus rhizosphaerae  CC-CM 15-8  Alphaproteobacteria Proteobacteria 96

M129 Paracoccus haeundaensis Paracoccus haeundaensis  BC74171  Alphaproteobacteria Proteobacteria 98

M40 Pseudomonas chloritidismutans Pseudomonas chloritidismutans  AW-1 Gammaproteobacteria Proteobacteria 97

M51 Pseudomonas alcaliphila Pseudomonas alcaliphila  NBRC 102411 Gammaproteobacteria Proteobacteria 97

M42 Kribbella alba Kribbella alba  YIM 31075 Actinobacteria Actinobacteria 94

M53 Pseudoalteromonas paragorgicola Pseudoalteromonas paragorgicola  KMM 3548 Gammaproteobacteria Proteobacteria 95

M165 Cobetia amphilecti Cobetia amphilecti  46-2 Gammaproteobacteria Proteobacteria 97

M169 Brevibacterium permense Brevibacterium permense  VKM Ac-2280 Actinobacteria Actinobacteria 84

M173 Microbacterium oxydans Microbacterium oxydans DSM 20578 Actinobacteria Actinobacteria 93

M167 Sulfitobacter pontiacus Sulfitobacter pontiacus  ChLG-10  Alphaproteobacteria Proteobacteria 97

M159 Microbacterium hydrocarbonoxydans Microbacterium hydrocarbonoxydans BNP48 Actinobacteria Actinobacteria 97

M80 Vibrio gallaecicus Vibrio gallaecicus  Rd 8.15 Gammaproteobacteria Proteobacteria 94

M71 Vibrio gigantis Vibrio gigantis  LGP 13 Gammaproteobacteria Proteobacteria 95

M72 Ruegeria mobilis Ruegeria mobilis  NBRC 101030  Alphaproteobacteria Proteobacteria 98

M82 Ruegeria mobilis Ruegeria mobilis  NBRC 101030  Alphaproteobacteria Proteobacteria 97

CN8

CN9

CN1

CN2

CN3

CN5

CN6

CN7

 
Table 3: Outcome of the 16S rRNA gene sequencing analysis for the identification and homology of NRPS-
positive marine bacteria isolated from different cnidarian species. The light-green shaded clones 
correspond to the bacteria selected for further anticancer activity testing. Homologies ≤97% are 
represented in blue. 
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Analysis of NRPS A domain sequences 
 

Fourteen strains (cf. Tables 2, 3) with the best results on NRPS screening (band intensity) 

and ease of culture were selected for further study: M85, M60, M51, M139, M146, M61, M123, 

M157, M72, M125, M169, M15, M68 and M138. The primary step was to sequencing the 

amplicons of the NRPS A domain as to obtain the respective aminoacid sequences (Table 4). From 

the sequencing and analysis of the NRPS gene fragments only 8 amino acid consensus was 

obtained, which were related with NRPS, PKS or NRPS/PKS hybrid aminoacid sequences, 

previously determined in bacteria belonging to Pseudomonas, Pseudoalteromonas, Halomonas, 

Rhodococcus and Sulfitobacter genera (Table 4). These genera were coherent to the 16S rRNA 

identification obtained for the cnidarian bacterial symbionts herein studied (Table 3). The 

homology between the sequenced and BlastP-deposited aminoacid sequences ranged between 

37% and 96%, though it was broadly above 61%. These high similarities to NRPS peptides and/or A 

domain sequences are in agreement with the principal domain targeted by the degenerate 

primers used in the screening, hence reinforcing their reliability despite the known genetic 

diversity of NRPS genes233. Additionally, such diversity can be even more increased and become a 

quite valuable adaptation if NRPS/PKS hybrids occur. This might be the case of clone M157 that 

shows the genetic potential to synthesize a hybrid compound, which have been frequently 

suggested to be related with chemical scaffolds presenting enhanced bioactivity, 

complementarity to biological receptors, and stability122,126,234. Notwithstanding, considering that 

no reliable aminoacid sequence was obtained for 6 strains, either the sequencing of the amplified 

NRPS fragments should be repeated or other primers must be further tested. 

 

Bacteria crude extracts and MTT assay 

 
Although NRPS gene fragments sequencing demonstrated consensus only for 8 of the 

selected bacteria, the 14 bacteria selected according to the molecular screening were considered 

for the preparation of extracts from cell and cell-free fractions of grown cultures. A total of 28 

extracts were hence obtained. The concentrations of crude extracts varied between 2 and 22 

mg/mL DMSO for the cell fractions and between 3 and 25 mg/mL DMSO for the cell-free fractions 

(Table 5). These concentrations were considerably high considering that resulted from a 100 mL 

culture. 
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Strain Name Closest match in BlastP Similarity (%) Accession nr. Database

M85 Rhodococcus yunnanensis
MULTISPECIES: non-ribosomal 
peptide synthetase [Rhodococcus ] 88 WP_094621983.1 nr

M60 Pseudomonas monteili
Non-ribosomal peptide synthetase 
[Pseudomonas putida ] 96 WP_084850711.1 nr

M51 Pseudomonas alcaliphila

non-ribosomal peptide synthase 
domain TIGR01720/amino acid 
adenylation domain-containing 
protein, partial [Pseudomonas 
indica] 

66 SDK21005.1 nr

M139 Sulfitobacter faviae
amino acid adenylation domain 
protein [Halomonas sp. KO116] 75 AJY51867.1 nr

RecName: Full=Polyketide synthase 
PksN 79 O31782.3 sw

amino acid adenylation domain 
protein [Halomonas sp. KO116] 82 AJY51867.1 nr

M61 Pseudomonas monteili
non-ribosomal peptide synthetase, 
partial [Pseudomonas hunanensis] 85  PKF22537.1 nr

M123 Pseudoalteromonas flavipulchra 

RecName: Full=Nonribosomal 
peptide synthase atnA; AltName: 
Full=Aspercryptin biosynthesis 
cluster protein A 

37 Q5AUZ6.1 sw

M157 Pseudomonas plecoglossicida
non-ribosomal peptide 
synthase/polyketide synthase 
[Pseudomonas sp. p21] 

61 WP_063912751.1 nr

M146 Halomonas meridiana

Table 4: Prediction of correspondences for aminoacid sequences obtained from A domain of NRPS gene 
sequences to the selected bacterial strains (only sequences with reliable consensus are presented). 
 

 
        
 Table 5: Concentrations obtained of the crude extracts prepared. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clones Extracts from cell 
fractions  

[ ] (mg/ml DMSO) 

Extracts from cell-
free fractions 

[ ] (mg/ml DMSO) 

M51 2 20 
M157 20 10 
M61 13 11 
M85 10 3 
M139 10 10 
M72 20 20 
M68 20 20 
M146 10 20 
M60 20 20 
M125 20 20 
M169 20 20 
M138 9 25 
M15 22 20 
M123 20 20 
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For the MTT assays, a preliminary test was made in order to establish the optimal assay 

conditions (i.e., initial cell density, wavelength, and measuring time) and maximum DMSO 

concentration that did not affect Capan-1 cells growth. Figure 4 shows the cell viability response 

ranges of Capan-1 cell line in regard to different experimental variables that can influence the 

outcome of MTT assay. In general, a similar absorbance trend was obtained in the three reading 

times and wavelengths tested. As such, it was decided to set 5 minutes for formazan crystal 

dissolution and perform the absorbance readings at 570 nm. However, the initial cell density that 

provided better absorbance levels was 5x104 cells/mL, although still out of the recommended 

range (~0.75 – 1.25). Therefore, the MTT assay of the extracts was performed for an initial cell 

density of 7x104 cells/mL. The cytotoxic effect of DMSO was verified in order to evaluate which 

would be the maximum non-inhibiting concentration for the future testing of bacterial extracts, 

which were solubilized in DMSO. The cytotoxic effect of DMSO at different cell densities is shown 

in figure 5. In comparison to the control, significant inhibitory effects of DMSO occurred almost in 

all DMSO concentrations for cell densities equal or lower than 1x104 cells/mL, for all the 

wavelengths tested except at 500nm. In the 1x103 cells/mL cell density it can be verified that all 

the DMSO concentrations except 0.5% revealed to be toxic for Capan-1 cells. For the 5x104 

cells/mL cell density no significant cell viability inhibition occurred, except under 2% of DMSO at 

all wavelengths, except for 0.8% DMSO at 590 nm. Therefore, and as broadly stated in the 

literature, the initial cell density may constrain the cytotoxicity outcomes. Anyway, at the light of 

these results, the following MTT assays aiming to test the effect of bacterial extracts on Capan-1 

cellular viability were run at higher initial cell densities coupled with an optimal dose of 1% of 

extract (i.e., 1% DMSO) and absorbance readings at 570 nm, because as it could be observed, at 

higher cell densities (5x104 cells/mL), 1% of DMSO did not affect them. Although the effect of 

DMSO concentration was not herein included in this set of optimization experiments for the initial 

cell density of 7x104 cells/mL, a control with culture medium and 1% (v/v) DMSO was considered 

in the MTT assay performed for the bacterial extracts. 

The cytotoxic effect of the 28 extracts is shown in figure 6. Except for the cell fraction 

extract of M123 strain, all extracts of cell-free and cell fractions induced a significant inhibition 

(p<0.05) of cellular activity. Overall, the percentage of viable/active Capan-1 cells after exposure 

to cell-free fraction extracts ranged between 38 and 76%, whilst to cell fraction extracts 40 to 97% 

of viable cells were calculated, what indicates that the cell-free fraction was generally the most 

cytotoxic. Thereby, this result suggests that the NRPs or hybrids potentially synthesized by these 

marine bacteria cross the cellular membranes and are released to the surrounding environment. 
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Fig.4: Analysis of the average absorbance values measured at different reading times (5 min, 10 min and 15 
min), wavelengths (A - 500 nm, B – 540 nm, C – 570 nm, D – 590 nm) and initial cell densities of Capan-1 
human PDAC cell line, resulting from MTT assay. 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.5: Average absorbance values obtained in MTT assay for the testing of DMSO effect considering 
different initial cell densities and measuring wavelengths. Error bars indicate standard deviation and * 
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stands for statistically significant inhibition of cell viability provoked by DMSO relatively to the control, 
within the respective initial cell density (p< 0.05). 

 
Fig.6: Average absorbance values obtained in MTT assay for testing the anticancer activity of bacterial crude 
extracts (cell and cell-free fractions) against Capan-1 PDAC cells. The exposure was run with an initial cell 
density of 7x104 cells/mL and the absorbance readings were performed at 570 nm. Error bars indicate 
standard deviation and * stands for statistically significant inhibition of cell viability provoked by the extract 
relatively to the control (p< 0.05). 
  
  

The more pronounced inhibitions occurred under both fractions of M85, the cell fraction of M68 

and M169, and the cell-free fraction of M125.  

 According to the 16S rDNA-based phylogenetic analysis, they corresponded to species 

belonging to the genera Rhodococcus spp. (M85, M68, M138), Brevibacterium sp. (M169), 

Paracoccus rhizosphaerae (M125), respectively, but also significant inhibitions were detected for 

the extracts of Pseudomonas spp. (M51, M60-M61, M157), Ruegeria spp. (M15, M72), Halomonas 

sp. (M146), Sulfitobacter (M139), and Pseudoalteromonas sp. (M123) species (Fig. 6, Table 3). The 

bioactivities of M60, M61, M85, and M146 are likely to rely on NRPs compounds, given the high 

homology (≥82%) in aminoacid sequences obtained upon comparison with BlastP deposited 

sequences of NRPS biosynthetic gene clusters (Table 4). Though with a lower identity percentage, 

the activity of M51, M123, M139, and M157 strains can also result from NRPS biosynthesis, 

though a more thorough analysis has yet to be undertaken. No studies regarding the Paracoccus 

and Ruegeria genera and its potential of anticancer agents biosynthesis could be found. In 

relation to Rhodococcus genera, the current literature does not show many related reports on 

their cytotoxic effect. However, a study was performed with Rhodococcus strains isolated from a 
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polluted soil, towards the evaluation of the effect of crude extracts obtained from its cell-free 

fraction on human hepatocellular carcinoma cells (HepG2 cell line) and cervical carcinoma cells 

(HeLa cells)235. The authors verified the cytotoxic effect of the Rhodococcus extracts on cell 

viability, hence indicating their antitumor activity against both cell lines. A study with 

Brevibacterium from several coastal areas of South Arabia236, showed the anticancer activity of 

the cell-free fraction of crude extracts against MCF-7 human breast cancer cells, according to the 

outcome of MTT assay, but no effect was recorded against HTC 116 colorectal cancer cells236. 

Considering Halomonas and Sulfitobacter genera (to which belongs M146 and M139, 

respectively), a study was performed to test the bioactivity of strains isolated from deep sea 

brines on MCF-7 cell line, DU145 prostate carcinoma cells and HeLa cells, using the MTT assay237. 

The authors also used the cell-free fraction of the crude extracts and the results turned out to 

show their significant inhibitory action to the three addressed cell lines237. Bacterial 

representatives of the Pseudomonas genus (as M51, M60, M61 and M157) obtained from coastal 

waters were indeed reported to produce anticancer products capable of inhibiting hepatocellular 

carcinoma cells viability, as well as an extract dose-dependent trend could be identified238. In this 

study, the bacteria with anti-hepatocellular-carcinoma abilities presented gene clusters for PKs 

biosynthesis, although the authors believe that other biosynthetic gene clusters might be present 

as well, given the extremely high inhibitory effect observed238. However, those genes could be 

silenced or the primers used for their amplification were not the most adequate238.    

Although, M123 was the only bacterial strain whose cell fraction did not significantly 

affect Capan-1 cells activity, two studies performed with Pseudoalteromonas bacterial strains 

reached opposite results. In the first study, the authors used strains isolated from intertidal zones 

in China Sea239. Among the 29 strains analysed, the cell-free-based crude extracts of two of them 

were active against HeLa cells and BGC-823 stomach cancer cell line239. The specific compound 

responsible for that cytotoxicity was purified and identified as “norharman”, an already known 

compound for its high toxicity239. Also the cell-free crude extracts of other Pseudoalteromonas 

strains collected from marine cold water could inhibit the human A549 lung cancer cell line, based 

on the outcome of MTT assay, being the cytotoxic compound the 4-HBA (4-hydroxybenzoic 

acid)240.   
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Conclusions 
 

Marine cnidarian symbionts can enclose a great biosynthetic potential, which can be of 

major relevance to fight pancreatic cancer. The outcomes herein attained strengthen that a 

molecular screening of NRPs-producing bacteria as a first step to select potential producers of 

bioactive secondary metabolites against PDAC is reliable and pin point a solid study direction. As 

such, from a set of 14 bacterial strains selected through this approach, most derived extracts 

inhibited the cellular activity of a pancreatic cell line. Such activity was partly associated to NRPS 

biosynthetic clusters given the presence of gene sequences of NRPS A domain in those bacteria. 

More tests will be done to better understand the anticancer activity of the extracts of marine 

bacteria, but the promising results reinforce the search for new anticancer drugs in under 

explored marine resources.  
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Final considerations 
 
 
 As final conclusions of this study it is recognized the diversity of possibilities that the 

marine environment offers in terms of biological diversity of macro and, especially, of 

microorganisms. Among these, marine bacteria often living in symbiosis with marine cnidarians, 

enclose a potential to help reaching alternative treatments for several human diseases or health 

problems, given their ability to synthesize bioactive natural compounds.  

 Bacterially-produced secondary metabolites or natural compounds result frequently from 

the expression of NRPS, PKS or NRPS-PKS hybrids gene clusters, which encode the biosynthesis of 

nonribosomal peptides, polyketides and nonribosomal-polyketide hybrids, respectively, with 

varied chemical structures, properties and activities. Getting a deeper knowledge on the genetic 

composition and machinery sustaining the diversity and evolutionary trend of those modular 

enzymes as well as their ubiquity, not only has been widen the discovery of new products but also 

the fundamentals to create novel optimized chemicals through genetic engineering. Such 

approaches will favour the biosynthesis of active compounds to counteract medical limitations 

related with drug resistance against resistant microbial infections or with the low efficacy of 

current cancer therapeutics, among others. Still, more studies directed to the marine 

environment and the biotechnological potential of bacterial symbionts are needed.  

In this context, bacterial symbionts of cnidarian species from the Atlantic Ocean were 

herein explored for screening the biosynthetic potential of NRPs and test the activity of the 

respective bacterial extracts. The results and research accomplished, support the hypothesis that 

a range of bacteria, mainly Proteobacteria and Actinobacteria are responsible for the production 

of diverse NRPs. These clinically relevant products associated with NRPS genes, may represent a 

vigorous and large source of clinical options for the treatment of current threatening and invasive 

diseases, such as pancreatic cancer. Indeed, the corresponding band of NRPS A domain was 

detected in the genomic DNA of 39 strains (22.3% of the tested isolates), among which 14 were 

selected and their crude extracts (cell and/or cell-free fractions) presented activity against a 

human pancreatic cell line (Capan-1), according to the MTT assay outcome. This constituted a 

valuable first step to proceed for isolation and discovery of the anti-cancer NRPs synthesized by 

those marine bacteria for the potential anti-pancreatic cancer control. 

 As such, this study brings novel scientific knowledge regarding NRPs bacterial producers 

isolated from cnidarians, reinforcing the pharmaceutical potential hidden in marine biological and 

ecological niches. In the future, these marine bacteria possessing NRPS genes should be further 
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tested to find out if the produced secondary metabolites exhibit activity against other tumours, 

bacteria, fungi, inflammatory and immunosuppressive diseases, among others. It is hence 

encouraging to look forward and open horizons for the best hope, through the application of 

modern sequencing, chemistry and enzymology tools to uncover bacterial 

metagenomic/metabolomics, to further manipulate and examine their capacity to produce 

relevant NRPS as well as PKS and hybrid enzymes enrolled in the synthesis of novel natural 

products.  
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• Bacterial strains isolated from CF6 did not present PKS or NRPS genes (Table 1, Fig. 2)

• Cnidarians harbouring bacteria with these biosynthetic genes can be ordered as: 

PKS ► CF2 > CF1> CF5> CF3> CF4; 

NRPS ► CF4> CF1> CF5> CF2> CF3;

• Some bacterial strains extracted from CF1, CF2, CF3 and CF5 are PKS-NRPS hybrids because these 

groups exhibit both genes (Fig. 2, Table 1).

• The screening shows a general tendency of a higher representation of NRPS-positive strains than PKS-

positive strains (Table 1). Other authors, however, obtained more PKS representation in marine 

cyanobacteria [11]. 

• The bacteria presenting PKS and NRPS genes will be further studied as to certain the exact compounds

they potentially express, as well as it will be tested their biological activity for different medical applications

(Table 2).
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• Current available drugs to treat several diseases are loosing their efficacy.

• New and alternative compounds/approaches are needed.

• Marine natural products have been isolated and identified from different marine sources like

algae, cnidarians and microorganisms.

• Polyketides (PKs) and non-ribosomal peptides (NRPs) are groups of natural compounds

with a variety of relevant biological activities for medical purposes [10].

• Goal: screening of NRPS and PKS genes in microorganisms isolated from cnidarian

species.

• The results of this screening shows a greater occurrence of NRPS genes in bacteria isolated from cnidarian

species.

• Further studies on the molecular structure, expression/biosynthesis and activity of these genes on these

bacteria will help to unravel potentially new natural compounds.

• Screening for NRPS and PKS genes as indicators of the capacity of bacteria to produce clinically significant

bioactive metabolites constitutes a beneficial and reliable approach.

• Extraction and isolation of bacteria in association with 6 cnidarian species collected in the 
Atlantic ocean (20-38 m depth).  

• Long term storage of pure bacterial isolates.

• Extraction of gDNA from bacterial suspension by heat lysis

• PKS and NRPS genes PCR-screened with degenerate primers (ketosynthase and 
adenylation, respectively). 
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Table 2: Examples of compounds associated with PKS and NRPS genes and PKS-
NRPS hybrids, as well as their biological activities.

Fig. 2: Percentage of bacteria presenting PKS and NRPS genes in each cnidarian species tested. 

Genes Compounds Activities References

PKS Biosurfactants Antimicrobial; 
Antibiofilm

1

2

Aromatic 
polyketides

Antibiotic; 
Antioxidant; 
Anticancer; 
Immunosuppressive
Anti-inflammatory

3

NRPS Surfactin

Antibiotic; 
Antifungal; 
Antiviral; 

Anti-tumour; 
Hemolytic

4

5

Bacitracin Antibiotic, 
Antifungal

4

6

Hybrids

Tetramic acids 
(ex.: 
Equisetin, 
Pseurotin A)

Toxicity; 
Neuritogenic 
properties; 
Antifungal;

7

8

9

IV Postgrad 
in 

Biomedicine

Clones PKS NRPS Clones PKS NRPS Clones PKS NRPS Clones PKS NRPS Clones PKS NRPS Clones PKS NRPS Clones PKS NRPS
MT1 ns (-) MT25 (-) (-) MT41 ns (-) MT58 (-) (-) MT69 (-) (+) MT81 (-) (-) MT96 ns (-)
MT2 ns (-) MT26 ns (-) MT42 (-) (+) MT59 (-) (-) MT70 ns (-) MT82 (-) (+) MT97 ns (-)
MT3 ns (-) MT27 ns (-) MT43 ns (-) MT60 (+) (+) MT71 ns (+) MT83 (-) (+) MT98 ns (-)
MT4 ns (-) MT28 ns (-) MT44 (-) (-) MT61 ns (-) MT72 (-) (+) MT84 ns (-) MT99 (-) (-)
MT5 ns (+) MT29 ns (-) MT45 ns (-) MT62 ns (-) MT73 (-) (-) MT85 ns (-) MT100 ns (-)
MT6 ns (+) MT30 ns (-) MT46 (-) (-) MT63 ns (-) MT74 ns (-) MT86 ns (-) MT101 ns (-)
MT7 ns (-) MT31 ns (-) MT47 ns (-) MT64 ns (-) MT75 (-) (-) MT87 ns (-)
MT8 ns (-) MT32 (-) (-) MT48 ns (-) MT65 (-) (-) MT76 ns (-) MT88 ns (-)
MT9 ns (-) MT33 ns (-) MT49 ns (-) MT66 (-) (-) MT77 (-) (-) MT89 (+) (-)
MT10 ns (+) MT34 ns (-) MT50 ns (-) MT67 (-) (-) MT78 (-) (-) MT90 (+) (-)
MT11 (-) (-) MT35 ns (-) MT51 (+) (+) MT68 (-) (-) MT79 (-) (+) MT91 (-) (+)
MT12 ns (-) MT36 ns (-) MT52 ns (-) MT80 ns (-) MT92 (-) (-)
MT13 ns (-) MT37 ns (-) MT53 ns (+) MT93 (-) (+)
MT14 (-) (-) MT38 ns (-) MT54 ns (-) MT94 (-) (-)
MT15 ns (+) MT39 (-) (-) MT55 ns (-) MT95 (-) (-)
MT16 (-) (-) MT40 (+) (+) MT56 ns (-)
MT17 ns (-) MT57 ns (-)
MT18 (-) (-)
MT19 (-) (+)
MT20 ns (-)
MT21 (-) (+)
MT22 (-) (-)
MT23 (+) (+)
MT24 (+) (-)
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