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abstract Robotics is one of the most exciting areas that has been through constant 

innovation and evolution over the years. 

Robots have become more and more a part of our lives and are no longer a 

vision for the future but a reality of the present. Nowadays we have robots 

cleaning our home, vacuuming our floors, playing soccer or even exploring 

the unknown outside of our planet. 

Robots are a major theme in research projects with special attention given to 

mobile robots since they have the capability to navigate the environment and 

interact more easily with humans. 

In the last couple of years, we have observed a big growth in the market of 

service robots. A service robot is dedicated to help humans in their everyday 

tasks. 

While reactive or pre-programmed behaviors are sufficient to let a robot 

appear intelligent, to be truly be intelligent a robot must learn and adapt to its 

environment. 

SLAM is the computational problem of learning an environment by 

constructing its map while simultaneously keeping track of the robot location 

inside it. 

Follow Inspiration is a company focused on the development of robotic 

systems. The autonomous shopping cart WiiGo was its first product, it is an 

autonomous service robot designed to help people carry their purchases in 

supermarkets. 

In this document we describe the testing and integration of SLAM algorithms, 

development of a marker-based solution to detect interest-points and the 

development of visualization tools for the WiiGo robot. 

The results presented in this document allowed the WiiGo robot to become 

capable of autonomous navigation in human occupied environments 

independently, without resourcing to external localization systems.  
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resumo A robótica é uma das áreas mas excitantes e dinâmicas que tem apresentado 

um elevado crescimento ao longo dos últimos anos.  

Robôs tornaram-se parte da nossa vida e não são mais uma visão do futuro. 

Atualmente temos robôs a limpar as nossas casas, aspirar o chão, jogar 

futebol e até a explorar o desconhecido fora do nosso planeta.  

A robótica é um dos maiores temas de investigação atualmente com especial 

foco em robôs móveis. Estes robôs são capazes de se movimentar e interagir 

com o ambiente abrindo caminho para novas possibilidades possibilitando 

novas formas de interação com humanos.  

Nos últimos anos foi possível observar um grande crescimento do mercado de 

robôs de serviço. Estes robôs têm como objetivo auxiliar humanos na 

execução de tarefas diárias. 

Comportamentos reativos ou pré programados são suficientes para fazer um 

robô parecer inteligente, mas para um robô ser realmente inteligente deve 

aprender e adaptar-se ao seu ambiente.  

SLAM é o problema computacional de aprender um ambiente criando um 

mapa do mesmo enquanto simultaneamente se estima a localização do robô 

dentro do ambiente aprendido. 

A Follow Inspiration é uma empresa focada no desenvolvimento e produção 

de sistemas robóticos. O robô WiiGo foi o primeiro produto da empresa, é um 

robô de serviço que tem como objectivo auxiliar clientes de supermercados a 

carregar as suas compras.  

Neste documento apresentamos testes e integração de algoritmos de SLAM, 

desenvolvimento de um sistema baseado em marcadores visuais para 

detecção de pontos de interesse e desenvolvimento de ferramentas de 

visualização de dados para o robô WiiGo.  

Os resultados apresentado possibilitaram que o robô WiiGo se torna-se capaz 

de navegação autónoma em ambientes ocupados por humanos sem recurso 

a sistemas de localização externos.  
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1 Introduction 

The work described in this document was developed in association with the company Follow 

Inspiration as a master thesis for the University of Aveiro in the Computer and Telematics Engineering 

course. 

Robotics is one of the most exciting areas that has been through constant innovation and evolution over 

the years. Robots have become more and more a part of our lives and are no longer a vision for the future 

but a reality of the present. 

With the rapid growth of technology robots are everywhere and as time passes they will be more and 

more present. Nowadays we have robots cleaning our home, vacuuming our floors, playing soccer or even 

exploring the unknown outside of our planet. 

In the last couple of years, we have observed a big growth in the market of service robots. A service 

robot is dedicated to help humans in their everyday tasks and are not targeted for industrial applications. 

Service robots have become a major theme in research projects with special attention given to mobile robots 

since they have the capability to navigate the environment and interact more easily with humans. 

Today service robots are rapidly becoming more intelligent and are already capable of helping humans 

in a wide range of tasks being in some cases able to replace them completely. But while simple reactive or 

pre-programmed behaviours are sufficient to let a robot appear intelligent, to truly be intelligent a robot 

must learn its environment and become capable of dynamically adapt to it. 

Automated Guided Vehicles (AVG) are robots capable of autonomous navigation. These robots use 

external guidelines (e.g. magnetic tape, visual beacons, reflective markers) to define their path. To detect 

obstacles in their path these robots can be equipped with sensors and can avoid collision with obstacles only 

by stopping their movement. Figure 1.1 presents an example of these type of autonomous robots. 

 

Figure 1.1 - Line following AGV system. 

Today AVG technology is widely used for industrial applications. However, the problem with these 

robots is that they cannot adapt dynamically to the environment. Constant maintenance is required to keep 

them working properly. When a change to their path is required a new set of guidelines need to be installed. 

 A solution to overcome these limitations is the usage of Simultaneous Localization and Mapping 
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(SLAM) algorithms. SLAM can be described as the computational problem of constructing a map of an 

unstructured environment while simultaneously keeping track of an agent location inside of it.  

An unstructured environment is an unknown environment for which no previous knowledge exists. 

SLAM is an environment independent approach to the navigation problem. Instead of using landmarks as 

guides, the SLAM algorithm uses the robot sensors (e.g. LIDAR (Light Detection and Ranging), IMU 

(Inertial Measurement Unit)) to map the unstructured environment while simultaneously keeps track of the 

robot localization. 

Even though SLAM has been frequently used in research for several years it has not been widely 

accepted in industrial applications. 

While AGV systems can use their physical guideline to mark points of interest. In SLAM systems since 

no previous knowledge of the environment exists, to identify interest points it is necessary to use external 

solutions (e.g. object detection, beacons, visual markers). 

1.1 WiiGo Robot 

Follow Inspiration is a Portuguese company founded in 2011. This company focuses on the 

development and production of robotic systems. The autonomous shopping cart WiiGo was the first product 

developed by Follow Inspiration it is an autonomous service robot targeting the clients of supermarkets. 

The WiiGo robot (Figure 1.2) is an autonomous self-driven shopping chart, designed to help people 

carry their purchases. WiiGo follows its user around the supermarket carrying all the goods inside. 

 

Figure 1.2 - WiiGo retail robot. [1] 

During its development there was a big focus on ease to use, user interaction and security. To start the 

robot the user presses a button and, in a matter of seconds the robot recognizes the user and starts following 

him automatically. To stop the robot the user can press the button again. The robot is equipped with multiple 

sensors that allow it to see and avoid any type of obstacles while following its the user.  

The company also produces other two robots based on the original user following WiiGo technology, 
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the WiiGo logistics and the WiiGo curator. 

The WiiGo Logistics presented in Figure 1.3 is a robot used in industrial environments for the transport 

objects or as mobile workstation. The robot can follow operators automatically around the environment or 

be controlled manually using a joystick. The embedded touchscreen allows operators to access management 

software that can be directly installed on the robot computer. 

 

Figure 1.3 - WiiGo Logistics robot. [1] 

The WiiGo Curator presented in  

Figure 1.4 is an assistant robot focused on human interaction. The principal function of this robot is to 

welcome and provide information to visitors in public spaces. It is equipped with two big touchscreen 

screens making it a versatile solution for various scenarios (e.g. user interactable advertising, telepresence 

for video chat, mobile information spot). 

 

Figure 1.4 - WiiGo Curator robot. [1] 

1.2 Objectives and motivation 

The first objective of this project is to test SLAM algorithms and select one to be integrated in the 

WiiGo robot. This objective was motivated by the need to have a robot capable of autonomous navigation 

in unstructured environments where the use of external localization systems is not feasible. The WiiGo 

robot software is already capable of point to point navigation and obstacle avoidance. It is only required a 

solution for mapping and localization. 
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The second objective is the development of a visual marker-based solution for interest-point detection 

motivated by the need for solution to identify the charging station in development for the WiiGo robots. 

Visual markers were chosen because they can be easily detected using the already existing camera of the 

robot. 

The third objective is the development of a new Graphical User Interface (GUI) and a set of 3D 

visualizations tools for the WiiGo robot. It was motivated by the need to include visualization and 

interaction tools with the SLAM system integrated into to the robot and the existence of some problems 

with the old GUI for example the lack of responsiveness to multiple screen resolutions or the fact that there 

was no support for multiple languages. For the new user interface, a set of requirements were established 

based on limitation found in the current solution. 

• Responsive user interface elements, adaptable to multiple resolutions. 

• Modular component system to allows the user interface to be further extended; 

• Multi-language support; 

• Remote access from a mobile-phone, tablet or computer; 

• Access to the robot mapping, localization and navigation system. 

• Create of paths for autonomous navigation. 

1.3 Document structure 

The document is divided into seven chapters, each chapter presents a phase of the work developed. 

The chapters are organized as: 

Chapter 1 (this chapter), introduces the theme, presents Follow Inspiration and the WiiGo robot. It also 

explains the motivation and objectives defined for this work that are discussed in the next chapters. 

Chapter 2 presents the current state of the art for autonomous robots capable of navigation in human 

occupied unstructured environments. 

In Chapter 3 we present the SLAM problem and explore some of the challenges with these types of 

solutions. We also present SLAM, localization, graph-optimization and feature extraction algorithms that 

were tested using the WiiGo robot. Most modern SLAM algorithms like the ones we chosen for testing are 

based on graphs and integrate graph-optimization solutions, some SLAM algorithms also use visual features 

to overcome the “kidnapped” robot problem. 

Chapter 4 presents a detailed study of the WiiGo robot software and hardware architectures and the 

results obtained from tests performed with the SLAM and localization algorithms presented in Chapter 3 

using the WiiGo retail robot. 

Chapter 5 presents the development of a visual marker detection solution for interest points 

identification using Aruco markers. The results obtained with the proposed solutions showed an 
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improvement when compared to other state of the art solutions. The work presented in this chapter was 

written as an article and submitted for the “15th International Conference on Image Analysis and 

Recognition” with the title “Detection of Aruco markers using the quadrilateral sum conjuncture.”. At the 

time of this document it is still not known if the article has been approved for the conference.  

Chapter 6 describes the implementation of a new GUI for the WiiGo robot and the development of 

3D visualization tools. 

Chapter 7 presents conclusions obtained, explains the results obtained and proposes future work to 

further improve the solutions presented in this document.  
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2 Autonomous robots 

In this chapter we present and explore currently available robots capable of autonomous mapping and 

localization in unstructured environments. Five robots were selected for analysis. 

The robots selected are capable of autonomous navigation in human occupied environments without 

the relying on external systems for localization. These robots presented have similar sensor configurations 

to the WiiGo robot and face similar challenges to the ones found during the development of this work. 

2.1 Gita Robot 

Gita is a robot developed by the Piaggio Group [2], it is intended to be a personal cargo carrying robot, 

that has two modes of operation, a follow mode and autonomous mode. In the follow mode, Gita learns 

how to navigate spaces following a human carrying a wearable, in the autonomous Gita can move between 

defined waypoints detecting and avoiding obstacles. 

The Gita robot presented in Figure 2.1. Instead of using more expensive sensors such as LIDAR, the 

Gita robot maps its environment using cameras. It a uses a stereoscopic camera and several other fisheye 

cameras to provide a 360-degree view around the robot. An advantage of this approach is possibility to use 

the robot outdoors. 

 

Figure 2.1 - The Gita robot. [2] 

The Gita robot is designed to carry up to 40 pounds (18,14kg) of cargo and 2000 cubic inches (32.77L) 

of volume and can move at a speed of 22mph (9.83 m/s) and has a battery life of eight hours that can be 

recharged in three hours 

For user interaction a small round touchscreen is used, and an array of RGB LED is installed around 

its wheel for easily visualization of its status. 
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2.2 OTTO 100 Robot 

ClearPath [3] is a Canadian company founded in 2009 dedicated to the development and manufacturing 

of robots for research and self-driving vehicles for industrial environments. In 2016 they announced the 

OTTO motors [4] brand dedicated to the development and production of autonomous vehicles. 

OTTO has a wide range of robotics solutions, they sell mainly robotics platforms and hardware. We 

will focus on their OTTO 100 robot presented in Figure 2.2 self-driving vehicle [5]. 

The OTTO 100 robot is intended to be a direct replacement of typical AGV technology in industrial 

environments. Providing an environment independent navigation using SLAM algorithms it is designed to 

move boxes, carts, bins, and other human-scale payloads through unstructured environments. 

 

Figure 2.2 - OTTO 100 robot. [4] 

OTTO 100 can carry 100Kg of cargo, move at a speed of 2 m/s and measures 750x500x304mm. The 

robot is equipped with LIDAR sensors for fully autonomous mapping and navigation, has Wi-Fi support 

for communication, and is equipped with LED to display its status to its users. 

The robot software is based on ROS (Robotics Operative System). For navigation the robot uses a 

proprietary SLAM solution named Autonomy Research Kit Mapper (ARK Mapper) [6] developed by 

ClearPath. 

User interaction with the robot is achieved using their centralized OTTO M control software. Figure 

2.3 presents a screenshot of the OTTO M software. It can be used to interact with the robot mapping and 

localization system, set paths for autonomous navigation or manually control the robot. The software runs 

in a tablet and allows to control and check the status of multiple robots simultaneously.  
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Figure 2.3 - OTTO M control software. 

2.3 Personal Robot 2 

Personal Robot 2 (PR2) presented in Figure 2.4 is an open research platform developed by the company 

Willow Garage as a successor to the PR1 that was a Stanford university project [7]. 

Willow Garage is a robotics company created in 2006 dedicated to the development and manufacturing 

of hardware and was the home for creation of the open source framework ROS that was been widely used 

to power every type robotics applications. 

 

Figure 2.4 - PR2 robot. [7] 

The PR2 robot has four cameras (a Microsoft Kinect and three RGB cameras), two Hokuyo UTM-

30LX LIDAR sensors and is equipped with two robotic arms allowing it to interact with other objects. 

The robot has two onboard computers and its software is based on ROS. As a research platform 

multiple SLAM algorithm were developed using the PR2 robot. 

2.4 StockBot 

StockBot presented in Figure 2.5 is an autonomous robot developed by PAL Robotics [8]. Its purpose 

is to take account of inventory in retail stores and warehouses using RFID technology. 
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StockBot is autonomous and its capable of mapping the environment automatically and moves around 

it without any help, detecting obstacles and avoid them. It can work at night without supervision, runs 

through corridors while detecting products, and crafts a report with not only a list of the items, but also their 

location. Its report includes a 3D map with the products location, which also gives a deeper understanding 

about customers behaviour. [9] 

 

Figure 2.5 - StockBot robot. [8] 

The StockBot robot software is based on ROS and uses a SLAM based solution for mapping and 

navigation. Users can interact with the robot using a tablet with REEMote application developed by PAL 

robotics presented in Figure 2.6. 

 

Figure 2.6 - PAL Robotics REEMote mobile application. [10] 

2.5 Mi Robot Cleaner 2 

The Mi Robot Cleaner 2 [11] presented in Figure 2.7 is an autonomous vacuum cleaning robot 

developed and manufactured by Xiaomi. Xiaomi is a Chinese electronics and software company founded 

in 2010 that has recently expanded its marker into the development of smart home robotic devices. 

The Mi Robot 2 is equipped with a LIDAR sensor, multiple ultra-sonic sensors for collision and cliff 

detection and an IMU unit. It uses an ARM based computer to process data collected from its sensors and 
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its equipped with Wi-Fi connectivity. 

 

Figure 2.7 - Xiaomi Mi Robot Cleaner 2. [11] 

The robot uses a proprietary SLAM solution for mapping and localization in the environment in real-

time. To detect and locate its docking station an infrared based system is used, the robot automatically 

returns to its charging station after cleaning or when its battery is low (resuming the cleaning task after its 

recharged). 

Users can interact with the robot using a mobile application presented in Figure 2.8. The mobile 

application allows the users to interact with the robot mapping system, define cleaning schedules, and check 

to robot status in real-time remotely.  

 

Figure 2.8 - Xiaomi Mi Robot 2 mobile application. [11] 
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3 Algorithms 

In this chapter we describe theoretical SLAM concepts and present SLAM, localization, graph-

optimization and visual features extraction algorithms.  The SLAM algorithms described in this chapter 

were tested using the WiiGo robot and the results obtained are presented in Chapter 4. 

3.1 SLAM 

In this section we will, present theoretical concepts related to SLAM and analyze SLAM algorithms. 

SLAM can be described as the computational problem of constructing a map of unknown environment 

while simultaneously keeping track of an agent location inside of it. “SLAM is a chicken-or-egg problem: 

a map is needed for localization and a pose estimate is needed for mapping” [12]. 

A SLAM algorithm merges data from multiple rangefinder and positioning sensors to create a map and 

locate the robot. The pose estimation error and mapping error are correlated, if one of them fails the other 

one will fail as well. (e.g. bad alignment due to error may result in a bad pose estimative). Error propagation 

is one of hardest tasks to handle in a SLAM algorithm. 

A map is a topological model representing an environment and there are multiple ways to represent 

maps. The type of map used is chosen based on system requirements and on the type of data available (e.g. 

grid map, 3D points clouds), but not all types of maps represent directly the environment geometry (e.g. 

landmark mapping). Figure 3.1 presents a comparison of different types of maps commonly used in SLAM 

systems. 

 

Figure 3.1 - Comparison of map types: grid map, point cloud and landmark based map. 

State of the art SLAM systems are based on statistical models, they solve the mapping and localization 

problem as a correlated optimization problem. Most of them are based on graphs and are divided into two 

parts, the front-end and the back-end as presented in Figure 3.2. 

The front-end is responsible for sensor data processing and correlation and storing data collected in a 

graph. The back-end is responsible for optimization. The optimization problem consists in reorganizing the 

data structure and data node relations to minimize the map error. 
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Figure 3.2 - State-of-the art SLAM systems architecture. [13] 

Loop closure detection is the process involved in trying to find a match between the current and a 

previously visited locations in a SLAM system by recognizing an already mapped area. Figure 3.3  

represents a case where loop closure detection can be used to correct odometry drift. 

 

Figure 3.3 - Pose error correction using loop closure. [13] 

When the map has multiple locations with similar appearance, it might be hard for the loop closure 

system to properly identify the correct matching place. If the system fails and a wrong loop closure is found 

the robot is transported to a wrong position. This is known as the “kidnapped robot” problem. 

3.1.1 GMapping 

GMapping [14] is a SLAM algorithm proposed by Giorgio Grisetti, Cyrill Stachniss and Wolfram 

Burgard that uses Rao-Blackwellized particle filters (RBPF) [15] to solve the SLAM problem. 

 Particle filters are a way to efficiently represent non-gaussian distributions. A particle represents a 

hypothesis. Each particle is tested, and a weight is attributed to it. Particles with a weight bellow a defined 

threshold are discarded. The hypothesis represented by a higher density of particles is accepted. 

A RBPF is used to represent a potential trajectory of the robot and a map possibility. Each particle 

represents a new robot localization and new map possibility. The particle weight is calculated from the 

alignment of its own map with the current map status. Figure 3.4 represents visually how particles (in red) 

can be used to determine new possible positions for the robot. 
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Figure 3.4 – SLAM problem using particle filters. [14] 

One problem with this approach, is that since each particle carries its own map, the number of particles 

used must be limited to keep good computing performance. To solve this problem resampling can be applied, 

discarding particle with low weight and replacing them with particles with higher weight. 

GMapping implements a solution that uses an adaptive resampling technique. To maintain a reasonable 

variety of particles and reduces the risk of particle depletion [16] GMapping uses data from previous 

distribution to propose more refined sets of new particles. Some examples of these distributions are 

represented in Figure 3.5. 

 

Figure 3.5 - Proposal distributions typically observed during mapping. [17] 

3.1.2 Hector SLAM 

Hector SLAM [18] is a SLAM algorithm developed by the team HECTOR (Heterogeneous 

Cooperating Team of Robots) in the University of Darmstadt to be used on Unmanned Ground Robots, 

Unmanned Surface Vehicles, handheld Mapping Devices and log data from quadrotor UAVs. 

 Hector SLAM contrary to other SLAM solutions is not divided into front-end and back-end. It works 

only as a front-end. It is not based on graphs and does not provide any global optimization technique. The 

approach used for scan matching is based on optimization of the alignment of laser points with current grid 

map using a Gauss-Newton based optimizer. New data from laser is written directly to the grid map after it 

is accepted. 

Due to the discrete nature of grid maps there is limited precision. It does not allow the direct 

computation of interpolated values or derivatives for the optimization process. For this reason, an 
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interpolation scheme allowing sub-grid cell accuracy through bilinear filtering is employed, as represented 

in Figure 3.6. 

 

Figure 3.6 - Occupancy grid map and spatial derivatives. [18] 

Hector SLAM does not provide any explicit loop closing ability. It relies on continuous data alignment 

and optimization. 

To reduce the risk of getting stuck in a local minimum during its gradient ascend optimizer, it uses a 

multi-resolution map approach. Multiple maps are created with different resolutions organized in pyramid 

each level of the pyramid has half the resolution of the previous level. Figure 3.7 presents the results of 

multiresolution simultaneous mapping. 

These maps are not obtained from down sampling, instead they are created updated independently. The 

multiple maps are compared to check their consistency across multiple scales. 

 

Figure 3.7 - Multiresolution representation of the map grid cells in Hector SLAM. [18] 

3.1.3 Cartographer 

Cartographer [19] is a graph-based SLAM solution developed by Wolfgang Hess, Damon Kohler, 

Holger Rapp and Daniel Andor at Google. 

It provides real-time SLAM in 2D and 3D across multiple platforms and sensor configurations and 

organizes its data in submaps. Each submap corresponds to a node, multiple submaps are connected in a 

graph to obtain a map. 

A submap is created from consecutive laser scans. A pose optimization algorithm is used to avoid 

error accumulation in these submaps. Each consecutive scan is matched against the submap grid using a 

non-linear optimization library called Ceres [20]. 

In Cartographer scans are stored into a probability grid. The main difference between a probability 

grid and the usual grid maps found in SLAM systems is that they store the probability of each cell being 

free. This allows the algorithm to have per cell probability values instead of having a value for the whole 
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submap. 

When a submap is finished no new scans will be inserted into it anymore. A scan matching is run to 

find loop closure and insert that new submap into the graph. All finished submaps and scans are considered 

for loop closure detection. 

Loop closure optimization, like scan matching, is also formulated as a nonlinear least squares problem. 

It allows the addition of residual data previously discarded to improve the mapping result. 

To guarantee that the system is capable of optimization in real-time a branch-and-bound approach is 

used. Various submap with multiple resolutions visible in Figure 3.8 are kept in memory to avoid 

recalculating every time optimization is performed. 

 

Figure 3.8 -  Precomputed grids of size 1, 4, 16 and 64, in Cartographer. [19] 

Figure 3.9 represents graphically the algorithm used by cartographer, including the steps applied for 

local and global matching. There are three main blocks in the algorithm. The input sensor data block that 

is responsible to receive data from the multiple sensors available. The local SLAM block is the front-end 

part of cartographer, it correlates close data and creates nodes to be added to the graph. The global SLAM 

block is the back-end of cartographer and it is used for to the solve graph optimization problem. 
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Figure 3.9 - Google cartographer system architecture. [21] 

3.1.4 RTABMap 

RTABMap (RealTime Appearance-Based Mapping) [22] is a graph-based SLAM framework 

developed by Mathieu Labbé and François Michaud in the IntroLab at the Université de Sherbrooke. 

RTABMap uses an appearance-based approach for loop closure detection. It uses visual features 

extracted from RGB images to recognize already visited places. This combined with point-cloud or laser 

data allows the system to overcome the “kidnapping” problem more easily. 

The loop closure detector uses a bag-of-words approach to create a signature of an image acquired to 

determinate how likely a new image comes from a previous location or a new location. When a loop closure 

hypothesis is accepted, a new constraint is added to the map graph. Then a graph optimizer minimizes the 

errors in the map by repositioning and realigning the graph nodes. 

Figure 3.10 presents an overview RTABMap algorithm. The algorithm is composed of three main 

blocks. The sensor block receives and processes sensor data. The front-end applies odometry filtering and 

uses ICP algorithms to align sensor data and create graph nodes. The back end is responsible to add new 

nodes to the graph and apply graph optimization. 
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Figure 3.10 - RTABMap data processing pipeline. [23] 

The amount of time required to process new observations increases with the size of the internal map 

which may affect real-time processing. RTABMap uses a memory management solution to limit the number 

of locations used for loop closure detection and graph optimization, so that real-time constraints on large-

scale environments are always respected. 

The memory management approach used (presented in Figure 3.11), consists of keeping the most 

recent and frequently observed locations in the robot Working Memory (WM), and transferring old ones 

into a Long-Term Memory (LTM). When a match is found between the current location and one location 

stored in WM, the associated locations (related locations) stored in LTM can be loaded and updated. To 

avoid loop closure detection on locations that have just been visited there is a Short-Term Memory (STM) 

that stores the most recent data. Data stored in the STM will eventually be moved into the WM. 

 

Figure 3.11 - Memory management in RTABMap. [22] 

RTABMap uses an abstract approach over its software architecture. It defines interfaces for its front-

end (e.g. ICP alignment, visual feature extraction) and back-end (e.g. graph optimization) and adapts 

existing solutions (e.g. G2O, GTSAM, TORO) to be integrated using these interfaces. This approach allows 

for the usage of different solutions over the same data structure making it possible to easily extended the 

framework to use new algorithms. 

During the SLAM process, RTABMap stores all information and graph structure into a persistent 
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database that can be reloaded later for multi-session mapping. Figure 3.12 represents a bigger map build 

from five smaller maps. It was created by finding loop closures to connect the maps. 

 “When turned on, a robot does not know its relative position to a map previously created, making it 

impossible to plan a path to a previously visited location. A solution is to have the robot localize itself in a 

previously-built map before initiating mapping. This solution has the advantage of always using the same 

referential, resulting in only one map is created across the sessions. However, the robot must start in a 

portion already mapped of the environment.” [24] 

 

Figure 3.12 - Five online mapping sessions merged together automatically. [25] 

3.2 Localization 

In this section we will present a localization algorithm. Contrary to SLAM algorithms that need to 

constantly estimate a map and a position from received data, the localization algorithm already knows the 

map (it is provided to the localization algorithm) and only needs to estimate a localization. 

One advantage of localization algorithms over the use of the SLAM solutions for localization is that 

due to the simpler nature of the task they generally require lower computing resources. 

Most SLAM implementations do not consider the possibility of reloading data from previous sessions 

for localization, making the use of a localization algorithm the only solution possible to localize the robot 

after obtaining a map. 

3.2.1 AMCL 

AMCL (Adaptive Monte Carlo Localization) [26] is a ROS library for LIDAR based robot localization. 

It implements the adaptive Monte Carlo localization algorithm [27], which uses a particle filter to estimate 

the pose of a robot against a known map. 

Given the map of the environment and a current visualization of the environment obtained using a 

LIDAR sensor the algorithm estimates a localization. 
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AMCL implementation uses an adaptive technique. It statically uses previous accepted particles to 

limit its proposal to a more refined set of new particles [16]. In Figure 3.13 it is possible to observe in red 

pose hypothesis (particles) proposed by AMCL and the position estimated. 

 

Figure 3.13 - AMCL localization. [28] 

3.3 Graph optimization 

Modern SLAM algorithms are based on graphs, the front-end of the algorithm collects data and 

generated nodes that represent a portion of the map. The back-end is responsible for optimizing globally 

the map by fixing misalignment and detecting loop closures. 

The front-end can correlate close data and apply corrections to received data. In most cases the usage 

of the front-end algorithm could be used to optimize maps using all available data. However, this would 

result in a slow system. The use of dedicated global graph optimization solutions allows for faster results. 

In this section we will present graph optimization algorithms. The algorithms presented in this section 

were tested with RTABMap and the results obtained are presented in Chapter 4. 

3.3.1 TORO 

TORO is an optimization algorithm for graph networks [29]. It is an improvement over the Olson's 

algorithm [30], that uses stochastic gradient descent optimization on an alternative state-space 

representation. 

TORO applies a tree parameterization of the nodes in the graph that significantly improves the 

performance and enables a robot to cope with arbitrary network topologies. 

Changes made to the Olson's algorithm allow TORO performance to be related the size of the mapped 

area and not to the length of the trajectory. Figure 3.14 shows an example of this optimization solution with 

a graph that has 1000 nodes, the runtime was bellow one second. 
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Figure 3.14 - Intel research lab map, before and after optimization with TORO. [29] 

 

3.3.2 GTSAM 

GTSAM [31] (Georgia tech smoothing and mapping library) is a library for optimization of nonlinear 

least squares problems. GTSAM is based on the Square Root SAM [32] technique and is an incremental 

version of the Dogleg [33] method. 

Dogleg has excellent global convergence properties and is known to be considerably faster than both 

Gauss-Newton and Levenberg-Marquardt when applied to sparse least-squares problems.  GTSAM 

approach, maintains the speed while providing superior robustness to objective function non-linearities. 

3.3.3 G2O 

g2o (general graph optimization) [34] is a framework for optimization of nonlinear least squares 

problems. It can be used not only for SLAM applications but also for other cases (e.g. bundle adjustment). 

g2o has been designed to be easily extensible to a wide range of problems. A new problem can be 

specified by defining the error function and a procedure for applying a perturbation to the current solution. 

Figure 3.15 represents the algorithm used by g2o. Only the boxes in gray need to be defined to integrate 

this solution. Structure and linear solver steps are abstracted, multiple solutions can be used. 

 

Figure 3.15 - Overview of g2o framework algorithms. [34] 
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3.3.4 Vertigo 

Vertigo [35] is an extension for G2O and GTSAM. It provides an implementation of switchable 

constraints and allows to solve pose graph SLAM problems despite the presence of false positive loop 

closure constraints. 

G2O and GTSAM are based on least squares optimization and thus are not robust against outliers like 

data association errors and false positive loop closure detections. 

Robot pose nodes are connected by odometry nodes when a loop closure is found. If a bad loop closure 

is found g2O and GTSAM do not implement a system to remove the bad connection between pose nodes. 

Vertigo adds a new type of node, a switchable node represented in yellow in Figure 3.16. Depending 

on the value assigned to the switch node, the loop closure factor is switched on or off. It is activated or 

deactivated as part of the optimization process. 

 

Figure 3.16 - Usage of switchable nodes to detect false positives in Vertigo. [35] 

Every time the graph is optimized the switchable nodes are turned on and off to verify if the loop 

closure constrains were added correctly. This results in a more robust system capable of detecting false 

positive loop closures. 

3.4 Visual features 

In this section we will present multiple feature extraction algorithms. A feature is a vectorial pattern, 

based on which we can describe what we see on an image, in other words, a feature can be described as a 

fingerprint of a portion of an image. 

A good feature should be invariant to distortion and lightning conditions. Multiple features extracted 

from an image can be compared to features from another image to determine if both images represent the 

same object or location. 

Features can be used to visually identify already visited places in a SLAM algorithm and propose loop 

closures. Combined with classical SLAM loop closure detection, visual features can be used as a protection 

against false positives. 
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The algorithms presented in this section were tested in an object-detection scenario and the results are 

presented in Appendix A. 

3.4.1 SIFT 

SIFT [36] (Scale-Invariant Keypoints Features) features are represented by vectors and are invariant 

to image scale and rotation. They provide robust matching across a substantial range of affine distortion, 

change in 3D viewpoint, addition of noise, and change in illumination. 

SIFT features are extracted from locations at maxima and minima of the difference-of-Gaussian 

function. To reduce the number of variant features a threshold on minimum contrast is applied followed by 

an additional threshold on ratio of principal curvatures for each feature. 

This simple approach results in a very fast and robust feature extraction algorithm. Figure 3.17 presents 

a result of SIFT feature extraction. 

 

Figure 3.17 - Visual representation of SIFT features extracted from image. [36] 

3.4.2 SURF 

SURF [37] (Speeded Up Robust Features) is a feature descriptor algorithm that is an improvement over 

the SIFT algorithm. 

SURF improves speed over SIFT by approximating its difference-of-Gaussian function with a Box 

Filter. One big advantage of this approximation is that, convolution with box filter can be easily calculated 

with the help of integral images. And it can be done in parallel for different scales. SURF relies on 

determinant of Hessian matrix for both scale and location. 

To determine feature orientation SURF uses differential analysis in the neighborhood if the feature. 

This results in a faster algorithm with similar results to the SIFT algorithm. Figure 3.18 represents the result 

of SURF feature extraction. 
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Figure 3.18 - Visual representation of SURF features extracted from image. [38] 

3.4.3 ORB 

ORB (Orientated FAST [39] and Rotated BRIEF [40]) [41] is a feature extraction algorithm that 

combines FAST corner detection and BRIEF features. 

BRIEF (Binary Robust Independent Elementary Features) features uses binary strings as an efficient 

feature descriptor. It is highly discriminative even when using relatively few bits and can be computed 

using simple intensity difference tests using the Hamming distance, which is very efficient to compute, 

instead of the L2 norm as is usually done. As a result, BRIEF is very fast both to build and to match. 

FAST and BRIEF are booth fast algorithms that complement one another. BRIEF is variant to rotation 

this is complement by a fast and accurate orientation component added in ORB using FAST. 

This combination results in a much faster approach than the ones used in SURF and SIFT. Figure 3.19 

shows the result of extraction and matching of ORB features between two images. 

 

Figure 3.19 – Matching of ORB features extracted from images. [41] 

 

3.4.4 KAZE 

KAZE [42] features in contrast to other approaches that rely on the Gaussian scale space, is based on 
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nonlinear scale spaces using additive operator splitting (AOS) techniques and variable conductance 

diffusion. 

Similarly to SURF in order to obtain rotation invariant descriptors KAZE estimates the dominant 

orientation in a local neighbourhood centred at the key point location in a circular area. 

AKAZE [43] (Accelerated KAZE) features are a more performant variant of KAZE. Instead of creating 

the nonlinear scale space it uses numerical schemes called Fast Explicit Diffusion (FED) that is faster to 

calculate. 

3.4.5 BRISK 

BRISK [44] (Binary Robust Invariant Scalable Keypoints) features rely on a FAST based detector in 

combination with the assembly of a bit-string descriptor from intensity comparisons retrieved by sampling 

each keypoint in the neighborhood. 

The BRISK descriptor is composed as a binary string by concatenating the results of simple brightness 

comparison tests. Similarly to BRIEF it is possible to obtain descriptors matches using Hamming distance 

between descriptors. 

 

Figure 3.20 - Visual representation of BRISK features extracted from two images. [44] 
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4 Case study and Results 

In this chapter we will present study of the current WiiGo robot hardware and software architecture, 

analyze two datasets recorded using the robot and present results obtained using the algorithms discussed 

in Chapter 3. 

4.1 Hardware 

The WiiGo robot presented in Figure 4.1 is 1,59m tall, the base is 0,59m x 0,75m and has a height of 

approximately 60kg. Its structure is made of metal and the outside covers are made of fiber glass.  

The robot is divided in two main parts. The base where the computer, batteries, LIDAR, sonars and 

wheels are located. The head has the screen and three cameras. These two parts can be separated, making 

the robot more compact for shipping or maintenance when required. 

 

Figure 4.1 - WiiGo robot lateral and frontal views. 

Figure 4.2 presents a diagram with all the hardware components present in the robot and all connections 

between sensors and the robot computer. 
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Figure 4.2 - WiiGo robot hardware diagram. 

A complete detailed list of the all the sensors and electronics used in the robot is presented below:

• Computer 

o Intel Core i5 4460 

o ASUS H81I-PLUS 

o 8GB RAM DDR3 

o 120GB SSD 

• Camera Orbbec Astra (3X) 

• LIDAR Hokuyo UST-10LX  

• Motor controller Roboteq SDC2130  

• Encoder HEDM-5500 (2x) 

• Motor Bosch F 006 B20 093 (2x) 

• Sonar SRF05 (8x) 

• Current sensor ACS711EX 

• Batteries CSB EVX 12300 (2x) 

• Servo motor Dynamixel AX-12A (2x) 

• 10 Inch 1280x800 LCD 

• TPLink 1200AC Wifi

4.1.1 Orbbec Astra camera 

WiiGo is equipped with three RGBD cameras Orbbec Astra [45]. These cameras are capable of RGBD 

capture using an active depth system composed by a laser and a camera with an IR filter on top 

These cameras have a dedicated RGB sensor and feature a pair of microphones for stereo audio capture. 

Figure 4.3 represents all the camera sensors.  
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Figure 4.3 - Astra S camera hardware. [45] 

The main camera mounted in the robot head and is mainly used for user detection and recognition this 

camera is attached to a stepper motor that can rotate. 

The other two cameras and mounted on the robot head sides and are used for obstacle detection. Having 

these cameras mounted at a higher height allows them detect obstacles near the base of the robot where the 

laser and sonar sensors cannot detect them. 

4.1.2 Hokuyo UST-10LX LIDAR 

Hokuyo UST-10LX [46] presented in Figure 4.4 is a LIDAR made by Hokuyo. It is mounted in the 

robot based and is used to collect 2D information about the its surroundings. 

This sensor can detect obstacles from up to 30m away, has an accuracy of 40mm and a scan angle of 

270º with an angular resolution of 0.25º (1080 points). 

 

Figure 4.4 - Hokuyo UST-10/20LX LIDAR. [46] 

4.1.3 Roboteq SDC2130 

The Roboteq SDC2130 board [47] presented Figure 4.5 is responsible for the control of the robot DC 

motors and reading of the encoders used to calculate odometry. 

The board has 2 control channels and is capable of outputting up to 30V and 20A per channel. The 

controller's two motor channels can either be operated independently or mixed to set the direction and 

rotation of a vehicle by coordinating the motion of each motor. 

 

Figure 4.5 - Roboteq SDC2130 board. [47] 
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4.1.4 HEDM-5500 Encoder 

The HEDM-5500 [48] presented in Figure 4.6 is a 2-channel Optical Encoder, each encoder contains 

a lensed LED source, an integrated circuit with detectors and output circuitry and a code wheel which 

rotates between the emitter and detector IC, it uses a film code wheel allowing for resolution of 1024 CPR. 

 

Figure 4.6 - HEDM-5500 Encoder. [48] 

4.2 Software 

In this section we will analyze the robot software and explore the libraries used in its implementation. 

The WiiGo robot software is based on ROS. The WiiGo software architecture is divided in six modules. 

Each module is responsible for a function and composed of multiple ROS nodes, and are organized as: 

• Hardware 

o Robot sensors data acquisition, processes robot odometry, controls wheel motors and 

cameras servo motors. 

o Sensor fusion algorithms, to merge and align data from multiple sensors (e.g. LIDAR 

and camera depth information). 

• Autonomous 

o Robot autonomous navigation system, path finding algorithms, path planning for 

obstacle avoidance. 

• Mapping 

o Module responsible for environment mapping and obstacle detection. 

• Following 

o User detection and recognition system, responsible for keeping track of the user 

estimating and estimating its position. 

• Common 

o This is the main robot module responsible to taking decisions and controls all the other 

modules of the robot. 

• Interface 

o Responsible for graphical user interface, and user interaction. 

Figure 4.7 represents the robot software data flow. Each module is responsible of a specific function 

in the robot. The modular design allows for the robot software to be easily expanded, by adding modules 
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with new functionalities. 

Hardware
(Read sensors data, 

controlls motors)

Autonomous
(Path planning, safety)

Mapping
(Obstacle detection)

Following
(User detection)

Common
(Decision taking)

Interface
(GUI, User information)

Robot 
Sensor

Robot 
Motors

 

Figure 4.7 - Robot software modules data flow diagram. 

4.2.1 ROS 

ROS (Robot Operating System) [49] is a robotics open source framework focused on robotics 

applications. Developed initially by Willow Garage and currently maintained by the Open Source Robotics 

Foundation. 

ROS is not an actual operating system, it runs on top of Linux based operative systems and provides 

tools for hardware abstraction, low-level device control, message-based communication, and package 

management. 

It is being heavily adopted by the industry, the first commercially available robot was the PR2, released 

in 2010 by Willow Garage. 

 ROS uses a node-based approach, nodes are processes that perform computation. A system is typically 

comprised of multiple nodes that communicate with each other by passing messages.  Node sends a message 

by publishing it to a given topic (identified by a string), another node that is interested in a certain kind of 

data will subscribe to the appropriate topic. 

There may be multiple concurrent publishers and subscribers for a single topic, and a single node may 

publish and/or subscribe to multiple topics. Nodes connect to a master, the master is responsible for 

managing running nodes, announce existing topics and services. 

Figure 4.8 presents an example of how the communication model used in ROS allow multiple nodes 

to access data published by another node. 
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Figure 4.8 - Example of ROS publish/subscribe model. [49] 

ROS uses a language agnostic approach, the ROS framework provides building tools that allow it to 

use a simple language-neutral interface definition language (IDL) to describe the messages sent between 

nodes declarations that are transformed into specific language specific declarations (e.g. C++, python, 

JavaScript) used into the development of nodes. 

Messages (topics and services) are exchanged in IP layer [50] allowing easily for clustered computing. 

A single robot can use multiple computers for different tasks. This approach also allows easy development 

of networked solutions (e.g. collaborating robots, remote debugging systems, cloud processing systems), 

this approach also introduces some for local node communication. 

 

Figure 4.9 - ROS topic connection process. [50] 

One of the biggest challenges in robotics applications is dealing with sensor fusion. To make this task 

easier the tf library was introduced in ROS. “The tf library was designed to provide a standard way to keep 

track of coordinate frames and transform data within an entire system such that individual component users 

can be confident that the data is in the coordinate frame that they want without requiring knowledge of all 

the coordinate frames in the system.” [51]. 

Figure 4.10 shows the tf configuration used in the WiiGo robot, it is possible to observe that every 

sensor in the robot is represented by a tf. 
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Figure 4.10 - A view of all the tf frames in WiiGo robot. 

ROS is not a real-time development solution. But it is possible to use it alongside other real-time 

frameworks [52] (e.g. Xenomai). 

In December 13th, 2017 ROS 2 [53] was released with support for Linux, Windows and MacOS, easier 

integration with real-time solutions, modular DDS (Data distribution system) support, and other 

improvements to the ROS ecosystem making it more modular and easier to integrate into different scenarios. 

Figure 4.11 presents a comparison between the system architecture used in ROS and ROS2. 

 

Figure 4.11 - Comparison between ROS1/ROS2 architecture. [53] 

4.2.2 RViz 

Rviz (ROS Visualization) is a visual debug tool for displaying sensor data and state information 

published from ROS nodes. It provides real-time visualizations of sensor values coming over ROS topics 

including camera data, sonar data, points clouds, etc. Figure 4.12 presents a screenshot of the graphical user 

interface of Rviz. 
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Figure 4.12 - RViz graphical user interface. 

4.3 Datasets 

In this section we will present the datasets created and used to test and evaluate the algorithms presented 

in Chapter 3. During the analysis of the robot software and hardware multiple datasets were collected. Two 

datasets were selected to be used for testing. 

The first dataset represents a simple controlled environment inside the laboratory for witch a reference 

is known (presented in section 4.4). The second dataset represents a real word environment inside a 

supermarket where the WiiGo retail robot is typically used. 

Each dataset is composed of two passes (the dataset was recorded two times). The objective is to have 

two different sets of data representing the same environment one used for training (mapping) and the other 

used for validation (localization). 

4.3.1 Laboratory 

The laboratory dataset was collected in the CEIIA building in Matosinhos, Portugal, were the Follow 

Inspiration company is located. It covers the 3rd floor of the building. 

The environment in this dataset is mainly comprised of corridors and the laboratory where the WiiGo 

robot is developed. It was recorded using a gamepad, connected to the robot via Bluetooth. Figure 4.13 

present an image of the WiiGo robot during the recording of this dataset. 
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Figure 4.13 - WiiGo robot during laboratory dataset creation. 

Figure 4.14 and Figure 4.15 represent the robot position estimated using odometry values. In the first 

pass good odometry values were obtained. In the second pass is possible to observe some drift in the robot 

odometry. This will allow to compare the mapping performance under bad odometry conditions. 

 

Figure 4.14 - Laboratory dataset first pass odometry. 

 

Figure 4.15 - Laboratory dataset second pass odometry. 

4.3.2 Supermarket 

This dataset was recorded in a Intermarche supermarket in Matosinhos, Portugal during a WiiGo 

testing session in a real environment. 

In this dataset the two passes were recorded using different methods. The first pass covers most of the 

supermarket area and was recorded with the robot following a user. Figure 4.16 presents a visualization of 

the environment from the robot camera and LIDAR. It possible to observe that the presence of the user 

occupies a considerable porting of the camera image and is visible on the LIDAR sensor constantly. The 

presence of the user might impose a challenge for the SLAM algorithms. 
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Figure 4.16 - Supermarket dataset first pass, camera and LIDAR. 

The second pass was recorded using a gamepad to control the robot. Due to lack of memory during 

these tests the second pass only covers a smaller portion of the supermarket area. 

The objective with the two passes in the supermarket data set is to validate if the presence of a user has 

any impact in the SLAM process. 

 Figure 4.17 and Figure 4.18 represent the robot position estimated using odometry values. It is possible 

to observe some drift in the robot odometry for both passes. 

 

Figure 4.17 - Supermarket dataset first pass odometry. 

 

Figure 4.18 - Supermarket dataset second pass odometry. 

4.4 SLAM Results 

In this section we will test SLAM algorithms using the WiiGo robot and compare results obtained 

using the two datasets created. Results were evaluated based on their scale accuracy and alignment. Map 
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scale was measured relatively to a ground-truth reference of the Laboratory dataset. Alignment was 

analyzed visually on the Supermarket dataset to verify if the algorithms were able to properly detect loop 

closures. 

The maps obtained from each algorithm were saved into image files. A tool to capture the maps and 

store them in an image file was developed, it receives the map published by the SLAM solutions and stores 

them in image files. 

A reference of the Laboratory was created from CAD drawings of the building. Since the CAD 

drawings do not include some element due to changes made to the building after its construction, one of 

the mapping results (obtained using Cartographer) was used to obtain the position of these missing elements. 

Figure 4.19 represents the reference created. All elements inside rooms are not present. Walls made of 

glass were removed, because they are not visible by the robot LIDAR used by the SLAM algorithms. 

 

Figure 4.19 - Laboratory dataset reference, for mapping evaluation. 

To compare the results obtained with the reference a comparison algorithm was created. It measures 

for each occupied pixel in the reference map the distance to the closest occupied pixel in the map result. 

The error is calculated from the average of all these distances. 

Since different results of maps don’t have the same size rotation and origin point it is required to first 

align the maps. The algorithm iteratively tries different position and rotation configurations. 

Figure 4.20 represents the algorithm developed. It starts with the map as it is provided. The algorithm 

moves the map horizontally and vertically and rotates it in both directions testing the error for each 

configuration. The configuration with less error is used as starting point for the next iteration. The algorithm 

stops when it is not possible to improve the error result. 

Improved 
error

Update Map

Test rotation and 
translation.

Map

Reference

Same result Final Result

 

Figure 4.20 - Map comparison algorithm diagram. 
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Since the algorithm used is computationally expensive each map result was first manually aligned with 

the reference to reduce the number of iteration performed by the comparison program. 

All tests were performed in a computer with a Core i7 4558U CPU, 8GB of RAM and a 250GB SATA 

3 SSD. Datasets were read from the SSD to avoid any data access bottleneck. 

To test performance of each solution tested environment was prepared. All programs were closed and 

only the solution in test and base components of the system were left running. 

System Monitor installed by default in Linux Mint 18 was used to monitor CPU usage. Figure 4.21 

shows the 60 seconds of CPU usage, it is possible to observe some minor fluctuation in the CPU usage, but 

it should not affect the measurements performed. The same dataset was used to test performance of all 

solutions. 

 

Figure 4.21 - System monitor baseline CPU usage for test environment. 

4.4.1 GMapping 

GMapping was installed, and a launch file was created using the default configuration values. Figure 

4.22 represents the first test performed with this library, it is possible to observe bad alignment in the map. 

 

Figure 4.22 - Initial map result using Gmapping with default values. 

After performing multiple tests, a final configuration was obtained. Table 4.1 contains the 

configuration values used for the final tests. These parameters were obtained empirically, default values 

were omitted from this table. 

Parameter Value 

map_update_interval 1.0 

maxUrange 10.0 

maxRange 10.0 

linearUpdate 0.1 

angularUpdate 0.05 
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sigma 0.05 

lstep 0.05 

astep 0.05 

ogain 3.0 

iterations 5 

delta 0.05 

Table 4.1 - Final testing configuration for Gmapping. 

Figure 4.23 and Figure 4.24 represent the results obtained for the Laboratory dataset where it is possible 

to observe that the misalignment present on initial test was fixed. 

 

Figure 4.23 - Laboratory dataset first pass mapping result with Gmapping. 

 

Figure 4.24 - Laboratory dataset second pass mapping result with Gmapping. 

In the first pass (Figure 4.25) the solution was not able to properly alignment the initial section of the 

map but was able to correct most of the error present in the robot odometry and align most of the corridors. 

It is possible to observe that the presence of the user had no impact in the final map quality. 

 

Figure 4.25 - Supermarket dataset first pass mapping result with Gmapping. 

In the second pass represented in Figure 4.26. It was possible to obtain good map alignment but a bad 
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loop closure was detected during the mapping process causing part of the map to be wrongly rotated 90 

degrees. 

 

Figure 4.26 - Supermarket dataset second pass mapping result with Gmapping. 

Figure 4.27, presents the CPU usage with Gmapping running. It is possible to observe that GMapping 

focuses most of its work on a single thread at a time. 

 

Figure 4.27 -  System monitor CPU measurement with GMapping running. 

4.4.2 RTABMap 

The last version of the RTABMap framework was installed (V15.0.0), and configured with the G2O, 

GTSAM, TORO libraries and all visual feature extraction methods. Before testing any configuration, 

RTABMap was run using the default values to get a baseline measurement. In its default configuration 

RTABMap uses data from both the LIDAR and the RGBD camera, allow us to obtain not only a 2D grid 

map but also a 3D point cloud. 

RTABMap was run using default configuration values to establish a baseline for comparison. In its 

default configuration RTABMap relies on depth information from the camera, uses TORO as a graph 

optimizer to create the grid map and GFTT/BRIEF features for loop closure detection. Figure 4.28 shows 

the result obtained it is possible to observe bad map alignment and lack of loop closure detection. 
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Figure 4.28 - Initial map result using RTABMap with default values. 

When testing the default configuration with data from the first pass in the Supermarket dataset it was 

possible to observe that a trail of the user presence was appearing in the map, as it is possible to see in 

Figure 4.29. 

 

 

Figure 4.29 - User presence in map result obtained with RTABMap. 

By analyzing the log published by RTABMap it was also possible to conclude that due to the presence 

of the user the system was always trying to calculate loop closure due to visual feature matching between 

frames were the user was present. Those loop closure hypotheses were rejected because the system could 

not find laser matches using ICP. 

To remove the presence of the user from the data processed in RTABMap a ROS node was developed. 

The node receives data from the user detection system present in the WiiGo robot and the camera data, 

removes the area of image where the user is (by filling it with black pixels), and publishes a new version of 

the image without the area where the user was present. 

User are removed from both the RGB and depth image. Figure 4.30 presents the result obtained. 
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Figure 4.30 - Result of user removal from the camera image. 

After removing the user, the system was retested. It is possible to observe still some presence of the 

user in the point cloud data. Loop closure detection system was working correctly after applying this change. 

Figure 4.31 represents a close-up of the point cloud data processed by RTABMap, is possible to 

observe still some presence from the user. 

 

Figure 4.31 - Close-up of point cloud data obtained with RTABMap. 

There are available on the ROS wiki page sample configurations for RTABMap. We tested the “Kinect 

+ 2D laser + Odometry” configuration that was used as a base for the next tests. Figure 4.32 represent the 

result obtained, it is possible to observe some improvement over the first test.  

 

Figure 4.32 – Mapping sample configuration with RTABMap. 

RTABMap uses visual features extracted from the RGB image to detect loop closures. There are 

multiple visual feature extraction algorithms available to use. To determine the best type of features for our 

use case, a test environment was created. The results obtained are described in Appendix A. 
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 For the final configuration, SURF features were used. The results obtained showed that they provide 

the best results and were the best performing algorithm. 

 RTABMap integrates multiple optimization algorithms (TORO, G2O, GTSAM and VERTIGO). To 

determine the best graph optimization solution a set of tests were performed. 

The graph optimization solution only affects global graph quality. The Supermarket first pass was 

used since it is the biggest dataset and it is the one that presents more loop closure problems. 

Figure 4.33 presents the results obtained for different configurations. It is possible to observe that G2O 

with Robust optimization obtained the best results all eight corridors of the supermarket can be 

distinguished without any noticeable overlapping between them. 

 

a) G2O 

 

b) G2O + Vertigo 

 

c) G2O + Vertigo (Priors Ignored) 

 

d) GTSAM 

 

e) GTSAM + Vertigo 

 

f) TORO 
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Figure 4.33 - Comparison of TORO, GTSAM, G2O and Vertigo in RTABMap. 

 Table 4.2 presents the final configuration used for final testing. These parameters were obtained 

empirically, default values were omitted from this table. 

Category Parameter Value 

RTABMap 

DetectionRate 10 

TimeThr 0 

MemoryThr 0 

RGBD 

ProximityBySpace true 

OptimizeFromGraphEnd false 

OptimizeMaxError 0 

Optimizer 

Strategy 1 (G2O) 

Iterations 60 

Robust false 

PriorsIgnored false 

VarianceIgnored false 

Reg 
Strategy 1 (ICP Only) 

Force3DoF true 

Vis 

BundleAdjustment 0 (Disabled) 

FeatureType 0 (SURF) 

CorNNType 1 (kNNFlannKdTree) 

InlierDistance 0.1 

MinInliers 4 

SURF 

HessianThreshold 80 

GpuVersion false 

Extended false 

ICP 

MaxRotation 1.0 

MaxTranslation 1.0 

Iterations 80 

CorrespondenceRatio 0.1 

MaxCorrespondenceDistance 0.05 

Odom 
FilteringStrategy 1 (Kalman Filter) 

AlignWithGround false 

GridGlobal FullUpdate true 

Mem 
STMSize 10 

RehearsalSimilarity 0.45 

Table 4.2 - Parameters used for testing with RTABMap. 

Figure 4.34 and Figure 4.35 show the results obtained for the Laboratory dataset. The results obtained 

for these datasets where reasonable, the maps are well constructed. But it is possible to observe inferior 

laser data alignment when compared to previous solutions tested. 
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Figure 4.34 - Laboratory dataset first pass mapping result with RTABMap. 

 

Figure 4.35 - Laboratory dataset second pass mapping result with RTABMap. 

Figure 4.36 and Figure 4.37 show the results obtained for the Supermarket dataset. It is possible to 

observe that this framework was able to completely recover from drift in the robot odometry. It is the first 

solution tested to be able to overcome this problem. 

Similarly, to the results obtained with the Laboratory dataset it is possible to observe some noise in the 

map and some misalignment in parts of the map. 

 

Figure 4.36 - Supermarket dataset first pass mapping result with RTABMap. 
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Figure 4.37 - Supermarket dataset second pass mapping result with RTABMap. 

Figure 4.38 presents the CPU usage with RTABMap. It is possible to observe that this solution can 

leverage multi-core computing, it is possible to observe load being distributed by all cores. The average 

CPU usage with RTABMap is higher than other solutions tested. 

 

Figure 4.38 - System monitor CPU measurement with RTABMap running. 

4.4.3 Cartographer 

The last version of Cartographer was installed (V2.0) alongside with the corresponding ROS 

integration node and protocol-buffer based, map serialization tools. 

A launch file was created using the default configuration values for 2D slam. Unlike other ROS 

packages instead of node parameters, cartographer uses a LUA program as a configuration file. 

Figure 4.39 represents the results obtained in the Laboratory dataset with default configuration. It was 

possible to obtain excellent alignment results and good loop closure detection. 

 

Figure 4.39 – Cartographer default configuration result on Laboratory dataset. 
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Figure 4.40 shows the results obtained in the Supermarket dataset with default configuration. It is 

possible to observe that bad loop closure detection occurred. All corridors of the supermarket were 

merged. 

 

Figure 4.40 - Cartographer default configuration result on Supermarket. 

Table 4.3 presents the configuration used with cartographer for the final tests. These parameters were 

obtained empirically, default values were omitted from this table. 

Parameter Value 

pose_graph/optimize_every_n_nodes 20.0 

pose_graph/constraint_builder/sampling_ratio 0.5 

pose_graph/ constraint_builder/max_constraint_distance 20.0 

pose_graph/min_score 0.6 

pose_graph/ constraint_builder/global_localization_min_score 0.7 

pose_graph/ constraint_builder/optimization_problem/huber_scale 10.0 

pose_graph/global_sampling_ratio 0.1 

submaps/range_data_inserter/ hit_probability 0.7 

submaps/range_data_inserter/ miss_probability 0.4 

Table 4.3 - Final testing configuration for Cartographer. 

Figure 4.41 and Figure 4.42 present the results obtained for the Laboratory dataset. It is possible to 

observe good map alignment and no problems related to loop closure detection were found. 

 

Figure 4.41 - Laboratory dataset first pass mapping result with Cartographer 
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Figure 4.42 - Laboratory dataset second pass mapping result with Cartographer. 

Figure 4.43 and Figure 4.44 represent the results obtained for the Supermarket dataset. Similarly to the 

results obtained for the Laboratory dataset it is possible to observe good laser alignment, but there are some 

problems with bad loop closure in both the first and second passes. 

 

Figure 4.43 - Supermarket dataset first pass mapping result with Cartographer. 

 

Figure 4.44 - Supermarket dataset second pass mapping result with Cartographer. 

Figure 4.45 shows the CPU usage for cartographer. It is possible to observe that cartographer can 



69 

 

distribute its processing by all computing cores available. It is also possible to observe very high CPU usage 

at the same frequency as the global map optimization is set on the configuration. 

 

Figure 4.45 - System monitor CPU measurement with Cartographer running. 

4.4.4 Hector SLAM 

The last version of Hector SLAM was installed (V0.3.5), it uses information from the robot laser. An 

initial launch file was created using default values for everything except the map size that was set to 8192 

pixels and resolution was kept at 0.05 meter/pixel. This values allow the map to store up to 409.6 square 

meters of area, which is enough for our datasets. 

Figure 4.46 represents the first mapping result obtained where it is possible to observe good point 

alignment results. 

 

Figure 4.46 - Initial mapping result obtained with Hector SLAM. 

It was possible to observe a situation during mapping in which Hector SLAM applied bad correction 

to the robot pose (represented in Figure 4.47). The robot was moving through a corridor and the pose was 

corrected as if the robot was static in the beginning of the corridor. 

 

Figure 4.47 - Bad pose correction from similar laser information, in Hector SLAM. 



70 

 

Since Hector SLAM does not have any loop closure system it is not capable of recovering from drift 

after mapping an isolated section (e.g. room or corridor), this makes Hector SLAM dependent on good pose 

estimation from the robot sensors. 

Figure 4.48 represents two cases where is clear the lack of loop closure detection, corridors are well 

aligned but on rotation points were the robot position has more drift it is possible to observe a breakage in 

the map. 

  

Figure 4.48 – Bad results with Hector SLAM, due to lack of loop closure detection. 

After testing multiple times Hector SLAM with different configurations value, a final configuration 

was created. Table 4.4 presents the values used for the final tests. These parameters were obtained 

empirically, default values were omitted from this table. 

Parameter Value 

map_pub_period 1.0 

map_resolution 0.03 

map_size 8192 

map_multi_res_levels 3 

update_factor_free 0.3 

update_factor_occupied 0.9 

map_update_distance_thresh 0.05 

map_update_angle_thresh 0.05 

Table 4.4 - Final testing configuration for Hector SLAM. 

Figure 4.49 and Figure 4.50 show the final results obtained for the Laboratory dataset show an 

improvement over the tests initially performed. It is possible to observe an improvement in laser alignment 

in the first pass. But it is possible to observer that it was not able to merge different sections of the map 

properly in the second pass. 
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Figure 4.49 - Laboratory dataset first pass mapping result with Hector SLAM. 

 

Figure 4.50 - Laboratory dataset second pass mapping result with Hector SLAM. 

Figure 4.51 and Figure 4.52 show the final results obtained for the Supermarket dataset, it is possible 

to observe that the lack of loop closure leads to some breaks in the map that were not possible to fix for 

these datasets. The laser alignment for this solution was good and it is possible to visualize and distinguish 

small details like product boxes in the shelves of the corridors. 

 

Figure 4.51 - Supermarket dataset first pass mapping result with Hector SLAM. 

For the second pass, hector slam breaks the map into two separate maps. This happens when no 
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correspondence is found. 

 

Figure 4.52 - Supermarket dataset second pass mapping result with Hector SLAM. 

Figure 4.53 presents the CPU usage with Hector SLAM. It is possible to observe that it can use multiple 

threads to divide its work. The average CPU usage is low, and, since it uses a fixed map size. This can be 

an advantage for low memory devices since the map size is always limited to a defined level. 

 

Figure 4.53 - System monitor CPU measurement with Hector SLAM running 

4.4.5 Comparison 

In this section we will compare results obtained for the multiple solutions tested based on their mapping 

results. We will compare booth map alignment results and loop closure detection performance. 

To compare alignment quality the second pass of the Laboratory dataset was used. It was chosen 

because all solutions were able to obtain good results without loop closure problems. 

Table 4.5 presents the results obtained. It is possible to observe that cartographer obtained the best 

average error value followed by RTABMap, and Hector SLAM obtained the worst result. These values 

only represent map scale accuracy and do not consider the amount of noise present in the map. 

Algorithm Error (m) 

RTABMap 0.16 

Hector SLAM 0.44 

Cartographer 0.32 

GMapping 0.37 

Table 4.5 - Average mapping error obtained on the Laboratory dataset 

 Figure 4.54 represents the alignments obtained by the map comparison program relatively to the 

Laboratory reference. The green lines represent the correspondences that were measured to obtain the 
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results presented. It possible to observe that cartographer and RTABMap obtained good results. Hector 

SLAM presents some distortion in the right side of the map. Gmapping presents some scale problems 

horizontally more noticeable in the end of corridors. 

 

a) Hector SLAM 

 

b) Cartographer 

 

c) GMapping 

 

d) RTABMap 

Figure 4.54 - Laboratory dataset mapping results alignment with reference for comparison. 

To compare loop closure performance the supermarket dataset was used. Figure 4.55 presents the 

results obtained for all tested solutions. Only RTABMap was able to obtain a complete map in a usable 

state and recover completely from odometry drift. All the other solutions failed in this dataset to properly 

detect and close all loop closures. 
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a) Hector SLAM 

 

b) Cartographer 

 

c) GMapping 

 

d) RTABMap 

Figure 4.55 - Loop close detection performance comparison for SLAM solutions tested. 

4.5 Localization Results 

In this section we will present the results obtained for localization. To evaluate the localization 

performance of each algorithm the maps from the first pass of each algorithm obtained using the SLAM 

algorithms were saved. 

The second pass of each dataset was then loaded. Time was measured until the robot was able to obtain 

a correct localization estimative. 

RTABMap already serializes its data into a database file and features a localization only mode. The 

files were reloaded and RTABMap was launched. For the other algorithms the grid maps stored were 

published using the map server tool available in ROS and AMCL was used to estimate the robot position 

in these maps. 

AMCL uses the map origin as starting pose hypothesis. Due to low matching results with this initial 

pose, particle hypothesis spread out to all map. After some time, the solution converges to a position of 

higher hypothesis acceptance. Figure 4.56 demonstrates the particles used for hypothesis tests spreading in 

the laboratory dataset. 
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Figure 4.56 - AMCL particle vectors spreading. 

During our tests AMCL was not able to estimate correct poses in any test scenario and converged to 

bad localization. Figure 4.57 presents one test scenario in the Supermarket dataset where is possible to 

observe bad particle convergence. 

 

Figure 4.57 - Bad pose estimation with AMCL. 

Contrary to AMCL, RTABMap only presents a pose estimation after obtaining a good match between 

the camera data and the visual feature data stored in the database. Sometimes this process can take some 

time. 

Table 4.6 presents the results obtained, it is possible to observe that the algorithm can obtain an initial 

pose estimation in seconds. After obtaining an initial pose the algorithm keeps updating it in real time. 

During our tests it was not possible to observe any bad pose estimation. 

Supermarket (s) Laboratory (s) 

First Pass Second Pass First pass Second Pass 

1.57 4.24 3.83 34.95 

Table 4.6 - Time to obtain localization with RTABMap. 

The results obtained with RTABMap were possible due to the use of a feature-based loop closure 

detection system. Using this additional info extracted from RGB image it is possible to better recall the 

robot position in more complex environments like the supermarket environment tested. 
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5 Visual Markers 

In this chapter we will present and explain a vision algorithm to detect, read and estimate the pose of 

marker relatively to the camera position. We propose an algorithm for the detection of aruco markers. Our 

approach uses the quadrilateral sum conjecture and analyzes the sum of the cosine of the internal angles to 

detect squares at larger distances. 

Absolute pose estimation is a common problem in robotics. One possible solution to tackle this problem 

is the use of odometry information (coming from encoders and Inertial Units). However, this solution 

suffers significantly from drift error. 

An alternative commonly used not only in robotics but also in areas like augmented reality is the usage 

of markers to estimate an absolute position of the camera. Fiducial Markers are heavily used for pose 

estimation in many applications from robotics to augmented reality. 

A visual marker is something that can be easily distinguished from the rest of the ambient and have 

characteristics that allow it to be easily detected and identified. 

One of the main problems found when experimenting already existing solutions (ROS Aruco [54] and 

Alvar [55]) was that they are not able to identify the markers from far away or under hard perspective 

distortion making it hard to discover the charging station. 

5.1 Aruco markers 

Aruco markers are geometrically square, they have a black border and an inner grid that is used to store 

a numeric identifier in binary code. 

To identify the marker a dictionary is used [56]. The dictionary defines a set of rules used to calculate 

the marker identifier, perform validation and apply error correction. 

We use the original aruco dictionary [54], that uses bits from the marker 2nd and 4th columns to store 

the marker identifier in natural binary code, the remaining bits are used for parity checking, Figure 5.1 

represents the first four markers in this dictionary. 

 

Figure 5.1 - Aruco markers with id’s 0, 1, 2 and 3 respectively. 
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To validate the marker a signature matrix is used, each row of this matrix encodes a possibility of 2 

bits. An aruco marker is valid only each its rows are equal to one of the rows of the signature matrix. This 

forces the marker to only have one valid rotation. Table 5.1 represents the signature matrix used in this 

dictionary. 

Value Data 

0 1 0 0 0 0 

1 1 0 1 1 1 

2 0 1 0 0 1 

3 0 1 1 1 0 

Table 5.1 - Signature matrix, used to validate aruco markers. 

By analysing the signature matrix, its possibly to verify that it is not enough to guarantee that there is 

only one possible rotation for each marker, in the Figure 5.2 we can see the marker 1023 that is horizontally 

symmetric. 

 

Figure 5.2 - Aruco Marker 1023. 

5.2 Detection algorithm 

The detection algorithm was implemented using the OpenCV library, since it provides a large set of 

image processing algorithms. Figure 5.3 shows the steps applied to detect and identify markers.

Adaptive 

threshold

Square 

detection

Marker 

validation

Not validAdjust block size

Pose 

estimation

Camera 

frame

 

Figure 5.3 - Aruco detection algorithm diagram. 

The algorithm starts by applying adaptive threshold [57] to the image, this algorithm consists in 

calculating for each pixel a threshold value using the histogram of its neighbourhood, its indicated for 

situations where it is possible to observe multiple lighting conditions. Figure 5.4 represents the results 
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obtained from adaptive thresholding. 

 

Figure 5.4 - Adaptive threshold result. 

To determine the threshold block (neighbourhood size), one block size is tested on each frame, the 

block size chosen is the medium size from all block sizes were the maximum number of markers were 

found, the block size is retested when there are no markers visible. In Figure 5.5 it is possible to observe 

two cases where different block sizes were chosen allowing the algorithm to adapt and detect marker with 

different size. 

 

Figure 5.5 - Comparison of different threshold block sizes. 

After threshold is applied to the image, we perform square detection, the algorithm starts by obtaining 

contours using a border-following algorithm [58], after obtaining contours the Douglas-Peucker algorithm 

[59] is used for contour simplification. 

Using the previously detected contours, we use the Quadrilateral Sum Conjecture as a criterion to detect 

squares, the Quadrilateral Sum Conjecture tells us the sum of the angles in any convex quadrilateral is 360 

degrees (Figure 5.6). 

 

Figure 5.6 - Internal angles of convex quadrilaterals. 

Even under perspective distortion a square is always a convex quadrilateral. This will be our first 

criteria, it is also possible to verify that the sum of the cosine of all inner angles equals in a convex 

quadrilateral is close to zero. Considering this our second criteria will be to make sure that the sum of inner 
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angle between all corners is under a defined threshold (close to zero). 

To filter noise a third criterion was added, all contours composing a geometry with an area bellow a 

defined threshold will be discarded. 

These three criteria allow to properly filter squares even under heavy distortion from the contour list, 

the Figure 5.7 represents the obtained result for a maximum sum of cosine of 0.25 and a minimum area of 

100px. 

 

Figure 5.7 - Result of square detection algorithm. 

Perspective distortion is removed from the squares found, then they are to a 7x7 matrix using linear 

interpolation and threshold is applied using the Otsu’s Binarization algorithm [60], at this point we obtain 

a matrix with the marker data in it. Figure 5.8 represents the matrix obtained after the binarization process. 

 

Figure 5.8 - Aruco marker reading result. 

The marker data is now validated using the signature matrix, if the data is not valid that means that it 

does not correspond to an aruco marker. Markers might be detected in any orientation. The algorithm tests 

the data with different rotations (90º, 180º, 270º), if the marker is not recognized for any rotation it is then 

discarded. 

5.3 Pose estimation 

For pose estimation the method solvePnp from OpenCV was used, in iterative mode using Levenberg-

Marquardt [61] optimization. 

To obtain the camera position, markers need to be registered into the program, a marker is represented 

by its identifier and a real-world pose (position and rotation). 



81 

 

 Corners obtained from all visible known markers are used to estimate the camera pose. In Figure 5.9 

we can observe the origin referential and camera pose estimated using the corners detected from two visible 

makers. 

 

Figure 5.9 - Aruco marker detection result. 

5.4 Corner refinement 

After getting a fully function algorithm to refine it further a corner refinement step was added using 

the sobel derivative operator was. First the section around the detected corners was isolated. The sobel 

derivative was calculated in x and y. After calculating the derivative, the maximum intensity points are used 

as a refined corner. 

In the Figure 5.10 it is possible to observe a case where the quadrilateral detector obtained close but 

not precise corner results. The sobel operator allow to get a more refine position of the corners, the red dot 

represents the initially detected corner and the greed dot represents the refined corner, in the left we have 

the marker as detected originally without corner refinement and on the right, we have the sobel operator 

result. 

 

Figure 5.10 - Result of corner refinement using sobel operator. 

This algorithm assumes that there is only one corner in the picture, if by the block size used is too big 

sometimes another corner from the marker are visible resulting in a wrong corner position. 

Figure 5.11 shows an example where that happens. In red is the initial corner obtained from 

quadrilateral detector and in green is the bad corner, this can be easily fixed by automatically calculating 

the block size relatively to the marker resolution, the block size should be 1/7 of the marker resolution to 
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guarantee that the marker inside corners are not visible. 

 

Figure 5.11 - Bad corner refinement due to big block size. 

5.5 Algorithm evaluation 

To compare the developed solution with the ones already existing a testing environment was created, 

two test markers were printed, one Aruco maker and one ARTag maker. Both markers had exactly 20cm 

in size, the camera was placed on top a box and the marker was aligned with the camera, the marker was 

then held on a box using transparent tape. 

A measuring tape with a millimetric scale was used to measure the distance between the box and the 

markers, an image was taken for each distance tested, the markers were moved 30cm each time until none 

of the algorithms was able to detect the marker. Figure 5.12 represents some samples of the testing data 

used. 

 

 

Figure 5.12 - Samples of the testing data. 

 To measure the tolerance of the detector to perspective distortion a second testing environment was 

created, a marker was placed on a box and the camera was positioned 2.0 meters away from the marker. 

The marker was rotated around itself in steps of 10º from 0º to 80º. 

Camera was calibrated was performed, a chessboard pattern was used for calibration, the values 

obtained were stored and used for the tests. 

Table 5.2 presents the results obtained for marker detection distance. It is possible to observe that the 
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proposed solution obtained better detection distance results, being capable of detecting aruco markers up 

to 9 meters away from the camera (using a resolution of 640x480). 

Distance (m) 
Proposed solution ROS Aruco Alvar 

Distance (m) Error (%) Distance (m) Error (%) Distance (m) Error (%) 

0,3 0.309 3.004 0.315 4.79 0.303 0.838 

0,5 0.501 0.136 0.505 1.013 0.509 1.832 

0,7 0.699 0.101 0.705 0.663 0.707 0.974 

0,9 0.895 0.61 0.904 0.486 0.908 0.862 

1,1 1.094 0.544 1.111 0.976 1.11 0.94 

1,3 1.287 0.974 1.312 0.944 1.307 0.524 

1,5 1.479 1.425 1.515 0.973 1.505 0.352 

1,7 1.679 1.264 1.707 0.414 1.708 0.472 

1,9 1.864 1.91 1.926 1.348 1.913 0.655 

2,1 2.054 2.229 2.109 0.433 2.107 0.334 

2,3 2.283 0.757 2.336 1.544 2.332 1.355 

2,5 2.467 1.33 2.539 1.545 2.514 0.548 

2,7 2.679 0.787 2.786 3.073 2.726 0.944 

2,9 2.84 2.097 2.95 1.682 2.9 0.016 

3,1 3.032 2.229 3.142 1.349 3.16 1.907 

3,3 3.237 1.961 3.343 1.299 3.358 1.713 

3,5 3.459 1.181 3.581 2.263 3.534 0.963 

3,7 3.647 1.446 3.791 2.413 3.741 1.104 

3,9 3.859 1.058 4.013 2.82 4.014 2.849 

4,1 4.091 0.218   4.212 2.662 

4,3 4.249 1.19   4.393 2.108 

4,5 4.452 1.077   4.595 2.059 

4,7 4.643 1.236   5.017 6.322 

4,9 4.808 1.923   5.054 3.04 

5,1 5.116 0.31     

5,3 5.154 2.836     

5,5 5.566 1.18     

6 5.712 5.049     

6,6 6.304 4.703     

7,2 6.922 4.021     

7,8 7.695 1.367     

8,4 8.618 2.534     

9 8.639 4.181     

Table 5.2 - Results obtained for marker detection. 

 Figure 5.13 presents the results obtain for the distance detection test in a graph. It is possible to observe 

that our solution obtained similar accuracy results while improving the maximum detection distance. 
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Figure 5.13 - Marker detection distance accuracy graph. 

Table 5.3 represents the accuracy of each method considering the medium accuracy of all measures 

inside of the detection range. It is possible to observe that the solution implemented has similar precision 

to the other solutions tested. 

 
Average error (%) 

Proposed solution ROS Aruco Alvar 

0-390cm 1,2 1,7 1,1 

0-490cm 1,3  1,5 

0-900cm 1,8   

Table 5.3 - Accuracy comparison between marker detection algorithms. 

Table 5.4 presents the results obtained for marker rotation, our method performed better than the other 

two algorithms used for comparison, obtaining lower error values. 

 Proposed solution ROS Aruco Alvar 

Rotation Dist. (m) Error (%) Dist. (m) Error (%) Dist. (m) Error (%) 

0 1.981 0.980 2.013 0.631 1.986 0.727 

10 1.983 0.872 2.032 1.583 2.017 0.858 

20 1.985 0.741 2.031 1.537 2.011 0.564 

30 1.989 0.528 2.029 1.415 1.974 1.308 

40 2.001 0.040 2.029 1.425 1.971 1.493 

50 2.002 0.121 2.03 1.468 2.028 1.357 

60 2.004 0.213 2.033 1.639 1.974 1.322 

70 1.993 0.341 2.029 1.421   

Table 5.4 - Results obtained for maker perspective distortion. 
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 Table 5.5 represents the results obtain for the rotation test in a graph. Its possible to observe a 

consistent improvement in accuracy. 

 

Table 5.5 - Marker detection tolerance to rotation graph 
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6 Graphical User Interface 

In this chapter we will present the development of a new graphical user interface (GUI) and data 

visualization tools for the WiiGo robot created as a replacement for the old GUI that presented some 

limitations. The main limitations found were the lack of responsiveness to multiple screen resolutions, no 

support for multiple languages and use of pre-rendered text. 

The old GUI was built with the QT framework using C++. It was integrated as a ROS node into the 

robot software. It was hardcoded to work with a fixed resolution of 1280x720, and all text was pre-drawn 

into images used to compose the interface, making it hard to apply corrections or create translations for the 

GUI. 

The GUI is divided into two main section, the main screen used to give feedback and present the current 

state of the robot to its users and the advanced menu composed of debug and diagnostic utilities. Figure 6.1 

presents the old GUI main screen. 

 

Figure 6.1 - WiiGo robot old GUI main screen. 

Figure 6.2 represents the old GUI advanced settings menu that was used for debug purposes allowing 

the users to visualize information from the multiple robot sensors, and access auto-diagnostic tools. The 

old visualization tools were only capable of displaying a single type of information at a time and were 

limited to 2D representations. 
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Figure 6.2 - WiiGo robot old GUI advanced menu. 

Since the robot it is not equipped with a touchscreen the old GUI required a mouse or keyboard for 

navigation. This was not a problem since it was only required to access the advanced menu of the robot that 

contained debug information. 

6.1 System architecture 

To implement the new user interface and attend to all requirements, we have chosen to use JavaScript 

as a programming language and NWJS [62] as framework for desktop support. To develop 3D visualization 

components the three.js [63] library was used. 

Figure 6.3 represents the basic blocks used to implement the GUI. Elements are build using DOM 

elements in JavaScript code. To achieve support for multiple resolutions and screen aspect-ratio the 

elements are positioned using normalized coordinates relatively to the screen resolution. 

Multi-language support was achieved using dynamically loaded JSON files that contain locale related 

data (e.g. text, images, audio). These files are loaded and managed by the Locale Manager. 

The GUI is targeted at multiple robotic platforms, all these platforms use the same base WiiGo 

technology, but each of them has its own differences (e.g. different sensor configuration, functionality 

disabled). 

To easily adapt the GUI to each different robotic platform a platform managing system was developed. 

A platform indicates the robot configuration, topics to visualize and which UI components are used.  

Platforms can implement modified versions of the GUI elements and are managed by the Platform Manager. 
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Figure 6.3 - GUI implementation class diagram. 

An abstract approach for ROS communication was used presented Figure 6.4. Interfaces for topic and 

service access where created. ROS communication was implemented by using external libraries. Two 

different solution were used for communication: ROS NodeJS and ROS LibJS. 

ROS NodeJS generates JS definitions for ROS messages and implements the ROS communication 

model to access and publish data to topics and services. It is used when the software is being run directly 

in the robot. 

ROSLibJS uses ROS bridge, it is a communication middleware that converts the ROS communication 

model into a web socket based communication model. It is used when accessing the interface from a remote 

device using a web browser. 

ROS
(Interface)

ROS Master

ROS Bridge 
WebSocket Server

GUI

ROS 
NodeJS

ROS Lib JS

Local

Web Browser Websockets

 

Figure 6.4 - ROS communication model implemented by the GUI. 

6.2 GUI Menus 

The main screen presented in Figure 6.5 is composed of a central zone containing messages and 

information for the user (e.g. instructions, warnings) and the zone bellow is used for illustration and 
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interaction. 

A new set of simpler illustrations was created by another employee at Follow Inspiration. Vibrant 

colors are used to represent the robot state. This allows for the user to easily distinguish the robot state. 

Sound effects are also used, if the robot gets lost or gets blocks a buzzer sound is played to warn the user. 

 

Figure 6.5 - WiiGo GUI main screen. 

 Figure 6.6 represents the new GUI advanced settings menu. New visualization widgets were 

developed, some of them were adapted for display some extra information (e.g. the camera viewer can now 

also display information from the people detection module). 

 

Figure 6.6 – WiiGo robot advanced menu GUI. 

 Figure 6.7 shows the GUI running remotely on a mobile phone connected to the same network as the 

robot. All information is updated in real time without any noticeable delay. 

It is possible to access the interface remotely using a web browser and the interface is compatible with 

mobile devices. During tests mobile phones were used to access the interface connected via Wi-Fi, but it is 

also possible to configure it to external access via internet. 
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Figure 6.7 - WiiGo GUI running remotely on mobile phone. 

6.3 World visualization 

To visualize information published by the robot, a set graphical visualization tools were created. The 

objective for these tools is to visualize robot information in 3D space similarly to RViz. RViz could not be 

reused for this purpose because it is implemented using different technology. 

To draw information published by the robot a ROS tf handling system was developed. A tf message 

contains a transform, children name and parent name. The transform indicates the position of the children 

relative to the parent. 

 Figure 6.8 presents the results obtained. It is possible to observe the robot tf being positioned each one 

relatively to its parent. To interact with this visualization the use can use a mouse to move the camera 

around the world. Multi touch gestures were implemented, if the user has a touchscreen or a multitouch 

enable trackpad its possible use pinch to zoom, or two fingers scroll to move the camera. 

 

Figure 6.8 - tf visualization in the WiiGo robot GUI. 

 To visualize occupancy grids a new tool was created. The occupancy grids received are draw into an 
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canvas offscreen. The canvas is attached to a plane geometry which size and origin matches the one 

indicated in the grid message. Figure 6.9 represents the grid map visualization attached to its tf. It is possible 

to observe the correct position of the remaining tf relative to the map. 

 

Figure 6.9 - Grid map visualization in the WiiGo robot GUI. 

A tool for path creation was developed on top of the world visualization module. It allows the user to 

create paths using a mouse or touchscreen. Figure 6.10 shows the result obtained. The points in red are the 

points marker by the user. 

Paths created can be used for autonomous navigation or stored into XML files for later user. The WiiGo 

software uses a A* algorithm to validate the path and applies correction if required. This step ensures that 

the robot can always reach the defined destination. 

 

Figure 6.10 - Path creation tool in the WiiGo robot GUI. 
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7 Conclusion 

Multiple objectives were defined for this work. The integration of a SLAM algorithms, visualization 

tools to interact with this system proposed and a visual marker detection algorithm for landmark detection. 

It was possible to successfully achieve all objectives proposed. The results obtained allowed to enhance 

the WiiGo robot making it able to navigate human populated environments, localize its docking station, 

and improve user interaction. 

In December a test was performed with the WiiGo robot as an internal company event distributing 

candy to the company employees. Using the map of the Laboratory, a path was created using the tools 

presented in this document. 

The robot roamed independently around the laboratory for 6H until its battery got low. During the test 

no human intervention was required. The robot was able to navigate the environment and avoid obstacles 

successfully. Figure 7.1 presents the robot equipped with a tray of candy, made with cardboard, roaming 

around the laboratory corridors autonomously. 

 

Figure 7.1 - WiiGo robot autonomous navigation experiment as candy distributor. 

7.1 SLAM and Localization 

Multiple SLAM algorithms were tested and compared. RTABMap was chosen as a SLAM and 

localization solution to integrate in the WiiGo robot. From all the solutions tested it was the only one 

capable of good results for all datasets. It obtained good mapping results and was able recover its 

localization quickly during out tests. 

The odometry data present in the dataset used was relatively bad. It could be improved by adding 

inertial sensors to the robot. (e.g. IMU). Figure 7.2 represents an example where it is possible to observe 
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odometry drift for the WiiGo robot relatively to one if the mapping results. 

 

Figure 7.2 - Comparison between map and odometry in Laboratory dataset. 

One problem found when testing SLAM algorithms is that due to the use of statistical models that use 

random data it is hard to obtain consistent results across multiple tests on the same dataset. 

The solution proposed presented good results and demonstrates how good SLAM algorithms have 

become over the years. There is room for improvement specially regarding laser only localization where it 

was not possible with current algorithms to localize the robot from in a map. 

7.2 Visual markers 

Experiments conducted showed that the solution developed was able to improve the detection distance 

when compared to other methods that use similar marker format while keeping similar pose estimation 

precision 

The two algorithms tested and the developed use a similar approach for marker detection. All of them 

apply adaptive threshold, detect squares, refine corners, apply distortion correction, and decode the marker 

data. The method proposed uses a different approach for square detection that allow it to detect markers 

from far away. 

We compared our system with two state of art algorithms (ROS Aruco and Alvar) and verified that our 

algorithm detects the marker up to 9m, when compared with 4m and 5m for the other algorithms it 

represents a 44% increase in detection distance, with similar precision values. Our method also presents 

more tolerance to perspective distortion, obtaining better precision results when detecting rotated markers. 

To improve the algorithm further a corner refinement method with subpixel accuracy could be added 

improving the marker corner position estimation. 

The implementation of the algorithm described in this document can be found online at 

www.github.com/tentone/aruco. 
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7.3 Graphical User Interface 

The GUI implemented was able to successfully fulfill all requirements proposed and replaced the older 

implementation completely. It provides a more refined experience and better interactivity to the users. 

The solution presented allowed the GUI to be translated into four different languages: Portuguese, 

English, Romanian and French. Figure 7.3 presents an example on GUI the main screen in multiple 

languages. More languages can be easily added by creating additional new Locale configuration files. No 

changes to code are required. The robot GUI language can be selected in the advanced settings menu.  

 

Figure 7.3 - GUI main screen in multiple languages (Portuguese, English, French and Romenian). 

The new modular system implemented will allow for faster expandability and will be used as a base 

for future projects. Figure 7.4 presents the new WiiGo GUI running on the robot hardware, were it is 

possible to observe the main screen and the word visualization menu. 

 

Figure 7.4 - GUI running on the WiiGo robot. 
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Appendix A - Feature Based Object detection 

In this section we will study a feature-based object detection framework. The objective of this 

experiment was to test and compare the performance of visual feature extraction algorithms and determine 

the best one to be used with the RTABMap SLAM framework. 

These tests will be performed Find-Object [64] framework developed by Mathieu Labbé. It is an object 

detection solution that uses visual features. It integrates multiple visual feature algorithms (BRIEF, FAST, 

GFTT, MSER, ORB, STAR, FREAK, SIFT, SURF and BRISK). 

Methodology 

For these tests three different objects were used, the box of a processor “Intel Core i5 4460”, a box of 

Coffe “DeltaQ Activus 10Uni” and a motherboard box “ASUS H81i-PLUS”. All these objects are solid 

and textured, and theoretically should represent a good test scenario for the feature extraction algorithms 

tested. 

Images of the objects were captured using the Orbbec Astra camera at a resolution of 640x480. A 

feature database was created with these images. Figure A.0.1 presents the images captured. 

 

Figure A.0.1 - Testing objects for object detection. 

Another image was taken where are three objects are visible. For each algorithm processing time, 

number of features found, number of objects recognized, false positives where measured. Figure A.0.2 

represents the image used for testing. 

Find-object implements k-trees based nearest neighbor search for both SURF and SIFT algorithms 

allowing these two solutions to have better performance in the matching phase. For testing since RTABMap 

also supports these methods they were kept enabled. 
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Figure A.0.2 - Test environment setup, with object detection boxes. 

Results 

Table A.0.1 represents the results obtained for all tests performed, it is possible to observer that the 

SURF algorithm obtained the best results being the faster algorithm capable of detecting all objects. ORB 

is considerably faster that all the other algorithms and may be a good solution in low performance scenarios. 

Some of the solutions tested could not recognize any object. For these solutions no matches between 

features stored in the databased and features present in the test image were found. Those results were 

omitted from the table. 

Features NN Find Objects Matches FP Delta (ms) Features 

SURF KDTree 3 3 0 148 711 

SIFT KDTree 3 3 0 303 1051 

ORB BruteForce 2 2 0 35 500 

KAZE BruteForce 2 2 0 956 1314 

AKAZE BruteForce 3 3 0 483 1073 

BIRSK BruteForce 3 3 0 1015 1725 

Table A.0.1 - Comparison of visual feature extraction methods for object detection 

Conclusion 

 It was possible to observe that this method for object detection could be easily applied in a real-world 

case. It was able to detect all test objects. During the tests no false positive were detected, but a false positive 

was obtained when using on purpose a visually similar product box, represented in Figure A.0.3. 
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Figure A.0.3 - False positive detection with similar objects. 

The use of features for object detection allowed to obtain matches even under occlusion or rotation. 

Figure A.0.4 represents a case where it was possible to detect the CPU box even under partial occlusion 

and rotation. 

 

Figure A.0.4 - Object detection under occlusion and rotation. 

It was possible to observe during these tests that feature based object detection works well for rigid 

objects. But it is not reliable for deformable body detection (e.g. bags, fruit). In Figure A.0.5 it is possible 

to observe a test scenario with SURF features. Multiple images of bananas were used for feature extraction 

but when presenting two similar bananas to the ones used as reference it was not possible to obtain any 

matches. 

 

Figure A.0.5 - Fruit detection using visual features. 
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