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Abstract

The notion of combinatorial Perron value was introduced in [2].
We continue the study of this parameter and also introduce a new pa-
rameter πe(M) which gives a new lower bound on the spectral radius
of the bottleneck matrix M of a rooted tree. We prove a bound on
the approximation error for πe(M). Several properties of these two
parameters are shown. These ideas are motivated by the concept of
algebraic connectivity. A certain extension property for the combina-
torial Perron value is shown and it allows us to define a new center
concept for caterpillars. We also compare computationally this new
center to the so-called characteristic set, i.e., the center obtained from
algebraic connectivity.
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1 Introduction

The purpose of this paper is to investigate combinatorial parameters as-
sociated with bottleneck matrices of trees. A new such parameter will be
introduced. Bottleneck matrices arise naturally from the Laplacian matrix
of a tree in connection with the notion of algebraic connectivity, as explained
below. The main goals of this paper are:

1. For a rooted tree with corresponding bottleneck matrixM we introduce
a new parameter πe(M) which is a (usually good) lower bound on the
spectral radius ρ(M). We show different properties of πe(M), including
a result for caterpillars which involves the notion of majorization.

2. We study the combinatorial Perron value ρc(M), introduced in [2], and
prove several properties. These properties are used to define a new
center concept for caterpillars, which then is compared to the center
based on Perron values.

3. We also give exact values for πe(M), πd(M) (also introduced in [2]) and
ρc(M) for certain trees.

In the remaining part of this introduction we give some preliminaries about
algebraic connectivity, bottleneck matrices and related concepts. Let G =
(V,E) be an undirected simple graph and L(G) its Laplacian matrix, i.e.,
L(G) = D − A where A is the adjacency matrix and D the diagonal matrix
of vertex degrees. L(G) is positive semidefinite and singular, and we order
its eigenvalues as follows: μ1 ≥ μ2 ≥ · · · ≥ μn = 0. The multiplicity of the
eigenvalue 0 of L(G) equals the number of connected components of G. Thus,
for connected graphs the second smallest eigenvalue μn−1 is positive. Fiedler
[4] studied this eigenvalue and called μn−1 the algebraic connectivity of G,
denoted by a(G). Since then, a(G) is considered to be a very important
parameter, and it is used as a measure of the connectivity of a graph G.
Moreover, if T is a tree, a(T ) is closely related to the Perron value (spectral
radius) of so-called bottleneck matrices of subtrees of T , as explained below.

An important tool in connection with algebraic connectivity is the Fiedler’s
Monotonicity Theorem. This theorem describes the structure of the eigen-
vectors associated to a(G), and it has led to a large number of papers about
ordering graphs by this invariant, mainly graphs such as trees and graphs
with few cycles, see e.g. [1] for a survey on the significant results concerning
these topics.
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If z = (z1, z2, . . . , zn) is an eigenvector corresponding to a(G), here called a
Fiedler vector, we may label the vertex vi (the order induced by the Laplacian
matrix) with zi. Fiedler showed that this labeling, called a characteristic
valuation, gives information about the graph. In this paper, the results will
be presented for a general tree T .

Theorem 1.1. (Fiedler’s Monotonicity Theorem) If z is an eigenvector cor-
responding to a(T ) (now called Fiedler vector), then exactly one of the fol-
lowing two cases occurs:

(1) Some entry of z is 0. In this case, the subgraph induced by the vertices
corresponding to zeros in z is connected. Moreover, there is a unique
vertex vk such that zk = 0 and vk is adjacent to a vertex vi where zi �= 0.

(2) No entry of z is 0. In this case, there is a unique pair of vertices vi and
vj such that vi is adjacent to vj with zi > 0 and zj < 0. Furthermore,
the entries of z are increasing along any path in T which starts at vi
and does not contain vj, and the entries of z are decreasing along any
path in T which starts at vj and does not contain vi.

Based on this theorem Merris [10] classified trees into two types. Trees
that satisfy Case 1 of the previous theorem are called Type I trees. In this
case, the vertex vk is called the characteristic vertex of T . Trees that satisfy
Case 2 of the previous theorem are called Type II trees. In this case, the
vertices vi and vj are called the characteristic vertices of T . The characteristic
set of a tree is the set of its characteristic vertices. Note that the characteristic
set of T is independent of the eigenvector used as the characteristic valuation.

Algebraic connectivity and Fiedler vectors for trees have been studied in
several papers, see, e.g., [5, 6, 7, 8, 10]; see also the book [12]. These results
lead to the study of the inverses of submatrices of L(T ). Let v be a vertex
of T and let Lv be the principal submatrix of L(T ) obtained by deleting the
row and column corresponding to v. Then Lv is invertible and its inverse
L−1v is the direct sum of blocks corresponding to each of the branches of T
at v. We call each such block a bottleneck matrix (of that branch). Thus, a
bottleneck matrix M corresponds to a rooted tree B with root r which is the
unique vertex in B that is adjacent to v in T . One can show ([8, 12]) that the
(i, j)’th entry of M is the number of vertices (in B) that lie simultaneously
in the path between r and i and in the path between r and j.

Recall from the Perron-Frobenius theory for nonnegative matrices that
the spectral radius of a positive matrix M is necessarily an eigenvalue of
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that matrix, called the Perron value and denoted by ρ(M). Hence it follows
that the spectral radius of L−1v is equal to the Perron value of the bottleneck
matrix (matrices) for a branch at v whose Perron value is largest. A branch
at a vertex k whose bottleneck matrix has the largest Perron value is a Perron
branch at v.

It is then possible to characterize, via bottleneck matrices, Type I and
Type II trees (see [8]). In fact, T is a Type I tree with characteristic vertex v if
and only if T has two or more Perron branches at v. In this case, the algebraic
connectivity is the inverse of the Perron value of the bottleneck matrix of
any of its Perron branches. Moreover, T is a Type II tree with (adjacent)
characteristic vertices vi and vj if and only if there exists γ, 0 < γ < 1, such
that ρ(M1 − γJ) = ρ(M2 − (1 − γ)J), where J is the all ones matrix and
M1 is the bottleneck matrix for the branch at vj containing vi and M2 is
the bottleneck matrix for the branch at vi containing vj. Then the algebraic
connectivity can be obtained by

a(T ) =
1

ρ(M1 − γJ)
=

1

ρ(M2 − (1− γ)J)
.

Therefore, we can find the characteristic set by computing the spectral
radius of bottleneck matrices.

In [2] one introduced a parameter called the combinatorial Perron value
for a tree T , denoted by ρc(T ). Moreover, the related parameter πd(T )
was also introduced. A motivation for the concept of combinatorial Perron
value was that the vector of distances from the root (in branches) has some
similarity to the corresponding Perron vector, and the Fiedler vector of an
underlying tree. These two parameters were shown in [2] to provide very
good lower bounds on the Perron value of the associated bottleneck matrix,
and several theoretical properties were established.

Notation: We usually let the vertex set of a rooted tree be labelled
1, 2, . . . , n, where r = 1 is the root. Two special rooted trees are the star
and the path. We denote by Sn the star with n vertices having the central
vertex as root; therefore, we label the central vertex as 1 and the remaining
vertices as 2, 3, . . . , n in no specific order. Also, we denote by Pn the path
with n vertices having one of the endpoints as root; its vertices are labeled
from 1 (the root) to n (the other endpoint) in the natural way. The all ones
vector (of suitable dimension) is denoted by e. The transpose of a matrix A
is denoted by AT , and its trace is denoted by TrA. The spectral norm of a
matrix, and the Euclidean norm of a vector, are denoted by ‖ · ‖. Also, for a
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square matrix A = [aij], we use the matrix norms ‖A‖∞ = maxi
∑

j |aij| and
‖A‖1 = maxj

∑
i |aij|. Vectors are treated as column vectors, and, whenever

convenient, these are identified with corresponding n-tuples.

2 A new combinatorial Perron parameter

In this section we recall some concepts from [2], and introduce a new combi-
natorial parameter associated with bottleneck matrices.

Let the pair (T, r) denote a rooted tree, consisting of a tree T and a
specified vertex r (in T ) called the root. Let n be the number of vertices of
T , and let, for each vertex j, Pj denote the (unique) rj-path in T . The path
matrix N (of T ) is the (0, 1)-matrix of size n × n whose rows and columns
correspond to vertices in T , and where column j of N is the incidence vector
of the path Pj for j ≤ n, i.e., it contains ones in rows corresponding to
vertices in Pj, and zeros elsewhere. With suitable ordering of the vertices,
the path matrix N is upper triangular with ones in the first row and on the
diagonal. Its column sum vector is the distance vector d = (d1, d2, . . . , dn),
where dj is the number of vertices in Pj and represents the distance of vertex
j to the root. The bottleneck matrix M and the path matrix N are related
by M = NTN . For instance, for the star Sn (with, as said above, the central
vertex as its root, and labeled 1) then its bottleneck matrix is the n × n
matrix M = [mij] where m22 = m33 = · · · = mnn = 2 and all other entries
are 1.

The following two parameters were introduced in [2]:

ρc(M) =
‖Nd‖2
‖d‖2 =

dTMd

dTd
, and πd(M) =

‖Md‖
‖d‖ .

Both of these provide lower bounds on the Perron value ρ(M) of the
bottleneck matrix M . (The notation for πd(M) was π(N), or π(T ), in [2]).
An alternative expression for ρc(M) is

ρc(M) =

∑
i σ

2
i∑

i d
2
i

where σi =
∑

j:j�i dj and j � i means that j is below i in the sense that the
path Pi is contained in the path Pj. We shall refer to σi as the weight of
vertex i.
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Theorem 2.1. ([2]) Let T be a rooted tree (as above), and M its bottleneck
matrix. Then

ρc(M) ≤ πd(M) ≤ ρ(M) ≤ ‖M‖1. (1)

Now, we introduce a new related parameter, defined by

πe(M) = ‖Me‖/‖e‖ =
[ 1
n

∑
i

(∑
j

|Pi ∩ Pj|
)2]1/2

. (2)

We also write πe(T ) for the same expression. Note that
∑

j |Pi∩Pj| is the i’th
row sum in M , and that πe is given by a combinatorial expression (although
involving a square root). We will refer to all of these parameters, ρc(M),
πd(M) and πe(M), as combinatorial Perron parameters.

We can relate this new parameter πe(M) to the Perron value by using
the connection to the operator norm of the bottleneck matrix. We have that
ρ(M) = ‖M‖ = maxx�=0 ‖Mx‖/‖x‖. If we here let x = d, the distance vector,
we obtain ‖Md‖/‖d‖ = πd(M). An even simpler choice is to let x = e, the
all ones vector, which gives ‖Me‖/‖e‖ = πe(M). Both of these numbers are
therefore lower bounds on ρ(M). The expression for πe(M) is simpler than
those of ρc(M) and πd(M), in the sense that the denominator is just

√
n.

This has the consequence that some questions are easier to study for πe, and,
as we shall see, it has some nice properties.

Extensive computational experiments suggest that the relative error of
these parameters as approximations to the Perron value is typically around
3–5 % for random trees up to 100 vertices. It is an interesting, but diffi-
cult, question to prove bounds on the mentioned approximation errors. The
following is one result in this direction, and it concerns πe(M).

Let M be a symmetric, nonnegative matrix of order n. We are mainly
interested in the case when M is the bottleneck matrix of a rooted tree T .
Let M2 = [pij]. Let β ≥ 0 and consider the inequality

n∑
i,j=1

pij ≥ βn

n∑
i=1

pii. (3)

If (3) holds, we say that M is β-close. This is a condition on the inner prod-
ucts of (pairs of) rows in M , which expresses, roughly speaking, a comparison
between the average inner product of pairs of rows in M and the average in-
ner product of each row with itself; the gap is measured by β. With this
notation we have the following result.
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Theorem 2.2. Assume that M is β-close. Then

β1/2 ρ(M) ≤ πe(M) ≤ ρ(M). (4)

Proof. The right-most inequality holds in general, as explained above, and
does not require the extra-condition (3). Since M is symmetric,

πe(M) = ‖Me‖/‖e‖ =
(
(1/n)eTM2e

)1/2
which is the square root of the sum of all entries of M2 divided by n. Re-
call that the Frobenius norm of M is given by ‖M‖F =

√
Tr (MTM) =√

Tr (M2), and, since this norm is a consistent matrix norm, ρ(M) ≤ ‖M‖F .
Now, Tr (M2) =

∑
i pii, so by (3)

πe(M) =

(
1

n

n∑
i,j=1

pij

)1/2

≥
(
1

n
βn

n∑
i=1

pii

)1/2

= β1/2‖M‖F

≥ β1/2 ρ(M).

Therefore, if M is β-close for some β close to 1, then πe(M) is necessarily
a good approximation to the Perron value ρ(M). From experiments we see
that random trees often satisfy this condition. Clearly, the optimal β for a
given tree T is given by

β∗(T ) :=

∑
i,j pij

n
∑

i pii
.

Consider given integers k ≥ 1 and z ≥ 0, and the generalized star Gk,z which
is the tree obtained by taking k paths of length z + 1 and identifying their
roots. The total number of vertices in Gk,z is then 1 + kz. Computations
show that the exact value of β∗ for the generalized star Gk,z is

30 + 30k3z3 + 10k2z2
(
10 + 3z + 2z2

)
+ kz

(
101 + 35z + 30z2 + 10z3 + 4z4

)
5 (6 + 6k3z3 + kz (21 + 8z + 6z2 + z3) + k2z2 (21 + 8z + 6z2 + z3))

. (5)
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We can specialize this formula to stars and paths. The star Sn having n
vertices can be written as the generalized star Gn−1,1, while the path Pn

having n vertices is the generalized star G1,n−1. From this we find

β∗(Sn) =
n3 + 2n2 − n− 1

n (n2 + 3n− 3)
(6)

and

β∗(Pn) =
4n3 + 6n2 + 4n+ 1

5n (n2 + n+ 1)
.

It is interesting to look at the extremal behaviour of β∗(Gk,z) as we increase
k or z.
From (5) we see that, keeping z ≥ 1 fixed,

lim
k→∞

β∗(Gk,z) = 1.

On the other side, keeping k fixed we have

lim
z→∞

β∗(Gk,z) =
4

5k
.

For stars and paths this becomes

lim
n→∞

β∗(Sn) = 1 and lim
n→∞

β∗(Pn) =
4

5
.

This suggests that the parameter πe(M) provides a very good approximation
to ρ(M) for trees having a small maximal distance from the root compared
to the number of vertices.

3 Extremal properties of πe and majorization

Let again T be a rooted tree, with root r. Recall the notation j � i, for
vertices i and j, which means that the path Pj contains the path Pi, so j is
“below” or after i, seen from the root.

Let Tn denote the class of rooted trees with n vertices. We identify two
rooted trees (T1, r1), (T2, r2) in Tn when there exists a rooted tree isomorphism
from T1 to T2 (i.e. a graph isomorphism mapping r1 to r2).
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We are interested in the maximum and the minimum of πe in Tn, so we
define

Mn(πe) = max
T∈Tn

πe(T ), and mn(πe) = min
T∈Tn

πe(T ).

Two special trees in Tn are the path Pn and the star Sn. These turn out
to be extreme in terms of the value of the parameter πe, as the next result
says.

Theorem 3.1. The maximum Mn(πe) is obtained for the path and the min-
imum mn(πe) is obtained for the star, so

Mn(πe) = πe(Pn),

mn(πe) = πe(Sn).
(7)

Moreover, if T ∈ Tn is different from Pn and Sn, then πe(T ) lies strictly
between these extremal values.

Proof. Let, as usual, Pi be the path between the root r and vertex i in T ,
where we may assume, by breadth-first-ordering from the root, that |Pi| ≤ i
for each i. Then for all i and j

|Pi ∩ Pj| ≤ min{|Pi|, |Pj|}. (8)

Therefore
πe(T ) =

(
1
n

∑
i

(∑
j |Pi ∩ Pj|

)2)1/2
≤
(
1
n

∑
i

(∑
j min{|Pi|, |Pj|}

)2)1/2
≤ ( 1

n

∑
i(
∑

j min{i, j})2) 1
2

= πe(Pn).

The last equality is because Pn satisfies (8) with equality, and |Pi| = i for
each i. In fact, Pn is the unique tree for which (8) holds with equality for all
i, j.

Next, clearly, for the general tree T

|Pi ∩ Pj| ≥
{

1 for i and j distinct
2 for i = j �= r

(9)

and |Pr ∩ Pr| = 1. The only tree for which (9) holds with equality for all i
and j is the star.
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T :

r

i

s(i)

v

p

T ′:

r

i

s(i)

v

p

Figure 1: The trees T and T ′; here T (i, v) is the subtree induced by the
vertices i and p.

In Section 5 we compute the exact value of πe for these extremal trees.

Next, we investigate a certain operation on trees. Let T ∈ Tn, and let
v ∈ V . For each vertex i ∈ Pv with i �= v, let T (i; v) denote the subtree of
T induced by the vertex set {j : j � i, j �� s(i)} where s(i) denotes the
first vertex after i in the path Pv seen from the root. Let T ′ be obtained
by removing the subtree T (i; v) (except i) and attaching it at vertex v (so
the vertex i of the subtree is identified with v). An example is shown in
Figure 1. Note that if the subtree T (i; v) only contains vertex i, then T ′ = T .
Otherwise, T ′ �= T , and we then say that T ′ is obtained from T by moving a
nontrivial subtree away from the root.

Lemma 3.2. Let T ∈ Tn and T ′ be obtained from T by moving a nontrivial
subtree away from the root. Then πe(T

′) > πe(T ).

Proof. The result follows by observing that, when we identify vertices in
T and T ′ in the natural way, then

|P ′i ∩ P ′j | ≥ |Pi ∩ Pj|

for each i and j, where Pi and P ′i refers to T and T ′, respectively. Here
strict inequality holds, for instance, when i and j both belong to the subtree
moved.

As an application of this lemma we will prove an interesting result for
caterpillars. First, we introduce a version of the notion of majorization. A
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comprehensive treatment of majorization is given in the book [9], and ma-
jorization in connection with trees is investigated in [3]. Let x = (x1, x2, . . . , xt)
and y = (y1, y2, . . . , yt) be real vectors. If

s∑
j=1

xj ≤
s∑

j=1

yj (s ≤ t)

with equality for s = t, then we say that x is majorized by y, and write
x �∗ y. Note that this is different from classical majorization where similar
inequalities hold for partial sums of the ordered components of the vectors.

Let p1, p2, . . . , pk be nonnegative integers where pk = 0 and define the
vector p = (p1, p2, . . . , pk). We let C(p) denote the rooted caterpillar consist-
ing of a (central) path of length k (i.e., k vertices) and pi pendant vertices
attached to vertex i in this path (i ≤ k). The root is the first vertex in the
central path (associated with p1)

1. Similarly, let q1, q2, . . . , qk be nonnegative
integers where qk = 0 and define the vector q = (q1, q2, . . . , qk).

The following result shows how a majorization p �∗ q for the vector p
affects the value of πe.

Theorem 3.3. Let p and q be as above and assume p �∗ q. Then

πe(C(p)) ≥ πe(C(q))

and strict inequality holds unless p = q.
In particular, for a nonnegative integer m and any vector p (as above)

with
∑

j pj = m, we have

πe(C((m, 0, . . . , 0, 0))) ≤ πe(C(p)) ≤ πe(C((0, 0, . . . ,m, 0))).

Proof. If p = q, there is nothing to prove, so assume they are different.
Let i1 be smallest possible such that

∑i1
j=1 pj <

∑i1
j=1 qj. Therefore pi = qi

for i < i1, and pi1 < qi1 . Next, let i2 > i1 be smallest possible such that
pi2 > qi2 . Such an i2 must exist as

∑k−1
j=1 pj =

∑k−1
j=1 qj. Moreover, by these

choices,
i∑

j=1

pj <

i∑
j=1

qj (i = i1, i1 + 1, . . . , i2 − 1).

1If pk ≥ 1 we can define the new vector of nonnegative integers p′ =
(p1, p2, . . . , pk−1, pk − 1, 0). The rooted caterpillars C(p) and C(p′) are clearly isomor-
phic as rooted trees. This is why we can assume, w.l.o.g., that pk = 0. We point out that
this does not apply to p1, p2, . . . , pk−1.
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Define q′ = (q′1, q
′
2, . . . , q

′
k) from q by letting q′i1 = qi1 − 1, q′i2 = qi2 + 1, and

q′i = qi otherwise. Then, it is easy to check that

p �∗ q′ �∗ q.

By moving the subtree consisting of a leaf at vertex i1 to vertex i2, it follows
from Lemma 3.2 that πe(C(q′)) > πe(C(q)). We now replace q by q′ and
repeat this procedure. After a finite number of such operations we obtain
q′ = p, and the first result then follows from the corresponding ordering of
the πe of these caterpillars.

The final statement follows from the first part of the proof as for any such
p the following majorizations hold

(0, . . . , 0,m, 0) �∗ p �∗ (m, 0, . . . , 0).

4 Upper bounds on the Perron value and ρc

It is interesting to provide some bounds on ρ and ρc, in order to see how
distances and other basic parameters of the rooted tree affect these.

Let as usual T be a rooted tree with n vertices labeled as 1, 2, . . . , n,
where vertex 1 is the root, and let M = [mij] be its bottleneck matrix. We
get an upper bound on ρc(M) by using the Lagrange identity (see [13]) on
a suitable expression. Recall that, for a vertex i, the weight σi is defined as
σi =

∑
j:j�i dj. For the root this becomes σ1 =

∑n
j=1 dj = d · e, where d is

the distance vector of T and e is the all ones vector.

Theorem 4.1.

ρc(M) = n
∑
i

σ2
i

σ2
1 +Δ

≤ n
∑
i

(
σi

σ1

)2

(10)

where Δ = (1/2)
∑

i

∑
j(di − dj)

2. In particular, ρc(M) ≤ n2.

Proof. Let σ = (σ1, σ2, . . . , σn) and d = (d1, d2, . . . , dn). The Lagrange
identity (see [13]) for vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
says that (x · y)2 = ‖x‖2 ‖y‖2 − (1/2)

∑
i

∑
j(xiyj − xjyi)

2; this is easy to
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verify by computing the double sum of squares. Using this with x = d and
y = e gives

σ2
1 = (d · e)2 = ‖d‖2 · n− (1/2)

∑
i

∑
j

(di − dj)
2 = n‖d‖2 −Δ.

Therefore

ρc(M) =
‖σ‖2
‖d‖2 =

n‖σ‖2
σ2
1 +Δ

= n
∑
i

σ2
i

σ2
1 +Δ

≤ n
∑
i

(
σi

σ1

)2

,

and the result follows.

Numerical experiments suggest that the bound above is often quite good.

The next result gives an upper bound on the spectral radius ρ(M), and
therefore also on ρc(M). It involves the sum norm, so recall that, for the
distance vector d, ‖d‖1 =

∑
i di = σ1. Moreover, ‖d‖∞ = maxi di is the

maximum distance from the root.

Theorem 4.2.
ρ(M) ≤ ‖d‖1 + ‖d‖∞ − n.

Proof. Any consistent matrix norm gives an upper bound on the spec-
tral radius of a matrix, and we therefore consider the infinity norm of the
bottleneck matrix

ρ(M) ≤ ‖M‖∞ = max
i

∑
j

mij.

Let now i be such that
∑

j mij = ‖M‖∞. Consider a vertex j. If j �∈ Pi,
then

mij = |Pi ∩ Pj| ≤ |Pj| − 1 = dj − 1.

On the other hand, if j ∈ Pi, then clearly mij = dj. Hence,

ρ(M) ≤ ‖M‖∞
=
∑

j∈Pi
mij +

∑
j �∈Pi

mij

≤∑j∈Pi
dj +

∑
j �∈Pi

(dj − 1)

=
∑

j dj − (n− |Pi|)
≤ ‖d‖1 − n+ ‖d‖∞.
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We notice that the bound in Theorem 4.2 is sharper than the bound
ρ(M) ≤ ‖d‖1, since the quantity ‖d‖∞ − n is always nonpositive. In the
special case of a star or a path the bound in Theorem 4.2 is very good, in
fact it gives

ρ(Sn) ≤ n+ 1, and ρ(Pn) ≤
n2

2
+

n

2
.

Recall that the exact Perron values for stars and paths are known (see [2]),
and they are

ρ(Sn) = (1/2)(n+ 1 +
√
n2 + 2n− 3),

ρ(Pn) =
1
2
(1− cos( π

2n+1
))−1.

Finally, we apply Theorem 4.2 to rooted caterpillars and obtain the fol-
lowing result.

Corollary 4.3. Consider the rooted caterpillar C(p) where p = (p1, p2, . . . , pk)
where pk = 0. Then

ρ(C(p)) ≤ ‖d‖1 − ‖p‖1.

Proof. This follows from Theorem 4.2 by noting that the distance vector

of C(p) satisfies ‖d‖∞−n = k−
(
k +
∑k−1

i=1 pi

)
= −∑k−1

i=1 pi = −‖p‖1.

5 Exact values for the combinatorial Perron

parameters of certain trees

In this section we compute the exact values of the combinatorial Perron pa-
rameters for certain classes of rooted trees. First we consider πe for the rooted
star Sn and the rooted path Pn, as defined at the end of the Introduction.
Moreover, the exact value for ρc(T ) when T is a broom tree is obtained.
Additionally, exact values for πd(Sn) and πd(Pn) are given.

Recall that Sn denotes the star with n vertices having the central vertex
as root; therefore, we label the central vertex as 1 and the remaining vertices
as 2, 3, . . . , n in no specific order. Also, we denote by Pn the path with n
vertices having one of the endpoints as root; its vertices are labeled from 1
(the root) to n (the other endpoint) in the natural way. For instance, the

14



bottleneck matrix for the star S4 is

M =

⎡
⎢⎢⎣

1 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤
⎥⎥⎦ .

Proposition 5.1.

πe(Sn) =

√
n3 + 2n2 − n− 1

n
and

πe(Pn) =

√
4n5 + 10n4 + 10n3 + 5n2 + n

30n
.

Proof. For the star Sn we have |Pi∩Pj| = 2 when i = j �= 1, and otherwise
|Pi∩Pj| = 1. Thus, the expression follows. Next, consider the path Pn. Here,

we use the known formulas for
n∑

i=1

is for s = 2, 3, 4. Let

Ψ =
n∑

i=1

(
(n− i)i+

i∑
j=1

j
)2
.

Then Ψ = Ψ1 + 2Ψ2 +Ψ3, where

Ψ1 =
n∑

i=1

(
i∑

j=1

j)2 =
3n5 + 15n4 + 25n3 + 15n2 + 2n

60
,

Ψ2 =
n∑

i=1

[(
i∑

j=1

j)(n− i)i] =
3n5 + 5n4 − 5n3 − 5n2 + 2n

120
,

Ψ3 =
n∑

i=1

(n− i)2i2 =
n5 − n

30
.

We have that πe(Pn) = ( 1
n
Ψ)1/2, which gives the desired expression.

We now consider the broom tree B(x, y) which is obtained from the path
Py by adding x vertices and attaching each of these to the root of the path;
therefore, it has x + y vertices. The root of B(x, y) corresponds to the root
of the path Py.
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Proposition 5.2.

ρc(B(x, y)) =
4 y5 + 10 y4 + 10 y3 + (60 x+ 5) y2 + (60 x+ 1) y + 120 x2 + 120 x

10 y3 + 15 y2 + 120 x+ 5 y
.

(11)

Proof. Let the y vertices of B(x, y) corresponding to the path Py be de-
noted by p1, p2, . . . , py, so that p1 is the root of B(x, y) and py is the farthest
vertex from the root. Also, let the x additional pendant vertices be denoted
by q1, q2, . . . , qx. We find the following expressions for the distances and
weights of vertices in B(x, y):

dp1 = 1, σp1 =
∑y

j=1 j + 2x;

dpi = i, σpi =
∑y

j=i j, for i = 2, 3, . . . , y;

dqi = 2, σqi = 2, for i = 1, 2, . . . , x.

Therefore,

‖d‖2 = 4x+
2y3 + 3y2 + y

6
(12)

and

‖σ‖2 = 4x+

(
y∑

j=1

j + 2x

)2

+

y∑
i=2

(
y∑

j=i

j

)2

= 4 x+ 2 xy2 + 2 xy + 4 x2 +
1

6
y2 +

1

30
y +

2

15
y5 +

1

3
y4 +

1

3
y3. (13)

Plugging (12) and (13) into the equation

ρc(B(x, y)) =
‖σ‖2
‖d‖2

yields (11).

When y = 2 the expression for ρc(B(x, 2)) is exactly the expression al-
ready obtained in [2] for the star and, when x = 0, the expression for
ρc(B(0, y)) is the one obtained in [2] for the path. Moreover, for fixed y,
when x is large compared to y, ρc(B(x, y)) ≈ x. Similarly, for fixed x, when
y is large compared to x, ρc(B(x, y)) ≈ (2/5)y2.

Finally, we give the exact value for the parameter πd(T ), when T is the
rooted star Sn or the rooted path Pn.
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Proposition 5.3.

πd(Sn) =
√

4n3+4n2−7n
4n−3 ,

πd(Pn) =
√

68n4+136n3+133n2+65n+18
420

.

Proof. Recall that, for a rooted tree T having distance vector d and bottle-
neck matrix M = [mij], πd(T ) =

‖Md‖
‖d‖ .

If T is the star Sn, then d = (1, 2, . . . , 2), and

mij =

{
2 if i = j �= 1,

1 otherwise.

Hence, Md = (2n − 1, 2n + 1, . . . , 2n + 1). We obtain that ‖d‖ =
√
4n− 3

and ‖Md‖ =
√
4n3 + 4n2 − 7n. The result then follows.

If T is the path Pn, then d = (1, 2, . . . , n), and mij = min{i, j}. Hence,
the i’th entry of Md can be written as

(Md)i =
n∑

j=1

mijdj =
n∑

j=1

min{i, j} · j =
∑
j≤i

j2 +
∑
j>i

ij = −1

6
i(i2 − 3n2 − 3n− 1).

We obtain that ‖d‖ =
√

2n3+3n2+n
6

and

‖Md‖ =

√√√√ n∑
i=1

(
−1

6
i(i2 − 3n2 − 3n− 1)

)2

=

√
136n7 + 476n6 + 742n5 + 665n4 + 364n3 + 119n2 + 18n

2520
.

This yields

πd(Pn) =
‖Md‖
‖d‖ =

√
68n4 + 136n3 + 133n2 + 65n+ 18

420
.

We know the exact values of ρc for the star and the path from [2]:

ρc(Sn) = n+
3n− 3

4n− 3
, ρc(Pn) =

2n2 + 2n+ 1

5
.

Asymptotically, for the path Pn when n is large, one can verify that
πe(Pn) < ρc(Pn) < πd(Pn). For the star Sn, however, the values of the three
parameters are asymptotically equal (to n).
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6 An extension property for ρc

The goal of this section is to prove an extension result for the combinatorial
Perron value ρc, stating that this parameter increases when an edge is added
at the root, and the root is “moved” to the new vertex. We point out that
a similar property also holds for the Perron value ρ (but that property is
very easy to prove). The theorem we obtain will be used in the next section
concerning centers.

Let (T, r) be a rooted tree. We define its extension at the root to be the
rooted tree (T̃ , r̃) obtained from T by adding a new vertex r̃ and an edge r̃r;
the root of T̃ is r̃. Note that the distance of a vertex v �= r̃ in T̃ is one larger
than the corresponding distance in T .

The remaining part of this section is devoted to the proof of the following
theorem, by establishing several intermediate results.

Theorem 6.1 (Extension property). Let (T, r) be a rooted tree and let (T̃ , r̃)
be its extension at the root. Then

ρc(T̃ ) > ρc(T ). (14)

The following lemma ([11]), which is straightforward to prove, turns out
to be very useful in several proofs concerning ρc(T ).

Lemma 6.2. Let a1, a2, b1, b2 > 0 and suppose that a1/b1 �= a2/b2. Then

min

{
a1
b1
,
a2
b2

}
<

a1 + a2
b1 + b2

< max

{
a1
b1
,
a2
b2

}
.

Let (T, r) be a rooted tree with vertex set V and bottleneck matrix M =
[mij], and let n = |V |. We define its descendant vector κ = (κ1, κ2, . . . , κn)
as follows:

κi = |{j ∈ V : j � i}| (i ∈ V ).

Thus, κ is the row sum vector of the path matrix N of T . Let again σ be
the weight vector of T , so σi =

∑
j:j�i dj for each i ∈ V . We define

βT := (σr + n+ 1)2 + 2κ · σ − (2σr + n+ 1)‖M‖∞. (15)

We point out that σr denotes the weight of the root r which, following our
labeling convention, can also be referred to as σ1. Note that, if the g-th row
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of the bottleneck matrix M of T attains the maximum row sum among all
the rows of M , then

∑
v∈V mgv = ‖M‖∞. We want to show that βT > 0 for

all trees, and this will lead to a proof of the extension property.
We first consider the broom tree (as defined in Section 5).

Proposition 6.3. Let x ≥ 0 and y ≥ 1 be integers, and consider the broom
tree B = B(x, y). Then βB > 0.

Proof. We use, for the vertices in B, the same labeling as in the proof of
Proposition 5.2: p1, p2, . . . , py denote the vertices corresponding to the path
Py, so that the root of B is r = p1. Also, q1, q2, . . . , qx denote the x additional
pendant vertices.

The total number of vertices in B is n = x + y. Let g = py be the final
vertex of the path Py (the farthest from the root). If x ≥ 1 and y = 1, we
have that B(x, 1) = B(x − 1, 2). This means that we can assume without
loss of generality that g is a vertex attaining the maximum row sum among
the rows of the bottleneck matrix M of B. Let σ and κ denote the weight
vector and the descendant vector of B respectively. We have that

σr =
∑y

j=1 j + 2x, κr = n;

σpi =
∑y

j=i j, κpi = y − i+ 1, for i = 2, 3, . . . , y;

σqi = 2, κqi = 1, for i = 1, 2, . . . , x.

We compute

σr = 2x+

y∑
j=1

j = 2x+
y2

2
+

y

2

and

κ · σ = 2x+ nσr +
∑y

i=2

[
(y − i+ 1)

∑y
j=i j

]
= 2x+ (x+ y)(2x+ y2

2
+ y

2
) + 1

2

∑y
i=2 [(y − i+ 1)(y2 + y − i2 + i)]

= 2x2 + xy2

2
+ 5

2
+ 2x+ 5

24
y4 + 5

12
y3 + 7

24
y2 + y

12
.

Moreover, letting V be the vertex set of B and denoting as usual as Pv the
path joining a vertex v to the root, we have that

‖M‖∞ =
∑
v∈V

mgv =
∑
v∈V

|Pg ∩ Pv| =
y∑

i=1

|Pg ∩ Ppi |+
x∑

i=1

|Pg ∩ Pqi |

=

y∑
i=1

i+
x∑

i=1

1 = x+
y2

2
+

y

2
.
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Inserting these results into expression (15) yields

βB = 1 + 9x+ 8x2 +
8

3
y +

19

2
xy +

7

3
y2 +

xy2

2
+

5

6
y3 +

y4

6

which is clearly strictly positive for each nonnegative value of x and y.

We consider rooted caterpillars and, hereafter, use the simplified notation
C(n1, . . . , np), where np = 0. We recall that the root r of C(n1, . . . , np) is
the first vertex in its central path, associated with n1.

Proposition 6.4. Let C = C(n1, . . . , np) be a rooted caterpillar.
Then βC > 0.

Proof. Let g be the final vertex of the central path of C (the farthest from
the root). We notice that g is a vertex attaining the maximum row sum
among the rows of the bottleneck matrix M of C. We prove the result by
using a certain tree modification procedure. Suppose that C is not a broom.
Then the integer

s := max{i : 1 < i < p, ni > 0} (16)

is well-defined. Define the new rooted caterpillar C̃ = C(n1, . . . , ns−2, ns−1+
1, ns − 1, ns+1, . . . , np). In other words, C̃ is the caterpillar obtained from C
by taking a leaf c at distance s + 1, deleting the unique edge bc incident to
c and adding the edge ac where a is the father (ascendant) of b. We claim
that

βC̃ < βC . (17)

Let us denote respectively by σ̃, κ̃ and M̃ the weight vector, the descendant
vector and the bottleneck matrix of C̃, and set x := s+ 1.
We have

κ̃v =

{
κv if v �= b,

κv − 1 if v = b,

σ̃v =

⎧⎪⎨
⎪⎩
σv if c � v,

σv − 1 if c � v, v �= b,

σv − x if v = b.
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Therefore

κ̃ · σ̃ =
∑
c�v

κvσv +
∑
c�v
v �=b

κv(σv − 1) + (κb − 1)(σb − x)

= κ · σ −
∑
c�v
v �=b

κv − σb − xκb + x.

Looking at the bottleneck matrices M = [mij] and M̃ = [m̃ij], we see that g
is a vertex attaining the maximum row sum among the rows of M̃ , too. Let
V = V (C). Set

m :=
∑
v∈V

mgv = ‖M‖∞ and m̃ :=
∑
v∈V

m̃gv = ‖M̃‖∞.

We have that m̃ = m− 1. Therefore

βC̃ = (σ̃r + n+ 1)2 + 2κ̃ · σ̃ − (2σ̃r + n+ 1)m̃

= ((σr + n+ 1)− 1)2 + 2

⎛
⎜⎝κ · σ −

∑
c�v
v �=b

κv − σb − xκb + x

⎞
⎟⎠

− ((2σr + n+ 1)− 2)(m− 1)

= βC + 1− 2σr − 2n− 2− 2
∑
c�v
v �=b

κv − 2σb − 2xκb + 2x

+ 2σr + n+ 1 + 2m− 2

= βC − 2
∑
c�v
v �=b

κv − 2σb − 2xκb + 2m− n+ 2x− 2.

The goal now is to show that

A := −2
∑
c�v
v �=b

κv − 2σb − 2xκb + 2m− n+ 2x− 2 < 0. (18)

This suffices to conclude that claim (17) is true. In order to achieve this
we convert the quantities in (18) into expressions involving the numbers
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n1, n2, . . . , np. First we see that the expression of m is particularly simple,
thanks to the caterpillar-structure of C:

m =

p∑
i=1

i(ni + 1).

Next, we notice that, if v is a vertex belonging to the central path of C, then
its number of descendants is:

κv =

p∑
i=dv

(ni + 1).

Therefore, using that da = x− 2,∑
c�v
v �=b

κv = κc +
∑
a�v

κv

= 1 +
∑
a�v

κv

= 1 +
x−2∑
j=1

p∑
i=j

(ni + 1)

= 1 +

p∑
j=1

p∑
i=j

(ni + 1)−
p∑

j=x−1

p∑
i=j

(ni + 1)

= 1 +

p∑
i=1

i(ni + 1)−
p∑

i=x−1
(i− x+ 2)(ni + 1)

= 1 +m−
p∑

i=x−1
(i− x+ 2)(ni + 1).
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By (16), we know that nx = nx+1 = · · · = np = 0. Therefore,

∑
c�v
v �=b

κv = 1 +m− (x− 1− x+ 2)(nx−1 + 1)−
p∑

i=x

(i− x+ 2)

= m− nx−1 −
p∑

i=x

(i− x+ 2)

= m− nx−1 −
p2 + p− x2 + x

2
+ px− x2 + x− 2p+ 2x− 2

= m− nx−1 −
p2

2
− 5

2
p− x2

2
+

5

2
x+ px− 2.

Finally,

σb = x nx−1 +

p∑
i=x−1

i

= x nx−1 +
p2 + p− x2 + 3x− 2

2

and

κb = nx−1 + p− (x− 1) + 1

= nx−1 + p− x+ 2.

Inserting all these expressions into (18) gives

A = −2

(
m− nx−1 −

p2

2
− 5

2
p− x2

2
+

5

2
x+ px− 2

)
− 2

(
x nx−1 +

p2 + p− x2 + 3x− 2

2

)
− 2x(nx−1 + p− x+ 2) + 2m− n+ 2x− 2

= 2nx−1 + 4p+ 4x2 − 10x− 4px+ 4− 4xnx−1 − n

< 4p+ 4x2 − 10x− 4px+ 4. (19)

Let us study the polynomial function

f(P,X) := 4P + 4X2 − 10X − 4PX + 4

in the unbounded region

R := {(P,X) ∈ R2 | X ≥ 1, P ≥ X}.
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We have that

∂f

∂P
(P̂ , X̂) = 4− 4X̂ ≤ 0 ((P̂ , X̂) ∈ R)

and

f(X̂, X̂) = −6X̂ + 4 < 0 ((X̂, X̂) ∈ R).

This shows that f is strictly negative in R. Returning to p and x above,
since (p, x) ∈ R, we obtain

f(p, x) = 4p+ 4x2 − 10x− 4px+ 4 < 0. (20)

Combining (19) and (20) we obtain (18) and, consequently, (17).

We can now repeat this process of moving an edge upwards until, after a
finite number of steps, we end up with a broom B, so that

βC ≥ βB.

Therefore, by applying Proposition 6.3, we complete the proof.

Proposition 6.5. Let (T, r) be a rooted tree of n vertices. Then βT > 0.

Proof. Let V be the vertex set of T , let M = [mij] be the bottleneck
matrix of T , and choose a vertex g of T so that the corresponding row in M
maximizes the row sum. We claim that g is a leaf. In fact, if c is a child of
g, then ∑

v∈V
mcv >

∑
v∈V

mgv,

thus contradicting the definition of g. Let now Pg be the path connecting g
to the root r. If T is not a caterpillar with central path Pg, we can find a
leaf a in T such that its father u does not lie in Pg. Let v be the father of
u. Consider the tree T̃ obtained from T by replacing the edge ua with the
edge va. Let us denote respectively by σ̃, κ̃ and M̃ the weight vector, the
descendant vector and the bottleneck matrix of T̃ . Note that the vertex set
of T̃ is V .
We notice that M ≥ M̃ (entrywise order). Moreover, the choice of a assures
that

mgv = m̃gv (v ∈ V ).
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This shows that g is a vertex attaining the maximum row sum among the
rows of M̃ , too, and that

‖M̃‖∞ =
∑
v∈V

m̃gv =
∑
v∈V

mgv = ‖M‖∞.

Let us denote this common value by m. We claim that

βT̃ < βT . (21)

First, note that for every vertex v ∈ V it holds that κ̃v ≤ κv and σ̃v ≤ σv;
hence,

κ̃ · σ̃ ≤ κ · σ.

We then observe that

βT̃ = (σ̃r + n+ 1)2 + 2κ̃ · σ̃ − (2σ̃r + n+ 1)‖M̃‖∞
= ((σr + n+ 1)− 1)2 + 2κ̃ · σ̃ − ((2σr + n+ 1)− 2)m

= (σr + n+ 1)2 + 1− 2σr − 2n− 2 + 2κ̃ · σ̃ − (2σr + n+ 1)m+ 2m

≤ (σr + n+ 1)2 + 1− 2σr − 2n− 2 + 2κ · σ − (2σr + n+ 1)m+ 2m

= βT − 2σr − 2n− 1 + 2m

< βT − 2(σr −m)

≤ βT

where the last inequality follows by observing that

mij ≤ dj (i, j ∈ V )

and hence

m =
∑
j∈V

mgj ≤
∑
j∈V

dj = σr.

This shows (21). We can iteratively apply this process until we end up with
a caterpillar C with central path Pg. We know, then, that

βT ≥ βC .

Applying Proposition 6.4 we conclude the proof.
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We now have the results needed to prove the main theorem of this section.

Proof of Theorem 6.1: Suppose T has n vertices, which we label with
integers from 1 to n (where 1 is the root). Then T̃ has n + 1 vertices; we
label the root r̃ of T̃ with 0, and we label the other vertices of T̃ accordingly
to the labels of corresponding vertices in T . Denote respectively as di and
σi the distance and the weight of vertex i in T , i = 1, 2, . . . , n. Analogously,
denote respectively as d̃i and σ̃i the distance and the weight of vertex i in T̃ ,
i = 0, 1, . . . , n. Define also d0 := 0, σ0 := 0. Let

D :=
n∑

i=0

d2i , D̃ =
n∑

i=0

d̃2i ,

S :=
n∑

i=0

σ2
i , S̃ =

n∑
i=0

σ̃2
i .

Finally, let σ = (σ1, σ2, . . . , σn) and κ = (κ1, κ2, . . . , κn) be the weight vector
and the descendant vector of T respectively. Looking at the definition of the
extension tree T̃ , we note that

d̃i = di + 1 ∀i = 0, . . . , n;

σ̃i =
∑
j�i

d̃j =
∑
j�i

(dj + 1) = σi + κi ∀i = 1, . . . , n;

σ̃0 =
n∑

j=0

d̃j =
n∑

j=0

(dj + 1) = σ1 + n+ 1.

We get

D̃ −D =
n∑

i=0

(
d̃2i − d2i

)
=

n∑
i=0

(d̃i − di)(d̃i + di)

=
n∑

i=0

(2di + 1) = 2σ1 + n+ 1;

S̃ − S =
n∑

i=0

(
σ̃2
i − σ2

i

)
=

n∑
i=0

(σ̃i − σi)(σ̃i + σi)

= σ̃2
0 +

n∑
i=1

(σ̃i − σi)(σ̃i + σi) = (σ1 + n+ 1)2 +
n∑

i=1

κi(2σi + κi)

= (σ1 + n+ 1)2 + 2κ · σ + κ · κ.
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We then write

ρc(T̃ ) =
S̃

D̃
=

S + (S̃ − S)

D + (D̃ −D)
=

S + [(σ1 + n+ 1)2 + 2κ · σ + κ · κ]
D + [2σ1 + n+ 1]

.

Using Lemma 6.2 we see that

ρc(T̃ ) > ρc(T ) ⇔ (σ1 + n+ 1)2 + 2κ · σ + κ · κ
2σ1 + n+ 1

> ρc(T ). (22)

Let us define

α :=
(σ1 + n+ 1)2 + 2κ · σ

2σ1 + n+ 1
.

It suffices to prove that
α > ρc(T ) (23)

because then the theorem follows.
Consider the quantity βT defined in (15). We know from Proposition 6.5

that it is strictly positive:

βT = (σ1 + n+ 1)2 + 2κ · σ − (2σ1 + n+ 1)‖M‖∞ > 0

so

‖M‖∞ <
(σ1 + n+ 1)2 + 2κ · σ

2σ1 + n+ 1
= α.

Noting that ρc(T ) ≤ ρ(T ) ≤ ‖M‖∞ < α, we conclude that (23) holds, and
the proof is complete.

7 Caterpillars and a new center

In this section we study the combinatorial Perron value ρc for (rooted) cater-
pillars, and establish some interesting properties that we use to introduce a
new center concept for (unrooted) caterpillars.

By an unrooted caterpillar we mean a caterpillar C where we ignore the
root. Consider an unrooted caterpillar with n ≥ 2 vertices. Let P :=
v1v2 . . . vk be a longest path in C. There may be several such paths, but
this ambiguity plays no role in the following. So k ≥ 2. For an ordered pair
(i, j) of adjacent vertices i and j in P , let C i→j denote the rooted connected
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component of C \ {i} that contains j, and has j as root. Note that C i→j is
a rooted caterpillar. Define

ρi→j
c := ρc(C

i→j).

To give some intuition, we think of ρi→j
c as a “weight” of the subtree

C i→j. So, for every edge ij in P we have the two subtrees Ci→j and Cj→i,
each with a weight (in this sense). It is natural, then, to look for some kind
of “gravity center” of C, which should divide the caterpillar into two parts
whose weights are almost equal. We now explore this idea more rigorously.
For each edge e = ij ∈ P , define

Δe := |ρi→j
c − ρj→i

c |.
We set

Δ∗ := min
e∈P

Δe,

and define
E∗ = {e ∈ P : Δe = Δ∗}.

We shall prove the following result.

Theorem 7.1. Let C be an unrooted caterpillar with more than one vertex.
Then E∗ contains either a single edge ij, or two edges incident to a vertex i.

Based on this, we define the gravity center of C to be {i, j} (resp. {i})
in the two cases described in the theorem. To prove Theorem 7.1 we need
two results, which we combine in Proposition 7.3. The first is the extension
property stated in Theorem 6.1. The second is given in Proposition 7.2.

Proposition 7.2. Let (T, r) be a rooted tree, and let (T̃ , r) be the rooted tree
obtained by adding an edge at the root r, i.e., adding a vertex u and an edge
ru, and taking r as the root of T̃ . Then ρc(T̃ ) > ρc(T ).

Proof. Given a vertex v ∈ V (T ), let dv and σv denote its distance and its
weight in T respectively. Given a vertex v ∈ V (T̃ ), let d̃v and σ̃v denote its
distance and its weight in T̃ , respectively. Let

D =
∑

v∈V (T )

d2v, D̃ =
∑

v∈V (T̃ )

d̃2v,

S =
∑

v∈V (T )

σ2
v , S̃ =

∑
v∈V (T̃ )

σ̃2
v .
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Here T̃ is obtained from T by adding a vertex u and joining it to r. We
take the root of T̃ to be r. Then, d̃u = 2, since there are two vertices, namely
r and u, in the path joining u to r in T̃ . Also, u is the unique vertex which
belongs to T̃ but not to T . Moreover, the distance from the root r of a vertex
v �= u is the same in T and in T̃ . Then,

D̃ =
∑

v∈V (T̃ )

d̃2v = d̃2u +
∑

v∈V (T̃ ),v �=u

d̃2v = d̃2u +
∑

v∈V (T )

d̃2v = d̃2u +
∑

v∈V (T )

d2v = d̃2u +D.

Regarding S̃, the weight of r in T̃ is different from the weight of r in T , since
in the former case we have to take into account that we added a new vertex,
u:

σ̃r =
∑

v∈V (T̃ )

d̃v = d̃u +
∑

v∈V (T̃ ),v �=u

d̃v = 2 +
∑

v∈V (T )

dv = 2 + σr.

The weight in T̃ of each vertex v �= r, u is the same as its weight in T , because
it is not affected by the fact that we have added u; this is because u is not
below v in T̃ , and therefore it is not counted when we compute σ̃v. Notice
also that σ̃u = d̃u = 2, since the only vertex in T̃ which is below u is u itself.
Therefore, we obtain

S̃ =
∑

v∈V (T̃ )

σ̃2
v = σ̃2

u + σ̃2
r +

∑
v∈V (T̃ ),v �=u,r

σ̃2
v = σ̃2

u + σ̃2
r +

∑
v∈V (T ),v �=r

σ2
v

= σ̃2
u + σ̃2

r + (S − σ2
r) = 22 + (2 + σr)

2 + S − σ2
r .

This discussion gives

ρc(T̃ ) =
S̃

D̃
=

(S − σ2
r + σ̃2

r) + σ̃2
u

D + d̃2u
=

S − σ2
r + (σr + 2)2 + 4

D + 4
=

S + 4σr + 8

D + 4
.

We know from [2] that ρc(T ) ≤
∑

v∈V (T ) dv = σr. Therefore

4σr + 8

4
= σr + 2 > ρc(T ) =

S

D
.

Applying Lemma 6.2,

ρc(T̃ ) =
S + 4σr + 8

D + 4
> min

{
S

D
,
4σr + 8

4

}
=

S

D
= ρc(T ).
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Given two rooted caterpillars C1 = C(n1, . . . , nk) and C2 = C(m1, . . . ,mp),
we say that C1 extends C2 provided that

k > p,

nk−i = mp−i (0 ≤ i ≤ p− 1).

Proposition 7.3. Let C1 and C2 be rooted caterpillars such that C1 extends
C2. Then

ρc(C1) > ρc(C2).

Proof. Let C be the set of rooted caterpillars. Define the maps

α : C → C
C(n1, n2, . . . , nk) �→ C(n1 + 1, n2, . . . , nk)

and

β : C → C
C(n1, n2, . . . , nk) �→ C(0, n1, n2, . . . , nk).

Given C ∈ C, Proposition 7.2 shows that

ρc(α(C)) > ρc(C),

while the extension property Theorem 6.1 shows that

ρc(β(C)) > ρc(C).

The proposition follows by observing that C1 can be obtained from C2 by
applying α and β to C2 for a finite number of times; in other words, there
exist p ≥ 1, γ1, . . . , γp ∈ {α, β}, such that

C1 = γ1 ◦ · · · ◦ γp(C2).

Proof of Theorem 7.1: Suppose, for the sake of contradiction, that
there exist two non-consecutive edges ij and xy in a longest path P in C
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both belonging to E∗. Suppose also that we are labeling vertices in P so that
j lies between i and x, and x lies between j and y. Let w be the vertex in
P adjacent to j other than i (possibly w = x). Using Proposition 7.3 we see
that

ρi→j
c > ρj→w

c > ρx→y
c

and

ρy→x
c > ρw→j

c > ρj→i
c .

But then

ρi→j
c − ρj→i

c > ρj→w
c − ρw→j

c > ρx→y
c − ρy→x

c . (24)

If ρj→w
c − ρw→j

c ≥ 0, then (24) implies that

Δjw = ρj→w
c − ρw→j

c < ρi→j
c − ρj→i

c = Δij,

which contradicts the minimality of Δij; if ρ
j→w
c −ρw→j

c < 0, then (24) implies
that

Δjw = ρw→j
c − ρj→w

c < ρy→x
c − ρx→y

c = Δxy,

which contradicts the minimality of Δxy.

We conclude the section presenting a short computational analysis of our
results on caterpillars.

Having two distinct notions for the center of an unrooted caterpillar C –
its characteristic set and its gravity center – we implemented two algorithms
to compute them. The first compares the Perron value ρ of the bottleneck
matrices associated to rooted subtrees of C; the second considers the pa-
rameter ρc instead. Given that in the second case we do not have to deal
with eigenvalues, we expect the algorithm computing the gravity center to
be faster.

We tested the two algorithms – written in MATLAB – on randomly gener-
ated unrooted caterpillars having different numbers of vertices, and we report
the results in Figure 2(a). It clearly emerges that the second algorithm is
the most computationally efficient.

Besides the computational time, it is interesting to find out how close the
characteristic set and the gravity center of an unrooted caterpillar are. Given
that both these sets can consist of either one or two vertices, to define their
distance δ we need to distinguish among 3 cases:
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Figure 2: (a) shows the CPU time to find the characteristic set (in red) and the
gravity center (in blue) of unrooted caterpillars. (b) shows the distance between
the two centers. For a given number n of vertices, the CPU time and the distance
are both obtained as an average of 1000 randomly generated unrooted caterpillars
with n vertices.

• If both the centers consist of one vertex, then δ equals the number of
edges in the path connecting them (δ = 0 if the centers coincide).

• If both the centers consist of two vertices, then δ = 0 if the centers
coincide. Otherwise, δ equals 1 plus the number of edges in the shortest
path connecting a vertex in the first center to a vertex in the second.

• If one of the centers consists of one vertex u and the other of two
vertices v, w, then δ equals 0.5 plus the number of edges in the shortest
path connecting u to v or w (δ = 0.5 if u = v or u = w).

In Figure 2(b) we see that the average distance of centers in randomly gener-
ated unrooted caterpillars is extremely small, and it does not seem to depend
on the number of vertices. Moreover, further experiments suggest that the
distance is never greater than 1, even for large caterpillars. This supports
the idea that the gravity center is a good approximation of the characteristic
set and, in turn, that ρc is a useful alternative to ρ.
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