Biochemical Characterization of Sfh-I, a Subclass B2 Metallo-β-Lactamase from *Serratia fonticola* UTAD54

Fátima Fonseca,1,2* Christopher J. Arthur,3 Elizabeth H. C. Bromley,3† Bart Samyn,4 Pablo Moerman,4 Maria José Saavedra,5 António Correia,1 and James Spencer2*

CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom; School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom; Laboratory of Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry, Physiology and Microbiology, Ghent University, Gent, Belgium; and CECAV, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

The subclass B2 metallo-β-lactamase (MBL) Sfh-I from *Serratia fonticola* UTAD54 was cloned and overexpressed in *Escherichia coli*. The recombinant protein binds one equivalent of zinc, as shown by mass spectrometry, and preferentially hydrolyzes carbapenem substrates. However, compared to other B2 MBLs, Sfh-I also shows limited hydrolytic activity against some additional substrates and is not inhibited by a second equivalent of zinc. These data confirm Sfh-I to be a subclass B2 metallo-β-lactamase with some distinctive properties.

Metallo-β-lactamases (MBLs) are zinc-dependent enzymes of growing clinical concern (23). They hydrolyze carbapenems, which are key antibiotics for resistant Gram-negative bacteria, and are insusceptible to serine β-lactamase inhibitors (7). Sequence information divides MBLs into three subclasses, B1, B2, and B3 (13). Subclass B2, the least studied, includes CphA (16, 20), ImiS (6, 24), and AsbM1 (25) from *Aeromonas* spp. and Sfh-I (18) from the occasional pathogen *S. fonticola* and *Sfh-I* (18) from the occasional pathogen *S. fonticola* and *Sfh-I* (18) from the occasional pathogen *S. fonticola* and *Sfh-I* (18) from the occasional pathogen *S. fonticola* and *Sfh-I* (18) from the occasional pathogen *S. fonticola*.

The complete *bla* Sfh-I gene (GenBank accession no. AF197943) (primers SfhFv4 [5′-GGATCCCATATGAAATATTTAATTATTTATTTTACGGCTG-3′] and SfhRv2 [5′-GTGCT CGAGTTACTTAGGCCTTCTCAAGC-3′]) and the fragment encoding the expected mature protein (nucleotides 55 to 759; primers SfhFv3 [5′-GGATCCCATATGTTGCTGAAAAA ACTTACGCTTACC-3′] and SfhRv2) were amplified by PCR; the products were ligated into vector pET-26b (Novagen), generating plasmids pSfh-Iv4 and pSfh-Iv3, respectively, and the constructs were sequenced. Protein was expressed in *Escherichia coli* BL21 Star (DE3) (Invitrogen) (37°C; M9Y medium, 50 µg/ml kanamycin, overnight induction [1 mM IPTG] at 25°C) and purified by anion exchange (Q-Sepharose; 50 mM Tris-HCl, pH 7.0) chromatography, yielding approximately 50 mg/liter Sfh-I at >95% purity as adjudged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Sfh-I molecular mass and metal content characteristics were investigated by electrospray mass spectrometry (QStar XL qTOF system, positive-ion mode, nanoliter/minute sample delivery, Nanomate source [0.3 lb/in², 1.4 kV]). The mass obtained for Sfh-Iv3 under denaturing conditions (26,136 Da; Fig. 1A) agreed with the value predicted (26,134 Da) from the sequence after removal of the N-terminal methionine. A similar result for Sfh-Iv4 confirmed removal of a 21-amino-acid signal peptide (18). Additional peaks may represent oxidized (26,136 + 16 = 26,152 Da [observed]) and subsequently hydrated (26,152 + 18 = 26,170 Da [observed]) adducts. In the native spectrum (Fig. 1B), peaks at 26,201 Da (26,136 + 65 Da), 26,218 Da (26,152 + 66 Da), and 26,239 Da (26,170 + 69 Da) indicate additions of one equivalent of zinc (65 Da) to species found under denaturing conditions. Thus, as isolated, the Sfh-I was primarily mononuclear, as observed for CphA and ImiS (6, 16) and in the Sfh-I crystal structures (Protein Data Bank [PDB] accession no. 3Q6V and 3SD9) (11), and typical of a B2 MBL.

β-Lactam hydrolysis (50 mM HEPES, pH 7.0 [25°C]) was investigated as described previously (19) (Table 1). Experiments were performed in triplicate, recording data points every...
3 to 4 s for 20 to 30 min and adjusting concentrations to ensure measurement of the linear phase of the reaction. Sfh-I efficiently hydrolyzes carbapenems (imipenem and meropenem \(k_{\text{cat}}/K_m > 10^5 \text{ M}^{-1} \text{ s}^{-1} \)) but resembles other B2 MBLs in its low affinity (\(K_m > 300 \mu\text{M} \)) and catalytic efficacy (\(k_{\text{cat}}/K_m \leq 10^3 \text{ M}^{-1} \text{ s}^{-1} \)) for many penicillins and cephalosporins (9, 10, 20, 22, 24, 25). This is consistent with previous data showing Sfh-I expression in E. coli substantially elevated carbapenem MICs but had little effect on those for other \(\beta \)-lactams (18). Sfh-I hydrolyzed benzylpenicillin, cefotaxime, cephalosporins, and sulbactam, but kinetic parameters for these substrates could not be derived due to low affinities. Unexpectedly, Sfh-I (0.01 \mu M) hydrolyzed cefepime (against which 0.5 \mu M CphA shows no detectable activity [9]) with relatively high efficiency. While differences between laboratories and experimental conditions make comparison with data from previously characterized B2 MBLs difficult, we note that the low affinity of Sfh-I for penicillins is consistent with results seen with other enzymes (possibly excepting AsbM1) and that higher \(k_{\text{cat}} \) but weaker \(K_m \) values for hydrolysis of meropenem, compared to imipenem, may be a general property of subclass B2 MBLs.

CphA is inactivated by cefoxitin, moxalactam, and other cephalosporins with good 3' leaving groups (26). Cephalosporin degradation products also inhibit the Bacillus cereus B1 MBL BcII (1). Whereas Sfh-I hydrolyzes cefoxitin, moxalactam, and cephalothin with low efficiency (Table 1), at higher concentrations each inhibited imipenem and nitrocefin hydrolysis. Interaction of Sfh-I with these compounds and their hydrolysis products was investigated. Although the mode of inhibition by the intact compounds was unclear, nitrocefin hydrolysis assays showed that preincubation with cephalothin or its hydrolysis product (purified by centrifugal filtration after

![Mass spectra of recombinant Sfh-I](http://aac.asm.org/article/55/11/5389/12)

FIG. 1. Mass spectra of recombinant Sfh-I. (A) Spectrum acquired under denaturing conditions. (B) Spectrum acquired under non-denaturing (native) conditions.

TABLE 1. Kinetic parameters of purified Sfh-I \(\beta \)-lactamase and comparison with other B2 metallo-\(\beta \)-lactamases

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{\text{cat}}) (s(^{-1}))</th>
<th>(K_m) (M)</th>
<th>(k_{\text{cat}}/K_m) (M(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>9.5 ± 1.1</td>
<td>25.00(^f)</td>
<td>676 ± 187</td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>9.15 ± 1.58</td>
<td>0.03</td>
<td>1,280 ± 363</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>ND</td>
<td>10(^i)</td>
<td>300(^i)</td>
</tr>
<tr>
<td>Nitrocefin</td>
<td>0.06 ± 0.003</td>
<td>0.0028</td>
<td>106 ± 134</td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>8.22 ± 10(^{-3}) ± 1.46 (\times) 10(^{-3})</td>
<td><0.006</td>
<td>335 ± 124.0</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>ND(^j)</td>
<td>0.13</td>
<td>76 ± 14</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>ND(^k)</td>
<td><0.0002(^e)</td>
<td>>500</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>0.032 ± 0.00094</td>
<td>0.02(^i)</td>
<td>100 ± 16</td>
</tr>
<tr>
<td>Cefepime</td>
<td>0.64 ± 0.073</td>
<td>0.02</td>
<td>324 ± 100</td>
</tr>
<tr>
<td>Moxalactam</td>
<td>0.017 ± 0.0012</td>
<td><0.006</td>
<td>128 ± 9</td>
</tr>
<tr>
<td>Sulbactam</td>
<td>ND(^l)</td>
<td>0.12(^i)</td>
<td>128 ± 9</td>
</tr>
<tr>
<td>Imipenem</td>
<td>51 ± 2.8</td>
<td>1,200</td>
<td>792 ± 11.2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>109 ± 9.5</td>
<td>3,100</td>
<td>215 ± 47.0</td>
</tr>
</tbody>
</table>

\(^{a}\) Kinetic data displayed for CphA, AsbM1, and ImiS as reported by Vanhove et al. (22), Yang and Bush (25) and Walsh et al. (24), respectively, except where otherwise indicated. ND, values could not be determined; NH, no hydrolysis detected; NR, not reported.

\(^{b}\) As reported by Bebrone et al. (2).

\(^{c}\) As reported by Felici et al. (10).

\(^{d}\) As reported by Segatore et al. (20).

\(^{e}\) As reported by Crawford et al. (2).

\(^{f}\) As reported by Zervosen et al. (26).

\(^{g}\) As reported by Sharma et al. (21).

\(^{h}\) As reported by Crawford et al. (6).

\(^{i}\) Value could not be determined due to inhibition at higher concentrations.

\(^{j}\) \(K_m \) value determined from inhibition of nitrocefin hydrolysis.
hydrolysis using IMP-1 (β-lactamase) led to time-dependent inactivation. Loss of Sfh-I activity correlated with cephalothin hydrolysis, indicating that the hydrolysis product likely represents the inhibitory species. Incubating Sfh-I (3.6 μM; 18 h; 25°C; 50 mM HEPES, pH 7.0) with various hydrolysis products (1 mM) reduced hydrolysis of 200 μM imipenem by 13% (cefoxitin), 36% (cephalothin), and 94% (moxalactam). The level of activity of cephalothin-treated samples remained at 54% of the control level, even after overnight dialysis, suggesting inactivation by enzyme modification. Unfortunately, mass spectrometry failed to identify the inhibitory species; while all expected Sfh-I-derived peptides were detected, modified fragments were not, suggesting a labile inhibitory complex. Previous workers suggested that the moxalactam hydrolysis product covalently binds the CphA Cys-221 thiol (26). Association of some CphA mutants (2), and the ImiS M146I mutation abolishes zinc inhibition of imipenemase activity (5), the combination of zinc-dependent nitrocefinase activity and zinc-independent imipenemase activity was not previously described.

Circular dichroism spectroscopy (Jasco-J810 spectropolarimeter) showed that the presence of a second zinc induces a small increase in Sfh-I secondary structure (Fig. 2C) with little effect on thermal stability for Sfh-I (8.5 μM) in the absence (solid line) and presence (dotted line) of 1 mM Zn²⁺. (D) Second derivatives of plots of ellipticity (220 nm) against temperature for thermal unfolding of Sfh-I (8.5 μM) in the absence (solid line) and presence (dotted line) of 1 mM Zn²⁺.

FIG. 2. Effect of additional zinc on Sfh-I. (A) Change in Sfh-I intrinsic (tryptophan) fluorescence as a function of zinc concentration (50 mM HEPES, pH 7.0; 25°C; excitation, 280 nm; emission, 341 nm). The solid line represents a fit of nitrocefin data to a two-site hyperbola model, with Y (fluorescence) = Y₁ × [Zn⁺]⁻¹/[Kₐ₁] + Y₂ × [Zn⁺]⁻¹/[Kₐ₂] + Y₃ × [Zn⁺]⁻¹/[Kₐ₃], where Y₁ and Y₂ represent the maximal fluorescence changes associated with binding of a second and third zinc equivalent, corresponding to Kₐ₁ (95 ± 14 μM) and Kₐ₃, (2,300 ± 870 μM), respectively. (B) Effect of added zinc on k_cat/kₐ₀ (ratio of k_cat at a given zinc concentration to k_cat₀ determined in the absence of excess zinc) for nitrocefin and imipenem hydrolysis. The solid line represents a fit of nitrocefin data to k_cat/kₐ₀ = (K + α × [Zn⁺])/(([Zn⁺] + K), where α represents the value of this ratio when the zinc concentration is at a saturating level (22). (C) Far-UV circular dichroism spectra (10 mM phosphate, pH 7.0; 25°C; 1-mm cuvette) of Sfh-I (8.5 μM) in the absence (solid line) and presence (dotted line) of 1 mM Zn²⁺. (D) Second derivatives of plots of ellipticity (220 nm) against temperature for thermal unfolding of Sfh-I (8.5 μM) in the absence (solid line) and presence (dotted line) of 1 mM Zn²⁺.
tional zinc, indicating that not all B2 enzymes are inactivated by excess zinc. Further investigations should establish the basis for these differences.

The work was supported by the Fundação para a Ciência e a Tecnologia (Portugal; Ph.D. grant BD/30490/2006 to F.F.). We thank D. N. Woolfson (School of Chemistry, University of Bristol) for access to the spectropolarimeter.

REFERENCES