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Abstract The purpose of this work is to evaluate the effect of deformation inertia on

tide dynamics, particularly within the context of the tide response equations proposed

independently by Boué et al (2016) and Ragazzo and Ruiz (2017). The singular limit

as the inertia tends to zero is analysed and equations for the small inertia regime are

proposed. The analysis of Love numbers shows that, independently of the rheology,

deformation inertia can be neglected if the tide forcing-frequency is much smaller

than the frequency of small oscillations of an ideal body made of a perfect (inviscid)

fluid with the same inertial and gravitational properties of the original body. Finally,

numerical integration of the full set of equations, which couples tide, spin and orbit, is

used to evaluate the effect of inertia on the overall motion. The results are consistent

with those obtained from the Love number analysis. The conclusion is that, from the

point of view of orbital evolution of celestial bodies, deformation inertia can be safely

neglected (exceptions may occur when a higher order harmonic of the tide-forcing

has a high amplitude).
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1 Introduction

The current theories of tides are based on the fundamental works of Newton, Laplace,

Kelvin and Darwin, different theories being distinguished by the way extended bod-

ies deform under a given tide-raising force. Following George Darwin, the usual ap-

proach to the deformation of a body is: to spatially decompose the tide-raising po-

tential into spherical harmonics (as was first done by Laplace), to time decompose

the tide-raising potential into Fourier modes, to apply the same decomposition to the

gravitational field of the deformed body, and then to postulate a linear relation be-

tween corresponding tide-raising and tide-response terms; the linear factor being the

“Love number” (or “real Love number”). Dissipation is introduced by means of a

time lag between the instantaneous force and the delayed tide response. In principle,

different time delays can be chosen for different space and time harmonic modes.

The complex representation of each Fourier mode eiωt , implies that the time delay

τ can be represented by a complex multiplicative factor e−iωτ . The multiplication of

the real Love number (amplitude factor) by the complex phase factor gives rise to

the so called “complex Love number”. The real Love number can be interpreted as a

measure of the rigidity of the body and the time delay as a measure of the viscosity

of the body. The question to be investigated in this paper is: Does “tide deformation

inertia”, or just “deformation inertia”, have any effect on the Love numbers? By “tide

deformation inertia” we mean the resistance of the extended body to any change in

its motion of tide deformation. Clearly, deformation inertia is significant only when

tide forcing undergoes a “sufficiently fast” time variation. So, the above question can

be rephrased as: How fast must be the variation of the tide forcing for deformation

inertia to have an effect on the Love numbers?

There are observational data showing that inertia plays an important role in the

Earth ocean tides. The Love numbers k of the Earth can be split into two parts, k =
kS + kO, the first due to the deformation of the solid part kS and the second due to the

deformation of the oceans kO (see for instance Ray et al (2001) or Petit and Luzum

(2010) section 6). For the most important Love numbers of the Earth the real part of

kS are positive while the real part of kO are negative. In Ray et al (2001), for instance,

for the principal lunar semi-diurnal tide M2, kS and kO are written as (see equations

(2) to (7) in Ray et al (2001))

kS = k2 kO =
α(1+ k′)

H
De−iψ = |kO|e−iψ (equation (9) in Ray et al (2001))

where: k2 = 0.302 is the solid Earth elastic Love number (Table 2 in Ray et al (2001)),
α(1+k′)

H
= 0.9590 m−1 (equation (9) in Ray et al (2001)), D = 3.295 cm is an ocean

amplitude and ψ = 128.69◦ (D and ψ are given in Equation (20) in Ray et al (2001)).

So, for the principal lunar semi-diurnal tide M2, kS = 0.302 (the imaginary part of

kS was estimated as 10−1 in Ray et al (2001) and has been neglected here) kO =
−0.020− i0.025 and k = 0.282− i0.025 (this is essentially the same value obtained

from Petit and Luzum (2010) and reported in Table 1 in Ragazzo and Ruiz (2017)).

The negativeness of the real part of a Love number shows that the tide kinetic energy

associated to this Love number, which is proportional to the deformation inertia, is

not only relevant but dominant over the tide potential energy (self-gravity and elastic),
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Fig. 1 Amplitude variation of the steady state solution to the equation µ ẍ+η ẋ+γx= cos(ωt) as a function

of ω/ω 0, where ω 0 =
√

γ/µ is the undamped frequency of oscillations and ξ = ηω0/(2γ) is the damping

ratio.

see1 Ragazzo and Ruiz (2017), Appendix 2. So, deformation inertia has an important

effect at least on the Earth ocean tides.

The study of the effect of inertia on the solid part of the Earth seems to be pi-

oneered by Love. In Love (1911) chapter 5, Love estimated the correction due to

inertia to the “purely statical problem of a homogeneous incompressible sphere held

strained by the forces derived from a tide generating potential” (Love (1911) para-

graph 67). If the shear modulus of the Earth is neglected (µ = 0 according to Love’s

notation), then from equations (13), (20), and (49) in chapter 5 of Love (1911) we

obtain that deformation inertia accounts for 0.5% of the Earth’s response (or 0.5% of

the Love number k2) to the principal lunar semi-diurnal tide forcing. So, in this case,

deformation inertia is negligible. Love states: if the tide-forcing frequency is much

smaller than the frequency of free oscillations of the deformable body then the effect

of inertia on tides can be neglected.

The question of the effect of deformation inertia on tides would be fully settled by

Love’s result if viscosity would not exist. As shown in the example in Fig. 1, energy

dissipation shifts the resonance frequency and sets its amplitude and width. In princi-

ple, it could be that some special rheology could decrease the resonance frequency of

the deformable body in such a way that deformation inertia would become relevant.

From a theoretical point of view, tide models parameterized by Love numbers

have a drawback: infinitely many complex parameters, the Love numbers, must be

chosen. One way to overcome this difficulty is to assume, as Kelvin, Love and oth-

ers, that the extended body has a very simple structure as, for instance, being a ho-

mogeneous fluid or solid. Since the Love numbers encapsulates the structure of the

extended body the simplifying assumption may lead to controversial results.

1 In order to understand this claim it is enough to analyze the one degree of freedom harmonic

oscillator µ ẍ + η ẋ + γx = cos(ωt), with solution x(t) = acos(ωt)− bsin(ωt), where a + ib plays

the role of the Love number. Multiplying both sides of the equation by x and time-averaging gives

limT→∞
1
T

∫ T
0 cos(ωt)x(t)dt = a

2
= limT→∞

1
T

∫ T
0 [−µ ẋ2(t)+ γx2(t)]dt that is the time-average balance of

kinetic and potential energy. This same reasoning applied to the linear equations of tide dynamics, equa-

tion (47) in Ragazzo and Ruiz (2017), shows that the time-average tidal balance of energy is proportional

to the real part of the Love number.
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There are several simplified tide models which are not explicitly parameterized

by Love numbers (see, for instance Mignard (1979), Efroimsky and Williams (2009),

Zlenko (2014), Celletti (1990), Antognini et al (2014), Bambusi and Haus (2015),

Ferraz-Mello (2013), Correia et al (2014), Boué et al (2016), Wisdom and Meyer (2016),

Ragazzo and Ruiz (2015), Ragazzo and Ruiz (2017)), two of them will be impor-

tant in this paper: the first presented in Boué et al (2016) after previous work in

Ferraz-Mello (2013) and Correia et al (2014), and the second presented in Ragazzo and Ruiz

(2017) after previous work in Ragazzo and Ruiz (2015).

Both works Boué et al (2016) and Ragazzo and Ruiz (2017) present three di-

mensional equations for the spin and orbital motion of linear viscoelastic bodies

interacting under gravity, the main differences being: 1) in Boué et al (2016) the

full multipole-expansion of a gravitational field can be taken into account, while

in Ragazzo and Ruiz (2017) the expansion is truncated to quadrupole order; 2) in

Boué et al (2016) a linear viscoelastic rheology is introduced by means of a corre-

spondence principle (see section 4.3 and appendix B of Efroimsky (2012)), while in

Ragazzo and Ruiz (2017) it is introduced by means of an “Association Principle”, to

be explained in the following sections; and 3) in Boué et al (2016) no inertia is asso-

ciated to tidal deformations, while the opposite is true in Ragazzo and Ruiz (2017).

As in the examples in Correia et al (2014) and Boué et al (2016)), in the present

paper, the multipole expansion of the gravitational field of a deformed body is trun-

cated to the quadrupole order and only the Maxwell and the Voigt rheologies are con-

sidered in the time domain simulations. Under these conditions the only difference

between the equations in Boué et al (2016) and those in Ragazzo and Ruiz (2017) is

the presence of an inertia parameter, µ ≥ 0, associated to tide deformations in the

later. Therefore, in this paper we follow the presentation of the equations of mo-

tion as in Ragazzo and Ruiz (2017) that allows for the recovering of the equations in

Boué et al (2016) simply by making µ = 0.

The paper is organized as follows. In Sec. 2 the mathematical model to be used

in the paper is presented and some of the parameters in the model are estimated. This

section is a summary of part of Ragazzo and Ruiz (2017). In Sec. 3 nondimensional

variables are introduced for the particular cases of the Kelvin-Voigt and Maxwell

rheologies. A small inertia parameter induces high-frequency oscillations on the de-

formable bodies and this slows down considerably the numerical simulations. For this

reason, in Sec. 3 and Appendix A we present an approximation to the equations of

motion that smooths out these oscillations by means of an averaging. This is the first

new result in the paper. In Sec. 4 we present the expressions for the Love numbers for

a quite broad class of rheologies and compare the usual “Correspondence Principle”

to the “Association Principle” derived in Ragazzo and Ruiz (2017) and used in this

paper, both lead to the same Love numbers. Sec. 5 contains the main contribution of

this paper, a quantitative upper bound for the difference between the Love numbers

in the case µ > 0 and µ = 0. This estimate is valid for the broad class of rheologies

of Sec. 4. Sec. 6 contains the time domain simulations where the systems with and

without deformation inertia are compared, only the Maxwell and the Kelvin-Voigt

rheologies are considered. The average secular torque with and without inertia are

computed and compared. Sec. 7 is a conclusion where the main results in the paper

are summarized. In this section, notwithstanding the negligible effect of deformation
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inertia in the orbital evolution of celestial bodies, we present a potential application of

tide models with deformation inertia to obtain information on the rheology of planets

at high frequencies.

2 Equations of motion

In this section we present the equations of motion, as derived in Ragazzo and Ruiz

(2015) and Ragazzo and Ruiz (2017). These equations are valid under the following

hypotheses:

(a) When the body is at rest (no rotational motion), its distribution of mass is spheri-

cally symmetric.

(b) When the body has a rotational motion, its distribution of mass is almost spheri-

cally symmetric in the sense that the level sets of the density function are approx-

imately ellipsoidal shells of small eccentricities.

(c) The body material has an incompressible behavior under small deformations.

(d) The body internal forces are such that the motion preserves the total angular mo-

mentum.

(e) The mechanical deformation response of the body is linear viscoelastic.

For systems of deformable bodies, we must include the hypothesis:

(f) The minimum distance between two bodies is sufficiently large such that the al-

most sphericity hypothesis (b) still holds.

Let κ be an inertial reference frame and consider a system of N deformable bod-

ies. The kinematics of each body, labeled by an index i, is characterized by: the posi-

tion xi of the center of mass with respect to κ ; an orientation Yi : Ki → κ , where Yi is

a rotation matrix and Ki is a Tisserand frame (defined below); and the traceless part of

the moment of inertia operator of the body with respect to the frame Ki, represented

by a 3×3 symmetric traceless matrix Bi. The choices of the Tisserand frame and the

traceless part of the moment of inertia require explanations.

One of the main issues in the dynamics of deformable bodies is the choice of a

“body-frame”, namely, the choice of a moving reference frame that is either unam-

biguously defined (the principal axis of inertia), or in which the body is as at rest as

possible (the Tisserand’s mean axis). A Tisserand’s frame K is an orthogonal moving

frame with the origin at the center of mass of the body and with an angular velocity

with respect to the inertial frame such that the angular momentum of the body with

respect to K is null (see Munk and MacDonald (1960)). For a rigid body, a moving

frame K is a Tisserand frame if, and only if, the body remains at rest with respect to

K. A Tisserand frame is characterized by its angular velocity in the following way.

Let l ∈ κ be the angular momentum vector of the body with respect to the inertial

frame and L = Y−1l ∈ K be its representation in a moving frame K. Let I : K → K

denote the instantaneous moment of inertia operator of the body. K is a Tisserand

frame if, and only if, L = IΩ , where Ω ∈ K is the angular velocity of the frame K

with respect to κ . The angular velocity operator ΩΩΩ : K → κ associated to the motion
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of K is given by

ΩΩΩ = Y−1Ẏ =





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



 ,

where Ẏ is the time derivative of Y. If ΩΩΩ(t) is known and Y(0) is chosen then Y(t)
is uniquely determined by the integration of Ẏ = YΩΩΩ .

Let I : K → K denote the moment of inertia of a body with respect to a Tisserand

frame (the following arguments are true with respect to any reference frame) and I◦ be

the trace of I over 3. If a deformable body is incompressible then I◦ does not change

under small deformations (as shown by Darwin, see Rochester and Smylie (1974)).

So, the time variation of the moment of inertia is determined by the time variation of

its traceless nondimensional part B defined by

I = I◦(I−B), (1)

where I is the identity matrix. The following well known fact is crucial to the model:

the gravitational moment of quadrupole of the body Q : K → K, is given by

Q = 3I◦B.

Let r denote the distance to the origin of K. Since the frame K is centered at the center

of mass of the body, the gravitational field of the body with respect to K is given by

the monopole part of order 1/r, plus the quadrupole pole part of order 1/r3, plus

terms of order 1/r4 that will be neglected. So, within the approximation considered

in this paper, the gravitational field of a body is determined by the mass and I◦, which

are constants, and by the time varying matrix B. The small distortion hypothesis (b)

and I = I◦(I−B), imply that

‖B‖≪ 1.

The differential equations for the position and the orientation of each body as a

function of B and Ḃ can be derived from the usual laws of mechanics. The deriva-

tion of the equations for the deformation variables B is more difficult and requires

hypotheses on the rheology of each body. The small distortion hypotheses (b) and (f)

suggest that the equations for B must be linear about the equilibrium B = 0 that must

exist when the system is at rest, due to hypothesis (a). We further suppose that B has

a linear viscoelastic behavior, hypothesis (e). These hypotheses lead to differential

equations for B by means of an “Association Principle” derived in Ragazzo and Ruiz

(2017) and explained in the following.

The viscoelastic response of a linear material (or its force-extension equations)

is analogous to the mechanical response of a one dimensional spring-dashpot system

(Bland, 1960). The two simplest mechanical systems that model the viscoelastic be-

havior of a material are the Maxwell element and the Voigt (or Kelvin-Voigt) element

shown in Fig. 2. From these two elements more complex models can be constructed

as those shown in Figs. 3 and 4 (see also Bland, 1960). In most of this paper we

only consider rheologies that are modeled by the Maxwell and the Kelvin-Voigt ele-

ments. Notice that a Maxwell element experience an unbounded deformation under a

constant force, which seems unreasonable for setting an analogy between B and the
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Fig. 2 The Maxwell (left) and the Kelvin-Voigt (right) elements.
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Fig. 3 The generalized Voigt model.
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Fig. 4 The generalized Maxwell model.

spring-dashpot deformation. This apparent difficulty is overcome by the fact that B

is additionally under the effect of self-gravity that tends to restore any offset from

the spherical shape. Due to the small deformation hypothesis, the self-gravitational

force can also be linearized about the spherical shape represented by B = 0. Besides

self-gravitation, there must be an inertia associated to time-variations of the defor-

mation of the body and therefore to the time-variations of B, this is what we called

“deformation inertia” in the introduction. Both effects, self-gravitation and deforma-

tion inertia, can be represented in the spring-dashpot system by an additional spring,

with elastic constant γ , in parallel to the rheological elements and by an additional

mass element µ that goes along with the deformation. This construction gives rise to

the oscillators shown in Figs. 5 and 6.

The equation of motion associated to the Kelvin oscillator is

µ ẍ =−η ẋ− γx+F(t) (2)
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g a h

m

F(t)

(a)

x g h

m

F(t)

(b)

x~~

Fig. 5 (a) The Kelvin oscillator formulated from the Kelvin-Voigt element in Fig. 2. The two springs in

the Kelvin oscillator can be reduced to a single one with elastic constant γ = γ̃ + α̃ , as shown in the figure

(b).

a

h

m

F(t)

x

x1

x2

g

Fig. 6 The Maxwell oscillator formulated from the Maxwell element in Fig. 2. Remark that the Kelvin

oscillator in Fig. 5 can be understood as this Maxwell oscillator in the limit as α → ∞.

where: γ is the elastic constant due to self-gravity plus the elastic constant of the

spring in the Kelvin-Voigt element, η is the viscosity of the dashpot, and F(t) is the

external force. The equations of motion associated to the Maxwell oscillator are

µ ẍ =−γx−λ +F(t), αx1 = λ , η ẋ2 = λ

where λ is the force acting upon the Maxwell element and α is the elastic constant of

the Maxwell element. Using the constraint x = x1 +x2 these equations can be written

as

µ ẍ =−γx−λ +F(t)

1

α
λ̇ =− 1

η
λ + ẋ.

(3)

A given viscoelastic rheology is always associated with a spring-dashpot oscil-

lator for a linear displacement x. The Association Principle in Ragazzo and Ruiz
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(2017) states that:

“The differential equation for B in the body reference frame K is equal to

the differential equation for the viscoelastic oscillator after replacing x by B”. (4)

The justification of this principle relies upon: a Lagrangian formulation of the

problem, the isotropy of space, and the incompressibility hypothesis (c) (see Ragazzo and Ruiz

(2017) section 3.2). The comparison between this association principle and the mostly

used correspondence principle is presented in Sec 4.

In this paper we are only interested in the system formed by a deformable body

plus a point mass. For this system, let κ be an inertial reference frame at the center of

mass of the system that is supposed at rest. Let x1 ∈ κ and x2 ∈ κ be the positions and

m1 and m2 be the masses of the deformable body and the point mass, respectively.

For the deformable body, let K be a Tisserand frame, Y : K → κ be the orientation

matrix, ΩΩΩ = Y−1Ẏ : K → K be the angular velocity operator, and B : K → K be the

nondimensional traceless part of the moment of inertia operator, as given in Eq. (1).

Let q = Y−1(x2 − x1) be the relative position of the point mass with respect to the

rotating reference frame K. For this system, the force F that acts upon B and that

replaces the forces F(t) in the Kelvin oscillator (2) and in the Maxwell oscillator (3)

is given by (see Ragazzo and Ruiz (2017) for details)

F(t) =−ΩΩΩ 2 +
1

3
Tr (ΩΩΩ 2)I+

3Gm2

|q|5
(

q⊗ q− |q|2
3

I

)

, (5)

where q⊗ q denotes the matrix with entries (q⊗ q)i j = qiq j. The equations for the

orbital motion and the spin of the extended body are

Ω̇ΩΩ = −(BΩ̇ΩΩ +Ω̇ΩΩB)− (ḂΩΩΩ +ΩΩΩḂ)+ [B,ΩΩΩ2]+
3Gm2

|q|5 [q⊗ q,B]

q̇ = −ΩΩΩq+ u (6)

u̇ = −ΩΩΩu+GM

{

− 1

|q|3 q− 15

2

I◦
m1

1

|q|7 (q ·Bq)q+ 3
I◦
m1

1

|q|5 Bq

}

,

where M = m1 +m2 and [B,ΩΩΩ ] = BΩΩΩ −ΩΩΩB denotes the commutator of matrices.

Finally, due to the association principle, in the case of the Kelvin-Voigt rheology the

equation for B is given by

µB̈ =−ηḂ− γB+F, (7)

and in the case of the Maxwell rheology the equation for B is given by

µB̈ =−γB−Λ +F

1

α
Λ̇ =− 1

η
Λ + Ḃ

(8)

where: F is given in Eq. (5), µ is a nondimensional parameter representing the iner-

tia of B, γ (dimension sec−2) and α (dimension sec−2) are stiffness coefficients, η
(dimension sec−1) is a damping coefficient, and Λ is a symmetric matrix (dimension

sec−2) that represents the stress acting upon the Maxwell element, see Ragazzo and Ruiz

(2017) for details. We recall that for µ = 0 and for the Maxwell rheology the above

equations coincide with those presented in Boué et al (2016), after a redefinition of

parameters (see Ragazzo and Ruiz (2017) section 8 footnote 8).



10 A. C. M. Correia et al.

2.1 The coefficient γ and an upper bound for the spin rate

The stiffness coefficient γ has an unusual dimension of sec−2, which can be explained

as follows (the same type of argument explains the unusual dimensions of the other

constants). If the extended body is isolated and has constant spin ΩΩΩ then Eqs. (7) and

(8) have a steady solution given by

γB =−ΩΩΩ 2 +
1

3
Tr (ΩΩΩ 2)I. (9)

If ∆ Ii j(spin) denotes the change of the inertia tensor due to the planet spin Ω , R is

the planet volumetric radius, and k◦ is the planet secular Love number, then

∆ Ii j(spin) =−I◦Bi j(spin) = k◦
R5

3G

{

ΩiΩ j −
1

3
|Ω |2δi j

}

, (10)

where G is the gravitational constant (see, for instance, Williams et al (2001) Eq.

(11)). Therefore the moment of inertia strain ∆ Ii j/I◦ = −Bi j is related to the mo-

ment of inertia stress σi j =
{

ΩiΩ j − 1
3
|Ω |2δi j

}
as γ∆ Ii j/I◦ = σi j. This explains the

unusual dimension of sec−2 of the stiffness coefficient γ . Eqs. (9) and (10) leads to

γ =
3I◦G

R5

1

k◦
. (11)

We remark that some geometric quantities of the bodies, as the geometric radius

R, will appear in this paper only because they are used in the definition of several

astronomical figures as, for instance, the Love numbers. We stress that all these geo-

metric quantities are meaningless within our theory. For a body of mass m and mean

moment of inertia I◦ = (Tr I)/3, it is possible to construct a fictitious “radius”, the

mean moment of inertia radius, or simply the inertial radius (sometimes called “ra-

dius of gyration” Chandrasekhar (1987)), defined by

R I =

√

5I◦
2m

. (12)

This is the radius of a homogeneous ball of mass m and moment of inertia tensor I◦I.
If the body is incompressible and the deformations are small then R I is constant in

time. Using the inertial radius an inertial density can be defined as

ρ I =
m

4
3
πR3

I

. (13)

As an example consider a mass m of homogeneous inviscid liquid under self-

gravity. At rest the liquid has a spherical shape and moment of inertia I◦ = 0.4mR2,

where R is the radius of equilibrium, which coincides with the inertial radius R I. For

a homogeneous fluid body in hydrostatic equilibrium it has been shown by Kelvin

that k◦ = k f = 3/2 (Munk and MacDonald (1960) p. 26), where k f is the fluid Love

number. From Eq. (11)

γ = γ f =
3I◦G

R5

1

k f

=
4

5

Gm

R3
(14)
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Table 1 Values of γ/γ I from Ragazzo and Ruiz (2015) Table 1. The ratio R I/R is the “inertial radius”/

”volumetric mean radius” of the body (0.4(R I/R)2 is the usual quantity I◦/mR2). The inertial density of

the Earth is ρ IE = 7332 kg/m3 (the “geometric” mean density of the Earth is 5514 kg/m3).

Body Sun Earth Mars Jupiter Saturn Uranus Neptune

γ/γ I 0.8528 .9909 .9331 .9093 .8556 1.024 1.225

R I/R 0.418 0.909 0.957 0.797 0.725 0.750 0.799

ρ I/ρ IE 2.623 1.000 0.613 0.357 0.246 0.411 0.438

The square of the angular frequency of free oscillations of the spherical mass of fluid,

denoted as ω2
f , is 4

5
Gm/R3 (Lamb (1932) paragraph 262 Eq. (10)); so γ f =ω2

f . Within

our theory the free motion of a self-gravitating mass of perfect fluid is given by Eq.

(7) with η = 0 and F= 0, µB̈=−γB, which implies the frequency of free oscillations

ω =
√

γ/µ . So, for a homogeneous body made of a perfect fluid µ = 1.

For any given body with inertial constants m and I◦, one may consider a homoge-

neous mass of fluid of radius R = R I to define the values

γ I = ω2
I =

4

5

Gm

R3
I

=
2I◦G

R5
I

=
16

15
πGρ I = G

√

27

55

m5

I◦3
and µ I = 1, (15)

that can be taken as reference values for γ and µ , respectively.

In Ragazzo and Ruiz (2015) the values of γ for the Sun and several planets were

estimated using the spin rate and the dynamic form factor. The resulting values of γ
divided by γ I are shown in Table 12. This table shows that the approximation γ ≈ γ I

is good for several celestial bodies, which can be explained by the fact that for large

bodies self-gravity is dominant over rheological stress. If the approximation γ ≈ γ I is

assumed and the spin rate of the body is constant and equal to Ω , then Eq. (9) implies




B11 0 0

0 B22 0

0 0 B33



 =
Ω 2

γ I





1/3 0 0

0 1/3 0

0 0 −2/3



 ,

where the direction of rotation was taken as e3. The small distortion hypothesis (b)

implies that ‖B‖≪ 1, so a necessary condition for the validity of our theory is

Ω ≪ ω I =

√

4

5

Gm

R3
I

where R I =

√

5I◦
2m

. (16)

3 Nondimensional parameters and the small inertia limit

In this section we study the tide response equations (7) and (8) when µ is small,

where F(t) is supposed to be time oscillating with a typical angular frequency ω . The

2 The value of γ/γ I for the Sun given in Table 1 does not coincide with that given

in Ragazzo and Ruiz (2015). The value I◦/mR2 = 0.059 used in Ragazzo and Ruiz (2015)

was taken from Yoder (1995) p. 26. The value I◦/mR2 = 0.070 used here is taken from

https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html. Using I◦/mR2 = 0.070 the new value of γ for

the Sun is γ = 3.668×10−6s.
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goal is to compare the tide response when µ = 0 with that for µ > 0. Inertia, as small

as it can be, is clearly important and dominant for “high frequency” forcing. So, the

first question to be answered in this section is: what does it mean “high frequency”

tide forcing?

In the previous section we defined ω I as the natural frequency of oscillations of

a mass m of homogeneous inviscid liquid under self-gravity. These oscillations arise

from the exchange of gravitational energy and kinetic energy of deformation and, so,

they are entirely due to the inertial properties of the body. The frequency ω I is also the

frequency of resonance of the ideal body: if the forcing frequency ω is below ω I, then

the motion is dominated by the self-gravitational force; if ω > ω I, then the motion

is dominated by the inertial force; and if ω = ω I the balance of gravitational and

inertial effects leads to unbounded oscillations. The scenario for a nonhomogeneous

body is the same, in this case the natural frequency of oscillations is ω 0 =
√

γ/µ.

These considerations lead to the following definition:

A tide forcing frequency ω is of “high-frequency” if ω > ω 0 =

√
γ

µ
(17)

We expect that ω 0 be of the order of magnitude of ω I given in Eq. (15).

If the angular velocity of the tide-raising body in the inertial frame is much

smaller than the spin angular velocity Ω of the deformable body, then either ω ≈ jΩ
(diurnal modes) or ω ≈ 2 jΩ (semi-diurnal modes), where j > 0 is an integer. So, due

to the spin rate limit in Eq. (16), the fundamental frequency ( j = 1) of the tide forcing

must always be of low-frequency in order to the theory in this paper to be applicable.

Notice that forcing frequencies ω = jΩ much larger than ω I, for j ≫ 1, are allowed

within the theory as far as they do not induce large amplitude oscillations on B.

In order to evaluate the smallness of the deformation inertia it is convenient to

write Eqs (7) and (8) in nondimensional form. The division of Eq. (7) by γ gives

τ2
0 B̈ =−τ3Ḃ−B+

F

γ
, (18)

where

τ0 =

√
µ

γ
=

1

ω 0

and τ3 =
η

γ
(19)

are characteristic times. As mentioned above, if the deformable body is made of an

inviscid material, η = 0 in Fig. 5, then the equation for the free oscillations of B

becomes µB̈+ γB = 0, that implies the natural period of free oscillations 2πτ0 =
2π/ω 0. The characteristic time τ3 = η/γ is the relaxation time of the homogeneous

equation ηḂ =−γB obtained when µ = 0.

For the Maxwell rheology, the characteristic times are again obtained dividing

Eq. (8) by γ:

τ2
0 B̈ =−B− Λ

γ
+

F

γ

τ1
Λ̇

γ
=−Λ

γ
+ τ3Ḃ

(20)
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where τ0 and τ3 are defined as in Eq. (19) (in this case τ3 is the relaxation time when

µ = 0 and α = ∞) and

τ1 =
η

α
(21)

is the relaxation time for the Maxwell element. In the small-µ regime an important

characteristic time is that of the homogeneous equation with µ = 0, that is

τ2 = τ1 + τ3 = η

(
1

α
+

1

γ

)

. (22)

In the next two subsections we consider the small inertia limit for the Kelvin-

Voigt and the Maxwell rheologies separately. Since the equation for each element of

the matrix B is uncoupled from the others, it is possible to study the small inertia limit

for each element of the matrix separately. So, it is enough to consider the equation

for the Kelvin oscillator (2) in the case of the Kelvin-Voigt rheology and the equation

for the Maxwell oscillator (3) in the case of the Maxwell rheology.

3.1 Kelvin-Voigt rheology

In order to study the singular limit as µ → 0 of the Kelvin oscillator (2), it is conve-

nient to define a small nondimensional inertia parameter as

ε =
µγ

η2
=

τ2
0

τ2
3

. (23)

Then Eq. (2) for the Kelvin oscillator becomes τ2
3 ε ẍ+ τ3ẋ+ x = f (t)/γ or

ετ3ẋ =−x+w

τ3ẇ =−x+
f (t)

γ
.

(24)

The small inertia regime can be studied using standard singular perturbation

methods Kaper (1999). For ε > 0 sufficiently small, it is possible to show the ex-

istence of an invariant manifold given by the graph of a function (w, t) → x = w+
εh(w, t)+O(ε2), which is ε-close to the constraint x = w valid for ε = 0. If the ex-

pression x = w+ εh(w, t) +O(ε2) is substituted into the first equation of (24) and

the second equation is used to eliminate ẇ then we obtain h(w, t) = w− f (t)/γ and

x = w+ ε(w− f (t)/γ)+O(ε2). Substituting this expression for x into the first equa-

tion in (24) we obtain the differential equation
τ3

1+ε ẇ = −w+ f (t)
γ , which is similar

to the equation obtained for ε = 0. So, for ε small, the solution B to the second or-

der equations (7) are approximately given by the solution to the following first order

equation:

τ3Ẇ = (1+ ε)

(

−W+
F(t)

γ

)

, with B = W+ ε

(

W− F(t)

γ

)

. (25)
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3.2 Maxwell rheology

The analysis of the singular limit µ → 0 of the Maxwell oscillator is different from

that of the Kelvin oscillator. While the characteristic equation associated to the Kelvin

oscillator in Eq. (2) has a real eigenvalue proportional to −1/µ , which implies fast

attraction to the invariant manifold (w, t) → x = w+ εh(w, t)+O(ε2) of the previ-

ous paragraph, the characteristic equation associated to the Maxwell oscillator in Eq.

(3) has a pair of complex eigenvalues proportional to ±i/
√

µ . Therefore, as µ → 0

most solutions to Eq. (3) have a fast oscillatory component and the analysis of the

singular limit, to be made in Appendix A, is by the method of averaging Hale (1980),

Sanders et al (2007). The result of the averaging procedure is presented in the follow-

ing.

Let ε be the nondimensional small inertia parameter defined as3

ε =
τ2

0

τ2
2

=
τ2

0

(τ1 + τ3)2
=

µα2γ

η2(α + γ)2
. (26)

After three steps of averaging, see Appendix A, we obtain that for ε small, and after

a transient where the fast oscillations of B decay as exp[−tτ3/(2τ1τ2)], the solutions

B to Eqs. (8) are approximately given by:

τ2Ẇ =−W+H(t)+ ε
τ3

τ2

{−W+H(t)− τ2Ḣ(t)},

B = W+ ε
τ1

τ2

{−W+H(t)− τ2Ḣ(t)},

H(t) =
F(t)

γ
+ τ1

Ḟ(t)

γ
.

(27)

We remark that the first and second derivatives of F must be of the order of magnitude

of F in order to guarantee the accuracy of the approximation.

4 Love numbers, the Correspondence Principle, and the Association Principle.

In this section we study the tides on a deformable body induced by a single harmonic

force due to a moving point mass. All the results in this section hold for quite general

rheologies, which include the Maxwell and the Kelvin-Voigt rheologies previously

discussed. So, we start with a brief presentation of the concept of complex compliance

in linear viscoelasticity.

The one dimensional force-extension relation for a spring-dashpot system, which

models the rheology of a linear viscoelastic material, is a linear differential equa-

tion relating force f and extension x. For instance, the force-extension relation of

the Maxwell rheology represented in Fig. 2 is ẋ(t) = α−1 ḟ (t)+η−1 f (t), where α
represents the spring rigidity and η the damping coefficient of the dashpot. Imposing

3 Notice that the ε defined in Eq. (23) can also be written as ε = τ2
0/τ2

2 , since for the Kelvin-Voigt

rheology τ1 = 0 and τ2 = τ1 + τ3 = τ3. So, there is no ambiguity in using the same letter in both Eqs. (23)

and (26).
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a harmonic force f (t) = f̂ (ω)eiωt and a harmonic deformation x(t) = x̂(ω)eiωt the

force-extension relation implies the equation

x̂(ω) = J(ω) f̂ (ω), (28)

where the function J(ω) is called the complex compliance (1/J(ω) is the com-

plex rigidity). For instance, for the Maxwell rheology the complex compliance is

J(ω) = α−1 +(iωη)−1. For the generalized Voigt model showed in Fig. 3 the com-

plex compliance is (Bland (1960) chapter 1 eq. (27))

J(ω) =
1

α
+

1

iωη
+

n

∑
j=1

1

α j + iωη j

, (29)

and for the generalized Maxwell model showed in Fig. 4 the complex rigidity is

(Bland (1960) chapter 1 eq. (29))

1

J(ω)
= α + iωη +

n

∑
j=1

( 1

α j

+
1

iωη j

)−1

. (30)

As discussed in Sect. 2, the effect of self-gravitation can be added to the spring-

dashpot system by placing a spring with elastic constant γ in parallel to the part of the

system that represents the rheology. Suppose that a harmonic forcing f = f̂ (ω)eiωt

acts upon both the spring γ and the subsystem that represents the rheology generating

a harmonic displacement x = x̂(ω)eiωt . If f̂γ (ω)eiωt is the part of f that acts upon the

spring, then γ x̂(ω) = f̂γ (ω). If f̂r(ω)eiωt is the part of f that acts upon the subsystem

that represents the rheology, then J−1(ω)x̂(ω) = f̂r(ω), where J−1(ω) is the complex

rigidity of the system that represents the rheology. Therefore, x̂(ω) = f̂ (ω)/[γ +
J−1(ω)] and the complex compliance of the whole system becomes

1

γ + J−1(ω)
.

As argued in Section 2, the effect of deformation inertia can be added to the

spring-dashpot system of the previous paragraph by placing a mass element µ in

series to the system. The construction gives rise to an oscillator as shown in Fig. 7.

The dynamics of the deformation matrix B can be obtained from the dynamics of the

oscillator by means of the association principle in (4): “The differential equation for

B is the differential equation for the spring-dashpot oscillator after replacing x by B”.

If the deformable body spins steadily, Ω is constant, then the tidal force that drives

the motion of B is given by the last term in Eq. (5), namely

F(t) =
3Gm2

|q(t)|5
(

q(t)⊗ q(t)− |q(t)|2
3

I

)

.

Each element of the matrix F can be decomposed into Fourier modes of the form

f̂ eiωt . Let b̂eiωt be the component of the matrix B that corresponds to f̂ eiωt by means

of the tide response equations. Due to the association principle the relation between
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g

m

F(t)

Rheology

Fig. 7 Oscillator formulated from a generic rheological model represented by a rectangle in the figure.

The spring with elastic constant γ represents self-gravity and the mass µ represents deformation inertia.

b̂ and f̂ is the same as that between x̂ and f̂ determined by the oscillator in Fig 7,

namely

b̂ =
1

γ + J−1(ω)− µω2
f̂ .

As in Eq. (11), the complex Love number associated to the frequency ω is given by

the following nondimensionalization of the ratio f̂ /b̂ (see Ragazzo and Ruiz, 2017,

equation (46))

k(ω) =
3I◦G

R5

b̂

f̂
=

3I◦G

R5

1

γ + J−1(ω)− µω2
, (31)

where R is the geometric (volumetric) radius of the body. If the secular Love number

is defined as the value of k(ω) at ω = 0,

k◦ =
3I◦G

R5

1

γ + J−1(0)
, (32)

then
k(ω)

k◦
= ζ (ω)

1

1− τ2
0 ω2ζ (ω)

, (33)

where

τ2
0 =

1

ω2
0

=
µ

γ + J−1(0)
and ζ (ω) =

γ + J−1(0)

γ + J−1(ω)
. (34)

Notice that for the Maxwell and the Kelvin-Voigt rheologies τ0 is the characteristic

time defined in Eq. (19).

According to Efroimsky (2012), section 4.3 and Appendix B, the Correspondence

Principle of linear-viscoelasticity was pioneered by G. Darwin and, within the context

of Love numbers, can be explained as follows (see Efroimsky, 2012, for details). The

one dimensional stress-strain constitutive relation of a linear viscoelastic material is

a linear differential equation relating the stress σ and the strain ε . For instance, the
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constitutive relation for the Maxwell rheology is ε̇(t) = α−1σ̇(t)+η−1σ(t), where

α is a modulus of elasticity and η a coefficient of viscosity. Imposing a harmonic

stress σ(t)= σ̂(ω)eiωt and a harmonic strain ε(t) = ε̂(ω)eiωt the constitutive relation

implies a complex relation of the form

2ε̂i j(ω) = J̃(ω)σ̂i j(ω) (35)

where the function J̃(ω) is a complex compliance (1/J̃(ω) is a complex rigidity) and

εi j and σi j are the deviatoric components of the strain and stress tensors, respectively.

The static Love number of degree 2 of a homogeneous, incompressible, and elas-

tic spherical body of radius R, density ρ , surface gravity g, and elastic rigidity µ̃ , is

given by

ks
2 =

3

2

1

1+ 19
2

µ̃
ρga

. (36)

Within the context of Love numbers, the Correspondence Principle of linear-viscoelasticity

amounts to change the static rigidity µ̃ in Eq. (36) by the complex rigidity J̃−1(ω),
so that the “dynamic” complex Love number k2(ω) becomes

k2(ω) =
3

2

1

1+ 19
2

J̃−1(ω)
ρgR

. (37)

In order to compare Eqs. (31) and (37) it is necessary to make µ = 0 in Eq. (31),

since deformation inertia is neglected in Eq. (37). Moreover, it is necessary to suppose

that γ in Eq. (31) is that of a homogeneous mass m of inviscid liquid, see Eq. (14),

γ = γ f =
3I◦G

R5

1

k f

=
16π

15
Gρ ,

where k f = 3/2 is the fluid Love number. The substitutions γ = γ f and µ = 0 into Eq.

(31) give

k(ω) =
3

2

1

1+ J−1(ω) 15
16πGρ

. (38)

Eqs. (37) and (38) give the same Love number after the identification

J(ω) =
15

152π

m

R
J̃(ω). (39)

Notice that J̃−1 has the same dimension kg/(ms2) as the shear stress, while J−1 has

the same dimension 1/s2 as the moment of inertia stress (see text between equations

(10) and (11) for an explanation). Eq. (39) allows for the comparison of the rigidity

and damping coefficients used in the association principle formalism and the corre-

spondence principle formalism.

The main difference of our association principle and the correspondence princi-

ple is that the first is formulated in the time domain while the second is formulated in

the frequency domain. In the case of the association principle, the scalar Love num-

bers are easily obtained and are the same as those obtained from the correspondence

principle. In the case of the correspondence principle, except for simple rheologies,
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it is not obvious how to obtain from the scalar Love numbers the three-dimensional

time-domain equations for the coupled spin-orbit motion of many bodies. As far as

we know, the only papers to fully accomplish this task, exclusively for the Maxwell

and the Kelvin-Voigt rheologies, are Correia et al (2014) and Boué et al (2016), for

the two- and three-dimensional cases, respectively.

5 Love numbers and the effect of inertia

The main goal of this paper is to compare the tide response when µ = 0 with that

when µ > 0. Eq. (33) implies that k(ω ,µ = 0)/k◦ = ζ (ω), therefore, this comparison

amounts to evaluate the relative difference

k/k◦− ζ

ζ
=

τ2
0 ω2ζ

1− τ2
0 ω2ζ

. (40)

The following proposition is crucial.

Proposition 1 For any rheology associated to a generalized Voigt model, as given

in Eq. (29), or to a generalized Maxwell model, as given in Eq. (30), the following

inequality holds:

|ζ (ω)| ≤ 1, for all ω ∈ R.

Proof: Notice that for the generalized Voigt model J−1(0) = 0 and for the general-

ized Maxwell model J−1(0) = α ≥ 0, so, in both cases J−1(0)+ γ > 0. If we write

J−1(ω) = J−1(0)+ a(ω)+ ib(ω), where a and b are real valued, then from Eq. (34)

|ζ |2 = (J−1(0)+ γ)2

(γ + J−1(0))2 + a2(ω)+ b2(ω)+ 2(γ + J−1(0))a(ω)
.

So, |ζ | ≤ 1 if a(ω)≥ 0 for all ω . In the case of the generalized Voigt model J−1(0) =
0 and, from Eq. (29), we get

1

J(ω)
= a(ω)+ ib(ω) =

ℜ[J(ω)]− iℑ[J(ω)]

{ℜ[J(ω)]}2 + {ℑ[J(ω)]}2
,

where ℜ[J] and ℑ[J] are the real and the imaginary parts of J, respectively. This

implies that a(ω)≥ 0 if, and only if, ℜ[J(ω)]≥ 0. This last inequality follows from

the positivity of the α ′s in Eq. (29). In the case of the generalized Maxwell model,

Eq. (30) implies

a(ω)+ ib(ω) = iωη +
n

∑
j=1

( 1

α j

+
1

iωη j

)−1

= iωη +
n

∑
j=1

α jη
2
j ω2 + iα2

j η jω

α2
j +ω2η2

j

and again the positivity of the α ′s imply a(ω)≥ 0. The proposition is proved.

Proposition 1 implies that the difference in Eq. (40) is small if τ2
0 ω2 is small.

Using that τ0 = 1/ω 0 we obtain

τ2
0 ω2 =

ω2

ω2
0

< 0.1p =⇒
∣
∣
∣
∣

k/k◦− ζ

ζ

∣
∣
∣
∣
< 0.11p, for any p ∈ [0,1]. (41)
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So,

Deformation inertia can be neglected if ω ≪ ω 0. (42)

The same estimate in Eq. (42) holds for rheologies with a continuous distribution

of characteristic times, as for instance the Andrade rheology, for the proof being

sufficient to take the limit as n → ∞ in either Eq. (29) or (30) in the appropriate way

(see, Bland (1960) chapter 1.2). Using the definition of high-frequency tidal forcing

in Eq. (17) we conclude, as expected, that inertia is negligible for low-frequency tidal

forcing.

The Love number for the Maxwell rheology is obtained from the generalized

Voigt rheology making n = 0 in Eq. (29),

k(ω ,τ0,τ1,τ2)

k◦
=

1+ iωτ1

1+ iωτ2 − τ2
0 ω2(1+ iωτ1)

= ζ
1

1− τ2
0 ω2ζ

(43)

where

ζ (ω ,τ1,τ2) =
k(ω ,0,τ1,τ2)

k◦
=

1+ iωτ1

1+ iωτ2

. (44)

Using that τ2 = τ1 + τ3, with τ1 = η/α and τ3 = η/γ , and that the Kelvin-Voigt

rheology is equal to the Maxwell rheology when τ1 = 0, we obtain the Love number

for the Kelvin-Voigt rheology:

k(ω ,τ0,0,τ2)

k◦
=

1

1+ iωτ2 − τ2
0 ω2

, τ2 = τ3. (45)

In order to present graphs of Love numbers it is convenient to define a nondimen-

sional frequency ωτ2. In this case the expression for the Love numbers become:

k(ωτ2,ε,
τ1
τ2
)

k◦
= ζ

1

1− ε(τ2ω)2ζ
where ζ (τ2ω ,

τ1

τ2
) =

1+ i(τ2ω) τ1
τ2

1+ i(τ2ω)
. (46)

Figs. 8 and 9 show the Love numbers for the Kelvin-Voigt rheology, τ1 = 0. In

this case ε =
τ2

0

(τ1+τ3)2 =
τ2

0

τ2
3

. Figs. 10 and 11 show the Love numbers for the Maxwell

rheology and for the ratio τ1/τ2 = 1/3 also used in Correia et al (2014). Both the

absolute value of k/k◦ and the quality factor Q(ω) are plotted. The quality factor is

defined according to Efroimsky (2012), Eq. (141), as

Q−1 = sin |δ | where tanδ =−Imag (k)/Real(k). (47)

6 Application to HD 80606 b

The results in Sect. 5 give an answer to the question on “how relevant is deforma-

tion inertia” in the case the tide forcing is monochromatic and constant in time. The

analysis of the same question for the full set of equations, which couples tide and

orbital elements, is much harder. There are two types of difficulties. The first is due

to the harmonic decomposition of the tide forcing, unless the orbit of the tide-raising
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Fig. 8 Absolute value of the Love number |k/k◦| for τ1 = 0 (Kelvin-Voigt rheology), as a function of the

nondimensional angular frequency ωτ2, and for several values of ε = τ2
0 /τ2

2 . The vertical lines indicate

the value of twice the initial spin angular speed 2Ωin (initial semi-diurnal forcing frequency) for the two

values τ2 = 10−2 and τ2 = 10−4 (years) used in the numerical simulations in Sec. 6.

body is circular, there are always harmonics of arbitrarily large frequency. Although

inertia is definitely important at high frequencies this importance may be neutralized

by the smallness of the amplitude of the high frequency harmonics. The second issue

is that frequencies and amplitudes vary with time. They are damped by tidal effects

and non linearly coupled by the equations for the orbit evolution. As a consequence

the dominance of different harmonic modes may change with time. It is difficult to

analytically study the dynamics of the full set of equations. For this reason, in this

section, a numerical analysis of Eqs. (6), (5), and either (7) or (8) is carried on. The

deformable body that will be used as a model in the simulations is the HD 80606

b, adopting the same parameters presented in the integrations of Correia et al (2014)

and Boué et al (2016), except by the new parameter µ . These values were already

used to make the graphs in Fig. 8, Fig. 9, Fig. 10, and Fig. 11. The value of µ will be

sometimes exaggerated with respect to the reference value µ = 1. In some situations

this may be compensated by other unrealistic values of τ2 but this will not be explic-

itly analysed, since the main goal in this section is to test the validity of the criterion

in (42), for neglecting inertia, under the dynamics of the fully coupled equations of

motion.

Following Correia et al (2014), we use the orbital parameters of the HD 80606

b to give the initial conditions of the system. The initial semi-major axis and eccen-

tricity are a = 0.455au and e = 0.9330, respectively. The initial rotation period is
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Fig. 9 Quality factor Q, as defined in Eq. (47), for the Kelvin-Voigt rheology (τ1 = 0) and the same values

of ε ′s as in Fig. 8. The vertical lines have the same meaning as in Fig. 8.
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Fig. 10 Absolute value of the Love number |k/k◦ | for τ1/τ2 = 1/3 (Maxwell rheology). The vertical lines

have the same meaning as in Fig. 8.
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Fig. 11 Quality factor Q, as defined in Eq. (47), for the Maxwell rheology (τ1/τ2 = 1/3) and the same

values of ε ′s as in Fig. 10. The vertical lines have the same meaning as in Fig. 8.

0.5day. We choose a fixed initial obliquity θ = 72o. Using these initial conditions we

get the graphs in Figs. 12 and 13 (τ3 = 10−4 year). The physical parameters of the

HD 80606 b (Correia et al (2014)) are: mass m2 = 1297.m⊕ = 7.746 ·1028 kg, radius

R = 10.75R⊕ = 68488.3km, where the symbol ⊕ denotes that the parameters are

relative to the Earth. The moment of inertia of the planet is given by I◦ = ξ m1R2 =
8.1527 · 1040 kgm2, where the parameter ξ is computed through the Darwin-Radau

equation

ξ =
2

3

(

1− 2

5

√

4− k◦
1+ k◦

)

= 0.2593, (48)

where we choose the value k◦ = 0.5, which is the fluid Love number of Jupiter (see

page 9 of Correia et al (2014)). So, using Eq. (11), we compute the value of γ =
2.48041 · 109 (1/year2). The mass of the central star for this planet is m1 = 2008.9 ·
1030 kg

The initial conditions adopted in the Fig. 14 (τ3 = 10−2 year) were obtained in-

tegrating the system with µ = 0 and the initial conditions described above until the

obliquity goes to zero (planar motion) and the eccentricity reaches e ≈ 0.7. We used

this initial condition to make this integration easy and to focus on the spin-orbit reso-

nances. The ratio τ3/τ2 = 2/3 were used in all simulations for the Maxwell rheology,

this value was taken from Correia et al (2014) (see Fig. 2 (a)) and it is based on the

values for the Earth.
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Fig. 12 The graphs of the semi-major axis (top – left), the eccentricity (top – right), the spin-orbit ratio

(bottom – left) and the obliquity (bottom – right) as a function of time (years), for the Kelvin-Voigt rheol-

ogy, τ1 = 0, and τ2 = 10−4 (year). The values ε = 0 (µ = 0), ε = 0.16 (µ = 4), ε = 0.81 (µ = 20), ε = 3.23

(µ = 80), ε = 20.25 (µ = 500), ε = 81 (µ = 2000), and ε = 243 (µ = 6000), correspond to those used

in Figs. 8 and 9. For the value µ = 4 we present both the exact and the approximated solutions verifying

that they coincide in this scale. We remark that the obliquity of the orbit stabilizes in θ = 0 (deg) in a very

short interval of time relatively to the other quantities, even for µ = 6000. Moreover, the dissipation rate

does not depend monotonically on µ . Notice that even for µ = 4 the solution is still close to that for µ = 0.

Fig. 13 The graph of the eccentricity as function of time for τ3 = 10−4 (year). The continuum lines

represent the Kelvin-Voigt rheology (τ1 = 0) and the dashed lines represent the Maxwell rheology (τ1/τ2 =
1/3). We can observe that the power initially dissipated by the Kelvin-Voigt rheology is larger than that

for the Maxwell rheology, the same can be observed in Fig. 14 (bottom-right).
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Some comments on the choices of µ are necessary at this point. For τ3 = 10−2

and τ1 = 0 (year) (Kelvin-Voigt rheology) it is difficult to distinguish the solutions

for µ ≈ 1 from the solutions for µ = 0, so we chose an exaggerated value µ = 62010

that corresponds to the critical value for the underdamped/overdamped transition of

the harmonic oscillator equation (2). The solutions for µ = 62010 deviate consider-

ably from those with µ = 0. Later we verified that even 10 % of this value, µ = 600,

changes visibly the solutions for the Maxwell rheology but not for Kelvin-Voigt rhe-

ology. This fact can be seen by the direct integration presented in Fig. 14 (bottom–

right), where we compare the results for µ = 600 and µ = 62010 and Kelvin-Voigt

rheology with the result for µ = 600 and Maxwell rheology, since we can see that the

graph for the Maxwell rheology is closer to the graph µ = 62010 than to the corres-

ponding µ = 600 in Kelvin rheology. This particular case is also discussed in the

next section, Fig. 16. However, for τ3 = 10−4 year, we can observe in Fig. 13 that the

curves of Kelvin-Voigt (continuous lines) and Maxwell (dashed lines) are very close

for each fixed µ , but as we increase these values of µ the solutions for both rheolo-

gies present considerable variations, until the system begins to present captures into

spin–orbit resonances for µ = 2000.

A comparison between the eccentricities obtained integrating the exact equations

and the small-inertia approximations given in Eq. (25) (Kelvin-Voigt rheology) and

Eq. (27) (Maxwell rheology) is shown in Fig. 15.

6.1 The secular torque

In this section, using essentially the same approach as in Correia et al (2014), we

study how the (planar) secular torque is modified by the inertia coefficient for the HD

80606 b.

The equation of motion for the deformation variable, Eq. (20), can be written as

a single third order equation

τ1τ2
0

...
B+ τ2

0 B̈+ τ2Ḃ+B =
F(t)

γ
+ τ1

Ḟ(t)

γ
. (49)

Our objective is to consider the planar motion of the system, Fourier expand the

term F, solve Eq. (49) for B, substitute the result into the equation of the angular

velocity (first of Eq. (6)) and take the average of this last expression. The resulting

term of the right side of this equation is called the secular torque of the system.

Considering the expression (5) for F, we assume that the variable q has a much

faster variation than ΩΩΩ , in a fixed orbit of the Kepler problem. Denoting q= r(cosϕ ,sinϕ ,0),
where ϕ is the polar angle in the body frame, and assuming that the spin is constant

and aligned with the z-axis, we get the formula

F = C+
3Gm2

2r3





cos2ϕ sin2ϕ 0

sin2ϕ −cos2ϕ 0

0 0 1



 (50)

where C is a constant, diagonal matrix. This term generates a constant and diago-

nal stationary solution, that commutes with q⊗ q and so do not contribute to the
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Fig. 14 The graphs of the semi-major axis (top – left), the eccentricity (top – right) and the spin-orbit

ratio, Ω/n (bottom – left) as a function of time (years), for the Kelvin-Voigt rheology (τ1 = 0) with

τ3 = 10−2 (year) and for ε = 0 (µ = 0), ε = 4× 10−6 (µ = 1), ε = 2.4× 10−3 (µ = 600), and ε = 0.25

(µ = 62010). For the values µ = 1 and µ = 600 only the approximated equations (25) were integrated,

since the integration of the exact equations is prohibitively slow. Notice that inertia is relevant only for

the exaggerated value µ = 62010. The graph of the spin-orbit ratio shows that for µ = 0 the system is

captured into spin-orbit resonances, as observed in Boué et al (2016). Such captures do not disappear with

the addition of the inertia term, even for large values of µ , as µ = 62010. In the last graph, (bottom –

right) we see a large difference between the Maxwell and Kelvin-Voigt rheologies in the evolution of the

eccentricity for µ = 600, this difference is suggested by the corresponding secular torques in Fig. 16.

secular torque, then we will skip it henceforward. Comparing with the notation of

Correia et al (2014), we see that the coordinates of the matrix (50) are related to the

formulas (21) and (22) of Correia et al (2014)

Ce
22 =

3Gm2

2γr3
cos2ϕ , Se

22 =−3Gm2

2γr3
sin 2ϕ . (51)

From Eq.(33) of Correia et al (2014), these coefficients can be Fourier expanded

as

Ze :=Ce
22 − iSe

22 =
+∞

∑
k=−∞

βkei(2θ̃−kM) (52)

where M is the mean anomaly, θ̃ = θ −ϖ , with θ denoting the rotation angle of

the planet in an inertial frame and ϖ the longitude of the pericenter, see Fig. 1 of

Correia et al (2014). The coefficients βk are given by

βk =
3Gm2

2γa3
X
−3,2
k (e) (53)
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Kelvin Maxwell

Fig. 15 The graphs of the exact and approximated solutions for the Kelvin-Voigt (left), τ1 = 0, and

Maxwell (right), τ1/τ2 = 1/3, rheologies, for τ3 = 10−4 (year). Here we integrate all the systems beginning

with e = 0.2 and no obliquity, including µ = 0, and so we plot the value ∆ e = e(µ)− e(0) as function of

time, where e(µ) is the eccentricity of the orbit for the given value of µ . We remark that the approximation

is good even for µ = 4. The µ values corresponding to ε = 0.01, 0.02, 0.04 are µ = 0.25, 0.5, 1, respec-

tively (Eq. (23)), and the µ values corresponding to ε = 0.02, 0.07 are µ = 1, 4, respectively (Eq. (26)).

where X
−3,2
k (e) are Hansen coefficients, polynomials in the eccentricity of the orbit

as described in the appendix C of Correia et al (2014), and a is the semi-major axis

of the orbit.

Thus, the non constant stationary solution of Eq.(49) can be written as

B =





b11 b12 0

b12 −b11 0

0 0 0



 , (54)

where b11 = ℜ[A], b12 = ℑ[A] and

A =
+∞

∑
k=−∞

βk

(
1+ iτ1ωk

1+ iτ2ωk − τ2
0 τ1ω3

k − τ2
0 ω2

k

)

ei(2θ̃−kM), (55)

where ωk = 2θ̃ − kM.

Using these simplifications and omitting the negligible terms of the first equation

of (6), we get

Ω̇ΩΩ =
3Gm2

|q|5 [q⊗ q,B] , (56)

and so we can reduce this equation to a single scalar ODE

θ̈ =−(ℑ[Ze]ℜ[A]−ℜ[Ze]ℑ[A]) =−ℑ[AZe]

=−2γ

(
3Gm2

2γa3

)2 +∞

∑
j=−∞

+∞

∑
k=−∞

X
−3,2
k X

−3,2
j+k ℑ

(
1+ iτ1ωk

1+ iτ2ωk − τ2
0 τ1ω3

k − τ2
0 ω2

k

ei jM

)

.

(57)

Equation (57) is only a generalization of Eq.(39) of Correia et al (2014). The

secular torque is obtained by averaging equation (57) over M, i.e., by considering

only the term j = 0. Hence, the secular torque T is given by



Title Suppressed Due to Excessive Length 27

T =−K

+∞

∑
k=−∞

(

X
−3,2
k (e)

)2 ωk

(1− τ2
0 ω2

k )
2 +ω2

k (τ2 − τ1τ2
0 ω2

k )
2
, (58)

where

K = 2γ

(
3Gm2

2γa3

)2(

1− τ1

τ2

)

. (59)

In the Figs. 16 and 17, we present the graphs of the normalized torque, adopting

for simplicity K = 1, as a function of the spin-orbit ratio Ω/n, for τ3 = 10−2(year)

and τ3 = 10−4(year), respectively. In order to express the torque (58) as a function

of this ratio, we need to use explicitly the value of n(e), the orbital angular velocity

(derivative of the mean anomaly M). Since this angular velocity is not constant along

the motion we assume that the orbital angular momentum is approximately conserved

and hence n becomes a function only on the eccentricity

n = n(e) =
(Gm1m2)

2

L3
(1− e2)

3
2 , (60)

where L = |x× ẋ| here denotes the normalized initial orbital angular momentum used

in the integration.

7 Conclusion

The main result in this paper is that for a very broad class of rheologies; namely,

those associated to a generalized Voigt model Eq. (29), or to a generalized Maxwell

model Eq. (30), or even to a rheology with a continuous distribution of characteristic

times, as for instance the Andrade rheology, obtained from continuous limits of either

a generalized Voigt or Maxwell model; deformation inertia is negligible if

ω ≪ ω 0,

where ω0 =
√

γ/µ is the natural frequency of oscillation of the system when damping

is neglected and ω is the angular frequency of a harmonic tidal force. Moreover, a

quantitative statement of this result holds: If k(ω ,µ) is the complex Love number

associated to a given rheology, then

ω2

ω2
0

< 0.1p =⇒
∣
∣
∣
∣

k(ω ,µ)− k(ω ,0)

k(ω ,0)

∣
∣
∣
∣
< 0.11p for any p ∈ [0,1].

As argued in Sec. 2.1, given the mass m and the moment of inertia I◦ of the

deformable body, the value of ω 0 shall be of the order of magnitude of the reference

value given in Eq. (15),

ω 0 ≈ ω I =

√

4

5

Gm

R3
I

where R I =

√

5I◦
2m

= inertial radius.

As mentioned in Sec. 2.1, if the angular velocity of the tide-raising body in the in-

ertial frame is much smaller than the spin angular velocity Ω of the deformable body,
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year3

Fig. 16 The graphs of the normalized torque, Eq. (58), as a function of the spin-orbit ratio Ω/n, for

τ3 = 10−2 (year). We present the graphs of torque for three different values of eccentricity e = 0.2, e =
0.4, e = 0.6 and the same values of µ as in Fig. 14. We compare the differences between the Kelvin-

Voigt rheology (left) and the Maxwell rheology (right). For the Kelvin-Voigt rheology, we can not see any

difference between the curves of µ = 0, 1, 600, for all eccentricities, as verified in the three first graphs of

Fig. 14. However, for the Maxwell rheology we see a large difference for the values µ ≥ 600, as verified

in the last graph (bottom–right) of Fig. 14 for the case µ = 600. We recall that each point where the

graph crosses the horizontal axis, with negative derivative, corresponds to a spin-orbit capture, what is

compatible with the captures plotted in the (bottom–left) frame of Fig. 14, however we remind that such

captures observed in the integrations take place at different values of e, not represented in only one of the

graphs above.

then the most relevant tide-forcing frequency is the semi-diurnal ω ≈ 2Ω . Since Ω 2

must be much smaller than γ ≈ γI =ωI , Eq. (16), in order to guarantee a small flatness

of the body due to the spin, we conclude that for the main semi-diurnal frequency in-

ertia is always negligible. Moreover, our simulations in Sec. 6 indicate that higher

harmonic tide-forcing that eventually appear due to the nonlinearity of the full equa-

tions of motion do not trigger any significant effect of deformation inertia. So, from
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year3

Fig. 17 This figure is similar to Fig. 16 but for τ3 = 10−4 (year). The values of eccentricity are the same as

in Fig. 16 but the µ ′s are different: µ = 20, 80, 500, 2000, 6000. The behavior for µ = 0, 1, 4 is the same

as that for µ = 20, i.e. the curve intersects the horizontal axis at only one point (Ω/n > 1), corresponding

to the pseudo-synchronous equilibrium. Such curves, for µ < 20, are not presented in this figure because

they are not visible in the present scale. Both the Kelvin-Voigt and Maxwell rheologies have roughly the

same aspects, except by the intensity of the torque, which is bigger in the Maxwell case. The appearance

of roots for µ ≥ 500 is the main point of this set of graphs, in agreement with the graph (bottom–left) of

Fig. 12, where we see that for µ = 2000, 6000 the solutions exhibit resonances that are not present for

µ ≤ 500.

the point of view of orbital evolution of celestial bodies, inertia can be safely ne-

glected (exceptions may occur when a higher order harmonic of the tide-forcing have

a high amplitude).

The above considerations may lead to the deceptive conclusion that deformation

inertia is irrelevant to the whole issue of tides in celestial mechanics. In the following

we argue that it may be important in some aspects of the theory.
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Inertia introduces high-frequency oscillations near the resonance frequency4 ω 0.

Energy dissipation shifts the resonance frequency and sets its amplitude and width.

In principle, the oscillations at resonance frequency may be forced by small ampli-

tude higher harmonics of the tide-forcing. If it were possible to estimate accurately

the amplitude of the tide-forcing at this frequency, since γ and µ can be well esti-

mated from the density radial profile, it would be possible to use Eq. (31) to obtain

information about the complex compliance J of the deformable body at the resonance

frequency.

It has been observed that normal modes of the Earth (within the 2 to 20 mHz

frequency band) are continuously excited, but the sources of this background oscil-

lations, the so called “Earth hum”, have remained unresolved Nishida (2013). The

measured frequency of free oscillations of the Earth, excited by large earthquakes

and associated to the spheroidal mode S0
2, is 54 minutes (0.309 Hz). This frequency

is the one that corresponds to the resonance frequency (including the effect of damp-

ing) in our model. Unfortunately, the 0.309 Hz frequency is outside the frequency

range measured for the Earth’s hum. If measurements of the Earth background os-

cillations are improved to include the 0.309 Hz frequency then we may be able to

improve our knowledge of the rheology of the Earth using Eq. (31) and the estimates

of µ and γ . Moreover, the recorded transient motion of the 54 minutes oscillations

after large earthquakes can be used in conjunction with the time domain equations of

motion derived in Ragazzo and Ruiz (2017) to better understand the rheology of the

Earth.

A Appendix: The small inertia limit for the Maxwell oscillator.

In this appendix we apply three steps of averaging to the Maxwell oscillator in Eq. (3), that can be written

as (see Eq.(49)):

τ1τ2
0

...
x + τ2

0 ẍ+ τ2ẋ+ x =
F(t)

γ
+ τ1

Ḟ(t)

γ
(61)

or

µη

γα

...
x +

µ

γ
ẍ+η

α + γ

αγ
ẋ+ x =

F(t)

γ
+

η

α

Ḟ(t)

γ
.

Let t = sτ4 define a nondimensional time s, where τ4 =
√

µ/(α + γ), and x′(s) = d
ds

x(s). Then in the

nondimensional time scale the equation for the Maxwell oscillator becomes

x′′′+ x′+

√

ε
τ1

τ2

(
τ2

τ1
x′′+ x−H(t)

)

= 0

where

H(t) =
F(t)

γ
+ τ1

Ḟ(t)

γ
,

√
ε =

τ0

τ2
, τ1 =

η

α
, τ2 = η

γ +α

γα
.

Using the definitions

x′ = u, x′′ = v = u′, w = x+ v,

4 These high frequency oscillations are the source of difficulty for the numerical integration of the full

equations of motion. The small-inertia approximation in Appendix A smooths out these oscillations by

means of an averaging.
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and τ3 = η/γ , the third order equation can be written as

u′ =v

v′ =−u−
√

ε
τ1

τ2

(
α

γ
v+w−H(t)

)

w′ =−
√

ε
τ1

τ2

(
α

γ
v+w−H(t)

)

t ′ =
√

ετ1τ2

This equation can be explicitly solved when ε = 0. The solution motivates the change of variables (u,v,w,t)→
(p,q,w,t) where

(
p

q

)

=

(
cos s −sin s

sin s cos s

)(
u

v

)

.

In the new variables the equation becomes

p′ =

√

ε
τ1

τ2
sin(s)

(
α

γ
v+w−H(t)

)

q′ =−
√

ε
τ1

τ2
cos(s)

(
α

γ
v+w−H(t)

)

w′ =−
√

ε
τ1

τ2

(
α

γ
v+w−H(t)

)

t ′ =
√

ετ1τ2, where

v(s) =− sin(s)p+ cos(s)q

Using the definitions

z =

(
p

q

)

, A(s) =
1

4

(
sin2s −cos2s

−cos2s −sin2s

)

, ξ (s) =

(
cos s

sins

)

, Γ =
γ

α
(−w+H(t))

this equation can be written as

z′ =
√

ε
τ3√
τ1τ2

(

− z

2
+A′z+Γ ξ ′

)

w′ =
√

ε
τ3√
τ1τ2

(
−ξ ′ · z+Γ

)

t ′ =
√

ετ1τ2, where

d

ds
A(s) = A′(s) =

1

2

(
cos2s sin2s

sin2s −cos2s

)

,
d

ds
ξ (s) = ξ ′(s) =

(
−sin s

cos s

)

.

The following change of variables (z,w,t)→ (y,w,t) was obtained after two steps of averaging Hale (1980),

z = y+(Ay+Γ ξ )
√

ε
τ3√
τ1τ2

+(cA′y+Λ ξ ′)ε
τ2

3

τ1τ2
, where

c =
1

8
− γ

2α
, Λ =

(

−Γ + τ2
γ

α
Ḣ
) γ

α

(62)

Applying this change of variables, using Γ ′ =
√

ε τ1
τ2
(ξ ′ · z+ α

γ Λ ) and Λ ′ = {−Γ ′+
√

ε τ1
τ2

τ2
2

γ
α Ḧ} γ

α , and

averaging the resulting equations we obtain, after a long computation,

y′ =
√

ε
τ3√
τ1τ2

(

−
{

1

2
+ ε

τ3

τ2
c

}

y+
√

ε
τ3√
τ1τ2

(
1

8
+

γ

2α

)(
0 −1

1 0

)

y

)

+O(ε2)

w′ =
√

ε
τ3√
τ1τ2

(

Γ − ε
τ2

3

τ1τ2
Λ

)

+O(ε2)



32 A. C. M. Correia et al.

In the original time t, and neglecting the correction term, these equations become

τ2ẏ =
τ3

τ1

(

−
{

1

2
+ ε

τ3

τ2
c

}

y+
√

ε
τ3√
τ1τ2

(
1

8
+

γ

2α

)(
0 −1

1 0

)

y

)

τ2ẇ =
τ3

τ1

(

Γ − ε
τ2

3

τ1τ2
Λ

)

The second of these equations imply the first equation in (27).

Notice that |y(t)| → 0 as t → ∞, so after some transient where |y(t)| decay as exp[−tτ3/(2τ1τ2)] Eq.

(62) implies

z = Γ ξ
√

ε
τ3√
τ1τ2

+Λ ξ ′ε
τ2

3

τ1τ2
.

This and the relation x = w− v = w+ sin(s)p− cos(s)q = w−ξ ′(s) · z imply

x = w−ξ ′ · z = w−Γ ξ ′ ·ξ
︸ ︷︷ ︸

=0

√
ε

τ3√
τ1τ2

−Λ ξ ′ ·ξ ′
︸ ︷︷ ︸

=1

ε
τ2

3

τ1τ2
= w− ε

τ2
3

τ1τ2
Λ

This equation plus the definition of Λ in equation (62) imply the second equation in (27).

Acknowledgements We are grateful to Sylvio Ferraz Mello for having called our attention to the work

of Love about the effect of inertia on tides. We also thank Yeva Gevorgyan who first pointed out the

equivalence between the Association Principle and the Correspondence Principle in the frequency do-

main. C.R. is partially supported by FAPESP 2016/25053-8. A.C. is partially supported by CIDMA strate-

gic project (UID/MAT/04106/2013), PHOBOS (POCI-01-0145-FEDER-029932), and ENGAGE SKA

(POCI-01-0145-FEDER-022217), funded by COMPETE 2020 and FCT, Portugal.

References

Antognini F, Biasco L, Chierchia L (2014) The spin-orbit resonances of the Solar system: A mathematical

treatment matching physical data. J Nonlinear Sci 24:473–492

Bambusi D, Haus E (2015) Asymptotic behavior of an elastic satellite with internal friction. Math Phys

Anal Geom 18(1):1–18

Bland D (1960) Linear viscoelasticity. Pergamon Press, Oxford
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