
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Rui Miguel
Morais da Silva

Mecanismos de Offloading para Redes Móveis
usando SDN em Ambientes Virtualizados

Offloading Mechanisms for Mobile Networks using
SDN in Virtualized Environments

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Rui Miguel
Morais da Silva

Mecanismos de Offloading para Redes Móveis
usando SDN em Ambientes Virtualizados

Offloading Mechanisms for Mobile Networks using
SDN in Virtualized Environments

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação científica do
Doutor Daniel Nunes Corujo, investigador doutorado do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e do
Doutor Rui Luís Andrade Aguiar, Professor catedrático do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor João Paulo Silva Barraca
professor auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-

dade de Aveiro

vogais / examiners committee Doutor Sérgio Miguel Calafate de Figueiredo
consultor/engenheiro sénior na Altran Portugal

Doutor Daniel Nunes Corujo
investigador doutorado do Departamento de Eletrónica, Telecomunicações e Informática da Uni-

versidade de Aveiro

agradecimentos /
acknowledgements

Agradeço ao Doutor Daniel Corujo e ao Professor Doutor Rui Aguiar por toda
a orientação.
Agradeço à minha namorada pelo apoio incondicional.
Agradeço aos meus pais pelo apoio financeiro e ao meu irmão e aos meus
amigos pelos momentos de descontração.
Esta dissertação de mestrado foi realizada com o apoio do Instituto de Tele-
comunicações em Aveiro.

Palavras Chave 5G, 4G, SDN, NFV, Cloud, Virtualização, Offloading, EPC

Resumo O explosivo aumento do tráfego móvel em anos recentes tem vindo a aumen-
tar a carga nas células e núcleo da rede móvel, com os operadores a serem
confrontados com a necessidade de atualizar as mesmas. Hoje em dia, para
executar esta atualização, os operadores necessitam de adquirir equipamento
novo e especializado para as funções de rede, levando a um grande CAPEX
de atualização. Além disso, as redes são implementadas seguindo uma abor-
dagem de uma solução única para todos os casos, o que nalguns pode não
satisfazer os requisitos de serviços específicos. O 5G visa resolver estes
problemas ao virtualizar funções de rede em datacenters, desacoplando o
software do hardware para as funções de rede e ao utilizar hardware de uso
geral. Para suportar isto, as redes definidas por software (SDN) são introdu-
zidas, permitindo um maior grau de programabilidade na rede, e permitindo
novas funcionalidades como maior flexibilidade e segmentação de rede, onde
múltiplas redes virtuais podem ser criadas com requisitos específicos. Esta
tese endereça uma arquitetura que evolui o Evolved Packet Core (EPC) para
uma rede de core mais próxima do 5G ao virtualizar as funções de rede do
EPC, introduzindo SDN e suportando Wi-Fi e "offloading" de tráfego da rede
móvel para a rede Wi-Fi, auxiliando na redução da carga das células mó-
veis ao tirar partido da capacidade de conectividade múltipla e da grande
densidade de pontos de acesso implementados mundialmente. A arquitetura
proposta é então avaliada e comparada com um EPC implementado numa
máquina física sempre que possível mostrando que, apesar do aumento da
latência no EPC virtualizado, a limitação do sistema é devida à interface de
rádio. Um cenário para esta arquitetura é definido e avaliado, considerando o
"offloading" de tráfego e instanciação dinâmica de redes segmentadas, com
resultados a mostrar que o sistema consegue fazer um offload perfeito de
tráfego de um stream de vídeo de 4G para Wi-Fi sem afetar a Qualidade de
Experiência do utilizador.

Keywords 5G, 4G, SDN, NFV, Cloud, Virtualization, Offloading, EPC

Abstract The exploding mobile data traffic increase in recent years has been putting
a high load on both mobile cells and core network, with operators facing the
need to upgrade their networks. Nowadays, to do this upgrade, operators need
to purchase new specialized equipment for network functions, having to cope
with a high upgrade CAPEX. Furthermore, networks are deployed with a one
size fits all approach, which in some cases might not satisfy the requirements
of specific services. 5G aims to solve these problems by virtualizing network
functions in datacenters, decoupling the software from the hardware for net-
work functions and using general purpose hardware instead. To support this,
Software Defined Networking (SDN) is introduced, which allows the network
to have a higher degree of programmability, enabling new features such as
higher flexibility and network slicing, where multiple virtual networks can be
created and tailored to specific requirements. This thesis addresses an archi-
tecture that evolves the Evolved Packet Core (EPC) into a core network closer
to 5G by virtualizing EPC’s network functions, introducing SDN and support-
ing 4G to Wi-Fi traffic offloading, helping to reduce the load on mobile cells by
leveraging on the smartphone’s support for dual connectivity and high density
of Wi-Fi access points already deployed worldwide. The proposed architecture
is then evaluated and compared to a vanilla EPC whenever possible showing
that, although there is an increase in latency at the virtual EPC, the bottleneck
of the system resides in the air interface. Also, a use case for this architec-
ture was defined and evaluated. The use case considered traffic offloading
and dynamic Wi-Fi slice creation, with results showing that it can seamlessly
offload a video stream from 4G to Wi-Fi without affecting the user’s Quality of
Experience.

Contents

Contents i

List of Figures vii

List of Tables xi

Glossary xiii

1 Introduction 1

1.1 Motivation/Problem Statement . 1

1.2 Proposed Solution . 2

1.3 Contributions . 2

1.4 Document Structure . 3

2 Key Enabling Technologies and State Of The Art 5

2.1 3GPP Evolved Packet System (EPS) . 5

2.1.1 Evolved NodeB (eNB) . 6

2.1.2 Mobility Management Entity (MME) . 7

2.1.3 Home Subscriber Server (HSS) . 7

2.1.4 Serving Gateway (S-GW) . 7

2.1.5 Packet Data Network Gateway (P-GW) . 8

2.1.6 Policy and Charging Rules Function (PCRF) 8

2.1.7 Interface Description . 8

2.1.7.1 S1AP/Non-Access Stratum (NAS) 9

2.1.7.2 DIAMETER . 9

2.1.7.3 GPRS Tunnelling Protocol (GTP) 9

2.1.8 Connection Procedures . 9

2.1.8.1 The EPS Bearer . 10

2.1.8.2 User Equipment (UE) Authentication 10

2.1.8.3 UE Attachment Procedure . 10

i

2.2 3GPP to Non-3GPP Traffic Offloading Techniques . 12

2.2.1 Access Network Discovery and Selection Function (ANDSF) 13

2.2.2 LTE-WLAN Aggregation (LWA) . 14

2.2.3 LTE-WLAN radio-level integration with IP security tunnel (LWIP) 15

2.2.4 New Approaches . 15

2.3 The road to 5G . 16

2.3.1 5G Core Architecture . 16

2.3.1.1 Access and Mobility Management Function (AMF) 17

2.3.1.2 Session Management Function (SMF) 18

2.3.1.3 User Plane Function (UPF) . 18

2.3.1.4 Policy Control Function (PCF) . 18

2.3.1.5 Unified Data Management (UDM) 18

2.3.1.6 Application Function (AF) . 19

2.3.1.7 Network Exposure Function (NEF) 19

2.3.1.8 Network Slice Selection Function (NSSF) 19

2.3.2 Wireless Local Area Network (WLAN) interworking 19

2.4 Key Enablers in 5G . 20

2.4.1 Virtualization Environment . 20

2.4.2 Network Function Virtualisation (NFV) . 21

2.4.2.1 NFV Management and Orchestration (MANO) 22

2.4.2.2 Virtual Network Function (VNF) 23

2.4.3 Software Defined Networking (SDN) . 24

2.4.3.1 Data Plane . 25

2.4.3.1.1 OpenFlow Protocol . 25

2.4.3.2 Control Plane Entity . 26

2.4.3.3 Management Plane . 27

2.4.3.4 Application Plane . 27

2.4.4 Virtualizing the Evolved Packet Core (EPC) 27

2.5 Summary . 28

3 Architecture Design 29

3.1 Overview . 29

3.2 Introducing SDN . 30

3.2.1 Data Plane . 31

3.2.2 Long Term Evolution (LTE) Control Plane 31

3.2.2.1 Attachment Procedure . 32

3.2.3 Wi-Fi Control Plane . 32

3.2.3.1 Attachment Procedure . 33

ii

3.2.4 SDN Controller . 34

3.2.4.1 Offloading Procedure . 35

3.3 Introducing NFV . 36

3.4 Summary . 36

4 Solution Implementation 39

4.1 Overview . 39

4.1.1 Virtual Networks and Interfaces . 40

4.1.2 Virtual Machine (VM) Specifications . 40

4.2 Radio Access Network (RAN) . 41

4.2.1 Evolved NodeB (eNB) . 41

4.2.1.1 Hardware Setup . 41

4.2.1.2 Open Air Interface (OAI) Software Setup 41

4.2.2 Wi-Fi Access Point (AP) . 42

4.2.3 UE Setup . 43

4.3 LTE Control Plane . 44

4.3.1 HSS+MME . 44

4.3.2 Serving/PDN-Gateway (S/P-GW)-C . 45

4.3.2.1 S/P-GW . 45

4.3.2.2 SDN Controller . 48

4.4 Wi-Fi Control Plane . 54

4.4.1 Authentication, Authorization and Accounting (AAA) 55

4.4.1.1 Remote Authentication Dial In User Service (RADIUS) server . . . 55

4.4.1.2 Diameter Agent . 56

4.4.2 Dynamic Host Configuration Protocol (DHCP) Server 57

4.4.2.1 Open vSwitch (OVS) Setup . 57

4.4.2.2 Wi-Fi SDN Interface . 58

4.5 Data Plane . 59

4.5.1 S/P-GW-U . 60

4.5.2 vRouter . 63

4.6 Summary . 64

5 Architecture Validation 65

5.1 Signalling Impact . 65

5.1.1 3rd Generation Partnership Project (3GPP) Defined 65

5.1.2 Architecture Specific Interfaces . 66

5.1.3 Generated Traffic . 67

5.2 Attachment Time . 67

iii

5.2.1 LTE Attachment Time . 68

5.2.1.1 Vanilla EPC . 68

5.2.1.2 Virtual EPC . 69

5.2.2 Wi-Fi Attachment Time . 70

5.3 Latency . 71

5.3.1 LTE Latency . 72

5.3.1.1 Vanilla EPC . 72

5.3.1.2 Virtual EPC . 72

5.3.2 Wi-Fi Latency . 73

5.4 Throughput . 74

5.4.1 LTE Throughput . 74

5.4.2 Wi-Fi Throughput . 75

5.4.3 Throughput Result Validation . 75

5.5 Use Cases . 77

5.5.1 Voice over IP (VoIP) Calls . 77

5.5.2 Mobile Traffic Offloading for Video Streaming 79

5.5.2.1 Scenario Definition . 79

5.5.2.2 Framework Evaluation . 79

5.6 Summary . 80

6 Final Remarks 83

6.1 Conclusions . 83

6.2 Main Contributions . 84

6.3 Future Work . 85

References 87

Appendix-A: oai-spgw source code modifications 91

UE Information Structure . 91

sdn_rest module . 91

Modifications to the sgw_handlers.c file . 92

Appendix-B: SDN Controller Application 95

vSwitch Initial Connection Handler . 95

Port Description Reply Handler . 95

Port Status Handler . 95

mobileNode Class . 96

Handlers for REST messages . 97

/spgw/ue/lte/add and delete . 97

iv

/spgw/ue/wifi/add and delete . 98

Appendix-C: freeRADIUS server source code modifications and diameter-agent 99

Modifications to the freeRADIUS server src/modules/rlm_eap/lib/sim/vector.c file 99

diameter-agent . 99

Appendix-D: SDN interface in the DHCP server 103

Wi-Fi SDN Interface . 103

v

List of Figures

2.1 Simple Evolved Packet System Diagram . 5

2.2 Logical EPS Bearer and its physical counterparts . 10

2.3 EPS Attachment Procedure . 11

2.4 EPS with WLAN Support . 13

2.5 LWA for Collocated Scenario [4] . 14

2.6 LWA for Non-Collocated Scenario [4] . 14

2.7 LWIP Architecture [4] . 15

2.8 5G System Architecture [25] . 17

2.9 5G System Architecture with support for non-3GPP access [25] 20

2.10 Infrastructure Virtualization . 21

2.11 NFV Reference Architecture [28] . 22

2.12 Functional view of a VNF [30] . 23

2.13 Main SDN Planes (adapted from [31]) . 24

2.14 Main Components of an OpenFlow Switch [34] . 26

3.1 Full architecture design . 30

3.2 Mapping between the main SDN planes and the architecture’s network functions 31

3.3 Attachment procedure for a LTE client in the proposed architecture 32

3.4 Attachment procedure for a Wi-Fi client in the proposed architecture 33

3.5 LTE to Wi-Fi traffic offloading procedure . 36

4.1 Architecture implementation in Openstack cloud environment 39

4.2 eNB Implementation Scheme . 41

4.3 Wi-Fi AP architecture . 42

4.4 HSS+MME Architecture . 45

4.5 S/P-GW-C Architecture . 45

4.6 Modified function behaviour during attachment . 47

4.7 Modified function behaviour during detachment . 47

4.8 SDN controller behaviour during initial OVS switch connection. 48

vii

4.9 Behaviour of the Port Description Reply handler . 49

4.10 Behaviour of the handler for the port modification event 49

4.11 Representational State Transfer (REST) message handler for the attachment of UEs . . . 50

4.12 REST message handler for the detachment of UEs . 51

4.13 Behaviour of the Register LTE function . 52

4.14 Behaviour of the Register Wi-Fi function . 52

4.15 Behaviour of the Unregister LTE function . 53

4.16 Behaviour of the Unegister Wi-Fi function . 53

4.17 Trigger behaviour for the Slice Creation Process . 54

4.18 Behaviour of the context updater when a user connects to Wi-Fi when it is also connected

to LTE . 54

4.19 AAA Server Architecture . 55

4.20 Behaviour of the modified function . 56

4.21 Behaviour of the diameter-agent . 57

4.22 DHCP Server Architecture . 57

4.23 Packet Processing Pipeline in the DHCP Server OVS switch 58

4.24 Behaviour of the Wi-Fi SDN Interface module . 59

4.25 S/P-GW-U Architecture . 60

4.26 Downlink Packet Processing Pipeline in the spgw OVS switch for LTE Access 61

4.27 Uplink Packet Processing Pipeline in the spgw OVS switch for LTE Access 62

4.28 Downlink Packet Processing Pipeline in the spgw OVS switch for Wi-Fi Access 62

4.29 Uplink Packet Processing Pipeline in the spgw OVS switch for Wi-Fi Access 63

4.30 Downlink Packet Processing Pipeline in the spgw OVS switch for the LTE to Wi-Fi

Offloading procedure . 63

5.1 LTE Attachment Time Decomposition Vanilla EPC . 68

5.2 Attachment Time Decomposition Virtualized EPC creating GTP Virtual Port (vPort) . . 69

5.3 Attachment Time Decomposition Virtualized EPC without creating GTP vPort 70

5.4 Attachment Time Decomposition for Wi-Fi attachment without creating vPort 71

5.5 Latency Decomposition for LTE Vanilla: (a) seen by the eNB; (b) EPC packet processing

time . 72

5.6 Latency Decomposition for LTE: (a) seen by the eNB; (b) S/P-GW-U packet processing time 73

5.7 Latency Decomposition for Wi-Fi: (a) seen by the Wi-Fi AP; (b) S/P-GW-U packet

processing time . 74

5.8 Architecture for S/P-GW-U maximum throughput testing 75

5.9 Session Initiation Protocol (SIP) call signalling . 77

5.10 Failed Calls in function of the Call Rate . 78

5.11 Generated throughput by SIP signalling messages . 78

viii

5.12 Video Throughput over time . 80

ix

List of Tables

2.1 eNB radio capabilities . 7

2.2 Protocols used by the EPS interfaces . 9

2.3 Mapping between 4G and 5G network functions . 19

4.1 Protocols used by the architecture specific interfaces . 40

4.2 Resources used by the architecture’s VMs . 40

4.3 eNB Configuration . 42

4.4 UE Access Point Name (APN) configuration . 44

5.1 Size of the messages defined by 3GPP . 66

5.2 Architecture Specific Interfaces and their size and payload 66

5.3 Control Plane generated throughput during LTE attachment time per interface. 67

5.4 Control Plane generated throughput during Wi-Fi attachment time per interface. 67

5.5 LTE Attachment Times . 69

5.6 Wi-Fi Attachment Times . 70

5.7 Architecture Attachment Times Summary . 71

5.8 Comparison between Vanilla and Virtual EPC in terms of End-to-End (E2E) latency . . 73

5.9 Comparison between LTE and Wi-Fi E2E latency in the virtual EPC 74

5.10 Throughput results for both LTE and Wi-Fi . 75

5.11 Resources used by the test architecture’s VMs . 76

5.12 Maximum throughput at the S/P-GW-U considering GTP and Generic Routing Encapsu-

lation (GRE) tunnelling protocols . 76

5.13 Validation of the throughput tests conducted in this section 77

5.14 Impact of dedicated signalling messages . 80

5.15 Decomposed Offloading Delay . 80

xi

Glossary

3GPP 3rd Generation Partnership Project
AAA Authentication, Authorization and

Accounting
AF Application Function
AKA Authentication and Key Agreement
AMBR Aggregate Maximum Bit Rate
AMF Access and Mobility Management

Function
AN Access Network
ANDSF Access Network Discovery and Selection

Function
AP Access Point
API Application Programming Interface
APN Access Point Name
ARP Address Resolution Protocol
AuC Authentication Center
AUTN Authentication Token
AVP Attribute Value Pair
BIOS Basic Input/Output System
CAPEX Capital Expenditure
CK Ciphering Key
CP Control Plane
CPS Calls Per Second
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
DL Downlink
DN Data Network
DNS Domain Name System
DP Data Plane
DPID Datapath Identifier
E2E End-to-End
EAP-AKA Extensible Authentication

Protocol-Authentication and Key
Agreement

EM Element Manager
eNB Evolved NodeB

EPC Evolved Packet Core
EPS Evolved Packet System
E-RAB E-UTRAN Radio Access Bearer
ETSI European Telecommunications

Standards Institute
EUTRA Evolved Universal Terrestrial Radio

Access
E-UTRAN Evolved Universal Terrestrial Radio

Access Network
FDD Frequency Division Duplex
GBR Guaranteed Bit Rate
GRE Generic Routing Encapsulation
GTP GPRS Tunnelling Protocol
HeNB Home eNodeB
HLR Home Location Register
Hostapd Host access point daemon
H-PLMN Home-Public Land Mobile Network
HSS Home Subscriber Server
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics

Engineers
IFOM IP Flow Mobility
IK Integrity Key
IMSI International Mobile Subscriber Identity
IoT Internet of Things
IP Internet Protocol
JSON JavaScript Object Notation
KPI Key Performance Indicator
L2 OSI Layer 2
L3 OSI Layer 3
LIPA Local IP Access
LTE Long Term Evolution
LWA LTE-WLAN Aggregation
LWIP LTE-WLAN radio-level integration with

IP security tunnel
LXC Linux Containers
MAC Medium Access Control
MANO Management and Orchestration

xiii

MBR Maximum Bit Rate
MCC Mobile Country Code
MEC Multi-Access Edge Computing
MME Mobility Management Entity
MNC Mobile Network Code
MP Management Plane
MPEG Moving Picture Experts Group
MTU Maximum Transfer Unit
N3IWF Non-3GPP InterWorking Function
NAS Non-Access Stratum
NAT Network Address Translation
NEF Network Exposure Function
NETCONF Network Configuration Protocol
NF Network Function
NFV Network Function Virtualisation
NFVI Network Function Virtualization

Infrastructure
NFVO Network Function Virtualization

Orchestrator
NR New Radio
NS Network Service
NSSF Network Slice Selection Function
OAI Open Air Interface
ODL OpenDaylight
OF OpenFlow
OFDMA Orthogonal Frequency Division Multiple

Access
ONF Open Network Foundation
OPEX Operational Expenditure
OS Operating System
OVS Open vSwitch
PCEF Policy and Charging Enforcement

Function
PCF Policy Control Function
PCI Peripheral Component Interconnect
PCRF Policy and Charging Rules Function
PDCP Packet Data Convergence Protocol
PDN Packet Data Network
PDU Packet Data Unit
P-GW Packet Data Network Gateway
PMIPv6 Proxy Mobile IPv6
PNF Physical Network Function
PRB Physical Resource Block
PS Packet Switched
QAM Quadrature Amplitude Modulation
QCI Quality of Service Class Identifier
QoE Quality of Experience
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RADIUS Remote Authentication Dial In User

Service
RAM Random Access Memory
RAN Radio Access Network

RAND Random Number
RCP Routing Control Platform
REST Representational State Transfer
RAT Radio Access Technology
RTP Real Time Protocol
RTT Round Trip Time
S1AP S1 Application Protocol
SC-FDMA Single Carrier Frequency Division

Multiple Access
SCTP Stream Control Transmission Protocol
SDF Service Data Flow
SDN Software Defined Networking
SDR Software Defined Radio
SeGW Security Gateway
S-GW Serving Gateway
SIFM Seamless Internetwork Flow Mobility
SIP Session Initiation Protocol
SMF Session Management Function
S/P-GW Serving/PDN-Gateway
SQN Sequence Number
SSID Service Set Identifier
TAC Tracking Area Code
TCO Total Cost of Ownership
TCP Transmission Control Protocol
TDD Time Division Duplex
TEID Tunnel Endpoint Identification
TFT Traffic Flow Template
UDP User Datagram Protocol
UDM Unified Data Management
UDR Unified Data Repository
UE User Equipment
UL Uplink
UPF User Plane Function
URI Uniform Resource Identifier
USB Universal Serial Bus
USIM Universal Subscriber Identity Module
veNB Virtual Evolved NodeB
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFC Virtual Network Function Component
VNFD Virtual Network Function Descriptor
VNFM Virtual Network Function Manager
VoIP Voice over IP
V-PLMN Visitor-Public Land Mobile Network
vPort Virtual Port
vUE virtual User Equipment
WLAN Wireless Local Area Network
XML eXtensible Markup Language
XRES Expected Response

xiv

CHAPTER 1
Introduction

1.1 Motivation/Problem Statement

Mobile data traffic grew 63 percent in 2016 being Fourth-generation (4G) connections respon-
sible for 69 percent of the total generated mobile data traffic [1]. It is predicted that in the
next 5 years global mobile traffic will increase sevenfold. This increase in traffic means that
the operators’ radio cells and core networks will have to cope with more and more traffic,
giving carriers the need to upgrade their networks. In today’s core networks for mobile clients,
dedicated hardware is used which limits operators when faced with the need to upgrade their
systems in order to handle the increasing traffic, since increased capacity presupposes the
purchase of new equipment, thus contributing to Capital Expenditure (CAPEX) when data
traffic surpasses a given threshold. Also, this approach is inflexible when it comes to network
programmability since there are very few mechanisms allowing to reconfigure the network on
the fly.

Another access technology largely deployed is Wi-Fi. Globally, there are around 94 million
APs deployed and it is expected that this number will increase to around 541.6 million by
2021 [1]. This large number of available APs combined with the smartphone’s support for
dual connectivity (cellular and Wi-Fi) can be used to alleviate the high load on mobile cells
by offloading mobile traffic to Wi-Fi whenever possible. However, this traffic offload has to be
imperceptible, calling for an authentication mechanism that does not require input from the
user.

Technology developments and socio-economic transformations gave birth to the concept
of 5G. It is expected that it can cope with the ever changing landscape by using modular
virtualized network functions and dynamic network reconfiguration powered by Software
Defined Networking (SDN) and Software Defined Radio (SDR). Today’s networks are inflexible
and the network is equally provided for each service. The introduction of network slicing in
5G enables for a more flexible network tailored to meet the demands of each service. Network
slicing can be seen as a logically independent network sharing the hardware infrastructure with
other slices or services. The 5G visions include the provision of broadband access everywhere

1

with 50+ Mbps, high user mobility, massive Internet of Things (IoT), extreme real time and
ultra-reliable communications and broadcast-like services. There is a great variety of use cases
for 5G deployments with different required Key Performance Indicators (KPIs). For instance,
for ultra-low latency applications the E2E latency must be inferior to 1ms. In [2] it is stated
that a deeper understanding of using SDN in the telecommunications world is required, for
example, identifying the key issues when implementing a SDN based EPC.

This thesis proposes to tackle the problem of inflexibility in current 4G networks by
implementing a mechanism to reconfigure the network on the fly. The high CAPEX and
Operational Expenditure (OPEX) of system maintenance and upgrades is also approached by
proposing a way to decouple the software from the underlying hardware, becoming possible
to deploy network functions in general purpose hardware. Finally, the problem of high load
on radio cells is tackled by proposing a mechanism to alleviate this load.

1.2 Proposed Solution

To tackle the problems stated above this thesis focuses on the LTE technology and proposes
an evolution of the traditional EPC towards the 5G architecture by introducing concepts of
SDN, NFV and virtualization. This approach can solve the inflexibility problem as it uses
general purpose hardware (i.e. servers) and it lowers the CAPEX when it comes to increase
the network’s capacity. Also, it becomes easier to deploy new Network Functions (NFs)
with a lower time to market. Lastly, to alleviate the load on the mobile cells, a mechanism
to seamlessly offload traffic from mobile network to Wi-Fi is proposed, taking advantage
once again of SDN’s capability to reconfigure the network, the large number of APs already
deployed and the smartphone’s support for dual connectivity. The user’s authentication in
the access point will be based on the Universal Subscriber Identity Module (USIM) card thus
not needing any input from the user. Overall, the goal is to separate the control plane from
the data plane of the EPC as defined by 3GPP using SDN, deploy the architecture in a cloud
environment using NFV, add support for non-3GPP access networks and support 3GPP to
non-3GPP traffic offloading.

1.3 Contributions

The execution of this thesis resulted in various outcomes. One of those outcomes was
an interface, called SDN-Info, that carries information that allows the DHCP server to
associate the Medium Access Control (MAC) address of an UE to its USIM International
Mobile Subscriber Identity (IMSI). Another outcome was a module to integrate SDN in
the OAI’s S/P-GW source code, enabling the communication between the S/P-GW and
an SDN controller using REST Application Programming Interfaces (APIs). This thesis
also enabled the openair-cn HSS to support the SWx interface, resulting in a patch for the
freeDIAMETER source code that contains the necessary Attribute Value Pairs (AVPs) and
application definitions for this interface. With these contributions, the traffic offloading

2

mechanism described in this thesis was able to be integrated in works involving an on-going
PhD thesis.

Results from this thesis were published in the paper "Using SDN and Slicing for Data
Offloading over Heterogeneous Networks Supporting non-3GPP Access", with the authors
Flávio Meneses, Rui Silva, David Santos, Daniel Corujo and Rui L. Aguiar, submitted to the
Institute of Electrical and Electronics Engineers (IEEE) PIMRC 2018 Conference.

This thesis also resulted in a journal submission entitled "An Integration of Slicing, NFV
and SDN for Mobility Management in Corporate Environments" with the authors Flávio
Meneses, Rui Silva, David Santos, Daniel Corujo and Rui L. Aguiar, submitted to the
Transactions on Emerging Telecommunications Technologies journal.

The architecture implemented and evaluated in this thesis is currently being used in
our research group as the basis for advanced services that are framed with 5G deployments,
contributing to on-going papers and research projects.

This thesis was presented at the 25th Seminar of Rede Temática de Comunicações Móveis
(RTCM) 2018. Contributions were also made to the "Mobilizador 5G" project through
participation in audio conference meetings.

1.4 Document Structure

The remainder of this thesis is organized as follows: chapter 2 presents the relevant 3GPP
standards for the LTE mobile network, for LTE-WLAN aggregation and for future 5G
standards as well as related work in the area of EPC virtualization, traffic offloading techniques
and key enablers for future 5G deployments. Chapter 3 presents the design considerations
for the deployment of the proposed architecture. Chapter 4 presents the architecture’s
implementation details such as hardware and software that were used as well as configurations
needed. Chapter 5 validates the architecture by testing it in terms of throughput, latency,
attachment time and traffic offloading capabilities. In parallel with the result presentation, a
result analysis is performed. Finally, chapter 6 presents final remarks such as contributions
and future work.

3

CHAPTER 2
Key Enabling Technologies and

State Of The Art

The following chapter presents specifications and related work. It is not a complete standard
explanation but an explanation focusing on the points that were relevant during the execution
of this thesis.

2.1 3GPP Evolved Packet System (EPS)

The EPS is composed by the access network, LTE or Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) and by the core network, EPC. The first release of EPS specifications,
release 8, by 3GPP was completed in 2008 and has been the basis for the first LTE equipments.
The main motivations behind LTE were to have a low complexity, Packet Switched (PS)
optimized system which would satisfy the user demand for higher data rates and Quality of
Service (QoS) while keeping in mind a demand for cost reduction, both CAPEX and OPEX
by the network operators. The last set of specifications for the EPS was release 14, initially
released in 2014. A high level representation of the EPS is presented in figure 2.1.

MME

S-GW P-GW

HSS

PCRF

External
Networks/
Operator
Services

S6a

S11 Gx

Rx

S5/S8S1-U

S1-MME

SGi

Control-Plane

eNB

LTE-Uu

UE

E-UTRAN EPC

Data-Plane

Figure 2.1: Simple Evolved Packet System Diagram

5

The EPC (core network) is the brain of the EPS. It performs user access control, manages
mobility, allocates Packet Data Network (PDN) addresses to UEs, is the gateway for data plane
traffic and enforces QoS policies between other functions. The access network is composed by
a network of eNBs which provide coverage for LTE clients. All data plane traffic is transported
in bearers (see section 2.1.8.1) and the control plane interface between the UE and the core
network is accomplished with the use of Non-Access Stratum (NAS) signalling [3].

Different vendors propose their solutions for EPS and EPC deployment in telecommunica-
tion operators. Moreover, for research and experimental purposes, other small scale solutions
are available. OAI1 implements a fully 3GPP compliant open-source eNB and a basic EPC.
The team actively maintains the project and is currently evolving their implementation into
5G’s New Radio (NR). srsLTE2 also implements the entire EPS as open-source with an
implementation of the eNB and a basic lightweight EPC. Another implementation of the
EPC is OpenEPC3. This is a more complete implementation of the EPC but it is not an
open-source solution. The following sub-sections illustrate the different components of the
mobile network.

2.1.1 Evolved NodeB (eNB)

The eNB is the main identity in the access network and it interfaces the radio access with the
network access. The eNB stores a one-to-one mapping between the E-UTRAN Radio Access
Bearer (E-RAB) and the S1 bearer [4], relaying packets from the air interface to the EPC. As
for radio capabilities defined by 3GPP (i.e., LTE-Uu interface), they are presented in table
2.1.

1Openairinterface: http://www.openairinterface.org/
2srsLTE: https://github.com/srsLTE
3OpenEPC: https://www.openepc.com/

6

Channel Bandwidths (MHz) 1.4
3
5
10
15
20

Duplex Schemes
Frequency Division Duplex (FDD)

Time Division Duplex (TDD)
Modulation Types

Quadrature Phase Shift Keying (QPSK)
16-Quadrature Amplitude Modulation (QAM)
64-QAM

Access Schemes
Orthogonal Frequency Division Multiple Access (OFDMA)
(Downlink)

Single Carrier Frequency Division Multiple Access
(SC-FDMA) (Uplink)

Table 2.1: eNB radio capabilities

2.1.2 Mobility Management Entity (MME)

The MME is the main control plane entity and the main functions it performs fall into two
major categories:

1. Bearer related functions and
2. Connection management functions

Bearer related functions include establishment, maintenance and release of bearers. Connection
management functions include the establishment of the connection and security association.
The MME processes the NAS signalling between the UE and the core network which is
responsible for idle-mode UE tracking and paging procedures. Other MME functions include:

• P-GW and S-GW selection;
• MME selection for handovers with MME change;
• Tracking area list management;
• Authentication and Authorization;

2.1.3 Home Subscriber Server (HSS)

The HSS is the entity that contains subscription and location information for each user. It is
a concatenation of Home Location Register (HLR) and Authentication Center (AuC) from
previous 3GPP versions. During a user’s authentication, the HSS is responsible for providing
the MME with the authentication vectors so that it can verify if a certain user can be given
permission to connect to the PDN.

2.1.4 Serving Gateway (S-GW)

The S-GW terminates the user plane interface towards E-UTRAN. For this reason, it serves
as a mobility anchor point for inter-eNodeB and intra-3GPP handovers without S-GW change.

7

There is a single S-GW serving each UE associated with the EPS at a given time. Regarding
to inter-eNB handovers, this entity is also responsible for notifying the source eNB after the
S-GW switches the path and it will no longer receive traffic for the handed over UE. When a
UE is in idle mode, it is the S-GW’s responsibility to buffer downlink packets and to initiate
a network triggered service request procedure via MME. Other S-GW functions include:

• Lawful Interception;
• Packet Routing and forwarding;
• Transport level packet marking in the Uplink (UL) and Downlink (DL) (based on metrics

of the associated EPS bearer);
• Accounting for inter-operator charging.

2.1.5 Packet Data Network Gateway (P-GW)

The P-GW provides connectivity to E-UTRAN capable UEs and it is the last point of contact
for outgoing and the first point of contact for incoming data plane traffic. The P-GW can also
provide connectivity to UEs connected to non-3GPP access networks. The main functions of
this entity are [5]:

• Per user packet filtering (by e.g. deep packet inspection);
• Lawful interception;
• UE Internet Protocol (IP) address allocation;
• Transport level packet marking in the UL and DL;
• UL and DL service level charging, gating control and rate enforcement;
• Rate enforcement based on the pre-configured APN-Aggregate Maximum Bit Rate

(AMBR) subscription parameter stored in the HSS;
• DL rate enforcement based on the accumulated Maximum Bit Rates (MBRs) of the

aggregate of Service Data Flows (SDFs) with the same Guaranteed Bit Rate (GBR)
Quality of Service Class Identifier (QCI).

• DHCP (server and client) functions;
The P-GW also performs UL/DL bearer binding, i.e., the procedure for associating a bearer
in the access network to an SDF and it also provides an anchor for data plane traffic during
mobility between 3GPP and non-3GPP access. The SDF detection, policy enforcement and
flow based charging are supported by the Policy and Charging Enforcement Function (PCEF),
which is a functional entity that resides in the P-GW [6]. 3GPP standards define that S-GW
and P-GW can be implemented as separated entities or as a single entity, dropping the S5/S8
interface [7] (see section 2.1.7).

2.1.6 Policy and Charging Rules Function (PCRF)

The PCRF is the policy and charging control element. It is responsible for providing QoS
rules (QCI and bit rates) to the PCEF that decides how a data flow will be treated, ensuring
consistency with the user’s subscription profile [8].

2.1.7 Interface Description

Table 2.2 presents the protocols used in each of the interfaces shown in figure 2.1.

8

Protocol Interface
S1 Application Protocol (S1AP)/NAS S1-MME
DIAMETER S6a
GTPv2 (Control Plane) S11
GTPv1 (User Plane) S1-U; S5/S8

Table 2.2: Protocols used by the EPS interfaces

2.1.7.1 S1AP/Non-Access Stratum (NAS)

S1AP provides signalling between the eNB and EPC. S1AP main functions include initial
context transfer function, UE capability information, mobility functions, paging and NAS
signalling transport between the UE and MME [9]. S1AP uses Stream Control Transmission
Protocol (SCTP). The NAS protocol is defined in the TS 24.301 technical specification by
3GPP [3] and it forms a logical connection between the UE and the MME. The NAS messages
are relayed by the eNB between the LTE-Uu and the S1-MME interfaces. The main functions
of the NAS are the support of mobility of the UE and the support of session management
procedures to establish and maintain IP connectivity between the UE and a P-GW.

2.1.7.2 DIAMETER

The diameter base protocol is intended to provide an AAA framework for applications such as
network access and IP mobility [10] and it uses either Transmission Control Protocol (TCP)
or SCTP as the transport protocol. The DIAMETER base protocol provides the ability to
exchange messages and deliver AVPs (all delivered data is in the form of AVPs), capabilities
negotiation, error notification and extensibility. This extensibility allows the addition of new
applications, commands and AVPs. The S6a DIAMETER application is defined in [11].

2.1.7.3 GPRS Tunnelling Protocol (GTP)

The GTP is a tunnelling protocol that has a version for the control plane (gtpv2) and a version
for the data plane (gtpv1). Both versions run on top of the User Datagram Protocol (UDP)
transport protocol. GTP tunnels are used to separate traffic into different communication
flows. A GTP tunnel between two nodes is identified in each node with a Tunnel Endpoint
Identification (TEID), an IP address and a UDP port number. All data plane traffic is carried
inside a GTP tunnel and there is at least one tunnel (for the default bearer) for each attached
UE. The interface between S-GW and P-GW is either called S5 in a non-roaming scenario or
S8 in a roaming scenario where usually the S-GW is in the visited network and the P-GW is
in the home network.

2.1.8 Connection Procedures

The UE connection procedures are presented in the following sub-sections. The main com-
ponent of the Data Plane (DP), the EPS bearer, is presented as well as authentication and
attachment procedures that result in the establishment of an EPS bearer.

9

2.1.8.1 The EPS Bearer

The EPS bearer is a data flow between the UE and the P-GW, i.e., it is a tunnel for data plane
traffic. The logical E2E EPS bearer is composed by an E-RAB bearer (LTE-Uu interface) a
S1-U bearer and a S5/S8 bearer which are illustrated in figure 2.2. At the time of attachment, a
default EPS bearer is created for an UE and it stays active until the EPS session is terminated.
This default bearer has a default QCI and maximum permitted bit rate. When the UE needs a
QoS policy that it is not satisfied by the default bearer (e.g. the flow needs GBR), a dedicated
bearer is created for that traffic flow. The same procedure is used in the P-GW when a DL
data flow needs specific QoS. The traffic filtering for each dedicated bearer is done using
Traffic Flow Templates (TFTs) and that filtering can be an IP address or a specific port [7].

UE eNB S-GW P-GW

EPS Bearer

S1-U Bearer S5/S8
BearerRadio Bearer

A
pp

lic
at

io
ns

PDN

IP Flows

Figure 2.2: Logical EPS Bearer and its physical counterparts

2.1.8.2 UE Authentication

The authentication of an UE in the EPS is performed with a key based procedure shared
between the UE and the MME. At the attachment time, after the MME knows the identity of
the UE (through its IMSI), it requests an authentication vector to the HSS. The authentication
vector is composed by the following keys:

• Integrity Key (IK)
• Ciphering Key (CK)
• Expected Response (XRES)
• Authentication Token (AUTN)
• Random Number (RAND)

Upon receiving the authentication vector, the MME sends AUTN and RAND to the UE.
Then, based on the keys received, the UE calculates a response and sends it back to the MME.
The MME then compares the received response with the XRES and, if the parameters match,
the authentication was successful. All this key exchange between the UE and the MME is
performed through the NAS protocol (see section 2.1.7).

2.1.8.3 UE Attachment Procedure

The attachment procedure for an EPS client is depicted in figure 2.3. (A) is the OSI Layer
2 (L2) attachment procedure while (B) is the OSI Layer 3 (L3) attachment procedure.

10

eNodeB MME HSS S-GW P-GW

(1) Attach Request

(2a) Identity Request

(2b) Identity Response
(3a) Auth Info Request

(3b) Auth Info Answer
(4a) Authentication Request

(5a) Security Mode Command

(5b) Security Mode Complete

(4b) Authentication Response

(6a) Update Location Request

(6b) Update Location Answer

(7a) Create Session Request

(7b) Create Session Response

(8a) Create Session Request

(8b) Create Session Response

(9a) Initial Context
Setup Request

(9b) Initial Context Setup
Response

(10) UE Capability Indication

(11a) Modify Bearer Request

Default Bearer

(11b) Modify Bearer Response
(12) Attach Complete

(A)

(B)

UE

Figure 2.3: EPS Attachment Procedure

1. The eNB forwards the Attach Request received by the UE in a S1-MME control message
(initial UE message) indicating an attach and PDN connectivity request.

2. The MME sends an Identity Request to the UE to request the IMSI. The UE responds
with Identity Response (IMSI).

3. After knowing the UE’s identity, the MME uses the HSS to retrieve the authentication
vectors via the Authentication Information Request DIAMETER message.

4. MME sends an Authentication Request to the UE with the authentication parameters
AUTN and RAND. The UE responds with RES.

5. MME checks if the received RES corresponds to the one retrieved from HSS in the
authentication vector and, in case it does, the MME sends a security mode command
towards the UE to configure the security parameters for UE’s communication. The UE
then responds with a security mode complete.

6. The MME updates the location of the UE in the HSS.
7. The L2 attachment is now complete and the MME initiates the L3 attachment procedure

by sending a Create Session Request to the S-GW in order to obtain an IP address for
the UE.

8. The S-GW creates the context related to the UE, creates a GTP tunnel endpoint and
forwards the message to the P-GW which in turn allocates an IP address for the UE
to use in this PDN connection, creates the context for the UE, creates a GTP tunnel

11

endpoint and sends the Create Session Response to the S-GW with the allocated IP
which in turn updates the UE context. After receiving the TEID from the P-GW the
S5/S8 bearer is now established. The S-GW then creates a GTP tunnel endpoint for
the S1-U bearer and sends a Create Session Response to the MME.

9. The MME updates the context for this UE and sends the information sent by the S-GW
to the UE via an Initial Context Setup Request message. The eNB, upon receiving the
response to the message by the UE, creates a GTP tunnel endpoint for the S1-U bearer
and communicates the TEID to the MME.

10. The UE communicates to the MME the radio access capabilities it possesses.
11. The MME updates the UE context and it sends a Modify Bearer Request towards the

S-GW. When the S-GW receives information of the eNB S1-U tunnel endpoint, the
S1-U bearer is now established and the UE has connectivity to the PDN. The Modify
Bearer Response indicates the success of the attachment.

12. The MME sends the Attach Complete message to eNB. After this, the bearer is
established.

2.2 3GPP to Non-3GPP Traffic Offloading Techniques

Wi-Fi, based on the IEEE 802.11 standard [12] is one of the most wide-spread unlicensed
radio access technology. To take advantage of this technology, the first approach to offload
data to WLAN might be to carefully deploy access points in a certain area. In the survey
[13] the benefits of offloading traffic are analysed. By using AP deployment and modelling
it, it is shown that, by deploying 10 APs/km2 the average user throughput can increase by
300 percent while the number of users experience service outage of some sort decrease by 15
percent compared with the case where only cellular networks are used. Simulation results
show that it is possible to lower the amount of cellular traffic by 20 to 70 percent, depending
on the number of deployed APs in a certain area. On the other hand, a very high AP density
could degrade the performance of the WLAN due to mutual interference and the optimal AP
deployment layout today might not be optimal tomorrow.

3GPP defines ways to provide connectivity to users through the EPC via non-3GPP access
networks either by aggregating LTE and WLAN traffic at the core network or at the access
network. Various methods have been proposed by 3GPP and the main are as follows:

1. Access Network Discovery and Selection Function (ANDSF);
2. LTE-WLAN Aggregation (LWA);
3. LTE-WLAN radio-level integration with IP security tunnel (LWIP).

Other offloading mechanisms where also specified like Local IP Access (LIPA) (which requires
the use of a Home eNodeB (HeNB)) and IP Flow Mobility (IFOM) which requires a new
PDN connection resulting in IP address modification and breakage of data flows not allowing
for a seamless offload. For the reasons presented, these two methods are not deepened but
the reader can refer to [14] and [15] for more information and comparison. Other offloading
mechanisms are proposed by academia and industrial partners based on novel concepts of
SDN and are presented in the following subsections.

12

2.2.1 Access Network Discovery and Selection Function (ANDSF)

An architecture to interconnect LTE with WLAN is defined for trusted and un-trusted WLAN
access however, it is up to the operator to decide if a certain non-3GPP access network is to
be treated as trusted or untrusted. For the purpose of this thesis only the architecture for
trusted WLAN access is mentioned. This support for WLAN connectivity is added to figure
2.1 and it is illustrated in figure 2.4 [16]. Analysing the figure, we can see that some interfaces
and functional blocks were added in order to support this feature. In this architecture, the

MME

S-GW P-GW

HSS

PCRF

External
Networks/
Operator
Services

S6a

S11 Gx

Rx

S5/S8S1-U

S1-MME

SGi

Control-Plane

eNB

LTE-Uu

UE

Data-PlaneAAA

WI-FI AP

S2a

WI-FI

SWx

STa

Gxa
ANDSF

S14

Figure 2.4: EPS with WLAN Support

functional block AAA shall support Extensible Authentication Protocol-Authentication and
Key Agreement (EAP-AKA) based authentication. This key exchange based authentication is
similar to the authentication process described in section 2.1.8.2. Interface STa connects the
trusted non-3GPP access with the 3GPP AAA Server and transports access authentication,
authorization, mobility parameters and charging-related information in a secure manner.
Interface SWx [17] is used to transport authentication (authentication vectors), subscription
and PDN connection related data. This interface is implemented as a DIAMETER application.
Interface Gxa provides transfer of QoS policy information from PCRF to the non-3GPP access.
S2a interface is the data plane interface which carries, using a tunnelling protocol, the UE
data flows from the WLAN AP to the P-GW.

In this architecture the ANDSF [18] is the entity responsible for providing the UE with
the policies for access network selection (e.g. list of Service Set Identifiers (SSIDs)) and traffic
routing, assisting the UE in network discovery and handover process. So, ANDSF can be
seen as the trigger mechanism for LTE to WLAN offloading. Despite the policies provided
by the ANDSF, they have a lower priority than user preferences. With this information, the
UE constructs a prioritized list of selected WLAN access networks and will try to connect
to the one that has the highest priority, performing a 3GPP based authentication. After
the successful authentication, a tunnel is established between the P-GW and the WLAN

13

AP for the transport of data plane traffic. After the UE is connected to a PDN through
non-3GPP access, an handover between 3GPP and non-3GPP occurs. The P-GW triggers a
3GPP bearer release or bearer deactivation, disabling the communication flow of the UE via
LTE interface. In this type of handover the traffic flows are completely moved from 3GPP to
non-3GPP access.

2.2.2 LTE-WLAN Aggregation (LWA)

The LWA can be implemented in a non-collocated scenario for a non-ideal backhaul or in a
collocated scenario for an ideal backhaul. As can be derived by the name, in the collocated
scenario the LTE and WLAN access point are integrated in a single entity. This architecture
is not able to utilize the already deployed APs so a non-collocated scenario is also defined.
Figures 2.5 and 2.6 present the protocol architecture for both scenarios.

Figure 2.5: LWA for Collocated Scenario [4]

Figure 2.6: LWA for Non-Collocated Scenario [4]

From the figures we can identify three types of bearers in use: the already mentioned LTE
bearer, a split LWA bearer and a switched LWA bearer. The split LWA bearer enables a UE
to use both access technologies simultaneously, allowing for a peak data throughput equal to
the sum of the peak data throughput of each of the links. In the switched LWA bearer only
one access technology is used by the UE at a given time, switching the flows entirely from
LTE to WI-FI, releasing LTE resources, or vice versa.

14

2.2.3 LTE-WLAN radio-level integration with IP security tunnel (LWIP)

In this type of licensed and unlicensed spectrum integration no modifications are required to
the WLAN infrastructure. In this architecture the IP packets transferred between the UE
and the LWIP-Security Gateway (SeGW) are encapsulated using IPsec in order to provide
security for WLAN packets. The protocol architecture for this integration is illustrated in
figure 2.7. The LWIP-SeGW can be collocated jointly with the eNB or non-collocated. The

Figure 2.7: LWIP Architecture [4]

two major differences between the two presented aggregation methods at the access network
are in the layers at which the flows are aggregated. While in LWA the flows are aggregated
at the Packet Data Convergence Protocol (PDCP) layer, in LWIP the flows are aggregated
at the IP layer. Both architectures standardized by 3GPP require changes to the eNB since
these procedures are RAN controlled and transparent to the core network, using the already
established LTE bearers. These architectures are able to reuse the security provided by the
cellular network.

[19] presents a comparison between the LWA and LWIP defined by 3GPP and presented
earlier with the conclusion that, in terms of data plane traffic, LWA outperforms LWIP by
achieving approximately 40 percent higher data rates and 25 percent higher network capacity
at any load.

2.2.4 New Approaches

The Seamless Internetwork Flow Mobility (SIFM) architecture for flow mobility is presented in
[20] and it is compared with the seamless data offloading based on Proxy Mobile IPv6 (PMIPv6)
[21] through simulations. The PMIPv6 is a protocol based on the Mobile IPv6 [22] and it
is intended to provide network-based IP mobility management to a mobile node without

15

requiring the participation of the mobile node in any IP mobility related signalling. The
architecture presented in the paper supports selective flow offloading using a concept similar
to that of SDN (presented in section 2.4.3). When the SIFM and the PMIPv6 flow mobility
architectures are compared with a scenario where no offloading occurs, the SIFM shows
improvements of 13.86 percent in terms of delay, 29.05 percent in terms of throughput and
11.33 percent in terms of packet loss while the PMIPv6 shows improvements of 7.96 percent,
19.52 percent and 7.83 percent respectively.

[23] proposes an architecture integrated in the EPC to seamlessly offload traffic between
LTE and WLAN with EAP-AKA authentication. In this paper the authors propose to
implement two functional blocks for the WLAN control. One of these blocks is the Access
Zone Control. This functional block is similar to a cache memory for user authentication.
When a certain user is offloaded to WLAN it is authenticated using the EAP-AKA. After
a successful authentication, the authentication parameters are stored so that when a user
moves from the current WLAN AP to another (within the same zone), the authentication
parameters are already stored, lowering the authentication delay. Another functional block
proposed in the paper is the Access Network Query Protocol-Data Server which is responsible
for WLAN AP selection and QoS provisioning. The proposed architecture was simulated and
the results indicate that, with this architecture, the handover delay between APs is reduced by
around 58 percent, assuming that the offloading from LTE and WLAN had occurred earlier
[23].

The cited related work presents interesting propositions to interconnect and offload traffic
between LTE and WLAN however, there are very few practical implementations of the
proposed architectures since the majority is validated through simulations. Despite the efforts,
a physical testbed for the entire EPS system with support for WLAN offloading is yet to
appear.

2.3 The road to 5G

2.3.1 5G Core Architecture

In recent years, 5G has been drawing attention worldwide as an enabler for a more efficient
and cost effective network, allowing for new business opportunities. Standardization efforts
have been made by 3GPP which produced release 15 of specifications related to the 5G NR
[24] and Core Network [25]. The 5G system was defined to support data connectivity and
services enabling deployments to use techniques such as NFV and SDN. It shall leverage
service-based interactions between control plane NFs. To allow independent scaling, evolution
and flexible deployments 5G separates the data plane from the control plane. To enable
flexible and efficient network slicing the network function design is highly modular. Other key
principles of 5G were to support a unified authentication framework, minimize dependencies
between the access and core networks and converge 3GPP and non-3GPP access. The 5G
network architecture standardized by 3GPP for non-roaming scenario is presented in figure 2.8.
In order to avoid the repetition of interfaces between NFs, service based interfaces are used

16

within the control plane. Using this approach there is only one interface in each NF and all
interfaces are interconnected using a bus like connection. Related to the authentication, it is
performed using 5G-Authentication and Key Agreement (AKA) for 5G access and EAP-AKA
for non-3GPP access.

Figure 2.8: 5G System Architecture [25]

On the lower half of the figure is the data plane while the control plane is represented
at the top half. Like in the EPS, the traffic flowing between the Access Network (AN) and
the gateway is encapsulated using GTP. The logical signalling between the UE and the 5G
core network uses specific 5G NAS protocol such as NAS-AM for Access and Mobility related
signalling and NAS-SM for Session Management signalling. 5G standards also provide a way
to support multi-access edge computing, a technology that enables operators or 3rd party
services to be hosted closer to the UE’s access point, achieving an efficient service delivery
through reduced E2E latency and load on the transport network. This can be achieved by
selecting a UPF that is close to the UE and then executing traffic steering from the UPF
to the local data network using the N6 interface. A functional description of the network
functions is now provided.

2.3.1.1 Access and Mobility Management Function (AMF)

The AMF is the termination of the RAN control plane interface (N2) and it can be seen as
the equivalent of theMME from the EPS. The main functions it performs are as follows:

• Termination of NAS, NAS ciphering and integrity protection;
• Management of Registration, Connection, Reachability and Mobility;
• Provide Transport for Session Management messages between the UE and the SMF;
• Access Authentication and Authorization;
• Security Context Management;
• EPS bearer ID allocation for interworking with EPS;
• Support for authentication of UEs connected over Non-3GPP InterWorking Function

(N3IWF) (non-3GPP access, see section 2.3.2);

17

2.3.1.2 Session Management Function (SMF)

The SMF can be seen as the evolved control part of the S-GW and the P-GW and part of
the MME. The main functions it performs are:

• Session Management, i.e., Session Establishment, modify and release, including tunnel
maintenance between the UPF and the AN node;

• UE IP address allocation and management;
• DHCPv4 and v6 functions;
• Address Resolution Protocol (ARP) proxy as specified in [26];
• Configure traffic steering at UPF for traffic routing;
• Control and coordination of charging data collection at UPF;
• Termination of SM parts of NAS messages;
• Downlink data notification;
• Roaming functionality.

2.3.1.3 User Plane Function (UPF)

The UPF is the gateway for traffic originating in the AN and can be seen as an equivalent
entity to the EPS data plane of S-GW and P-GW combined. Like in the EPS, the traffic is
carried from the AN to the UPF inside a GTP tunnel. The main functions performed by this
network function are:

• Anchor point for intra-/inter-Radio Access Technology (RAT) mobility;
• External Packet Data Unit (PDU) session point of interconnection to the Data Network

(DN);
• Packet Routing, Forwarding and inspection.
• Policy Enforcement;
• Lawful Interception;
• Traffic usage reporting;
• UL/DL rate enforcement, QoS marking in DL and SDF to QoS flow mapping;
• DL packet buffering and data notification triggering;

2.3.1.4 Policy Control Function (PCF)

The PCF is equivalent to the PCRF from the EPS. It is responsible for accessing the
subscription information relevant for policy decisions in a Unified Data Repository (UDR)
that will be provided to the control plane functions to enforce them. This policy framework
governs the network behaviour.

2.3.1.5 Unified Data Management (UDM)

The UDM has some functionalities inherited from the HSS. It is responsible for the generation
of 3GPP AKA authentication credentials, handle user identification, access authorization
based on subscription data and subscription management. The UDM can interwork with a
separate entity called UDR that will be used for storing data while the UDM only performs
the application logic and does not require internal user data storage.

18

2.3.1.6 Application Function (AF)

The AF interacts with the core network in order to provide services. It enables application
influence on traffic routing, provides access to the NEF and interacts with the policy framework
for policy control.

2.3.1.7 Network Exposure Function (NEF)

The NEF enables 3GPP NFs to expose their capabilities and events to other NFs through
an API. As an example, network functions exposed capabilities and events may be securely
exposed for edge computing applications. The NEF also handles the masking of network
and user sensitive information to external AFs according to the network policy. It translates
between information exchanged with the AF and information exchanged with the internal
network function.

2.3.1.8 Network Slice Selection Function (NSSF)

This network function is related to the new concept of network slicing. The NSSF is responsible
for selecting the set of network slice instances serving the UE as well as determining the AMF
set to be used to serve the UE.

Since the 5G core network is an evolution of the EPC, table 2.3 presents a mapping
between some of the 4G and 5G network functions. Some other network functions were
introduced for the first time in 5G and thus are not presented in the table.

4G 5G
MME AMF
MME, S-GW and P-GW (Control Plane (CP)) SMF
P-GW and S-GW DP UPF
PCRF PCF
HSS UDM

Table 2.3: Mapping between 4G and 5G network functions

2.3.2 WLAN interworking

Taking into consideration the need to interconnect non-3GPP access (e.g. WLAN) into the
5G core, 3GPP defines a way to do so with the additions presented in figure 2.9. The handover
from 3GPP to non-3GPP access at the core network level imposes that the complete PDU
session is transferred to the access network in question, releasing the previously established
session. In the architecture, a new network function was added called N3IWF. This network
function supports the IPsec tunnel establishment with the UE by terminating the IPsec
protocols with the UE over the NWu interface and relays (over N2) the information needed
to authenticate the UE and authorize the access to the 5G Core Network. Other N3IWF
functions include:

• Relaying UL and DL control plane NAS signalling between the UE and AMF;
• Handling of N2 signalling from SMF (relayed by AMF) related to PDU sessions and

QoS;

19

Figure 2.9: 5G System Architecture with support for non-3GPP access [25]

• Establishment of IPsec security association to support PDU session traffic;
• Relaying UL and DL data plane packets between UE and UPF by de-

capsulation/encapsulation of packets for IPsec and N3 tunnelling.
• Enforcing QoS corresponding to N3 packet marking;
• N3 data plane packet marking in the UL;
• Local mobility anchor within untrusted non-3GPP access networks using MOBIKE [27].

2.4 Key Enablers in 5G

The following section presents the fundamental technologies for 5G deployments and for the
execution of this thesis. It presents the technologies that aim to solve the problems identified in
the introduction. NFV, combined with virtualization technologies, aim to solve the hardware
dependency problem of network functions by allowing the functions to be deployed in general
purpose hardware. Furthermore, NFV allows the deployment of network functions in an
automated way by using the NFV orchestrator. In terms of network flexibility, SDN provides
flexibility to networks by increasing the degree of programmability. The following sub-sections
present these technologies in more detail.

2.4.1 Virtualization Environment

A virtualization environment, also called cloud environment, enables the execution of multiple
isolated parallel services notwithstanding the fact that the execution of a particular service
does not influence other services running on the same hardware. In terms of hardware, a
cloud is typically composed by:

• An amount of compute nodes: Machines with a high number of computing capacity
(high number of cores) and Random Access Memory (RAM).

• An amount of storage nodes: Machines with high storage capacity (high capacity
hard-drives).

• An amount of network nodes: Machines with emphasis in the networking hardware since
these nodes will process the traffic of the VMs.

20

In a virtualization environment there is an abstraction layer for the hardware provided by the
Virtual Infrastructure Manager (VIM) which aggregates the available hardware into resource
pools that are called here Virtual Compute, Virtual Storage and Virtual Network. The virtual
compute resource pool translates in the available Central Processing Unit (CPU) cores and
RAM of all the compute nodes combined. As for the virtual storage resource pool it aggregates
the total capacity available across all the storage nodes. The virtual network resource pool
comprises all the virtual networks that can be created. This enables the infrastructure manager
to easily increase the capacity of a cloud in terms of either compute, storage or network since
from a user point of view, it only translates in an increase of the amount of available resources
in the resource pool. The VIM then enables the creation of VMs that use the resource pools,
independently of the infrastructure layout. Figure 2.10 depicts the layout of a virtualization
environment. Some available VIMs include Openstack4, Proxmox5 and openVIM6. In recent

Infrastructure

Compute 2

Compute 1

...

Compute X

Storage 2

Storage 1

...

Storage Y

Network 2

Network 1

...

Network Z

Virtual Compute Virtual Storage Virtual Network

Virtual Machines

Virtual Infrastructure Manager

Figure 2.10: Infrastructure Virtualization

years Openstack is becoming the de-facto standard VIM for telecommunication deployments.

2.4.2 Network Function Virtualisation (NFV)

The NFV reference architecture, standardized by the European Telecommunications Standards
Institute (ETSI) [28], is depicted in figure 2.11. In the figure we can identity the VIM that
was described in the previous section, the Virtual Network Functions (VNFs) and the VNF
MANO. Current networks are composed by several different network functions which are
chained or connected in a certain way in order to provide a network service or functionality
using vendor specific hardware. NFV enables an operator to drop the dependencies it has

4Openstack: https://www.openstack.org/
5Proxmox: https://www.proxmox.com/en/
6openVIM: https://github.com/nfvlabs/openvim

21

Figure 2.11: NFV Reference Architecture [28]

with the proprietary hardware being able to deploy the NFs in a virtualization environment
using NFV.

In relation to legacy networks, NFV introduces some differences in how network function
provisioning is realized by decoupling software from hardware, enabling the use of general
purpose hardware and enabling software and hardware to evolve independently. In this way,
the deployment of NFs can be performed in an automated way and it allows for a dynamic
operation in the sense that an operator could scale a NF up or down in function of the load
on the network.

2.4.2.1 NFV Management and Orchestration (MANO)

The NFV MANO was introduced to properly manage VNFs, enabling network automation.
From figure 2.11 we can identify the NFV MANO which is composed by the Network Function
Virtualization Orchestrator (NFVO), by the Virtual Network Function Manager (VNFM)
and by the VIM (already presented in the previous section). These functional blocks of the
NFV reference architecture are needed to manage and orchestrate the relationship between
the VNFs and the the Network Function Virtualization Infrastructure (NFVI) as well as to
manage the interconnection of VNFs and/or Physical Network Functions (PNFs) in order
to realize a Network Service (NS). The NFVO is responsible for orchestrating the resources
needed for the VNFs in the VIM and to manage the life-cycle of NS. On the other hand,
VNFM is responsible for the life-cycle management of VNFs [29].

22

2.4.2.2 Virtual Network Function (VNF)

A VNF is a software implementation of a NF that can be deployed in a virtualization
environment. The deployment of a VNF is performed according to a Virtual Network Function
Descriptor (VNFD) that contains the properties of the VNF such as number of Virtual Network
Function Components (VNFCs), resources utilized by each one or connected interfaces. A
functional view of a VNF according to ETSI is depicted in figure 2.12. A VNF can be deployed

Figure 2.12: Functional view of a VNF [30]

in a single VM or it can be composed by several VMs called VNFCs that are interconnected
to form the desired VNF. These VNFCs can be parallelizable or non-parallelizable which
means that, a parallelizable VNFC can have multiple parallel VNFCs performing the same
task. Also, the VNFCs may need to maintain their state either by maintaining it internally
(stateful VNFC) or by using an external state (VNFC with externalized state) [30].

ETSI specifies in [28] that the interfaces between VNFCs do not need to obey a stan-
dardization and can rather be implemented in a way that maximizes the VNF performance.
Only the external interfaces have to be implemented according to standards. The VNF as
standardized by ETSI has the SWA-1 interface that interconnects the VNF with the outside.
This interface must obey standards, e.g., identify the VNF in question as a S-GW from the
EPS. In this case the SWA-1 interfaces must be implemented according to the standards of
the S1-U, S11 and S5/S8 interfaces. The SWA-2 is the internal connection between VNFCs
and, as already stated, does not need to be implemented according to any standards and
can be implemented in a way that offers maximum performance in the considered use case.
Interface SWA-3 is the connection between the VNF and the VNF Manager. This manager is
responsible for the life cycle of the VNF being responsible for its instantiation, scaling, etc.
The SWA-4 interface is used to communicate with the Element Manager (EM) for runtime
management and resource utilization monitoring. Finally, the SWA-5 interface is used for

23

operations related to the underlying hardware such as compute, storage and/or networking
operations.

Another important feature of NFV is its scaling capability. In this context, scaling refers
to either adding (or removing) a parallel VNFC to the VNFCs already in use (scale in/out)
or adding (or removing) resources to the VNFCs already deployed (scale up/down). The
scale in/out requires that a VNFC is parallelizable and it is able to scale both stateless and
stateful VNFCs as well as VNFCs with external state. Typically, three basic scaling models
are defined for both scaling up or down:

• Auto Scaling, where the VNF Manager triggers the scaling of a VNF based on the
monitoring of resource utilization of the VNF’s VMs and according to the rules defined
in the VNFD. This type of scaling supports scaling in/out and up/down.

• On-demand Scaling, in which a VNF instance or it’s EM monitors the state of the
VNFCs and triggers a scaling operation by explicitly requesting to the VNF Manager
to add or remove VNFC instances or increase or decrease the resources available for one
or more VNFCs.

• Scaling based on a management request that can be manually triggered.

2.4.3 Software Defined Networking (SDN)

SDN is a mechanism that separates the control plane from the data plane (also known as
forwarding plane) and centralizes it, providing a high level of network programmability and
allowing for a dynamic network (re)configuration. By centralizing the control plane it becomes
possible to have a full view of the network and configure the forwarding elements of the Data
Plane as needed. The technical document [31] provides a description of the layers of SDN
and an architecture terminology. Despite several SDN planes being mentioned on the cited
document, for the purpose of this thesis, the focus will be on the Application Plane, CP,
Management Plane (MP) and DP. Figure 2.13 provides a visual representation of this planes
and the relation between each other.

Control Plane

Data Plane

Application Plane

CP
Southbound
Interface

Northbound Interface

APP 1

APP 2

Forwarding Plane Operational Plane

Management Plane

MP
Southbound
Interface

Figure 2.13: Main SDN Planes (adapted from [31])

24

2.4.3.1 Data Plane

The Data Plane is composed by network devices (either physical or virtual) that receive packets
and perform one or more functions on them. This entity can also have some applications such
as ARP, instead of sending such traffic to the Control Plane. The Data Plane has two sub
planes: The forwarding plane which is responsible for packet processing and the Operational
Plane which is responsible for providing information related to the status of the device to the
Management Plane and receive and execute commands received by it. The Operational Plane
terminates the MP Southbound Interface and it’s implementation is vendor specific. As an
example, OVS7, which is an OpenFlow switch, uses it’s own protocol for this interface, the
OVSDB protocol.

Regarding to the forwarding functions of the Data Plane, when the Data Plane device
receives a packet it can forward the received packet, drop it or modify the headers or payload.
Other actions that can be performed by the Data Plane elements include filtering of packets,
meters, markers and classifiers. These actions are performed based on rules previously
provided by the Control Plane using the CP Southbound Interface. Several protocols are
used for this interface such as ForCES [32], YANG model [33] and OpenFlow [34], which has
become one of the most commonly deployed protocols, being defined by the Open Network
Foundation (ONF)8. Because the OpenFlow protocol is the most used and it was relevant for
the execution of this thesis it is explained in more detail in the following section.

2.4.3.1.1 OpenFlow Protocol.
The OpenFlow protocol [34] defines the architecture of an OpenFlow Logical Switch as well
as the messages exchanged between the Control Plane and the Data Plane entities. Figure
2.14 shows the main components of an OpenFlow switch. This switch is composed by one or
more flow tables, a group table and one or more OpenFlow channels to communicate with an
external controller (Control Plane). The flow tables contain flow entries that consist of:

• Match Fields that will be compared against the fields of a received packet;
• Counters that monitor parameters such as the number of packets that matched that

particular flow entry;
• A set of instructions to apply to matching packets. These instructions can be to modify

the packet’s fields, drop the packet, send the packet to the controller or forward the
packet.

The OpenFlow protocol allows a controller to add, update and delete flow entries in flow
tables both reactively and proactively. The typical packet processing flow in an OpenFlow
switch is as follows:

1. The received packet is compared against the flow entries match fields contained in the
first flow table. If there is a match, the corresponding instructions are executed. The
flow entries are prioritized so, if there is more than one flow entry match, the flow entry
with the highest priority is the one that prevails. The standard action to perform for a

7Openvswitch: https://www.openvswitch.org/
8Open Network Foundation: https://www.opennetworking.org/

25

Figure 2.14: Main Components of an OpenFlow Switch [34]

packet that does not match any flow entry is to send it to the Control Plane entity for
further processing.

2. If there are instructions that modify the packet’s fields, they are executed.
3. After the modifications are made to the packet it can now be forwarded or sent to

another flow table where the execution described here is repeated.

2.4.3.2 Control Plane Entity

The Control Plane is responsible for providing the Data Plane with the information on how
to process certain packets or traffic flows. It is the entity that has a knowledge about the
network topology and makes decisions on how packets must be treated, pushing then this
information to the Data Plane. Control Plane functionalities usually include:

• Topology discovery and maintenance;
• Packet route selection;
• Path failover mechanisms.

The Control Plane receives information from applications in the Application Plane through the
Northbound Interface. Examples of protocols used for the Northbound interface are RESTful
APIs and Network Configuration Protocol (NETCONF). The two leading approaches for this
interface are the use of RESTful interfaces and Routing Control Platform (RCP) [35] interfaces.
Both follow a client-server model and use eXtensible Markup Language (XML) or JavaScript
Object Notation (JSON) to pass messages. The Control Plane is where the SDN controller
resides. Several controller implementations are available such as OpenDaylight (ODL)9,
ONOS10 and RYU11.

9OpenDayLight: https://www.opendaylight.org/
10ONOS: https://onosproject.org/
11RYU: https://osrg.github.io/ryu/

26

2.4.3.3 Management Plane

The Management Plane is the entity responsible for monitoring, configuring and maintaining
Data Plane devices. It can bring up ports or shut them down. The Management Plane
can help the Control Plane with load balancing operations by providing information about
resource utilization.

2.4.3.4 Application Plane

This is the plane where services and applications that use network services run. There can be
multiple simultaneous applications sharing the same underlying network. The Control Plane
provides to applications an abstraction layer of the underlying network topology.

2.4.4 Virtualizing the EPC

Having by base the 4G network, efforts are being done to evolve it towards a more flexible and
cost-effective network, paving the way for 5G. In [36] the authors propose a way to re-design
the LTE EPC using two approaches: SDN-based EPC and NFV-based EPC. While the former
implements the control plane functions of the EPC as applications on top of an SDN controller
(installed on a physical machine) and an SDN switch for the data plane functions, the latter
implements the functions as software modules running on VMs hosted in a private cloud. To
test the implementation the authors used a simulated eNB and UE and concluded that the
SDN-based approach has a better performance when coping with high data plane traffic but
has a lower control plane performance when compared with the NFV-based approach, since
the communication with the SDN controller becomes a bottleneck.

In [37] the authors make a qualitative study of an SDN-based EPC in a cloud environment
using an approach where all EPC functions are virtualized and another approach where
only the control plane is instantiated in the cloud leaving the packet forwarding functions
to SDN capable switches. Even though the paper presents the expected behaviour of both
implementations, saying that the KPIs degrade as more EPC functions are virtualized, it fails
to present real implementation values.

[38] revises the control plane of the current LTE EPC using SDN in order to enable
on-demand connectivity service, focusing on resiliency and load-balancing. In the mentioned
work, the authors replaced the standard S1-MME and S11 interfaces with the openflow
protocol. However, no practical implementation or testing was performed.

[39] presents a comparison between a software only EPC and a SDN powered EPC focusing
in the Total Cost of Ownership (TCO) of each approach. In the software only approach all
EPC functions are implemented as VNFs in a datacenter while in the SDN approach the
control plane is also realized in the datacenter. However, the data plane is implemented using
SDN switches, alleviating the packet processing from the datacenter. Results from this paper
show that realizing EPC gateway functions entirely in software will be much more expensive
compared to the approach where SDN switches are used. Similarly, [40] also compares these
two approaches to EPC virtualization but focusing instead on the impact of the virtualization
in terms of network load. The simulated results show that in a pure NFV implementation the

27

packet processing delay increases with the increase of the number of attached bearers while
in the SDN approach, using SDN switches, the packet processing delay is not related to the
number of active bearers and it is around 9 times lower when there are 10k active bearers.

Another approach to virtualize the evolved packet core using NFV and SDN instead of
the traditional distributed IP routing control is presented in [41]. In this work an extension
to the OpenFlow 1.2 protocol is proposed in order to support GTP TEID routing extensions.
No practical results are presented in this paper.

All these efforts in virtualizing the EPC are an important step ahead for 5G deployments
which aim to be enabled by the technologies discussed in the referenced papers. The mentioned
works also show that the control and data plane separation benefit the performance of the core
network since one can implement these functions with different performance characteristics
(signalling processing vs packet processing oriented). Many of the studies performed show
that a hybrid approach for the virtualization (control plane in the cloud, data plane using
SDN switches) of the EPC benefits the users in terms of latency and spares the datacenters
of the packet processing. However, this approach requires specific hardware and not only the
general purpose servers.

2.5 Summary

This chapter presented the state of the art of the evolution from 4G to 5G networks and new
approaches for traffic offloading techniques. It presented standardization efforts by 3GPP
related to both 5G networks and traffic offloading as well as other works that attempt to evolve
the EPC into a network that is closer to 5G. Although various works propose mechanisms
to evolve the EPC, few physical implementation test-beds are available. Furthermore, the
chapter also presented the key technologies that are likely to drive the future 5G deployments.
These technologies, when combined, allow a telecommunications operator to deploy a more
flexible, reconfigurable and cheaper network. They also provide a platform for new services
and business opportunities. The next chapter presents the design of the proposed architecture
to evolve the EPC using the key technologies presented in this chapter.

28

CHAPTER 3
Architecture Design

The following chapter presents the decisions made in terms of the architecture’s design. The
goal is to take the EPC as defined by 3GPP, separate the control plane from the data plane
using SDN, deploy the architecture in a cloud environment, add support for Wi-Fi and 3GPP
to non-3GPP traffic offloading.

3.1 Overview

Figure 3.1 presents the overall architecture design. A separation between the LTE control
plane, the Wi-Fi control plane and the data plane was designed following the SDN main
planes presented in section 2.4.3. Related to the S-GW and the P-GW, these entities were
grouped into a single entity called the S/P-GW. Several reasons contributed for this decision:

• 3GPP specifies that the usage of the S-GW and the P-GW as separate entities or as a
single entity is vendor specific (see section 2.1.5).

• This architecture is not intended to be used in a roaming scenario as defined by 3GPP,
although it can also support this scenario if the S/P-GW from the Home-Public Land
Mobile Network (H-PLMN) is connected to the one in the Visitor-Public Land Mobile
Network (V-PLMN). Although this scenario is possible, it does not follow the 3GPP
standards.

• By suppressing the S5/S8 interface, the attachment time is reduced since there is one
less interface introducing latency in the attachment messages.

• Lastly, regarding to the data plane, there is also one less functional block for the traffic
to traverse thus reducing the E2E latency viewed by the UE.

On the downside, by grouping two functional entities, two possible points of failure are being
grouped into a single one which can be a downside.

In the presented architecture the UE needs to be equipped with a USIM card containing
an IMSI. This IMSI will be used to identify the user in both the LTE and Wi-Fi networks.

In the next sections, the different architecture entities and planes will be described.

29

SDN Component

Data Plane

Wi-Fi Control Plane

MME

S/P-GW-U

HSS

External
Networks/
Operator
Services

S6a

S1-U

S1-MME

Control-Plane

eNB

LTE-Uu

UE

Data-Plane

AAA

WI-FI AP

Wi-Fi

S/P-GW-C

SDN-CTRL

DHCP
Server

CP
Southboud
Interface

MP
Southboud
Interface

LTE Northbound Interface

STa

STa-DHCP

SDN-Info

Wi-Fi Northbound Interface

SWx

S11

S2a

SGi

Wi-Fi CP Southbound
Interface

LTE Control Plane

Figure 3.1: Full architecture design

3.2 Introducing SDN

The first step in the evolution of the EPC is to introduce SDN into the EPC defined by 3GPP
and presented in section 2.1, thus providing a separation between the data plane and the
control plane. Figure 3.2 maps some network functions presented in figure 3.1 in the SDN
planes from section 2.4.3. Related to the design of the SDN in the architecture, a decision
was made to group the CP and the MP into a single entity thus providing an abstraction
layer for the application plane where only one Northbound interface is needed for LTE control
and another for Wi-Fi control. The design specifications and considerations for each one of
these planes is presented in the following sub-sections.

30

Control Plane/Management Plane

Data Plane

Application Plane

CP/MP
Southbound
Interface

Northbound Interfaces

S/P-GW-C DHCP-SERVER

SDN-CTRL

S/P-GW-U Wi-Fi-AP

Figure 3.2: Mapping between the main SDN planes and the architecture’s network functions

3.2.1 Data Plane

As for the data plane of the architecture, it’s main component is the S/P-GW-U which is, in
this architecture, an SDN switch coupled with the ability to establish GTP tunnels to the
eNB and GRE tunnels to the Wi-Fi AP. The tunnel information shall be received by the
SDN controller via the MP Southbound Interface. Furthermore, the S/P-GW-U must forward
traffic to/from external networks or operator services. Before the traffic leaves towards external
networks or operator services, Network Address Translation (NAT) has to be performed on it.
These forwarding rules are received by the SDN controller in the CP Southbound interface.
The S/P-GW-U network function was designed in order to be as simple as possible, being
that all the control is performed by the SDN controller. Another important feature that the
S/P-GW-U needs to have is the ability to dynamically change the forwarding rules received
by the controller so that it can perform traffic steering, for instance. The Wi-Fi AP will also
have an SDN enabled switch that will assist in the tunnelling needed to carry UE traffic from
the AP to the S/P-GW-U. This switch is also controlled by the SDN controller however, only
the CP Southbound interface is needed since the AP’s initial configurations are processed at
the time of deployment.

3.2.2 LTE Control Plane

For the LTE control plane, the network functions HSS and MME should function just as
specified by 3GPP. The only network function that needs some modification is the S/P-GW-C.
In this network function, a method needs to be implemented to provide information, through
the Northbound Interface, to the SDN controller about UEs connecting to the LTE network.
This information includes:

• IMSI;
• Access Technology (e.g., LTE);
• UE IP address;

31

• eNB IP address;
• TEID for both endpoints of the tunnel.

The SDN controller then converts the information received in the LTE Northbound interface
into forwarding rules and MP Southbound interface commands.

3.2.2.1 Attachment Procedure

Figure 3.3 illustrates the attachment procedure for an LTE UE. The procedure is the same

eNodeB MME HSS S/P-GW-C SDN-CTRL

(1) Attach Request

(2a) Identity Request

(2b) Identity Response

(3b) Auth Info Answer(4a) Authentication Request

(5a) Security Mode Command

(5b) Security Mode Complete

(4b) Authentication Response

(6a) Update Location Request

(6b) Update Location Answer

(7a) Create Session Request

(7b) Create Session Response

(9) UE Capability Indication

(8a) Initial Context Setup
Request

Default Bearer

S/P-GW-U

(3a) Auth Info Request

(8b) Initial Context Setup
Response (10) Modify Bearer Request

(14) Modify Bearer Response

(11a) Add UE LTE
(12a) Create GTP Tunnel Req

(12b) Create GTP Tunnel Resp

(13a) Install Forwarding Rules

(13b) ACK
(11b) 200 OK

(15) Attach Complete

UE

Figure 3.3: Attachment procedure for a LTE client in the proposed architecture

as presented in section 2.1.8.3 up until step 10. So, from step 10 onwards, the procedure is as
described.
11. The S/P-GW-C sends to the controller the UE’s information that includes the access

technology, the IMSI, the UE’s IP address, the IP address of the eNB and the TEID
for both tunnel endpoints;

12. The SDN controller receives this information and creates a GTP tunnel (if it is not
already created) according to the eNB IP address and the TEIDs provided by the
S/P-GW-C;

13. After the tunnel is created, the SDN controller installs the forwarding rules in the SDN
switch, directing the downlink traffic to the tunnel created in the previous step;

14. After the S/P-GW-C receives indication that the SDN procedure is complete it sends
the Modify Bearer Response towards the MME.

3.2.3 Wi-Fi Control Plane

As for the Wi-Fi control plane, the DHCP server, in addition to the behaviour specified in
[42], needs to have a mechanism that associates the IMSI of the user to the MAC address of

32

the Wi-Fi interface of the UE. Since the DHCP messages do not provide such information,
this information will be received by the AAA server via a newly implemented interface called
SDN-Info. This information allows the DHCP server to associate the IP address to the
user’s IMSI. At the time of attachment, when an IP address is allocated for the UE’s Wi-Fi
interface, the DHCP server is responsible for providing the SDN controller with the following
information about the UE:

• IMSI;
• Access Technology (e.g., Wi-Fi);
• Interface MAC address;
• UE IP address;
• Wi-Fi AP IP address.

The TEID for Wi-Fi will be allocated by the SDN controller. This information is sent to
the SDN controller using the Wi-Fi Northbound Interface which converts this information
into forwarding rules and MP Southbound Interface commands. So, in the AAA server, in
addition to what it is specified by 3GPP, a mechanism needs to be implemented to provide
the necessary information to the DHCP server (i.e., an association between the IMSI and the
MAC address).

3.2.3.1 Attachment Procedure

Figure 3.4 illustrates the attachment procedure of a UE connecting to the Wi-Fi network.

Wi-Fi AP AAA HSS DHCP-SRV SDN-CTRL

(1) Access Request

(3) Access Challenge

(4a) Access Request

(2b) Multimedia-Auth
Answer

(4b) Access-Accept

GRE Tunnel

S/P-GW-U

(2a) Multimedia-Auth
Request

(8a) Add UE Wi-Fi
(9a) Create GRE Tunnel Req

(9b) Create GRE Tunnel Resp

(10a) Install Forwarding Rules

(10b) ACK

(8b) 200 OK

(5) IMSI/MAC Association

(6a) DHCP Discover

(6b) DHCP Offer

(7a) DHCP Request

(7b) DHCP ACK

(11a) Install Wi-Fi AP Forwarding Rules

(11b) ACK

UE

Figure 3.4: Attachment procedure for a Wi-Fi client in the proposed architecture

The attachment procedure is executed as described below.
1. Upon receiving an attachment request from the UE, the Wi-Fi AP sends an Access

Request to the AAA with the user identification (i.e., IMSI);
2. The AAA server sends a Multimedia-Auth Request to the HSS with the user’s IMSI

in order to retrieve the EAP-AKA authentication vector. The HSS calculates the

33

authentication vector and answers to the AAA server with a Multimedia-Auth Answer.
This authentication vector is the same as the one presented in section 2.1.8.2;

3. After retrieving the authentication vector, the AAA server sends an Access Challenge
to the Wi-Fi AP with the AUTN and RAND (refer to section 2.1.8.3);

4. With the received AUTN and RAND the UE calculates the RES parameter and sends
it to the AAA server through an Access Request message. This message also contains
the user’s IMSI, the UE’s MAC address of the Wi-Fi interface and the IP address of
the Wi-Fi AP. The AAA server verifies if the RES parameter is equal to the XRES
and, in case it does, the AAA server sends an Access Accept message towards the UE
indicating a successful attachment. After this, the L2 attachment is complete;

5. After the AAA server verifies that the RES matches the XRES, it sends a message to
the DHCP server with the user’s IMSI, the MAC address of the Wi-Fi interface and
the Wi-Fi AP IP address. These parameters will allow the DHCP server to associate a
MAC address to the IMSI and Wi-Fi AP IP address in a later stage of the attachment;

6. The UE now needs to request an IP address. This is done by sending a DHCP Discover
message to the DHCP server. This message contains the MAC address of the UE’s
Wi-Fi interface. The DHCP server then allocates an IP address for the UE and sends it
back through a DHCP Offer message. Besides the allocated IP address, this message
also contains the subnet mask, lease time, i.e., the time until the UE has to make a new
DHCP request (refer to [42]), the assigned Domain Name System (DNS), the interface
Maximum Transfer Unit (MTU) and the broadcast address;

7. The UE sends a DHCP Request with the information contained in the DHCP Offer
message. The DHCP responds with a DHCP ACK. From this point on, from a UE’s
point of view, the L3 attachment is complete;

8. At the same time that the DHCP server sends the DHCP ACK message, it also sends a
message to the SDN controller (though the Wi-Fi Northbound interface) with the UE’s
information (access technology, IMSI, MAC address, UE IP address and Wi-Fi AP IP
address);

9. With the received information, the SDN controller allocates a TEID for the tunnel that
will be created between the Wi-Fi AP and the S/P-GW-U. Then, it sends a Create
GRE Tunnel request message to the S/P-GW-U through the MP Southbound Interface
to create the necessary tunnel;

10. After the tunnel is created, the SDN controller installs the necessary forwarding rules in
the S/P-GW-U to handle the UE’s packets;

11. The SDN controller also installs forwarding rules in the Wi-Fi AP in order to send UE
traffic through the respective tunnel. After this step, the data plane is ready to handle
packets belonging to the UE.

3.2.4 SDN Controller

The SDN controller is the main control entity of the proposed architecture. In this architecture,
the SDN controller is composed by two controller applications: one that will store the
information received by both the S/P-GW-C and the DHCP server about a user equipment’s

34

network interfaces thus having a representation of the UE, and another, called context updater,
that implements a mechanism that enables to seamless offload traffic from LTE to Wi-Fi
(see section 3.2.4.1). This mechanism consists in creating a Wi-Fi slice for a user, redirecting
selective flows to the created slice. The mechanism dynamically instantiates a non-3GPP
slice (i.e., Wi-Fi) by creating in an AP a new SSID to optimally serve the traffic flows via
Wi-Fi (e.g., when congestion is detected on the mobile network). This results in an offloading
mechanism transparent to the user. A simplified slicing mechanism was used for experimental
purposes, only to validate the offloading mechanism since more complex slicing mechanisms
fall out of the scope of this thesis. In the controller, the identifier of the UE is the IMSI. The
first application acts as a virtual representation of the UE (virtual User Equipment (vUE)),
allowing it to partake and contribute to the optimization of the network. The vUE is able to
assist the network control by exchanging information on behalf of it’s physical counterpart
which is not aware of the vUE. This new entity receives messages from other network
entities/functions about the UE’s context and instantiates and/or updates the respective vUE.
In order to maintain the user’s Quality of Experience (QoE), vUEs consider the requirements
of the services being used, allowing a flow based offloading mechanism adopted for each type
of user. Despite the E2E slices requiring radio slicing as well, this mechanism focuses on how
the use of a vUE empowers the dynamic instantiation of slices adapted to user requirements.
The design of the context updater application is presented in the following section.

3.2.4.1 Offloading Procedure

Since the control and data plane were decoupled, the vUE periodically verifies data traffic of
its physical counterpart in the S/P-GW-U. When the user starts generating traffic, depending
on the offloading policies, the vUE triggers the offloading by requesting a Wi-Fi slice with the
necessary QoS. After the slice is created (where a Wi-Fi network is dynamically created for
the user) the UE detects and attaches to it. During attachment, the vUE is updated with the
IMSI, access technology (e.g., Wi-Fi) and IP address. With the UE attached to both Wi-Fi
and LTE networks, the context updater triggers the flow redirection. The LTE to Wi-Fi
traffic offloading procedure is illustrated in figure 3.5 and described next.

1. After the UE connects to the LTE network, following the procedure presented in section
3.2.2.1, the vUE controller application periodically verifies the S/P-GW-U flow attributes
such as number of packets that matched the flow entry, total number of bytes of the
packets that matched the flow entry, etc. Analysing this information, a trigger can
be programmed that starts event 1. In this implementation, the trigger refers to a
throughput threshold for a given flow, i.e., when the throughput of that traffic flow
exceeds a given threshold the event is triggered;

2. When the event is triggered, the vUE controller application sends a message to the
Wi-Fi AP to trigger the Wi-Fi slice creation process. This message contains the desired
SSID for the slice to be created. When the Wi-Fi AP receives this message, it creates a
new SSID. When the UE detects the new SSID it will connect to the Wi-Fi network
following the procedure described in section 3.2.3.1. The event 2 corresponds to the

35

UE eNodeB Wi-Fi AP SDN-CTRL S/P-GW-U Headend

Flow via LTE

event 1

LTE Attachment Procedure

Wi-Fi Attachment Procedure

event 2

Flow via Wi-FI

(1a) Flow Stats Request

(1b) Flow Stats Response

(2) Create Slice

(3a) Route Update

(3b) ACK

Figure 3.5: LTE to Wi-Fi traffic offloading procedure

moment that the Wi-Fi attachment is complete and the vUE knows that the UE is
connected to both LTE and Wi-Fi;

3. After the event 2 is triggered, the vUE updates the route in the S/P-GW-U in order to
steer the traffic destined to the eNB to the Wi-Fi AP, switching the flow from licensed
LTE spectrum to the unlicensed Wi-Fi spectrum (seamless handover).

Finally, when the UE disconnects from the Wi-Fi, current flows are dynamically redirected
to the LTE by updating the flow tables in the S/P-GW-U.

3.3 Introducing NFV

Referring to figure 3.1, all the functional blocks of both LTE and Wi-Fi control plane and
the SDN controller will be implemented in a virtualization environment as VNFs. A decision
had to be made on the possibility to implement these blocks using VMs or containers. In the
end, VMs where chosen due to providing a better isolation from the other functional blocks.
Another factor that led to this decision was that with VMs it is possible to have a different
kernel in each one in contrast with containers, where the host’s kernel is shared. In this thesis,
the VNFs were deployed manually but it is possible to produce a VNFD that will allow an
orchestrator to deploy all the necessary VNFs to provide the network service in question
(provide connectivity to UEs via both LTE and Wi-Fi interfaces).

3.4 Summary

This chapter has provided an overview of the design of the system to be implemented. Some
design decisions were presented as well as the signalling for UE attachment for both LTE and

36

Wi-Fi and for LTE to Wi-Fi traffic offloading. The next chapter presents a more detailed
insight of each of the functional blocks by presented the implementation details.

37

CHAPTER 4
Solution Implementation

The following chapter presents implementation details for the proposed architecture as well as
the tools used to implement the various functional blocks during the execution of this thesis.

4.1 Overview

Figure 4.1 illustrates the implementation of each functional block in the datacenter as well
as the virtual networks that were created. The VIM used for the cloud environment was

Radio Access Network (RAN)

Datacenter (Core Network)

External
Networks/
Operator
Services

eNB

LTE-Uu

UE

WI-FI AP

Wi-Fi

External Network

CP Internal Network

S/P-GW-U

AAADHCP Server

HSS+MME

S/P-GW-C

oai-spgw
Ryu SDN CTRL

isc-dhcp-server OVS

Wi-Fi SDN
Interface

freeradius-server

diameter-agent OVS OVSDBoai-mmeoai-hss

openairinterface5g

hostapd OVS

SGi-LTE Network

SGi-Wi-Fi Network
vRouter

SGi

vUE Context
Updater

Figure 4.1: Architecture implementation in Openstack cloud environment

Openstack1. Openstack has caught the attention of mobile operators and it is becoming the
1Openstack: https://www.openstack.org/

39

de-facto standard for the VIM in telecommunication networks using NFV. Besides, Openstack
was the VIM already deployed at our in-house datacenter at the Instituto de Telecomunicações,
Telecommunications and Networks group2.

4.1.1 Virtual Networks and Interfaces

Looking at figure 4.1, we can identify 4 Openstack virtual networks. The External Network is
connected to the physical network outside Openstack and it is the network where VMs are
connected in order to access external networks. The CP Internal Network was created and it
is the virtual network that will carry the control plane traffic between each of the functional
blocks (i.e., VMs). Finally, we can identify the SGi-LTE Network and the SGi-Wi-Fi Network.
These networks are used to carry data plane traffic and are presented in more detail in section
4.5. By default, the Openstack security groups block all inbound packets towards the VMs.
For that fact, security group rules had to be defined to allow inbound protocols such as UDP,
TCP, SCTP (IP protocol 132) and GRE (IP protocol 47). In addition to the protocols used
by the interfaces described in sections 2.1.7 and 2.2.1, table 4.1 presents the protocols used in
each of the architecture specific interfaces.

Protocol Interface
REST LTE Northbound Interface

Wi-Fi Northbound Interface
Openflow 1.3 CP Southbound Interface

Wi-Fi CP Southbound Interface
OVSDB MP Southbound Interface
UDP SDN-Info
DHCP STa-DHCP

Table 4.1: Protocols used by the architecture specific interfaces

4.1.2 Virtual Machine (VM) Specifications

Looking at figure 4.1, each one of the blocks inside the datacenter represents a VM. The
resources attributed to each VM, their Operating System (OS) and kernel version are presented
in table 4.2.

VM #CPUs RAM (GB) OS Kernel
HSS+MME 1 2 Ubuntu Server 16.04 LTS 4.4.0-121-lowlatency
S/P-GW-C 1 2 Ubuntu Server 16.04 LTS 4.4.0-121-lowlatency
AAA 1 2 Ubuntu Server 16.04 LTS 4.4.0-121-lowlatency
DHCP
Server

1 2 Ubuntu Server 16.04 LTS 4.4.0-121-lowlatency

S/P-GW-U 2 4 Ubuntu Server 16.04 LTS 4.3.6-040306-lowlatency

Table 4.2: Resources used by the architecture’s VMs

2Telecommunications and Networks group: http://www.it.pt/tn-av

40

4.2 Radio Access Network (RAN)

The RAN, formed by the eNB in the 3GPP RAN and by the Wi-Fi AP in the non-3GPP
RAN is the interface between the air interface and the core network. The implementation of
these two RAN components is presented in the following subsections.

4.2.1 Evolved NodeB (eNB)

To implement the eNB the open-source project Openairinterface5g3 was used. This project
implements a fully 3GPP compliant eNB and it can be deployed using SDR boards and
general purpose hardware.

4.2.1.1 Hardware Setup

Figure 4.2 presents a scheme of the hardware used for the eNB deployment. For the antenna,
a LP0965 antenna4 was used. In order to allow the use of only one antenna, i.e., the same
antenna sending and receiving data, a band 7 duplexer5 was used. As for the SDR board, an
USRP B2106 was used and it was connected to the desktop via Universal Serial Bus (USB)
3.0. The desktop used was a HP Z240 tower equipped with an Intel Core i7-7700-K (4 Cores)
and 32 GB RAM. The connections between the antenna, the duplexer and the SDR board
where made with SMA-SMA semi-rigid RG402 coaxial cables. Because the eNB needs to

SDR BoardDuplexer DesktopAntenna USB 3.0 S1-MME/S1-U

Figure 4.2: eNB Implementation Scheme

perform real time functions, the desktop needs to be configured accordingly. First, the Ubuntu
Desktop 16.04.4 LTS was installed with the 4.4.0-124-lowlatency kernel. Then, in the system’s
Basic Input/Output System (BIOS), all power management features were disabled (sleep
states and c-states) as well as CPU frequency scaling. Also, hyperthreading was disabled
in the BIOS. After the BIOS is properly configured, the kernel needs to be configured to
disable c-states and p-states and to set the governor to performance. All these configurations
force the CPU to be at it’s maximum frequency all the time thus reducing the response time
compared with a situation in which the frequency had to be raised on demand. This way, the
CPU is as responsive as possible.

4.2.1.2 Open Air Interface (OAI) Software Setup

To implement the eNB, the master branch of the openairinterface5g project was used. The
installation process starts with cloning the git repository to the eNB machine (Desktop in

3Openairinterface5g: https://gitlab.eurecom.fr/oai/openairinterface5g
4LP0965 Antenna: https://www.ettus.com/product/details/LP0965
5Band 7 Duplexer: https://open-cells.com/index.php/opencellsband7duplexer/
6USRP B210: https://www.ettus.com/product/details/UB210-KIT

41

figure 4.2). The repository includes automated scripts to install the necessary dependencies
and to compile the code itself. Using these scripts the OAI eNB, called lte-softmodem, is
installed. The next step is to configure it using one of the sample configuration files. These
files contain several configuration parameters. The most relevant are presented in table 4.3.
Also, in this configuration file, the MME IP address is defined as well as the network interfaces

Parameter Value
Tracking Area Code (TAC) 1
Mobile Country Code (MCC) 208
Mobile Network Code (MNC) 93
Frame Type FDD
Evolved Universal Terrestrial Radio Access (EUTRA) band 7 (2.6 GHz)
Bandwidth 20 MHz (100 Physical Re-

source Blocks (PRBs))

Table 4.3: eNB Configuration

to be used for both the S1-MME and the S1-U interfaces.

4.2.2 Wi-Fi Access Point (AP)

The Wi-Fi AP is intended to behave as an operator AP. For the deployment of the Wi-Fi AP
a PC Engines apu2c47 was used with a wle600vx8 network card connected via mini Peripheral
Component Interconnect (PCI). This machine has an AMD GX-412TC CPU and 4 GB RAM.
In this system, the Ubuntu server 14.04.5 LTS was installed with the 4.4.0-31-generic kernel.
Figure 4.3 illustrates the various functional blocks and how they interconnect inside the AP.
First, OVS 2.9.90 was installed in the machine and an OVS bridge was created (br0). Then,

Hostapd isc-dhcp-relay

br0
(OVS)

STa/S2a
Wi-Fi CP Southbound Interfaceeth0

gre0

gre-dhcp

dh
cp

-ta
p

wlan0

Figure 4.3: Wi-Fi AP architecture

the physical port eth0 was added to the bridge. To maintain connectivity in this physical port,
the MAC and IP addresses of the eth0 interface was configured as the MAC and IP addresses
of br0. Also, br0 was configured as the gateway interface for this machine forcing all packets

7APU: https://www.pcengines.ch/apu2c4.htm
8wle600vx Network Card: https://www.pcengines.ch/wle600vx.htm

42

leaving or arriving to the system to pass through br0. Two GRE vPorts were also created:
gre0 and gre-dhcp, where gre0, configured with the remote IP address of the S/P-GW-U, is a
tunnel port that will carry data plane traffic for the connected UEs to the Wi-Fi interface,
and gre-dhcp, which is configured with the remote IP of the DHCP Server, will be used to
receive DHCP offers from the DHCP server. Furthermore, vPort dhcp-tap is added to br0
and it will be used to send DHCP offers and acknowledgements to the DHCP relay. Finally,
br0 is configured to be controlled by the SDN controller residing in the VM S/P-GW-C. To
setup this machine as a Wi-Fi AP, Host access point daemon (Hostapd)9 version 2.1 was
installed. This user space software is capable of turning normal network interface cards into
access points and authentication servers. After installation, Hostapd was configured to use
wlan0 (the network interface for the wireless network card) as the wireless interface and to
perform authentication via a remote RADIUS authentication server (the AAA server). The
hostapd was configured to use the 802.11g protocol that uses a radio frequency of 2.4 GHz.
When a user tries to attach to the Wi-Fi network, the authentication packets travel from
the wlan0 interface to the default gateway interface, i.e., br0, which forwards the packets
towards the AAA server. The returning packets are then forwarded to the wlan0. After
the L2 attachment procedure is complete, the L3 attachment starts with a DHCP discover.
DHCP packets are broadcast packets and, since there is already a DHCP server present in
the network which the AP is connected, a DHCP relay had to be used to relay the DHCP
packets between the wlan0 interface and the VM with the DHCP server. The relay used was
the isc-dhcp-relay10 daemon. The DHCP relay was configured to listen to the wlan0 and
dhcp-tap interfaces and with the IP address of the DHCP server’s VM. When the relay gets
a broadcast DHCP packet it relays it to the DHCP server which means that the packet is no
longer a broadcast packet. The DHCP responses from the server are received in the gre-dhcp
interface and are forwarded to the dhcp-tap interface and consequently to the wlan0 interface.
After the attachment is complete, the UE’s packets start flowing from the wlan0 interface
to the gateway interface (br0). This bridge will receive flow configurations from the SDN
controller in order to forward UE packets from the wlan0 to the gre0 interface and vice versa.

4.2.3 UE Setup

In order to connect an UE to the proposed architecture, a programmable USIM card is required.
The programmable USIM used was a sysmocom’s sysmoUSIM-SJS111. To program the USIM
card the Gemalto IDBridge K3012 programmer was used. The software used to program the
USIM card was pcscd13 and pysim14. When the UE is configured with information compatible
with the information in table 4.3, the UE is ready to connect to the network. Despite being
able to connect to the network, further configurations must be done in the UE for it to be
able to access the internet. One of which is to define an APN. Table 4.4 summarizes the

9Hostapd: https://wiki.gentoo.org/wiki/Hostapd
10dhcrelay: http://manpages.ubuntu.com/manpages/xenial/man8/dhcrelay.8.html
11USIM Card: http://shop.sysmocom.de/products/sysmousim-sjs1-4ff
12USIM Card Programmer: http://www.cryptoshop.com/gemalto-idbridge-k30-usb-shell-token-v2.html
13PCSCD: https://linux.die.net/man/8/pcscd
14pysim: https://github.com/osmocom/pysim

43

relevant APN information configured in the UE. After setting the APN it is possible to use

Parameter Value
APN oai.ipv4
APN protocol IPv4
Bearer LTE
MCC 208
MNC 93

Table 4.4: UE APN configuration

mobile data to access the internet.
Because the MTU of the network that connects the eNB to the datacenter (our facilities

network) was of 1500 bytes and the default MTU of the UE is also 1500 bytes, packets with a
size of over 1450 bytes would be lost. That happened because the packets that travel between
the eNB and the S/P-GW-U at the datacenter are encapsulated in a GTP tunnel which adds
a 50 bytes header to the packet. This causes the packets with size over 1450 bytes to be
fragmented and, because UDP has no packet reassembly capabilities, the received packet size
and the size indicated in the packet’s headers differed, causing the packet to be dropped. In
order to solve this issue, and knowing that increasing the MTU of our facility’s network was
not an option since it required the reconfiguration of several pieces of equipment, the only
option was to lower the MTU of the UE’s LTE interface. However, Android (the UE OS
used in the execution of this thesis) does not allow this interface configuration with a stock
system. So, in order to lower the UE’s MTU the UE had to be rooted, allowing the access to
the network interfaces. Then, using a terminal emulator for Android, the MTU of the LTE
interface was lowered and the UE accessed the Internet without packet losses due to packet
fragmentation.

4.3 LTE Control Plane

The LTE control plane includes all the necessary functional blocks to control the various
network components of the EPC. An implementation description is now provided.

4.3.1 HSS+MME

This functional entity (VM) incorporates two network functions: HSS and MME. Figure
4.4 illustrates the internal architecture of the HSS+MME VM. The MME connects to
the HSS through the localhost interface. Both of these functions where developed in the
openair-cn15 project. The MME was installed as is from the git repository. Similarly to the
openairinterface5g project, this project also provides some automated installation scripts. The
installation of the MME starts with the installation of the required dependencies. After that,
the code was compiled and installed and the MME was configured with the IP address of
the S/P-GW-C. When it comes to the HSS it could not be installed as cloned from the git

15openair-cn: https://gitlab.eurecom.fr/oai/openair-cn

44

HSS+MME

oai-mme oai-hss

C
P

 In
te

rn
al

 N
et

w
or

k

E
xt

er
na

l N
et

w
or

k

localhost

Figure 4.4: HSS+MME Architecture

repository since it did not support the SWx interface so, support for this interface had to
be added. The HSS uses freeDIAMETER16, an open-source project implementation of the
DIAMETER base protocol. In this project, new applications and their AVPs are defined as
dictionaries. Since the base freeDIAMETER does not include support for the S6a interface,
OAI implemented the S6a dictionary and changed the diameter base code via a patch. The
same method was used during the execution of this thesis, where the SWx interface dictionary
was defined following the 3GPP specifications [17] and a patch was produced. Then, the OAI
HSS source code was modified by duplicating the S6a lines but using the SWx parameters
and freeDIAMETER dictionary instead. Regarding to user subscription data, the HSS uses
MySQL17 databases.

4.3.2 S/P-GW-C

The S/P-GW-C VM is composed by the OAI S/P-GW and an SDN controller (RYU SDN
Controller). These two modules run in the same VM but could also be separated into
two distinct VMs, where there would be a slight increase in the LTE attachment time,
corresponding to the additional time for the messages to travel between the two VMs. Figure
4.5 illustrates the internal architecture of the S/P-GW-C VM. The following subsections
present implementation details for both the OAI S/P-GW and the SDN controller.

S/P-GW-C

SDN Controller oai-spgw

C
P

 In
te

rn
al

 N
et

w
or

k

E
xt

er
na

l N
et

w
or

k localhost

Figure 4.5: S/P-GW-C Architecture

4.3.2.1 S/P-GW

The OAI S/P-GW source code had to be changed in order to send a REST command to the
SDN controller instead of trying to create a tunnel in the VM’s kernel. In order to achieve
this, a new module (the sdn_rest) was implemented and integrated into the source code. This

16freeDiameter: http://www.freediameter.net
17MySQL: https://www.mysql.com/

45

module was written in C and it is composed by two files: sdn_rest.c and sdn_rest.h. The
header file defines a structure to pass the UE information to the thread that will send the
REST command to the SDN controller. The structure, called ue_info, contains the following
UE information:

• User’s IMSI;
• UE IP address;
• eNB IP address;
• eNB S1-U TEID;
• S/P-GW S1-U TEID.

Regarding to the sdn_rest.c file, it contains the definition of three functions:
• create_gtpv1u_tunnel;
• delete_gtpv1u_tunnel;
• curl_post_data;

The curl_post_data function receives information from the two other functions in the form of
two strings: one string with the Uniform Resource Identifier (URI) of the SDN controller and
another string with the information to be sent. The URI, depending if the UE is attaching or
detaching from the network, can be:

• http://<SDN controller IP>:8080/spgw/ue/lte/add
• http://<SDN controller IP>:8080/spgw/ue/lte/delete

After receiving this information, the function sends it via a REST message to the SDN
controller. The create_gtpv1u_tunnel and the delete_gtpv1u_tunnel functions were defined
as shown in appendix A, section "sdn_rest module". For the create method all the information
contained in the ue_info structure is needed. On the other hand, for the delete method only
the IMSI is required.

After the sdn_rest module was integrated in the openair-cn source code, the source code
of the OAI S/P-GW had to be changed to use the newly implemented module. That was done
in the sgw_handlers.c file. The changes made to the sgw_handlers.c file are represented in
appendix A, section "modifications to the sgw_handlers.c file". The same approach was used
in the function where the GTP tunnel is removed. In addition to the source code changes,
the Makefile had to changed also in order to properly compile the newly implemented module
and to use the required libraries (the sdn_rest module requires the libcurl18 library). With
these changes, the OAI S/P-GW runs as an SDN application (i.e., it runs on the application
plane presented in section 2.4.3).

Figures 4.6 and 4.7 represent the behaviour of the modified functions working together
with the sdn_rest module during attachment and detachment, respectively. The figures only
represent the behaviour of the method that replaces the tunnel creation in the VM’s kernel.

18libcurl: https://curl.haxx.se/libcurl/

46

sgw_handle_sgi_endpoint_updated create_gtpv1u_tunnel

Fill in the ue_info
structure

Create
“create_gtp_tunnel”
Thread with ue_info

(args)

Start Thread
Error

creating
thread?

Extract ue_info from
args

Build URI string
(spgw/ue/lte/add)

Build info string

Send REST to SDN
ControllerPrint error message

YES

NO

Figure 4.6: Modified function behaviour during attachment

sgw_handle_sgi_endpoint_deleted delete_gtpv1u_tunnel

Fill in the ue_info
structure

Create
“delete_gtp_tunnel”
Thread with ue_info

(IMSI)

Start Thread
Error

creating
thread?

Extract IMSI from args

Build URI string
(spgw/ue/lte/delete)

Build info string

Send REST to SDN
ControllerPrint error message

YES

NO

Figure 4.7: Modified function behaviour during detachment

47

4.3.2.2 SDN Controller

The SDN controller was based on the RYU SDN controller. A specific controller application,
written in python, was developed to control the OVS switches contained in the proposed
system. The controller application is divided into two parts: one that acts as a virtualization
of the UE (vUE) and another part that is responsible for the traffic offloading. The traffic
offloading part of the application was jointly developed with an on-going PhD thesis. The
overall application, can be decomposed into three major behaviours:

• REST command handling;
• UE context handling and Flow handling (CP);
• OVS port handling (MP);

When the controller starts running and an OVS switch connects to it, the Datapath Identifier
(DPID) is exchanged. The DPID is the identification of the OVS switch and it is preconfigured.
The flowchart from figure 4.8 represents how the controller handles the initial connection of
an OVS switch. A description of the source code can be found in appendix B. This function

OVS Switch
Connects

Install SPGW Default
Flows

YES

NO

DPID equal to
SPGW_DPID?

DPID equal to
WIFI_AP_DPID?

Send Retrieve Port
list command

Install WIFI AP Default
Flows

DPID equal to
DHCP_DPID?

Install DHCP Server
Default Flows

Unrecognized
Datapath

YES

YES

NO

NO

Figure 4.8: SDN controller behaviour during initial OVS switch connection.

installs the default flows in each one of the OVS switches present in the system at the time they
connect to the controller. The DPID of each OVS switch is pre-configured in the controller’s
configuration file. Looking at figure 4.8 we can see that, when the S/P-GW-U OVS switch
connects to the controller, the controller issues a command to retrieve a list of ports of the
switch. A python dictionary was defined to hold information about the switches’ ports where
the key is the port name and the corresponding value is the port number. Figure 4.9 illustrates
the behaviour of the function that is called when the switch answers with its ports. The

48

function goes through all the ports contained in the message and it fills the dictionary with
the received ports. Also related to switch port management, a function is defined and called

Received
SPGW port list

NO

Retrieve port from
message

Save port to ports
dictionary

Message
contains more

ports?

YES

Stop

Figure 4.9: Behaviour of the Port Description Reply handler

whenever a port in the switch is created or deleted. The function then adds or deletes the
port in the ports dictionary. Figure 4.10 represents the behaviour of the function. Refer to
appendix B for the function’s implementation.

Received Port
Event

NO

Save port to ports
dictionary

A port was
added?

YES

Delete port from ports
dictionary

A port was
deleted?

YES

Exit

Figure 4.10: Behaviour of the handler for the port modification event

Regarding to the UE context, a structure was created to define an UE. This structure was
called mobileNode, it holds information about UEs and it has functions related to the UE
(add or delete UE flows, add or delete ports). The mobileNode structure holds the following
information:

49

• IMSI (parameter common to both LTE and Wi-Fi access;
• IP address of the LTE interface;
• eNB TEID;
• S-GW TEID;
• eNB IP address;
• GTP port number;
• IP address of the Wi-Fi interface;
• TEID (in this implementation the remote TEID is the same as the local TEID for

Wi-Fi);
• Wi-Fi AP IP address;
• GRE port number.

With this structure defined, a python dictionary is created in order to hold the context of
UEs attached to the network via LTE and/or Wi-Fi. The name given to the dictionary was
mobile_nodes, with the key being the user’s IMSI and the value is the mobileNode structure.
Then, the handler functions for the REST commands are defined and their behaviour is
shown in figures 4.11 and 4.12. Figure 4.11 illustrates the behaviour of the controller when it
receives a /spgw/ue/lte/add or /spgw/ue/wifi/add command while figure 4.12 illustrates the
behaviour of the controller when it receives a /spgw/ue/lte/delete or a /spgw/ue/wifi/delete
command (refer to appendix B for the pseudo source code). When the /spgw/ue/lte/add or

Received
REST Message

NO

UE Already
Connected

through
LTE/Wi-Fi?

YES

Retrieve parameters
from message

Load mobileNode
structure

Register LTE/Wi-Fi

Create mobileNode
structure

Save mobileNode in
mobile_nodes

Figure 4.11: REST message handler for the attachment of UEs

/spgw/ue/wifi/add REST message is received, the controller application checks if the UE is

50

already connected to the other available access technology (Wi-Fi if the UE is attachment
to LTE or LTE if the UE is attaching to the Wi-Fi interface). It then creates or loads the
mobileNode structure for this UE and calls the register LTE or register Wi-Fi functions,
depending on the interface that the UE is attaching. The behaviour of the register LTE and

Received
REST Message

NO

UE is
Connected?

YES

Retrieve parameters
from message

Load mobileNode
structure

Unregister LTE/Wi-Fi

Exit

UE is
Connected to

LTE/Wi-Fi?

Delete mobileNode
from mobile_nodes

NO

YES

Figure 4.12: REST message handler for the detachment of UEs

register Wi-Fi functions is depicted in figures 4.13 and 4.14 respectively. Both these functions
have a similar behaviour with the exception that the function to register the Wi-Fi client in
addition of the flows that it installs in the S/P-GW-U, it also installs flows in the Wi-Fi AP.
These functions verify if the required GTP or GRE tunnel ports are already created (i.e., are
present in the ports dictionary) and, if the ports are not found, the controller creates the ports
in the switch, waiting for the required ports to be available in the ports dictionary. After
the port is created, the necessary flows are installed via OpenFlow (OF) flow modification
messages. For the detachment process, called unregister LTE or Wi-Fi in the context of
the SDN controller, the behaviour of the unregister functions for both LTE and Wi-Fi are
depicted in figures 4.15 and 4.16 respectively.

Regarding to the context updater, the controller application is responsible for the traffic
offloading and for the trigger for the slice creation. The offloading process is divided in four
stages.

1. The vUE detects that a given link quality threshold was reached. For this the OF flow
stats message (sent by the controller to the S/P-GW-U with a periodicity of 5s) was

51

Register LTE

NO

Does ports
contain this
GTP port?

YES

Set mobileNode LTE
Variables

Set GTP port number
in mobileNode

variable

Install Uplink and
Downlink Flows in

S/P-GW-U

Create GTP Port

Does ports
contain this
GTP port?

YES

NO

Figure 4.13: Behaviour of the Register LTE function

Register Wi-Fi

NO

Does ports
contain this
GRE port?

YES

Set mobileNode Wi-Fi
Variables

Set GRE port number
in mobileNode

variable

Install Uplink and
Downlink Flows in

S/P-GW-U

Create GRE Port

Does ports
contain this
GRE port?

YES

NO

Install Uplink and
Downlink Flows in

Wi-Fi AP

Figure 4.14: Behaviour of the Register Wi-Fi function

52

unregister LTE

Delete Uplink and
Downlink Flows in

S/P-GW-U

Reset mobileNode
LTE IP variable

Figure 4.15: Behaviour of the Unregister LTE function

Unregister
Wi-Fi

Delete Uplink and
Downlink Flows in

S/P-GW-U

Delete Uplink and
Downlink Flows in

Wi-Fi AP

Reset mobileNode
Wi-Fi IP variable

Figure 4.16: Behaviour of the Unegister Wi-Fi function

used to analyse the characteristics of the user’s flow (e.g., protocol, port and bitrate). If
such analysis results in an offloading decision, the vUE requests the slice creation;

2. The slice is created exploiting hostapd features by instantiating a specific SSID for the
UE, whose authentication is performed using EAP-AKA;

3. The UE detects the SSID and attaches to it;
4. The vUE implements a flow redirection in the S/P-GW-U via an OF flow modification

message.
The context updater application also receives the Register LTE and Register Wi-Fi but

treats them differently. The behaviour of the application when it receives the Register LTE
message is depicted in figure 4.17. This part of the application is responsible for analysing
the user’s traffic flows and trigger the slice creation. The application periodically requests to
the S/P-GW-U information about it’s flows.

When the application receives the Register Wi-Fi message, it verifies if the UE is also
connected via LTE and it installs downlink offloading flows via an OF flow modification
message. These flows have a higher priority than the existing flows installed by the vUE. On

53

Register LTE

NO
Flow analysis

results in
offloading
decision?

YES

Send Flow Stats
Request

Send Slice creation
message to Wi-Fi AP

Get Flow Stats
Response and
analyse flows

Wait 5s

Figure 4.17: Trigger behaviour for the Slice Creation Process

the other hand, when the context updater receives an Unregister Wi-Fi message, it deletes
the offloading flows, also via an OF flow modification message. This behaviour is depicted in
figure 4.18.

Register Wi-Fi

Install Downlink
Offloading flows

Unregister
Wi-Fi

Delete Downlink
Offloading flows

Is the user
connected to

LTE?

Do nothing

NOYES

Figure 4.18: Behaviour of the context updater when a user connects to Wi-Fi when it is also connected
to LTE

Finally, regarding to SDN planes, the functions related with GTP and GRE port creation
belongs to the MP and all the other functions belong to the CP.

4.4 Wi-Fi Control Plane

The Wi-Fi control plane is composed by, at the EPC, the AAA server and by the DHCP
server. The AAA server is one of the components involved in the L2 attachment and the
DHCP server is involved in the L3 attachment of UEs.

54

4.4.1 Authentication, Authorization and Accounting (AAA)

The AAA server is responsible for the authentication of users trying to connect to the Wi-Fi
network. It is composed by the RADIUS server and a diameter-agent as shown in figure
4.19. For the AAA server the FreeRADIUS server19 open-source project version 4.0 was

AAA Server

RADIUS Server diameter-agent

C
P

 In
te

rn
al

 N
et

w
or

k

E
xt

er
na

l N
et

w
or

k localhost

Figure 4.19: AAA Server Architecture

used. This RADIUS server implements a multi-protocol policy server which includes the
EAP-AKA protocol. However, at the time of this writing, the EAP-AKA module did not
work as expected for two major reasons: first, the EAP-AKA authentication vector had to be
defined manually in a configuration file, including the Sequence Number (SQN) parameter.
Because the SQN number changes every time the UE attaches to the network this method
cannot be used. The second reason was that it did not have a method to fetch the EAP-AKA
keys from another entity. In order to use the freeRADIUS server, some modifications to
its source code were made. Looking at figure 4.1, in the AAA functional block we can see
that there are two modules defined. One is the freeRADIUS server already mentioned. The
other is the diameter-agent. This diameter-agent entity implements the SWx interface in the
AAA using freeDIAMETER. The interaction between the two modules is performed using
UDP messages where there is one type of message when the RADIUS server is requesting the
EAP-AKA authentication vector and another type when the diameter-agent is providing the
EAP-AKA authentication vector to the RADIUS server. The request UDP message has a
payload of 15 bytes and contains the user’s IMSI. The response message has a payload of 72
bytes and it contains the following values: RAND, AUTN, XRES, CK and IK. The following
subsections describe in detail the changes performed to the freeRADIUS source code and the
implementation of the diameter-agent.

4.4.1.1 RADIUS server

In the RADIUS server, the function that obtains the EAP-AKA authentication vector is
the vector_umts_from_ki function, located in the src/modules/rlm_eap/lib/sim/vector.c
file. The function was completely changed and a description of its behaviour is provided
in figure 4.20. Also, appendix C presents a description of the source code of this function.
With this modification to the source code, the freeRADIUS server is now able to fetch the
EAP-AKA authentication vector from an external entity and to provide information to the
DHCP server that enables it to associate the MAC address of an UE Wi-Fi interface to the
user’s IMSI and to the Wi-Fi AP where the UE is connected. The next step is to implement

19FreeRADIUS: https://freeradius.org/

55

Extract UE MAC
address from
received args

Extract Wi-Fi AP IP
address from
received args

Send IMSI, UE MAC
Address and Wi-Fi AP

IP to DHCP Server

Send IMSI to
diameter-agent

Wait for an answer

Extract
Authentication Vector

from received
message

Set the keys variable
with the

authentication vector

Return

Figure 4.20: Behaviour of the modified function

the diameter-agent itself so that it can translate the UDP message into the diameter message
to be sent to the HSS through the SWx interface as well as translate the diameter message
into an UDP message.

4.4.1.2 Diameter Agent

The diameter_agent.c file holds the code for the diameter-agent. This agent was written in
C and it uses the freeDIAMETER open-source project to build the DIAMETER messages.
Similarly to what was described in the HSS implementation, a DIAMETER dictionary had to
be defined for the SWx interface. This dictionary followed the 3GPP standards [17] and the
dictionary was added to the freeDIAMETER source code through a patch. The behaviour of
the diameter-agent is depicted in figure 4.21. The diameter-agent was programmed following
the OAI’s implementation of the S6a interface. After implementing the diameter-agent, a
Makefile was produced to compile the code and use the libraries required by freeDIAMETER
(fdcore and fdproto). The AAA server is now able to properly perform EAP-AKA based
authentication by retrieving the authentication vector from the HSS.

56

Build Multimedia-Auth
Request Message

Send Message to HSS

Extract the
authentication vector

from the AVPs

Build UDP message
with the

authentication vector

Send UDP message to
RADIUS Server

Received IMSI
Received

Answer from
HSS

Figure 4.21: Behaviour of the diameter-agent

4.4.2 DHCP Server

The DHCP server VM is composed by the isc-dhcp-server20, by an OVS switch and by
a newly implemented module called Wi-Fi SDN Interface as illustrated in figure 4.1. An
architectural view of the DHCP server is provided in figure 4.22. The following subsections

DHCP Server

isc-dhcp-server Wi-Fi SDN IF

br0
(OVS)

gre0

dh
cp

-p
or

t

Leases File
C

P
 In

te
rn

al
 N

et
w

or
k

E
xt

er
na

l N
et

w
or

k

SDN Controller Interface

Figure 4.22: DHCP Server Architecture

present implementation details related to the OVS switch installation and configuration and
to the Wi-Fi SDN interface developed during the course of this thesis.

4.4.2.1 OVS Setup

The OVS installed in the DHCP server was OVS 2.9. Before compiling and installing the
source code, the required packages were installed. Then the source code was compiled and
installed. OVS uses kernel modules that are required when using tunnels. The kernel modules
were successfully compiled however, the kernel modules failed to load in the VM. This

20DHCP Server: https://help.ubuntu.com/community/isc-dhcp-server

57

happened because the modules are installed in the extra subdirectory within /lib/modules
which is a directory that, by default, the system does not search when searching for kernel
modules. In order to solve that problem, the Ubuntu depmod configuration file had to be
modified in order to force the kernel to also search for kernel modules in the extra subdirectory
within /lib/modules. After rebooting the VM, the kernel modules loaded as expected. Then,
two vPorts are created in the switch: one is a GRE port that will carry the DHCP messages
leaving the DHCP server towards the Wi-Fi AP. The other port is the dhcp-port which is the
port used by the isc-dhcp-server to send the DHCP messages to the bridge to be forwarded
to the GRE tunnel port. After installation and port setup, the switch is then connected to
the SDN controller that will install the default flows in it. The processing of DHCP packets
in the OVS bridge is illustrated in the packet processing pipeline of figure 4.23.

Table 0

Priority Match
5 in_port=dhcp_port,ip,ipv4_dst=<IP of Wi-Fi AP wlan0 if> set_field:<teid>->tun_id,output:gre0

Actions

Figure 4.23: Packet Processing Pipeline in the DHCP Server OVS switch

4.4.2.2 Wi-Fi SDN Interface

In order to send REST commands to the SDN controller whenever a UE attaches to the
network using Wi-Fi, the Wi-Fi SDN Interface was implemented and it executes in parallel
with the isc-dhcp-server. This module opens an UDP socket to receive UE information from
the AAA server and it periodically verifies the isc-dhcp-server lease file to identify newly
connected UEs in the network. When a new UE is detected, this module sends a REST
command to the SDN controller with the UE information (refer to section 3.2.3.1 for the
attachment procedure). These commands take the following form depending if the UE is
attaching or detaching from the network respectively:

• http://<SDN controller IP>:8080/spgw/ue/wifi/add
• http://<SDN controller IP>:8080/spgw/ue/wifi/delete

The behaviour of this module, written in python, is illustrated in figure 4.24 and a description
of the source code can be found in appendix D. This module is responsible to inform the SDN
controller that an UE has successfully attached to the network or detached from the network,
allowing it to properly setup the data plane for this UE.

58

Read DHCP leases file

Compare the leases
with the previous

reading

Save current leases

New leases
where added?

Leases where
removed?

Get new DHCP Lease Build URI and data
strings

Send REST /wifi/add
Message to SDN

Controller

Remaining new
leases?

Get removed DHCP
Lease

Build URI and data
strings

Send REST
/wifi/delete Message

to SDN Controller

Remaining
removed
leases?

NO

NO

NO

YES

YES

Figure 4.24: Behaviour of the Wi-Fi SDN Interface module

4.5 Data Plane

In the present architecture, the data plane in the virtual EPC is composed by the S/P-GW-U
VM, by the SGi-LTE and SGi-Wi-Fi virtual networks and by an Openstack vRouter. Figure
4.25 illustrates the architecture of the data plane of the virtual EPC. The OVS switch inside
the S/P-GW-U VM is responsible for forwarding packets from a tunnel port to the vRouter
and from the vRouter to a tunnel port. In its turn, the vRouter receives packets from the
SGi-Wi-Fi and SGi-LTE interfaces, applies NAT to the packets and routes them to their
destination. The SGi-Wi-Fi and SGi-LTE networks are intended to transport UE traffic for
both the UL and DL directions and the subnet network address is in the same range as the
address range defined for the UEs IP addresses. By default, Openstack blocks packets from
the created networks that have addresses that it does not recognize which means that packets
originating from UEs would be blocked in the internal Openstack networks. In order to solve
that problem, Allowed Address Pairs have to be defined in each of the ports connected to the

59

S/P-GW-U

OVSDB

spgw
(OVS)

gtp0

C
P

 In
te

rn
al

 N
et

w
or

k

E
xt

er
na

l N
et

w
or

k

gre0

sgi

sgi-wifi

S
G

i-L
TE

 N
et

w
or

k

S
G

i-W
i-F

i N
et

w
or

k

vRouter

Figure 4.25: S/P-GW-U Architecture

network which means that the IP range defined for both LTE and Wi-Fi access was configured
to be allowed by the Openstack networks, enabling UE traffic to flow through the internal
network. The following subsections describe the implementation of this data plane.

4.5.1 S/P-GW-U

The S/P-GW-U data plane entity from figure 4.25 shows two functional blocks: OVSDB and
spgw. Framing these entities into the SDN planes from section 2.4.3, spgw corresponds to
the Forwarding Plane while OVSDB corresponds to the Operational Plane. The OVSDB is
integrated with the OVS project and the two modules are installed simultaneously.

One of the features required by OVS for this implementation is its ability to handle GTP
tunnels. However, OVS does not natively support GTP tunnelling neither is it a part of the
upstream Linux kernel. In order to bypass this limitation a patch21 was used. This patch
was developed for OVS 2.5 and it implements the kernel datapath module required for GTP
tunnelling.

Analysing table 4.2, the only VM that differs in its kernel version is the S/P-GW-U VM.
That is due to the fact that OVS 2.5 requires a kernel version between 3.3 and 4.3 (including).
For that reason, the kernel version 4.3 was selected for this VM. After the kernel was setup
the ubuntu depmod configuration file was modified, as stated in section 4.4.2.1, in order to
allow the system to properly load the OVS kernel modules. After this step is completed the
required OVS packages were installed, the OVS 2.5 source code was compiled and installed
and the kernel modules were loaded. A bridge named spgw is then created in OVS.

The VM’s sgi and sgi-wifi interfaces, connected respectively to the SGi-LTE and SGi-Wi-Fi
networks, are added to spgw as OVS ports. After the required ports are added to the spgw
bridge and the bridge is connected to the SDN controller, it is ready to handle UE packets.
The gtp0 and gre0 ports are not created during the initial configuration process because they

21OVS GTP Patch: https://patchwork.ozlabs.org/patch/579431/

60

are created when a UE attaches to an eNB or Wi-Fi AP that spgw does not recognize. The
first UE to connect to a given eNB or Wi-Fi AP will trigger the creation of a GTP or GRE
port respectively via the OVSDB module, leaving the port created for the following UEs that
connect to the same eNB or Wi-Fi AP. This means that the attachment time for the first UE
to connect to the network will be higher than the following.

When the spgw bridge is properly configured it is ready to receive flows from the controller.
In this bridge, several flow tables are used. Figures 4.26 through 4.29 illustrate the packet
processing pipeline in the spgw bridge for both LTE and Wi-Fi access and in the DL and UL
directions. In the DL direction for LTE access, the packet is received in the sgi port. The
match in table 0 sends all packet flows received in this port to table 1 for further processing.
In table 1, if the packet matches the IP protocol and a particular UE IP address, the tunnel id
is set to the TEID of the eNB endpoint and the packet is then forwarded to the GTP port of
the eNB where the UE is attached and it is encapsulated into a GTP tunnel. The GTP tunnel
does not hold the packet’s original MAC addresses (both source and destination). As for the

Table 0

Priority Match

10 in_port=sgi goto_table:1

Actions

Table 1

Priority Match

20 ip,ipv4_dst=<UE IP> set_field:<teid>->tun_id,output:gtp0

Actions

sgi

gtp0

Figure 4.26: Downlink Packet Processing Pipeline in the spgw OVS switch for LTE Access

UL direction in the LTE access, the packet is received in the GTP port and table 0 matches
its protocol and UE IP address. When the packet reaches table 0 it is already decapsulated
and, because the GTP tunnel does not preserve MAC addresses, the decapsulation mechanism
sets both the source and destination MAC address to 06:00:00:00:00:00. After the match, the
packet’s source MAC address is set to the MAC address of the sgi port and it is sent to table
2 for further processing. Table 2 acts as an ARP table for the vRouter’s ports. If the packet’s
destination MAC address is the default address after GTP tunnel decapsulation, i.e., it is
a packet originating from a UE connected to LTE access, the destination MAC address is
set to the MAC address of the vRouter SGi-LTE port and the packet is forwarded to the sgi
interface. The procedure for the packets belonging to UEs connected to Wi-Fi access is similar
to that of the LTE access. For the DL direction, the packets received in the sgi-wifi port are
sent to table 1 for further processing. In table 1, the packet matches the IP protocol and
the UE IP address and it sets the tunnel id to the TEID of the Wi-Fi AP tunnel endpoint,

61

Table 0

Priority Match

10 ip,ipv4_src=<IP of UE> set_field:<MAC of sgi interface>->eth_src,goto_table:2

Actions

Table 2

Priority Match

10 eth_dst=06:00:00:00:00:00 set_field:<MAC of vRouter sgi-lte interface>->eth_dst,output:sgi

Actions

gtp0

sgi

Figure 4.27: Uplink Packet Processing Pipeline in the spgw OVS switch for LTE Access

forwarding the packet to the GRE port. As for the UL direction the packet received in the

Table 0

Priority Match

10 in_port=sgi-wifi goto_table:1

Actions

Table 1

Priority Match

20 ip,ipv4_dst=<UE IP> set_field:<teid>->tun_id,output:gre0

Actions

sgi-wifi

gre0

Figure 4.28: Downlink Packet Processing Pipeline in the spgw OVS switch for Wi-Fi Access

GRE port is matched against the protocol and the UE IP address, followed by setting the
source MAC address to the MAC address of the sgi-wifi interface. After that, the packet is
sent to table 2 for further processing. In table 2, the match for this packet is blank, meaning
that all packets that do not match the other flow entries are going to match this entry. The
logic behind this implementation is that, in table 2, if a packet does not match the LTE
default MAC address after GTP decapsulation it means that the packet belongs to a UE
attached to the Wi-Fi access, leading to the setting of the destination MAC address of the
packet to the MAC address of the vRouter’s SGi-Wi-Fi port. After the packet modification,
the packet is sent to the sgi-wifi port. This table setup with the specified flow entries allow
the S/P-GW-U to forward packets as needed.

When it comes to traffic offloading, a flow is installed that matches the IP address of the
UE’s LTE interface, an IP protocol (e.g. UDP) and a port number. A packet processing

62

Table 0

Priority Match

10 ip,ipv4_src=<IP of UE> set_field:<MAC of sgi-wifi interface>->eth_src,goto_table:2

Actions

Table 2

Priority Match

10 set_field:<MAC of vRouter sgi-wifi interface>->eth_dst,output:sgi-wifi

Actions

gre0

sgi-wifi

Figure 4.29: Uplink Packet Processing Pipeline in the spgw OVS switch for Wi-Fi Access

pipeline example for offloading scenarios is depicted in figure 4.30. In this scenario, a flow
entry is installed, with a higher priority than the entries already installed, that redirects UDP
flows from a specific port from LTE to Wi-Fi. The flow entry in table 1, that is illustrated in
the figure, is the same that was installed earlier, so only one flow entry needs to be installed
in the S/P-GW-U in order to offload traffic. In this implementation only downlink traffic
offloading is considered.

Table 0

Priority Match

100 in_port=sgi,udp,ipv4_dst=<UE LTE IP>,udp_dst=<port> set_field:<UE Wi-Fi IP>->ipv4_dst,goto_table:1

Actions

Table 1

Priority Match

20 ip,ipv4_dst=<UE Wi-Fi IP> set_field:<teid>->tun_id,output:gre0

Actions

sgi

gre0

Figure 4.30: Downlink Packet Processing Pipeline in the spgw OVS switch for the LTE to Wi-Fi
Offloading procedure

4.5.2 vRouter

The vRouter is an Openstack router and its functions are to perform source NAT and route
packets. It was connected to the external network as well as the SGi-LTE and SGi-Wi-Fi
networks. In order to tell the router what to do with packets coming from external networks,
two static routes were defined. The routes indicate the router that, when a received packet

63

(after the address is translated) is destined for an IP address in the range of the LTE assigned
addresses or in the range of the Wi-Fi assigned addresses, the IP address of the next hop
will be the IP address of the sgi or sgi-wifi interfaces respectively. This step concludes the
implementation of the datapath of the system.

4.6 Summary

This chapter presented implementation details of the proposed architecture. Although some
of the elements were used as provided by the several open-source projects, the majority had
to be modified in order to be deployed in the data center, to incorporate SDN and to add
support for Wi-Fi access. In the next chapter the proposed architecture is evaluated and the
results are presented.

64

CHAPTER 5
Architecture Validation

This chapter presents the tests conducted in order to validate the architecture whose im-
plementation was described in the previous chapter. The system was evaluated in terms of
attachment time, throughput and latency. These measurements will be compared against
the vanilla OAI EPC (i.e., as clone from the project’s repository) deployed in a physical
machine whenever possible. Finally, two use cases for this architecture are evaluated. All tests
presented in this section were performed 10 times, with the results presenting their average
with a confidence interval of 95 percent.

5.1 Signalling Impact

This section aims to study the size of the control messages in the implemented architecture
and the impact they have in the control interfaces. To obtain the messages exchanged between
entities, the tcpdump1 tool was used to capture packets at the control plane interfaces. The
UE attached to both LTE and Wi-Fi in order to generate the signalling messages was a
Samsung Galaxy J5 2016 running Android 7.1.

5.1.1 3GPP Defined

First, the control messages defined by 3GPP are analysed. Table 5.1 presents the control
plane messages by interface and their respective size. Refer to sections 2.1.7 and 2.2.1 for the
protocol used by each of the interfaces.

1tcpdump: https://www.tcpdump.org/

65

Interface Message Size (bytes)
S1-MME Attach Request, PDN Connectivity Request 210

Identity Request 110
Identity Response 146
Authentication Request 142
Authentication Response 130
Security Mode Command 122
Security Mode Complete 134
Attach Accept 278
UE Capability Information 178
Attach Complete 182
SACK 62

S6a 3GPP Authentication Information Request 338
3GPP Authentication Information Answer 358
3GPP Update Location Request 326
3GPP Update Location Answer 610

S11 Create Session Request 194
Create Session Response 164
Modify Bearer Request 85
Modify Bearer Response 60

SWx Multimedia Auth Request 358
Multimedia Auth Answer 422

STa Access Request 315
Access Challenge 176
Access Accept 255

Table 5.1: Size of the messages defined by 3GPP

5.1.2 Architecture Specific Interfaces

Some interfaces used in this architecture run out of the scope of 3GPP standards and are
analysed with some more detail in this section. Table 5.2 presents not only the size of the
messages but also the size of the useful information they carry, i.e., the payload.

Interface Message Size (bytes) Payload (bytes)
STa-DHCP DHCP Discover 348 305

DHCP Offer 385 300
DHCP Request 360 317
DHCP ACK 385 300

Northbound Interface Add LTE UE 301 97
Add Wi-Fi UE 402 106
200 OK 181 0

MP Southbound Interface Create Tunnel 21298 19131
CP Southbound Interface Uplink Flows 170 104

Downlink Flows 178 112
SDN Info Terminal Info 78 36

Table 5.2: Architecture Specific Interfaces and their size and payload

66

Analysing the results from table 5.2, the REST messages (Northbound Interface) are the
ones that present the highest overhead. Also, we can see that the most costly operation in
terms of bytes is the signalling of creating the vPort in the OVS bridge.

5.1.3 Generated Traffic

The peak throughput generated by the messages in each of the control plane interfaces during
LTE attachment time is presented in table 5.3. Because there is no change in the conditions
of the control plane interfaces, some of the values have no variation at all.

Interface Peak Throughput (kbps)
S1-MME 11.6(±0.3)
S11 3.9(±0.2)
S6a 13.1(±0.0)
Northbound Interface 3.9(±0.0)
CP Southbound Interface 4.3(±0.0)
MP Southbound Interface 170.4(±0.0)

Table 5.3: Control Plane generated throughput during LTE attachment time per interface.

Similarly, the same test was performed for the control plane interfaces during Wi-Fi
attachment time. The obtained results are presented in table 5.4. Again, because there is no
change in the interfaces, the results present no variation.

Interface Peak Throughput (kbps)
STa 8.4(±0.0)
STa-DHCP 23.6(±0.0)
SWx 6.2(±0.0)
SDN-Info 0.6(±0.0)
Northbound Interface 4.7(±0.0)
CP Southbound Interface 4.3(±0.0)
CP Southbound Interface-AP 2.8(±0.0)
MP Southbound Interface 175.4(±0.0)

Table 5.4: Control Plane generated throughput during Wi-Fi attachment time per interface.

The results from this section show once again that the signalling for creating the vPort in
the OVS bridge is the most costly in terms of generated bandwidth, since its messages have
the highest size. Also, the messages from the STa-DHCP interface also generate a relatively
high throughput. The fact that the DHCP Offer and DHCP ACK messages are encapsulated
in a GRE tunnel contributes to the high bandwidth usage of this interface.

5.2 Attachment Time

The attachment time was measured by capturing the packets, using the tcpdump tool, in
both endpoints of the architecture’s control plane interfaces. By measuring the relative time
between packets it is possible to obtain the time taken in each functional block and the travel

67

time of the messages. The UE used to attach to the network was a Samsung Galaxy J5 2016
running Android 7.1.

5.2.1 LTE Attachment Time

To better understand the impact of the changes made to the EPC, the proposed architecture is
compared against the vanilla EPC, installed in a physical machine. Firstly, the UE attachment
time using the monolithic Vanilla EPC (openair-cn) was measured. This was the starting
point for this thesis and will be compared with the virtualized solution whenever possible.

5.2.1.1 Vanilla EPC

The vanilla EPC was installed in a dual core machine with 8GB of RAM and it was directly
connected to the eNB machine. The attachment procedure for the vanilla EPC is as defined by
3GPP and was presented in section 2.1.8.3. Packets were captured in the S1-MME, S6a and
S11 interfaces. The UE’s flight mode was used to connect and disconnect from the network.
To disconnect the UE from the network the device entered flight mode. To trigger the UE to
reattach to the network the flight mode was turned off. The attachment times presented do
not account for the time between the UE signalling an attach and the first message sent from
the eNB to the MME. The obtained attachment time for the vanilla EPC was 687.6(± 7.8)ms.
This time is decomposed in the time that each functional block takes to process and answer
to the messages received by other functional blocks. Figure 5.1 presents this decomposition.
In the figure, the RAN refers to the time taken in the eNB, the UE and the air interface. It

MME RAN S/P-GW HSS Inter-Machine
0

50

100

150

200

250

300

350

400

450

T
im

e
 (

m
s
)

S/P
-G

W
H
SS

In
te

r-M
ac

hi
ne

0

2

4

6

8

Figure 5.1: LTE Attachment Time Decomposition Vanilla EPC

can be noted that the majority of the time takes place in the MME and in the RAN. The
time spent by the RAN accounts for 40.6 percent of the total attachment time, the MME
accounts for 58.5 percent while all the remaining components and travel time between the
EPC and the RAN account for only 0.9 percent of the total attachment time.

68

5.2.1.2 Virtual EPC

Next the LTE attachment time of the architecture presented in section 3.1 is measured. The
attachment procedure was presented in section 3.2.2.1. A packet capture was initiated in the
interfaces S1-MME, S6a, S11, LTE Northbound interface, CP Southbound interface and MP
Southbound interface. As already stated in the previous chapter, the attachment procedure
differs according to the fact that, since the GTP tunnel vPort in OVS is created only once
per eNB when the first UE attaches to it, being already created for the following UEs. For
this reason, attachment times for both these scenarios are presented in table 5.5 alongside the
attachment time of the vanilla EPC.

Scenario Attachment Time (ms)
Vanilla EPC 687.6(±7.8)
Virtual EPC: First UE 833.8(±5.1)
Virtual EPC: Following UEs 684.5(±4.7)

Table 5.5: LTE Attachment Times

An analysis of these attachment times is presented in figures 5.2 and 5.3 where the weights
of each functional block in terms of time can be analysed. Similarly to the physical machine
deployment of the vanilla EPC, the main contributors for the overall attachment time are still
the RAN and the MME. In the scenario where the vPort is created, the MME is responsible
for 47.9 percent of the total attachment time, the RAN for 32.1 percent, the S/P-GW-U for
14.4 percent and all the other blocks, inter-VM and inter-machine times account for just 5.6
percent of the attachment time. As for the scenario where the vPort for this eNB was already

MME RAN S/P-GW-U S/P-GW-C Inter-Machine HSS Inter-VM
0

50

100

150

200

250

300

350

400

450

T
im

e
 (

m
s
)

In
te

r-M
ac

hi
ne H

SS

In
te

r-V
M

0

2

4

6

8

Figure 5.2: Attachment Time Decomposition Virtualized EPC creating GTP vPort

created, the time distribution amongst the functional blocks is similar to the times measured
for the vanilla EPC.

69

MME RAN Inter-Machine S/P-GW-C HSS Inter-VM S/P-GW-U
0

50

100

150

200

250

300

350

400

450

T
im

e
 (

m
s
)

In
te

r-M
ac

hi
ne

S/P
-G

W
-C

H
SS

In
te

r-V
M

S/P
-G

W
-U

0

2

4

6

8

Figure 5.3: Attachment Time Decomposition Virtualized EPC without creating GTP vPort

From table 5.5 it can be noted that the process of creating a vPort in the OVS bridge
takes in average 149.3 ms.

5.2.2 Wi-Fi Attachment Time

To measure the attachment time of the Wi-Fi part of the network a similar method to the one
presented in the previous section was used but instead of using the flight mode, the Wi-Fi
was turned on and off in order to perform the 10 tests. The packet captures were initiated in
interfaces STa, STa-DHCP, SWx, SDN-Info, Wi-Fi, Northbound interface, CP Southbound
interface, MP Southbound interface and Wi-Fi CP Southbound interface (see section 3.1).
Like before, the time was measured considering a scenario where the GRE tunnel vPort needs
to be created and another scenario where the vPort is already created. Refer to section 3.2.3.1
for the Wi-Fi attachment procedure. The results obtained for both scenarios are presented
in table 5.6. This attachment time is decomposed into the time taken in each block at the

Scenario Attachment Time (ms)
First UE 588.3(±22.9)
Following UEs 501.3(±25.4)

Table 5.6: Wi-Fi Attachment Times

time of attachment. Figure 5.4 illustrates this decomposition. In the figure, S/P-GW-U and
S/P-GW-C are not represented due to the fact that, because the DHCP server signals the
SDN controller to install the flows in the S/P-GW-U’s OVS at the same time that it allocates
an IP address and answers to the UE, the time that the answer needs to reach the UE is
greater than the time needed to install the flows. For that reason, the flow install time is not
relevant for the overall attachment time in a scenario where no vPort is created. On the other

70

hand, when a vPort needs to be created, the difference between the time that the UE receives
the DHCP answer, the tunnel is created and flows are installed is 87.0(±16.2) ms, which
means that, after the UE has completed the L3 attachment procedure, it takes an additional
87.0(±16.2) ms for the data plane to be ready to handle the UE’s packets.

RAN AAA DHCP HSS Inter-Machine Inter-VM
0

50

100

150

200

250

300

350

400

450

500

550

T
im

e
 (

m
s
)

AAA

D
H
C
P

H
SS

In
te

r-M
ac

hi
ne

In
te

r-V
M

0

2

4

6

8

Figure 5.4: Attachment Time Decomposition for Wi-Fi attachment without creating vPort

Lastly, table 5.7 summarizes the results obtained for the attachment times in the proposed
architecture.

Attachment Time (ms)
Creating vPort w/o Creating vPort

LTE 833.8(±5.1) 684.5(±4.7)
Wi-Fi 588.3(±22.9) 501.3(±25.4)

Table 5.7: Architecture Attachment Times Summary

5.3 Latency

In this document, the latency of the data plane refers to the Round Trip Time (RTT) of a
packet. In this section, the results for the E2E latency are presented accompanied by a study
of the points that contribute for the overall latency. The E2E latency was measured using
the following method (both for LTE and Wi-Fi): in addition to the architecture presented
in section 3.1, a new VM was deployed and connected to the external network. This VM
serves as a sink node for these measurements. Then, a UE (Samsung Galaxy J5 2016 running
Android 7.1) was connected to the network. After the connection is established the ping tool,
belonging to the Network Tools Package2, was used to generate Internet Control Message

2Ping: https://network-tools.com/

71

Protocol (ICMP) Requests every second and wait for a reply, measuring the time between the
two. Both the ICMP request and reply have a payload of 48 bytes. A packet capture was
started in both endpoints of the data plane interfaces in order to measure the relative time
between the ICMP request and the reply in each of the data plane functional blocks. 10 pings
were executed and the results are presented in the following sections.

5.3.1 LTE Latency

After connecting the UE to the LTE RAN, the presented procedure was executed for the
vanilla EPC and for the virtualized one (refer to section 3.1). The results obtained for both
the implementations are presented next.

5.3.1.1 Vanilla EPC

For the vanilla EPC, the measured E2E latency as seen by the UE was of 21.9(±3.6) ms,
being the EPC responsible for just 29.2(±3.6) µs. Combined with the time taken between
entities, the latency seen by the eNB is of just 598.0(±43.2) µs, being the remaining time
spent in eNB procedures and air interface. Figure 5.5 (a) shows the decomposed time seen by
the eNB while on (b) we can see the packet processing time in the EPC in terms of uplink
and downlink.

(a)

eNB to EPC Inside EPC EPC to Sink
0

50

100

150

200

250

300

T
im

e
 (

s
)

(b)

Uplink Downlink
0

5

10

15

20

25

T
im

e
 (

s
)

Figure 5.5: Latency Decomposition for LTE Vanilla: (a) seen by the eNB; (b) EPC packet processing
time

5.3.1.2 Virtual EPC

In the virtualized architecture, the obtained E2E latency as seen by the UE was of 23.5(±1.9)
ms. Table 5.8 shows a comparison between the E2E latency for the vanilla implementation
and for the virtualized solution. Figure 5.6 (a) shows the time that the ICMP packets took to
traverse the network in each functional block. On figure 5.6 (b) the packet processing time in

72

Vanilla EPC Virtual EPC Relationship
E2E Latency (ms) 21.9(±3.6) 23.5(±1.9) +7%
S/P-GW Time (µs) 29.2(±3.6) 61.6(±4.2) +111%

Table 5.8: Comparison between Vanilla and Virtual EPC in terms of E2E latency

the S/P-GW-U for both the uplink and downlink directions is presented. We can verify that
the virtual EPC is responsible for a small fraction of the measured E2E latency where the
eNB procedures and air interface account for most of the latency. As for the packet processing
time in the S/P-GW-U, the time to process the packet in the uplink direction is around 2.8
times higher than the processing time for the downlink direction (refer to section 4.5.1 for the
S/P-GW-U packet processing pipeline) In terms of S/P-GW packet processing time, there is

(a)

eNB to S/P-GW-U Inside S/P-GW-U S/P-GW-U to Sink
0

100

200

300

400

500

600

T
im

e
 (

s
)

(b)

Uplink Downlink
0

5

10

15

20

25

30

35

40

45

50

55

T
im

e
 (

s
)

Figure 5.6: Latency Decomposition for LTE: (a) seen by the eNB; (b) S/P-GW-U packet processing
time

a 111 percent increase in the virtual S/P-GW (S/P-GW-U). Despite this increase, it is still
in the order of the µs which is a small increase when compared with the total E2E latency
which is in the order of the ms.

5.3.2 Wi-Fi Latency

The procedure for the measurement of the E2E latency for the Wi-Fi RAT was similar to
the one used before, connecting this time the UE to the Wi-Fi network. The obtained E2E
latency for Wi-Fi was 14.6(±3.0) ms. This time can be decomposed like it was in the previous
section. The result of the decomposed time is presented in figure 5.7. On figure 5.7 (a) we
can see the time the packets take to travel between entities. On figure 5.7 (b) we can see the
packet processing time of the S/P-GW-U in the uplink and downlink directions (again, refer
to section 4.5.1 for the S/P-GW-U packet processing pipeline). The obtained times for the

73

(a)

AP to S/P-GW-U Inside S/P-GW-U S/P-GW-U to Sink
0

100

200

300

400

500

600

700

T
im

e
 (

s
)

(b)

Uplink Downlink
0

5

10

15

20

25

30

35

40

45

50

55

T
im

e
 (

s
)

Figure 5.7: Latency Decomposition for Wi-Fi: (a) seen by the Wi-Fi AP; (b) S/P-GW-U packet
processing time

core part of the network are similar to the ones obtained for the LTE RAT, showing us that
the latency bottleneck is in the RAN. Table 5.9 summarizes the latency results obtained for
the virtual EPC in this section.

LTE Wi-Fi
E2E Latency (ms) 23.5(±1.9) 14.6(±3.0)

Table 5.9: Comparison between LTE and Wi-Fi E2E latency in the virtual EPC

5.4 Throughput

To measure the throughput for both LTE and Wi-Fi access the iperf33 tool was used. The
iperf3 allows a client to test both the upload and download throughputs by using either UDP
or TCP packets for the measurement. This tool, when configured to use UDP mode, allows
the client to configure the bitrate being sent by the server (or the client if ran in reverse
mode). A VM was created and connected to the SGi interface, with iperf3 installed serving
as the iperf server. In the UE, the Android’s Magic Iperf4 application was used as the iperf
client. The iperf ran in UDP mode and the bitrate was configured with 100 Mbps by excess.

5.4.1 LTE Throughput

After connecting the UE to the network through the LTE RAT (refer to section 4.2.1.2 for
the eNB configuration) the throughput was measured as described above. The iperf3 client
was configured to use UDP mode with a bandwidth value of 100 Mbps by excess for both

3Iperf: https://iperf.fr/
4Magic Iperf: https://play.google.com/store/apps/details?id=com.nextdoordeveloper.miperf.miperf

74

the uplink and downlink measurements. After the 10 tests were performed the measured
throughput was of 18.4(±0.1) Mbps for the uplink and 71.6(±0.3) Mbps for the downlink.

5.4.2 Wi-Fi Throughput

To test the Wi-Fi (refer to section 4.2.2 for the Wi-Fi AP configuration) throughput of
the system the same method as for the LTE interface was used with the only parameter
differing being the configured bandwidth. As already stated in section 4.2.2, the Wi-Fi AP
was configured to use the 802.11g 2.4 GHz protocol where the maximum expected throughput
is of around 54 Mbps for both the uplink and the downlink so the configured bandwidth for
these iperf tests was of 60 Mbps. The tests in the Wi-Fi interface resulted in a measured
throughput of 27.1(±0.3) Mbps for the uplink and 23.3(±0.7) Mbps for the downlink. Table
5.10 summarises the results obtained in this section.

Throughput (Mbps)
Uplink Downlink

LTE 18.4(±0.1) 71.6(±0.3)
Wi-Fi 27.1(±0.3) 23.3(±0.7)

Table 5.10: Throughput results for both LTE and Wi-Fi

5.4.3 Throughput Result Validation

After performing the throughput tests as described in the sections above, the throughput of
the system without the radio part was measured in order to validate the obtained results,
which also helps to demonstrate that the bottleneck for the throughput is in fact the radio
part of the network. In order to perform this test, the implementation shown in figure 5.8
was used.

veNB1 (VM)

Iperf Client
(Container)

OvS

VM

OvS

S/P-GW-U

vRouter

VM

Iperf
Server

VM

SDN-CTRL

S/P-GW-C

veNB2 (VM)

Iperf Client
(Container)

OvS

S1-U SGi

Figure 5.8: Architecture for S/P-GW-U maximum throughput testing

Two VMs were created, each one representing an eNB which are called Virtual Evolved
NodeBs (veNBs). Inside those VMs one Linux Containers (LXC) container was deployed and

75

connected to an OVS bridge which will simulate an attached client to the veNB in question.
The OVS’s function is to create a tunnel endpoint between the veNB and the S/P-GW-U.
This OVS was installed and configured like the one in the S/P-GW-U, described in section
4.5.1. Since the purpose of this test was to measure the maximum throughput that the
S/P-GW-U can cope with, two veNBs were used to make sure that the limitation of the
maximum throughput is in the S/P-GW-U. The specifications of the VMs used is presented
in table 5.11 A bash script was developed to install the necessary flows in the corresponding

VM # CPUs RAM (GB) OS
Iperf Server 1 2.0 Ubuntu Server 16.04 LTS
veNB 4 8.0 Ubuntu Server 16.04 LTS

Table 5.11: Resources used by the test architecture’s VMs

veNB switch and to send a REST message to the S/P-GW-C so that it can create the tunnel
to the veNB (if not already created) and install the necessary flows in it, simulating the
Northbound Interface messaging. In the clients, the iperf3 tool ran in client mode using UDP
and configured with a 500 Mbps bandwidth to try to achieve a throughput of 1 Gbps at
the S/P-GW-U. The throughput of the traffic passing through the S/P-GW-U was measured
using the iftop tool5. This tool measures the throughput of the desired interfaces and presents
a 40 second average. To allow the iftop tool to have solid data to calculate the average
throughput in the S/P-GW-U during 40 seconds, the iperf client ran for 50 seconds. For
the uplink the measurement was performed in the SGi interface and for the downlink it was
measured in the S1-U interface. For Wi-Fi, the same method was used with the exception
that, refering to figure 5.8, the veNBs are now vAPs and the S1-U interface is now the S2a
interface. Another difference is that the switches in the vAPs are now configured to use GRE
instead of GTP for the tunnelling protocol. The results obtained are presented in table 5.12

Throughput (Mbps)
Uplink Downlink

veNB (GTP) 531.8(±18.6) 726.1(±15.9)
vAP (GRE) 560.8(±16.0) 743.3(±13.2)

Table 5.12: Maximum throughput at the S/P-GW-U considering GTP and GRE tunnelling protocols

In order to validate even further, a throughput measurement was performed directly
between two VMs using iperf3 (one for the iperf client and another for the server) in UDP
mode and setting the bandwidth to 1 Gbps. The same measurements were conducted between
the eNB physical machine and a VM and between the Wi-Fi AP physical machine and a
VM. The results are presented in table 5.13. These results validate the throughput results
presented in table 5.10.

5Iftop: http://www.ex-parrot.com/pdw/iftop/

76

Throughput (Mbps)
Uplink Downlink

VM to VM 967.1(±6.3) 970.3(±5.0)
eNB to VM 945.0(±5.1) 953.5(±4.7)
Wi-Fi AP to VM 864.4(±21.4) 900.0(±19.5)

Table 5.13: Validation of the throughput tests conducted in this section

5.5 Use Cases

5.5.1 VoIP Calls

These tests aim to evaluate the resiliency of the implemented architecture in terms of SIP
calls that fail considering various call rates. Only the signalling is considered in the test so no
Real Time Protocol (RTP) data is exchanged. The signalling involved in establishing and
terminating a SIP call is presented in figure 5.9. To obtain these values, a SIP client and

SIP
Client

SIP
Server

Invite

180 Ringing

200 OK

ACK

RTP Session

BYE

200 OK

Figure 5.9: SIP call signalling

server were used. The client was installed in a laptop (with 2 CPUs and 8.0 GB of RAM).
To connect to the LTE network, a Huawei E398 USB modem was used. The SIP server
was installed in a VM at the data center. For both the client and the server the SIPp tool6

was used. This tool allows a user to define at the client side the desired call rate and the
time at which the client stops initiating calls and moves on to terminating active calls. The
timeout was defined to be 30s. The call rate started at 50 Calls Per Second (CPS) and was
successively incremented by 50 until it reached 300 CPS. The SIPp client shows the number
of failed calls at the end of a test and the results of this test are presented in figure 5.10.
The next test performed in the architecture related to the SIP calls is the evolution of the

6SIPp: http://sipp.sourceforge.net/

77

0 50 100 150 200 250 300

Calls per Second

0

5

10

15

L
o
s
t
C

a
lls

Figure 5.10: Failed Calls in function of the Call Rate

throughput generated by the signalling with the increase in the call rate. In order to extract
this information, a packet capture (using tcpdump) was started in the S1-U interface. Then,
the capture file is analysed with wireshark7 and, using it’s statistics functions combined with a
packet filter to consider only SIP signalling packets, it was possible to obtain the throughput
for each of the tested call rates. The obtained results are presented in figure 5.11.

0 50 100 150 200 250 300

Calls Per Second

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Figure 5.11: Generated throughput by SIP signalling messages

In order to validate the results, the same test was performed between two VMs directly
connected. The SIP client was configured to perform 350 CPS. By performing this test it
was verified that no calls were lost.

7Wireshark: https://www.wireshark.org/

78

5.5.2 Mobile Traffic Offloading for Video Streaming

After all the stand alone testing performed on the system, a use case that uses all of the
architecture was tested. This use case uses the mechanism that enables to seamless offload
traffic from LTE to Wi-Fi.

5.5.2.1 Scenario Definition

A scenario was defined where a mobile operator strategically deploys multiple APs in a city,
allowing the traffic offloading of its clients by dynamically instantiating Wi-Fi slices. The
evaluated scenario starts with a user visualising a live video stream on a mobile. At the
beginning the UE is receiving the video8 via LTE however, in the meantime, the vUE detects
congestion in the mobile cell and it triggers a slice creation. When the UE attaches to the
created Wi-Fi slice, the video flow is redirected to the UE’s Wi-Fi Interface.

5.5.2.2 Framework Evaluation

To test the framework, a UE (Samsung Galaxy J5 2016 with Android 7.1) was used running
VLC9. The video headend was deployed in a VM with 2 CPUs and 4GB RAM running
Ubuntu server 16.04 LTS with VLC installed. VLC was used to transcode the video for the
UE standards following the Android video encoding recommendations10. As such, the video
was streamed via RTP-unicast protocol, using H.264 for video encoding at a bitrate of 512
kbps. For audio encoding, Moving Picture Experts Group (MPEG) audio was used with a
bitrate of 128 kbps. Finally, an experiment was recorded and it is available online in our
research group’s webpage11. Figure 5.12 shows the throughput of the video over time as well
as key moments. At 2s the vUE requests the SDN controller to instantiate the Wi-Fi slice.
Still receiving the live video, the UE attaches (at 22s), in background, to the dynamically
instantiated Wi-Fi slice. This triggers the vUE, which in turn redirects (at 22s) the video
flow from the LTE to the Wi-Fi seamlessly, switching from the licensed to the unlicensed
spectrum. Figure 5.12 also compares the throughput of the video if it was always received
via the congested eNB. Here, despite the throughput being similar in both situations (only
2 percent of throughput loss), in the latter the UE receives unsorted packets due to the
congestion, which degrades the user’s QoE (this can be seen in the recording online). In terms
of bytes, in the 40s of the assessed video, 50 percent of its total cost (4 Mb) was offloaded to
Wi-Fi. No lost packets were experienced using this mechanism which was able to redirect the
flow to the Wi-Fi slice maintaining the user’s QoE.

As for signalling impact, the dedicated message size is presented in table 5.14 as well as
the payload. The periodic messages represent the signalling impact for one attached UE. This
impact will increase with the increase of attached UEs. The handover delay was measured
from the moment the UE starts receiving the video via LTE until its redirection to the Wi-Fi
slice, resulting in an average delay of 36s. Table 5.15 presents the handover delay decomposed

8Video: https://peach.blender.org/
9VLC: https://www.videolan.org/

10Android’s video standards: https://developer.android.com/guide/topics/media/media-formats.html
11Demo: https://atnog.github.io/5G-VCoM/demos/demo1.html

79

0 10 20 30 40
Timeline (s)

0

0.5

1

1.5

T
h
o
u
g
h
p
u
t
(M

b
p
s
)

t
1

t
2

t
3

LTE Wi-Fi Video in congested eNB

Figure 5.12: Video Throughput over time

Function Protocol Payload (bytes) Total Impact (bytes)
Create Slice UDP 14 60
Route Update OF 112 178
UE Flow info request: periodic OF 72 138
UE Flow info response: periodic OF 128 194

Table 5.14: Impact of dedicated signalling messages

in its four stages. ∆t1 refers to the time it takes for the video flow to be detected. Since the

∆ t1 ∆ t2 ∆ t3 ∆ t4
delay (s) 5.44(±0.78) 8.52(±0.01) 21.35(±8.91) 0.10(±0.02)

Table 5.15: Decomposed Offloading Delay

period of data updates in the vUE was pre-configured with 5s, the mechanism had a delay of
5.44(±0.78). ∆t2 refers to the slice instantiation delay. ∆t3 is the time interval between the
slice creation and the UE detection and attachment to the dynamically instantiated Wi-Fi
slice. However, such delay is independent of this mechanism since it is related to the Android’s
connectivity manager. In this case, the framework waits for the connectivity manager to
detect the created slice for further attachment request. From the 21.35s delay, only 0.6s were
related to the attachment procedure. Finally, ∆t4 is the delay between the UE’s successful
attachment and the flow redirection.

5.6 Summary

This chapter presented the results of the architecture’s evaluation. The messages of the newly
implemented interfaces were analysed as well as the impact of the signalling in the control

80

plane interfaces in terms of generated throughput and overhead. Also, the attachment times,
E2E latency and maximum throughput supported by the system were measured, with results
showing that the bottleneck of the system resides in the LTE and Wi-Fi air interfaces. Finally,
two use cases for the architecture were evaluated: one evaluated the capacity that the network
has to carry SIP calls while the other evaluated the performance of the traffic offloading
mechanism.

The next chapter presents the thesis’ conclusions, main contributions and future work.

81

CHAPTER 6
Final Remarks

6.1 Conclusions

The execution of this thesis resulted in an architecture implementation of a mobile core
network for 4G deployed in a cloud environment (network functions deployed as VNFs),
using SDN and supporting Wi-Fi access. The architecture uses an authentication method
common for LTE and Wi-Fi access and both these methods are transparent to the user. The
architecture also provides a mechanism for traffic offloading between LTE and Wi-Fi.

From the execution of this thesis and from the results presented in chapter 5, we can
conclude that the proposed architecture is more flexible than the standard approach for EPC
deployment as the introduction of SDN allows, as it was shown, for a reconfiguration of the
network behaviour during run-time. This flexibility becomes evident in the video streaming
traffic offloading use case where it was possible to dynamically redirect traffic flows from one
access technology to the other without losing QoE, freeing resources in the mobile cell and
thus optimizing the overall available resources. In terms of attachment time, compared with
a vanilla EPC, the proposed architecture had, when the tunnel port was already created,
attachment times similar to the ones measured in the bare metal EPC, despite being deployed
in a virtualization environment. Taking into consideration the variation of the confidence
interval associated with the results presented, the proposed architecture might even present
attachment times lower than in the bare metal EPC. So, in this case, the virtualization
impact in the attachment times for LTE access was counteracted by the modifications made
to the base EPC. In terms of data plane latency, the proposed architecture increased the E2E
latency in around 7 percent. Despite this increase, the majority of the time that contributes
to this latency is spent in the RAN. One conclusion drawn from the tests performed on
the implemented architecture was that the bottleneck of the system resides in the RAN.
Also, by deploying the network functions inside VMs in a cloud environment, the proposed
architecture decouples the software from the hardware enabling both to be updated and
scaled independently. This feature became evident when it was necessary to migrate the
implemented architecture to a new Openstack cloud environment that used different hardware

83

(the first deployment used AMD based CPUs while the latter, that was used to perform the
tests presented in this thesis, used Intel based CPUs). Despite the difference in hardware, no
modification was needed in the software of the implemented architecture.

The architecture implemented and presented in this thesis is an evolution of the standard
EPC and it uses concepts that are envisioned for 5G deployments such as SDN, NFV and
virtualization. It serves as a starting point test bed for more advanced and standards compliant
5G deployments and for the deployment of new network services.

6.2 Main Contributions

The execution of this thesis resulted in a physical test bed for future mobile network de-
ployments and presented an evaluation of the same. This thesis complements the related
work presented in chapter 2 where the majority of the work related to virtualization and
introduction of SDN in mobile networks only presented the architectures or simulation results.

Regarding to outcomes of this dissertation, the main outcome was the traffic offloading
mechanism that was jointly developed with an on-going PhD thesis. Another outcome was the
newly implemented interface called SDN-Info, that provides information to the DHCP server
that allows it to associate the MAC address of the UE to its IMSI. Also, the SWx interface
was implemented and this implementation resulted in a freeDIAMETER patch containing
the SWx interface necessary AVPs and message definitions. The integration of SDN in the
S/P-GW resulted in a REST module that enables the S/P-GW to communicate with the
SDN controller. Overall, the main outcome of this was the implemented SDN mechanisms
that provide a higher level of programmability to the network.

The architecture implemented and evaluated in this thesis is currently being used in our
research group as the basis for advanced services that are framed with 5G deployments. The
execution of this thesis contributed to a paper, entitled "Using SDN and Slicing for Data
Offloading over Heterogeneous Networks Supporting non-3GPP Access", accepted to the IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
2018 with the authors Flávio Meneses, Rui Silva, David Santos, Daniel Corujo and Rui L.
Aguiar. In this paper, the architecture presented in this thesis was used as the basis for the
evaluated traffic offloading mechanism.

This thesis also resulted in a journal submission entitled "An Integration of Slicing, NFV
and SDN for Mobility Management in Corporate Environments" with the authors Flávio
Meneses, Rui Silva, David Santos, Daniel Corujo and Rui L. Aguiar, submitted to the
Transactions on Emerging Telecommunications Technologies journal. This submission uses
the architecture from this thesis as the default slice, with 4G and Wi-Fi access, and it provides
a framework to redirect the desired traffic to a corporate slice.

This thesis was presented at the 25th Seminar of Rede Temática de Comunicações Móveis
(RTCM) 2018. Contributions were also made to the "Mobilizador 5G" project through
participation in audio conference meetings.

84

6.3 Future Work

With the 5G standardization process in progress there are several action points that can be
addressed in order to evolve the architecture proposed in this thesis. The future work to evolve
the architecture involves the deployment of multiple eNBs and perform network initiated
handovers, developing a mechanism to seamlessly transition a UE from a congested cell to
another with a higher amount of available resources. Also, the presented architecture could
be deployed on demand and managed by a NFV MANO system where it becomes possible
to deploy the entire architecture as a network service using a VNFD and network service
descriptors. Also, using the NFV MANO, the architecture would include scaling and healing
capabilities. The SDN controller application developed has room for improvement. One of
those improvements is to develop a mechanism for load balancing. The load balancing in this
context would mean that selective flows would be redirected to a parallel gateway connected
to the same SDN controller.

This thesis presented a mechanism for Wi-Fi slice creation. In order to have an E2E
slice in LTE, LTE RAN level slicing is also needed. As future work, a mechanism could be
implemented to support E2E network slicing in LTE and future 5G architectures.

In order to lower the latency felt by users when using a particular service, a Multi-Access
Edge Computing (MEC) framework could be incorporated with this architecture, which allows
for certain services to be deployed closer to the end user. The future work related to the MEC
concept includes the development of edge assisted handovers, performing faster handovers. It
also includes the deployment of distributed S/P-GW (as referenced by the ETSI in the "MEC
Deployments in 4G and Evolution Towards 5G" white paper) where the traffic originating
from the eNB can be decapsulated at the edge of the network and processed there, reducing
the bandwidth in the link with the core network and reducing the latency felt by the end user.

85

References

[1] Cisco, «Cisco Visual Networking Index : Global Mobile Data Traffic Forecast , 2016 – 2021», CISCO,
White Paper, Feb. 2017, pp. 1–7, 2017, issn: 1553-877X. doi: 10.1109/SURV.2008.080403. arXiv:
1454457600809267. [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white%7B%5C_%7Dpaper%7B%5C_%7Dc11-520862.html.

[2] NGMN Alliance, «NGMN 5G White Paper», Ngmn, pp. 1–125, 2015, issn: 0027-9684.

[3] 3GPP, «Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3», 3rd Generation
Partnership Project (3GPP), TS 24.301, 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/
html-info/24301.htm.

[4] 3GPP, «Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio
Access (E-UTRAN); Overall description; Stage 2», 3rd Generation Partnership Project (3GPP), TS
36.300, 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36300.htm.

[5] 3GPP, «Network architecture», 3rd Generation Partnership Project (3GPP), TS 23.002, 2008. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/23002.htm.

[6] 3GPP, «Policy and charging control architecture», 3rd Generation Partnership Project (3GPP), TS
23.203, 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/23203.htm.

[7] 3GPP, «General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio
Access Network (E-UTRAN) access», 3rd Generation Partnership Project (3GPP), TS 23.401, 2008.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/23401.htm.

[8] S. Ahmadi, LTE-Advanced: A Practical Systems Approach to Understanding 3GPP LTE Releases 10 and
11 Radio Access Technologies. 2013, pp. 1–1116, isbn: 9780124051621. doi: 10.1016/C2012-0-02224-7.

[9] 3GPP, «Evolved Universal Terrestrial Radio Access (E-UTRA) ; S1 Application Protocol (S1AP)», 3rd
Generation Partnership Project (3GPP), TS 36.413, 2008. [Online]. Available: http://www.3gpp.org/
ftp/Specs/html-info/36413.htm.

[10] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, Diameter Base Protocol, RFC6733, Oct. 2012. [Online].
Available: http://tools.ietf.org/rfc/rfc6733.txt.

[11] 3GPP, «MME Related Interfaces Based on Diameter Protocol», 3rd Generation Partnership Project
(3GPP), TS 29.272, 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/29272.htm.

[12] «IEEE Standard for Information technology–Telecommunications and information exchange between
systems Local and metropolitan area networks–Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications», IEEE Std 802.11-2016 (Revision of
IEEE Std 802.11-2012), pp. 1–3534, Dec. 2016. doi: 10.1109/IEEESTD.2016.7786995.

[13] F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella, R. Bruno, and M. Conti, «Data Offloading
Techniques in Cellular Networks: A Survey», IEEE Communications Surveys & Tutorials, vol. 17, no. 2,
pp. 580–603, 2015, issn: 1553-877X. doi: 10.1109/COMST.2014.2369742.

[14] K. Samdanis, T. Taleb, and S. Schmid, «Traffic offload enhancements for eUTRAN», IEEE Communi-
cations Surveys and Tutorials, vol. 14, no. 3, pp. 884–896, 2012, issn: 1553877X. doi: 10.1109/SURV.
2011.072711.00168.

[15] C. B. Sankaran, «Data offloading techniques in 3GPP Rel-10 networks: A tutorial», IEEE Communica-
tions Magazine, vol. 50, no. 6, pp. 46–53, 2012, issn: 01636804. doi: 10.1109/MCOM.2012.6211485.

87

https://doi.org/10.1109/SURV.2008.080403
http://arxiv.org/abs/1454457600809267
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white%7B%5C_%7Dpaper%7B%5C_%7Dc11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white%7B%5C_%7Dpaper%7B%5C_%7Dc11-520862.html
http://www.3gpp.org/ftp/Specs/html-info/24301.htm
http://www.3gpp.org/ftp/Specs/html-info/24301.htm
http://www.3gpp.org/ftp/Specs/html-info/36300.htm
http://www.3gpp.org/ftp/Specs/html-info/23002.htm
http://www.3gpp.org/ftp/Specs/html-info/23203.htm
http://www.3gpp.org/ftp/Specs/html-info/23401.htm
https://doi.org/10.1016/C2012-0-02224-7
http://www.3gpp.org/ftp/Specs/html-info/36413.htm
http://www.3gpp.org/ftp/Specs/html-info/36413.htm
http://tools.ietf.org/rfc/rfc6733.txt
http://www.3gpp.org/ftp/Specs/html-info/29272.htm
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/COMST.2014.2369742
https://doi.org/10.1109/SURV.2011.072711.00168
https://doi.org/10.1109/SURV.2011.072711.00168
https://doi.org/10.1109/MCOM.2012.6211485

[16] 3GPP, «Architecture enhancements for non-3GPP accesses», 3rd Generation Partnership Project (3GPP),
TS 23.402, 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/23402.htm.

[17] 3GPP, «Evolved Packet System (EPS); 3GPP EPS AAA interfaces», 3rd Generation Partnership Project
(3GPP), TS 29.273, 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/29273.htm.

[18] 3GPP, «Access Network Discovery and Selection Function (ANDSF) Management Object (MO)», 3rd
Generation Partnership Project (3GPP), TS 24.312, 2008. [Online]. Available: http://www.3gpp.org/
ftp/Specs/html-info/24312.htm.

[19] D. Laselva, D. Lopez-Perez, M. Rinne, and T. Henttonen, «3GPP LTE-WLAN Aggregation Technologies:
Functionalities and Performance Comparison», IEEE Communications Magazine, vol. 56, no. 3, pp. 195–
203, Mar. 2018, issn: 0163-6804. doi: 10.1109/MCOM.2018.1700449.

[20] D. R. Purohith, A. Hegde, and K. M. Sivalingam, «Network architecture supporting seamless flow
mobility between LTE and WiFi networks», in Proceedings of the WoWMoM 2015: A World of Wireless
Mobile and Multimedia Networks, 2015, isbn: 9781479984619. doi: 10.1109/WoWMoM.2015.7158124.

[21] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil, Proxy Mobile IPv6, RFC5213,
Aug. 2008. [Online]. Available: http://tools.ietf.org/rfc/rfc5213.txt.

[22] D. Johnson, C. Perkins, and J. Arkko, Mobility Support in IPv6, RFC3775, Jun. 2004. [Online]. Available:
http://tools.ietf.org/rfc/rfc3775.txt.

[23] A. S. D. Alfoudi, G. M. Lee, and M. Dighriri, «Seamless LTE-WiFi Architecture for Offloading the
Overloaded LTE with Efficient UE Authentication», in Proceedings - 2016 9th International Conference
on Developments in eSystems Engineering, DeSE 2016, 2017, pp. 118–122, isbn: 9781509054879. doi:
10.1109/DeSE.2016.53.

[24] 3GPP, «NR and NG-RAN Overall Description», 3rd Generation Partnership Project (3GPP), TS 38.300,
2017. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/38300.htm.

[25] 3GPP, «System Architecture for the 5G System», 3rd Generation Partnership Project (3GPP), TS
23.501, 2017. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/23501.htm.

[26] S. Carl-Mitchell and J. Quarterman, Using ARP to implement transparent subnet gateways, RFC1027,
Oct. 1987. [Online]. Available: http://tools.ietf.org/rfc/rfc1027.txt.

[27] P. Eronen, IKEv2 Mobility and Multihoming Protocol (MOBIKE), RFC4555, Jun. 2006. [Online].
Available: http://tools.ietf.org/rfc/rfc4555.txt.

[28] ETSI, «Network Functions Virtualisation (NFV); Architectural Framework», ETSI GS NFV 002 v1.2.1,
vol. 1, pp. 1–21, 2014. doi: DGS/NFV-0011.

[29] ETSI, «Network Functions Virtualization (NFV) Release 3; Management and Orchestration; Report on
management of NFV-MANO and automated deployment of EM and other OSS functions», European
Telecommunications Standards Institute (ETSI), GR NFV-IFA 021, 2018. [Online]. Available: www.etsi.
org/deliver/etsi_gr/NFV-IFA/001_099/021/03.01.01_60/gr_NFV-IFA021v030101p.pdf.

[30] ETSI, «Network Functions Virtualization (NFV); Virtual Network Functions Architecture», European
Telecommunications Standards Institute (ETSI), GS NFV-SWA 001, 2014. [Online]. Available: http://
www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_nfv-swa001v010101p.pdf.

[31] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O. Koufopavlou, Software-Defined
Networking (SDN): Layers and Architecture Terminology, RFC7426, Jan. 2015. [Online]. Available:
http://tools.ietf.org/rfc/rfc7426.txt.

[32] J. Halpern and J. H. Salim, Forwarding and Control Element Separation (ForCES) Forwarding Element
Model, RFC5812, Mar. 2010. [Online]. Available: http://tools.ietf.org/rfc/rfc5812.txt.

[33] M. Bjorklund, YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF),
RFC6020, Oct. 2010. [Online]. Available: http://tools.ietf.org/rfc/rfc6020.txt.

[34] ONF, «OpenFlow Switch Specification», Open Networking Foundation (ONF), TS ONF TS-023,
2015. [Online]. Available: https : / / 3vf60mmveq1g8vzn48q2o71a - wpengine . netdna - ssl . com / wp -
content/uploads/2014/10/openflow-switch-v1.3.5.pdf.

88

http://www.3gpp.org/ftp/Specs/html-info/23402.htm
http://www.3gpp.org/ftp/Specs/html-info/29273.htm
http://www.3gpp.org/ftp/Specs/html-info/24312.htm
http://www.3gpp.org/ftp/Specs/html-info/24312.htm
https://doi.org/10.1109/MCOM.2018.1700449
https://doi.org/10.1109/WoWMoM.2015.7158124
http://tools.ietf.org/rfc/rfc5213.txt
http://tools.ietf.org/rfc/rfc3775.txt
https://doi.org/10.1109/DeSE.2016.53
http://www.3gpp.org/ftp/Specs/html-info/38300.htm
http://www.3gpp.org/ftp/Specs/html-info/23501.htm
http://tools.ietf.org/rfc/rfc1027.txt
http://tools.ietf.org/rfc/rfc4555.txt
https://doi.org/DGS/NFV-0011
www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/021/03.01.01_60/gr_NFV-IFA021v030101p.pdf
www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/021/03.01.01_60/gr_NFV-IFA021v030101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_nfv-swa001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_nfv-swa001v010101p.pdf
http://tools.ietf.org/rfc/rfc7426.txt
http://tools.ietf.org/rfc/rfc5812.txt
http://tools.ietf.org/rfc/rfc6020.txt
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf

[35] R. Thurlow, RPC: Remote Procedure Call Protocol Specification Version 2, RFC5531, May 2009. [Online].
Available: http://tools.ietf.org/rfc/rfc5531.txt.

[36] A. Jain, N. S. Sadagopan, S. K. Lohani, and M. Vutukuru, «A comparison of SDN and NFV for
re-designing the LTE Packet Core», in 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks, NFV-SDN 2016, 2017, pp. 74–80, isbn: 9781509009336. doi: 10.1109/NFV-
SDN.2016.7919479.

[37] A. Basta, W. Kellerer, M. Hoffmann, K. Hoffmann, and E. D. Schmidt, «A virtual SDN-enabled LTE
EPC architecture: A case study for S-/P-gateways functions», in SDN4FNS 2013 - 2013 Workshop
on Software Defined Networks for Future Networks and Services, 2013, isbn: 9781479927814. doi:
10.1109/SDN4FNS.2013.6702532.

[38] S. B. H. Said, M. R. Sama, K. Guillouard, L. Suciu, G. Simon, X. Lagrange, and J. M. Bonnin, «New
control plane in 3GPP LTE/EPC architecture for on-demand connectivity service», in Proceedings of
the 2013 IEEE 2nd International Conference on Cloud Networking, CloudNet 2013, 2013, pp. 205–209,
isbn: 9781479905669. doi: 10.1109/CloudNet.2013.6710579.

[39] X. An, W. Kiess, J. Varga, J. Prade, H. J. Morper, and K. Hoffmann, «SDN-based vs. software-only
EPC gateways: A cost analysis», in IEEE NETSOFT 2016 - 2016 IEEE NetSoft Conference and
Workshops: Software-Defined Infrastructure for Networks, Clouds, IoT and Services, 2016, pp. 146–150,
isbn: 9781467394864. doi: 10.1109/NETSOFT.2016.7502461.

[40] A. Tawbeh, H. Safa, and A. R. Dhaini, «A hybrid SDN/NFV architecture for future LTE networks»,
in IEEE International Conference on Communications, 2017, isbn: 9781467389990. doi: 10.1109/ICC.
2017.7997391.

[41] J. Kempf, B. Johansson, S. Pettersson, H. Lüning, and T. Nilsson, «Moving the mobile evolved packet
core to the cloud», in International Conference on Wireless and Mobile Computing, Networking and
Communications, 2012, pp. 784–791, isbn: 9781467314305. doi: 10.1109/WiMOB.2012.6379165.

[42] R. Droms, Dynamic Host Configuration Protocol, RFC2131, Mar. 1997. [Online]. Available: http:
//tools.ietf.org/rfc/rfc2131.txt.

89

http://tools.ietf.org/rfc/rfc5531.txt
https://doi.org/10.1109/NFV-SDN.2016.7919479
https://doi.org/10.1109/NFV-SDN.2016.7919479
https://doi.org/10.1109/SDN4FNS.2013.6702532
https://doi.org/10.1109/CloudNet.2013.6710579
https://doi.org/10.1109/NETSOFT.2016.7502461
https://doi.org/10.1109/ICC.2017.7997391
https://doi.org/10.1109/ICC.2017.7997391
https://doi.org/10.1109/WiMOB.2012.6379165
http://tools.ietf.org/rfc/rfc2131.txt
http://tools.ietf.org/rfc/rfc2131.txt

Appendix-A: oai-spgw source code
modifications

UE Information Structure

typedef struct {
Imsi_t imsi;
struct in_addr enb_ip;
struct in_addr ue_ip;
uint32_t enb_s1u_teid;
uint32_t spgw_s1u_teid;

} ue_info;

sdn_rest module

int create_gtpv1u_tunnel(void *args)
{

/* ... */
// Convert args to ue_info structure
memcpy(ue, args, sizeof(ue_info));

/* ... */

// Build URI string
sprintf(uri, "http://%s:%u/spgw/ue/lte/add", sdn_ctrl_ip, sdn_ctrl_port);

// Build info string
sprintf(info, "{\"imsi\": %s, \"ue_ip\": \"%s\", \"enb_ip\": \"%s\", \"enb_s1u_teid\": %u,

\"sgw_s1u_teid\": %u}", imsi, ue_ip, enb_ip, ue->enb_s1u_teid, ue->sgw_s1u_teid);

// Send data to SDN Controller and return exit code
return curl_post_data(uri, info);

}

int delete_gtpv1u_tunnel(void *args)
{

/* ... */
// Convert args to imsi
memcpy(imsi, args, sizeof(Imsi_t));

/* ... */

91

// Build URI string
sprintf(uri, "http://%s:%u/spgw/ue/lte/delete", sdn_ctrl_ip, sdn_ctrl_port);

// Build info string
sprintf(info, "{\"imsi\": %s}", imsi);

// Send data to SDN Controller and return exit code
return curl_post_data(uri, info);

}

Modifications to the sgw_handlers.c file

int
sgw_handle_sgi_endpoint_updated (

const itti_sgi_update_end_point_response_t * const resp_pP)
{

/* ... */
pthread_t create_gtp_tunnel;
ue_info *ue_information;

/* ... */

// Line to be replaced:
//rv = gtp_mod_kernel_tunnel_add(ue, enb, eps_bearer_entry_p->s_gw_teid_S1u_S12_S4_up,
// eps_bearer_entry_p->enb_teid_S1u);

// Create Tunnel in OVS via REST API
// Fill in ue_information structure
/* ... */
// Create Thread
ret = pthread_create(&create_gtp_tunnel, NULL, create_gtpv1u_tunnel, ue_information);
if(ret)
{

//print error message
}
// Wait for thread to be completed
pthread_join(create_gtp_tunnel, NULL);
/* ... */

}

int
sgw_handle_sgi_endpoint_deleted (

const itti_sgi_delete_end_point_request_t * const resp_pP)
{

/* ... */
pthread_t delete_gtp_tunnel;

/* ... */

// Line to be replaced:

92

//rv = gtp_mod_kernel_tunnel_del(eps_bearer_entry_p->s_gw_teid_S1u_S12_S4_up,
// eps_bearer_entry_p->enb_teid_S1u);

// Delete Tunnel in OVS via REST API

ret = pthread_create(&delete_gtp_tunnel, NULL, delete_gtpv1u_tunnel, (void *)imsi);
if(ret)
{

//print error message
}
// Wait for thread to be complete
pthread_join(delete_gtp_tunnel, NULL);
/* ... */

}

93

Appendix-B: SDN Controller
Application

vSwitch Initial Connection Handler

def switch_features_handler(self, ev):
..
dpid = datapath.id
...

if dpid == SPGW_DPID:
Install SPGW default flows
...
Send Command to retrieve switch port list

elif dpid == WIFI_AP_DPID:
Install WIFI_AP default flows
...

elif dpid == DHCP_DPID:
Install DHCP default flows
...

else:
Unrecognised datapath
...

Port Description Reply Handler

def port_desc_stats_reply_handler(self, ev):
for p in ev.msg.body:

ports[p.name] = p.port_no
...

Port Status Handler

def port_status_handler(self, ev):
msg = ev.msg
...

95

if msg.reason == ofp.OFPPR_ADD:
...
ports[port.name] = port.port_no

if msg.reason == ofp.OFPPR_DELETE:
...
del ports[port.name]

mobileNode Class

class MobileNode():
def __init__(self, imsi):

self.imsi = imsi # dictionary key
Cellular Info
self.lte_ip = None
self.lte_remote_teid = None
self.lte_local_teid = None
self.lte_tun_ipv4_dst = None
self.gtp_port = None

WIFI Info
self.wifi_ip = None
self.wifi_remote_teid = None
self.wifi_tun_ipv4_dst = None
self.gre_port = None

def register_lte(self, spgw_dp, ip, remote_teid, local_teid, tun_ipv4_dst):
self.lte_ip = ip
self.lte_remote_teid = remote_teid
self.lte_local_teid = local_teid
self.lte_tun_ipv4_dst = tun_ipv4_dst
gtp_port_name = self.lte_tun_ipv4_dst

if gtp_port_name in ports:
self.gtp_port = ports[gtp_port_name]

else:
Create GTP Tunnel port
create_gtp_port(self.lte_tun_ipv4_dst)
Wait for the switch to signal that a new port was created
while gtp_port_name not in ports:

pass

self.gtp_port = ports[gtp_port_name]
...
Install Uplink and Downlink flows

def unregister_lte(self, spgw_dp):
...
Delete Uplink and Downlink flows
...
self.lte_ip = None

96

def register_wifi(self, spgw_dp, ap_dp, wifi_ip, tun_ipv4_dst):
self.wifi_ip = wifi_ip
self.wifi_remote_teid = self.get_free_teid()
self.wifi_tun_ipv4_dst = tun_ipv4_dst
gre_port_name = self.wifi_tun_ipv4_dst
if gre_port_name in ports:

self.gre_port = ports[gre_port_name]
else:

Create GRE Tunnel Port in S/P-GW-U
create_wifi_port(self.wifi_tun_ipv4_dst)
Wait for the switch to signal that a new port was created
while gre_port_name not in ports:

pass

self.gre_port = ports[gre_port_name]
...

Install S/P-GW-U Uplink and Downlink Flows
...
Install Wi-Fi AP Uplink and Downlink Flows

def unregister_wifi(self, spgw_dp, ap_dp):
...
Delete S/P-GW-U Uplink and Downlink Flows
...
Delete Wi-Fi AP Uplink and Downlink Flows
...
self.wifi_ip = None

Handlers for REST messages

/spgw/ue/lte/add and delete
def add_lte_if(self, req, body, *args, **kwargs):

...
imsi = body['imsi']

if imsi in mobile_nodes: # If the UE is already connected via Wi-Fi
mn = mobile_nodes[imsi]
mn.register_lte(spgw_dp, body['ue_ip'], body['enb_s1u_teid'],

body['sgw_s1u_teid'], body['enb_ip'])

else: # No UE is connected with this IMSI
mn = MobileNode(imsi) # Create the structure
mn.register_lte(spgw_dp, body['ue_ip'], body['enb_s1u_teid'],

body['sgw_s1u_teid'], body['enb_ip'])
mobile_nodes[imsi] = mn

def delete_lte_if(self, req, body, *args, **kwargs):
...
imsi = body['imsi']

97

if imsi in mobile_nodes: # If the UE is connected
mn = mobile_nodes[imsi]
mn.unregister_lte(spgw_dp)
if mn.wifi_ip == None: # If the UE is not connected to Wi-Fi

del mobile_nodes[imsi]

else: # UE is not registered
Print error message

/spgw/ue/wifi/add and delete
def add_wifi_if(self, req, body, *args, **kwargs):

...
imsi = body['imsi']

if imsi in mobile_nodes: # If the UE is already connected via LTE
mn = mobile_nodes[imsi]
mn.register_wifi(spgw_dp, ap_dp, body['ue_ip'], body['ap_ip'])

else: # No UE is connected with this IMSI
mn = MobileNode(imsi) # Create the structure
mn.register_wifi(spgw_dp, ap_dp, body['ue_ip'], body['ap_ip'])
mobile_nodes[imsi] = mn

def delete_wifi_if(self, req, body, *args, **kwargs):
...
imsi = body['imsi']
if imsi in mobile_nodes: # If the UE is connected

mn = mobile_nodes[imsi]
mn.unregister_wifi(spgw_dp, ap_dp)
if mn.lte_ip == None: # If the UE is not connected to LTE

del mobile_nodes[imsi]

else: # UE is not registered
Print error message

98

Appendix-C: freeRADIUS server
source code modifications and

diameter-agent

Modifications to the freeRADIUS server
src/modules/rlm_eap/lib/sim/vector.c file

static int vector_umts_from_ki(eap_session_t *eap_session, VALUE_PAIR *vps, fr_sim_keys_t *keys)
{

/*...*/
// Extract UE MAC Address and Wi-Fi AP IP Address from eap_session variable
/*...*/
// Open UDP socket
// Set DHCP Server IP and Port
// Send UDP Message to DHCP Server containing the user's IMSI, the MAC Address and

// the Wi-Fi AP IP Address
// Close UDP Socket

// Open UDP socket
// Set diameter-agent IP and Port
// Send UDP Message to diameter-agent with the user's IMSI
// Wait for a response
// Close socket
// Extract RAND, AUTN, XRES, CK and IK from received message and set the values

//in the keys variable
/*...*/
return 0;

}

diameter-agent

/*...*/
typedef struct{

struct dict_object *dataobj_swx_vendor; /* swx vendor object */
struct dict_object *dataobj_swx_app; /* swx application object */
/* Commands */
struct dict_object *dataobj_swx_auth_req_cmd; /* SWx-Multimedia
Authentication-Request */

99

struct dict_object *dataobj_swx_auth_ans_cmd; /* SWx-Multimedia
Authentication-Answer */
/* AVPs */
// Define the objects for the AVPs
// struct dict_object *dataobj_swx_*;
/*...*/

}swx_cnf_t;

// EAP-AKA Vector
typedef struct{

uint8_t autn[SIM_VECTOR_UMTS_AUTN_SIZE];
uint8_t ck[SIM_VECTOR_UMTS_CK_SIZE];
uint8_t ik[SIM_VECTOR_UMTS_IK_SIZE];
uint8_t rand[SIM_VECTOR_UMTS_RAND_SIZE];
uint8_t xres[SIM_VECTOR_UMTS_RES_MAX_SIZE];
uint32_t xres_len;

} umts_vector_t;

// The main function: Opens the socket, initializes the SWx interface and waits for messages
//to arrive to the UDP socket

int main()
{

udp_socket_open();
swx_init();
while(1);
return 0;

}

int swx_init()
{

/*...*/
// Initialize freediameter core
ret = fd_core_initialize ();
/*...*/
// Parse Configurations
ret = fd_core_parseconf (config_file);
/*...*/
// Start freediameter Core
ret = fd_core_start ();
/*..*/
// Wait for the start completion
ret = fd_core_waitstartcomplete ();
/*...*/
// Initialize SWx dictionary Objects (Application Specific)
ret = swx_fd_init_dict_objs ();
/*...*/

memset (&when, 0, sizeof (when));
when.command = swx_cnf.dataobj_swx_auth_ans_cmd;
when.app = swx_cnf.dataobj_swx_app;

100

// Register the callbacks for SWx Application
CHECK_FCT (fd_disp_register (swx_auth_ans, DISP_HOW_CC, &when, NULL, &handle));
/*...*/
return 0;

}

int swx_fd_init_dict_objs (void)
{

vendor_id_t vendor_3gpp = VENDOR_3GPP;
application_id_t app_swx = APP_SWX;
/*...*/
// Pre-load vendor object
/*...*/
// Pre-load application object
/*...*/
// Pre-load command objects
/*...*/
// Pre-load AVPs objects
/*...*/
//Add support for the SWx application
CHECK_FCT (fd_disp_app_support (swx_cnf.dataobj_swx_app, swx_cnf.dataobj_swx_vendor, 1, 0));

return 0;
}

// Handler called when an UDP message is received
void SIGIOHandler(int signalType)
{

/*...*/
// Get received message from buffer (user's IMSI)
/*...*/
swx_generate_auth_info_req (buffer);
/*...*/

}

int swx_generate_auth_info_req (char *identity)
{

/*...*/
// Create the new Multimedia-Auth Request message
/*...*/
// Create new Session
/*...*/
// Add required AVPs to message
/*...*/
// Send the message
CHECK_FCT (fd_msg_send (&msg, NULL, NULL));

return 0;
}

101

// The handler for the Multimedia-Auth Answer message
int
swx_auth_ans (

struct msg **msg,
struct avp *paramavp,
struct session *sess,
void *opaque,
enum disp_action *act)

{
/*...*/
// Retrieve the result code from the message
if(result_code != ER_DIAMETER_SUCCESS)

// An error occurred, print error message
else

// Retrieve Authentication Vector from message
CHECK_FCT (swx_parse_umts_vector (avp, vector));

// Build UDP Message to send to RADIUS Server
/*...*/
// Send UDP Message to RADIUS Server
/*...*/

return 0;
}

102

Appendix-D: SDN interface in the
DHCP server

Wi-Fi SDN Interface

...

ids = {} # Dictionary for the MAC <-> IMSI Association
tunnel_ip = {} # Dictionary for the IMSI <-> Wi-Fi AP IP Association
dhcp_leases = {} # Dictionary to store the DHCP Leases

...

def ue_register(added, new_leases):
for i in range(len(added)):

key = added.pop() # Retrieve the MAC Address of the added UE
try:

Build data string with data from ids and tunnel_ip dicts
...
Build URI string
...
Create and start a thread to send the REST Command to the SDN

Controller
t = threading.Thread(target = curl_post_data, args=(url,data))
t.start()

except:
An error occurred

def ue_unregister(removed):
for i in range(len(removed)):

key = removed.pop() # Retrieve the MAC Address of the removed UE
try:

Build data string with data from ids
...
Build URI string
...
Create and start a thread to send the REST Command to the SDN

Controller
t = threading.Thread(target = curl_post_data, args=(url,data))
t.start()

103

except:
An error occurred

def curl_post_data(url, data):
Use pycurl to send data to SDN Controller

class UDPHandler(SocketServer.BaseRequestHandler):
def handle(self):

Retrieve received data (IMSI, Wi-Fi AP IP and MAC Address)
...
Associate the IMSI to the MAC address
ids[mac] = imsi
Associate the Wi-Fi AP IP to the IMSI
tunnel_ip[imsi] = ap_ip

if __name__ == "__main__":
Start UDP Server
...
try:

...
while True:

Read DHCP Leases File
...

Compare the leases with the leases in the previous reading
It compares new_leases with dhcp_leases
added, removed = dict_compare(new_leases)
if len(added) > 0: # If new leases where added

ue_register(added, new_leases)

if len(removed) > 0: # If leases where removed
ue_unregister(removed)

Save Current leases
dhcp_leases = new_leases

104

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation/Problem Statement
	Proposed Solution
	Contributions
	Document Structure

	Key Enabling Technologies and State Of The Art
	3GPP Evolved Packet System (EPS)
	Evolved NodeB (eNB)
	Mobility Management Entity (MME)
	Home Subscriber Server (HSS)
	Serving Gateway (S-GW)
	Packet Data Network Gateway (P-GW)
	Policy and Charging Rules Function (PCRF)
	Interface Description
	S1AP/Non-Access Stratum (NAS)
	DIAMETER
	GPRS Tunnelling Protocol (GTP)

	Connection Procedures
	The EPS Bearer
	UE Authentication
	UE Attachment Procedure

	3GPP to Non-3GPP Traffic Offloading Techniques
	Access Network Discovery and Selection Function (ANDSF)
	LTE-WLAN Aggregation (LWA)
	LTE-WLAN radio-level integration with IP security tunnel (LWIP)
	New Approaches

	The road to 5G
	5G Core Architecture
	Access and Mobility Management Function (AMF)
	Session Management Function (SMF)
	User Plane Function (UPF)
	Policy Control Function (PCF)
	Unified Data Management (UDM)
	Application Function (AF)
	Network Exposure Function (NEF)
	Network Slice Selection Function (NSSF)

	WLAN interworking

	Key Enablers in 5G
	Virtualization Environment
	Network Function Virtualisation (NFV)
	NFV Management and Orchestration (MANO)
	Virtual Network Function (VNF)

	Software Defined Networking (SDN)
	Data Plane
	OpenFlow Protocol

	Control Plane Entity
	Management Plane
	Application Plane

	Virtualizing the EPC

	Summary

	Architecture Design
	Overview
	Introducing SDN
	Data Plane
	LTE Control Plane
	Attachment Procedure

	Wi-Fi Control Plane
	Attachment Procedure

	SDN Controller
	Offloading Procedure

	Introducing NFV
	Summary

	Solution Implementation
	Overview
	Virtual Networks and Interfaces
	Virtual Machine (VM) Specifications

	Radio Access Network (RAN)
	Evolved NodeB (eNB)
	Hardware Setup
	Open Air Interface (OAI) Software Setup

	Wi-Fi Access Point (AP)
	UE Setup

	LTE Control Plane
	HSS+MME
	S/P-GW-C
	S/P-GW
	SDN Controller

	Wi-Fi Control Plane
	Authentication, Authorization and Accounting (AAA)
	RADIUS server
	Diameter Agent

	DHCP Server
	OVS Setup
	Wi-Fi SDN Interface

	Data Plane
	S/P-GW-U
	vRouter

	Summary

	Architecture Validation
	Signalling Impact
	3GPP Defined
	Architecture Specific Interfaces
	Generated Traffic

	Attachment Time
	LTE Attachment Time
	Vanilla EPC
	Virtual EPC

	Wi-Fi Attachment Time

	Latency
	LTE Latency
	Vanilla EPC
	Virtual EPC

	Wi-Fi Latency

	Throughput
	LTE Throughput
	Wi-Fi Throughput
	Throughput Result Validation

	Use Cases
	VoIP Calls
	Mobile Traffic Offloading for Video Streaming
	Scenario Definition
	Framework Evaluation

	Summary

	Final Remarks
	Conclusions
	Main Contributions
	Future Work

	References
	Appendix-A: oai-spgw source code modifications
	UE Information Structure
	sdn_rest module
	Modifications to the sgw_handlers.c file

	Appendix-B: SDN Controller Application
	vSwitch Initial Connection Handler
	Port Description Reply Handler
	Port Status Handler
	mobileNode Class
	Handlers for REST messages
	/spgw/ue/lte/add and delete
	/spgw/ue/wifi/add and delete

	Appendix-C: freeRADIUS server source code modifications and diameter-agent
	Modifications to the freeRADIUS server src/modules/rlm_eap/lib/sim/vector.c file
	diameter-agent

	Appendix-D: SDN interface in the DHCP server
	Wi-Fi SDN Interface

