CHARACTERIZATION OF SURFACE SPECIES ON MESOPOROUS TiO₂ PREPARED BY TiC OXIDATION

E. Ovodok, M. Ivanovskaya, S. Poznyak
Research Institute for Physical Chemical Problems of the Belarusian State University
Leningradskaia 14, 220030 Minsk, Belarus
ovodok@bsu.by

N. Scharnagl
Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research GmbH
Max-Planck-Straße 1, 21502 Geesthacht, Germany

J. Tedim
Department of Materials and Ceramics Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

Surface species responsible for low pH values of zero charge point and high sorption capacity of mesoporous TiO₂ powder obtained by TiC oxidation with nitric acid were studied by FTIR, EPR and XPS methods. It was found that during the titania synthesis the oxide surface was modified by nitrate-nitrite, carboxylic groups, NOₓ and ·С≡ radicals which determined adsorption properties of the TiO₂ powder.

1. Introduction

Titanium dioxide is used as a photocatalyst for UV decomposition of a wide variety of contaminants in water and air [1]. Mesoporosity and high surface area of TiO₂ powder enhances the efficiency of photocatalysis. Modification of the titania surface allows increasing the adsorption ability of TiO₂ powder and, thus, its activity in photodegradation processes can be improved.

This paper is focused on characterization of surface species on mesoporous TiO₂ powder obtained by TiC oxidation with nitric acid. FTIR, EPR, and XPS spectroscopies were applied for this purpose.

2. Experimental

Mesoporous TiO₂ powders were fabricated by oxidation of titanium carbide powder with nitric acid according to the method described in [2]. The samples were calcinated at 200 °C in air.

Fourier transform infrared spectra were collected on an AVATAR-330 spectrometer (Thermo Nicolet). XPS spectra were collected by Kratos DLD Ultrac spectrometer using AlKα radiation (E = 1486.6 eV). Calibration was made relatively to C 1s line (E = 284.8±0.2 eV). EPR spectra were recorded with
VARIAN E 112 spectrometer using the resonance frequency of 9.35 GHz (X-band) at 77 K and 298 K. Zeta-potential of TiO$_2$ particles was measured by Malvern Zetasizer S90.

3. Results and discussion

Oxidation of black TiC powder by concentrated nitric acid gives a yellowish powder with a fine-dispersed structure. Calcination of the powder at 200 °C results in a change of color to light-brown. X-ray diffraction pattern shows the presence only anatase TiO$_2$ phase. The crystallite size calculated using Debye-Scherrer equation is 4 nm. According to BET analysis the powder has mesoporous structure with an average pore size of 3.4 nm. The specific surface area is found to be 353 m2/g.

The synthesized TiO$_2$ particles have negative surface charge in a water suspension at pH > 3.5. Zero charge is observed at pH 3.5. This is lower than pH values commonly reported for TiO$_2$ formation [3].

It was found that the prepared titanium dioxide powder efficiently adsorbed positively charged molecules at neutral pH. Rhodamine B was chosen as a model pollutant for investigation of the sorption capacity of the TiO$_2$ powder. The maximum sorption capacity of the powder is near 40 mg/g (Fig. 1).

High sorption activity of the synthesized powder is caused by large surface area, from one side, and the states at the TiO$_2$ surface, from the other side. Some nitrogen and carbon-containing species, which are produced during synthesis, might modify TiO$_2$ surface and influence adsorption properties of the TiO$_2$ powder. We used XPS, FTIR, and EPR spectroscopies for identification of these species.

The XPS results are collected in Table 1. Ti 2p$_{3/2}$ and Ti 2p$_{1/2}$ single lines of symmetric shape are registered at the energies, which correspond to Ti$^{4+}$ (E_{bond} Ti 2p) in TiO$_2$. O 1s, C 1s and N 1s peaks indicate that OH$^-$, CO$_2^-$, and NO$_2^-$ groups are present on the oxide surface. C 1s line has a complex shape which can be approximated by lines assigned to sp^3- and sp^2- carbon states and oxidized −CO and COO$^-$ species. XPS data show that Ti$^{6+}$ and C$^{\delta-}$ states, which
are characteristic for titanium carbide, are absent in the synthesized titania samples, indicating that TiC is completely oxidized during the synthesis.

Table 1. XPS data of TiO₂ obtained by oxidation of TiC with nitric acid.

<table>
<thead>
<tr>
<th>Lines</th>
<th>Eₐ₉ₐₜ, eV</th>
<th>Element species</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 1s</td>
<td>530.1</td>
<td>O²⁻ (TiO₂)</td>
</tr>
<tr>
<td></td>
<td>531.6</td>
<td>HO⁻ (TiO₂)</td>
</tr>
<tr>
<td>C 1s</td>
<td>284.8</td>
<td>C–C, C–H</td>
</tr>
<tr>
<td></td>
<td>286</td>
<td>>C=O</td>
</tr>
<tr>
<td></td>
<td>288.8</td>
<td>−COO⁻, CO₃⁻</td>
</tr>
<tr>
<td>Ti 2p(3/2)</td>
<td>458.7</td>
<td>Ti⁴⁺ (TiO₂)</td>
</tr>
<tr>
<td>N 1s</td>
<td>400.2</td>
<td>NOₓ</td>
</tr>
</tbody>
</table>

The FTIR spectrum of the sample is presented in Fig. 2. The dominating wide band at 400–850 cm⁻¹ is attributed to vibrations in octahedrons [TiO₆]. It is a superposition of several normal ν(Ti–O) vibrations characteristic of TiO₂. The spectrum shows two intensive bands related to deformation δ(H–O–H) vibrations at 1629 cm⁻¹ and asymmetric νₘ(O–H) vibrations at 3200–3400 cm⁻¹ of water molecules. The region from 800 to 1800 cm⁻¹ shows vibrations of nitro, nitrates and carboxylate groups. In this region there are vibrations from unbound nitrate groups (at 1680 cm⁻¹), monodentate groups (at 1665 and 1680 cm⁻¹) and bidentate ones (at 1644 and 1710 cm⁻¹). The lines at 1407 and 1107 cm⁻¹ are the symmetric and asymmetric stretching vibrations of nitro groups, respectively. The broad absorption band at 2000 cm⁻¹ may be due to an appearance of complexes with CO adsorbed on the TiO₂ surface.

The EPR spectrum shows the central line with g-factor of 2.0025 and weakly resolved broadened neighboring lines (Fig. 3). The half width of the central line (ΔB) is 0.5 mT. The spectrum represents a superposition of two triplet signals of NOₓ radicals. The radicals include one unpaired electron (S=1/2) and ¹⁴N atom (nuclear spin I = 1, ¹⁴N isotope abundance is 99.6 %). These two signals
have a central line with $g = g_e$ and different hyperfine structure (HFS) constants (ΔA). This constant characterizes magnetic interaction of the unpaired electron with 14N nuclear. The parameters of the EPR signals and corresponding paramagnetic centers (PCs) are presented in Table 2.

Table 2. Parameters of the EPR signals and nature of the corresponding PCs, which are observed in the titanium dioxide obtained by oxidation of TiC with nitric acid.

<table>
<thead>
<tr>
<th>Parameters of the EPR signals</th>
<th>Paramagnetic centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g = 2.002; \Delta A_1 = 5.6$ mT</td>
<td>·NO$_2$</td>
</tr>
<tr>
<td>$g = 2.002; \Delta A_2 = 2.4$ mT</td>
<td>·C≡</td>
</tr>
<tr>
<td>$g_{iso} = 2.002$</td>
<td></td>
</tr>
</tbody>
</table>

Intensity of the central EPR line exceeds the total intensity of the neighboring 14N HFS lines, which can be due to an existence of additional signals at $g = g_e$ without hyperfine splitting. ·C≡ radicals in the amorphous carbon phase have such type of EPR signal. They can be formed as a byproduct of TiC oxidation by nitric acid under heating. The total concentration of the PCs (NO$_x$ + ·C≡) is 4×10^{16} spin/g.

4. Conclusion

Using XPS, FTIR and EPR methods the presence of hydroxyl, carboxylic, nitrate-nitrite groups, (Ti)$_2$<CO, Ti–CO complex, and NO$_x$ and ·C≡ radicals in mesoporous TiO$_2$ powder prepared by TiC oxidation with HNO$_3$ are confirmed. The nitrogen and carbon-containing species modify the TiO$_2$ surface, change the charge state of the surface and provide high sorption capacity of the TiO$_2$ powder to a positively charged dye.

Acknowledgments

The work was supported by the project (645662 – SMARCOAT – H2020-MSCA-RISE-2014) of «HORIZON-2020» EU program.

References