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resumo 

 
 
A aplicação de biochar no solo como aditivo agrícola, bem como fonte de 
carbono, é um foco de crescente interesse, apesar de vários fatores 
subjacentes determinarem o seu comportamento, toxicidade e destino no solo, 
apesar de pouco compreendidos. O principal objetivo deste estudo foi avaliar 
de forma integrada o potencial ecotoxicológico de aplicações representativas 
de um biochar produzido de raspas e resíduos de madeira no solo, 
combinando respostas de vários organismos edáficos e parâmetros estruturais 
e funcionais, em escalas espaciais e temporais relevantes. Para isso, os 
objetivos específicos foram definidos e abordados em quatro capítulos 
experimentais. Os efeitos sobre a biota do solo deste biochar e de uma mistura 
de biochar com compostagem (biochar-composto) em vinhas com fins 
comerciais no centro de Portugal foram monitorizados em bioensaios de 
laboratório. O biochar e o biochar-composto foram testados através da 
avaliação da sobrevivência e reprodução do colêmbolo Folsomia candida e do 
consumo de alimento e biomassa do isópode terrestre Porcellionides 
pruinosus. O solo imediatamente modificado com a adição do biochar e 
biochar-composto não induziu mudanças significativas no desempenho dos 
organismos, enquanto a aptidão dos organismos foi reduzida quando expostos 
ao esse solo envelhecido em campo e ao solo retificado, que foi submetido a 
vários fatores climáticos e pesticidas convencionais. Os resultados sugerem 
que a biodisponibilidade de compostos potencialmente tóxicos, como 
pesticidas, pode não diminuir em termos temporais pela presença de biochar e 
biochar-composto em vinhas que recebem este tipo de produtos 
fitofarmacêuticos convencionais. Posteriormente, a toxicidade inerente do 
biochar foi avaliada na biota, tendo em conta a influência do tamanho das 
partículas e taxas de aplicação, onde o delineamento experimental foi baseado 
num ensaio preliminar de comportamento (evitamento) no lumbricídeo Eisenia 
andrei. A experiência principal foi conduzida durante 28 dias em microcosmos 
de estufas onde foram avaliadas a sobrevivência, perda de peso e distribuição 
vertical de E. andrei e o consumo de “bait-lamina”, combinando a avaliação da 
toxicidade dos lixiviados com o objetivo de determinar a inibição de 
luminescência da bactéria Vibrio fischeri e a imobilização do cladócero 
Daphnia magna. Além disso, foi realizada uma experiência de alimentação em 
laboratório para abordar a alteração de peso e a possível ligação com 
metabólitos de hidrocarbonetos poliaromáticos (HPAs) nos tecidos dos 
lumbricídeos. Os resultados mostraram que partículas pequenas (< 0.5 mm) de 
biochar de madeira podem causar toxicidade sub-letal no biota do solo, 
sugerindo que há uma relação com o comportamento (evitamento), ao nível 
individual (alterações de peso, metabólitos tipo naftaleno em tecido de 
lumbricídeos) e parâmetros funcionais (consumo de “bait-lamina”). Em 
seguida, explorou-se a interação entre invertebrados de solo de diferentes 
grupos funcionais, os lumbricídeos (E. andrei) e os isópodes (P. pruinosus), e a 
sua relação com a atividade enzimática do solo, em solo biologicamente 
alterado, juntamente com os principais mecanismos de respostas dos 
lumbricídeos. Este último foi avaliado com biomarcadores de efeito. A resposta 
microbiana mostrou ser dependente do tempo de amostragem, da presença de 
invertebrados e da enzima em causa. A reprodução de E. andrei não foi 
afetada pela exposição ao biochar de madeira. Os biomarcadores 
responderam como ferramentas de alerta precoce, mostrando um aumento na 
peroxidação lipídica e diminuição da alocação de energia celular em 
lumbricídeos expostas. Finalmente, testes de complexidade mais elevada 
foram conduzidos em modelos de ecossistemas terrestres de pequena escala 
em 42 dias, avaliando os efeitos de biochar, biochar-composto e fertilizante 
inorgânico (NPK) e as suas combinações, na sobrevivência e perda de peso 
de E. andrei, consumo de “bait-lamina”, assim como a componente morfológica 
e de produção da planta Brassica rapa (de ciclo de vida rápido), bem como a 
inibição do crescimento da macrófita aquática Lemna minor exposta aos 
respetivos lixiviados. Os resultados revelaram poucos ou nenhuns efeitos nos 
lumbricídeos e pequenas estimulações nos parâmetros de produção nas 
plantas, nomeadamente no tratamento de biochar-composto combinado com 
fertilizante mineral. O crescimento de L. minor foi um dos parâmetros sensível. 
O estudo indicou que  a possibilidade de estímulo de lixiviação de nutrientes 
pode  não ser excluída, o que pode representar um risco para os sistemas 
aquáticos. 

 



 

 
 
 
 
 
 
 
 

 

Assim sendo, os resultados demonstram que as respostas biológicas ao 

biochar de resíduos de madeira variaram de efeitos subletais a neutros e / ou 

de estímulo, dependendo do organismo e parâmetro do teste, do tratamento 

com biochar e da taxa de aplicação. Além disso, é de destacar que, para uma 

compreensão abrangente dos efeitos de biochar na biota e nos mecanismos 

associados, é fundamental avaliar várias espécies e parâmetros indicadores, 

que incluam diferentes vias de exposição e níveis de organização biológica e 

interações, sob cenários de exposição representativos. 
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abstract 

 

 
 
Biochar application to soil as an agricultural amendment, as well as a carbon 
sink, is a focus of increasing interest, despite the underlying factors 
determining its behaviour, toxicity and fate in soil remaining poorly understood. 
The main aim of this study was to integratively evaluate the ecotoxicological 
potential of a wood chip biochar in soil at representative application rates, 
through combining the responses of multiple soil organisms, and structural and 
functional parameters, at relevant spatial and temporal scales. To achieve this, 
the specific objectives were defined and addressed within four experimental 
chapters. The effects on soil biota of biochar alone and a biochar-compost 
mixture from a commercial vineyard in Central Portugal, were monitored with 
laboratory bioassays. Both fresh and field-aged biochar and biochar-compost 
were tested by evaluating the endpoints survival and reproduction of the 
collembolan Folsomia candida and food consumption and biomass change of 
terrestrial isopod Porcellionides pruinosus. Freshly-amended soil did not 
induce significant changes on organisms’ performance, while the organisms’ 
fitness was reduced when exposed to the field-aged soil and amended-soil, 
which was subjected to various climatic factors and conventional pesticides. 
The results suggested that bioavailability of potentially toxic compounds, like 
pesticides, might not decrease over time by the presence of biochar and 
biochar-compost in vineyards that receive conventional plant protection 
products. Subsequently, research was conducted on the potential inherent 
toxicity of biochar on biota, as influenced by particle size and application rates, 
where the experimental design was based on a preliminary earthworm (Eisenia 
andrei) avoidance behaviour assay. The main experiment was conducted over 
28 days in greenhouse microcosms in which survival, weight losses and 
vertical distribution of E. andrei and bait-lamina consumption were assessed, 
and combined the evaluation of leachates toxicity looking into endpoints 
luminescence inhibition of bacterium Vibrio fischeri and immobilisation of the 
cladoceran Daphnia magna. In addition, a laboratory feeding experiment was 
performed to address the weight change and the possible link with 
polyaromatic hydrocarbons (PAH)-type metabolites in the earthworms’ tissues. 
The results showed that smaller particles (<0.5 mm) of woodchip biochar might 
pose sub-lethal toxicity to soil biota, suggesting that there is a connection in 
behavioural (avoidance), individual (weight changes, naphthalene-type 
metabolites in earthworms’ tissue) and functional (bait-lamina consumption) 
endpoints. Next, the link was explored between the interaction of soil 
invertebrates from different functional groups, such as earthworms (E. andrei) 
and isopods (P. pruinosus), and activity of soil microbial enzymes in biochar-
amended soil, alongside the main mechanisms of earthworm’ responses. The 
latter was investigated with biomarkers of effect. Microbial response was 
sampling time-, invertebrate presence-, and enzyme-dependent. Reproduction 
of E. andrei was not affected by the exposure to the woodchip biochar. 
Biomarkers responded as early warning tools, by showing an increase in lipid 
peroxidation and cellular energy allocation decrease in exposed earthworms. 
At last, higher tier testing was conducted in indoor small-scale terrestrial 
ecosystem models over 42 days, by assessing the effects of biochar, biochar-
compost and inorganic fertilizer (NPK) and their combinations, on the 
earthworm E. andrei survival and weight loss, bait-lamina consumption and a 
morphological and production traits of rapid cycling plant Brassica rapa, as well 
as of their leachates on growth inhibition of aquatic macrophyte Lemna minor. 
The results revealed low-to-no effect on earthworms, and slight stimulations in 
production parameters in plants, namely in the treatment of combined biochar-
compost with mineral fertilizer. L. minor growth was a sensitive endpoint. The 
study indicated that possibility of nutrients leaching stimulation might not be 
excluded, which could pose a hazard to aquatic systems.  
Together, the results demonstrate that biological responses to woodchip 
biochar varied from sub-lethal to neutral and/or stimulatory, depending on the 
test organism and endpoint, biochar treatment and application rate. Further, 
they highlight that for a comprehensive understanding of biochar effects on 
biota and associated mechanisms, it is paramount to evaluate various indicator 
species and endpoints, that include different exposure routes and levels of 
biological organisation and interactions, under representative exposure 
scenarios. 
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General introduction 
 

1.1. Biochar – definition, properties and role as environmental management tool  

According to the International Biochar Initiative, biochar is defined as a “solid material obtained 

from the carbonization thermochemical conversion of biomass in an oxygen-limited 

environment. In more technical terms, biochar is produced by thermal decomposition of organic 

material (biomass such as wood, manure or leaves) under limited supply of oxygen (O2), and 

at relatively low temperatures (<700°C)” (IBI, 2017).  

Biochar can be defined as charcoal for application to soil, and what makes it different from 

charcoal is actually the concept and application (Verheijen et al., 2009). Charcoal is formed 

during the incomplete combustion of organic material, namely wood, and in nature it can be 

found, for instance, after wildfires (Preston and Schmidt, 2006). The motivation behind the use 

of biochar for soils has roots in the knowledge about “Terra Preta do Indio” (Portuguese “black 

earth”), the Amazonian fertile soils, characterized by neutral to high pH, with a high proportion 

of soil organic matter (SOM), and high water holding capacity. These anthropogenic soils 

contain mixtures of animal bones, broken pieces of pottery, shells and other organic residues, 

including charcoal,  deposited there by the indigenous people, and which together contribute 

to the fertility of these soils (Glaser et al., 2001). For the maximum benefit to society and the 

environment, biochar should be perceived in a systematic approach, to target five main 

objectives: soil improvement, waste management, climate change mitigation, pollution control 

and energy production (Lehmann and Joseph, 2015). 

Biochar started receiving more attention in 2010 with the work of Woolf and co-authors who 

calculated that a globally implemented biochar system had a potential of 12 % reduction in 

anthropogenic CO2-Ce emissions (Woolf et al., 2010). The concept of sustainable biochar 

application presented in Figure 1.1. highlights the high overall potential of biochar as one of 

the major outputs of pyrolysis and with potential application as soil amendment (Woolf et al., 

2010). Although, it is important to note that Woolf and co-authors were addressing sustainable 

biochar application in the context of technical potential of biochar to mitigate climate change, 

with ‘sustainable’ referring to the offsets in emissions vs. C sequestration.  
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Figure 1.1. Schematic presentation: concept of sustainable use of biochar. From ’Sustainable 
biochar to mitigate global climate change‘, by Woolf et al. (2010). 

 

The concept of sustainable use of biochar has expanded towards maximizing environmental 

benefits while avoiding the negatives. In relation to this, biochar application as a soil 

amendment and a carbon sink became the focus of increasing interest in recent years, as the 

Food and Agriculture COST Action TD1107 (‘Biochar as option for sustainable resource 

management’) fostered rapid developments in biochar production and research. Tammeorg 

and co-authors (2017) emphasised the future aspects in biochar research that are essential for 

the sustainable policy development, by splitting them in five broad research areas discussed 

within thematic groups, as follows: (1) soil biodiversity and ecotoxicology; (2) soil organic matter 

(SOM); greenhouse gas (GHG) emissions; (3) soil physical properties; (4) nutrient cycles and 

crop production; and (5) soil remediation. The key research priorities are identified based on 

the required level of scientific understanding (Figure 1.2.).  
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Figure 1.2. Normalized research priority of the indicators as identified by the thematic groups. 
Higher values of RPI (and red background) refer to higher priorities. Abbreviations: Av. = 
Available; BD = Biodegradability; Org. = organic; Tot. = Total. From ‘Biochars in soils: towards 
the required level of scientific understanding’, by Tammeorg et al. (2017).  

 

One of the main characteristics of biochar is its heterogeneity. Processing conditions, mainly 

temperature and properties of the biomass used as feedstock, determine together the physico-

chemical composition of any biochar (Demirbas, 2004; Zhao et al., 2013). However, the 

properties that are common to all biochars are aromatic structure and high carbon content, as 

well as neutral to basic pH (Sohi et al., 2009; Verheijen et al., 2009). The relative contribution 

(w/w) of the major constituents of biochar can be summarized as follows: 50-90 % of C, up to 

40 % of volatiles, up to 15 % of moisture and, ideally 0.5-5 % of mineral matter (ashes) (Antal 

and Gronli, 2003; Brown, 2009; Verheijen et al., 2009). Total nitrogen (N), potassium (K) and 

phosphorous (P) can be found in different biochars at broad ranges (1.8-56.4 g/kg N, 1-58 g/kg 

K, and 2.7-480 g/kg P), as reported by Chan and Xu (2009). Due to the process of 

thermochemical conversion of biomass, biochar contains a significantly higher aromatic carbon 

proportion than the source feedstock, which is the main cause of biochar recalcitrance, i.e. 

chemical resistance and reduced susceptibility to microbial degradation (Baldock and Smernik, 

2002; Zimmerman, 2010).  

 

 

 

Figure 1.3. Various feedstocks (lower) used to produce biochar (upper). Copyright 2008 by J. 
Major. Retrieved from http://www.biochar-international.org.  

 

During processing, the aromatic rings retain hydrogen, nitrogen, sulphur, oxygen from the 

feedstock as functional groups (Bourke et al., 2007), such as hydroxyl, amino, carboxylic acids 

http://www.biochar-international.org/
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and esters. The presence of these groups makes the surface of biochar highly reactive, with 

specific properties ranging from hydrophilic or hydrophobic, oxidizing or reducing, in adjacent 

areas of the biochar surface (Amonette and Joseph, 2009). The pyrolysis conditions also have 

a major role in forming biochar’s porous structure, as obtained from loss of mineral and small 

organic molecules, and its large internal surface area, obtained as the volatile compounds that 

evaporate during the treatment leave the spaces or pores on the biochar surface (Demirbas, 

2004). Particle size is another physical property of biochar, which is primarily determined by 

that of the feedstock (Verheijen et al., 2009), as is captured in Figure 1.3. where biochars 

produced from various feedstocks are presented. 

As the properties of biochars are dependent on processing conditions and biomass 

characteritics, the prospective of biochar application to soil is in a thorough understanding of 

these properties, which will allow for matching the soil needs with the adequate biochar (Enders 

et al., 2012; Abiven et al., 2014). Biochar properties will determine the way each biochar acts 

in soil (e.g. interactions with biota, interactions with soil mineral and organic matter such as 

aggregate formation/dispersal, translocation of biochar in soil profile), which in turn determines 

its affinity for adsorption/desorption of contaminants and its bioavailability (Malev et al., 2015; 

Conti et al., 2016). For instance, ecotoxicological characterization of gasification char and fast 

pyrolysis wood biochar already demonstrated the adverse effects to soil biota, e.g. phytotoxicity 

due to volatile matter presence and therefore limited nutrient availability (Marks et al., 2014), 

while neutral to positive effects were observed in the case of slow pyrolysis corn stover biochar 

(Domene et al., 2014) and slow pyrolysis wood biochar (Marks et al., 2014). Wood biochars 

are in general characterized by relatively low levels of volatiles when subjected to slow 

pyrolysis, followed by degassing procedure, the process which assures that volatiles do not 

accumulate on the surface of the biochar (Verheijen et al., 2009).  

 

1.2. Biochar as a soil amendment  

Biochar application to soil can be motivated from a carbon sequestration perspective, and from 

a perspective of improving agronomic function of soil. The latter considers the use of biochar 

as input source of nutrients (e.g. slow release fertilizer), or it can be used as a soil conditioner, 

by means of improving soil properties and processes linked to the agronomic function. The 

highest potential in the first case, is for biochars originated from manures (source of N, P, K), 
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food waste (N, K), biosolids (N), paper mill waste (K), cereals like barley or wheat (P, K), while 

in the other case, potentially all biochars could be used, since it relies on its generally high 

specific surface area (Ippolito et al., 2015).  

As mentioned in the previous section, the surface of biochar is characterized by high porosity 

and chemical reactivity. That allows biochar to interact with other components in soil, such as 

organic matter (SOM), clay minerals and microorganisms. In this way, the properties of 

amended soil, like structure or pH change, and consequently the processes in soil, like 

increased water holding capacity (WHC) and nutrient retention, and/or aggregation, might be 

favored (Brodowski et al., 2006; Hammes and Schmidt, 2009). High cation exchange capacity 

(CEC) of biochar is responsible for nutrient retention potential and buffering against soil 

acidification in biochar-amended soil (reviewed by Verheijen et al., 2009). It can go up to 40 

cmolc/g (Lehmann et al., 2007), and Glaser and co-authors reported that the aged biochar can 

be characterized by higher level of CEC (Glaser et al., 2001). Soil bulk density  normally 

decreases upon biochar application to soil  (Busscher et al., 2011; Mankasingh et al., 2011), 

which, combined with improved aggregate stability, can favour aeration and root propagation. 

It is known that pH levels of enriched soil may increase because of the liming effect of biochar 

(Singh et al., 2017; Verheijen et al., 2009), which is of high importance for correcting the pH of 

acidic soils in some regions (Masulili et al., 2010; Molnar et al., 2016; Jeffery et al., 2017).  

 All such changes that biochar can trigger regarding soil properties and processes, are often 

seen as a means to increase the agronomic production capacity of soil and combat food 

scarcity challenges in the future. Therefore, much reasearch effort is directed to looking into 

biochar effects on crop yields. A recently published review based on meta-analysis suggests 

that biochar potential for crop yield improvement is limitted to the low-nutrient acidic soils, like 

those in tropical regions (Jeffery et al., 2017). Tropical soils can benefit from biochar fertilization 

and liming effects, while regions with temperate climate may take the advantage of reduced pH 

correction costs, when biochar is used as a liming agent, or of other environmental benefits, 

such as greenhouse gases emissions reduction. On the other hand, a meta analysis on effects 

of biochar on trees  by Thomas and Gale (2015) underlined that the scale of the effects on the 

trees is generally greater than on the agricultural crops, but also that the angiosperms might 

be less affected by biochar application than conifers (Thomas and Gale, 2015). Biochar effects 

will depend on the combined soil and environmental conditions but also on the agricultural 

management practices. For instance, combination of climate and management may affect the 
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result, as the water retention benefits are more pronounced in drier soils and conditions. This 

can be seen in the two studies in vineyards, one located in Mediterranean and the other in 

temperate climate. Due to improvement in soil water retention, biochar showed  positive effects 

on the productivity of non-irrigated vines in Italy (Genesio et al, 2015), while in Swiss vineyards 

there were no observed significant economic benefits when studying the health of the vines 

and grape quality (Schmidt et al, 2014). Most current biochar applications are combined with 

other soil amendments, such as compost (to enhance nutrient retention further) and/or 

inorganic (NPK) fertilizers. However, neither applications of biochar to soil as a source of 

nutrients is straightforward. For example, if biochar is to be used as additional source of N, one 

should bear in mind that the total N concentration in biochar may not be representive of the N 

available in soil after biochar application, due to the recalcitrant nature of biochar, with N being 

mostly present in heterocyclic form, i.e. being tightly bound between C atoms in an aromatic 

structure (Verheijen et al., 2009). Yet, more research is still needed towards optimization of the 

application rates of biochar and of the concentration ratio between biochar and different 

amendments in the case of combined applications (Schultz et al., 2012). In the work of Jeffery 

et al. (2015) on the future steps in biochar research and use in practise, the authors point out 

the need to indentify ’trade-offs’ between the possible benefits that biochar can bring, like in 

the case of fungal desease supression in tomatoes on one side (Elad et al., 2010), and 

reduction of efficacy of pesticides on the other when biochar is used for remediation purposes 

(Graber et al., 2012). Another trade-off, of main relevance in the present work, is related to 

potential toxicity seen as bioavailability of biochar-bound contaminants.  

 

1.3. Effect-based approach in quality assessment of biochar and biochar-amended 

soils 

Soil ecosystem functions and services are defined with interconnected physical (climatic 

factors, soil porosity, aggregates, etc.), chemical (transformation and decomposition of organic 

residues), biological (microbial and faunal functions) and human factors (e.g. agricultural 

activities). Soil biota, with its role in soil organic matter fragmentation, decomposition and 

redistribution, soil porosity and hydrology regulation, structure maintenance and soil 

aggregates stabilization, have the key role in maintaining soil health and functioning. 

Depending on the type of pressure or stress to which the soil ecosystem is exposed (e.g. 
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environmental, pollution, joint stressors), different species can be used as bioindicators of soil 

quality changes (Orgiazzi, et al., 2016).   

Once biochar is applied to soil, due to its recalcitrant nature and highly reactive surface, it will 

establish different types of interactions with soil biota. Direct effects of biochar can be caused 

by changes in soil nutrient status, input of water extractable (bioavailable) metals or organic 

compounds, or by combined environmental and chemical stressors.  Biochar might also affect 

biota indirectly, due to its contribution to changes in pH, CEC, soil hydrology and sorption of 

soil contaminants i.e.  when biochar is used in remediation of contaminated soils, the effects of 

biochar addition in many cases are directed towards reduction of toxicity. The types of effects, 

however, are also dependent on specific biochar properties and application rates used, and 

benefits can be offset at higher application rates of biochar (Bielska et al., 2018).  

Analogous to the possibility for black carbon mobilization from soils to aquatic systems, one 

can hypothesise a similar scenario in the case of field-scale biochar application (Jaffe et al., 

2013). In this case, aquatic species can be affected directly, through changes in pH, dissolved 

organic carbon (DOC), bioavailable potential contaminants (or their mixtures), or through the 

combination of stressors. It has been demonstrated higher concentration of water-extractable 

metals and PAHs in soil-biochar mixtures than in biochar alone, probably due to competition 

for reactive sites by SOM that can result in increased desorption of potentially toxic elements 

(PTE) (Bastos et al., 2014). Alternatively, aquatic ecosystems could be indirectly affected 

through increased dissolved organic matter (DOM) occurrence in runoff or leachates from 

biochar amended soils (Lindh et al., 2015).   

Like in the case of soil quality assessment and contaminated soil screening, the evaluation of 

the ecotoxicological risk of biochar-amended soils can be done through complementing the 

analytical approach, (physicochemical characterization) with effect based approaches, 

(ecotoxicological characterization). Biochar analytical characterization methods were 

developed   quickly and resulted in two international voluntary biochar quality standards, the 

European Biochar Certificate (EBC, 2012) and the International Biochar Initiative (IBI, 2015). 

Moreover, in the case of screening biochar-amended soils or leachates, one can compare the 

concentrations of PTE in these fractions with the established benchmark levels in soil quality 

frameworks, directives and/or regulations, such as the Canadian soil quality standard (CCME, 

1999), Finnish guideline (MEF, 2007), or European Water Framework Directive for the aqueous 
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component (EU WFD, 2000). So far, only the IBI biochar standard recommends the use of plant 

germination assays for biochar quality assessment (IBI, 2015).  

Biological methods have advantages as they represent direct toxicity assessment, provide the 

information on bioavailable fraction of contaminants in soil or in aqueous solutions as well as 

in mixtures (Loureiro et al., 2005a; 2006a), and account for the interaction effects with soil and 

between co-existing chemicals (Santos et al., 2011; Morgado et al., 2016). Moreover, they are 

characterized as substantial tools in risk communication through indication of the presence or 

absence of the components and functions which constitute a healthy ecosystem (Spurgeon et 

al., 2009). Many of the available standardized and well-established guidelines (OECD, ISO) 

can be applied to biochar ecotoxicological assessment, measuring a range of responses, from 

a molecular genetic level, up to those assessing the ecological function (Spurgeon et al., 2009; 

van Gestel and van Brummelen, 1996). 

Ecotoxicity of biochar as a heterogeneous matrix has started to be addressed only recently 

(Bastos et al., 2014; Bielska et al., 2018; Conti et al., 2016; Domene et al., 2014; Malev et al., 

2015; Marks et al., 2014). Nevertheless, the underlying factors determining behaviour, toxicity 

and fate of biochar in soil remain poorly understood. Widespread implementation of biochar 

systems should rely on robust risk assessment to ensure sustainability before policy can be 

developed adequately. Compromised biological communities can lead to significant shifts in 

element cycles (Grossman et al., 2010), plant-pathogen interactions and crop growth (Warnock 

et al., 2007). It is thus, timely and vital to achieve an integrative ecotoxicological assessment 

of biochar in soils, for a range of physical (e.g. particle size distribution) and chemical (e.g. pH, 

contents of mineral and organic compounds, including metals and PAHs) properties at 

recommended applications rates and at different scales (Tammeorg et al., 2017). There is a 

knowledge gap in understanding the interactions that biochar establishes in soils with the 

various soil elements over a certain period of time, and how these interactions are influenced 

by natural soil conditions and processes. The effects of alterations that biochar can go through, 

the so called “biochar ageing” in soil, on the desorption of contaminants from biochar, and the 

risks of increasing their bioavailability, mobility and ecotoxicological implications are a 

challenge for biochar researchers (Hilber et al., 2017).  
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1.4 Study organisms  

 Folsomia candida is a collembolan species, also known by the colloquial name of springtail. It 

is one of the most frequently used soil model organisms in ecotoxicology, parthenogenetic, and 

already included in the standardized ecotoxicological guidelines (ISO, 1999, OECD, 2009). It 

is widely distributed in soil and has the role of micro-decomposer in the soil food web (Fountain 

and Hopkin, 2005, Tully et al., 2006). Through their feeding as fungivores, these organisms 

have an important contribution in maintaining soil microbial biomass abundance and activity 

(Kaneda and Kaneko, 2002; Fountain and Hopkin, 2005). The uptake of chemicals in 

collembolans occurs when in contact with soil pore water, mainly through a ventral tube 

(Fountain and Hopkin, 2005). It is indeed a very common model organism in terrestrial 

ecotoxicology of contaminants (e.g. Cardoso et al., 2015) or mixture of stressors (e.g. Cardoso 

et al., 2014), in ecotoxicological characterization of biochar amended agricultural soil (Domene 

et al., 2014; Marks et al., 2014; Conti et al., 2017), and/or in ecotoxicological assessment of 

biochar remediated contaminated soils (e.g. Bielska et al., 2018).  

Porcellionides pruinosus, the terrestrial arthropod from the order Isopoda, is a cosmopolitan 

species, known by the colloquial name of woodlouse. Through litter decomposing, these 

organisms contribute  to microbial activity  and nutrient cycling in soil (Orgiazzi et al, 2016). P. 

pruinosus is a model organism in ecotoxicology due to its known sensitivity to pesticides 

(Loureiro et al., 2006b). They are mostly exposed to environmental contaminants though the 

uropodes or via the cuticle. Nevertheless, standardized guidelines for using isopods to assess 

toxicity of environmental contaminants are yet to be developed (van Gestel, 2012). Loureiro 

and co-workers suggested an avoidance bioassay as a screening tool, as well as food 

consumption and biomass change bioassays to assess soil quality and contamination (Loureiro 

et al., 2005; Loureiro et al., 2006). Recently, P. pruinosus is used as a model species in 

assessment of the effects of nanoparticles (Tourinho et al., 2013), or combination of chemical 

and/or chemical and physical stressors (Tourinho et al., 2015 and Morgado et al., 2016, 

respectively) 

Eisenia andrei is an earthworm from the family Annelida. Earthworms have an important role 

in soil processes, such as organic matter decomposition and redistribution, and bioturbation 

and structure maintenance. E. andrei is simple to maintain in laboratory cultures and due to its 

sensitivity to environmental contaminants, this epigeic earthworm species is, along with 

collembolans, a frequently studied soil model organism in ecotoxicology. Together with E. 
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fetida, it is included in standardized guidelines for soil quality assessment, including acute and 

chronic endpoints within ISO and/or OECD. Eisenia andrei/fetida are shown to be sensitive in 

responses to biochar in soil, in the various approaches such as avoidance behaviour (Li et al., 

2011; Amaro et al., 2016), bioaccumulation of PAHs (Malev et al., 2015), biomarkers of effects 

(Li et al., 2011).  

Rapid cycling Brassica rapa is also very practical for use in ecotoxicology and terrestrial 

microcosms and mesocosms experiments as the full cycle lasts relatively short - 36 days (Lima 

et al., 2011; Santos et al., 2011). Recently, it was also used in the context of higher-tier 

assessment of biochar amended soil (Amaro et al., 2016).  

Daphnia magna is a planktonic crustacean species, with the ability to reproduce both asexually 

and sexually. However, parthenogenesis (Allonso, 1996) occurs in conditions of higher food 

availability. This means that low genetic variability that is created due to asexual reproduction 

will induce a less variable response to the toxic compounds. Individuals from this genus are 

characterized by increased sensitivity to stress, and this is why they are equally used to test 

general, as well as specific scenarios in ecotoxicology (Hanazato, 2001). D. magna is very 

often the dominant zooplankton in ponds and lakes and food for fish (Ebert, 2005). D. magna 

is easy to maintain and, due to its short lifecycle, it is used frequently in acute as well as chronic 

toxicity bioassays (Terra et al., 2003). Besides a very common use of D. magna in 

ecotoxicology, it is yet not much used in biochar studies, although it has shown to be sensitive 

to biochar-amended soil (Bastos et al., 2014).  

Vibrio fischeri is a marine bacterium. It is used frequently for evaluation of toxicity of solutions 

of chemicals or water, wastewater or contaminated soil, in ecotoxicological evaluations, as an 

alternative to more time-consuming assays with other aquatic species (Parvez et al., 2006). 

Bacteria are decomposers of organic material in aquatic ecosystems, and therefore have an 

important role in the trophic chain (Wang et al., 2009). For these reasons is V. fischeri very 

often included in ecotoxicological evaluation of soil elutriates or soil aqueous extracts (e.g. 

Loureiro et al., 2005a; Bastos et al., 2014).  

Lemna minor is a fresh water macrophyte from the duckweed family (Lemnaceae) and, since 

it is only absent from some tropical and polar regions, it can be classified as a cosmopolitan 

species (Cronk and Fennessy, 2009). L. minor is characterized by asexual reproduction, which 

starts with asexual propagules, subsequently branching of shoots and developing fronds 
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(Lemon et al., 2001 and the references therein). Besides being a common ecotoxicological 

model organism, it is also used to study the behaviour of invasive aquatic plants due to its fast 

growth and as it is easy to cultivate and handle under laboratory conditions (Palacci et al., 

2016).  

 

1.5. Study aim, approach and objectives  

This study aims at providing an integrative ecotoxicological evaluation of a wood chip biochar 

in soil, added at typical application rates, alone or in combination with traditional soil 

amendments (e.g. vegetable compost, mineral fertilizer), through combining the responses of 

soil organisms and key processes. 

In order to achieve higher ecological relevance, the study approach considers: 

• Biological scale: individual (e.g. evaluating endpoints on biochemical level) to 

population (e.g. reproduction) and community level (through evaluation of functional 

parameters such as feeding or changes in the activity of soil enzymes).  

• Spatial scale: starts by using single species toxicity tests in the laboratory, and 

continues to multispecies microcosms tests, up to the higher-tier tests in small-scale terrestrial 

ecosystem models (STEMs).  

• Temporal scale: time series (e.g. up to 18 months in the field, and/or sampling events 

over a 56-days experiment).  

• Environmental scale: considers testing of both terrestrial component of amended soil 

and the aquatic component through assessing toxicity of the amended-soil leachates.  

The species selected for the study are used as model organisms in ecotoxicology, and the 

bioassays are standardized and/or well established. Besides the contribution to soil health 

through affecting dynamics of nutrients and organic matter, the selected organisms have 

different exposure routes to contaminants present in soil and therefore they respond with 

variable sensitivity to environmental stressors. In the case of the aquatic species, they were 

chosen as representatives of different trophic levels in the aquatic ecosystem.  

The ecotoxicological evaluation is complemented with physicochemical characterization of 

biochar and soil, and of the respective leachates. This integrative way of addressing potential 
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toxicity of biochar can provide datasets for development present initiatives to establish 

frameworks for biochar risk assessment. In addition, it may contribute to product 

standardisation in relation to specific potentially bioavailable contaminants or to other 

properties that might contribute to the increased risk of biochar application to soil. 

All experiments were performed with natural agricultural soil, sampled from field sites in 

Portugal. The choice to use natural soil in the ecotoxicological evaluation of biochar is because 

the bioavailability of toxic substances can significantly change based on soil properties (Amorim 

et al., 2005, Leitao et al., 2014). Bearing that in mind and with the purpose to increase the 

environmental representativeness of the performed work, we opted for a natural soil that is a 

representative soil type of Central Portugal. Moreover, the choice of woodchip biochar is, as 

explained in section 1.1., related to its properties by means of low levels of contaminants and 

less heterogenous characteristics, making it more relevant in a real field application, which 

altogether increases the reproducibility of the current work.  

The following main specific objectives were identified:  

a) To quantify the exposure and effects on representative soil biota through standard 

and/or widely established soil ecotoxicological tests, using soil invertebrates with different 

physiological features and complementary ecological roles (Chapter 2). 

b) To evaluate the effects of biochar particle size distribution on soil biota, and on soil 

water retention function (Chapter 3). 

c) To evaluate the link between the interaction of soil invertebrates from different functional 

groups and activity of soil enzymes in biochar amended soil, and study the potential mechanism 

of earthworms’ response to biochar-soil using the biomarkers approach (Chapter 4).  

d) Higher tier testing in a laboratory terrestrial microcosms study over 42 days: to assess 

the effects of biochar, biochar-compost and inorganic fertilizer (NPK) and their combinations, 

on earthworms, bait-lamina consumption and a rapid cycle plant, as well as of their leachates 

on a common duckweed, the aquatic macrophyte (Chapter 5). 
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1.6. Framework  

This thesis is organized into six chapters. After a theoretical introduction to the study and 

presentation of study aims in the first chapter, the second, third, fourth and fifth chapters 

constitute the  experimental sections, each presented as an independent scientific paper. In 

the  sixth chapter, a general discussion and conclusions regarding the main findings of the 

thesis are provided.  

In the current chapter (Chapter 1) introduces a definition, properties and role of biochar as 

environmental management tool in general, and as a soil amendment in particular. It further 

presents the arguments for the use of effect-based approaches in the quality assessment of 

biochar and biochar-amended soils, identifying the knowledge gaps regarding the biochar 

effects on biota. It also includes  a section that characterizes  the model organisms used in the 

experiments. The chapter ends with the overall study aims, objectives alongside the study 

approach, including the flowchart of the thesis methodology (Figure 1.4.). 

Chapter 2 presents a case study of biochar and biochar-compost in a field experiment in the 

Bairrada region of Portugal. Biomonitoring of biochar and biochar-compost amended soil using 

bioassays with the invertebrates F. candida and P. pruinosus was performed in the laboratory, 

in order to assess the potential ecotoxicological effects in freshly amended soils and 18 months 

after the application. 

Chapter 3 addresses the effects of biochar particle size distribution on biota. Preliminary 

laboratory avoidance bioassays with E. andrei and a follow-up greenhouse experiment with E. 

andrei and bait-lamina were performed in order to evaluate the effects of three biochar particle 

sizes at two application rates. Toxicity of leachates from the greenhouse experiment was 

assessed with the D. magna acute toxicity bioassay and  V. fischeri luminescence inhibition 

assay. A laboratory feeding experiment with the same treatments was conducted in order to 

evaluate the body mass change as a sublethal endpoint and to quantify PAHs in the 

earthworms tissue using a fixed fluorescence method.   

Chapter 4 aims to identify potential interactions between isopods (P. pruinosus) and 

earthworms (E. andrei) in biochar-amended soil in two-species microcosms. Soil (unamended) 

and amended soil were sampled over time (56 days) in order to evaluate the activity of soil 

enzymes as soil quality indicators. The reproduction output of  E. andrei was asssessed. 

Further, oxidative stress and metabolic biomarkers were analysed in the adult earthworms 

specimens in order to assess the possible response mechanism to biochar amendment.  



Chapter 1 

 

46 
 

Chapter 5 evaluates the impact of biochar, biochar-compost, mineral fertilizer  and the 

combination of these amendments, on B. rapa, earthworm E. andrei and bait-lamina 

consumption. The experiment was performed in small-scale terrestrial ecosystem models 

(STEMs), previously developed as a higher-tier approach for evaluating pesticide toxicity . 

Effects of the corresponding leachates from the amended soil on growth of the water 

macrophyte L. minor were also evaluated.  

In  Chaper 6 an overall discussion of the main study results and observations is provided, along 

with study limitations, major conclusions and future directions.   

 

 

Figure 1.4. The scheme of the experimental approaches used in Chapters 2 to 5 to investigate 
effects of biochar on biota. 
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Biomonitoring tools for biochar and biochar-compost amended soil under 

viticulture: looking at exposure and effects 

 

2.1. Abstract  

Benefits that biochar can bring to unirrigated vineyards are related mainly to soil chemistry, soil 

structure and water retention improvements. Little is still known about effects of biochar on soil 

biotic processes and on organisms that mediate them. For a sustainable use of biochar in 

agriculture, alone or in combination with other soil amendments, there is a need for better 

understanding of soil-biochar-biota interactions, particularly in the long term. Here we applied 

an ecotoxicological monitoring programme to evaluate the effects of field plot-scale biochar and 

biochar-compost mixture into vineyards soil. Standard and well described laboratory bioassays 

were used, assessing the survival and reproduction of Folsomia candida and food consumption 

and biomass change of Porcellionides pruinosus. The present study examined the effects of 

biochar and biochar-compost enriched soil treatments in a commercial vineyard subjected to 

conventional pesticide management practices. We considered two sampling times: i) 

immediately after initial application of fresh biochar and biochar-compost; and ii) 18 months 

after the application of the amendments. Based on the time of application and the application 

rates of pesticides relative to the second sampling event, a theoretical exposure was estimated 

alongside with risk quotients. The estimated risk quotient was elevated for certain active 

ingredients in the mixture, namely the fungicides cyprodinil, propiconazole, copper oxychloride 

and copper sulfate, respectively. This corroborates the overall decrease in organisms’ 

performance observed for the second sampling time. The ecotoxicological response to the 

tested biochar and biochar-compost enriched soil was species specific, time-dependent, and 

to some extent, treatment-dependent. The most sensitive endpoint obtained in the study was 

the collembolan reproduction output. Freshly-amended soil did not induce significant changes 

on organisms’ performance. However, the organisms’ fitness was significantly reduced when 

exposed to the soil and amended-soil from the second sampling event which was subjected to 

various climatic factors and conventional pesticides. Regarding food consumption of P. 

pruinosus, and adults’ survival and juveniles’ number of F. candida the effects were more 

pronounced in the 40 t/ha biochar and biochar-compost amended treatments than in 4 t/ha 

treatment. Results of the study show that bioavailability of potentially toxic elements might not 
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be prevented over time by the presence of biochar and biochar-compost in commercial 

vineyards that receive conventional plant protection products.  

Key words biochar, biochar-compost, vineyards, biomonitoring, soil invertebrates, mixture 

exposure 

 

2.2. Introduction  

The capacity of biochar to improve soil chemistry, soil structure, water retention, and possibly, 

plant disease suppression (Tammeorg et al., 2017), is leading to increased interest on its 

application in vineyards. Benefits from biochar application in grape yield and quality in 

European vineyards has been investigated, in both temperate (Schmidt et al., 2014) and 

Mediterranean climates (Baronti et al., 2014; Genesio et al., 2015; Maienza et al., 2017). 

Nonetheless, the impact of biochar application to soil as a complex ecosystem remains far from 

being understood. The available studies are very broad in terms of effect size, highlighting the 

need for testing representative combinations of soil and biochar characteristics (Sakrabani et 

al., 2017; Verheijen et al., 2014; Verheijen et al., 2017). Biochar effects on soil biota have 

previously been shown to be linked to feedstock type, pyrolysis temperature (Domene et al., 

2015), species and exposure conditions (Amaro et al., 2016). Reproduction stimulation in the 

collembolan Folsomia candida has been reported in soil amended with corn stover biochar at 

2 % w/w, although it was accompanied by growth inhibition of the earthworm Aporrectodea 

caliginosa (Hale et al., 2013). Woody feedstock biochars produced by slow and fast pyrolysis 

have also been observed to stimulate F. candida’s reproduction, with no effects observed on 

the enchytraeid Enchytraeus crypticus (Marks et al., 2014). Specific mechanisms leading to the 

stimulation of collembolan reproduction have not been identified. However, enhanced microbial 

biomass, shifts in community structure or stimulation of symbiotic gut bacteria have been 

proposed as potential reasons (Marks et al., 2014). No medium-term negative impacts were 

reported for biological activity of soils cropped with corn in temperate regions (measured as 

microbial and faunal feeding activity), neither 3 years after amendment with corn biochar at 3, 

12 and 30 t/ha, or at an average annual application rate of 1 t/ha (Domene et al., 2014).  

On the other hand, earthworm weight loss and mortality were observed from exposure to pine 

chip and poultry litter biochar applied to artificial soil at 22.5, 45.0, 67.5 and 90.0 Mg/ha (Liesch 

et al., 2010). Moreover, gasification char increased collembolan and enchytraeid mortality at 
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concentrations that are relevant to agricultural biochar applications, possibly as the result of 

liming (Marks et al., 2014). Other reasons for adverse effects of biochar were bioavailability of 

potentially toxic elements individually or as a mixture (Bastos et al., 2014; Oleszczuk et al., 

2013; Smith et al., 2013;), and/or bioaccumulation of these compounds in the organism (Malev 

et al., 2016).  

Vineyards are a potential beneficiary of biochar application due to the lack of irrigation, 

particularly in Central Portugal. This is the first long-term trial involving biochar application to 

vineyards in Portugal. This on-going trial includes monitoring of a wide range of soil physical, 

chemical and biological properties, conducted by an interdisciplinary team of researchers. One 

of its components includes biomonitoring changes in soil quality and function. The impact of 

biochar on organisms that are representative of vineyard soils has not yet been explored, 

especially long-term. The investigation of biochar’s potential risks to soil invertebrates that 

participate in primary soil processes (e.g. organic matter break-down, regulation of microbial 

abundance and activity) over time, is the basis for ensuring sustainable soil management 

practices (Nair et al., 2017; Verheijen et al., 2012).  

Hence, the present study aimed at assessing the effects on soil organisms of plot-scale biochar 

and biochar-compost application in a vineyard. For that, two cosmopolitan invertebrate species 

(Folsomia candida and Porcellionides pruinosus) were used, due to their sensitivity to changes 

in soil conditions (e.g. moisture, metals, pesticides). These frequently studied model organisms 

in ecotoxicology differ by the route of exposure to chemicals in the environment, which is an 

important criterion for experimental design in ecotoxicology used to assure the ecological 

relevance of experimental results (Lock and Janssen, 2003; Tourinho et al., 2015). In the case 

of collembolans, intake of chemicals occurs in contact with soil pore water, mainly through a 

ventral tube (Fountain and Hopkin, 2005). For terrestrial isopods, contaminants may become 

available through litter consumption and/or while ingesting soil particles (Zimmer, 2002). The 

approach used in the present study included treatments of: 1) biochar and a biochar-compost, 

and 2) sampling of freshly amended soil and 18 months after application. The field site is a part 

of commercial vineyards, managed with conventional plant protection products (PPPs). 

Therefore, the theoretical exposure and potential risk were estimated using site specific data 

for the pesticides applied during two growth seasons and available toxicity data from the 

literature.  
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2.3. Materials and Methods  

2.3.1. Field site and soil properties  

The study field site is located in Anadia (40°26'22.71"N 8°26'20.60"W), part of the Bairrada 

region (Central Portugal), and belongs to the Estação Vitivinícola da Bairrada - Regional 

Ministry of Agriculture (Direção Regional de Agricultura e Pescas do Centro-DRAPC). The soil 

is a Cambisol with a sandy loam texture (sand 69 %, silt 16 %, clay 14 %), topsoil pH of 6.4, 

WHCmax of 38.3 % (maximum water holding capacity; 105°C), soil organic carbon content of 

1.21 %, and bulk density of 1.45 g/cm3. The field had established vines of the Sauvignon Blanc 

variety, which were un-irrigated and received conventional crop management. Available on-site 

meteorological data are presented in supplementary Table S2.1. Conventional plant protection 

products (PPPs) applied during two growth seasons, in 2013 and 2014, are shown in 

supplementary Table S2.2.  

 

2.3.2. Characterization and incorporation of biochar and biochar-compost 

The biochar and the biochar-based amendment (mixture of biochar and vegetal compost, with 

4 % biochar, w/w) were acquired from Swiss Biochar gmbh (Switzerland). The biochar was 

produced by slow pyrolysis (620°C) of residues from wood chip production. The main physical 

and chemical properties of the biochar and the biochar-compost mixture can be found in Table 

2.1.  

Table 2.1. Summary of the main physical and chemical characteristics of the selected biochar 
from mixed wood residues (alone), the biochar-compost mixture containing biochar at 4% (w/w) 
and the compost (dry weight). Abbreviations: WHCmax stands for maximum water holding 
capacity, EC for electrical conductivity, and n.d. for ‘not determined’. 

 

    Biochar  Biochar-compost mix  Compost  

pH  10.1 (1:5, H2O) 7.5 (1:5, H2O) 7.8 (1:20, H2O) 

WHCmax (105°C) (%) 73.2 n.d. n.d. 

Bulk density (g/cm3) 0.55 n.d. n.d. 

EC (µS/cm) 3 000 1 240 1 370 

Salts (g/kg) 8.40 11.13 n.d. 

Organic carbon (%) 75.0 22.5 12.9 

Organic matter (%) n.d. 38.7 n.d. 

H (%) 47 n.d. n.d. 
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Ash (550°C) (%) 18.6 5.4 n.d. 

N (%)1 1.8 4.8 10.66 

H:C (molar ratio) 0.07 18.4 n.d. 

O:C (molar ratio) 0.04 n.d. n.d. 

P (mg/kg)2 1 300 2 400 6 4007 

K (mg/kg) 10 400 8 400 11 000 

S (mg/kg) 372 190 14 200 

Ca (mg/kg) 42 200 59 150 103 000 

Mg (mg/kg) 2 980 5 400 12 900 

B (mg/kg) 39 n.d. n.d. 

Na (mg/kg) 744 930 1 000 

Metals (mg/kg)3 

Fe  

Hg 

Ni 

Pb 

Cr  

Cu  

Zn  

Cd  

PAHs (mg/kg)4 

Naphtalene 

Acenaphthylene 

Acenaphthene 

Fluorene 

Phenanthrene 

Anthracene 

Fluoranthene 

Pyrene 

Benz-[a]-anthracene 

Chrysene 

Benzo[b]fluoranthene 

Benzo[k]fluoranthene 

Benzo[a]pyrene 

lndeno[1,2,3-cd]-pyrene 

Dibenz-[a,h] anthracene 

Benzo[ghi]perylene 

 

2 420 

<0.07 

17 

<2 

27 

16 

70 

<0.2 

 

0.48 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

 

19 000 

0.25 

20.63 

14.91 

21 

28.93 

101.16 

0.21 

 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 
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Σ16PAHs (mg/kg) 

Σ7 ind. PCBs (mg/kg)5 

0.48 

<0.002 

n.d. 

n.d. 

n.d. 

n.d. 

1N, H, C in biochar and biochar-compost were determined with CHN analyzer (DIN/ISO 51732). 2P, K, S, Ca, Mg, B, Na, Si were 

determined by ICP-MS (DIN/ISO 17294-2) after melting digestion (DIN 51729). 3Metals in biochar and biochar-compost were 

determined by ICP-MS (DIN/ISO 17294-2) after microwave digestion (DIN 22022-1). 4PAHs in biochar were determined by SPME 

coupled to GC/MS (DIN EN 15527), where individual PAH values were below or equal to the limit of detection (0.1 mg/kg). 5The 7 

indicator PCBs in biochar (incl. BG) were determined by HRGC/HRMS. 6N Kjeldahl in g/kg. 7P as PO2, K as K2O, Mg as MgO, Ca 

as CaO, Na as Na2O, S as SO3.  

 

The amendments were incorporated into the topsoil (15 cm depth) of 6 m2 field plots and with 

three replicate plots (per treatment) in a random block design. The study treatments were: 

reference plot B-0 (un-amended soil, 0 t/ha of amendment); biochar-enriched soil B-4 and B-

40 (4 t/ha and 40 t/ha, respectively); and soil amended with biochar-compost mixture BC-40 

(40 t/ha).  

 

2.3.3. Soil sampling 

The first soil sampling (0-15 cm topsoil layer) for bioassays and chemical analysis was 

conducted at the end of March 2013, at the time when the amendments were applied to the 

vineyards. This will be referred as the first sampling time or ST1 further in the text, and includes 

the reference (un-amended) soil and amended soils. The addition of biochar and biochar-

compost to the soil samples was performed in the laboratory with the objective to run bioassays 

and chemical analysis with freshly amended soil. The second sampling event occurred on the 

13th October 2014 when composite samples of the un-amended soil, biochar- and biochar-

compost-enriched soil were collected from the field plots (18 months after the first application 

of soil amendments to the plots). Approximately 6 kg of soil were sampled from each replicate 

plot. These samples were mixed and homogenized in the laboratory, and both reference soil 

and each treatment were used as composite sample. This sampling event will be further 

referred as the second sampling time or ST2 and includes the un-amended soil and the 

amended soil after two growing seasons.  B-0, B-4, B-40 and BC-40 were tested as composite 

samples both in bioassays and in chemical analyses. These sampling times were selected as 

suitable for the biomonitoring in view of the study aim, while also avoiding disturbance of 

amended plots, which would compromise subsequent samplings of the long-term study and 

on-site probe readings. 
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2.3.4. Chemical analyses of the reference soil and the amended soil samples  

Total metal and nutrient contents in un-amended and amended soil samples from both 

sampling series were analysed in an external laboratory by inductively coupled plasma mass 

spectrometry (ICP-MS) screening after an aqua regia digestion (DIN EN ISO 17294, 2003), 

except for sulfur which was determined from the leachate (DIN EN ISO 12457-4, 2002) by 

inductively coupled plasma optical emission spectrometry (ICP-AES) (DIN EN ISO 11885, 

2007). Soil pH was determined in soil-water solution (1:5 v/v) following the ISO standard 

protocol for soil quality (ISO 10390, 1994).  

 

2.3.5. Predicted exposure and risk assessment 

Background content of pesticides’ residues in the soil collected during the first sampling event 

was not part of the risk assessment exercise in the present study because the period before 

2013 did not involve the application of any biochar/biochar-compost amendments in this field 

site. Thus, it was assumed that a potential impact of the initial residual fraction would be 

negligible and that possible bioavailability/non-availability of potentially toxic elements (PTEs) 

or any effects observed in ST1 can be attributed to the freshly introduced amendments.  

The growing seasons in 2013 and 2014 differed by a long dry summer in 2013 and rainfall 

events during the summer in 2014. This resulted in an early grape harvest during August 2013 

and no need for the planned insecticide treatment. In 2014, however, the insecticide 

thiamethoxan was applied, as well as an extra grey mold treatment with cyprodinil in late 

August. Consequently, the grapes were harvested during September.  All plots were equally 

treated, including the reference plot (un-amended soil, 0 t/ha of biochar/biochar-compost). 

Supplementary information Table S2.3 depicts all the active ingredients of PPPs applied to the 

field, their application rates and the main properties together with toxicity levels reported in the 

literature, the data accessed through Pesticide Properties DataBase (PPDB, 2017). Estimation 

of predicted environmental concentrations (PECs), derived predicted no effect concentrations 

(PNECs) and their ratio expressed as risk quotient (RQ) were calculated for the second 

sampling event (13th October 2014). Two criteria were applied for including a pesticide’s active 

ingredient in the PEC calculation: (1) presence in the soil at the sampling day according to the 

soil degradation period (DT50) of an active ingredient in the field, and (2) active ingredients of 

the pesticides that were sprayed within the last 100 days prior to the sampling (i.e. those applied 
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starting from the beginning of July 2014, and on). A simple model was applied, following the 

recommendations of Forum for the Coordination of Pesticide Rate Models and their Use 

(FOCUS, 1997). First, an initial PECsoil (mg/kg) was calculated for each active ingredient: 

𝑃𝐸𝐶𝑠𝑜𝑖𝑙 =  
𝐴×(1−𝑓𝑖𝑛𝑡)

100 𝑥 𝑑 𝑥 𝑏𝑑
            (Eq. 1)  

where A (g/ha) is an application rate, fint (%) is a fraction intercepted by crop canopy (for large 

plants, 50 %), d (cm) is a depth of a soil layer (used depth is 15 cm due to the sampling in the 

same depth of the layer), bd (g/cm3) is a bulk density of soil (used 1.40 g/cm3 as mean number 

of the values measured for all the treatments in the second sampling; please see results section 

3.1.). The next step was to calculate actual concentrations in soil PECsoil,act for the day of 

sampling:   

𝑃𝐸𝐶𝑠𝑜𝑖𝑙,𝑎𝑐𝑡 = 𝑃𝐸𝐶𝑠𝑜𝑖𝑙 ∗ 𝑒−𝑘𝑡      (Eq. 2) 

where PECsoil is an initial predicted environmental concentration of an active ingredient (from 

Eq. 1), k (days-1) is dissipation rate constant (k=ln2/DT50), and t (days) is time between the last 

application date of a specific pesticide and the day of sampling, 13th October 2014. 

Regarding ecotoxicity, the data available from the literature and/or PPDB were used for each 

active ingredient, namely the NOECs (no observed effect concentrations) for soil invertebrate 

reproduction as a chronic endpoint. The lowest reported NOEC for each compound was 

selected by comparing the values found in the literature or in the databases. Predicted no effect 

concentration (PNEC) is further estimated using a safety factor (SF) as a measure of data 

uncertainty, following the guideline of European Chemical Agency for assessment factors for 

derivation of PNECs in terrestrial environment (ECHA, 2008). SF of 100 was used which means 

that the lowest NOEC was divided by 100. Supplementary Table S2.4. contains the toxicity 

data and safety factors applied for PNEC estimation for every active ingredient. The Risk 

quotient (RQ) was assessed as a ratio between PECsoil,act and PNEC: 

𝑅𝑄 =
𝑃𝐸𝐶𝑠𝑜𝑖𝑙,𝑎𝑐𝑡

𝑃𝑁𝐸𝐶
        (Eq. 3) 

Risk quotient (RQ) expressed according to the Eq. 3 is frequently used in risk characterization 

of industrial chemicals, biocides, various pharmaceuticals, etc. RQ ≥ 1 considers that the 

ecological risk is likely to occur, while RQ ≤ 1 indicates low likelihood that a substance could 

pose an ecological risk (Backhaus and Faust, 2012).  
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2.3.6. Organisms and bioassays 

Isopod food consumption and biomass change after 14 days was evaluated following the 

procedure described by Loureiro et al. (2006). Specimens of P. pruinosus were maintained in 

a laboratory culture at 22±2 °C and 16/8 h of light/dark. Soil used for the culture boxes was a 

commercially available potting soil, adjusted to 40 % to 60 % WHC. Isopods in the culture were 

fed ad libitum with alder leaves. Bioassays were performed with animals ranging from 15 mg 

to 25 mg of weight, excluding pregnant females and moulting individuals. Plastic test recipients 

(6.5 cm diameter) were filled with 50 g of soil/amended-soil. Experiments were conducted with 

10 replicates and 1 individual in each per treatment. All isopods were fed with alder leave disks. 

The weight measurements of every individual and the leave disks were taken at the beginning 

and at the end of the two weeks-experiment. Changes in isopods biomass and consumption 

ratio were calculated with the formulas as presented with Eq. 4 and Eq. 5, respectively, 

according to Loureiro et al. (2006): 

𝐵𝛥 =
𝑊𝑖𝑖−𝑊𝑖𝑓

𝑊𝑖𝑖
 × 100        (Eq. 4) 

   

𝐶𝑟 =
𝑊𝑙𝑖−𝑊𝑙𝑓

𝑊𝑖𝑖
          (Eq.5)  

where, in Eq. 4, BΔ is the % of change in biomass, Wii (mg fresh weight) is the isopod initial 

weight, and Wif (mg fresh weight) the isopod final weight. In the Eq. 5, Cr (mg food/mg isopod) 

stands for a consumption ratio, Wli (mg dry weight) is the leaf disk initial weight, Wlf (mg dry 

weight) the leaf disk final weight, and Wii (mg fresh weight) is the isopod initial weight.  

Collembolan adult survival and reproduction assay (OECD 232, 2009) was performed with 

collembolans (10-12 days old) from synchronised laboratory cultures maintained in the dark, at 

20±2°C, and fed weekly with dry yeast granules. The bioassay was performed at 20±2°C, and 

16/8 h of light/dark, for 28 days. Glass test recipients (20 mL of volume) contained 30 g of 

soil/amended soil and 10 Folsomia candida. Tests were performed with five replicates per 

treatment, for non-amended and amended soil treatments. WHC of the non-amended soil and 

of the treatments was maintained in the range between 40 % and 60 %. Soil moisture and 

amount of food in the test recipients were monitored weekly and corrected if needed. After 4 

weeks, the soil and animals were transferred to glass crystallizers and filled with water. 
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Collembolans were photographed at the water surface and the number of adults and juveniles 

was counted using the SigmaScan Pro5 software.  

 

2.4. Statistical analyses    

Sub-lethal data were checked for normality and homogeneity of variance with Shapiro-Wilk test 

(p>0.05) and Leven’s test (p>0.05), respectively. The endpoints from both bioassays were 

tested with two-way ANOVA looking into effects of two factors, “sampling time” and “treatment”, 

and their interaction, followed by Dunnett’s post hoc test when significant differences were 

found. Estimates of effect size (R2) were calculated by dividing the sum of squares for factor 

‘sampling time’ and/or ‘treatment’ and for their interaction by total sum of squares (Hullet and 

Levine, 2003). Statistical analysis was performed with sofware package SigmaPlot 12.5.  

 

2.5. Results  

2.5.1. Chemical analysis  

Results from the analysis of selected metals and nutrients in un-amended soil and amended 

soil samples from ST1 (with fresh amendments applied) and ST2 (18 months after biochar and 

biochar-compost application) are provided in Table 2.2, together with the pH values. Soil pH 

was higher in the treatments than in the reference soils, for both sampling events. No large 

fluctuations between the two sampling events were observed in nutrient and metal contents, or 

within the sampling times when looking into treatments relative to the un-amended soil. 

Measured bulk density (bd) of ST2 treatments were: bd(B-0)=1.45 g/cm3, bd(B-4)=1.42 g/cm3, 

bd(B-40)=1.38 g/ cm3 and bd(BC-40)=1.37 g/ cm3
.   
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Table 2.2. Contents of metals and nutrients in sandy loam soil (mg/kg dry weight): un-amended 
soil (B-0), soil amended with biochar at 4 and 40 t/ha (B-4 and B-40) and with a biochar-
compost mixture at 40 t/ha (BC-40) for sampling 1 and sampling 2.  
 

        Sampling time 1  Sampling time 2  

          B-0 B-4 B-40 BC-40 B-0 B-4 B-40 BC-40 

pH (H2O) 6.4 6.5 6.8 6.7 5.9 6.0 6.3 6.9 

P Olsen (mg/kg)  270 280 300 280 260 260 260 240 

K (mg/kg) 1 000 1 200 940 910 720 1 000 1 100 750 

S (mg/ml) 0.1 0.2 0.1 2.9 0.2 0.1 0.1 0.1 

Mg (mg/kg) 550 600 600 600 530 580 530 510 

Ca (mg/kg) 590 700 910 1 100 3 500 750 850 660 

Na (mg/kg) 110 61 23 38 23 43 42 21 

Al (mg/kg) 7 300 7 300 6 500 6 200 5 100 6 900 6 700 5 400 

As (mg/kg) 6 6 5 6 5 6 5 5 

Ba (mg/kg) 35 34 26 27 25 32 34 25 

Be (mg/kg) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Pb (mg/kg) 12 10 9 9 7 9 9 8 

B (mg/kg) <5 <5 <5 <5 <5 <5 <5 <5 

Cd (mg/kg) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Cr (mg/kg) 9 10 9 9 8 10 9 8 

Fe (mg/kg) 6 400 7 000 6 700 7 000 6 000 6 900 6 100 6 000 

Cu (mg/kg) 60 64 67 63 57 66 62 64 

Li (mg/kg) <10 <10 <10 <10 <10 <10 <10 <10 

Mn (mg/kg) 150 170 170 160 150 150 150 180 

Hg (mg/kg) 0.54 0.58 0.35 0.23 0.32 0.56 0.72 0.22 

Mo (mg/kg) <5 <5 <5 <5 <5 <5 <5 <5 

Ni (mg/kg) 6 6 6 6 5 6 5 5 

Se (mg/kg) <10 <10 <10 <10 <10 <10 <10 <10 

Sr (mg/kg) <5 <5 <5 7.2 8.6 <5 <5 <5 

Ti (mg/kg) 80 84 69 98 62 80 72 72 

V (mg/kg) 12 13 10 11 10 13 12 10 

Zn (mg/kg) 38 28 27 28 23 26 26 26 
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2.5.2. Predicted exposure and risk characterization   

Earthworms are generally highlighted as more sensitive to fungicides, compared to 

collembolans and enchytraeids (mandipropamid, azoxystrobin). Collembolans are more 

sensitive to the insecticide thiamethoxam. This is demonstrated by the low chronic toxicity 

values (NOECs) in supplementary Table S2.4.   

The exposure parameters (PECs), predicted actual environmental concentrations in soil 

(PECsoil,act), derived predicted no effect concentrations (PNECs) and risk quotients (RQs) are 

shown in Table 2.3.  Overall, potentially highest risk to non-target invertebrates pose as follows: 

cyprodinil, propiconazole, copper oxychloride and copper sulfate. Among these, the first three 

were applied to vineyards twice during the period relevant for the study.  

 
Table 2.3. Risk characterization of active ingredients in the pesticide mixture: predicted no 
effect concentrations (PNEC, in mg/kg) derived, predicted actual concentrations for the day of 
sampling (PECsoil, act, in mg/kg) and the corresponding risk quotients (RQ).  
  

Application date Action1 Active ingredient  PNEC PECsoil,act  RQ2 

16/04/2014 F azoxystrobin 0.200 0.013 0.067 

06/05/2014 F propiconazole 0.008 0.022 2.587 

16/05/2014 F propiconazole 0.008 0.022 2.673 

07/07/2014 F, B Cu oxychloride   0.089 0.144 1.609 

07/07/2014 F mandipropamid 0.160 0.000 0.001 

07/07/2014 F proquinazid 0.509 0.001 0.002 

07/07/2014 F cyprodinil  0.011 0.016 1.388 

07/07/2014 F fludioxonil 0.013 0.002 0.132 

07/07/2014 I thiamethoxam 0.010 0.002 0.167 

22/08/2014 F cyprodinil 0.011 0.043 3.783 

03/07/2013 F, B Cu oxychloride   0.089 0.140 1.569 

17/07/2013 F, B Cu sulphate  0.150 0.196 1.304 

1F-fungicide, B-bactericide I-insecticide 
2RQ ≥ 1 - ecological risk is likely to occur; RQ ≤ 1 - low likelihood for an ecological risk 

 

 

2.5.3. Bioassays 

Biomass changes and food consumption ratios of P. pruinosus at ST1 and ST2 are presented 

in Figure 2.1. For both ST1 and ST2 the isopods’ growth was stimulated in the amended soils 
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compared to un-amended soil. Growth response followed the general pattern B-4>BC-40>B-

40>B-0. On the contrary, alder leaves consumption was the lowest in B-4 treatment during ST1. 

At ST2, for B-4 and B-40 lower consumption ratios were obtained. Integrating the sampling 

times and the treatments, both factors significantly affected isopod body mass fluctuations and 

equally contributed to the total variation, with 12 % of the effect size (two-way ANOVA, p=0.008 

for sampling time and p=0.021 for treatment; Table 2.4.). However, the interaction effect 

(sampling time*treatment) was not significant (two-way ANOVA, p=0.771). The food 

consumption ratio was significantly lower in the ST2, while treatment as a factor, or the factors’ 

interaction did not significantly affect this parameter (two-way ANOVA, p=0.014, p=0.243 and 

p=0.416 respectively). Factor ‘sampling time’ explained only 10.8 % of the total variation in the 

food consumption ratio. For the treatment B-40 the difference was statistically significant 

between sampling times (Dunnett’s method, p=0.018).  

I.                                                                                        II. 

                             

Figure 2.1. (I.) Biomass change (BΔ, in %) and (II.) food consumption ratio (Cr, in mg food/mg 
isopod) of the isopod Porcellionides pruinosus exposed for 14 days to the reference (un-
amended) soil (0 t/ha biochar, B-0), biochar amended soil (at 4 t/ha B-4, and 40 t/ha, B-40) and 
biochar-compost amended soil (at 40 t/ha, BC-40), from sampling time 1 (ST1) and sampling 
time 2 (ST2). Vertical bars represent standard errors of the means. Lower case letters (a, b) 
indicate significant differences between sampling times within a treatment (Two-Way ANOVA; 
Dunnett’s method, p<0.05).  
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Table 2.4. Two-way ANOVA testing output for the factors ‘sampling time’ and ‘treatment’ and 
their interaction effect (sampling time x treatment) on biomass change and food consumption 
of P. pruinosus and on adults’ survival and reproduction of F. candida. Asterisks refer to the 
levels of statistical significance *p<0.05, **p<0.01 and ***p<0.001. 
  

 DF SS MS F P R2 

Porcellionides pruinosus 

Biomass change       

Sampling time 2 437.0 218.5 5.217 0.008** 0.120 

Treatment 3 435.9 145.3 3.469 0.021* 0.120 

Sampling time x treatment  6 137.4 22.90 0.547 0.771 0.038 

Food consumption        

Sampling time 2 0.289 0.144 4.575 0.014* 0.108 

Treatment 3 0.135 0.045 1.427 0.243 0.051 

Sampling time x treatment 6 0.194 0.032 1.026 0.416 0.073 

Folsomia candida 

Adults survival       

Sampling time 1 1.600 1.600 4.414 0.044* 0.101 

Treatment 3 2.100 0.700 1.931 0.144 0.132 

Sampling time x treatment  3 0.600 0.200 0.552 0.651 0.038 

Reproduction        

Sampling time 1 32 262 32 262 110.1 <0.001*** 0.688 

Treatment 3 3 631.8 1 211 4.130 0.014* 0.077 

Sampling time x treatment 3 1 639.8 546.6 1.865 0.155 0.035 
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I.                                                                                   II.  

                                 

Figure 2.2. (I.) Survival (number of adults) and (II.) reproduction (number of juveniles) of 
Folsomia candida exposed for 28 days to the reference (un-amended) soil (0 t/ha biochar, B-
0), biochar amended soil (at 4 t/ha, B-4, and 40 t/ha, B-40) and biochar-compost amended soil 
(at 40 t/ha, BC-40), from sampling time 1 (ST1) and sampling time 2 (ST2). Vertical bars 
represent standard errors of the means. Lower case letters (a, b) indicate significant differences 
between sampling times within a treatment, and asterisk (*) indicates significant differences 
between treatments and un-amended soil within a sampling time (Two-Way ANOVA; Dunnett’s 
method, p<0.05). 

 

F. candida bioassays fulfilled the validity criteria of the guideline related to the reference (un-

amended) soil used in the bioassays. These criteria propose that the non-contaminated soil 

has adult mortality below 20 %, the juveniles number above 100 and the coefficient of variation 

regarding number of juveniles lower than 30 % (OECD 232, 2009). Figure 2.2 depicts the 

obtained survival and reproduction outcomes in F. candida bioassays for ST1 and ST2. Table 

4 further summarises the two-factorial ANOVA testing of F. candida bioassays data, for the 

factors ‘sampling time’, ‘treatment’ and their interaction effect. A significant difference in the 

number of F. candida adults for the factor ‘sampling time’ was derived (p=0.044), which was 

not the case for the factor ‘treatment’ or for the interaction effect (p=0.144, p=0.651 

respectively). Factor ‘sampling time’, however, only explained 10.1 % of the total variability in 

the number of adults. Regarding the number of juveniles, a statistically significant effects of 

sampling time (p<0.001) and of treatment (p=0.014) were observed, but their interaction was 

not significant (p=0.155). Concerning the effect size, 68.8 % of the variation, can be explained 
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revealed specific differences. In terms of treatments, the differences were found between un-

amended soil B-0 and both B-40 and BC-40 (Dunnett’s method, p=0.011 and p=0.042, 

respectively). Significant differences between sampling times were obtained for B-0, B-4, B-40 

and BC-40 (Dunnett’s method, p<0.001). Within ST2, in both B-40 and BC-40, average number 

of juveniles was lower than in B-0 by 5 % and 6 %, respectively. This decrease was marked as 

statistically significant when compared to the corresponding unamended soil B-0 (Dunnett’s 

method, p=0.035 and p=0.009 respectively).  

 

2.6. Discussion  

2.6.1. Chemical analysis  

Besides the existing national quality standard for biochar in some countries (e.g. Germany, 

Austria, Switzerland, Italy, United Kingdom), two international biochar standardization 

documents are available as voluntary standards: the European Biochar Certificate (EBC) and 

the International Biochar Initiative (IBI) (Meyer et al., 2017). Chemical composition of the 

biochar used in the present study shows that the sum content of PAHs (Σ16PAHs=0.48 mg/kg) 

is below EBC and IBI threshold concentrations (<4 mg/kg in EBC 2016, <12 mg/kg in IBI, 2015). 

The Σ16PAHs is comparable to the woodchip biochars produced at 550-620°C (Hilber et al., 

2012). Metals and PCBs are also beneath the benchmark concentrations (EBC, 2012; IBI, 

2015). Due to low levels of the contaminants it has been classified as “premium grade” biochar 

according to EBC (EBC, 2012).  

To contextualise the metal concentrations in our soil samples at the two sampling events, the 

measured values were compared with the available soil quality guidelines. Copper was the only 

metal with concentrations comparable to the ones in the guidelines (57-67 mg/kg). The 

Canadian soil quality standard sets the concentration of 63 mg/kg as a value for soil quality 

guideline for environmental health of agricultural soils (CCME, 1999), while the Finnish 

guideline sets it to 100 mg/kg, where 150 mg/kg and 200 mg/kg represent lower and higher 

levels of ecological risk respectively (MEF, 2007).  

In terms of physicochemical properties, pH levels increased in the amended soil due to the 

liming effect of biochar on soils (Singh et al., 2017; Verheijen et al., 2009). Upon biochar 

application, a decrease in soil bulk density may be expected (Busscher et al., 2011; 

Mankasingh et al., 2011). Despite this, the bulk density values measured in the amended soil 
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in this study were not substantially different, either within treatments, or in comparison to the 

un-amended soil.  

 

2.6.2. P. pruinosus bioassays 

In the bioassays with P. pruinosus the reference (un-amended) soil (B-0) exhibited the 

consumption ratios and biomass changes comparable to those of LUFA 2.2, a frequently used 

natural soil in ecotoxicology (Morgado et al., 2016; Tourinho et al., 2015).  

The two endpoints obtained, changes in biomass and consumption ratios of alder leaves, did 

not disclose the same pattern. This is especially important because it indicates that alder leaves 

might not have been the only food source utilised during the bioassays, but that isopods also 

consumed soil/amended soil particles at different proportions depending on the treatment.  The 

peak increase of biomass in treatment B-4 of ST1 might be due to additional readily available 

nutrients from fresh biochar (Ippolito et al., 2015). Alternatively, an additional organic matter 

input from biochar-compost in BC-40 could contribute to a certain extent to the increase in the 

growth rate. Indeed, this is not a surprising behaviour for terrestrial isopods, as they can use 

more than one food source to supply their body with necessary nutrients. The study with the 

desert isopod Hemilepistus reaumuri showed that this species preferably feeds on a mixed diet, 

including detritus, herbaceous material, microbiota and soil particles (Shachak et al., 1976).  

To our knowledge, this is the first study so far that addresses the effects of biochar and biochar-

compost amendments to P. pruinosus. Mechanisms behind isopods’ behaviour in biochar and 

biochar-compost amended soils are not known, and particularly, the palatability degree of these 

amendments to terrestrial isopods, and how their nutrition is affected over time. Although, it 

has been shown that some other soil invertebrates, like the endogeic earthworm Pontoscolex 

corethrurus, consume biochar particles possibly due to their gut stimuli by microbiota from the 

biochar surface (Topoliantz and Ponge, 2003; Topoliantz and Ponge, 2005). Considerably 

more information is available on the impact of biochar to the earthworm species of the Eisenia 

genus. Belonging to the epigeic group of earthworms, they are involved in litter decomposition 

(Coleman and Wall, 2014; Domene, 2016), just like terrestrial isopods (Zimmer et al., 2005). 

Van Zwieten et al. (2010) observed the preference of Eisenia fetida for ferrosol type of soil 

amended with paper mill residues biochar, but not for calcarosol type of soil. Unlike the growth 

stimulation that we observed for P. pruinosus in the amended soil, the weight changes reported 
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for Eisenia sp. ranged from neutral (Amaro et al., 2016; Liesch et al., 2010), to negative 

(Gomez-Eyles et al., 2011; Li et al., 2011; Liesch et al., 2010). The latter was caused by the 

feeding inhibition in the presence of biochar, though it has been highlighted the dependence of 

responses on the biochar and soil properties and their combinations (reviewed by Weyers and 

Spokas, 2011).  

In our study, the isopods performance was strongly dependent on the sampling time. This 

difference based on sampling times coincides with contrasting management. The soil sampled 

in 2013 did not contain any additional pesticides and was amended with fresh biochar and 

biochar-compost, while the samples brought from the field in 2014 underwent 18-months of 

weathering alongside conventional pesticides application (see section 2.5). It is known that P. 

pruinosus can sense chemical compounds, whether they are present alone, or as mixtures 

(Loureiro et al., 2009). Decline in feeding performance of P. pruinosus in multiple stress 

conditions has also been reported (Morgado et al., 2016). Furthermore, the presence of several 

pesticides and/or their residues might have affected the isopods either indirectly, by altering 

the rate and quality of the leaf litter colonisation by microbiota during the 2-weeks bioassay 

(Zimmer et al., 2003), or directly by affecting their fitness. Although it is known that terrestrial 

isopods are sensitive animals when exposed to several pesticides, e.g. dimethoate (Ferreira et 

al., 2015), glyphosate (Santos et al., 2010), no information is available regarding the active 

ingredients of the organic pesticides identified in ST2. As mentioned previously, copper 

concentration was maintained within the values advised by soil guidelines. Moreover, this metal 

is an essential nutrient for isopods and the constituent of their respiratory pigment hemocyanin, 

stored in a form of copper granules in the hepatopancreas (Zimmer, 2002). Therefore, it is not 

expected that copper might have induced this decrease in isopods fitness, unless exposure is 

considered as a mixture, where no information is available on the interaction of Cu and the 

other pesticides.  

While obviously being stimulated with fresh biochar and biochar-compost, a significant decline 

in their fitness from ST1 to ST2 raises the concern regarding the adverse effects of the 

vineyards soil on the terrestrial isopods under the conventional pesticide management. Yet, 

more research is needed to understand how biochar amendments alter these effects.  
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2.6.3. F. candida bioassays 

The adequacy of the reference soil (B-0) used in the current study is evident as the number of 

F. candida juveniles obtained in the un-amended soil (B-0) is comparable to those reported for 

LUFA 2.2 soil (Cardoso et al., 2015; Tourinho et al., 2015).  

Like in the case of P. pruinosus, F. candida bioassays’ outcome is characterised with a high 

dependence on sampling time. While the freshly-amended soil did not cause any significant 

effects on collembolan fitness, the number of adults and number of juveniles were significantly 

reduced when organisms were exposed to the treatments from ST2. Reproduction of F. 

candida is the most sensitive endpoint observed in the study and the negative impact on 

collembolans’ reproduction was somewhat more pronounced in BC-40 then in B-40 treatments. 

Albeit the significance, one should bear in mind that the scale of the negative responses to the 

treatments within ST2 was not large (please see section 3.3.). More prominent effects of 

biochar on collembolans reproduction, that are reported in the literature so far, were related to 

the higher application rates (Bielska et al., 2018), or to the initial, biochar-contained, toxic 

compounds (Domene et al., 2015; Marks et al., 2014). In the study of Domene et al. (2015) 

collembolans avoidance of biochar-soil was related to microbial biomass decrease, while their 

reproduction was either stimulated or inhibited, depending on the feedstock used and the 

processing conditions. Bielska et al. (2018) reported reduction in F. candida reproduction rates 

by 27 % for rice husk biochar, and 38 % for wood biochar, both added at concentration of 10 

%. Nonetheless, at the concentrations of 5 % and 1 % of both biochars, that are comparable 

to the application rates of 40 and 4 t/ha in our study, reduction in number of juveniles was not 

observed (Bielska et al., 2018).  

The investigations on the use of biochar in highly contaminated soils (metals) demonstrated 

different biochar affinities for various metals and dependence of the metals mobility on the soil 

pH, dissolved and total organic carbon (Beesley et al., 2010; Uchimiya and Bannon, 2013). In 

our study, despite the low detected concentrations of PTEs (e.g. copper, lead, mercury, 

arsenic), a direct toxicity due to higher bioavailability of PTEs, present in the soil pore water as 

a mixture, may be the factor causing the slight decline in the number of adults and juveniles in 

the amended treatments of ST2. F. candida is more sensitive to the metals spiked soil than to 

the contaminated food (Fountain and Hopkin, 2001). However, there is also evidence that 

collembolans are capable to palatalize charred materials (Salem et al., 2013) contributing to 

the hypothesis that they could be directly affected by ingestion of biochar particles. It is also 
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possible that available residues of fungicides caused a decrease in microbial biomass in the 

amended soil. Although being fed with yeast during the assay, collembolans as fungivore 

organisms could, to some extent, suffer from a decrease in microbial biomass while they were 

exposed to the treatments from ST2.  

The sensitivity of F. candida response observed in the current study demonstrates the 

adequacy of using this species when addressing the mechanisms of biochar effects on soil 

organisms and particularly the quality of biochar-amended soil over time.  

 

2.6.4. Risk assessment and role of biochar-amendments in ecotoxicological response 

Even though most of the fungicides generally used in vineyards are applied foliarly, a simulation 

study demonstrated that many of them (e.g. cyprodinil, fludioxonil, mandipropamid, etc.) can 

still be found in rainwater collected from canopy wash-off at concentrations that are far higher 

than benchmark levels reported in European drinking water quality regulations (Perez-

Rodriguez et al., 2017). In our study, individual active ingredient risk quotients higher than 1 

indicate an elevated ecological risk for the soil ecosystem. Bioassays, using an effect-based 

approach, supported this theoretical estimation, while accounting for bioavailability of the entire 

mixture.  

The lower biochar application rate (B-4), and biochar-compost (BC-40), when applied fresh, 

had stimulatory effects on isopods and low-to-no effect on collembolans. On the contrary, 

samples collected 18 months after application induced a decrease in bioassays performance. 

This result in the context of the PPPs applied during the seasons 2013 and 2014 in the 

vineyards indicate that the effects were mainly caused by the potential exposure to these 

pesticides. Further, this raises the question of sorption/desorption capacity of biochar and 

weathering or ageing effects on such processes. Yang et al. (2005) analysed the residual 

concentration of herbicide diuron in a four-weeks pot experiment and found that it was higher 

in the amended soil, but less bioavailable to microbiological degradation, thus increasing the 

survival and biomass of barnyard grass. Affinity of biochar to absorb and desorb the herbicides 

atrazine and diuron was studied by Martin et al. (2012) with the objective to compare fresh and 

32-months-aged biochar application. The authors found that the sorption capacity of paper mill 

biochar decreased by 47 % for atrazine, while a 68 % decrease was observed for diuron in the 

aged poultry litter biochar. The quality of amended soil changes under combined anthropogenic 
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and environmental pressures, thereby precluding accurate previsions on how long a biochar 

can have a soil conditioning effect (Ippolito et al., 2015), and when/if biochar can become a 

possible source of PTEs (Hilber et al., 2017).  To fill in this knowledge gap, further long-term 

laboratory and field studies under different environmental scenarios are required.  

 

2.7. Conclusions  

Biochar and biochar-compost amendments in vineyard soil induced a positive or neutral 

improvement on isopods and collembolans fitness. Upon pesticide applications, negative 

effects were observed for both organisms, with an overall decrease for collembola reproduction 

and isopod consumption or body mass, irrelevant of the presence/absence of the amendment. 

A theoretical exposure estimation and risk assessment approach, based on the available site-

specific, experimental and literature data, was in agreement with the outcome of the laboratory 

bioassays. The study findings outline the need to carefully consider biochar application to 

agricultural soils as a conditioner when conventional pesticides are applied, as it may have 

different behaviours regarding different chemical compounds. In addition, multiple application 

of pesticides in vineyards should be considered in further studies bearing in mind the 

deleterious effects observed after their application. Case-by-case assessment is necessary for 

a safe use of biochar and biochar-compost as soil amendments. The sensitivity demonstrated 

by P. pruinosus and F. candida makes these bioassays promising tools to assess the quality 

of biochar and biochar-compost amended soils. Revisions of the actual biochar quality 

standards to include invertebrate bioassays as part of ecotoxicological biomonitoring 

programmes are needed to assure sustainable biochar application.  
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2.9. Supplementary Information  

 
Table S2.1. Summary of meteorological data in the field site at Estação Vitivinícola da Bairrada 
(Bairrada, Portugal) between October 2012 and October 2014. 
  
 

 Min. T (ºC) Max. T (ºC)   Mean T (ºC) Rel. humidity (%) Precipitation (mm) 

October 2012-March 2013 5.35 15.6 11.3 83.9 360 

April 2013-September 2013 14.5 29.7 23.4 67.4 10.0 

October 2013-March 2014 6.55 19.1 13.5 81.1 280 

April 2014-October 2014 12.9 25.0 20.0 76.2 89.4 

 

 
Table S2.2. Plant protection products applied at the vineyards in Estação Vitivinícola da 
Bairrada (Bairrada, Portugal) during 2013 and 2014.  
 

Date of 
treatment 

PPPs and action1 Active ingredient Application rate of 
active ingredient 
kg/ha (as stated by 
Estação Vitivinícola 
Bairrada) 

Application rate of 
active ingredient 
kg/ha 
(as recommended 
by PPPs 

producers)2 

2013     

17/4/2013 Quadris Max (F) azoxystrobin  0.112  

7/5/2013 Pergado F (F) folpet and 
mandipropamid 

1.2 of folpet and 
0.15 of 
mandipropamid 

 

Topaze (F) propiconazole 0.152  

20/5/2013 Ridomil Gold (F) mefenoxam 1.68  

Topaze (F) propiconazole 0.152  

5/6/2013 Pergado F (F) folpet and 
mandipropamid 

1.2 of folpet and 
0.15 of 
mandipropamid 

 

Talendo (F) proquinazid 0.04  

3/7/2013 Pergado C (F, B) Cu oxychloride 
13.95 % and 
mandipropamid 
2.5 % 

 0.607 of Cu oxychloride 
and  
0.112 of 
mandipropamid 

Talendo (F) proquinazid 0.04  

17/7/2013 Bordeaux mixture 
(F) 

Cu sulfate   1 

Cosan WDG (F) sulfur  2.4 

2014     

25/3/2014 Quadris Max (F) azoxystrobin  0.112  

7/4/2014 Quadris Max (F) azoxystrobin  0.112  

9/4/2014 Folar Max (H) glyphosate and 
oxifluorfen 

 0.8  
0.12 

16/4/2014 Quadris Max (F) azoxystrobin 0.112  
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6/5/2014 Pergado F (F) folpet (40 %) and 
mandipropamid (5 
%)  

1.2 of folpet and 
0.15 of 
mandipropamid 

 

Topaze (F) propiconazole 0.152  

16/5/2014 Ridomil Gold (F) mefenoxam  1.68  

Topaze (F) propiconazole  0.152  

26/5/2014 Ridomil Gold (F) mefenoxam 1.68  

Dynali (F) difenoconazol (6 
%) and 
cyflufenamid (3 
%) 

 0.039 of 
difenoconazole and 
0.0195 of cyflufenamid 

20/6/2014 Pergado F (F) folpet and 
mandipropamid 

1.2 of folpet and 
0.15 of 
mandipropamid 

 

Talendo (F) proquinazid 0.04  

7/7/2014 Pergado C (F, B) Cu oxychloride 
13.95 % and 
mandipropamid 
25 % 

 0.607 of Cu oxychloride 
and 0.112 of 
mandipropamid 

Talendo (F) proquinazid 0.04  

Switch (F) Cyprodinil (37.5 
%) and (25 %) 
fludioxonil 

  0.298 of cyprodinil  
0.198 of fludioxonil 

Actara (I) thiamethoxam 0.04  

Stimufol K - 
fertilizer 

n.a. n.a. n.a. 

22/8/2014 Chorus (F) cyprodinil  0.4 
1Action: F-fungicide, B-bactericide, H-herbicide, I-insecticide, A-acaricide, n.a. – not applicable. 
2Where the amount of pesticide is not stated, the producers’ recommended dose is applied in the PEC calculation 
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Table S2.3. Active ingredients of the PPPs with their main physicochemical properties and 
ecotoxicity data available in the Pesticide Properties DataBase (PPDB). 
  

Active 
ingredient 

Action Molecular 
mass  
(g/ mol) 

Bulk 
densit
y 
(g/ml) 

Vapour 
pressure at 
25° C (mPa)  

Log Kow1 Soil 
degradat
ion DT50 

soil – 
field 
(days) 

Earthwo
rms 
acute 14 
days 
LC50 
(mg/kg) 

Collembola 

Azoxystrobin  F 403.4 1.34 1.10x10-07 2.5 180.7 283 - 

Glyphosate H 169.1 1.71 0.013 -3.2 23.79 >5 600 - 

Oxyfluorfen H 361.7 1.53 0.026 4.86 73 >1 000 F. candida 
NOEC 
reproduction 
1.25 mg/kg 

Folpet  F 296.56  2.10x10-0.2 3.02 3 >500 - 

Mandipropami
d 

F 411.9 - 9.40x10-0.4 3.2 13.6 >500 - 

Propiconazole F 342.22 1.32 0.056 3.72 214 686 - 

Mefenoxam  F 279.33 1.2 0.75 1.75 113 >1 000 - 

Difenoconazol  F 406.26 1.37 3.33x10-0.5 4.36 85 >610 - 

Cyflufenamid  F 412.36 1.35 0.0354 4.7 25.3 >500 - 

Proquinazid  F 372.2 1.57 0.09 5.5 30.5 >1 000 - 

Cu oxychloride F, B 427.14 - 0.00001 0.44 10 0002 >489.6 - 

Cyprodinil  F 225.29 1.21 5.10x10-0.1 1.00x1004 45 192 - 

Fludioxonil F 248.19 1.54 3.90x10-0.4 4.12 20.5 ≥1 000 - 

Thiamethoxam  I 291.71 1.57 6.60x10-0.6 -0.13 39 >1 000 - 

Cu sulphate F, B  461.3 2.29 3.40x10-10 0.44 1 6002 >155 - 

Sulfur  F, A 32.06 2.36 0.098 0.23 - >2 000 - 
1Octanol-water partition coefficient at pH 7, 20°C.  
2As ’copper does not degrade’ (Paranjape et al., 2015; PPDB, 2017) and the DT50 values (PPDB, 2017) are used 
for PECs calculation for the purpose of estimation of the fate of these compounds, as it was already done for vineyard 
soil (Vaj et al., 2014).  
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Table S2.4. Chronic toxicity of the active ingredients (a.i.) reported in the literature for soil 
invertebrates and predicted no effect concentrations (PNECs) derived out of lowest no 
observed effect (NOEC) using safety factor of 100. The underlined NOECs were used in 
PNECs calculation.  

    

Active ingredient  Chronic effects (reproduction)  
(mg a.i. kg−1 dw soil) 

PNEC derived 
with safety 
factor of 100 
 

azoxystrobin E. fetida NOEC=20 (EFSA, 2010; PPDB) 
E. andrei NOEC<50, EC50=42 (Leitao et al., 
2014) 
E. crypticus EC50=99.2 (Leitao et al., 2014) 
F. candida EC50=92 (Leitao et al., 2014) 
 

0.200 

Cu oxychloride  
 

E. fetida NOEC<8.92 (Helling et al., 2000) 
E. fetida NOEC<15 (EFSA, 2008; PPDB) 
 

0.089 

Cu sulphate  
 

E. fetida NOEC<15 (EFSA, 2008; PPDB) 0.150 

cyprodinil  
 

Earthworms NOEC=1.13 (EFSA, 2005) 0.011 

fludioxonil 
 
 

Earthworms NOEC=1.3 (EFSA, 2007) 
Earthworms NOEC=20 (PPDB) 

0.013 

mandipropamid 
 
 

Eisenia sp. NOEC≥16 (EFSA, 2012) 
F. candida  NOEC≥20 (EFSA, 2012) 

0.160 

propiconazole 
 

Earthworms LOEC=0.833 (PPDB) 0.008 

proquinazid 
 

Earthworms LOEC=50.9 (EFSA, 2009; 
PPDB) 

0.509 

thiamethoxam 
 

F. candida NOEC=1 (Alves et al., 2013)  
Eearthworms NOEC=5.4 (PPDB) 
F. candida NOEC=12.27 (Seres et al., 2016)  

0.010 
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Influence of biochar particle size distribution on biota responses 

 

3.1. Abstract  

Despite the increasing interest for biochar as a soil amendment, a knowledge gap remains on 

its impacts on non-target soil species that have a leading role in both structure and function of 

soils. The present study tested the hypothesis that biochar particle size and application rate 

can play a role in the toxicity to biota. Pine woodchip biochar was incorporated in a clean soil 

at three particle size classes: small (<0.5 mm), medium (1-2 mm), and large (<4 mm), and at 

two concentrations: 1 % and 6 % w/w, giving a total of six treatments. Soil without biochar was 

used as a negative control. A first screening to study the most adequate soil-biochar 

equilibration period was carried out by using an avoidance behaviour of the earthworm Eisenia 

andrei in laboratory-controlled conditions (48h). Moving towards a more ecologically 

representative approach, a 28-days microcosm experiment was conducted in a greenhouse 

and survival, vertical distribution and weight changes of E. andrei, and feeding activity with the 

bait-lamina method were recorded. After 28 days, soil leachates from the microcosms were 

collected to assess their effects on Daphnia magna immobilisation and Vibrio fischeri 

bioluminescence. Feeding experiments with E. andrei were also performed to address changes 

in body mass and to conduct a screening of PAHs/PAH-type metabolites in earthworms’ tissue. 

The 6 % <0.5 mm treatment induced significant avoidance behaviour of earthworms in the 

laboratory bioassays when incubated for 96h. Significant reduction in bait-lamina consumption 

in microcosms was also observed in 6 % <0.5 mm treatment. Moreover, particle size as a factor 

was statistically significant considering the loss of weight in the feeding experiment and 

Naphthalene-type metabolites detected in the earthworms’ tissue. Elevated concentrations 

when exposed to <0.5 mm biochar particles were observed, both at 1 % and 6 % application 

rates. Aquatic bioassays with leachates resulted in the absence of toxicity to D. magna and V. 

fischeri. Overall results suggest that particles <0.5 mm of pine woodchip biochar can induce 

sub-lethal effects to soil biota.  

 

Key words: biochar, earthworms, soil microcosms, bait-laminas, leachates, PAHs  
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3.2. Introduction  

Biochar is a product obtained in the process of thermo-chemical conversion of biomass under 

low-to-no-oxygen conditions (IBI, 2015), which physicochemical characteristics are determined 

by the type of biomass and the processing conditions (Demirbas, 2004; Verheijen et al., 2009). 

Bearing in mind the growing intentions for the employment of biochar as a soil amendment and 

a carbon sink, a robust hazard assessment is necessary to ensure sustainability before large-

scale implementation can be considered in policy development (Verheijen et al., 2012; Meyer 

et al., 2017).  

Particle size distribution is a physical characteristic of biochar mostly dependent on the 

feedstock used (Chia et al., 2015). Together with biochar particles’ shape and porosity, these 

factors affect the hydrology of biochar-enriched soils (Liu et al., 2017). Nonetheless, due to the 

heterogeneity of biochar as a product and complexity of the interactions within biochar-soil 

matrices, conflicting results were revealed in different studies focused on the effect of biochar 

particle size distribution on the sorption of contaminants, its PAH content and the effects on 

organisms. Zheng et al. (2017) concluded that smaller biochar particles are responsible for 

immobilizing Cd, Pb and Zn in contaminated soil, but that was not the case of As. In another 

study, biochar particle <2 mm had higher sorption capacity for simazine than that of larger 

particles (>2 mm) when applied at the rate of 100 t/ha, while also reducing the pesticide’ 

mineralization and leaching from soil (Jones et al., 2011). The increase of total PAHs 

concentrations at lower particle size ranges have been reported (Hilber et al., 2012; Li et al., 

2016) due to changes in the surface area-to-volume and/or mass ratio (Hilber et al., 2012).  

Biochar particle size- and concentration-dependent effects on microorganisms have been 

demonstrated (Chen et al., 2017; Liang et al., 2016). Up to date, studies of biochar particle size 

effects on soil invertebrates and their interactions are lacking. There is evidence that two 

collembolan species, Coecobrya tenebricosa and Folsomia fimetaria, ingested hydrochar 

independently on the particle size ranges tested, while the fitness of those fed only on the 

hydrochar was slightly decreased (Salem et al., 2013). An epigeic earthworm species Eisenia 

fetida ingested fine biochar particles in the range of 50 µm (Sevin et al., 2017), while a 

geophagous earthworm Pontoscolex corethrurus probably benefited from biochar (<2 mm) due 

to changes in their gut pH, rather than using it as a direct source of nutrients (Topolianz and 

Ponge, 2005; reviewed by Weyers and Spokas, 2011).  
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The aim of the present study was to infer the contribution of particle size and application rate 

of biochar to the toxicity in soil biota. For that, the earthworm species Eisenia andrei was 

chosen as a model organism in the experiments with unamended and biochar-amended soil, 

while the bioluminescent bacterial species Vibrio fischeri and the cladoceran species Daphnia 

magna were used in the experiments with aqueous leachates of the unamended and amended 

soil.  Behavioural, functional and individual endpoints were evaluated over the series of 

experiments in the following order: preliminary earthworms’ avoidance bioassays, greenhouse 

microcosms experiment with earthworms and bait-laminas, leachates toxicity assessment with 

daphnids and bacteria, and an earthworm feeding experiment in the laboratory. To our 

knowledge, this is the first study in the biochar literature addressing inherent toxicity of biochar 

particles to biota while combining terrestrial and aquatic approaches for a robust 

ecotoxicological assessment. A slow pyrolysis woodchip biochar was chosen with levels of 

trace metals, PAHs and other potentially toxic elements lower than the benchmark 

concentrations proposed by biochar quality standards (EBC, 2012; IBI, 2015). We, therefore, 

expected different sub-lethal responses to biochar-amended soil relative to the unamended 

control soil, as well as to the particle sizes and concentrations of biochar applied.  

 

3.3. Materials and methods  

3.3.1. Test soil and biochar 

The soil used in the study is a natural agricultural topsoil (0-15 cm), sampled in October 2014 

from a pristine field in agricultural area located in the Mondego valley (Central Portugal), with 

no history of contamination or inputs of pesticides and inorganic fertilizers in the last 4 years 

(Lemos et al., 2010; Santos et al., 2011). It is a loamy sand of the following characteristics: 

sand 86.6 %, silt 7.6 %, clay 5.8 %, pH (H2O) of 6.9, soil organic matter 1.88 % and maximum 

water holding capacity of 32 %.  

Biochar, obtained from the Swiss Biochar gmbh, Switzerland, was produced by slow pyrolysis 

(620°C highest treatment temperature, 20 min) of a mixture of wood chip residues. Particle size 

distribution (w/w) was as follows: 4% (<0.1 mm), 25% (0.1-0.5 mm), 34% (0.5-2 mm), 37% (>2 

mm), with an average of 29.5 µm and pH (H2O) of 9.1. Total 16 PAHs (US EPA) concentration 

was 0.48 mg/kg, where naphthalene alone was 0.48 mg/kg, and the rest of the PAHs were 
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below the detection limit (<0.1 mg/kg). Sum of the 7 indicator PCBs (dioxins) was <0.002 mg/kg. 

Table 3.1. summarizes the main physical and chemical characteristics of the biochar.  

Table 3.1. Summary of the main physical and chemical characteristics (dry weight) of the 
woodchip residue biochar. Abbreviations stand for maximum water holding capacity (WHCmax) 
and electrical conductivity (EC).  

 

 Biochar  

pH (1:5, H2O) 10.1 

WHCmax (105°C) (%) 73.2 

Bulk density (g/cm3) 0.55 

EC (µS/cm) 3,000 

Salts (g/kg) 8.40 

Organic carbon (%) 75.0 

H (%) 0.47 

Ash (550°C) (%) 18.6 

N (%) 1.8 

H:C (molar ratio) 0.07 

O:C (molar ratio) 0.04 

P (mg/kg) 1,300 

K (mg/kg) 10,400 

S (mg/kg) 372 

Ca (mg/kg) 42,200 

Mg (mg/kg) 2,980 

B (mg/kg) 39 

Na (mg/kg) 744 

Metals (mg/kg)1 

Fe  

Hg 

Ni 

Pb 

Cr  

Cu  

Zn  

Cd  

 

2,420 

<0.07 

17 

<2 

27 

16 

70 

<0.2 
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PAHs (mg/kg)2 

Naphtalene 

Acenaphthylen 

Acenaphthen 

Fluoren 

Phenanthren 

Anthracen 

Fluoranthen 

Pyren 

Benz-[a]-anthracen 

Chrysen 

Benzo[b]fluoranthene 

Benzo[k]fluoranthene 

Benzo[a]pyren 

lndeno[1,2,3,-cd]-pyren 

Dibenz-[a,h]-anthracen 

Benzo[ghi]perylen 

ƩPAHs (mg/kg) 

Σ7 ind. PCBs (mg/kg)3 

 

0.48   

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

<0.1 

0.48 

<0.002 

1Metals were determined by microwave digestion (DIN/ISO 17294-2) 
2PAHs were determined by SPME coupled to GC/MS (DIN EN 15527), where individual PAH values were below or 
equal to the limit of detection (0.1 mg/kg); 
3The 7 indicator PCBs (incl. BG) were determined by HRGC/HRMS 

 

 

3.3.2. Treatments  

After the soil was brought to the laboratory it was air dried and sieved to < 4 mm. Biochar was 

first air-dried for 96 h at 20±1°C in a dark, and then mechanically crushed and sieved to the 

following particle sizes: <0.5 mm (referred as S – small further in the text), 1-2 mm (referred as 

M – medium further in the text) and <4 mm (referred as L – large further in the text). Biochar 

was applied to soil at concentrations of 1 % (w/w) and 6 % (w/w). Water holding capacity (WHC) 

was determined by loss of weight, for the unamended soil and for each of the amended 

treatments. Unamended soil (0 % biochar) was used as a negative control.  

 

3.3.3. Chemical analysis  

Total contents of selected metals and trace elements in the soil and biochar-amended 

treatments were analysed in an external laboratory by inductively coupled plasma mass 
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spectrometry (ICP-MS) screening after an aqua regia digestion (DIN EN ISO 17294-2). The pH 

was measured in water at 1:5 soil-water ratio following the ISO standard protocol for pH 

determination in soil (ISO 10390, 1994). 

 

3.3.4. Experimental design 

Screening test: earthworms’ avoidance bioassay  

The earthworms Eisenia andrei (Bouché, 1972) were obtained from established laboratory 

cultures maintained at 20±1ºC with a photoperiod of 16:8 hours (light:dark). Cultures are kept 

in opaque 24 l plastic containers, with a mixture of soil potting mix and peat, at pH between 6 

and 7, adjusted with CaCO3, and at 70 % of its water holding capacity (WHC). The earthworms 

were fed with horse manure previously frozen to kill fly eggs, if present. It was gradually thawed 

afterwards and used weekly as a food source, by covering the surface of container with a 3-4 

cm layer. Adult individuals were three months old, with developed clitellum and in a range of 

300-600 mg of body weight.  

The biochar treatments with the soil moisture adjusted to 60 % were incubated with soil for 96 

hours and for 14 days. The unamended soil was treated in the same way. A screening 

avoidance test with earthworms was conducted in the laboratory following the standardized 

ISO avoidance protocol (ISO/DIS 17512-1, 2005). Each test vessel A was divided by a removal 

plastic barrier in the middle before applying the unamended soil and the test treatments in a 

uniform way. Each vessel side contained around 350 g of unamended soil in one half, and the 

same amount of the amended soil in the other half. As a test validation, the same procedure 

was carried out with unamended soil in both halves of the vessel. Five replicates were used for 

the treatments, and for the unamended soil. Ten adult earthworms, each of them at least 3 

months old, were positioned in the middle, on the border of the soil and the amended-soil. After 

48 h under a 20±1ºC and a 16:8 hours photoperiod (light:dark), the number of earthworms in 

each half of the vessel was recorded. This bioassay was carried out in order to get an insight 

on possible influence of soil-biochar structural equilibration to earthworms’ 

avoidance/preference behaviour and thus, study the most adequate equilibration period to be 

used for the follow-up experiments. After 48 h of exposure, the number of earthworms in each 

half of the vessel was recorded. Mean avoidance per treatment (A, in %) was calculated 

according to the Equation 1 (ISO/DIS 17512-1, 2005): 
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A =
(C−T)∗100

N
         (Eq. 1)  

where C is the number of earthworms in unamended soil, T represents the number of 

earthworms in amended soil, and N is the total number of 10 earthworms used per replicate. 

These results served in decision making in terms of treatments’ choices and biochar-soil 

equilibrium duration, both for the greenhouse and for the laboratory feeding experiments, 

before introducing the earthworms and bait-laminas, or only earthworms in case of the feeding 

experiment.   

 

Greenhouse microcosms experiment  

Greenhouse soil microcosms were conducted with six replicates per treatment, including 

unamended soil, in a fully randomized design. Three particle size classes were used: small (< 

0.5 mm), medium (1-2 mm), large (<4 mm), and two concentrations of the biochar: 1 % and 6 

% w/w, giving six treatments. Unamended soil was used as a negative control. Microcosms 

consisted of PVC tubes covered with a nylon mesh at the bottom and over the top to prevent 

the earthworms from escaping (Figure 3.1.). The block of 42 microcosms was protected with 

polystyrene panels on the lateral sides to avoid uneven heating of the PVC tubes and, 

therefore, to prevent uneven water evaporation. The microcosm configuration is presented in 

Figure 3.1. Each contained around 1.6 kg of soil/amended soil in total. The unamended soil 

(800 g) was at the bottom half of the column, and the same amount of biochar-amended soil in 

the top layer (treatments), both layers at 60 % of the maximum water holding capacity (WHC). 

Three bait-laminas and five adult earthworms were introduced in each column, in this order. 

The amended soil layer was added over an unamended layer to simulate topsoil biochar 

application, a common way of applying biochar to arable soils (Verheijen et al., 2010). During 

the experiment, moisture content was maintained by weighing each pot and adding the 

corresponding amount of water that was lost by evaporation. At each weighing step, every third 

day, a new randomisation of the microcosms was performed. Feeding activity was assessed 

using the ISO bait-lamina consumption assay (ISO TC 190/SC 4 N, 2012). Bait-laminas were 

filled with the mixture of L-cellulose, oat bran and activated charcoal made in proportion 70:27:3 

(Kratz, 1998; Santos et al., 2011). The mean values (± standard deviations) for humidity and 
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temperature during the experiment in the greenhouse were 65.6±22.9 % and 17.6±8.2 °C. The 

experiment lasted for 28 days, including the biochar-soil equilibrium period of 96 h.  

 

Figure 3.1. Schematic diagram of a microcosm used in the greenhouse experiment. 

 

At the end of the experiment the presence of the animals in each layer was recorded. The 

endpoints observed were survival and location of the earthworms, body weight changes, and 

number of empty apertures in bait-laminas. Earthworms biomass per microcosm was recorded 

by pooling five earthworms and expressing the mean weight per earthworm. Loss of body 

weight (LW, expressed in grams) was calculated according to the Equation 2 (Lima et al., 

2011): 

LW =
wi−wf

wi
          (Eq. 2)  

where wi represents the initial mean weight of pooled earthworms per microcosm, and wf is the 

final mean weight of polled earthworms per microcosm, recorded at the end of the greenhouse 

experiment.  
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Leaching procedure and aquatic bioassays 

The OECD guideline for leaching the soil columns was adapted in order to be used for water 

percolation through the disturbed soil cores, after removing organisms and bait-laminas from 

the greenhouse microcosms (OECD 312, 2004). The schematic diagram of the leaching 

procedure applied is depicted in Figure 3.2. The volume of the microcosm as an approximate 

to a cylinder (11 cm diameter and 20 cm high) was 1,900.66 cm3. According to the OECD 

312:2004 protocol, proportionally to the amount of rainwater that is recommended for the 

cylinder of 4 cm diameter and 30 cm high, we applied 1,265 ml of deionized water. The step of 

adding 0.1 M CaCl2 to water for creating artificial rainwater was omitted because we intended 

to use the leachates for both chemical analysis and aquatic bioassays. Therefore, a possible 

interference if 0.1 M CaCl2 in the bioassays’ results and chemical analysis was excluded. The 

amount of water used represents a simulation of an extremely high rainfall event of 

approximately 200 mm over 48 hours at 18-25°C (OECD 312, 2004). By applying this volume 

of deionized water, we assured that enough leachate was produced for the planned ecotoxicity 

bioassays as well as for the chemical analysis. The collected samples were centrifuged at 3,000 

rpm for 20 minutes and stored up to one week at 4°C prior to use for ecotoxicological and 

chemical analysis. Aquatic bioassays were conducted with freshly produced samples, not older 

than one week.  

 

Figure 3.2. Scheme of the leaching procedure: water percolation and leachate collection from 
a disturbed soil core of a microcosm, after the greenhouse experiment.  
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The Daphnia magna immobilisation assay was conducted following the OECD standard 

methodology (OECD 202, 2004). The cultures of D. magna from clone K6 were maintained in 

a controlled laboratory conditions, with photoperiod of 16/8 hours of light/dark, at 20±1°C. 

Neonates for the acute bioassay were obtained from a synchronized culture. Five neonates 

(third- to fifth-brood, <24h) were used per treatment (including negative controls). The 

leachates of the biochar-soil treatments were used as test media. The leachates of unamended 

soil were used as test soil control. ASTM (American Society for Testing and Materials) solution 

(ASTM, 1998) was used both as eluent and negative control. All extracts were diluted with the 

ASTM solution giving 12.5 %, 25 %,50 % and 75 % concentration range, while 100% presents 

pure leachates without addition of the medium. Four replicates per each test concentration as 

well as for the controls (containing ASTM only) were applied. Following an exposure time of 

48h (during which the organisms were not fed), at 20±1ºC and at photoperiod of 16h:8h 

(light/dark), the number of immobilized/dead organisms was recorded. Physicochemical 

parameters, such as pH and oxygen were measured for all extract treatments at the beginning 

and at the end of the assay. No adjustments were made prior to the test. 

The Microtox® Basic Test 81.9 was applied, where bacteria Vibrio fischeri were exposed to 

serial series of dilutions of the leachates. Leachates of the biochar-soil treatments and the 

unamendedsoil were pipetted into glass cuvettes and the salinity was adjusted with MOAS 

(Microtox Osmotic Adjusting Solution, Azur Environmental, Carlsbad, CA, US), as 

recommended by the manufacturer (Microbics Corporation, 1992). Five and fifteen minutes 

after transferring the bacteria into the extract vials, changes in bioluminescence were 

assessed.  

 

Laboratory earthworms’ feeding experiment and screening of PAH-type metabolites 

The Eisenia andrei feeding experiment was performed with six replicates per un—amended or 

biochar-amended soil treatment. Each replicate consisted of one adult earthworm in an opaque 

pot filled with 100 g of amended or unamended soil. Animals were weighed prior to the 

exposure, first while selecting them, and then after 24 h of gut purging in the dark. Organisms 

were not fed during the 14 days of the exposure, in constant conditions of 20±1ºC and 16 h/8 

h (light/dark) photoperiod. In the absence of mortality, the test endpoint was body mass of 
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individual earthworms – assessed after gut depuration. Loss of earthworms’ body weight (LW, 

expressed in grams) was calculated using Equation 2 for each replicate (individual) and then 

expressed as a mean loss of weight, where wi represents the initial weight of an individual after 

24 h of gut depuration, and wf represents the weight after 14 days of the exposure and 24 h of 

gut depuration. Subsequently, all the individuals were kept frozen at -20 ºC before the fixed 

fluorescence analyses.  

PAH-type metabolites were analysed with fixed fluorescence. The method was adapted from 

the protocol developed for fish bile samples (Aas et al., 1998; 2000a, 2000b). Prior to analysis 

every specimen was defrost and individually homogenized on ice by sonication (for 2x30 s, 

using 250 Sonifier, Branson Ultrasonics) in 3,000 µL of K-phosphate buffer (0.1 M, pH 7.4). 

Samples were then mixed with 50 % methanol (50 µL sample and 4950 µL methanol), vortexed, 

and sonicated for 1 min at 25°C. Aliquots of 300 µL were transferred to multi-well plates for the 

readings.  Four blanks per plate containing the K-phosphate buffer (50 µL of 0.1 M, pH 7.4) 

and 50 % methanol (4,950 µL) were employed for calibration. Each sample was pipetted in four 

wells of the multi-well plate, giving four technical replicates. The concentrations of PAH-type 

metabolites were expressed in ng/mg of earthworm body weight, relative to the standard 

calibration curves with known concentrations of naphthalene (Nap), phenantrene (Phe), pyrene 

(Pyr) and benzo[a]pyrene (BaP). Fluorescence was determined in a spectrofluorometer 

(Hitachi F-7000) using several excitation/emission wavelength pairs: 290 nm/335 nm for Nap, 

341 nm/383 nm for Pyr, 256 nm/380 nm for Phe, and 380 nm/430 nm for Bap (Gravato and 

Santos, 2003). For quality assurance, limits of detection (LOD) and limits of quantification 

(LOQ) were calculated for each of these metabolites from a calibration curve at low 

concentrations, as described in Shrivastava and Gupta (2011). The results were interpreted 

based on the obtained values defining LOD as a minimum detectable concentration of an 

analyte in a sample under the given test conditions. LOQ considers a minimum determined 

concentration of an analyte in a sample under the given test conditions, that can be claimed 

with an acceptable level of precision and accuracy (Shrivastava and Gupta, 2011).  

 

3.4. Statistical analysis  

To evaluate biochar amendment effects on the behaviour of the earthworms, a one-tailed 

Fischer test was conducted at a level of significance of α<0.05, with Graph Pad Software. All 
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the observed endpoints were expressed as percentage of the unamended control soil and used 

in the factorial ANOVA. A three-way ANOVA was used to analyse the effects of factors 

‘incubation time’, ‘particle size‘, ’application rate' of biochar and their interaction on earthworms’ 

avoidance behaviour. Two-way ANOVA was applied for testing significance of the factors 

biochar ‘particle size‘, ’application rate' and their interaction effect on the endpoints obtained in 

the greenhouse experiment and the feeding experiment. To interpret the main effects when 

significant, a Tukey post hoc test was used. Normality of data was checked with Shapiro-Wilk 

test (p>0.05) and homogeneity of variance with Leven’s test (p>0.05). Where data distribution 

was not normal, residual values were checked for normality (Keough and Quinn, 2006). In case 

that the assumption of equality of variances was not fulfilled (Leven’s test, p<0.05), the two-

way ANOVA was still considered to be robust enough as the ratios between the largest group 

variance and the smallest group variance were lower than three (Jaccard, 1998). Estimates of 

effect size (R2) were obtained by dividing the sum of squares for a factor and/or the interaction 

of factors by total sum of squares (Hullet and Levine, 2003). The statistical analyses were 

performed with SigmaPlot 12.5 statistical package.  

 

3.5. Results  

3.5.1. Chemical analysis 

Concentrations of the selected analysed metals and trace elements in the unamended soil (0 

%), in the amended soil used in the experiments (1 % S, 6 % S, 1 % M, 6 % M, 1 % L, 6 % L), 

and in the respective leachates are presented in Table 3.2.  
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Table 3.2. pH values and contents of selected trace metals and nutrients measured in 

unamended soil (0 %), biochar-amended soil (1 % S, 6 % S, 1% M, 6 % M, 1% L, 6 % L), and 

in the respective leachates.  

Solid samples  

(concentration of elements in mg/kg) 

 1 % S 6 % S 1 % M 6 % M 1 % L 6 % L 0 % unamended soil  

pH (H2O, 1:5) 7.52 8.07 7.49 7.92 7.29 7.81 6.90 

As 10 9 10 9.8 11 10 12 

Sb < 1 <1 < 1 < 1 < 1 < 1 < 1 

Be 1.5 1 1.4 1.2 1.5 1.2 1.4 

Pb 64 55 67 71 74 72 68 

Bo 3 5 3 19 4 9 2 

Cd 0.2 <0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2 

Ca 2 900 3 100 4 200 4 400 3 700 4 000 3 200 

Cr 12 11 12 11 12 12 12 

Fe 15 000 14 000 15 000 18 000 15 000 18 000 15 000 

K 3 300 2 500 3 500 3 000 3 500 3 300 2 900 

Co 5 5 6 5 6 5 22 

Cu 17 13 15 14 14 16 15 

Li 60 61 60 52 64 55 62 

Mg 2 800 2 100 3 000 3 600 3 000 3 600 2 900 

Mo < 2 <2 < 2 < 2 < 2 < 2 < 2 

Ni 8 7 9 8 9 9 8 

Se 8 <10 6 <1 5 <1 4 

Ag < 5 < 5 < 5 < 5 < 5 5 < 5 

Sr 10 13 13 12 12 12 9 

Tl 0.4 <2 0.4 0.4 0.4 0.4 0.4 

Ti 440 480 430 480 450 520 460 

V 15 15 16 23 15 26 15 

Zn 100 90 100 86 110 96 110 

Sn < 10 <10 < 10 < 10 < 10 < 10 < 10 

Leachates 

(concentration of elements in mg/ml) 

pH  8.11 8.14 8.14 8.16 8.17 8.22 8.16 

As 0.007 0.009 0.007 0.008 0.007 0.009 0.007 

Sb 0.032 0.045 0.050 0.037 0.029 0.036 0.017 

Be < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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Pb 0.001 0.002 < 0.001 0.001 0.001 < 0.001 0.001 

Bo 0.06 0.06 0.05 0.05 0.05 0.06 0.05 

Cd < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 

Ca 92 86 96 77 100 120 96 

Cr < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Fe 0.040 0.031 0.020 0.020 0.023 0.026 0.021 

K 23 35 21 31 21 40 18 

Co 0.0003 0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 

Cu 0.011 0.012 0.011 0.010 0.012 0.015 0.012 

Li < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 

Mg 12 11 11 8.8 12 14 12 

Mo 0.002 0.004 0.002 0.003 0.002 0.006 0.002 

Na 29 21 19 18 20 23 20 

Ni 0.002 0.002 0.002 0.001 0.002 0.002 0.002 

Se 0.003 0.002 0.001 < 0.001 0.004 0.002 < 0.001 

Ag < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Sr 0.17 0.12 0.14 0.11 0.14 0.17 0.13 

Tl < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 

Ti < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

V < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 

Zn 0.036 0.026 0.013 0.016 0.016 0.006 0.031 

Sn < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

 

 

3.5.2. Earthworms’ avoidance bioassay 

The avoidance behaviour test fulfilled the validity criteria of the ISO guideline (ISO/DIS 17512-

1, 2005), with the homogeneous distribution of earthworms in the control pots. When comparing 

the earthworms’ distribution in the treatments to the expected distribution, a statistically 

significant difference was observed for the treatment 6% S 96 h (Fischer exact test, P<0.05, 

Figure 3.3.). This bioassay served as a preliminary approach, conducted with the aim to study 

possible differences in avoidance behaviour caused by particle size, application rate and/or 

incubation time of biochar-amended soil. No significant differences were observed for any of 

the factors, nor for their interaction, as presented in Table S1 of Supplementary information 

(SI) file (three-way ANOVA, p>0.05; Table S3.1. in SI). Therefore, an incubation period of 96 

h was used in the follow-up experiments. 
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Figure 3.3. Eisenia andrei avoidance response to the unamended and biochar-amended soil 
treatments, after the soil-biochar mixture was allowed to equilibrate for 96 hours or 2 weeks 
prior to the bioassays. Error bars represent standard errors of the mean. Asterisk (*) refers to 
significant avoidance response (Fischer exact test, p<0.05). 

 

3.5.3. Greenhouse experiment – earthworms’ survival, vertical distribution, weight 

changes, and bait-lamina consumption 

Survival, vertical distribution and weight change of E. andrei in the treatments are presented in 

Figure 3.4.I. The values of the treatments are expressed as the percentage of the following 

mean observed values (+/- standard error of the mean) in the unamended soil: 4.8±0.4 

individuals for the survival, 2.3±1.0 individuals for the presence in the amended soil, and 

0.12±0.30 g for the loss of weight. Loss of weight is also presented in the Table S4 of SI. After 

the 28-days greenhouse microcosms experiment, there was 13 % mortality of earthworms in 

the treatments 1 % M and 1 % L. This level of mortality in the 28-days experiment can be 

considered as relatively low and acceptable, bearing in mind that even the validity criteria of 

the E. andrei survival bioassay (ISO/DIS 17512-1, 2005) accepts up to 10 % mortality in 

controls. Further, there was no evidence of earthworm vertical avoidance behaviour towards 

the unamended bottom soil layer. It is notable that exposure to all the treatments caused an 

increase in weight loss of the earthworms, relative to those exposed to the unamended soil 

(Figure 3.4.I.). However, there was no significant effect observed for any of the factors – 

particle size or application rate, nor for their interaction (two-way ANOVA, p>0.05; Table S3.2. 

in SI).  
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Bait-lamina consumption in the microcosms is shown in Figure 3.4.II. The data are expressed 

as percentage of unamended soil, in which the mean number of empty apertures was 

9.83±1.01 (+/- standard error of the mean). The application rate and particle size as well as 

their interaction had a significant impact on bait-lamina consumption (two-way ANOVA, p<0.05, 

Table S3.2.). Particle size is the factor explaining 24 %, application rate 20 %, and the 

interaction of the factors 14 % of the total variability. With regard to the interaction, by looking 

at the least square means in two-way ANOVA output for each group of application rate versus 

particle size, the lowest mean bait-lamina consumption is associated to small particles (S) at 6 

% application rate.  

 

I.       II. 

  

Figure 3.4. (I.) Eisenia andrei survival, weight loss, and distribution of the recovered 
earthworms from the amended soil (topsoil layer 9—10 cm of a microcosm), and (II.) bait-
lamina consumption obtained in the 28-day greenhouse microcosms experiment. All the results 
are presented as percentage to the unamended control. Error bars represent standard errors 
of the mean. Different italic upper case letters (A, B) indicate significant differences for factor 
application rate (Tukey test, p<0.05). Different bold upper case letters (A, B) indicate significant 
differences for factor particle size (Tukey test, p<0.05). Different bold lower case letters (a, b) 
indicate significant differences between particle sizes within 6 % application rate of biochar 
(Tukey test, p<0.05). Different italic lower case letters (a, b) indicate significant differences 
between application rates within small particle sizes of biochar (Tukey test, p<0.05).  
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3.5.4. Aquatic bioassays 

When D. magna juveniles were exposed to the leachates of biochar-amended soil, no toxicity 

was observed for any of the treatments (data not shown). None of the leachates induced any 

negative effects to V. fischeri either (data not shown).  

 

3.5.5. Earthworms feeding experiment and PAH quantification in tissue   

When the earthworms were fed on biochar-amended soil their body weight was generally lower 

than in the unamended control. Loss of weight in the treatments was presented as percentage 

of the unamended soil in which the mean loss was 0.07±0.02 g (+/- standard error of the mean). 

The most pronounced loss of body mass was in 1 % S and 6 % S treatments (Figure 3.5.I.; 

Table S3.4 in SI). Table S3.3. in SI depicts factorial ANOVA output for this endpoint. Particle 

size had a significant impact on the weight of the earthworms (two-way ANOVA, p<0.05), with 

the absence of statistical significance for the application rate and for the factors’ interaction 

effect (two-way ANOVA, p>0.05). The factor particle size had the largest contribution to the 

total variability of 17 %.  

PAHs metabolites’ screening in the earthworms’ tissue resulted in detectable levels of Nap-

type metabolites ranging from 54.65 µg/ml to 93.71 µg/ml, with limit of detection (LOD) of 2.83 

µg/ml and limit of quantification (LOQ) of 9.46 µg/ml. For Phe and its metabolites the calculated 

LOD and LOQ were LOD= 1.60 µg/ml, LOQ=5.33 µg/ml, while the screened levels in the 

animals were in the range of 1.80 µg/ml to 4.70 µg/ml, suggesting lower reliability of the data. 

Pyrene- and Benzo[alpha]pyrene-type were not detected in the samples. Naphthalene-type 

metabolites observed in the tissue of the earthworms are presented as percentage to the 

unamended control soil in Figure 3.5.II. The mean concentration in the control was 161.3±12.6 

ng/mg of body mass (+/- standard error of the mean). Table S3.4. in SI file depicts the 

concentrations of Nap-type metabolites measured in the earthworms’ tissue. The particle size 

had a statistically significant effect (two-way ANOVA, p<0.05) and explained 23 % of the total 

variation in the Nap-type metabolites presence. The effect was not significant for the application 

rate or the interaction of the two factors (two-way ANOVA, p >0.05, Table S3.3.). 
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I.       II.  

           

Figure 3.5. (I.) Eisenia andrei weight change and (II.) Naphthalene-type metabolites detected 
in tissue of Eisenia andrei after the feeding experiment. All the results are presented as 
percentage to the unamended control. Error bars represent standard errors of the mean. 
Different bold upper case letters (A, B) indicate significant differences for factor particle size 
(Tukey test, p<0.05). Different bold lower case letters (a, b) indicate significant differences 
between particle sizes within 1 % application rate of biochar (Tukey test, p<0.05). 

 

3.6. Discussion  

3.6.1. Chemical analysis  

The concentrations of metals and PCBs in the biochar were below the benchmark 

concentrations recommended by two voluntary international biochar quality standards, i.e. the 

European Biochar Certificate (EBC, 2012) and the International Biochar Initiative (IBI, 2015). 

The sum content of PAHs (Σ16PAHs=0.48 mg/kg) was below the threshold concentrations 

defined in both guidelines (<4 mg/kg in EBC, and <12 mg/kg in IBI). Σ16PAHs is comparable 

to the other woodchip biochars produced at 550-620°C (Hilber et al., 2012). Due to low levels 

of the contaminants, this biochar has been classified as “premium” grade biochar (EBC, 2012).  

The levels of selected trace metals detected in the treatments are comparable to the values in 

the unamended soil. Due to the composition of the biochar used in the study, it is not surprising 

that the concentrations of trace elements in the amended soil and the respective leachates 

were not elevated. This was confirmed when the concentrations were compared to available 
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soil quality standards (CCME, 1999). The concentrations of the same elements in leachates 

did not exceed the benchmarks defined for ground water quality (EU WFD, 2000).  

 

3.6.2. Effects on earthworms and bait-lamina consumption: E. andrei screening test and 

greenhouse microcosms  

From the initial screening trial, the avoidance of biochar-amended soil at the concentration of 

6% w/w is comparable to the reported for 50 % E. andrei individuals at biochar rate of 122 t/ha, 

in OECD artificial soil (Malev et al., 2015). In a study with the geophagous earthworm 

Aporrectodea caliginosa, no avoidance was observed at 30 t/ha biochar after 48 h, but 

significant avoidance occurred after 14 days. The authors explained this referring to the 

decrease in the soil water potential (Tammeorg et al., 2014).  

Extrapolating the outcome of laboratory screening bioassays, such as the avoidance 

behaviour, to higher tier approaches is not straightforward, as it was already demonstrated for 

biochar-enriched soils. Tammeorg et al. (2014) conducted a 4.5-months field trial in Finland 

and showed that biochar amendment did not significantly change the density or the biomass of 

the earthworms. In a 28-day study with small scale terrestrial ecosystem models (STEMs) in 

laboratory conditions, there was no observed changes in the body mass, but E. andrei avoided 

the soil amended with biochar-N-fertilizer at 25 t/ha (Amaro et al., 2016). This perceived 

avoidance behaviour was manifested as vertical movement towards the unamended bottom 

soil layer in the columns of the STEMs, using an experimental set-up comparable to that used 

here. In contrast, when using standardized laboratory avoidance test, avoidance behaviour was 

significant at a higher biochar concentration (50 t/ha; Amaro et al., 2016). Our study showed 

no difference in earthworms’ vertical distribution, contrary to the laboratory avoidance 

behaviour observed previously.  

Regarding bait-lamina consumption, a reduction in biochar-amended soil was observed. This 

method has been included so far in investigating the effects of two biochars contrasting in 

physicochemical properties. One was a corn stover biochar produced with slow pyrolysis at the 

temperature of 600°C (Domene et al., 2014), and the other was a gasification pine wood char, 

produced at the temperature range of 600°C to 900°C (Marks et al., 2016). The corn stover 

biochar did not have a negative impact on collembolans’ and enchytraeids’ reproduction in a 

field study during a summer and autumn season. Neither the seasonality, nor different corn 
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biochar rates, had a substantial impact on the feeding activity. However, besides the increased 

microbial abundance, a slightly stimulatory effect of the corn biochar on fauna consumption 

was observed (Domene et al., 2014). On the contrary, a negative effect of gasification char was 

reported regarding the reproduction of collembolans and enchytraeids (Marks et al., 2014), as 

well as considering the bait-lamina consumption assessed in a field study, particularly after one 

year and two years since the initial application (Marks et al., 2016). This charred material was 

characterized with very high levels of total sum of 16 USEPA PAHs (321 mg/kg), and relatively 

low levels of metals (apart from Cd) (Marks et al., 2016). These studies, together with the 

current, demonstrate the adequacy of using bait-lamina test method over various experimental 

designs to investigate biochar-soil-biota interactions.  

In the present study, the results obtained from the preliminary laboratory bioassay and from the 

greenhouse experiment were in concordance for certain endpoints, namely in terms of 

significant effects for 6 % S treatment on the behavioural (avoidance/preference), and 

functional (bait-lamina consumption) endpoints observed.  However, although in the 

microcosms the lower observed mean body mass in the treatments 1 % S and 6 % S 

respectively, might suggest a possible role of smaller particles in sub-lethal toxicity, this needs 

to be considered with caution as the result could not be confirmed statistically or supported with 

the estimated effects sizes for the factors. On the other hand, bait-laminas were immersed in 

the amended-soil layer, therefore reflecting the feeding activity in the biochar-amended topsoil 

only.  

 

3.6.3. Leachates and aquatic bioassays  

 The results of the aquatic bioassays corroborated with the presented chemical composition of 

the leachates. Nonetheless, the fact that leachates from the biochar-amended soil did not 

cause any adverse effects to D. magna and V. fischeri should also be interpreted carefully. This 

outcome represents a first screening approach without addressing a chronic toxicity of the 

leachates, e.g. effects on D. magna reproduction. Previously reported toxic effects to daphnids 

in miscanthus biochar aqueous extract were correlated with high total concentration of PAHs 

in biochar (Oleszczuk et al., 2013). The highest luminescence inhibition of V. fischeri was 

observed with the miscanthus biochar. Also, the same study found that those biochars with low 

concentrations of PAHs posed toxicity too, raising questions as to the possible role of biochar 
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PAHs in explaining its ecotoxicological effects (Oleszczuk et al., 2013). A study by Bastos et 

al. (2014) addressed toxicity of biochar-amended natural LUFA soil elutriates with a battery of 

standardized aquatic bioassays, resulting in V. fischeri being the most sensitive species tested 

(EC20= 20.5 % for soil-biochar, and EC20= 8.73 % for elutriate of biochar alone) and in 

immobilisation of daphnids at the higher elutriate concentrations (EC20=79.3 % for soil-biochar, 

and no toxicity for elutriate of biochar alone). While the soil texture was similar to the one 

reported in this study, the biochar contained potential contaminants at higher concentrations, 

e.g. total 16 USEPA PAHs of 0.712 mg/kg (Bastos et al., 2014). The dilution caused with the 

quantity of water applied in the leaching procedure in our experiment could have led to an 

underestimation of toxicity to some extent. Comparison of toxic responses in aquatic bioassays 

over various studies is limited, due to the small number of studies in the literature and to 

differences in methodologies to produce the aqueous extracts (Smith et al., 2013; Oleszczuk 

et al., 2013; Bastos et al., 2014). In the current study, the leachates were produced from 

biochar-amended natural soil. Moreover, the biochar was applied at typical rates for use in 

agriculture and representative of a typical topsoil incorporation strategy. These factors together 

make this ecotoxicological evaluation more environmentally relevant. Thus, the approach taken 

in the study highlights the importance of direct toxicity assessment (Gruiz et al., 2016), 

analogous to those conducted for contaminated soils (Loureiro et al., 2005), as well as the 

necessity for development of the standardized methodologies for biochar-soil-aqueous 

extraction. 

 

3.6.4. Earthworms feeding and PAH-type metabolites   

Fixed fluorescence for determination of PAH-metabolites in soil organisms is not a rarely 

employed method. Phe-type metabolites were screened with fixed fluorescence in 

bioaccumulation study with E. albidus, demonstrating the adequacy of the method for soil 

organisms (Amorim et al., 2011). The uptake and elimination (14 days plus 14 days) of Phe 

were tracked in the soil initially spiked with 8 mg/kg Phe (dry soil) (Amorim et al., 2011). The 

lowest concentrations (in the early uptake and late elimination phases) were in the range of 10-

15 mg/kg fresh weight of E. albidus (Amorim et al., 2011). This is comparable to the highest 

concentration of phenanthrene in the present study, i.e. 9.91 mg/kg for the 1 % S treatment 

(data not shown), expressed per body weight of the animals. This, added to the low reliability 

of the measured levels in the earthworms’ tissue according to LOD and LOQ criteria applied, 
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suggests little contribution of Phe-type metabolites to the overall sub-lethal effects in the 

present study.  

Malev et al. (2016) demonstrated that bioavailability of PAHs from biochar-amended soil is not 

necessarily dependent on initial concentrations of PAHs, but rather on the soil texture and 

capacity of biochar to retain PAHs trough surface interactions and adsorption into micropores. 

They showed that accumulation of biochar-originated PAHs in the body of E. andrei is possible, 

while testing the effects of two different biochars applied to uncontaminated soils of different 

textures. Lower concentrations of PAHs were accumulated in clay-loam soil, than in the sandy 

soil, particularly the higher molecular weight PAHs. Biochar that contained 2.3 mg/kg total 

PAHs was produced at lower temperature than the one containing 6.8 mg/kg total PAHs. The 

lower biochar production temperature resulted in a less charred structure, which contributed to 

the higher bioavailability of PAHs to the earthworms, according to the authors (Malev et al., 

2016). The soil used in our experiments is of a similar texture as the sandy soil from the study 

of Malev et al. (2016), but the biochar contained only 0.48 mg/kg total PAHs. Nevertheless, in 

our study the loss of weight and increased levels of Nap-type metabolites for the earthworms 

exposed to the treatments with <0.5 mm confirm our hypothesis that there is a link between 

potential toxicity and particle-size of biochar. Gomez-Eyles et al. (2011) studied a remediation 

potential of biochar by applying 10 % (dry weight) of biochar (total mean levels PAHs of 1.21 

mg/kg) to a contaminated soil (with total mean PAHs of 773 mg/kg). They observed significant 

losses of E. fetida weight in the biochar-amended soil, relative to the contaminated soil without 

the amendment, on the 28th and 56th day since the exposure. The decrease in weight can be 

partly justified by the relatively small amount of soil provided during that experiment (200 g per 

replicate for 10 individuals). As a positive effect, high molecular weight PAHs were reduced in 

the earthworms’ tissues in the presence of biochar. On the contrary, significantly higher 

concentrations of 2-ring PAHs were recorded, both after 28 and after 56 days (Gomez-Eyles 

et al., 2011), which is in a line with our study. This together is supported by the fact that Nap is 

among the dominant PAH compounds in biochars (Bucheli et al., 2015; Hilber et al., 2017b). 

Besides, as a low molecular weight PAH it is characterized with higher bioaccessibility, or in 

other words a higher ’readily desorbed fraction’ (Hilber et al., 2017b). Biochar particles smaller 

than 1 mm can improve hydrological properties of coarse-textured soil in comparison to the 1-

2 mm fraction (Ibrahim et al., 2016). In the present study, the small particles <0.5 mm may have 

affected the soil hydrology, thereby potentially increasing the intake of readily available Nap 
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fraction by the earthworms, the process described for contaminated soil by Qi and Chen (2010). 

Further research is, however, necessary to investigate this in biochar amended soils.  

The fixed-fluorescence-screened levels of PAH-type metabolites were expected considering 

the low initial levels of these compounds in the biochar, with Nap being the only one within the 

detectable levels by the GC/MS. Yet, biota responses to the biochar-amended soil should be 

perceived as responses to the mixture of potentially toxic compounds (even those at low 

concentrations and not detectable). The consistency in the response, such as the small particle 

size impact on the earthworm weight losses and on the increase in Nap-type metabolites, are 

important findings in the present study. They demonstrate that under certain factors, or 

combination of factors, there is a likelihood for the transfer of toxic elements from biochar 

through the food chain or for the occurrence of secondary effects (e.g. the earthworms might 

become a lower quality food for their predators). Generally, the study results sustain already 

raised concerns by other authors regarding the need for biochar ecotoxicological risk 

assessment using representative methodologies, coupled to their chemical and physical 

characterization (Gomez-Eyles et al., 2011; Domene et al., 2014; Bastos et al., 2014; Hilber et 

al 2017; Bielska et al., 2018).   

While involving aforementioned limitations, the results of fixed fluorescence indicate the 

necessity for more research on the applicability of biochar-originated PAHs screening in soil 

organisms with this method. This technique represents an important asset for this kind of 

studies as it is cost-effective, with rapid manipulation and processing of large number of 

samples. In addition to this method, the demonstrated sensitivity of the bait-lamina test in 

responses to biochar-enriched soil makes it equally suitable tool for field and laboratory 

assessments.  

 

3.7. Conclusions 

The current study employed the integrative approach in studying the effects of biochar to biota, 

taking into consideration the spatial scale (from standardized laboratory conditions to 

greenhouse), biological scale (from assessing individual endpoints to functional) and 

environmental scale (by testing both soil and aquatic phase). The applied methods are 

expected to contribute further in the evaluation and understanding of biota responses to 

biochar-amended soil. 
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Together, the outcomes of the conducted experiments suggest that smaller particles (<0.5 mm) 

of slow pyrolysis woodchip biochar may pose sub-lethal toxicity to soil biota, even at lower 

application rates. There is a close link between behavioural (avoidance), individual (weight 

changes, Nap-type metabolites in earthworms’ tissue) and functional (bait-lamina consumption) 

endpoints obtained. The results suggest that earthworms may respond to small particles by 

two mechanisms. The first one is an indirect mechanism – using the strategy of avoiding and/or 

not eating. The evidence for this is the earthworms’ avoidance observed in 48-hours bioassay, 

the lower bait-lamina consumption in 28-days microcosms experiment, and the reduced body 

mass observed in the laboratory feeding experiment. The second one is a direct mechanism – 

through ingesting biochar particles and/or skin sorption of biochar’s inherent contaminants. This 

is supported primarily by the detected Nap-type metabolites, which were available at lower and 

higher biochar rates. Certain toxicity of single compounds and/or mixture of compounds 

possibly contributed to the loss of weight in the feeding experiment, involving different metabolic 

reactions and/or changes in the energy homeostasis in the organisms. This, however, should 

be further investigated in the context of impacts on different biomarkers of exposure and 

biomarkers of effects.  
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3.9. Supplementary Information  

 

Table S3.1. Three-way ANOVA output table for Eisenia andrei avoidance bioassay.  

 

 SS DF MS F P R2 

Avoidance        

incubation time 41.667 1 41.667 0.030 0.862 0.0005 

application rate 15.000 1 15.000 0.011 0.917 0.0002 

particle size 7 023.3 2 3 511.6 2.568 0.087 0.0825 

incubation time * application rate 81.667 1 81.667 0.060 0.808 0.0010 

incubation time * particle size 2 503.3 2 1 251.6 0.915 0.407 0.0294 

application rate * particle size 1 290.0 2 645.00 0.472 0.627 0.0152 

incubation time * application rate * particle size 103.33 2 51.667 0.038 0.963 0.0012 

 

 
Table S3.2. Two-way ANOVA output table for Eisenia andrei survival, vertical distribution (as 
% of individuals present in amended soil of the top layer in a microcosm), weight change (as 
loss of weight) and bait-lamina consumption (as % of empty apertures) in a greenhouse 
experiment. Asterisks refer to the levels of statistical significance *P<0.05, **P<0.01 and 
***P<0.001. 
 

 SS DF MS F P R2 

Survival        

application rate 428.062 1 428.062 2.903 0.099 0.0756 

particle size 594.530 2 297.265 2.016 0.151 0.1051 

application rate * particle size 214.031 2 107.015 0.726 0.492 0.0378 

Vertical distribution       

application rate 26.754 1 26.754 0.011 0.918 0.0003 

particle size 8156.96  2 4078.478  1.656 0.208 0.0908 

application rate * particle size 7776.46 2 3888.228 1.579 0.223 0.0865 

Loss of weight         

application rate 115.022 1 115.022 0.012 0.915 0.0004 

particle size 16153.1 2 8067.54 0.809 0.455 0.0505 

application rate * particle size 3821.17 2 1910.58 0.191 0.827 0.0119 

Bait-lamina consumption       

application rate 6034.74 1 6034.74 10.45 0.003** 0.1440 

particle size 10094.9 2 10094.9 8.737 0.001** 0.2410 

application rate * particle size 8433.56 2 8433.56 7.299 0.003** 0.2013 
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Table S3.3. Two-way ANOVA output table for Eisenia andrei weight change and naphthalene-
type metabolites screened in the Eisenia andrei tissue obtained in the laboratory feeding 
experiment. Asterisks refer to the levels of statistical significance *P<0.05, **P<0.01 and 
***P<0.001.  

 
 SS DF MS F P R2 

Loss of weight        

application rate 25614.5 1 25614.5 3.876 0.058 0.0925 

particle size 47465.9 2 23732.9 3.591 0.040* 0.1714 

application rate * particle size 4697.55 2 2348.77 0.355 0.704 0.0170 

Naphthalene-type metabolites         

application rate 450.131 1 450.131 0.853 0.363 0.0198 

particle size 5275.28 2 2637.64 4.999 0.013* 0.2320 

application rate * particle size 1179.70 2 589.851 1.118 0.340 0.0519 

 
 
 
Table S3.4. Eisenia andrei weight change (presented as mean loss of weight +/- standard error 
of the mean, in g) observed in greenhouse microcosms experiment and in laboratory feeding 
experiment, and Naphthalene-type metabolites (presented as mean concentration in ng/mg of 
body mass +/- standard error of the mean) screened in the tissue.  
 

 0 %  1 % S 6 % S 1 % M 6 % M 1 % L 6 % L 

Greenhouse microcosms  0.12±0.30 0.31±0.15 0.28±0.27 0.25±0.80 0.27±0.50 0.22±0.30 0.25±0.60 

Feeding experiment 0.07±0.02 0.15±0.16 0.17±0.30 0.10±0.27 0.14±0.12 0.06±0.27 0.12±0.27 

Naphthalene-type metabolites   161.3±12.6 222.1±16.2 223.9±15.8 160.8±17.6 198.1±28.0 186.6±18.0 181.7±10.4 
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Interspecies interaction in soil enriched with biochar: effects on microbial 

enzymatic activity and biomarkers in earthworms 

 

4.1. Abstract 

Albeit the increasing number of studies on the effects of biochar on soil enzymatic activity, up 

to date, none of them has linked microbial enzymatic activities with the activity of representative 

soil invertebrates. Here we are addressing the knowledge gap, by exploring enzymatic activity 

in soil enriched with 1.5 % (w/w) woodchip biochar, as influenced by presence of representative 

invertebrate species, the terrestrial isopod Porcellionides pruinosus and the earthworm Eisenia 

andrei. The earthworm reproduction was also assessed, alongside with biomarkers of effect in 

order to get an insight on the mechanism behind the effects of this dynamic matrix to biota. 

Overall microbial response was enzyme-specific, characterized as sampling time-, and 

invertebrate-dependent. Reproduction of E. andrei was not affected by the exposure to the 

woodchip biochar. Biomarkers responded as early warning tools, by showing an increase in 

lipid peroxidation and cellular energy allocation decrease in exposed earthworms. The 

multibiomarker approach applied in the current study provides a useful base for case-to case 

assessment of biochar impact on biota. 

 

Key words: soil, biochar, invertebrates, soil enzymes, interaction, biomarkers of effect  
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4.2.  Introduction 

Besides prospective benefits that biochar can provide in numerous environmental management 

applications, many unknowns remain to be addressed, like those regarding the use of adequate 

feedstock (i.e. biomass quality), matching biochar with type of soil, effects of biochar-contained 

contaminants, long term effects, etc. (Mukherjee et al., 2014). Xenobiotics such as metals, 

PAHs or dioxins are found in various biochars, as determined by feedstock and production 

conditions (Sohi et al., 2009; Verheijen et al., 2010). Biochar physicochemical characterization 

methods were developing quickly and up to date resulted in two international voluntary biochar 

quality standards, the European Biochar Certificate (EBC) and the International Biochar 

Initiative (IBI) (EBC, 2012; IBI, 2015). Nonetheless, in the context of biochar utilization as soil 

amendment, its potential ecotoxicity has been highlighted in recently published works (e.g. 

Bastos et al., 2014; Domene et al., 2014; Marks et al., 2014; Malev et al., 2015; Conti et al., 

2016; Bielska et al., 2018). There have been reports of increases in microbial abundance and 

enzymatic activities (Jin et al., 2003), as well as associated shifts in community composition, 

as response to biochar application (Grossman et al., 2010). On the other side, decreases in 

mycorrhizal fungi biomass have also been found (Liang et al., 2010). It has been suggested 

that pulse increases in nutrient availability and/or sorption of growth-inhibiting compounds by 

char, may play important roles in explaining these observations (Lehmann et al., 2011). 

Mechanisms of biochar effects to biota still need thorough understanding in terms of 

bioavailability of biochar-bound contaminants, sub-lethal effects, species interactions and 

functional redundancy, soil organic matter priming, among others (Tammeorg et al., 2017) 

Although there is an increasing number of studies on effects of biochar in soil enzymatic activity, 

up to date, the information is lacking on the link between microbial enzymatic activities and 

activity of representative invertebrates (Paz-Ferreiro et al., 2014). Soil invertebrates are 

promoters and indicators of soil ecosystem services due to their contribution in nutrients 

cycling, primary production (e.g. through interactions with plants), soil formation and structure, 

etc. (reviewed by Lavelle et al., 2006). Through litter fragmentation, they stimulate microbial 

activity, resulting in increased mineralisation and humification of organic matter (Lavelle et al., 

2006), and/or in stabilization of soil organic matter (e.g. within earthworms’ casts, Bertrand et 

al., 2015). It has been demonstrated that the earthworm Lumbricus rubellus and the isopod 

Porcellio scaber can behave synergistically in litter decomposition in the presence of high 

quality litter (Zimmer et al., 2005). Soil enzymes are indicators of organic matter decomposition 
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in soil and nutrient cycling, reflecting both microbial and physicochemical characteristics of soil 

(Sinsabaugh et al., 2008).  

Therefore, the aim of the study was to assess how woodchip biochar application to soil changes 

microbial activity in the presence or absence of key decomposer invertebrate species, looking 

at a key functional level. The current work used the terrestrial isopod Porcellionides pruinosus, 

a representative litter macrodecomposer (Loureiro et al., 2005; 2006), and the earthworm 

Eisenia andrei, known by its role in redistributing organic material and contributing to 

maintenance of soil structure and stability of aggregates (Lavelle et al., 1997). In addition, after 

assessing the potential effects on earthworm reproduction (inferring on results at the population 

level), other different organisational levels were explored to infer on mechanisms of toxicity of 

the applied biochar– at the biochemical level (oxidative stress), at the level of organism (energy 

related parameters in earthworms). Relating biomarker responses to toxicity is a widely used 

approach in terrestrial ecotoxicology (e.g. Santos et al., 2010; Novais and Amorim, 2013; 

Ferreira et al., 2016; Morgado et al., 2013). Due to their sensitivity biomarkers can serve as 

early warning signs of stress, and as an approach that can offer a mechanistic understanding 

behind an induced toxicity (van Gestel, 2012). Woodchip slow pyrolysis biochar was chosen 

for the study, characterised according to the EBC product quality guideline with the levels of 

potentially toxic elements bellow the benchmarks (EBC, 2012). The activity of soil enzymes in 

unamended soil and in 1.5 % (w/w) biochar amended soil was measured in five sampling 

events during a 56-days laboratory microcosm experiment.  

The null hypotheses to be tested in the current work are: (i) soil microbial enzymatic responses 

are maintained in the presence of woodchip biochar and representative soil invertebrates E. 

andrei and P. pruinosus and (ii) exposure to woodchip biochar amended soil alone and/or the 

presence of P. pruinosus maintain the reproduction output and metabolic responses of E. 

andrei stable.   
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4.3. Materials and methods  

4.3.1. Soil and biochar 

 

The soil used in this experiment is a natural agricultural topsoil (10 cm), sampled in August 

2015 from an agricultural area located in the Mondego valley (Central Portugal), with no history 

of contamination or inputs of pesticides and fertilizers in the last 6 years. It is a sandy loam of 

the following characteristics: sand 69.2 %, silt 18.8 %, clay 12.0 %, pH (H2O) of 7.6, soil organic 

matter 2.9 % and maximum water holding capacity of 49%. The physicochemical 

characteristics of the soil and biochar are presented in Table 4.1. 

 

Table 4.1. Physicochemical characteristics of the soil and woodchip biochar used in the 
study. 
 

                                          Soil Biochar                

texture class sandy 

loam 

n.a.  

sand (%) 69.2 n.a.  

silt (%) 18.8 n.a.  

clay (%) 12 n.a.  

WHCmax (%) 49 73.2  

Bulk density (g/cm3) n.a. 0.55  

EC (µS/cm) n.a. 3 000  

Ash (550°C) (%) n.a. 18.6  

Organic C (%) n.a. 75  

Organic matter (%) 2.9. n.a.  

pH (H2O) 7.6 10.1  

pH (KCl) 7.4 n.a.  

Salts (g/kg) n.a. 8.4  

CaCO3 (g/kg) 89 n.a.  

H (%) n.a. 47  

H:C (molar ratio) n.a.  0.07  

O:C (molar ratio) n.a. 0.04  

N total (g/kg) 

N (%) 

1.98 

n.a. 

n.a. 

1.8 

 

P2O5 (mg/kg) 805 n.a.  

K2O (mg/kg) 250 n.a.   

Al (mg/kg)1 17 000 n.a.  

Sb (mg/kg) <5 n.a.  

As (mg/kg) 18 n.a.  

Ba (mg/kg) 110 n.a.  

Be (mg/kg) 1.8 n.a.  

Pb (mg/kg) 210 <2  

B (mg/kg) 13 39  
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Cd (mg/kg) <0.5 <0.2  

Ca (mg/kg) 25 000 42 200  

Cr (mg/kg) 17 27  

Hg (mg/kg) n.a. n.a.  

Fe (mg/kg) 23 000 2 420  

K (mg/kg) 3 200 10 400  

Cu (mg/kg) 82 16  

Li (mg/kg) 70 n.a.  

Mg (mg/kg) 5 000 2 980  

Mn (mg/kg) 1 100 n.a.  

Mo (mg/kg) <5 n.a.  

Na (mg/kg) 120 744  

Ni (mg/kg) 17 17  

P (mg/kg) 1 500 1 300  

S (mg/kg) n.a. 372  

Se (mg/kg) <10 n.a.  

Sr (mg/kg) 90 n.a.  

Tl (mg/kg) <2 n.a.  

Ti (mg/kg) 600 n.a.  

V (mg/kg) 23 n.a.  

Zn (mg/kg) 200 70  

Sn (mg/kg) 15 n.a.  

ƩPAHs (mg/kg)2 n.a. 0.48  

Σ7 ind. PCBs (mg/kg)3 n.a. <0.002  

1Metals were determined by microwave digestion (DIN/ISO 17294-2).  
2PAHs were determined by SPME (solid-phase microextraction) coupled to gas chromatography/mass spectrometry 

GC/MS (DIN EN 15527), where individual PAH values were below or equal to the limit of detection (0.1 mg/kg).  
3The 7 indicator PCBs were determined by HRGC/HRMS (high resolution gass chromatography and mass 

sectrometry) 

 

Biochar was acquired from Swiss Biochar gmbh (Switzerland). The biochar was produced from 

slow pyrolysis (620°C) of wood chip production residues.  It is characterized with the following 

particle size distribution (w/w): 4% (<0.1 mm), 25% (0.1-0.5 mm), 34% (0.5-2 mm), 37% (>2 

mm), with an average of 29.5 µm and pH (H2O) of 10.1.  

 

4.3.2. Soil invertebrates 

The earthworm Eisenia andrei (Bouché 1972) and the isopod Porcelionides pruinosus (Brandt 

1883) were obtained from established laboratory cultures maintained at 20±1ºC (earthworms) 

and 22±1ºC (isopods), with a photoperiod of 16:8 (light:dark). Earthworms were kept in opaque 

24 L plastic containers, with a mixture of soil potting mix and peat, at pH between 6 and 7, and 

at 70% of its water holding capacity (WHC). Earthworms were fed weekly with horse manure 

previously frozen and gradually thawed. Adult earthworm individuals were three months old, 
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with developed clitella and with a body weight ranging 300-600 mg. Isopod cultures were 

maintained in soil moistened to approximately 40-50% of its WHC, where animals were fed 

with alder leaves (Alnus glutinosa) ad libitum (Morgado et al., 2013). Only adult isopods with 

antenna were selected (15-25 mg fresh weight) to ensure suitable perception of chemical 

stimuli via antennae (Takeda, 1980) and pregnant females were excluded from the experiment.  

 

4.3.3. Experimental treatments and set-up 

The experimental design included several soil treatments kept for 56 days: S (soil), Sm (soil-

manure), SB (soil-biochar), SBm (soil-biochar-manure), Smi (soil-manure-isopods), Sme (soil-

manure-earthworms), Smie (soil-manure-isopods-earthworms), SBmi (soil-manure-isopods), 

SBme (soil-manure-earthworms), SBmie (soil-manure-isopods-earthworms). All treatments 

consisted of four replicates (four microcosms) and the biochar application in soil corresponded 

to 1.5 % (w/w) of biochar. Soil used in the experiments was previously sieved (<2 mm). Every 

microcosm contained 400 g of soil/biochar-amended soil, adjusted to 60 % of maximum water 

holding capacity (WHC). During the experiment the moisture was checked daily and adjusted 

gravimetrically by spraying with distilled water, when needed. 

The experimental treatments consisted of soil and/or biochar-amended soil and for those with 

organisms, manure was provided as food. The single species treatments included four isopods, 

or six earthworms each. The combined species treatments included together four isopods and 

six earthworms. Dried (at 70°C in the oven) and sieved (<2 mm) horse manure used also for 

the culture maintenance in the laboratory was supplied weekly as a source of food. Food (2 g) 

was provided weekly in the first four weeks, and always after previous sampling for soil 

enzymatic activity assays. It was also added to those treatments without organisms. This 

amount of food was previously defined in a small reproduction trial experiment (data not 

shown). This trial ensured no negative effects on the earthworm reproduction, but also to see 

if the food supplied was sufficient when isopods were present. For the soil enzymatic activities 

assays, soil only, soil with manure, soil with biochar, and soil with manure and biochar were 

added as reference microcosms to serve for determination of enzymatic activities without 

impact of the isopods and earthworms. This ensured the quality and interpretation of results, 

but also to serve as comparison of levels reported for biochar-amended soil in other studies.  
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The microcosms were incubated at 21±1°C and with photoperiod of 16:8 h of light:dark. The 

experiment duration (eight weeks) ensured the production of E. andrei cocoons in the first four 

weeks plus four more weeks for the cocoons to hatch and to obtain juveniles. In the middle of 

the experiment, after four weeks, the number of cocoons was reported, as well as the adults’ 

body weight in order to compare the initial adults’ weight. Both isopods and earthworms were 

removed from the pots at the end of the fourth week. Earthworms were frozen in a liquid 

nitrogen and stored at -80°C for the biochemical and PAHs analysis. Isopod mortality was 

randomly detected and in order to maintain the community for the enzymatic assessment, the 

dead individuals were replaced with the ones from the same culture, at any point of the 

experiment. The mortality recorded was lower than 10 %, yet remained as the study limitation 

due to inability to assess the weight changes and biochemical parameters in isopods.  

Sampling for enzymatic activity assays was conducted after the first (sampling time 1), second, 

third, fourth, and eighth week of the experiment (sampling time 2 to sampling time 5). Sampling 

was done by carefully taking two small corers of of the topsoil in each microcosm. The 

dimensions of corer were 4-5 cm (height), and 1.5 cm (diameter). At the end of the experiment 

(sampling time 5 for the enzymatic assays) E. andrei juveniles were counted by manual sorting.  

 

4.3.4. Soil enzymatic activity methods 

Activities of dehydrogenase (EC 1.1.1.49) and ß-glucosidase (EC 3.2.1.21) were performed 

according to the protocols of Tabatabai (1994), and as described in Dick et al. (1996). For 

dehydrogenase soil solution was suspended in a triphenyl-tetrazoliumchloride solution (TTC). 

The samples were incubated at 37°C for 24 h. The product triphenylphormasan (TPF) was 

extracted with pure methanol (analytical grade) and the absorbance was measured at 546 nm 

using microplate reader. Activity of ß-glucosidase was performed with incubation of soil in 

buffered p-nitrophenyl- ß-D-glucoside solution at pH=6, for 1 h at 37°C. Production of p-

nitrophenol resulted in a change of color which was measured at 405 nm with a microplate 

reader. Urease (EC 3.5.1.5) was determined according to the protocol of Kendeler and Gerber 

(1988), by suspending the samples of soil and biochar amended soil in borate buffer at pH=10, 

and in solution of urea, following 2h of incubation at 37°C. The absorbance was measured at 

690 nm using microplate reader MultiSkan Spectrum (Thermo Fisher Scientific). NH4+ release 

was expressed as mg N/kg soil/2 h.  
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4.3.5. Biomarkers in Eisenia andrei  

Specimen were individually homogenized on ice by sonication (for 30s, 250 Sonifier, Branson 

Ultrasonics) in 3000 µL of K-phosphate buffer (0.1 M, pH 7.4).  Aliquots were taken for the 

analysis of lipid (300 µL), sugar, and protein content (300mL) and electron transport system 

(ETS) activity (300 µL),100 µL for PAHs, 200 µL was used for the determination of lipid 

peroxidation. Remaining homogenate of around 1900 µL was centrifuged for 20min at 10 000 

g and at 4°C. Postmitochondrial supernatant (PMS) was afterwards split into 5 microtubes. The 

PMS samples were kept at –80°C for further analysis: 100 µL for catalase (CAT), 100 µL for 

proteins, 300 µL for glutathione-S-transferases (GST), and 300 µL for acetylcholine-esterase 

(AChE).  

All protocols for homogenisation, biomarkers analysis, energy reserves, cellular energy 

allocation (CEA) were followed according to Ferreira et al. (2010), with adaptations for the 

earthworm tissue where stated. AChE activity was conducted according Ellman’s method 

(Ellman et al., 1961), and adapted to microplate reader according Guilhermino et al. (1966). 

Absorbance increase at 412 nm was read for the substrate acetylthiocholine. GST was 

performed following Habig et al. (1974), and CAT according to the protocol of Clairborne (1985). 

LPO was performed according to Bird and Draper (1984) and Ohkawa et al. (1979) and adapted 

to microplate (Ferreira et al., 2010). Protein concentration was obtained from a 50-mL PMS 

aliquot as described in Bradford’s method (Bradford, 1976). This methodology was adapted 

from BioRad’s Bradford microassay for 96-well plate, using bovine g-globulin as a standard. 

PAH-type metabolites were quantified with fixed fluorescence analysis. This method was 

developed for fish bile samples, showing to be a good proxi for PAHs as a biomarker of 

exposure (Aas et al. 1998; 2000a, 2000b). Prior to analysis every specimen was defrost and 

individually homogenized on ice by sonication (for 2*30 s, 250 Sonifier, Branson Ultrasonics) 

in 3000 µL of K-phosphate buffer (0.1 M, pH 7.4).   

The PAH-type metabolites are expressed in ng/mg of earthworm body weight, relative to the 

standard calibration curves with known concentrations of naphthalene (Nap), phenantrene 

(Phe), pyrene (Pyr) and benzo[a]pyrene (BaP). Homogenized samples were mixed with 50 % 

methanol (50 µL sample and 4950 µL), vortexed, and sonicated for 1 min at 25°C. 300 µL of 

each sample were transferred to multi-well plates for the readings. Fluorescence was 

determined in a spectrofluorometer (Hitachi F-7000) in excitation-emission wavelength pairs: 
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290 nm-335 nm for Nap, 341 nm-383 nm for Pyr, 256 nm-380 nm for Phe, and 380 nm-430 nm 

for Bap (Gravato and Santos, 2003).  For quality assurance, limits of detection (LOD) and limits 

of quantification (LOQ) were calculated for each of these metabolites from a calibration curve 

at low concentrations, as described in Shrivastava and Gupta (2011). The results were 

interpreted based on the obtained values defining LOD as a minimum detectable concentration 

of an analyte in a sample under the given test conditions. LOQ considers a minimum 

determined concentration of an analyte in a sample under the given test conditions, that can 

be claimed with an acceptable level of precision and accuracy (Shrivastava and Gupta, 2011). 

Available energy (carbohydrates, lipids, proteins) and energy consumption (activity of ETS) 

were determined according to method of De Coen and Janssen (1997), with adaptation for 

microplates (Ferreira et al., 2010; Rodrigues et al., 2015). Further on, the methodology used is 

described in Ferreira al. (2016). The energy consumed (Ec) value was transformed into caloric 

values using the specific oxyenthalpic equivalent to average of lipid, protein, and carbohydrate 

mixture of 480 kJ/mol O2. Calculated values were expressed by the organisms’ fresh weight.  

The available energy (Ea) was calculated as the sum of the total lipid, carbohydrate, and protein 

fraction, calculating first the difference as mg per organism and converting into caloric values 

using enthalpy of combustion: 39.5 kJ/g lipid, 17.5 kJ/g glycogen and 24 kJ/g protein. At last, 

the CEA was calculated as the ratio between Ea and Ec (CEA=Ea/Ec).  

Spectrophotometric readings were all conducted in the Microplate reader MultiSkan Spectrum 

(Thermo Fisher Scientific). 

 

4.4. Statistical analysis  

A Principal Component Analysis (PCA) was carried out to explore the whole matrix of data 

consisting of: activities of three soil enzymes recorded over five sampling occasions in 10 

experimental treatments. This exploratory approach was used to investigate the relationship 

between the experimental treatments and soil enzymatic activities.  Standardization of the 

enzymatic activity was applied in order to obtain the same weight of each enzyme, i.e. to be 

used in one ordination plot (ter Braak and Smilauer, 2002). CANOCO 4.5 software for Windows 

was used for PCA. 
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Permutational multivariate analysis of variance (PERMANOVA) was also carried out based on 

the whole matrix of data, to investigate potential differences in the global enzymatic activity 

based on the experimental design, namely on the factors ‘treatment’ and ‘sampling time’, and 

the factors’ interaction. Like in the case of PCA, variables were previously standardized.  

PERMANOVA was performed with R 3.4.4 software, Vegan package. 

At last, the treatments without organisms and the treatments with organisms were separately 

analysed by factorial analysis of variance (ANOVA). Data were examined for normality and 

homoscedasticity with Shapiro-Wilk and Leven’s tests, respectively. In the case of the 

treatments without organisms, ‘treatment’ was used as a first two-levels factor (with 

biochar/without biochar) and manure as a second two-levels factor (with manure/without 

manure). For the treatments with organisms, ‘biochar’ was used as a first two-levels factor (no 

biochar/biochar) and ‘invertebrates’ as a second factor consisting of three-levels (earthworms 

alone/isopods alone/combined earthworms and isopods). Earthworms’ reproduction, changes 

in body weight and all biomarkers of effect and exposure (PAHs-type metabolites) measured 

were also assessed by factorial analysis of variance (ANOVA), with ‘biochar as a first two-levels 

factor (no biochar/biochar) and ‘invertebrates as a second two-levels factor (earthworms 

alone/earthworms with isopods). When statistical significance was detected with ANOVA, 

Tukey post hoc method was applied to test for specific differences. ANOVA was conducted 

with statistical software Sigma Plot 12.5.  

 

4.5. Results  

4.5.1. Soil enzymatic activity  

Figure S4.1. in the SuppIementary Information (SI) file is integrating the soil enzymatic 

activities observed for soil enzymes over five sampling times. pH values of soil and biochar 

amended soil at the start of the experiment were 7.7 (S), 7.9 (Sm), 8.1 (SB) and 8.0 (SBm), as 

measured in H2O, in a proportion 1:5 v/v of soil/amended soil and deionised water. Table S.4.1 

is presenting pH values of the treatments at the end of experiment. The pH of all treatments 

ranged between 7.9 and 8.3.  

The PCA performed separated the effects of different treatments and the sampling times on 

soil enzymatic activity. Figure 4.1. is presenting the first two ordination axes that explained 

89.7 % of the total variability. Principle component 1 (PC1) explained major variability (53.8 %) 
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in the enzymatic activity, which is closely related to sampling time. ß-glucosidase and urease 

were strongly positively related with PC1, which is separating sampling time 3, as an overall 

peak in the activities of these two enzymes, from the other sampling times with lower activities. 

Principle component 2 (PC2) explained 35.9 % variability, with dehydrogenase being strongly 

positively related to it. PC2 provides a sampling time dependency gradient of dehydrogenase 

activity, separating sampling time 1 with an increased activity, from sampling time 2 which is 

characterized by the lowest overall activity. No clear separation was achieved in the case of 

other sampling times.  

 

Figure 4.1. Enzymatic activity response diagram from the principal component analysis (PCA) 
of the experimental treatments in five sampling times (time 1 to time 5) used as samples data. 
Endpoints datasets of soil/amended soil treatments used as response variable (DHA-
dehydrogenase, BG-ß-glucosidase and U-urease). Data sets were obtained from the 
experimental treatmens (S soil; Sm soil-manure; SB soil-biochar; SBm soil-biochar-manure; 
Smi soil-manure-isopods; Sme soil-manure-earthworms; Smie soil-manure-isopods-
earthworms, SBmi soil-manure-isopods; SBme soil-manure-earthworms; SBmie soil-manure-
isopods-earthworms). 
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Figure 4.2. Enzymatic activity response diagram from the principal component analysis (PCA) 
of the experimental treatments for each time of sampling (from Sampling time 1 to 5). Endpoints 
datasets of soil/amended soil treatments used as species data (DHA-dehydrogenase, BG-ß-
glucosidase and U-urease). Data sets were obtained from the samples  - experimental 
treatmens (S soil; Sm soil-manure; SB soil-biochar; SBm soil-biochar-manure; Smi soil-
manure-isopods; Sme soil-manure-earthworms; Smie soil-manure-isopods-earthworms, SBmi 
soil-manure-isopods; SBme soil-manure-earthworms; SBmie soil-manure-isopods-
earthworms). 

 

Figure 4.2. is depicting PCA of experimental treatments as a trend in enzymatic activities for 

each of the five sampling times separately. In the first sampling (ST1) PC1 explained 49.3 % 

variability in the soil enzymes, with ß-glucosidase being positively related to it, and urease 

negatively. PC2 explained 29.8 % variability, with dehydrogenase strongly positively related to 

it.  Treatments are separated along the first axis, showing that differences are mainly due to 

the activity of ß-glucosidase and urease. In the second sampling (ST2) PC1 explained 46.9 % 

variability, and PC2 variability of 33.8 %. The trend of the enzymatic activities through the 

treatments can be seen as overall low activities of ß-glucosidase and dehydrogenase, 

particularly in the treatment SB (for both enzymes), and in SBme (for ß-glucosidase).  In the 

third sampling (ST3) PC1 explained 58.2 % variability, while PC2 explained 25.5 % variability. 

It is separating high ß-glucosidase activity (particularly in SBmi) and high dehydrogenase and 

urease activities in Smi and Sme from the low enzymatic activities recorded in SB and S. In the 

fourth sampling time (ST4) 62.3 % variation is explained by PC1, clearly separating lower S 

and SB activities from higher ones in Sm and SBmi. PC2 explained 27.2 % of the variation. In 

the fifth sampling time (ST5) PC1 explained 43.8 % of variation, and PC2 32.0 %. The 

separation of PC1 between mainly S, SBme and SB, on negative side of the axis from the rest 

of the treatments on the positive side is due to the low activities of the enzymes in these 

treatments.    

The PERMANOVA depicted the significant differences between the sampling times (F = 0.080, 

p= 0.001), and between treatments (F=0.076, p=0.008), which supports the presented 

ordination provided with PCA. However, significant interaction effects for the two factors was 

not detected by the PERMANOVA (F= 0.022, p=0.077).  

Firstly, for a closer insight on the differences in the treatments without the organisms (S, Sm, 

SB, SBm) a two-way ANOVA was carried out, for each enzyme and for five sampling times, 

analysing factors manure (presence/absence of manure) and treatment (presence of biochar 
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or SB/absence of biochar or S). Interactions of the factors were not statistically different, in any 

of the sampling times (two-way ANOVA, p>0.05). The ß-glucosidase activity in treatments 

without organisms was statistically significant for the factor treatment in ST1, due to increased 

activity in biochar amended soil SB and SBm, but post hoc test did not reveal any specific 

differences (two-way ANOVA, p<0.05; Tukey test, p>0.05). In ST3 presence of manure 

increased the activity only within unamended soil S (two-way ANOVA, Tukey test, p<0.05), and 

in ST4 within both S and SB (two-way ANOVA, Tukey test, p<0.05). ST2 and ST5 did not result 

in significant differences in ß-glucosidase activity among the treatments without organisms 

(two-way ANOVA, p>0.05). Regarding urease activity in ST1 presence of biochar significantly 

reduced the enzyme activity, with or without manure (two-way ANOVA, Tukey test, p<0.05).  

For ST2, ST4 and ST5 effects were driven by the presence of manure, i.e. being signif icantly 

stimulated both in Sm and SBm (two-way ANOVA, Tukey test, p<0.05). No differences were 

detected in the urease activity in ST3 (two-way ANOVA, p>0.05). Dehydrogenase activity was 

characterized with manure driven effects in ST1 as stimulation of SBm (two-way ANOVA, 

Tukey test, p<0.05), and in ST4, but no specific differences were detected with post hoc test 

(two-way ANOVA, p<0.05; Tukey test, p>0.05). In ST2 the response of dehydrogenase was 

significantly different for both factors ‘manure’ and ‘biochar’ (treatment), generally being 

reduced in the case of biochar presence (two-way ANOVA, Tukey test, p<0.05), but stimulated 

with the presence of manure both in unamended and biochar-amended soil (two-way ANOVA, 

Tukey test, p<0.05). In ST3 and ST5 statistically significant reduction of activity in the presence 

of biochar was observed (two-way ANOVA, Tukey test, p<0.05), while presence of manure did 

not have statistically significant impact (two-way ANOVA, Tukey test, p>0.05) 

Secondly, for the treatments with organisms (Sme, Smi, Smie, SBme, SBmi, SBmie), a two-

way ANOVA was carried out on the enzymatic activities and allowed to distinguish whether the 

factors ‘invertebrates’ (e-earthworms, i-isopods, ie-earthworms and isopods) or ‘biochar’ 

(presence of biochar SBm/absence of biochar Sm), or their interaction had significant effects 

on these endpoints. It is important to note that manure was present in all the microcosms with 

organisms as a source of food. Interactions of the factors analysed were not statistically 

different, in any of the sampling times (two-way ANOVA, p>0.05). The activity of ß-glucosidase 

in ST1 was invertebrate-dependent only within S, and in Smi it was significantly lower than in 

Sme and Smie (two-way ANOVA, Tukey test, p<0.05). The presence of biochar reduced 

significantly the enzymatic response of of ß-glucosidase in ST2, but post hoc test did not detect 
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any specific differences (two-way ANOVA, p<0.05; Tukey test, p>0.05). In the ST3 factor 

species was statistically significant within SB treatments, namely the presence of isopods (SBi) 

stimulated ß-glucosidase activity comparing to the treatment with only earthworms (SBe) and 

in the combined species treatment (SBmie) (two-way ANOVA, p<0.05; Tukey test, p<0.05). 

The activity of ß-glucosidase in ST4, even overall decreased relative to the ST3, responded 

with a similar pattern as factor species was statistically significant within SB treatments, namely 

presence of isopods (SBi) stimulated ß-glucosidase activity comparing to the treatment with 

only earthworms (SBe). The response of ß-glucosidase in ST5 was not statistically different for 

any of the factors, or their interaction (two-way ANOVA, p>0.05).  

Measurements of urease in ST1 resulted in statistically significant differences in the presence 

of both invertebrate species, namely within S due to the reduction in activity in the Smie 

treatment (two-way ANOVA, p<0.05; Tukey test, p<0.05), while in the presence of biochar 

stimulation of urease was observed in SBmie (two-way ANOVA, p<0.05; Tukey test, p<0.05). 

In ST2, in the presence of isopods in unamended soil (Smi) urease activity was significantly 

higher than is the treatments with earthworms or combined species treatments (Sme, or Smie) 

(two-way ANOVA, p<0.05; Tukey test, p<0.05). In ST3 statistically significant reduction in the 

presence of biochar was observed within SBme and SBmie (two-way ANOVA, p<0.05; Tukey 

test, p<0.05). Statistically significant invertebrate-specific effects were also observed in the ST4 

as a stimulation in the presence of isopods over reduction in the presence of two species. 

However, no specific differences were detected in the post hoc (two-way ANOVA, p<0.05; 

Tukey test, p>0.05). In ST5 the response pattern was the same like in ST2, isopods driven, but 

only within S by means of significantly higher activity in Smi over Sme and Smie (two-way 

ANOVA, p<0.05; Tukey test, p<0.05).  

The dehydrogenase activity in treatments with organisms was statistically significant only in 

ST3 for the factor ‘biochar’, within single species treatments as follows: Smi was significantly 

higher than SBmi, and Sme than SBme ((two-way ANOVA, p<0.05; Tukey test, p<0.05).  

 

4.5.2. Earthworms weight changes, reproduction, biomarkers of effectparameters  

Weight loss and reproduction of E. andrei were not affected by either the presence of biochar 

or the presence of the isopods (two-way ANOVA, p>0.05; Figure 4.3.).  
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Figure 4.3. Eisenia andrei weight loss (g) and reproduction (as number of juveniles, number of 
cocoons and hatchlings number per cocoon) resulting from the four-week- exposure to soil 
(Sm) and biochar amended soil (SBm, at 1.5 % w/w), in the absence (e) and presence (ie) of 
Porcellionides pruinosus. 
 

 

Biomarker responses in E. andrei after a four-weeks exposure to soil and biochar amended soil 

in the microcosms in the presence and/or absence of P. pruinosus are presented on Figure 

4.4. Glutathione s-transferase (GST) activity and acetylcholinesterase (AChE) activity did not 

reveal significant fluctuations amongst exposed earthworms (two-way ANOVA, p>0.05).  

Catalase (CAT) was significantly reduced for factor treatment (two-way ANOVA p<0.05), but 

no specific differences could be detected with Tukey post hoc test (p>0.05). In the presence of 

biochar lipid peroxidation was higher, both when earthworms were alone (SBme) and with 

isopods (SBmie) (two-way ANOVA; Tukey test, p<0.05).   
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Figure 4.4. Eisenia andrei biomarker of effects responses resulting from the four-week- 
exposure to soil (Sm) and biochar amended soil (SBm, at 1.5 % w/w), in the absence (e) and 
presence (ie) of Porcellionides pruinosus. catalase (CAT); glutathione-S-transferase (GST); 
lipid peroxidation (LPO); acetylcholinesterase activity (AChE). All values are presented as 
means with standard deviation. Different lowercase and uppercase letters represent significant 
comparisons for factor treatment (Sm/SBm) within single species (e) and within two species 
(ie) microcosms, respectively (two-way ANOVA, Tukey test p<0.05).   
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Figure 4.5. Eisenia andrei energy related parameters resulting from a four-week-exposure to 
soil (Sm) and biochar amended soil (SBm, at 1.5 % w/w), in the absence (e) and presence (ie) 
of Porcellionides pruinosus: lipids, carbohydrates and proteins content, and the balance for the 
energy available (Ea), energy consumed (Ec) and cellular energy allocation (CEA) are 
presented as means with standard deviations. Different lowercase and uppercase letters 
represent significant comparisons for factor treatment (Sm/SBm) within single species (e) and 
within two species (ie) microcosms respectively; * and ** represent significant comparisons for 
factor species (e/ie) within Sm, while # and ## represent significant comparisons for factor 
species within SBm (two-way ANOVA, Tukey test p<0.05).    
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Figure 4.5. depicts energy budget of E. andrei after 4-weeks of exposure to soil and biochar 

amended soil in the microcosms in the presence and/or absence of P. pruinosus. The lipids’ 

content was significantly lower in the combined invertebrate microcosms (two-way ANOVA, 

p<0.05). Post hoc test revealed statistically significant difference for factor species within S 

(two-way ANOVA, p<0.05; Tukey test, p<0.05), with higher lipids observed when earthworms 

were kept alone with no biochar. Levels of carbohydrates were significantly increased for the 

factor biochar, within single species microcosms (two-way ANOVA, p<0.05; Tukey test, 

p<0.05). Protein contents were significantly reduced in the biochar treatment, both within single 

and two species microcosms (two-way ANOVA, p<0.05; Tukey test, p<0.05). In terms of the 

energy available (Ea), statistically significant reductions were observed in the presence of 

biochar (within single species micorcosms, two-way ANOVA, Tukey test, p<0.05) and the factor 

invertebrate (within Sm, two-way ANOVA, Tukey test, p<0.05; Figure 4.5.). Increase in 

consumed energy (Ec) was statistically significant for the factor invertebrates, by means of 

higher consumed energy within SB in a single species microcosms (SBme) over two species 

microcosms (SBmie) (two-way ANOVA, Tukey test, p<0.05), and for the factor treatment, by 

means of higher consumed energy in SBme over Sme (two-way ANOVA, Tukey test, p<0.05). 

Cellular energy allocation (CEA) was significantly lower in the treatment SBme, over Sme, i.e. 

within single species microcosms treatments (two-way ANOVA, Tukey test, p<0.05).  

Naphthalene-metabolites were the only PAH-type metabolites quantified in the earthworms 

tissue, with no statistically significant difference between the treatments (two-way ANOVA, 

p>0.05; Figure S4.2. in SI).  

 

4.6. Discussion  

4.6.1. Soil and biochar amended soil enzymatic activity 

Biochar used in the present study is considered a technically safe biochar, fully characterized 

according to the EBC guideline (EBC, 2012), to assure for homogeneity in physicochemical 

properties. Wood residues are very common feedstocks for biochar production, which together 

makes it a representative biochar. In addition, this biochar was previously tested (data not 

shown), and had no impact on the survival and body weight of E. andrei at the concentration 

chosen in the present work of 1.5 % w/w.  
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To infer on the changes this biochar application can induce to soil microbiota, along with the 

presence of the two invertebrates’ species, activities of soil enzymes ß-glucosidase, 

dehydrogenase and urease were assessed over a 56 days laboratory microcosms’ incubation, 

in five sampling occasions (sampling times). Overall the responses were dependent on the 

sampling time and treatment. In general, ß-glucosidase and urease peaks in activities occurred 

after three weeks of incubation (i.e. third sampling). In treatments without invertebrates the 

activity of these enzymes was higher in the presence of manure, with exception of the 

responses in the first week. Dehydrogenase peak of activity occurred after the first week, where 

the input of manure induced an increase in dehydrogenase activity, while presence of biochar 

reduced and even inhibited dehydrogenase in the treatments without organisms. Biochars 

produced of lignin-rich feedstocks, like it is the case in our study, are more likely to induce 

negative priming, a process known as induced changes (positive or negative) in soil organic 

matter mineralisation (SOM) as consequence of addition of organic substrates (Kuzyakov et 

al., 2000). Possibly negative priming occurred due to higher proportion of recalcitrant carbon in 

wood biochar (Yu et al., 2018), while in the treatments with manure, on the contrary, the manure 

might have caused a positive priming due to readily available, labile carbon. More experiments 

are needed, however, to relate the effects observed in the current study with SOM priming.  

The most pronounced increase in ß-glucosidase treatments with organisms was obtained in 

the biochar amended soil in the presence of isopods. Isopods could benefit from the presence 

of biochar in soil while using it as a food source, as it has been reported recently by Madzaric 

et al. (2017). ß-glucosidase can be a good indicator of changes in soil organic matter content 

(Bandick and Dick, 1999; Paz-Ferreiro et al., 2014), and was considered a sensitive endpoint 

in the current study, responding to the different treatments.  

Urease is an enzyme involved in the hydrolysis of urea, commonly used to distinguish between 

soils enriched with crop residues, nitrogen and animal manure (Bandick et al., 1994; Dick et 

al., 1999). In this work urease was overall characterised by lower fluctuations amongst the 

treatments. The effect of invertebrate species (namely isopods) is dominant in the urease 

activity measured. It was increased in the presence of isopods, but only without biochar. There 

may be a possibility that isopods are affecting or inducing urease by the excretion of ammonia 

(Loureiro et al., 2006).  

Dehydrogenase is an intracellular enzyme, an indicator of overall microbial activity in soil (Dick 

et al., 1996). The most pronounced outcome observed for dehydrogenase was in ST3, the 
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substantially higher activity in the absence of biochar in both single species microcosms, 

indicating possible positive effect of individual species on this enzyme, but disappearance of 

the positive effect when biochar was present and in the case of the two-species presence. 

However, there was not a clear response pattern in the last two sampling times (ST4 and ST5). 

Elzobair et al. (2016) reported contrasting effects of hard wood fast pyrolysis biochar versus 

diary manure applied in the field, observed as neutral impacts of biochar and higher efficiency 

of diary manure in enhancing microbial biomass and activity (Elzobair et al., 2016).  

The observed effects of woodchip biochar in this study are not in line with results reported by 

other authors for biochars from various feedstocks. Chicken manure biochar (Park et al., 2011) 

and sewage sludge biochar (Paz-Ferreiro et al., 2012) stimulated dehydrogenase, while Masto 

and authors reported that dehydrogenase activity was proportional to biochar application 

increase (biochar from water hyacinth; Masto et al., 2013). However, the information on the 

role of invertebrates in modification of these processes in biochar amended soil is scarce. A 

three months study on the effects of earthworms Pontoscolex corethrurus and biochar on soil 

enzymes (ß-glucosidase, ß-glucosaminidase, arylsulphatase, phosphomonoesterase and 

urease) has been conducted by Paz-Ferreiro et al. (2014). Increases in enzymatic activities 

were observed, being more pronounced in high mineral ash biochars (sewage sludge biochars; 

mineral ash ranging from 64.81 % to 78.53 %), than in low mineral ash biochars (Miscanthus 

biochar and wood gasification char; mineral ash content of 18.75 % and 29.82 %, respectively), 

while underlining the higher impact in low fertile soils (acidic pH, low organic matter content) as 

result of liming effect (pH increase). They reported that biochar and earthworms did not interact 

in relation to soil enzymes, with the exception of arylsulphatase, and that only for ß-glucosidase 

activity there was an observed interaction between soil type and presence of earthworms (Paz-

Ferreiro et al., 2014). In our study the ash content of biochar was as low as 18.6 %, comparable 

to that in Miscanthus biochar (Paz-Ferreiro et al., 2014). However, this kind of mechanistic 

effects regarding possible contribution of biochar ash contents in changes of enzymatic activity 

of biochar amended soil need to be specifically addressed in the follow-up studies. Additionally, 

in the current study the alkaline pH in all the treatments was relatively stable, and is less likely 

that could influence the results.  

When microbial activity enzymes are assessed as indicators of soil quality, like for instance, in 

the case of contaminated soil and recovery evaluation, it is recommended to be used as a 

complementary approach, i.e. within a battery of assays (Loureiro et al., 2007). Our study 
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demonstrates that soil enzymes responses were overall specific for each of the enzyme 

evaluated, time- and invertebrates-dependent, highlighting that they are sensitive tools in 

biochar amended soil quality assessment and can be also suggested as complementary 

approach within a soil test battery with invertebrates.  

 

4.6.2. Effects on earthworms  

Earthworms body mass loss, number of cocoons or number of juveniles were not affected by 

the presence of 1.5 % (w/w) biochar, or altered in the presence of other detritivore species, in 

this case the isopod P. pruinosus. Similar results to ours were obtained for much higher 

concentrations, of up to 20 % of apple woodchip biochar regarding earthworms’ reproduction. 

The same work, reported a weight loss in E. fetida (Li et al. 2011), as opposite of our results.  

Soil invertebrate have been widely used as model organisms in multibiomarkers approaches 

to assess the effects of soil contaminants, e.g. Porcellionides pruinosus (e.g. Santos et al., 

2010; Ferreira et al., 2016), Eisenia andrei (e.g. Cataldo et al., 2011; Wu et al., 2012; Nusair et 

al., 2017). Also, energy related parameters have been previously related to chemical exposures 

in several studies, using the potworm Enchytraeus albidus (Novais et al., 2013; Gomes et al., 

2015), or the isopod Porcellionides pruinosus (e.g. Ferreira et al., 2016; Morgado et al., 2013). 

Nevertheless, the works on biomarkers of exposure and effects in soil organisms exposed to 

biochar-amended soils are very scarce. Only recently fewer studies reported the effects of 

biochar amendment on biomarkers of exposure in Eisenia fetida (Li et al., 2011), and in two 

other earthworm species Aporrectodea icterica and Aporrectodea longa (Marchand et al., 

2017).  

In the current study biochar did not induce changes in the AChE activity (indicator of inhibited 

neurotransmission), neither in the measured oxidative stress biomarker, GST, nor substantial 

changes in CAT. An increase in the LPO was observed in the presence of biochar, indicating 

the occurrence of cellular membrane damage. Nap-type metabolites in the E. andrei tissue 

were not increased compared to those measured in the absence of biochar, therefore indicating 

low probability that Nap-type metabolites might have any contribution in the observed increase 

in LPO. A recently published study found that biochar-associated free radicals from rice-straw 

biochar were responsible for neurotoxic effect in Caenorhabditis elegans, while excluding 

potential adverse effects of biochar-bound compounds on this model organism (Lieke et al., 
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2018). Previously we observed that the increase in Nap-type metabolites was related to the 

exposure to smaller particles of biochar (<0.5 mm), probably due to higher toxicity caused as 

a consequence of larger surface area and bioavailability of mixture of contaminants (data not 

published). As for the energy parameters evaluated in this study, changes in energy reserves 

were statistically significant. Reduction in lipids and proteins led to lower available energy, and 

with significantly increased energy consumed the CEA ratio consequently decreased. The 

presented results are not in accordance with the work published by Li and co-authors, who 

evaluated oxidative stress biomarkers in E. fetida exposed to biochar over 14 days, where no 

lipid peroxidation or anti-oxidative defence were observed (Li et al., 2011). Earthworms in the 

study of Marchand et al. (2017) exposed to poultry manure biochar (2 %) in a metal 

contaminated soil showed a reduced GST and increase in lipids and proteins content upon 

biochar application. However, they did report the reduction of body mass in the presence of 

biochar (Marchand et al., 2017). This, taken together with the fact that biochar-induced loss of 

weight in earthworms is commonly observed (Liesch et al., 2010; Gomez-Eyles et al., 2011; Li 

et al., 2011), should be considered with caution. In the current work, the effects on the energy 

reserves may indicate that organisms are using this energy to retrieve physiological damages, 

and return to a homeostatic equilibrium. Here we report the reduction in CEA and occurrence 

of LPO after 28 days of exposure to 1.5 % wood chip biochar applied to non-contaminated soil 

which highlights physiological and biochemical changes, while also indicating that more 

investigation is necessary to infer on these mechanistic effects.  

Isopods have been widely used in multibiomarker approaches but their enzymatic activities 

could not be measured in the present study due to the mortality rate observed in the 

experiment. Although the mortality rate was low, organisms were replaced every time a dead 

animal was observed, in order to maintain their ratio and function in soil and to not compromise 

the soil enzymatic activity approach nor the continuous interaction with earthworms. 

  

4.7. Conclusions 

Isopods and earthworms have a significant role in soil processes and understanding their 

behaviour and possible interactions in biochar amended soil is important for future safe 

application of biochar. The approach taken to study complex relationships in the scenario soil-

biochar-biota, showed that microcosms with combined detritivore species can provide relevant 
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insights on potential changes in biochar amended soil, while accounting for the interactions. 

This study is the first one to use the integrative ecotoxicological tools in investigating biota 

relationships in biochar amended soil, to the best of our knowledge. Woodchip biochar can 

induce sub-lethal changes in earthworms and reduction in enzymatic activities, while on the 

other side, it might be beneficial for isopods. More research is suggested to further address 

these issues. The multibiomarker approach applied in the current study provides a useful 

insight on the mechanisms behind biochar impact on soil biota.  
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4.9. Supplementary Information  

(a) 

 

(b)  

 

(c) 

Figure S4.1. Enzymatic activities of (a) ß-glucosidase (BG) expressed as mg p-nitrophenol per 
kg of soil per hour (b) urease (U) expressed as mg of nitrogen per kg of dry soil per two hours 
and (c) dehydrogenase (DHA) expressed in mg of triphenyl formazan (TPF) per kg of soil per 
24 hours. Numbers from 1-5 stand for the sampling time series: 1 – first sampling (week one 
of the experiment), 2 – second sampling (week two of the experiment), 3 – third sampling (week 
three of the experiment), 4 – fourth sampling (week four of the experiment, and 5 – fifth 
sampling (final sampling in the week eight of the experiment). 
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Figure S4.2. Naphthalene-type metabolites detected in tissue of Eisenia andrei after four-
week-exposure to soil (Sm) and biochar amended soil (SBm, at 1.5 % w/w), in the absence (e) 
and presence (ie) of Porcellionides pruinosus. Values are presented as means with standard 
deviations. 
 

 

Table S4.1. Mean pH values (±standard deviations) of the treatments at the end of experiment. 
Treatments: S (soil), Sm (soil-manure), SB (soil-biochar), SBm (soil-biochar-manure), Smi (soil-
manure-isopods), Sme (soil-manure-earthworms), Smie (soil-manure-isopods-earthworms), 
SBmi (soil-manure-isopods), SBme (soil-manure-earthworms), SBmie (soil-manure-isopods- 
earthworms).  

 

Treatment S Sm SB SBm Smi Sme Smie SBmi SBme SBmie 

pH (H2O) 1:5 7.9±0.3 8.1±0.2 8.2±0.2 8.2±0.1 8.2±0.2 8.2±0.3 8.2±0.1 8.2±0.2 8.3±0.3 8.3±0.2 
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Combined effects of biochar, organic amendments and fertilizer on biota 

in small-scale terrestrial ecosystem models 

5.1. Abstract 

The present study evaluated the impact of biochar, biochar-compost, NPK-based mineral 

fertilizer and their combinations on biota, in a natural agricultural soil at application rates that 

are relevant for agronomic applications. The ecotoxicological assessment was carried out in 

two phases: (i) assessment of the effects of amended soil on earthworms (Eisenia andrei), 

rapid-cycling plants (Brassica rapa) and bait-lamina consumption in small-scale terrestrial 

ecosystem models (STEMs) using an agricultural soil, and (ii) assessment of potential toxicity 

of the leachates collected from STEMs on the aquatic macrophyte Lemna minor. Additionally, 

treated soils, soil pore water and leachates were also characterized for selected nutrients 

and/or dissolved organic carbon, to complement the bioassays. Treatments had low to no-

effects on E. andrei. There was no observed significant change in water content of B. rapa, 

indicating that the plants were not under hydric stress. In general, plant biomass was slightly 

stimulated in all the treatments, with the most pronounced effects in those where biochar-

compost was applied with mineral fertilizer. Yet, the increase in morphological traits 

measured was not statistically significant. Amongst the production characteristics of B. rapa 

obtained, the number of seeds and mean number of seeds per pod increased significantly in 

the treatments of biochar-compost combined with mineral fertilizer and biochar-compost, 

respectively. Bait-lamina consumption evaluated during the experiment was reduced over 

time, being the lowest in the treatment of soil with biochar. Leachates assessment indicated a 

slight stimulation at lower leachates concentrations. The leachates of the soil without any 

amendment and the amended soil induced an inhibition in L. minor growth, when exposed to 

the pure (non-diluted) leachates. The lowest EC20 and EC10 were obtained in the leachate of 

soil amended with biochar-compost. In response to stress, significantly higher dry to fresh 

weight ratios in L. minor were observed, indicating that a possibility of nutrients leaching 

stimulation might not be excluded, which could pose a hazard to aquatic systems. The 

sensitivity of the responses observed with different functional groups indicate that STEMs 

methodology is an adequate higher tier approach for ecotoxicological assessment of biochar 

and/or biochar-compost and mineral fertilizer applications.  
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Key words: biochar, biochar-compost, earthworms, rapid-cycling plants, bait-lamina, small 

scale terrestrial ecosystem models, aquatic macrophyte 

 

5.2. Introduction 

In contrast to the relatively high proportion of studies addressing agronomic strengths and 

weaknesses from biochar application to soil, information is scarce on potential environmental 

and ecological consequences of biochar utilization in soil alongside other traditional organic 

amendments and fertilizers. These may include interactions in the system soil-biochar-biota 

as well as possible negative impact of their combined effect on non-target soil and aquatic 

organisms. 

Investigations of the agronomic benefits of biochar application to soils have been focused on 

its use as conditioner for improving soil properties and processes (e.g.  correction of pH of 

acidic soils, improve soil aggregation and hydrologic characteristics (Masulili et al., 2010; 

Molnar et al., 2016; Schulz and Glaser, 2012), or on its use to improve crop yield, alone or in 

combination with other organic amendments or fertilizers (Ippolito et al., 2015; Jeffery et al., 

2017). Another knowledge gap is related to the likelihood of biochar particles and biochar-

bound contaminants to reach groundwaters as a consequence of leaching, or surface water 

bodies through runoff (Jaffe et al., 2013; Bastos et al., 2014a; Buecker et al., 2016). The 

same problem has been often highlighted regarding fertilizers, which can reach aquatic 

systems and/or underground water by runoff or leaching.  

The ecotoxicological effects of slow pyrolysis wood biochar on soil organisms have been 

already studied, e.g. on the earthworm Eisenia fetida (Li et al., 2011), collembolan Folsomia 

candida (Bielska et al., 2018; Marks et al., 2014), and on the enchytraeid Enchytraeus 

crypticus (Marks et al., 2014). Molnar and co-authors applied a battery of complementary 

bioassays when studying ecotoxicity of wood biochar when applied to acidic soil, by carrying 

out single species tests with Aliivibrio fischeri, Folsomia candida, Sinapis alba and Triticum 

aestivum (Molnar et al., 2016). Alongside the tests and methodologies already used for 

biochar assessment, fewer studies addressed the issue by using more ecologically relevant 

approaches, like accounting for multi-species presence and interactions (Amaro et al., 2016), 

or from laboratory earthworms’ avoidance to 4.5 months field-experiment with wheat in which 

earthworms’ biomass and density was evaluated (Tammeorg et al., 2014).  
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Bearing in mind the uncertainties in the context of safe and sustainable biochar application, 

including the lack of long-term, chronic, and ecologically representative studies, an integrated 

ecotoxicological evaluation of biochar-amended soil in small-scale terrestrial ecosystem 

models (STEMs), coupled with aqueous leachates testing was planned as a way of bridging 

the gap between laboratory experiments and natural field conditions. Such setup provides a 

possibility to look at multiple test species and endpoints simultaneously, as well as to assess 

both the terrestrial and the aquatic component through leachate collection. STEMs were 

previously developed by Santos et al. (2011a, 2011b) for the assessment of the effects of 

pesticide mixtures on soil biota. Recently, the use of STEMs was adapted by Amaro et al. 

(2016) for assessing biochar effects and potential toxicity to soil organisms, simulating the 

biochar topsoil incorporation (0-15 cm) practice (Amaro et al., 2016). The epigeic earthworm 

Eisenia andrei was selected as a representative species of soil biota, mediating key soil 

processes and functions, such as structure maintenance, organic matter redistribution and 

nutrient cycling (Brown et al., 2000; Edwards, 2004). More specifically, it is known that 

earthworms are involved in nitrogen mineralization from soil organic matter (Cortez et al., 

2000), in which way they can, to different extent, contribute to mediating plant uptake of 

nitrogen and regulating soil carbon dioxide and nitrous oxide emissions (Lubbers et al., 2011; 

van Groenigen et al., 2014). Therefore, combining earthworms and plants in mesocosms 

testing also accounts for possible interactions between organisms (Amaro et al., 2016). The 

plant species chosen for the experiment is the rapid-cycling turnip (Brassica rapa) (Williams, 

1989). It is often used as a model organism in cell and molecular biology, plant biochemistry 

(Williams and Hill, 1986), and more recently in ecotoxicological studies (Lima et al., 2011; 

Santos et al., 2011). Considering the biochar from wood as a feedstock, it is frequently 

studied biochar in both agronomic and environmental contexts. The combination of 

processing conditions (400-600°C) and woody feedstock typically results in low levels of 

PAHs accumulated in the biochars (e.g. Hale et al. 2012; Kloss et al., 2012; Yargicoglu et al., 

2015).  

In the present work, an integrated approach was employed to address the ecotoxicological 

implications of woodchip-waste biochar in STEMs, applied to soil individually, as a mixture 

with vegetal compost, and combined with mineral (NPK) fertilizer. Specifically, the study 

aimed at investigating: 
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i)  the effect of the treatments on the performance of edaphic organisms, namely E. andrei 

survival and body weight, bait-lamina consumption, and morphological and production traits 

of rapid-cycling B. rapa, when applied at common or recommended concentrations, and  

ii) the ecotoxicological potential of leachates from (i) to the aquatic macrophyte L. minor.   

Analytical characterization of amended soil, soil pore water, plant tissue, and leachates were 

also performed thus, providing complementary information. 

  

5.3. Materials and methods  

5.3.1. Characterization of soil, biochar, biochar-compost and mineral fertilizer 

The physicochemical characteristics of the soil, biochar and biochar-compost are presented 

in Table 5.1. Soil in this experiment is a natural agricultural topsoil (10-15 cm) with sandy 

loam texture, sampled in August 2015 from an agricultural field located in the Mondego valley 

(Central Portugal), with no recent history of contamination or inputs of pesticides and 

inorganic fertilizers (Lemos et al., 2010; Santos et al., 2011). Soil sampled from the field was 

sieved in the laboratory (< 2 mm) prior to the use in the experiments. 

Table 5.1. Summary of the main physicochemical characteristics of the soil, biochar and  
biochar-compost (4% w/w) used in the study. Abbreviations: WHCmax stands for maximum 
water holding capacity, EC for electrical conductivity, and n.d. for ‘not determined’. 

 

                                        Soil Biochar               Biochar-compost 

texture class sandy loam n.d. n.d. 

sand (%) 69.2 n.d. n.d. 

silt (%) 18.8 n.d. n.d. 

clay (%) 12 n.d. n.d. 

WHCmax (%) 49 73.2 n.d. 

Bulk density (g/cm3) n.d. 0.55 n.d. 

EC (µS/cm) n.d. 3 000 1 240 

Ash (550°C) (%) n.d. 18.6 5.4 

Organic C (%) n.d. 75 22.5 

Organic matter (%) 2.9. n.d. 38.7 

pH (H2O) 7.6 10.1 7.2 

pH (KCl) 7.4 n.d. n.d. 

Salts (g/kg) n.d. 8.4 11.1 

CaCO3 (g/kg) 89 n.d. n.d. 

H (%) n.d. 47 n.d. 

H:C (molar ratio) n.d.  0.07 18.4 

O:C (molar ratio) n.d. 0.04 n.d. 

N total (g/kg) 1.98 n.d. n.d. 
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N (%) n.d. 1.8 4.8 

P2O5 (mg/kg) 805 n.d. n.d. 

K2O (mg/kg) 250 n.d.  n.d. 

Al (mg/kg)1 17 000 n.d. n.d. 

Sb (mg/kg) <5 n.d. n.d. 

As (mg/kg) 18 n.d. n.d. 

Ba (mg/kg) 110 n.d. n.d. 

Be (mg/kg) 1.8 n.d. n.d. 

Pb (mg/kg) 210 <2 14.9 

B (mg/kg) 13 39 n.d. 

Cd (mg/kg) <0.5 <0.2 0.21 

Ca (mg/kg) 25 000 42 200 59 150 

Cr (mg/kg) 17 27 21 

Hg (mg/kg) n.d. n.d. 0.25 

Fe (mg/kg) 23 000 2 420 19 000 

K (mg/kg) 3 200 10 400 8 400 

Cu (mg/kg) 82 16 28.9 

Li (mg/kg) 70 n.d. n.d. 

Mg (mg/kg) 5 000 2 980 5 400 

Mn (mg/kg) 1 100 n.d. n.d. 

Mo (mg/kg) <5 n.d. n.d. 

Na (mg/kg) 120 744 930 

Ni (mg/kg) 17 17 20.6 

P (mg/kg) 1 500 1 300 2 400 

S (mg/kg) n.d. 372 190 

Se (mg/kg) <10 n.d. n.d. 

Sr (mg/kg) 90 n.d. n.d. 

Tl (mg/kg) <2 n.d. n.d. 

Ti (mg/kg) 600 n.d. n.d. 

V (mg/kg) 23 n.d. n.d. 

Zn (mg/kg) 200 70 101.2 

Sn (mg/kg) 15 n.d. n.d. 

ƩPAHs (mg/kg)2 n.d. 0.48 n.d. 

Σ7 ind. PCBs (mg/kg)3 n.d. <0.002 n.d. 

1Metals were determined by microwave digestion (DIN/ISO 17294-2).  
2PAHs were determined by SPME (solid-phase microextraction) coupled to gas chromatography/mass 

spectrometry GC/MS (DIN EN 15527), where individual PAH values were below or equal to the limit of detection 

(0.1 mg/kg).  
3The 7 indicator PCBs were determined by HRGC/HRMS (high resolution gass chromatography and mass 

sectrometry) 

 

Biochar and biochar-compost were both acquired from Swiss Biochar gmbh (Switzerland). 

The biomass feedstock was woodchip residues, subjected to the process of slow pyrolysis 

(highest treatment temperature 620°C). The biochar had the following particle size distribution 

(w/w): 4% (<0.1 mm), 25% (0.1-0.5 mm), 34% (0.5-2 mm), 37% (>2 mm), with an average 

particle size of 29.5 µm and pH (H2O) of 10.1. The biochar-compost was prepared by mixing 

4% w/w of the biochar with vegetal compost, at the end of the composting process.   



Chapter 5 

 

165 
 

Mineral fertilizer under the commercial name Osmocote was used, consisting of nitrogen (N), 

phosphorous (P), and potassium (K), in the proportions of 14-13-13.  

 

5.3.2. Study organisms 

The earthworms Eisenia andrei (Bouché 1972) were obtained from laboratory cultures 

maintained at 20±1ºC and a photoperiod of 16:8 hours (light:dark). Earthworms were kept in 

24 L plastic containers, with a mixture of soil potting mix and peat, at pH 6 to 7, and at 70% of 

its water holding capacity (WHC). The animals were fed once per week with horse manure 

previously frozen and gradually thawed as needed. The individuals used in the experiments 

were three months old, with developed clitella and an average body weight between 300 and 

600 mg.  

Seeds of rapid cycling Brassica rapa were obtained from the commercial supplier Carolina 

Biological Supply Company (Williams, 1989).  

The freshwater macrophyte L. minor was maintained in sterile 250 ml Erlenmeyers filled with 

Steinberg medium (OECD 2006a). The vessels were closed with sterile cotton pads to 

minimize eventual evaporation and contamination during 8 weeks before the bioassays. The 

culture medium of L. minor was renewed twice per week. The culture was maintained in an 

incubator chamber, with controlled temperature (20±1°C), photoperiod of 16-:8 hours 

(light:dark) and light intensity of approximately 6500 lux.  

 

5.3.3. Experimental design 

Screening bioassay: Eisenia andrei survival and body weight 

Firstly, a screening bioassay based on earthworm survival and changes in body weight was 

performed according to the guideline OECD 207 (OECD, 1984), to infer on the experimental 

design and biochar concentration in the follow-up STEMs experiment. Umamended soil was 

used as negative control, and biochar treatments of 1%, 2%, 3%, 5%, 8%, 16%, 26% and 

36% (w/w) at 60% WHC were prepared at 3 replicates per treatment (including the 

unamended soil). Each replicate contained 10 earthworms. The test duration was two weeks 

(20±1ºC; photoperiod of 16:8 hours, light:dark). The endpoints observed were survival and 

biomass. The animals were weighted before and after the bioassay, and the pooled weight 
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was expressed per replicate. Changes in body weight were expressed as loss of weight, by 

subtracting the animals weight at the end of experiment (final weight) from the weight at the 

beginning (initial weight), and dividing it by the initial weight (Lima et al., 2011).  

 

STEMs experiment  

The experiment was conducted using indoor mesocosms, or small-scale terrestrial 

ecosystem models (STEMs) in a climate-controlled laboratory chamber, based on the 

methodology described by Santos et al. (2011a, 2011b) with adaptations by Amaro et al. 

(2016) for biochar testing. Briefly, each STEM consisted of a PVC cylinder of 20 cm height 

and a diameter of 11 cm. The cylinders were sealed with a 1 mm thick plastic mesh at the 

bottom to hold soil. The STEMs were inserted in acclimatized moveable carts (83 cm length; 

55 cm width; 55 cm depth), each cart with the capacity for five STEMs. Carts had an 

automatic control of soil temperature set to 15°C.  

The reference, i.e. un-amended soil (S) was used as negative control. The experimental 

treatments were: soil amended with NPK mineral fertilizer (Sf), soil amended with biochar at 

2% (w/w), equivalent to 40 t/ha (SB), soil amended with biochar at 2% (w/w) and NPK mineral 

fertilizer (SBf), soil amended with biochar-compost at 2% (w/w) (SCB), and soil amended with 

biochar-compost at 2% (w/w) and NPK mineral fertilizer (SCBf). The experiment was 

performed with four replicates per treatment, including the un-amended soil. Each mesocosm 

contained around 1.7 kg of soil/amended soil in total. As the NPK fertilizer was in granular 

form it was previously ground with an electric mill and dissolved in distilled water in order to 

be homogenously applied to soil/soil amended with biochar and biochar-compost. Water 

holding capacity (WHC) was adjusted to 60-65 % of the maximum soil/ amended soil WHC 

before filling in each column with also homogeneously mixed biochar and biochar-compost, 

NPK fertilizer and/or their mixtures. 

The information on the effect concentration from the abovementioned E. andrei screening 

bioassay was used to select the adequate concentration (i.e. biochar application rate) for the 

higher tier approach. The selected 2 % w/w is equivalent to maximum of 40 t/ha (in the case 

of 15 cm layer of biochar/biochar-compost topsoil application and soil bulk density of 1.3 

g/cm3). NPK fertilizer was added at a rate of 50 g/m2, according to the suppliers' 

recommendation (Osmocote, NPK 14-13-13), which corresponded to 0.43 g per mesocosm, 



Chapter 5 

 

167 
 

per replicate. This amount of the mineral fertilizer is equivalent to 0.5 t/ha. The experiment 

lasted for six weeks. This period is expected to allow the full life cycle of B. rapa, which 

germinates within two days, develops flowers after 13 to 18 days and finishes its life cycle in 

36 days under the constant light supply of 24 h (Williams, 1989). The experiment was 

conducted at 20±5°C and a photoperiod of 16:8 hours (light:dark), which led to slightly slower 

development.  

The first 96 h of the experiment were used for the soil-biochar pre-incubation (namely for pH 

equilibration). Earthworms (10 adult individuals of E. andrei per column, previously weighed), 

seeds (10 seeds of B. rapa) and bait-laminas (three per column) were introduced on the fifth 

day. Later, while growing, the plants were thinned to seven to eight per replicate. Plants 

became less fragile and with an adequate size at the third week, where the yield of 

photosynthesis measurements started, and were repeated in the fourth and fifth week of the 

experiment. Measurements of the chlorophyll fluorescence were carried out on B. rapa leaves 

with PAM (pulse amplitude modulation system). The equipment consists of computer-

operated PAM-Control Unit (Walz) and a WATER-EDF-Universal emitter–detector unit 

(Gademann Instruments GmbH, Germany). The measurement was applied on the adaxial 

side of five mature leaves in every mesocosm. Minimal fluorescence (F0) was measured by 

applying a weak modulated light to leaves which were pre-adapted to darkness for 30 min. F0 

is emitted when the reactions centres are open (plants adapted to darkness). Maximal 

fluorescence (Fm) was measured by applying a 0.7 s saturating pulse, which causes the 

reaction centres to close. Fv represents a variable fluorescence, a difference between F0 and 

Fm. The ratio Fv/Fm corresponds to maximum quantum yield and it is a measure of the 

health state of the plant’s photosynthetic apparatus (Krause and Weis, 1991; Govindjee, 

2004). Cross pollination was performed in order to obtain the production of pods and seeds 

(representative of yield endpoints). The procedure was carried out on the 20th and 21st day of 

the experiment, when the flowers on all the plants were opened. For mimicking natural cross 

pollination in B. rapa, pollination sticks with a handle on one side and a small brush on the 

opposite side were used, thus resembling the shape and structure of an insect pollinator and 

to allow the successful attachment and transfer of pollen. Morphological endpoints obtained 

for B. rapa were fresh and dry weight, root and shoot length as root/shoot ratio, and hydric 

content that represents a difference in fresh and dry weight divided by fresh weight and 
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expressed as percentage (according to Lima et al., 2011). The production yield traits 

observed were number of pods and seeds, also expressed as number of seeds per pod.  

Additionally, bait-lamina consumption was also assessed over time, applying the baits three 

times during the experiments, i.e. every 12 days. Bait-lamina test, was primarily created for in 

situ and field measurements, which at the time of the experiment, it was available as a draft 

ISO/TC 190/SC 4 N (ISO, 2012). Bait-laminas were filled with a mixture of L-cellulose, oat 

bran and activated charcoal in the proportion of 70:27:3 (Kratz, 1998; Santos et al., 2011) and 

inserted vertically in the soil mesocosm. In each reading, three bait-lamina sets were used 

per mesocosm. Each set of bait-laminas was assessed after 12 days, by counting the number 

of empty apertures on each bait-lamina. Since the consumption rate was relatively high, 12 

days allowed for the assessment of eventual differences over time.    

The endpoints observed for the earthworms were survival and body mass expressed as loss 

of weight. Animals were weighed at the beginning of the experiment. At the end of 42 days 

experiment they were counted and weighed again to account for the loss of body mass. 

Earthworms biomass per microcosm was recorded by pooling 10 earthworms and expressing 

the mean weight per earthworm. Loss of body weight was calculated by subtracting the final 

weight from the initial weight of animal and dividing it by initial weight (Lima et al., 2011).   

 

Soil pore water extraction 

Right after the bait-lamina test, plants and earthworms were collected from all soil mesocosm 

and the measurements recorded, the soil/amended soil samples were collected for soil pore 

water extraction. The followed procedure was adapted from Tourinho et al. (2013). Sampling 

was performed by placing 50 g of soil in a Falcon tube. Three tubes per replicate of the 

amended treatments and un-amended soil were used. The follow-up steps were saturation of 

the samples with ultrapure water and 48 hours incubation/equilibration at 4ºC in the dark. 

After that, centrifugation at relative centrifugal force of 2860 g was performed for 90 minutes. 

The supernatant was collected, approximately 6 ml from each Falcon tube. Samples for 

dissolved organic carbon (DOC) analysis were taken with a syringe containing a filter of 0.45 

µm pore size, to separate the particulate organic carbon fraction (> 0.45 µm) from the 

dissolved organic carbon fraction (< 0.45 µm). The supernatant was passed through a filter 

paper of 11 µm pore size (Whatman 1) for nutrient analysis. Samples (< 24 h aged) were 
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prepared according to the procedure described below and used for DOC quantification (see 

section 5.5.). The fraction of the samples used for nutrient analysis was stored at 4ºC for one 

week, except those analysed for potassium, which were acidified with nitric acid and stored at 

room temperature for no longer than six months prior to the analysis, according to the HACH 

Sampling and Storage procedure within Method 8049. 

 

Leaching procedure and toxicity assessment of the leachates 

The procedure applied was adapted from the OECD guideline for leaching in soil columns 

(OECD 312, 2004), and used on the disturbed soil cores after 42 days, when bait-laminas, 

plants and earthworms were removed from them. The volume of the mesocosm (11cm 

diameter and 20 cm high) was 1900.66 cm3. According to the OECD 312:2004 protocol, and 

proportional to the amount of rainwater recommended, we recalculated the amount of water 

to be applied, in order to simulate the highest average rainfall in the district of Aveiro, 

Portugal, where the study was conducted, for a more realistic scenario. This estimated 

volume of water of 600 ml per column/mesocosm is equivalent to 140-150 mm of rainfall 

(estimation used as characteristic to the period between November and January in Aveiro, 

Portugal), according to Climate-Data.Org (www.en.climate-data.org). Leaching was 

performed with ultrapure water for consistency. The water was gradualy applied at the 

surface of the mesocosm over 48 hours at 21°C. The step of adding 0.1 M CaCl2 to water 

was skipped since the leachates were intended for DOC and nutrient analysis, as well as for 

the aquatic bioassay. Centrifugation of the leachate was performed at 3000 rpm for 20 

minutes and stored at 4°C prior to use for ecotoxicological and chemical analysis. The 

storage time was as described for soil pore water samples.  

The aquatic component testing of the leachates from STEMs was carried out with fresh 

samples, not older than one week. The Lemna minor growth inhibition assay was performed 

according to the guideline OECD 207 (2006). The cultures of L. minor were incubated for 7 

days prior to test in a climatized chamber, under constant light (6500 lux) and temperature of 

24±1°C. Due to the large number of leachates samples, concentrations and number of 

replicates, the bioassay was performed in 6-well plates.  Leachate were diluted with the 

Steinberg medium to achieve dilutions of 12.5%, 25%, 50%, 75% and 100% (pure leachate), 

in order to allow for calculation of the toxicity endpoints, such as effect concentration (EC), 

http://www.en.climate-data.org/
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lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). 

The Steinberg medium used for culture maintenance was used as negative control. Three 

replicates were used for all leachate concentrations, and six replicates for the control 

(Steinberg medium). The initial total number of fronds per well was 11. Test duration was 

seven days in the climatized chamber used for incubation (6500 lux, 24±1°C). On the second, 

fourth and sixth day of the bioassay, 1.5 ml of medium were replenished to the controls and 

leachates (of corresponding dilutions) to the treatment wells, to compensate for media loss 

due to evaporation. This volume was calculated during the trial prior to bioassay.  

 

5.3.4. Chemical analysis  

At the end of the STEMs experiment, replicates of un-amended and amended soil were 

pooled into a composite sample for chemical analysis. Soil samples were analysed in an 

external laboratory for soil organic matter content (SOM), total nitrogen (N), inorganic 

nitrogen in a nitric N (NO3
-) and ammoniacal N form (NH4

+), total calcium carbonate (CaCO3), 

plant available phosphorous (P2O5, analysed with Egner-Riehm method) and potassium (K2O, 

Egner-Riehm method).  

Nutrients in the dry plant material, soil pore water and leachates were analysed 

spectrophotometrically due to limited amounts of samples, with a portable HACH 

spectrophotometer (model DR/2000). The analyses were conducted following the DR2000 

Spectrophotometer Procedure Manual (HACH Co. USA DR/2000). Plant tissue extraction 

was performed by homogenising 0.5 g of dry tissue with 100 ml of deionized water with a 

pestle and mortar. The homogenate was then filtered through 0.11 µm pore size (Whatman 1) 

and used for nitrate and phosphate analyses. Nitrate was measured using the modified 

cadmium reduction method with gentisic acid, with the reading range up to 1.5% of NO3
- N 

(Method 8151, HACH Co. USA DR/2000). Phosphate was analysed using the Ascorbic acid 

method, with the reading range up to 0.4% of PO4
3- P in plant tissue (Method 8179, HACH 

Co. USA DR/2000).  

Available nutrients in soil pore water and leachates were evaluated following the methodology 

for water, wastewater and seawater (HACH Co. USA DR/2000). Nitrate was measured using 

the Cadmium reduction method (Method 8039), with the maximum reading range up to 30 

mg/L NO3
- N. Due to the highly concentrated samples, the dilution step of 1:9 



Chapter 5 

 

171 
 

(sample:deionized water) was applied to all samples and taken into consideration for the final 

calculation. Phosphate was measured with the Ascorbic acid method for reactive phosphorus, 

with the maximum reading range up to 2.5 mg/L PO4
3- (Method 8048). Potassium was 

measured with the Tetraphenylborate method, with the maximum reading range up to 7 mg/l 

K.  

Dissolved organic carbon fraction in soil pore water and leachates was analysed after 

filtration (Whatman, 0.45 µm filter pore size) and acidification of the samples to pH 2, using 

acetic acid. DOC quantification in the samples was performed according to NPOC method 

(non-purgable) with the TOC/TN analyser Analytic Jena AG.  

 

5.4. Statistical analysis  

Data were first analysed for normality and homoscedasticity (with Shapiro-Wilk and Leven’s 

tests, respectively). One-way ANOVA, followed by Dunnett’s test was applied to test the 

differences between un-amended soil and treatments. When the assumption of normality 

failed and the transformation of data could not correct for normality, a Kruskal-Wallis test or 

ANOVA on ranks was performed (Zar, 1996), followed by the Dunn’s test in case of 

significant differences. Ecotoxicity parameters, LOECs and NOECs in E. andrei survival and 

L. minor growth inhibition assays were thereafter derived. Two-way repeated measures 

ANOVA was performed to test for the effects of factors ‘treatment’, ‘time’ and/or their 

interaction, for both endpoints yield of photosynthesis and bait-lamina consumption in 

STEMs. Yield and/or bait-lamina consumption was used as dependent variable, where factor 

time was considered a random factor, while factor treatment was a fixed factor. Statistical 

analysis was done with Sigma Plot software. Effective concentrations in L. minor growth 

inhibition assay, EC20 and EC10, together with 95 % confidence intervals (CI), were calculated 

with nonlinear regression using the logistic equations in STATISTICA 10 software.  

 

5.5. Results  

5.5.1. Screening bioassay: Eisenia andrei survival and body weight 

In the preliminary bioassay earthworms’ survival was not affected when exposed to the tested 

biochar concentrations (Figure S5.1. in Supplementary material). Statistical significance was 
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observed when comparing the weight loss of individuals between the amended and un-

amended soil (one-way ANOVA; Dunnett’s test, p<0.05). This allowed estimating E. andrei 

body weight no observed effect concentrations (NOEC) and lowest observed effect 

concentration (LOEC) as 5% (equivalent to 100 t/ha) and 8% biochar in soil (equivalent to 

160 t/ha), respectively.  

 

5.5.2. Chemical analysis  

Selected chemical characteristics of the soil samples, soil pore water and leachates, as well 

as nutrients in plant tissue at the end of the STEMs experiment are presented in Table 5.2.  

Table 5.2. Chemical characterization of  soil samples, soil pore water and leachates and 
nutrient content in dry Brassica rapa tissue after a six week exposure to soil treatments in 
small scalled terrestrial ecosystems. S-unamended soil, Sf-soil with NPK fertilizer (f), SB-soil 
with biochar,  SBf-soil with biochar and NPK fertilizer(f), SBC -soil amended with biochar-
compost, and SBCf-soil with biochar-compost and NPK fertilizer (f).  

 
Soil samples S Sf SB SBf SBC SBCf 

pH (H2O) 7.1 7.2 7.5 7.4 7.5 7.5 

SOM (g/kg)1 26.4 31.9 30.1 27.9 29.3 28.4 

N total (g/kg) 1.72 1.96 1.80 1.87 1.79 1.90 

N NH4 (mg/kg) 2.50 3.13 2.52 2.19 2.06 2.51 

N NO3
- (mg/kg) 60 115 58 83 76 102 

P2O5 (mg/kg)2 527 576 595 498 593 667 

K2O (mg/kg)2 182 192 245 235 232 390 

Soil pore water       

pH (H2O) 7.8 7.7 8.1 7.3 7.5 7.4 

DOC (mg/L)3 26.1 16.2 51.2 16.7 23.6 50.7 

N NO3
- (mg/L) 98.1 103.5 38.7 67.5 76.5 126 

PO4
3-

 (mg/L) 0.84 1.29 1.04 1.65 0.94 1.45 

K (mg/mL) 15.7 38.4 24.2 32.0 29.5 41.5 

Leachates        

pH (H2O) 7.3 7.1 7.4 7.1 7.2 7.2 

DOC (mg/L)3 17.9 27.5 27.2 19.9 31.9 28.5 

N NO3
- (mg/L) 147.1 152.1 98.1 128.7 128.7 145.8 

PO4
3-

 (mg/L) 0.28 0.31 0.15 0.20 0.08 0.18 

K (mg/mL) 18.6 13.2 23.4 34.5 33.9 45.9 

Plant tissue       

N NO3
- (mg/kg DM)4 4.70 3.80 4.65 3.55 3.70 3.60 

P PO4
3-

 (mg/kg DM) 1.35 1.05 0.90 1.05 1.00 1.20 
1SOM stands for soil organic matter 
2plant available phosphorus and pottasium analyzed with the Egner-Riehm method 
3DOC stands for dissolved organic carbon 
4DM stands for dry matter  
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The pH of soil and treated soil was 7.1 and 7.5 respectively, suggesting only a slight increase 

in the presence of the organic amendments. SOM was varying from 26.4 (the lowest 

measured in S) to 31.9 g/kg (the highest measured in Sf). Total N concentration was the 

highest in Sf and SBCf (1.96 g N/kg and 1.90 N g/kg respectively). Un-amended soil was 

characterized with the lowest total N of 1.72 g/kg. Plant available phosphorus and potassium 

were present at the highest concentrations in the SBCf treatment, 667 mg P/kg and 390 mg 

K/kg respectively, while in the case of nitrate this treatment contained 102 mg/kg as the 

second highest measured concentration after Sf (115 mg/kg). Also, the highest concentration 

of ammoniacal N (3.13 mg/kg) was measured in Sf (Table 5.2.).  

As for the soil pore water pH, values were in the range of 7.3 to 8.1, with SB having the 

highest pH. Somewhat higher DOC levels were measured in SB and SBCf, 51.2 mg/mL and 

50.7 mg/l, respectively. These concentrations are approximately double of those in S and 

SBC, and approximately three-fold larger than those in Sf and SBf (Table 5.2.). Nitrate 

concentrations were in the range of 38.7 to 126 mg/l. Nitrate was present at the highest 

concentrations in soil pore water of SBCf, Sf and S. Phosphate concentrations in soil pore 

water, on the other hand, revealed a different pattern, with the treatments with mineral 

fertilizer (SBf, SBCf and Sf) containing higher levels than those in SB, SBC and S (from 0.84 

to 1.65 mg/L). Potassium concentrations in the soil pore water generally expressed a similar 

pattern to phosphate, with the concentration ranging from 15.7 to 41.5 mg/l (Table 5.2.). 

The soil and amended soil leachates had comparable pH values, ranging from 7.1 to 7.4. 

DOC fluctuations were less contrasting than in the case of soil pore water, ranging from 17.9 

mg/l in S, up to 31.9 mg/L in SBC. Nitrate levels measured in the leachates were also 

comparable between treatments, ranging from 98.1 to 152.1 mg/L. However, like for soil pore 

water samples, there were higher nitrate concentrations in Sf, S, and SBCf, compared to 

SBC, SBf and SB. Phosphate levels were between 0.08 and 0.31 mg/L, and potassium 

between 13.2 and 45.9 mg/L. Phosphate concentration was higher in the leachates without 

the organic amendments (S and Sf). In contrast, SCBf, SBf and SBC had the highest 

potassium concentrations, compared to the remaining treatments (Table 5.2.).  

The contents of nutrients, namely nitrates and phosphates in B. rapa tissue were in the range 

of 3.55 to 4.70 mg/kg of dry weight for nitrates, and 1.00 to 1.35 mg/kg dry weight for 

phosphate (Table 5.2.).  
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5.5.3. STEMs experiment  

Eisenia andrei survival and weight change  

The endpoints obtained for the earthworms at the end of the STEMs experiment regarding 

survival and body weight are presented in Figure 5.1. Although body weight revealed a 

decrease in the treatments, no significant differences were observed in relation to the control 

(Kruskal-Wallis test, p>0.05). Mortality of 15% was recorded in the SB treatment, also with 

the absence of statistical significance (Kruskal-Wallis test, p>0.05). 

 

Figure 5.1. Eisenia andrei survival (expressed as %) and body weight change (expressed as 
average pooled loss of weight in g) when exposed un-amended soil and treatments in 
STEMs. S-unamended soil, Sf-soil with NPK fertilizer (f), SB-soil with biochar, SBf-soil with 
biochar and NPK fertilizer (f), SBC-soil amended with biochar-compost, and SBCf-soil with 
biochar-compost and NPK fertilizer (f). 
 

Bait-lamina consumption  

The bait-laminas evaluated every 12 days during the STEMs experiment (three bait-lamina 

sets in total, from the 5th day until 42nd day) resulted in statistically significant response for the 

factor ’time’ (two-way RM ANOVA, p<0.05), but not for the factor ’treatment’ or their 

interaction (two-way RM ANOVA, p>0.05), as presented in Table S5.1. However, the third 

time (bait-laminas set) was also tested with one-way ANOVA and statistically significant 

difference in consumption was detected between S and SB  (Tukey test, p<0.05; Figure 5.2.).  
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Figure 5.2. Bait-lamina cosumption in STEMs measured over time (expressed as number of 

empty apertures), on three successive sets of bait-laminas in STEMs. Error bars represent 

standard errors of the means. Different lower case italic letters (a, b) indicate significant 

differences for factor ‘time’ (i.e. between the three sets of bait-laminas); uppercase letters 

indicate significant differences for factor ‘time’ within treatments (two-way ANOVA, p<0.05; 

Tukey test, p<0.05); different lower case bold letters (a, b) indicate significant differences only 

within the third set of bait-laminas.  (one-way ANOVA; Tukey test, p<0.05). S-unamended 

soil, Sf-soil with NPK fertilizer (f), SB-soil with biochar,  SBf-soil with biochar and NPK 

fertilizer (f), SBC-soil amended with biochar-compost, and SBCf-soil with biochar-compost 

and NPK fertilizer (f).   

 

Brassica rapa chlorophyll fluorescence, morphological and production traits  

Yield of photosynthesis observed in B. rapa leaves in the third, fourth and fifth weeks was 

significantly reduced both in the fourth and fifth week, compared to the initial measurement at 

the third week (two-way ANOVA, p<0.05), as shown in Table S5.2. Photosynthetic yield 

changes in the treatments over time are shown on Figure 5.3. There was a reduction in 

photosynthetic yield in the treatments  Sf, SBC and SBCf in  week 4, relative to those 

observed in the initial measurement (Tukey posthoc test, p<0.05; Figure 5.3.).  
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Figure 5.3. Brassica rapa maximal quantum yield of PSII (Fv/Fm), as measured in the third, 

fourth and fifth weeks in STEMs. Error bars represent standard errors of the mean. 

Lowercase italic letters indicate significant differences in the yield of photosynthesis for the 

factor ‘time’ (over a three-week period), and uppercase letters indicate significant differences 

for factor ‘time’ within each treatment (Tukey test, p<0.05). S-unamended soil, Sf-soil with 

NPK fertilizer (f), SB-soil with biochar, SBf-soil with biochar and NPK fertilizer (f), SBC-soil 

amended with biochar-compost, and SBCf-soil with biochar-compost and NPK fertilizer (f).   

 

The mean seedlings emergence in the STEMs was between 87.5% and 100%, with 

statistically significant differences (Kruskal-Wallis test, p<0.05; Figure 5.4.). However, a 

pairwise multiple comparison did not reveal specific differences (Dunn's test, p>0.05). The 

morphological traits, namely the ratio root to shoot length (one-way ANOVA, p>0.05), fresh 

weight (one-way ANOVA, p>0.05; Figure 4) and dry weight (Kruskal-Wallis test, p>0.05; 

Figure 5.4.) also did not differ between treatments in a statistically significant manner. Hydric 

content was also similar between the treatments and the control  (Kruskal-Wallis test, p>0.05; 

Figure 5.4.). 
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Figure 5.4. Traits of Brassica rapa exposed for 6 weeks to soils with different tratments in 
Small Scale Terrestrial Ecosystems: emergence, morphological traits (fresh and dry weight 
expressed in mg, root/shoot ratio), hydric content (expressed as %), number of pods, seeds, 
and seeds per pod. Error bars present standard error of the means. Asterisks (*) refer to 
significant difference when compared to the control (un-amended soil, S) (Dunnett’s test, 
p<0.05). S-unamended soil, Sf-soil with NPK fertilizer (f), SB-soil with biochar, SBf-soil with 
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biochar and NPK fertilizer (f), SBC-soil amended with biochar-compost, and SBCf-soil with 
biochar-compost and NPK fertilizer (f). 
 

As for the reproductive yield traits of B. rapa, the number of pods  observed also did not differ 

statistically between un-treated and treated soil (one-way ANOVA, p>0.05; Figure 5.4.). 

Statistically significant difference in the number of seeds was observed for SBCf when 

comparing the treatments with that in un-amended soil (one-way ANOVA, p<0.05; Dunnetts 

test, p <0.05; Figure 4). Expressing number of seeds per pod, a statistical significance was 

obtained for the SBC treatment (one-way ANOVA, p<0.05; Dunnett’s test, p<0.05; Figure 

5.4.). 

 

5.5.4. Lemna minor growth inhibition bioassay  

In the leachate toxicity assessment, the un-amended soil as well as amended treatments 

induced growth inhibition in L. minor, revealing a dose response pattern (Figure 5.5.). Table 

3 presents the estimated EC20 and EC10 values, alongside the LOEC and NOEC, where 

possible for the several dilutions of the leachates. As presented in Figure 5, a slight, but 

statistically significant stimulation of growth was observed at the lowest leachate 

concentration of 12.5% in S, Sf, SBf, and at 25% of the leachate concentration in the case of 

SBCf (one-way ANOVA; Dunnett’s test, p<0.05). The lowest EC20 and EC10 were obtained for 

SBC (EC20=62.7 %, CI 48.0-77.3; EC10=38.9, CI 21.9-55.9), while the least toxic treatments 

revealed similar EC values, Sf (EC20=80.6 %, CI 69.8-91.4; EC10=58.6, CI 42.8-74.4) and SB 

(EC20=78.7 %, CI 68.0 – 89.3; EC10=59.4, CI 44.0-74.8) (Table 5.3.). The dry weight to fresh 

weight ratio (DW/FW) were calculated for L. minor (Figure S5.2. in Supplementary material). 

Statistically significant differences were observed due to the increase in DW/FW ratios in the 

pure leachates (100%) of Sf, SB, SBf, SBC when compared to those in the bioassay controls 

consisting of Steinberg growth medium (ctrl-0) (one-way ANOVA, p<0.05; Dunnett’s test, 

p<0.05).  
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Figure 5.5. Lemna minor growth rate (GR; day-1) and inhibition of growth (Ir; %) as a result of 
a 7day exposure to leachates collected from un-amended soil (S) and amended soil 
treatments (Sf, SB, SBf, SBC, SBCf) from the STEMs experiment. Leachates were diluted to 
12.5%, 25%, 50% and 75% with Steinberg growing medium, which was also used as a test 
control (ctrl-0). 100% represents non-diluted leachate. Error bars represent standard errors of 
the mean. Asterisk (*) refers to significant difference when compared to the control that 
consists of Steinberg medium, ctrl-0 (Dunnett’s test, p<0.05). S-unamended soil, Sf-soil with 
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NPK fertilizer (f), SB-soil with biochar, SBf-soil with biochar and NPK fertilizer (f), SBC-soil 
amended with biochar-compost, and SBCf-soil with biochar-compost and NPK fertilizer (f). 
 

Table 5.3. Effects of leachates on L. minor growth rate. EC20, EC10, LOEC, NOEC 
parameters calculated for un-amended soil leachate (S), and for the treatments leachates (Sf, 
SB, SBf, SBC, SBCf). Values in brackets refer to 95 % confidence intervals. n.d. stands for 
not determined. S-unamended soil, Sf-soil with NPK fertilizer (f), SB-soil with biochar, SBf-soil 
with biochar and NPK fertilizer(f), SBC -soil amended with biochar-compost, and SBCf-soil 
with biochar-compost and NPK fertilizer (f). 
 

Growth rate   S Sf SB SBf SBC SBCf 

EC20 

 

68.5 

(48.1- 88.9) 

80.6 

(69.8 - 91.4) 

78.7 

(68.0 - 89.3) 

68.5 

(48.1 - 89.0) 

62.7 

(48.0 – 77.3) 

77.1 

(66.4 - 88.9) 

EC10 

 

44.1 

(18.7 - 69.5) 

58.6 

(42.8 - 74.4) 

59.4 

(44.0 - 74.8) 

44.1 

(18.7- 69.5) 

38.9 

(21.9 – 55.9) 

55.5 

(40.3 – 70.7) 

NOEC  n.d. n.d. 25 n.d. 25 n.d. 

LOEC n.d. n.d. 50 n.d. 50 n.d. 

 
 

5.6. Discussion  

5.6.1. STEMs: Responses of Eisenia andrei, bait-lamina consumption and Brassica 

rapa  

The levels of pH in the amended soil were higher than in the un-amended soil, as expected 

due to the alkaline pH of the biochar. This is in accordance with the reported pH in the 

biochar amended soils (Major et al., 2010; Buecker et al., 2016; Jeffery et al., 2017). 

Nevertheless, already being alkaline, the pH of the soil increased only up to 0.4 units in the 

amended treatments, which can be attributed to the high buffering capacity of the soil used in 

our study (Gonzaga et al., 2018).  

Regarding nutrients, the highest concentrations of the analysed compounds in the solid 

samples, such as total and ammoniacal nitrogen, were present in the treatment Sf, followed 

by SBCf. Also, SBCf contained high initial input of N and P due to the high levels of this 

compounds in biochar-compost. Even though SBf sample contained the same amount of 

NPK alongside with biochar-introduced nutrients, the measured concentration of nitrate was 

lower in Sf.  

Woodchip biochar was chosen in the present study mainly due to its chemical properties, 

such as the low concentrations of potentially toxic elements, which are within or lower than 
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the benchmark concentrations proposed by the two international voluntary quality standards: 

‘European Biochar Certificate’ (EBC, 2012), and International Biochar Initiative ’Standardized 

product definition and product testing guidelines for biochar that is used in soil (IBI, 2015). 

The fact that there was no mortality at the end of the screening bioassay with E. andrei, and 

that the NOEC and LOEC were obtained for body weight as a sublethal endpoint, indicated 

the adequacy of the chosen woodchip biochar for the higher tier biochar assessment 

approach in STEMs. Moreover, the obtained NOEC of 5% biochar, allowed for choosing a 

lower test concentration, 2% w/w (equivalent to 40 t/ha application rate) in the follow-up 

experiment. 

Thereafter, using the STEM procedures, at the concentration of 2% w/w in STEMs, none of 

the differences in earthworm survival and weight loss in STEMs were statistically significant. 

Absence of significant differences in body weight of E. andrei has also been reported in soil 

containing wood-waste biochar in STEMs (Amaro et al., 2016). Significant drop in the bait-

lamina consumption occurred in the last, third set of bait-laminas. The lowest observed 

statistically significant bait-lamina consumption in the SB treatment might be linked with the 

incidence of earthworms’ mortality in this treatment, as the earthworm community decreased. 

One of the possibilities is also that bait-lamina consumption could be, to some extent, 

affected by reduction in nitrogen availability in biochar amended soil. That might be a 

consequence of reduced nitrogen mineralization and microbial biomass carbon, as reported 

for coarse-textured agricultural soil (Dempster et al., 2012). Interaction processes between 

plants, earthworms and microbial community over 42 days might have altered the bait-lamina 

consumption, yet there is a demand for further research to investigate the possible links. Up 

to date it has been reported that higher wood biochar application rates than the one used in 

the current study caused more pronounced effects on soil organisms. Wood biochar applied 

at 10 % w/w caused a reproduction drop in Folsomia candida by 38 %, higher than the effect 

of rice husk that caused 27 % reduction (Bielska et al., 2018). The effects of slow pyrolysis 

pinewood biochar to edaphic organisms reported by Marks et al. (2014), ranged from 

stimulation of Folsomia candida reproduction, to no effect on the Enchytraeus crypticus, at 

biochar concentration in soil up to 50% w/w (Marks et al., 2014).  

Brassica rapa responded differently to the amended soil, demonstrating variation in sensitivity 

depending on the endpoints. An over-time decrease in the maximum quantum yield (Fv/Fm) 

coincides with B. rapa life cycle stage as in this period plants started developing flower buds, 
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and afterwards, the last photosynthesis yield reading overlapped with the phase of pods and 

seeds development. This means that this possible drop in quantum yield was a consequence 

of allocation of energy from the leaves (Pavlovic et al., 2014; Poorter and Nigel, 2000). It is 

thus, less probable that this over time decrease can be attributed to some other stress 

condition arising from the test substrates. Therefore, this may be rather due to the plants’ life 

development stage and the fact that they were subjected to a photoperiod regime instead to 

the constant light supply (Poorter and Nigel, 2000), as recommended by Williams (1989) and 

by the seeds supplier for the optimum performance. The nutrient contents measured in dry 

plant tissue did not reveal any pattern that could be explained as an alteration in the 

availability or uptake of nutrients. Hydric content was not changed, indicating absence of 

stress conditions for the plants. Regarding the morphological traits in B. rapa, they were 

characterised with high variability, consequently resulting in the absence of detected 

statistical significance. However, the increase in biomass was notable. Furthermore, the 

significant difference in the reproductive traits of B. rapa, namely the highest mean seeds 

number in SBCf, coincide with the overall higher concentrations of nitrates, phosphates and 

potassium in the solid sample, but also in the corresponding soil pore water extract that is 

representing plants available nutrient concentrations. The trend of higher soil pore water 

nutrients levels can be observed in the SBCf primarily due to the measured concentrations of 

nitrate and potassium, but also of the phosphate.  

 

5.6.2. Leachates from STEMs: Responses of Lemna minor  

Leachates from the STEMs experiment, as expected according to the initial soil, biochar 

biochar-compost physicochemical properties, were not highly toxic to L. minor, thus resulting 

in the absence of estimated EC50s. Therefore, for a mechanistic understanding of the toxicity 

of biochar-based amendments and fertilizer applications, a thorough characterization of 

leachates, and of the DOC fraction itself would be important for future work. The most 

pronounced growth inhibition in L. minor occurred in the exposure to SBC leachate, while the 

EC20s and EC10s obtained for the other treatments were not substantially different, particularly 

in S and SBf. Additionally, the significant increase in dry weight to wet weight ratios is an 

indication of the stress occurrence. This ratio is shown to be a relevant endpoint, as it can be 

elevated due to bioaccumulation of contaminants, causing changes in hydric content and, 

consequently, the inhibition of growth (Radic et al., 2009). Sensitivity of L. minor when 
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exposed to leachates showed that the amendments applied at 2 % w/w or 40 t/ha might 

cause changes in the water macrophyte growth dynamics. To the best of our knowledge, the 

present study is the first to report the effects of biochar-based amendment and fertilizer 

applications on this aquatic macrophyte. Whether it is a stimulation or inhibition of growth, 

these contrasting outcomes might both trigger a misbalance in an aquatic ecosystem. 

Possible projection would be that in the case of higher availability of nutrients, an invasive 

species might start competing for them, as it was shown for L. minor and the invasive species 

L. minuta, under a certain combination of environmental factors and nutrients (Paolacci et al., 

2016).    

In general terms, it is becoming increasingly clear that biochar application to soil for improving 

soil agronomic properties will soon be in the form of biochar-compost or mineral fertilizer 

mixtures (Schulz et al., 2012; Glaser and Birk, 2013; Hagemann et al., 2017). Moreover, 

biochar and biochar-based amendments are also in attention in the context of carbon 

sequestration. On the other side, a recently reported study has been estimated that dissolved 

charcoal (i.e. dissolved black carbon, DBC, from forest fires) contributes to the riverine 

dissolved organic matter (DOC) flux, with around 10% on a global scale. Jaffe and authors 

argued that there is a link in the processes of DOC and DBC release involving 

sorption/desorption, hydrophobic interactions, suggesting that biochar-amended sites might 

become another significant source of DBC (Jaffe et al., 2013). The current work proposes an 

environmentally relevant approach in studying potential ecotoxicological effects of biochar 

and biochar-based amendments, or their mixtures, in order to bridge the gap between 

laboratory and filed studies. Increased environmental relevance in the demonstrated indoor 

mesocosms experiment was achieved through extended duration of the experiment to six 

weeks, and through combination of the plant and earthworm species known for their 

interactions in soil, which together allowed obtaining the endpoints from the individual 

(earthworms weight) to functional (bait-lamina feeding) and population level (full plant cycle – 

reproduction traits). Moreover, the experimental design allowed for testing both soil and 

aquatic component.  
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5.7. Conclusions 

Low to no effects on earthworms and plants indicate that habitat function of soil was not 

affected with 40 t/ha of biochar and biochar-compost, alone and mixed with mineral fertilizer 

at recommended doses. Bait-lamina consumption was sensitive in differentiating the 

unamended from the biochar-amended soil over time, therefore being a useful tool in 

complementary ecotoxicological evaluation of woodchip biochar. The sensitivity of L. minor 

growth to the tested leachates emphasizes this bioassay as a promising tool in direct 

assessment of retention function and leaching potential of soils that are receiving additional 

input of biochar-based amendments and/or their combinations with conventional fertilizers. 

More advancements are, however, necessary for thorough understanding of these 

processes. In practical terms, a detailed characterization of the leachates would provide more 

information about the mechanisms behind the impact of such complex mixtures to the aquatic 

ecosystem. The evaluation of biochar and biochar-based amendments on case-by-case 

bases is essential for comprehensive understanding and matching of their properties with 

those of soil and with the application context.  
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5.9. Supplementary Information  

 

Figure S5.1. Body weight changes of E. andrei expressed as average loss of weight (in g) 
when exposed to a range of biochar concentrations (%, w/w). “0%” concentration refers to un-
amended soil (control). Error bars represent standard errors of the means. Asterisk (*) refers 
to significant differences when compared to un-amended control. NOEC stands for no-
observed effect concentration, LOEC for lowest observed effect concentration (Dunnett’s test, 
p>0.05). 
 

 

 

Figure S5.2. Lemna minor dry weight:fresh weight ratios (DW/FW) as a result of exposure to 
the leachates of un-amended soil (S) and amended soil treatments (Sf, SB, SBf, SBC, SBCf) 
from the STEMs experiment. Leachates were diluted to 12.5 %, 25 %, 50 % and 75% with 
Steinberg growing medium, which was also used as a control (ctrl-0) during the 7-days 
exposure. Concentration of 100% represents non-diluted leachate. Error bars represent 
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standard errors of the mean. Asterisk (*) refers to significant difference when different 
leachate concentrations are compared to the control that consists of Steinberg medium, ctrl-0 
(Dunnett’s test, p<0.05).  
 
 
Table S5.1 . Two-way RM ANOVA output table for the effects of treatments on bait-lamina 

consumption in STEMs. Asterisk (*) indicates statistically significant differences (p<0.01). 

 

Source of Variation DF  SS   MS    F  p 

Bait-lamina consumption      

Time (bait-lamina sets) 2 75.06 37.53 7.429 0.002* 

Treatment 5 67.09 13.42 2.500 0.069 

Time x treatment 10 84.47 8.647 1.712 0.116 

 

 

Table S5.2. Two-way RM ANOVA output table for the measured yield of photosythesis in 
Brassica rapa plants. Asterisk (*) indicates statistically significant differences (p<0.001). 

  

Source of Variation DF SS  MS    F    p  

Photosynthesis yield      

Treatment 5 0.044 0.009 0.851 0.532 

Time (weeks) 2 0.268 0.134 15.68 <0.001* 

Treatment x time 10 0.032 0.003 0.369 0.952 
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6.1.  General discussion  

The main outcomes of the work carried out in this doctoral thesis are discussed in the current 

section, by summarising and integrating the main findings, alongside the study limitations, 

major conclusions and future research directions. The effects of woodchip biochar on soil biota 

were explored in different experimental contexts that combine multiple test organisms and 

structural and functional endpoints, splitting the work into four sections (Chapters 2-5).  

 

6.1.1. Overall methodology 

Biochar’s increased attention in recent years is evident through the expansion of research in 

various fields of biochar applications. The main biochar research literature has been 

summarised by meta-analyses-based quantitative reviews, such as those on biochar effects 

on crop yield (Jeffery et al., 2011; Jeffery et al., 2017), tree growth responses (Thomas and 

Gale, 2015), root traits (Xiang et al., 2017), available inorganic nitrogen (Nguyen et al., 2017), 

decomposition and priming effects (Wang et al., 2016), nitrous oxide emissions (Cayuela et al., 

2013), methane emissions (Jeffery et al., 2016),  as well as by qualitative reviews on biochar 

effects on soil biota (Lehmann et al., 2011; Ameloot et al., 2013), particularly earthworms  

(Weyers and Spokas, 2011). More recent reviews have analysed the required level of scientific 

understanding for sustainable biochar application (Tammeorg et al., 2016), biochar as a source 

versus a sink of potentially toxic elements (Hilber et al., 2017), and compost improvement with 

biochar for agriculture (Godlewska et al., 2017).  

Nevertheless, bioavailability and fate of biochar contaminants by means of effects on soil and 

aquatic biota is not well understood. Biochar-soil interactions depend on the biochar feedstock 

characteristics, pyrolysis/processing conditions, but also on the properties of the soil to which 

biochar is applied and overall environmental factors, as discussed in more detail in Chapter 1. 

For example, biochar can contribute to remediation of contaminated soil, in contrast to a 

possibility of becoming a source of contaminants itself in the course of time (Hilber et al., 2017). 

Bioavailability of biochar-contained contaminants, sub-lethal effects on edaphic and aquatic 

organisms, species interactions and functional redundancy, using representative experimental 

designs are stated as some of the most important gaps to be addressed in biochar research 

field (Tammeorg et al., 2017).  
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This work is expected to contribute to the aforementioned knowledge gaps by studying the 

impact of selected slow pyrolysis woodchip biochar on biota, using an integrative effects based 

approach and considering: (1) the biological scale (e.g. biochemical responses; behavioural 

responses, survival, reproduction, etc.); (2) spatial scale (e.g. from standardized bioassays 

under laboratory conditions, to the assessment in multispecies microcosms, up to higher tier 

assessment with indoor mesocosms); (3) time scale (in biomonitoring of freshly amended and 

field-aged amended soils with biochar and biochar-compost); and (4) environmental scale (by 

testing both terrestrial and aquatic components of biochar amended soil). Each experimental 

section investigated a set of specific research questions, while including the scaling, in order 

to obtain data sets that are complementary, thus ecologically relevant. In general, it was 

designed to start with an evaluation of single species bioassays, using standardized and/or 

established methodologies (Chapter 2, partially Chapter 3), for ecotoxicological 

characterization of the biochar substrates, representing a base for further experiments by 

selecting suitable biochar application rates, moisture adjustments and incubation period of 

biochar-amended soil. Further, the evaluation was carried out with multispecies test 

approaches (Chapter 4), within which the experimental designs also allowed for addressing a 

mechanistic effect of biochar on biota (Chapters 3 and 4). The final experimental section 

represents a higher-tier approach, as a way of bridging the gap from laboratory to field, to 

enhance ecological and environmental relevance (Chapter 5).  

 

6.1.2 Summary of results 

Chapter 2 presents biochar and biochar-compost effects on survival and reproduction of 

Folsomia candida and food consumption and biomass change of Porcellionides pruinosus, 

using as a case study a commercial vineyard in Central Portugal. Un-irrigated commercial 

vineyards could benefit from the amendments, mostly due to potential increase in water 

retention and additional organic matter input. However, the effects of these amendments to soil 

dwelling organisms are not fully understood, particularly in the long-term.  Besides, vineyard 

soil is exposed to additional pressure due to application of conventional pesticides. In this study 

we evaluated the effects of fresh and 18 months field-aged biochar and biochar-compost, while 

complementing the ecotoxicological laboratory bioassays with soil chemical analysis, and the 

theoretical/predicted exposure and risk assessment of the pesticides applied in the vineyard 

during the study. The ecotoxicological response to the tested biochar and biochar-compost 
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enriched vineyard soil was species specific, time-dependent, and to some extent, treatment-

dependent. The most sensitive endpoint obtained in the study was collembolan reproduction 

output. Freshly-amended soil did not induce significant changes on organisms’ performance. 

Isopods were stimulated in the freshly amended soil, and the results indicate possibility that 

they are using biochar and biochar-compost as a source of food. However, the organisms’ 

fitness was reduced when exposed to the soil and amended-soil from the second sampling 

event, which was subjected to various climatic factors and conventional pesticides. Estimated 

risk quotients for some of the pesticides were elevated. The results suggest that the 

bioavailability of potentially toxic compounds like pesticides, might not be prevented over time 

by the presence of biochar and biochar-compost in the vineyards that receive conventional 

plant protection products, as often is suggested as one of biochar capabilities. Our findings can 

contribute in further understanding of long-term effects of biochar and biochar-compost on 

representative soil organisms. Specifically, the indications of P. pruinosus feeding behaviour in 

amended soil are in the line with those of Madžarić et al. (2018), the only available study up to 

date, who showed that terrestrial isopods P. scaber feed on biochar. 

Chapter 3 addresses the potential inherent toxicity of biochar particles on soil and aquatic 

biota, as influenced by particle sizes and application rates. Pine woodchip biochar was 

incorporated in a clean soil at three particle size classes: small (<0.5 mm), medium (1-2 mm), 

and large (<4 mm), and at two concentrations: 1 % and 6 % (w/w). A first screening to study 

the most adequate soil-biochar equilibration period was carried out by using avoidance 

behaviour of Eisenia andrei. A follow-up 28-days microcosm experiment was conducted in a 

greenhouse and survival, vertical distribution and weight changes of E. andrei, and fauna 

feeding activity (bait-lamina) were recorded. Soil leachates from the microcosms were collected 

at the end of the greenhouse experiment to assess their effects on Daphnia magna 

immobilisation and Vibrio fischeri bioluminescence. Feeding experiments with E. andrei were 

also performed to address changes in body mass and to conduct a screening of PAHs/PAH-

type metabolites in earthworms’ tissue. The 6% <0.5 mm treatment induced significant 

avoidance behaviour of earthworms in the laboratory bioassays when incubated for 96 h. Pre-

incubation of 96h was therefore used in the greenhouse microcosms experiment. The results 

showed that smaller particles (<0.5 mm) of woodchip biochar might pose sub-lethal toxicity to 

soil biota suggesting that there is a connection in behavioural (avoidance), individual (weight 
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changes, Nap-type metabolites in earthworms’ tissue) and functional (bait-lamina consumption) 

endpoints. 

Chapter 4 presents the laboratory experiment on the activity assessment of three soil enzymes 

(dehydrogenase, urease and ß-glucosidase) in the unamended soil and 1.5% biochar-

amended soil over five sampling events during 56-days. This was carried out in microcosms 

consisting of single species treatments (E. andrei or P. pruinosus), combined species 

treatments (E. andrei and P. pruinosus), and in those without organisms. Besides, a multi-

biomarker approach was applied to E. andrei exposed to unamended soil and biochar amended 

soil (from 1) in the presence and/or absence of P. pruinosus. Enzymatic activities in biochar 

amended soil showed time-dependency. In the absence of animals, dehydrogenase and ß-

glucosidase reduction and even inhibition was observed. In the treatments with animals, the 

responses of ß-glucosidase were species-dependent with stimulations in the biochar-amended 

soil in the presence of isopods. Urease activity also showed dominance of species as a factor, 

namely isopods, but mostly in soil without biochar. Dehydrogenase activity showed significant 

fluctuations only in the third week of sampling. This response was treatment-driven in the single 

species microcosms, meaning that it was reduced in biochar-amended soil. However, it is 

interesting that this pattern was not observed when both species were present. While the body 

mass and reproduction of E. andrei were not affected, toxicity biomarkers in earthworms 

revealed occurrence of lipid peroxidation and cellular energy allocation in response to biochar.  

The final experiment conducted in the study (Chapter 5) utilized a higher-tier approach, 

analogous to those recommended for pesticide risk assessment (Santos et al., 2011), and also 

for biochar-amended soil testing (Amaro et al., 2016). The study duration was extended to 42 

days in order to obtain the full life cycle of plants, with an additional testing of leachates from 

the soil columns at the end of the 42 days-experiment. Impact of biochar, biochar-compost, 

NPK-based mineral fertilizer and their combinations on biota, while added to natural agricultural 

soil at relevant application rates was investigated in indoor mesocosms. The experiments were 

carried out in two phases. First was the six week-experiment where the effects of soils 

amendments on Eisenia andrei, rapid-cycling Brassica rapa and fauna feeding were evaluated 

in a small-scale terrestrial ecosystem study (STEMs). Second was the potential toxicity study 

of the amended soil leachates from the STEMs on Lemna minor. Applied amendments had low 

to no-effects on earthworms. In general, the plants’ biomass even stimulated in the treatments 

of biochar-compost with mineral fertilizer, did not respond in a statistically significant manner. 
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Amongst the production characteristics of B. rapa, the number of seeds and mean number of 

seeds per pod increased significantly in the treatments of biochar-compost combined with 

mineral fertilizer and biochar-compost, respectively. The aquatic component testing the lowest 

EC20 and EC10 were obtained in the leachate of soil with biochar-compost. Significantly 

increased dry to fresh weight ratios in L. minor were observed, even though the intensity of the 

response was not high. Here a possibility of leaching stimulation (e.g. of nutrients, and/or 

potentially toxic compounds in mixture) may not be excluded, and consequently a hazard to 

aquatic systems. Nevertheless, this demands further research. The sensitivity of the responses 

observed with different functional groups indicate that STEMs methodology is an adequate 

higher tier approach for ecotoxicological assessment of biochar- based amendments. 

 

6.1.3. Practical outcomes 

The direct risk on representative organisms associated with application of the woodchip biochar 

used in this study was low. Regarding the application rate, the recommendation for this biochar 

might be <2% (equivalent to around 40 t/ha maximum, in the case of a 15 cm topsoil application 

and soil bulk density of 1.3 g/cm3). However, direct risks might also be linked with effects of the 

woodchip biochar application, in combination with conventional pesticides, in which case 

neither the biochar or biochar mixed with compost should be used in the arable soils by farmers, 

as the long-term effects of the mixtures are not at the required level of understanding yet. 

EBC/IBI certifications are currently primarily based on biochar properties, i.e. without providing 

a guidance regarding the application rates. Although EBC gives a reference of 40 t/ha in 100 

years period in the context of PAHs benchmarks set by this guideline (4 mg/kg dry matter, or 

12 mg/kg dry matter), any environmental factors and risks associated to bioavailability were not 

taken into account up to date (EBC, 2012; IBI, 2016). Considering biochar particle sizes, before 

any recommendation on the safe biochar application can be issued based on ecotoxicological 

characterizations of biochars, the currently available biochar quality guidelines, such as EBC 

(V6.2, last reviewed in 2016) and IBI (V2.1, last reviewed in 2015) should be supplemented 

with effects-based approaches that address different representative organisms and biochar 

particle sizes  required for the producers, as was already recommended within IBI (2016).   
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6.2. Limitations of the study 

Bearing in mind that ’biochar’ includes a diverse and physicochemically heterogenous group of 

materials, the universality of the inferences drawn from the research carried out in this doctoral 

thesis need to be confirmed in further research, through a case by case evaluation. Similar 

rationale should be applied in the case of soil diversity and heterogeneity, e.g. in terms of 

climate temperate versus tropical.  

In Chapter 2 the main limitation was related to the lack of an adequate reference soil with similar 

characteristics as the treated soil, but exempted from pesticide treatment. The experimental 

field site was located within a large area under intensive agricultural management and it was 

not feasible to find similar soil without recent/historic pesticide treatment. This is why the 

decision was made to sample the vineyards soil immediately before biochar/biochar-compost 

were applied and before the pesticide application season started, and to apply the fresh 

amendments to soil in the laboratory. Another reason for this is that the freshly amended plots 

would be disturbed by extracting large amounts of amended topsoil, which could cause issues 

regarding the use and reporting the accurate amount of biochar bearing in mind that 18 month 

sampling time was planned for the ecotoxicological assessment.  

The relatively low number of replicates (4 to 6) is the main drawback of the microcosms study 

in the greenhouse (Chapter 3) and of the mesocosms study in the laboratory (STEMs) (Chapter 

5). Reasons for this include the high amount of soil needed for the experiments,  limited space 

in laboratory and reduced number of available carts, in the case of the STEMs study. 

Consequently, relatively low amounts of dry plant material, soil/amended soil pore water 

extracts and leachates in the latter experiment were limiting factors for the replication in 

nutrients measurements of the samples. Increasing the number of replicates could overcome 

the issue of high variability among the replicates, but also assure  the higher available 

amounts/aliquots of samples for the chemical analysis.  

 

6.3. Main conclusions and directions for future work  

The work conducted in this PhD thesis shows that slow pyrolysis woodchip biochar did not 

induce strong adverse effects on the tested organisms, and the responses varied from sublethal 

to neutral and/or stimulatory. The responses of representative model organisms were to some 

extent species-specific, and application rate- and/or treatment- dependent. It is worth 
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remembering that the biochar used in the study contains relatively low concentrations of the 

potentially toxic elements (metals, PAHs, PCBs, etc.), as expected for wood biochars produced 

under highly controlled conditions, including degassing. It is, thus considered of premium 

quality and therefore, safe according to the EBC quality standards (EBC, 2016). Nevertheless, 

the observed sublethal effects of the woodchip biochar on organisms reflect bioavailability of 

the whole matrix as a mixture of potentially toxic compounds. under certain physicochemical 

characteristics (e.g. particle size), including application rate, exposure route, soil/environmental 

combinations, and/or biochar ageing processes.  

The approach used in this thesis highlights the importance of a case-by-case biochar 

assessment, by means of avoiding contaminants while taking into consideration the overall 

context of the specific application, such as environmental conditions and/or site-specific 

pesticide management practices in arable soils (Chapter 2). Due to sensitivity of F. candida 

reproduction and P. pruinosus feeding and body mass obtained in the bioassays, the 

ecotoxicological evaluation in the laboratory can be recommended as a useful biomonitoring 

tools for biochar/biochar-compost field application. Care should be taken in the case of intended 

use of biochar and biochar-based amendments in arable soil that is receiving conventional 

pesticide treatments. The questions of biochar ageing in soil, sorption/desorption capacity of 

biochars related to pesticides and other emerging contaminants and to biochar-bound 

contaminants, as well as the effects of environmental factors on these processes, remain to be 

addressed in more detail. Long-term field and laboratory studies are generally lacking in the 

assessment of biochar effect to non-target organisms. Soil invertebrate community studies in 

biochar-amended field sites as part of soil screening or ecological surveys are still scarce, to 

the best of our knowledge.  

This study shows that for a comprehensive understanding of biochar effects on biota it is 

paramount to evaluate various endpoints, exposure routes and levels of biological organisation, 

under representative exposure scenarios. This is well-demonstrated in the experiment in 

Chapter 3, where the resulting response pattern revealed sub-lethal effects of small biochar 

particles. The obtained result emphasises the importance of evaluating the bioavailable fraction 

of biochar-bound contaminants coupled to the assessment of total concentrations in biochar. 

The reported consistency in responses and in addition to that, using time- (fixed fluorescence, 

avoidance) and cost-effective techniques (bait-lamina consumption, fixed fluorescence), open 

the possibility of integration of such bioassays as routine procedures in biochar quality 
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standards (Chapter 3). There is an urge to include more effect-based approaches using 

different organisms, to complement the physicochemical analysis in the assessment of biochar 

within the existing quality standards (EBC, 2012; IBI, 2016), as so far only IBI is recommending 

the use of germination inhibition bioassay with the reference to OECD (1984) with three plant 

species (IBI, 2016)  

Although the biomarkers showed to be sensitive in evaluating earthworm responses, and 

generally can offer a large set of information in a short time, their broader practical use within 

quality guidelines might be limited due to high costs (Chapter 4). Biomarker approaches can 

be used as an early warning signs and are promising tools in biochar ecotoxicity studies for 

understanding the mechanism behind the earthworm responses to biochar-amended soil.  

The soil/amended soil enzymatic activity results (Chapter 4) highlighted the relevance of 

considering the species interactions when evaluating the quality of biochar-enriched soil. It 

offers robust information output not only on the effects of biochar on soil quality, but also on the 

role of representative soil organisms in modifications of these effects. This is the first study to 

address isopod and earthworm interactions in biochar-amended soil, and it is a useful base for 

further research in this field.    

In technical terms it is important to mention that this work can also contribute to the practical 

side of the use of ecotoxicity bioassays in biochar assessment, like complementing the lack of 

information on the soil-biochar pre-incubation duration (namely for pH equilibration) prior to 

exposure of animals in the chronic bioassay, for example. Besides the pH measurement, 

performing avoidance behaviour bioassay with amended soils incubated for different periods 

of time is recommended, as it is specific for the soil-biochar combination used, as demonstrated 

in Chapter 3. Also, prior to testing ranges of concentrations/application rates of a biochar 

following ecotoxicological guidelines, it is necessary to determine water holding capacity 

(WHC) for each one of them separately due to biochar’s potential to retain moisture, when 

freshly applied to soil.  This is normally not the case in ecotoxicological tests of chemicals, for 

which no significant changes in soil moisture are expected to occur after spiking the soil with 

the test substance.  

Increased ecological relevance within the STEMs study (Chapter 5) was achieved through 

extended duration of the experiment to six weeks, and through combination of the plant and 

earthworm species known for their interactions in soil, which together allowed obtaining the 
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endpoints from the individual (earthworms weight) to functional (bait-lamina feeding) and 

population level (full plant cycle – reproduction traits), while also testing the aquatic component 

as leachates from the mesocosms. The approach proposed in the STEMs study serves in 

bridging the gap between laboratory and filed studies. Possible risks of increased organic 

carbon, or nutrients, and/or potentially toxic compounds and mixtures in the water bodies 

remain as a recommendation for additional investigation in the context of biochar-based 

amendments, being mandatory within the criteria of sustainable biochar application to soil. 

Aquatic bioassays are already taking its place in biochar literature, being an important source 

of information on the leaching potential of the contaminants from biochar, of their bioavailability 

in soil pore water, but also on the impact of biochar application to aquatic ecosystems. Lack of 

standardisation in leaching procedure and/or elutriate extractions from biochar-amended soils 

in general, is a limitation encountered during the work (Chapters 3 and 5 on leachates 

production and use in aquatic bioassays). Efforts within the scientific community towards 

development of such procedures would increase the confidence in results comparability 

between studies (e.g. within ring trials or inter-laboratory tests). Moreover, it would contribute 

to reproducibility, and consequently to easier integration of aquatic bioassays to biochar 

assessment quality guidelines. Additionally, chronic exposure assessments are necessary for 

better understanding of biochar particles’ mobility and potential risk to aquatic ecosystems. 

Besides there are still fewer available aquatic toxicity studies when compared to terrestrial ones 

in general, a research on effects of biochar or biochar-based amendments on sediment 

dwelling organisms has not been reported yet. Laboratory simulations to study representative 

conditions of temperate climate regions, such as taking into account soil freezing and thawing 

cycles, soil wetting and drying, temperature and conductivity fluctuations in the context of 

climate changes are also scarce. In order to explore this in the future research, a detailed 

characterization of the elutriates, leachates and/or aqueous extracts would provide more 

information about the mechanisms behind the impact of such complex mixtures to the aquatic 

ecosystem.  
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