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resumo 
 

 

Numa altura em que a Inovação é vista como um dos motores principais para o 
crescimento económico regional, este trabalho visa avaliar a eficiência da 
inovação de 104 regiões (NUT-II) da União Europeia de 2006 a 2012. Desta 
forma, o estudo cria um ranking das regiões mais eficientes baseado em 
indicadores de inovação e procura perceber quais os fatores que estão na 
origem desses resultados do ranking. Por outro lado, também a crise financeira 
global de 2008 veio abalar todas as perspetivas de crescimento sustentado para 
a Europa pelo que o impacto da mesma na Inovação e eficiência das regiões é 
tido em conta. Para isso foi utilizada a metodologia DEA, numa primeira fase 
para determinar os níveis de eficiência encontrados e scoring das regiões, e 
numa segunda abordagem a utilização das metodologias PCSE e GMM, para 
analisar os fatores que influenciam a eficiência da inovação medida pelo 
indicador proposto. Os resultados obtidos revelam grandes disparidades entre 
regiões, nomeadamente devido à crise, sendo que as regiões mais eficientes 
pertencem à Roménia, Bélgica e Bulgária. Os resultados apontam ainda para os 
recursos humanos como sendo o fator mais significativo para a evolução positiva 
da eficiência de Inovação. 
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Abstract 

 
At a time when Innovation is seen as one of the main drivers of regional economic 
growth, this study aims to assess the efficiency of innovation of 104 regions 
(NUT-II) of the European Union from 2006 to 2012. In this way, the study creates 
a ranking of the most efficient regions based on innovation indicators and seeks 
to understand what factors are at the origin of these ranking results. On the other 
hand, the global financial crisis of 2008 has also shaken all prospects of 
sustained growth for Europe, so the impact of the crisis on Innovation and 
efficiency of the regions is taken into account. For this purpose, the DEA 
methodology was used in a first phase to determine the levels of efficiency found 
and scoring of the regions, and in a second approach the use of the PCSE and 
GMM methodologies to analyse the factors that influence the efficiency of the 
innovation measured by the proposed indicator. The results show large 
disparities between regions, namely due to the crisis, with the most efficient 
regions being Romania, Belgium and Bulgaria. The results also point to human 
resources as being the most significant factor for the positive evolution of 
Innovation Efficiency.  
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1. Introduction, Context and Motivation 
 

1.1. Introduction 

Globalisation and regionalisation are a major challenge for European economies. 

Simultaneously, the key goal of these economies is to bridge the gap between regions 

in socio-economic terms and concerning efficiency, namely through the specialisation of 

European regions (Zabala-Iturriagagoitia, Voigt, Gutiérrez-Gracia, & Jiménez-Sáez, 

2007). 

Since the beginning of the 21st century, innovation has been considered one of 

the main sources of economic growth and dynamism. Globalization, phenomenon linked 

to technology and innovation, goes beyond national borders, with new concepts such as 

regional systems of innovation. Such concepts are a fundamental part of the industrial 

and economic development of regions (Doloreux, 2002; Patra & Krishna, 2015). 

Regions create and accumulate knowledge and new ideas and this is a key 

source of value for advantage over other regions. Regions are networks, sharing and 

disseminating knowledge through other regions, including firms and institutions, 

(Doloreux, 2002). On the other hand, regions have different abilities to innovate and 

accumulate technology, hence disparities between regions emerge more visibly with the 

globalization process (Han, Asmild, & Kunc, 2016). Patra and Krishna (2015) argue that 

there should be communication between governments, universities and industry and 

even between firms. The Regional System of Innovation (RSI) was created for this 

purpose. According to Natário, Braga, Couto and Tiago (2012) the RSI is an adaptation 

of the National System of Innovation (NSI), but in regional terms. Nation-wide policies 

are thus adapted to the regional scope, where there is more proximity between the 

various players of innovation (firms, universities and institutions). Asheim, Smith and 

Oughton (2011) argue that the RSI was created because of the disparities between 

regions and also because innovation is regarded as a source of competitive advantage. 

Furthermore, the scarcity of natural resources, or the excessive use of natural 

resources is one of the main challenges for modern societies. It becomes increasingly 

necessary to seek solutions to produce more with the same resources, or to produce the 

same with lower levels of resources. 

In addition, innovation activities may have been affected by the most recent 

financial crisis, particularly in less developed regions. Subsequently to the global 

financial crisis of 2008, the interest in the reaction of regions to economic shocks has 

increased, especially concerning the identification of the factors originating different 
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reactions among regions. According to Crescenzi, Luca and Milio (2016) and 

Lagravinese (2015), the regional resistance to economic shocks and the ability to recover 

after financial crisis are the main factors behind the heterogeneity across European 

regions. 

 

1.2. Contextual setting and motivation 

The truth is, based on the Eurostat report (2017), the medium and long-term 

effects of the crisis regarding regional GDP per capita are quite disparate. However, 

Eastern regions such as Poland, Romania and Slovakia have recovered faster, possibly 

because they were less affected. On the other hand, less industrialized and less 

populated regions kept their GDP unchanged. Also, competitive regions with industrial 

and scientific production and high-technology manufacture are those with higher growth 

rates in the post-crisis period (Statistical Office of the European Communities, 2017). 

Regarding innovation performance and its components, the Eurostat 2017 

annual study (Statistical Office of the European Communities, 2017) shows that the 

higher levels of R&D expenditures, number of researchers and Human Resources in 

Science and Technology (HRST) are found in capital city regions and neighboring 

regions, or clusters regions. This is the case of United Kingdom (UK), Germany and 

Austria regions. In contrast, the lower levels of R&D intensity are concentrated in 

Southern and Eastern Europe. Interestingly, between 2000 and 2007 the levels of R&D 

intensity (R&D expenditures  regarding regional GDP) did not change significantly, but 

in 2008 and the following years there was a slight increase in R&D intensity, because 

the crisis caused GDP to fall more than R&D expenditures (Statistical Office of the 

European Communities, 2017). 

Additionally, the more recent report of Regional Innovation Efficiency (European 

Commission, 2017), shows that over time there has been a divergence in terms of 

innovation performance. In fact, regions from countries such as Belgium, France, the 

UK, Greece and Poland show an increase in innovation performance, while regions from 

more peripheral countries, such as Portugal, Spain and Romania show a decrease over 

time. The same happens with the Czech Republic and Germany, declining in recent 

years their innovation performance.  

Based on that recent evidence for the European regions performing, would it be 

possible to build a ranking of the regions that stand out most at the level of innovation 

performance and efficiency of innovation and see the differences between the pre-crisis 

period and during-crisis period? With all this in mind, it is essentially to understand what 

impact innovation has on the efficiency of European regions and what factors contribute 
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most to increasing or decreasing their efficiency. Taking into account that the global 

financial crisis was one of the worst crisis after the Great Depression, it becomes 

important to analyse the way that the countries and respective regions were affect by 

this crisis and it is fundamental to understand the role of innovation as main contribution 

for the recovery. 

Based on Figures A1 and A2 (see Annex) show that the regions with higher 

regional GDP in 2008 and 2015 are Southern Germany, South UK, Northern Italy, 

Belgium, Luxembourg, the Netherlands, Austria and Ireland. These are the most 

dynamic regions economically. Lower GPD regions are located in the south-eastern 

periphery of the European Union, including the more recent Member States. In 2008 

(Figure A1 in Annex) such regions were far behind those with a consolidated position, 

meaning that the gap between regions is still wide. Nevertheless, they converge over 

time. By 2015 (Figure A2 in Annex), GDP growth was very significant in Bulgaria, 

Hungary, Poland and Romania, and there is a smaller gap between European Union 

regions. 

Therefore, it is essential to understand the reasons for this evolution of regional 

GDP over time. In terms of Science, Technology and Innovation, it is also possible to 

confirm the disparities between the NUT-II regions, namely in 2008 (Figure A3 in Annex). 

The Eurostat report (Statistical Office of the European Communities & European 

Commission, 2011) showed that in 2008 regions from Germany and the UK had higher 

levels of R&D intensity, as well as all Nordic regions. In 2014 (Figure A4 in Annex), after 

the financial crisis, disparities subsist, but with a slight increase in R&D intensity levels, 

partly due to the Regional GDP decrease.  

In addition, there are disparities between regions of the same country, for 

example in Belgium. A recent Eurostat report (2017) shows higher levels of R&D intensity 

in capital city regions. Nearby regions also show high levels. Peripheral regions suffer 

more over time, namely the southern and eastern European regions. 

In the same way, Human Resources in Science and Technology (HRST) are 

considered key factors in regional economy development. Based on their evolution over 

time (Figure A5 and A6, see Annex) they concentrate in urban and capital regions, with 

more head offices and government institutions. In 2009 (Figure A5 in Annex), UK was 

the country with more HRST, followed by some regions in Spain. By the opposite, lower 

levels of HRST are located in Turkey, Romania and Portugal. By 2015 (Figure A6, in 

Annex), the scenario remains and UK regions keep the higher HRST levels, although 

with lower R&D. Romania shows the lowest levels of HRST. Again, Spain has high levels 

of HRST. 
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Finally, considering the Regional Innovation Index (RII), the most innovative 

regions are usually located in the most innovative countries, and according to Chart A1 

(see Annex), the most innovative regions are located in Germany, Denmark, France, 

Finland and the UK. The less innovative regions are in Romania, Poland, Italy, Croatia 

and Bulgaria. Nevertheless, Poland, Italy and Bulgaria have a positive evolution over 

time. Germany, Belgium, France, The Netherlands, Finland and the UK have RII levels 

above average in the EU.  

Taking into account some components of the Regional Innovation Scoreboard 

2017, such as Population with high education levels (Chart A2, in Annex), R&D 

expenditure (Chart A3 in Annex), European Patents Office (EPO, Chart A4 in Annex) 

and Employment and high tech industries and knowledge-intensive services (Chart A5, 

in Annex), some conclusions may be vented. Firstly, Germany regions have low levels 

of population with high education levels, such as Romania, Italy and the Czech Republic. 

Spain, Belgium, Poland and the UK have the highest levels of this indicator. Regarding 

R&D expenditure, Germany, Finland and Sweden have the higher levels. Romania, 

Poland, Greece, Spain and Italy have the lowest levels of R&D expenditure. Regarding 

EPO patents, Germany and The Netherlands have the highest levels, and Bulgaria, the 

Czech Republic, Greece, Spain, Poland, Portugal and Romania the lowest. Lastly, 

Germany, the Czech Republic, the UK and Sweden have the higher levels of 

Employment medium and high tech industries and knowledge-intensive services, while 

once again, Greece, Spain, Poland, Portugal and Romania, except for the Vest region, 

have the lower levels of this component of RIS 2017. 

Focusing on this previous analysis of Eurostat reports (2011; 2017) and 

European Commission (2017) about the evolution of regions in terms of GDP growth and 

innovation performance, namely in time of crisis, the motivation for this study is to 

understand the evolution of efficiency in EU regions based on the impact of innovation. 

In other words, how does innovation contribute to the growth and dynamism of regions? 

Accordingly, the general goal of this study is to create an up-to-date ranking of 

European regions, particularly NUT-II regions, more efficient in terms of innovation. More 

specifically, the purpose of the present research is to verify the socio-cultural and 

economic dimensions that impact the most the growth and dynamism of regions. It is 

therefore important to understand the impact of the financial crisis not only on the 

efficiency of regions but also on the different components of innovation. Traditionally, the 

study of innovation activities and the efficiency of regions involve R&D expenditures and 

number of patents. The main contribution of this study is the application of a new ratio to 

measure the efficiency of regions, the Innovation Efficiency Ratio (IER). This ratio was 

not used before according to the literature review. It is the ratio between the Regional 
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GDP and the number of patents. IER consists of the inverse of Technological Production 

Intensity Index and its purpose is to measure how much regional gross value added is 

possible to reach given the number of patents. 

In this perspective this study intends to answer the following research questions: 

1. Which EU NUT-II regions are more efficient in terms of innovation and which 

countries do they belong to? 

2. Which factors most affect the innovation efficiency of the regions? 

3. What is the impact of the more recent financial crisis on innovation efficiency? 

The truth is that there are not too much studies based on the levels of efficiency 

in terms of innovation of the NUT-II regions of European Union and in the construction 

of rankings that are focused on the territory and not focused on the institutions. In this 

sense, this study uses the Data Envelopment Analysis (DEA) methodology, created by 

Charnes, Cooper, and Rhodes (1978), to construct the ranking of most efficient regions, 

in terms of innovation, based on 104 NUT-II regions of European Union from 2006 to 

2012. The DEA methodology is very popular among this type of studies because is a 

non-parametric methodology for measuring the technical-efficiency in the multiple-output 

and multiple-input cases (Wu, Zhao, & Liu, 2017; Zuo & Guan, 2017). Additionally, it is 

also used the super-efficiency DEA methodology to perceive which regions, which are 

efficient in terms of innovation, stand out more from the other regions (Han et al., 2016). 

The second part of the study consists in the econometric application with the 

Panel Corrected Standard Error (PCSE) methodology and the Generalized Method of 

Moments (GMM) estimations to measure the impacts of the different socio-economic 

and cultural dimensions affect the levels of Innovation Efficiency. 

In connection with this studies (Han et al., 2016; Kalapouti, Petridis, Malesios, & 

Dey, 2017; Sanso-Navarro & Vera-Cabello, 2017; Wu et al., 2017; Zuo & Guan, 2017) 

about innovation efficiency, the innovation policies play an important role here, because 

it is increasingly necessary to ensure the diffusion of knowledge between regions in order 

to ensure that all regions have the potential to become efficient. In fact, regional 

innovation policies should to support firms for innovation and to promote the share of 

knowledge between them and institutions, and Regional System of Innovation (RSI), and 

thus improve the innovation performance of regions.  

The thesis is structured as follows: 

 Chapter 2 consists of the literature review about the previous innovation 

efficiency studies, the DEA methodology and the inputs and outputs 

selection; 
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 Chapter 3 presents the Data used in the analysis and the Empirical 

setting, namely the DEA methodology, PCSE and GMM estimations; 

 

 Chapter 4 have three sections: the first section is about the efficiency and 

super-efficiency analyses, the second is the econometric application with 

PCSE and GMM estimations and lastly, the discussion about the results; 

 

 Chapter 5 is the main conclusions and the limitations of this study. 
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2. Literature Review 

Innovation is considered one of the most important sources of economic growth 

in the long term. This is because it allows industry and services a chance to overcome 

the crisis periods, but also because it allows less excessive use of the increasingly 

scarce natural resources to manufacture the same products, or even more and better 

products (Tubadji & Nijkamp, 2016; Wang, Fan, Zhao, & Wang, 2016; Zuo & Guan, 

2017). It is therefore important to define what innovation is. Innovation is a process 

conducted by many agents, namely enterprises, universities and research institutions, 

affected by various internal and external factors. Also, agents influence one another and 

form a network of cooperation and dissemination of knowledge. Governments play a key 

role because they regulate the regional innovation environment by formulating science 

and technology policies (Wang et al., 2016). Linked to innovation, the R&D process is 

considered creative work aimed at the expansion of knowledge for society, through 

culture, and also through the application in different products (Chen, Kou, & Fu, 2017). 

Innovation and R&D are increasingly concerning companies and governments because 

they have an impact at various levels, namely regional, educational and institutional 

levels (Han et al., 2016; Liu, Lu, & Ho, 2015). 

In fact, given the importance of innovative activities, the National System of 

Innovation (NSI) was created and is based on the creation of new policies towards 

widespread innovation (Lundvall, Johnson, Andersen, & Dalum, 2002). The main goal of 

NSI is to develop incentives and efforts from countries in innovation activities with the 

production and accumulation of knowledge where the institutions and firms interact in a 

national context. However, although important for economic development, this is difficult 

to implement in all countries. In fact, given the characteristics of the countries, the Nordic 

European countries are more receptive, whereas southern countries require several 

adjustments to enable the application of the same system (Lundvall et al., 2002).  

Similarly, the concept of Regional System of Innovation (RSI) stemmed from the 

concept of National System of Innovation (NSI). It is a combination of regional 

characteristics and settings that provide a favorable environment for innovation and in 

which the firms and organisations learn from each other (Doloreux, 2002; Zabala-

Iturriagagoitia et al., 2007). Subsequently, the RSI is connected to the knowledge stock 

of firms from a given region and their intercommunication. This depends on internal and 

external factors to the firms, namely the network of private and public sectors. Hence, 

the RSI is constituted by firms, institutions, knowledge infrastructures and innovation 

policies that are applied in a specific territory. When firms and institutions interact, this is 
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considered interactive learning, generating innovation, since the firms share know-how 

(Doloreux, 2002). Also, Natário et al.(2012) argue that the RSI tries to reduce the 

disparities between northern and southern regions in the EU, not only concerning 

innovation but also education, thus assuring the generation and dissemination of 

knowledge. It is therefore possible to conclude that proximity is important regarding 

innovation, namely space agglomeration and transaction costs. However, there are also 

barriers to RSI, specifically when there is no cooperation between regions and there is 

no trust between the different agents for innovation (Doloreux, 2002). 

 On the other hand, innovation is directly linked to the efficiency of the country and 

the region. Broekel, Rogge and Brenner (2018) defined innovation efficiency as a 

benchmarking measurement of the relation between innovative outputs, such as the 

number of patents in a region, and innovative inputs such as R&D employment, 

comparable with other regions.  

Han et al. (2016) explain that more efficient regions are those with higher levels 

of productivity from the R&D process. For Schaffer, Simar and Rauland (2011) a region 

is considered comparatively efficient if one or more other regions equipped with a similar 

or worse level of inputs generates a higher level of outputs. Furthermore, Han et al. 

(2016) and Liu et al. (2015) created various groups of regions and countries according 

to their characteristics in terms of innovation and efficiency levels. They created four 

groups: the Deteriorating, Lagging, Catching-up and Leading. The Deteriorating group 

includes efficient regions whose productivity level is declining. The lagging group 

includes regions with low levels of efficiency and also low levels of productivity. The 

Catching-up group includes outstanding regions due to productivity increase, but with 

relatively low regional efficiency. Finally, the regions and countries included in the 

Leading group are those with high levels of productivity and also high levels of efficiency 

(Han et al., 2016).  

Liu et al. (2015) organized a set of nine groups because they divided countries 

according to the inputs/outputs that favour or hinder the country, taking into account 

which inputs/ outputs stand out the most between the studied countries. 

 Furthermore, Fagerberg and Srholec (2008) argue that there are a positive 

correlation between Innovation and GDP per capita. In this way, when a country aims at 

developing from a lagging-behind position to a catching-up position, this requires a good 

system of innovation. One the other hand, the same authors (Fagerberg & Srholec, 2008) 

also argue that the poorer countries don’t have absorptive capacity, given their story, 

geography and nature. This means that the countries that can develop and keep their 

strong innovation capacities and a good governance system will be economically 

successful and countries that fail will tend to lag behind.  
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 Additionally, some authors argue that innovation is not distributed 

homogeneously through regions, but rather tends to agglomerate in certain areas 

(Enright, 2003; Feldman, 1994; Porter, 1998; Valdez Lafarga & Balderrama, 2015). The 

main reasons for this disparity in terms of efficiency between regions are the availability 

and quality of local inputs and the geographically bound knowledge spill-overs (Fritsch 

& Slavtchev, 2011). Sanso-Navarro and Vera-Cabello (2017) conclude that regional 

innovation also depends on the knowledge stock available in nearby regions, and not 

only on the regional resources. On the other hand, Li and Wang (2017) showed that the 

main problems in industry concern insufficient investment in R&D resources, lack of 

technological innovation capability, significant waste of resources and low conversion 

rate of scientific and technological achievement. Also, the levels of internal expenditure 

of R&D and R&D personnel input are higher in some industries than in others. For those 

industries with insufficient input of R&D resources, the output is also insufficient. 

Regional areas have different features compared to national areas because there are 

connections due to the interaction between the areas, such as clusters or special 

economic zones where knowledge is shared. This includes the spillover effect among 

regions that allow higher productivity and regional performance (Bosco & Brugnoli, 

2010).  

In this sense, Doloreux (2002), Ozkan and Kazazoglu (2016), Rodríguez-Pose 

and Crescenzi (2008), Zabala-Iturriagagoitia, Voigt, Gutiérrez-Gracia, and Jiménez-

Sáez (2007) argue that the clusters and networks play an important role on innovation 

efficiency and in regional development. Additionally, Broekel et al.(2018) argue that 

universities and firms should connect and collaborative networking is also important. In 

the same way, Li and Wang (2017) conclude it is necessary to strengthen the 

cooperation between universities and research institutions with firms. This cooperation 

will allow enterprises to become more competitive and in turn generate added value for 

economy. Finally, Ozkan and Kazazoglu (2016) advocate that government support, 

namely grants programs for research institutions and projects is very important for 

regional development and innovation. 

Apart from concepts, it is also important discuss the best model to measure 

innovation and efficiency. Many authors argue that one of the most popular and best 

model is the Data Envelopment Analysis (DEA) model (Dzemydaitė, Dzemyda, & 

Galinienė, 2016; Gitto, 2017; Liu et al., 2015; Zuo & Guan, 2017). The DEA model was 

developed by Charnes and Cooper (1984). It’s a non-parametric methodology to 

measure the technical-efficiency in the multiple-output and multiple-input case (Zuo & 

Guan, 2017). Specifically the nonparametric DEA estimators are based on linear 
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programming methods and they have been widely applied in productive efficiency 

analyses (Gitto, 2017).  

First of all, DEA allows building a ranking of relative efficiency through a 

production frontier based on all Decision-making units (DMUs). This way, the analysis is 

applicable to several levels of aggregation, such as a firm, an organization, universities, 

banks or a nation (Liu et al., 2015; Valdez Lafarga & Balderrama, 2015). In this case, the 

DMUs are the regions under study. Furthermore, the DEA model does not take into 

account the input and output weight. This means that if two DMUs have the same output 

but different levels of mixed inputs, both DMUs may be considered efficient (Chen et al., 

2017; Wang et al., 2016). On the other hand, the DEA model is based on several 

assumptions, namely regarding the input or output orientation and also in constant or 

variable returns to scale (CRS or VRS, respectively). When this model assumes constant 

returns to scale (CRS) this indicates that the regional innovation efficiency is  

uncorrelated to region size (Broekel et al., 2018).   

In summary the DEA model is a powerful tool to measuring the innovation-

efficiency performance at regional level and, consequently allows an orientation to public 

policies related with the regional efficiency (Dzemydaite & Galiniene, 2013). 

Nevertheless, there are other models that derive from DEA model, such as the Super-

efficiency DEA model. Particularly the Super-efficiency model is also a model that allow 

to identify the most efficient regions, yet, it facilitates this discrimination because all the 

regions that in the Standard DEA have a score of 1, in the case of super-efficiency scores 

of these regions, these will be equal to or higher than 1. In this way, theses scores 

represent the degree to which the DMU can decrease the inputs while maintaining the 

level of outputs and still remain efficient (Han et al., 2016). Furthermore the super-

efficient regions are seen as benchmarks to less efficient regions or, in other words 

inefficient regions. In this perspective, the super-efficiency DEA model is considered as 

computationally efficient and it is able to measure efficiency performance as anticipated 

(Bongo, Ocampo, Magallano, Manaban, & Ramos, 2018). 

Regarding the inputs and outputs used by the literature on innovation, the main 

inputs are R&D expenditure, R&D personnel and R&D capital stock (Chen et al., 2017; 

Dzemydaitė et al., 2016; Guan & Zuo, 2014; Kalapouti et al., 2017). R&D expenditure is 

the main input to measure innovation and the ability to adapt to external innovation 

(Rodríguez-Pose & Crescenzi, 2008). Concerning outputs, the most used are the 

number of patents and the number of publications and/or articles on scientific journals 

(Chen et al., 2017; Zuo & Guan, 2017). However, Sanso-Navarro & Vera-Cabello (2017) 

argue that the number of patents is only a fraction of innovation, since patents don’t 

include protected process or innovative organizational activity.  
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On the other hand, knowledge spill-overs are a good indicator for new knowledge 

(Sanso-Navarro & Vera-Cabello, 2017). Sometimes the GDP per capita is also used as 

output variable (Dzemydaitė et al., 2016; Dzemydaite & Galiniene, 2013). It is important 

to emphasize that the search for new variables and/or indicators to measure innovation 

and efficiency is a constant goal for researchers, scholars and statistical institutes. New 

variables may provide useful, detailed and flexible results for public policies and policy 

makers (Bosco & Brugnoli, 2010).  

The variables that represent human resources are increasingly important in these 

innovation-related studies, for example the tertiary education and /or employed in 

science and technology or population age 25-64 by education level, because according 

to several authors (Dzemydaitė et al., 2016; Guan & Zuo, 2014; Kalapouti et al., 2017; 

Li & Wang, 2017) human resources are the most significant variables. Even in times of 

crisis, firms are reluctant to fire their researchers and qualified human resources 

(Filippetti & Archibugi, 2011). Human capital and education are thus considered 

determinant sources of economic growth, contributing to the efficiency of regions.  

Additionally, Rodríguez-Pose and Crescenzi (2008) argue that inputs related to 

human resources and education level are a social filter, because they describe the socio-

economic characteristics of regions, namely the ability to acumulate skills at a local level. 

Table 1 show a summary of the variables and the main models used to measure 

the efficiency of innovation. 
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Table 1. Summary of variables and methods used to evaluate the efficiency of innovation 

Author(s) DMUs Methods Variables Results 

Inputs Outputs 

Evaluation of multi-

period regional R&D 

efficiency: An 

application of dynamic 

DEA to China’s 

regional R&D systems  

(Chen et al., 2017) 

 

29 China’s 

Provinces 

during a time-

period of 2006 

to 2010 

- Dynamic 

DEA:  

     - CRS model 

     - Input-

orientation 

- R&D expenditures; 

- R&D personnel; 

- R&D capital stock 

(carry-over), 

- SIC papers; 

- Domestic granted 

patents; 

- In general terms no regions are considered efficient based on 

the the general operation of R&D production systems over the 

first five years; 

- In average, the developed regions are more efficient than the 

developing regions, which means that the favorable innovation 

environmental factors can improve the regional R&D efficiency, 

like information technology, education and training, and industry 

cluster; 

- The institutions play a very important role because they directly 

influences the process management of R&D activities. 

Regional R&D 

Efficiency in Korea 

from Static and 

Dynamic Perspectives 

(Han et al., 2016) 

 

15 Korea 

Regions for 

the period 

2005-2009 

- DEA: 

     - Standard 

DEA; 

     - Super-

efficiency DEA;  

     - CRS model;  

     - Input 

orientation; 

- MPI 

(Malmquist 

Productivity 

Index); 

- R&D expenditures 

including the 

R&D staff and 

Accumulated 

knowledge; 

- Codified Knowledge; 

- Number of Patents; 

- The results obtained allowed to create three groups of regions 

under study, i.e. deteriorating, lagging and improving regions; 

- There are also the fourth group, the leading-group but there is 

no region with this characteristics; 

- Seoul was categorized as a deteriorating region characterized 

as efficient but with decreasing productivity; 

- The case of Seoul demonstrates that abundant researchers, 

finance and government support do not necessarily imply high 

static or dynamic R&D efficiency; 

- There are some interregional disparity in terms of static R&D 

efficiency. 

National 

characteristics: 

innovation systems 

from the process 

efficiency perspective 

(Liu et al., 2015) 

40 countries in 

a time-period 

of 2005 to 

2009 

- Multi-stage 

DEA: 

     - VRS model 

- Network-

based ranking 

method; 

KPP:  

- R&D capital stock; 

- Education 

expenditure;  

- The number of 

researchers; 

- The number of 

social science articles 

and science and 

engineering 

articles;  

- High-tech exports; 

- The authors created nine groups of regions based on their 

characteristics; 

- The groups of regions that most stood out were those of the 

emerging economies and those have a high levels of producing 

high-tech exports; 
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KCP:  

Business expenditure 

on R&D;  

- Employment in 

industry and service; 

- Productivity in 

industry and 

productivity in service 

are the products;  

-domestic patents and 

overseas patents; 

- The close interaction with neighboring countries has a positive 

effect on a country’s innovation process that is the knowledge 

spillover. 

Regional innovation 

environment and 

innovation 

efficiency: the Chinese 

case  

(Wang et al., 2016) 

 

Chinese 

regional 

innovation 

systems » 22 

variables for 

the period 

between 2009 

and 

2012 

- DEA: 

     - VRS Model 

- Full-time equivalent 

of R&D personnel; 

- Annual total R&D 

intramural 

expenditures; 

- The number of 

invention patent 

applications 

- The number of utility 

model and design 

patent 

applications 

- Indicator of new 

product outputs (NPO) 

 

- The Innovation Efficiency (IE) is affected by the Economic 

Infrastructure (EI), Quality and Structure of Innovators and the 

Regional Openness (RO) and all of them have a positive impact 

in the IE.  

- QSI is the only one with a direct impact on IE; 

- The results indicate that China is in a transition period from 

pursuing its growth rate and size to pursuing efficiency and 

quality. In this way, it is necessary to construct an innovation 

environment; 

- It is essential that China’s government pay more attention to 

the improvement of university-quality evaluation; 

- The high-tech industry is increasingly important for innovation; 

- The public policies should be adapted to the levels of regions 

development.   

Performance of 

national innovation 

systems during the 

global crisis: a cross-

country analysis 

(Ozkan & Kazazoglu, 

2016) 

58 countries 

during the 

global crisis 

from 2007 to 

2012 

- DEA: 

     - input 

oriented; 

     - output 

oriented; 

     - CRS Model; 

     - VRS Model; 

- Net FDI Inflow in 

billions (current US$) 

Human; 

- Expenditure on R&D 

in billions (current 

US$);  

- Total researchers per 

million habitants; 

- Internet users per 

100 people; 

- Mobile subscriptions 

per 100 people; 

- Patents per million 

population;  

- Publications per 

million pop.; 

- ISO 9001 certificates 

issued in absolute 

numbers; 

- High technology 

exports in billions 

(current US$); 

- There are negative effects on the countries’ efficiency caused 

by the crisis of 2008; 

- Turkey is one of the countries with lowest efficiency scores 

despite increasing its R&D investment; 

- The clusters and network play an important role on the 

Knowledge diffusion and the government support, namely the 

grant programs, are very important to the research groups and 

projects. 

- Particularly, it necessary to analyse the regional development 

and the innovation system plans to better understand the 

efficiency scores, namely In Turkey. 
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- Electricity 

Consumption (kWh per 

capita); 

- GDP per unit of 

energy use (constant 

2011 PPP $ per kg of 

oil equivalent); 

The Efficiency of 

Regional Innovation 

Systems 

in New Member States 

of the European 

Union: A 

Nonparametric DEA 

Approach 

(Dzemydaitė et al., 

2016) 

 

- 40 EU 

regions (NUTS 

2) 

- 2013 

- DEA: 

     - input 

oriented 

 

- The intramural 

cumulative 

expenditures for 

research and 

development (R&D) in 

pps per inhabitant; 

- Human resources in 

science and 

technology calculated 

as a number of 

persons with tertiary 

education (ISCED) 

and/ or employed in 

science and 

technology, as 

percentage of total 

population; 

- Human capital 

employed in high 

technology and 

knowledge-intensive 

sectors, the 

percentage of total 

employment; 

– Number of patents 

per inhabitant;  

- Gross domestic 

product in purchasing 

power parity per 

inhabitant;  

- There are some disparities between the regional inputs and the 

real output which means that even if regions spend a lot on R&D 

and have a lot of human resources this doesn’t guarantee high 

levels of value added for the economy; 

-  The efficiency of regions depends of the levels of available 

resources; 

- Skilled and creative human resources are very important to the 

regional innovation system. 
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The innovation 

efficiency of German 

regions – 

a shared-input DEA 

approach 

(Broekel et al., 

2018) 

- 150 German 

labor market 

regions for the 

period 1999 to 

2008 

- Shared input 

DEA model: 

     - CRS model; 

     - Output 

Orientation 

- Malmquist 

Productivity; 

Index (MPI); 

- Robustness 

analysis; 

- Total R&D 

employment; 

- Nº of patents; - The connection between universities and firms are very 

important and collaborative network is also important;  

- The robust shared-input Data Envelopment Analysis is an 

advantageous model to measure the regional efficiency, namely 

when is used the employment data. 

Evaluation and 

analysis on R&D input-

output performance of 

the 

major sectors of 

industrial enterprises 

based on the DEA 

method 

(Li & Wang, 2017) 

 

- 25 industries 

of industry in 

Hebei 

province. 

- 2014 

compared to 

2010 

- DEA: 

     - CRS model;  

     - VRS model;  

- R&D personnel full 

time equivalent; 

- Internal expenditure 

of R&D funds; 

 

- Sales revenue of new 

products; 

- Nº patents; 

 

- The cooperation of the universities and the research 

institutions with the firms is very important; 

- The allocation efficiency of R&D expenditure is low which 

means that is necessary to focus on optimizing allocation of 

R&D resources;  

- The human resources and the R&D personnel play an 

important role on the innovation process; 

- For an industry whose comprehensive efficiency is low, and its 

return to scale is decreasing, it is necessary to reduce the waste 

of R&D resources and improve the technical efficiency. 

A cross-country 

comparison of 

innovation efficiency 

(Guan & Zuo, 2014) 

- 35 countries 

- 2007 to 2011 

- Dual network-

DEA models: 

     - CRS and 

VRS 

assumption; 

 

 

- full-time equivalent 

researchers; 

- Gross domestic 

expenditure on R&D; 

- Prior accumulated 

knowledge stocks; 

- Number of patents 

granted; 

- Publication in 

scientific journals 

(PAPER) as the proxy 

for scientific outputs. 

- Added value of 

industries (AVI); 

- The export in high-

tech industries (EHTI); 

- Several countries of this study are considered inefficient;  

- Austria, Estonia, Finland, Iceland, Portugal, Slovenia, and 

South Africa are considered countries with increasing returns-

to-scale which means that to acquire better performance, this 

countries need to increase the innovative inputs; 

- For countries like the Australia, Canada, France, Germany, 

Netherlands, United Kingdom, China, Japan, Korea, and United 

States it is necessary reformulate some R&D activities namely 

with the innovation systems; 

- It Is essential to invest on universities and in the human 

resources to increase the R&D productivity. 
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Evaluation of regional 

efficiency disparities 

by efficient frontier 

analysis 

(Dzemydaite & 

Galiniene, 2013) 

 

Lithuanian 

NUTS3 

territories 

- 2011 

- DEA: 

      - Output 

Orientation; 

- Free disposal 

hull (FDH);  

- Order-α 

frontier analysis; 

 

- Region’s transport 

infrastructure;  

- Human capital; 

- The per-capita gross 

domestic product; 

- DEA model is appropriate when there are not a lot of 

observations as the case of Lithuania; 

- The most efficient regions as Vilnius, Klaipėda, Utena, and 

Marijampolė should focus on indirect programmes to increase 

the number of human resources and develop the transport 

infrastructure; 

- Alytus, Tauragė, Kaunas, Šiauliai and Panevėžys were 

considered inneficient regions, so it is import to adopt direct 

programmes of the economic development. 

Efficiency of Mexico's 

regional innovation 

systems: 

an evaluation applying 

data envelopment 

analysis (DEA) 

(Valdez Lafarga & 

Balderrama, 2015) 

 

Mexico´s 

regional 

innovation 

systems, as 

defined by its 

32 states; 

-DEA: 

     - CRS Model; 

     - Output-

oriented; 

- ANOVA 

 

- Quality graduate 

programmes; 

- Number of 

CONACYT 

scholarships; 

- Research centres; 

- Higher Education 

Institutes (HEI) with 

graduate programmes 

linked to science and 

technology; 

- Budget applied to 

R&D funds; 

- National System of 

Researchers; 

- Enrolment in Science 

and Technology 

graduate programmes; 

- Patent applications; 

- Scientific 

publications; 

- There are not a positive relationship between the amount of 

innovative resources and the levels of productivity efficiency; 

- The group of states with the lowest efficiency scores are the 

same with the highest levels of R&D expenditures; 

- The states that suffered more with the scarcity of resources are 

those have the poorest results of efficiency. 

Measuring efficiency 

of innovation using 

combined Data 

Envelopment Analysis 

192 NUTS-2 

for 12 years 

(1995–2006) 

 

- DEA:  

     - CRS Model; 

     - VRS Model; 

- Human Capital; 

- Expenditures in 

Research and 

Development; 

- PATTPS  

- PATGPS 

(patents according to 

application date 

- The regions with highest levels of patent activity are the same 

with high levels of innovation efficiency and, in this way, are an 

influence for the neighbours regions not only in geographical but 
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and Structural 

Equation Modeling: 

empirical study in EU 

regions 

(Kalapouti et al., 2017) 

- SEM 

(Structural 

Equation Model) 

modeling 

 

 

 measured per million 

of inhabitants) 

 

SEM MODELING  

Y: EFFICIENCY 

SCORES  

X:  

- Patent Applications; 

- Employment Level; 

- Development Level  

- Degree of Innovation 

Diversity 

also in a technological space (inter-regional knowledge spill-

overs);   

- The regions with higher levels of employment get more 

efficiently the exploitation of innovation sources; 

- The regional development affects the innovation efficiency i.e. 

the regions less developed can achieve high levels of innovation 

efficiency if they pursuit a centralised innovation policy, in 

specific technological fields and the regions more developed will 

get high levels of innovation efficiency if they follow a 

decentralised policy; 

Regional Efficiency, 

Innovation and 

Productivity  

(Bosco & Brugnoli, 

2010) 

185 EU 

regions 

averages 1995 

-2007 

- DEA: 

     - Output 

Oriented; 

     - CRS 

Assumption; 

- OLS; 

 

 

- Employment in 

technology and 

knowledge-intensive 

sectors;  

- Total intramural per 

capita R&D 

expenditure;  

- Total R&D personnel 

and researchers; 

- Number of students 

at the tertiary 

education;  

- Population and labor 

productivity (computed 

as regional gross 

value added divided by 

the regional 

employment) 

- Nº of patent 

applications; 

- Gross value added at 

basic prices; 

- There are a positive relationship between innovation and R&D 

and patents; 

- There are a positive relationship between labour productivity 

and patents, R&D expenditures and tertiary education; 

- The regions with best performance are both rich, large regions 

but small regions as well; 

Source: Our Elaboration 
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Regarding the results of the different studies on innovation and efficiency, they 

are unanimous concerning the positive impact of innovation activity on innovation 

efficiency. Using a Dynamic DEA model Chen et al. (2017) evaluated China’s provinces 

between 2006 and 2010 and concluded that more developed regions have more 

favorable environment for innovation because they enjoy better conditions, namely more 

information technology, high levels of education and training and industry clusters. These 

characteristics are not so clear in developing regions, which explains the lower levels of 

innovation efficiency. On the other hand, Chen et al. (2017) explain that soft innovation, 

concerning institutions such as universities, is more important that hard innovation 

(education and training, industry clusters, etc.), because soft innovation affects R&D 

activities and the innovation process directly.  

Sometimes, institutions are a critical factor for the technological development of 

a region (Chen et al., 2017). Wang et al.(2016) showed that regional innovation has a 

positive impact on regional efficiency. Studying 288 science and technology policies in 

China, the authors conclude that concerning innovation output, China pursues efficiency 

and quality and a high growth rate. Thus, regional innovation has a significant impact on 

innovation efficiency. In addition, Wang et al.(2016) argue that China’s policy makers 

should pay more attention to building innovation environments, namely through 

universities quality improvement and the high-tech industry sector, because industry 

clusters are a major force towards technological development. 

Focusing on European regions, Dzemydaitė et al.(2016) showed that the highest 

values of all indicators used in the study tend to be in capital regions, particularly in 

Central European Union, with higher values of human resources in science and 

technology. Studying 40 regions from Eastern and Central European Union applying the 

DEA model, these authors identified that the regions with high GDP ratio, capital regions, 

may reach higher levels of GDP ratio with the same resources. In this way, these regions 

were considered inefficient comparatively to other regions with lower levels of GDP ratio 

because they don’t generate enough real output. One the other hand, the regions with 

lower levels of GDP ratio were considered efficient because, even with a reduced level 

of inputs the same regions can achieve better economic results. In these sense the 

authors conclude that the human resources and tertiary education in science and 

technology are fundamental indicators to create more value added for certain regions. 

Even though, the investment in these indicators does not guarantee that the regions will 

achieve higher levels of value added and higher levels of efficiency. So, it is necessary 

that policy makers pay more attention to this situation and think how they can improve 

the regional innovation policies, namely in inefficient regions that can generate higher 
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output with the same innovation inputs (Dzemydaitė et al., 2016). Studying 192 NUTS-II 

European Regions during 12 years applying the DEA model in the first stage and the 

Structural Equation Model (SEM) in the second stage, Kalapouti et al. (2017) concluded 

that the regions with higher levels of innovation activity measured by the number of 

patents applied also have high levels of innovation efficiency. Accordingly, these regions 

are considered knowledge spill-overs towards their neighbours, geographically and 

technologically. 

This means that the more these regions innovate, the greater will be their ability 

to create and develop knowledge spill-overs. Furthermore, the authors argue that regions 

with more employment in high-tech sectors also achieve better results more efficiently 

because they manage innovative resources better. As a result, these regions become 

desirable for innovative agents and partners (Kalapouti et al., 2017). Additionally, 

Kalapouti et al.(2017) argue that regional development impacts innovation efficiency. 

Specifically, less developed regions in terms of GDP per capita are regions with 

high levels of innovation efficiency, which means that the regions are more powerful in 

managing their innovative sources, even if inputs are reduced and their level of regional 

development is lower. However, this does not mean that more developed regions are 

not efficient. They are efficient but waste more innovative inputs. The authors argue that 

these regions may achieve better results if they follow a more decentralised policy. The 

less developed regions should follow more centralised policies (Kalapouti et al., 2017). 

Finally, Bosco & Brugnoli (2010) evaluated the innovation and productivity and 

the relationship between them in European regions and they found that the education 

and productivity have a positive correlation in several regions, not only in rich and large 

regions but also in poorer and smaller regions. This is possibly because poorer regions 

use innovative inputs more efficiently, through a catching-up process. Additionally, the 

authors found a positive correlation between patent application and the regional Gross 

Value Added (GVA), of almost 77% considering all observations.  

However, when they consider patenting activity alone there are no regions with 

positive and significant effects on GVA. In more recent regions in the EU this correlation 

is negative and significant. In terms of labour productivity there is a positive correlation 

between patents, R&D expenditures, tertiary education and productivity. On the other 

hand, Matei and Spircu (2012) based on a nonparametric approach (DEA) evaluated the 

efficiency of Regional Systems of Innovation in 116 regions (NUT-II) from 13 countries 

in Europe and concluded that the most efficient regions concerning RSI are those with 

more proximity between private and public institutions, with a greater number of large 

companies and research institutions and holding more qualified human resources, as the 

Lisbon region in Portugal. 
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Studying United Kingdom (UK) enterprises, Frenz and Ietto-Gillies (2009) 

concluded that innovation performance is also affected by the internalization of the 

enterprises. The more internationalized, more innovative activities will be developed. 

However, this also depends on the characteristics of each country, particularly regarding 

the National System of Innovation. For Frenz and Ietto-Gillies (2009), UK is a leading 

country because it has a good NSI structure and a high internalization level. 

Nevertheless, the results obtained by these authors do not apply to other countries. 
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3. Data and Methodology 

3.1. Data  

This study collected data from 104 Nut-II regions from European countries for the 

period between 2006 and 2012. The considered inputs are the levels of tertiary education 

and/or employed in science and technology (HRST), intramural R&D expenditure 

(GERD) by sector of performance (all sectors) in euros per inhabitant and the 

employment in high-technology sectors (high-technology manufacturing and  

knowledge-intensive high-technology services) as percentage of total employment. The 

outputs are Gross Domestic Product at current market prices in purchasing power 

standard (PPS) per inhabitant and number of patents per million of in inhabitants (EPO). 

Additionally, other variables were chosen for the second stage of the study, the Gross 

Value Added at basic prices focused on Industry measured in million euros, the number 

of total R&D personnel and researchers by sector of performance, and population aged 

25-64 by tertiary level education. The source for all data was the Eurostat database1 and 

the data were selected based on the several components of Regional Innovation 

Scoreboard. 

 

3.2. Methodology  

3.2.1. DEA Model 

 To evaluate regional innovation in European regions, the first stage will be to 

organize a ranking of regions standing out for the best and the worst performance. The 

chosen model for this analysis was the DEA model. The DEA is a non-parametric method 

that Charnes, Cooper and Rhodes (1978) based on mathematical linear programming 

methods and measures the levels of efficiency of different relative independent units, 

named DMUs. The DMUs are comparable units that use the same resources but in 

different proportions, and they are responsible to transform multiple inputs into multiple 

outputs.  

In this case, the DMUs are the NUT-II European regions. Additionally, the DEA 

model does not impose an explicit functional form and consequently does not require an 

a priori assignment of input and output weights, which are not fixed or pre-determined 

(Cooper, Seiford, & Tone, 2006). The weight for each input and output is variable and 

derives from data. Graphically, the DEA model builds a technological production function 

named efficiency frontier that is composed by regions considered efficient: 

                                                           
1 http://ec.europa.eu/eurostat/data/database 
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The efficiency frontier represents the Production Possibility Set; the set of all 

possible combinations between the multiple inputs and outputs of the production sector. 

In other words, the efficiency frontier bounds the area where DMUs can be located. 

To maximise the relative efficiency of unit 𝑗0, or adopt the most favourable set of 

weights for DMUs requires the following function: 

𝑅𝐸𝑗0
= 𝑚𝑎𝑥

∑ 𝑣𝑝𝑦𝑝𝑗0
𝑠
𝑝=1

∑ 𝑤𝑞𝑥𝑝𝑗0
𝑚
𝑞=1

    (1) 

Subject to: 

∑ 𝑣𝑝𝑦𝑝𝑗
𝑠
𝑝=1

∑ 𝑤𝑞𝑥𝑝𝑗
𝑚
𝑞=1

 ≤ 1,          𝑗 = 1, … , 𝑛 

𝑣𝑝  ≥  𝜀, 𝑝 =  1, 2, 3, … , 𝑠 

𝑤𝑞  ≥  𝜀, 𝑞 =  1, 2, 3, … , 𝑚 

This function corresponds to the maximization of the ratio of the weighted sum of the 

outputs relative to the weighted sum of the inputs, where the weights are established by 

the DEA model for each DMU. Specifically, 𝑅𝐸𝑗0
is the score of relative efficiency of unit 

𝑗0 or, more precisely, of DMU𝑗0; 𝑥 and𝑦 are, respectively inputs and outputs, and 𝑣 and 

𝑤 are weights of outputs and inputs, respectively; 𝑝 is the number of outputs (𝑝 =

 1, 2, 3, … , 𝑠), 𝑞 is the number of inputs (𝑞 =  1, 2, 3, … , 𝑚), and 𝑛 is the number of DMUs 

of the sample. 

Chart 1. DEA Frontier 

Source: Our Elaboration 

0 Input 

Output 

Inefficient Regions 

DEA Efficient Frontier  

Super-efficient regions 
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Subsequently, the most efficient regions are those with the best combinations of 

inputs and outputs and are considered benchmarks for less efficient regions. When the 

optimal weighting of outputs and inputs for a region yields an efficiency ratio of one, the 

region is efficient, but when it is less than one the region is considered inefficient. The 

weights are determined through the DEA model and vary from one DMU to another DMU.  

3.2.1.1. CCR and BCC models 

Efficiency is related to the waste reduction ability in the productive process. An 

organization is efficient when it reaches the maximum output level with a certain level of 

inputs, using the least possible production inputs to reach a certain level of outputs.  

Hence, the regional efficiency may be estimated through the DEA model 

considering less inputs and constant outputs (input orientation), or constant inputs and 

higher outputs (output orientation). The choice between the two orientations depends on 

study goals and DMUs (Rebelo, 2017). The formulations are as follows: 

 

Input Orientation 

For the linearization of the expression (1) with input orientation it is necessary 

maximise the numerator and set the denominator equal to 1:  

𝑅𝐸𝑗0 =  𝑚𝑎𝑥 ∑ 𝑣𝑝𝑦𝑝𝑗0
𝑠
𝑝=1      (2) 

Subject to: 

∑ 𝑤𝑞𝑥𝑝𝑗0

𝑚

𝑞=1

= 1 

∑ 𝑣𝑝𝑦𝑝𝑗

𝑠

𝑝=1

−  ∑ 𝑤𝑞𝑥𝑝𝑗

𝑚

𝑞=1

 ≤ 0 

𝑣𝑝  ≥  𝜀, 𝑝 =  1, 2, 3, … , 𝑠 

𝑤𝑞  ≥  𝜀, 𝑞 =  1, 2, 3, … , 𝑚 

As a result, the estimations of the DEA model will present the necessary amount 

of inputs that must be reduced, taking into account the output level in order to reach 

100% efficiency. 
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Output Orientation 

For the linearization of the expression (1) with output orientation the denominator 

has to be minimised and the numerator has to be equal to 1:  

𝑅𝐸𝑗0 = 𝑚𝑖𝑛 ∑ 𝑤𝑞𝑥𝑝𝑗0
𝑚
𝑞=1     (3) 

Subject to: 

∑ 𝑣𝑝𝑦𝑝𝑗0

𝑠

𝑝=1

= 1 

∑ 𝑣𝑝𝑦𝑝𝑗

𝑠

𝑝=1

−  ∑ 𝑤𝑞𝑥𝑝𝑗

𝑚

𝑞=1

 ≤ 0 

𝑣𝑝  ≥  𝜀, 𝑝 =  1, 2, 3, … , 𝑠 

𝑤𝑞  ≥  𝜀, 𝑞 =  1, 2, 3, … , 𝑚 

With this orientation, DEA model estimations will present the output amount to 

increase, considering input levels to reach 100% efficiency. The ratio of the weighted 

sum of outputs considering the weighted sum of inputs equals 1.  

In both orientations, assuming constant returns to scale, the 𝑅𝐸𝑗0
∗ is the optimal 

relative efficiency score for DMU𝑗0 and the 𝜀is an infinitesimal positive number. 

The production function of the efficient DMUs are also characterised by the 

returns to scale. They can be divided in constant returns to scale (CRS) and variable 

returns to scale (VRS). When a production process presents constant returns to scale it 

means that input variation may cause output variation in the same direction and 

proportion; when a production process has varying returns to scale it means that input 

variation may cause proportional output decrease in case of decreasing returns or 

increase if case of increasing returns to scale.    

In this context the DEA methodology takes into account those characteristics of 

returns to scale and therefore two different approaches have been created in 

mathematical programming terms, to compute the DEA model which are the Charnes-

Cooper-Rhodes (CCR) that assumes constant returns-to-scale (Charnes et al., 1978) 

and the Banker-Charnes-Cooper (BCC) which is a variable returns-to-scale model 

(Cooper et al., 2006). Both models are input-or-output oriented depending if the goal is 

minimize the input where the output is constant or maximize the output with the input 

levels constant. 
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DMUs, which are responsible for the transformation of multiple inputs into multiple 

outputs, are differently projected in the efficiency frontier (Cooper et al., 2006). In the 

case of DEA-CCR the DMUs are compared with all the DMU’s of the sample, and 

evaluated taking into account the performance of others. Subsequently, this model is 

basically a global technical efficiency (TE) measure. On the contrary, the DEA-BCC 

model are a measure of pure technical efficiency (PTE) where the DMUs are compared 

with the DMUs of the sample and that have a same scale of operation, taking into account 

the process of transformation of the inputs into outputs.  

This comparison between the two types of efficiency, TE and PTE, allows 

creating a potential productivity gain of a DMU in reaching the optimal dimension. This 

is known as Efficiency Scale (ES) and corresponds to the ratio between technical 

efficiency and pure technical efficiency: 

𝐸𝑆 =  
𝑇𝐸

𝑃𝑇𝐸
 , and the same expression is equivalent to  𝑇𝐸 = 𝑃𝑇𝐸 × 𝐸𝑆. 

The maximum value of efficient scale is one (1), and when not achieved it means 

that the pure technical efficiency is always higher than the technical efficiency. This way, 

what puts forward that a DMU inefficiency sources may result from an inefficient 

operation (PTE) or from a disadvantageous dimension in productivity terms (SE), or even 

both (PTE and SE) (Madaleno, Moutinho, & Robaina, 2016; Rebelo, 2017).  

This study employs both models. The DEA-CCR and DEA-VRS are compared 

with input-orientation because the goal is to minimize input levels considering a set 

output level. According to Han, Asmild and Kunc (2016) the regional R&D system derives 

from a micro-level process and easier to manage input levels for a given output level.  

On the other hand it is important to point out that a use of mixed data, with 

different ratios/ percentiles and raw data is possible in DEA applications. Cook, Tone, 

and Zhu (2014) argue that it is too restrictive to impose that the two forms of data cannot 

coexist in a model. 

 

3.2.1.2. Super-efficiency DEA model  

Additionally, there are some other models of DEA based on the DEA-CCR and 

DEA-BCC models. One of these models is the Super-efficiency DEA model. 

The Super-efficiency model was originally proposed by Andersen and Petersen 

(1993) and also allows creating a ranking with the efficient DMUs. This model was 

designed to increase the discriminatory power of basic DEA models in which DMUs may 

have an efficiency ratio of more than 1, or in other words DMUs under evaluation have 

an efficiency score below 1 are not included in the reference set. Also, the application of 
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super-efficiency model does not change the efficiency frontier drawn by the original DEA 

model. This means that only efficient DMUs are changed and non-efficient DMUs values 

remain unchanged. The super-efficiency scores allow identifying input levels increase of 

output level decrease that DMUs may suffer without losing their efficiency status (Bongo 

et al., 2018; Han et al., 2016; Rebelo, 2017). From the perspective of linear 

programming, the CCR super-efficiency model can be expressed as: 

 

𝑆𝐸𝑗0 =  𝑚𝑎𝑥 ∑ 𝑣𝑝𝑦𝑝𝑗0
𝑠
𝑝=1      (4) 

Subject to: 

∑ 𝑤𝑞𝑥𝑝𝑗0

𝑚

𝑞=1

= 1 

∑ 𝑣𝑝𝑦𝑝𝑗

𝑠

𝑝=1

− ∑ 𝑤𝑞𝑥𝑝𝑗

𝑚

𝑞=1

 ≤ 0,          ∀ 𝑗, 𝑗 ≠ 0 

𝑣𝑝  ≥  𝜀, 𝑝 =  1, 2, 3, … , 𝑠 

𝑤𝑞  ≥  𝜀, 𝑞 =  1, 2, 3, … , 𝑚 

The main difference between the basic DEA model and the super-efficiency 

model is the second constraint where the DMU 𝑗0 is excluded (Bongo et al., 2018).              

3.2.2. Innovation Efficiency  

 In the second stage of this study, the same regions are considered and the same 

models are used. However, there are some differences related to variables that 

represent inputs and outputs. A new indicator was created considered the output 

variable. This new indicator was named Innovation Efficiency Ratio and refers to the ratio 

between Regional GDP and number of patents. The regional GDP is the numerator and 

the number of patents is the denominator. In other words, this new indicator represents 

the reverse of the Technological Production Intensity Index (
𝑁º 𝑜𝑓 𝑃𝑎𝑡𝑒𝑛𝑡𝑠

𝐺𝐷𝑃
). Broekel, 

Rogge and Brenner (2018) argue that it is important to create new measures of 

Innovation, namely more specific measures that allow enhanced scientific precision of 

results.  

Generally, the use of this ratio will allow knowing how much is necessary to 

increase considering the existing number of patents per region. Based on the 

demographic structure the used input was population aged 25-64 with tertiary level 
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education; in terms of R&D, the ration between R&D expenditure and regional GDP was 

considered, and the number of total R&D personnel and researchers by sectors of 

performance. Concerning the education sector, the inputs were the level of tertiary 

education and/or employed in science and technology (HRST), concerning In-tech 

Labour force were Employment in Technology and Knowledge intensive sectors. Lastly, 

based on Industrial structure and economic growth, the ratio between the GDP of 

Industry sector and the regional GDP was identified. As argued by Broekel, Rogge and 

Brenner (2018), separate estimations are more reasonable than global measurements 

because that allow understanding the impact of each sector on Innovation Efficiency. 

Sometimes, the same inputs are used in different sectors, namely, the Industrial Sector 

(Broekel et al., 2018). Lastly, the data were all collected from the Eurostat database. 

3.3. Econometric model and estimation strategies 

 

The empirical evaluation comprises the presentation of a panel data 

econometric model to analyse the different impact of the determinants of Innovation 

Efficiency (Variable Y), such as the Education: X1 = Tertiary education and /or employed 

in Science and Technology; (ii) In tech Labour force: X2 = Employment in Technology 

and Knowledge intensive sectors. (iii) Demographic structure: X3 = Population age 25-

64 by educational attainment level (tertiary education); (iv) Research and Development: 

X4 = ratio between R&D Expenditures to GDP and (v) X5 = Total R&D personnel; and (vi) 

Industrial structural economic growth: such as, X6 = the ratio between GVA industry to 

total GDP. 

The purpose is to identify in the chosen European regions if there is a significant 

relationship between the Innovation Efficiency of these related determinants. 

Subsequently, the following linear regression equation was applied: 

2012

0 1 1 2 2 3 3 4 4 5 5 6 6

2006

 it it it it it it it k i it

k

Y X X X X X X D C       


           (5) 

Where 1,  2, ...,  i N  is the cross-section identifier for the sampled geographical 

locations with 103N  ,  1,  2,  ...,  t T  is the identifier of the annual observations in 

each European region of the sample, with 7T  ,  0  is the intercept of the equation, 𝛽1, 

𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6   

are the coefficients of each explanatory of independent variable,  are the 

control dummies for the control of annual and fixed time effects, when considering the 
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year 2006, iC  is the parameter for non-observed specific effects that do not vary over 

time in a given geographical location and it  the idiosyncratic error term. 

It is assumed that the unobservable heterogeneity of geographic locations is 

modelled by a unidirectional error component, such as  it i itu C   , where iC  can be 

estimated using the fixed effects or random effects model. If the estimation is conditional 

to specific effects, i.e. if  iC  are treated as parameters to be estimated, there is a specific 

application of the fixed effects model. Under these conditions, it is admitted that 

( ) ( ) 0i it it itE C E X   , ( ) 0i itE C X   and ),0(~ 2

 IIDit , assuming the covariates 

and parameter iC  are independent of the error term. It is not assumed the independence 

between the covariates itX  and the latent effects associated with geographic location. 

On the other hand, it is assumed that individual effects are random with the unconditional 

estimation of iC  allowing the random effects model. In this case: 
2~ (0, )i CC IID  ,

2~ (0, ),it IID   ( ) ( ) 0i it i itE C E C X   , 
2 2( )it js CE u u     if i j  and t s , 

2( )it js CE u u   if i j  and t s .  

In the random-effects model, independence is assumed between the covariates 

and the latent heterogeneity of geographic location. If there is correlation between the 

individual effects of each geographical location and the covariates, the fixed effects 

model should be used because it produces consistent estimates of the coefficients, 

which does not occur with the method of random effects under this hypothesis (Badi H. 

Baltagi, 2008).  

With data combining cross-section and time series, the panel data models often 

have a complex structure in the matrix of variance-covariance of disturbance errors, such 

as heteroscedasticity between geographical locations: 
2 2  ( )it iE   , cross-section 

dependence (special correlation or contemporaneous correlation), ijjtitE  )( , and 

serial correlation (arbitrary). 

 

3.3.1. Panel Corrected Standard Errors (PCSE) 

In the above-mentioned conventional models of fixed and random effects, the 

starting point considered is a one-way model, or models with a disturbance term with two 

components, contemplating the specific unobserved characteristics of individuals (that 

don’t change over time), and another component identifying the dispersion. In the case 

of fixed effect models, the constant term is not considered, allowing the disturbance error 
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component to record the characteristics of each individual, considered fixed. In the 

random effect models, the constant is considered an average of all the cross section 

observations and is added to the terms of disturbance as a portion regarding the 

characteristics of each individual. However, two-way error component models may be 

considered. Disturbance terms consider the three components of the error jointly. One 

considers the specific non observed individual characteristics of the individuals (that 

don’t change over time), another component associated with the non-observed effects 

of time, and another error component considers the remainder of the error dispersion. In 

the fixed effects model, for example, the first two parameters are considered fixed. 

The impact of dependence between sectional units in estimation depends on 

different factors, such as the magnitude of the correlation between sections and the 

nature of the dependence. When assuming the sectional dependence is caused by the 

presence of common factors that are not observed (and this component affects the error 

term) but are not correlated with the other regressors, the estimators of fixed effects and 

random effects is consistent but not efficient, and the estimated errors are skewed. 

On the other hand, if unobserved components that create the sectional 

dependence are correlated with other regressors, this causes bias and inconsistency in 

estimators, either estimators of fixed effects or random effects estimators. Pesaran 

(2006) suggests the inclusion of instrumental variables in Fixed and Random Effect to 

solve this issue. However, it is actually difficult to include instrumental variables 

correlated with the remaining covariates and not unobserved factors.  

A solution suggested by Beck and Katz (1995) to correct the correlation problem 

between standard error of cross-sections and the heteroscedasticity between groups 

consists in using the Panel Corrected Standard Errors (PCSE) instead of the application 

of the OLS method. For Greene (2003), this type of analysis implies covariance between 

the observation units (cross-sectional covariance), and in the presence of non-spherical 

perturbation errors, the OLS method produces inefficient estimates for the coefficients, 

and the corresponding standard errors are skewed. However, Parks (1967) proposed an 

estimation method based on the generalized least squares (GLS) in order to correct 

these standard errors, producing asymptotically efficient coefficients and standard errors 

without specific trend. Parks (1967) admits the structure of covariance of error is properly 

specified and that the elements of the error covariance matrix are known. 

However, the problem is not solved when the process generating errors is not 

known; hence the errors of elements of the covariance matrix must be estimated. This 

can be done through the PCSE method proposed by Beck and Katz (1995). In the PCSE 

method of estimation, a diagonal matrix is considered, where diagonal elements are the 

elements of a square matrix N by N covariance of the errors of the 'cross-sections', and 
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the diagonal elements of the square matrix are the variances specific to each unit of 

'cross-section'. For each cross-section unit of the variance of the error term is estimated 

as the mean square error of waste estimation. The cross-sectional dependence on errors 

may be caused by common shocks, in particular affecting the components that are not 

observed and are part of the error term known as a cross-section dependence; 

The PCSE advantage is that it considers information available on the panel 

structure. Therefore, to estimate the variance of the error term, all time periods that make 

up the residue for each cross-section are considered. For Beck (2008), this method 

differs from White’s procedure for correction heteroscedasticity since it deals with a one-

term variance of observation as there are T observations by estimation in each cross-

section unit, so that one increased time dimension itself increases the performance of 

the PCSE estimate. 

PCSE estimates may be considered robust to correlation between cross-

sections, since they estimate the covariance between units. However, the model is 

restrictive, assuming that diagonal elements of each cross-section variance matrix are 

constant and the off-diagonal elements are always zero. 

The existing discussion in the literature regarding the improvement of PCSE 

estimates from estimates obtained by FGLS validates the comparison of the results of 

these two important methods, emphasising the former. Hoechle (2007) developed the 

nonparametric estimator of variance-covariance Driscoll and Kraay (1998), which is a 

robust estimator for general forms of autocorrelation, heteroscedasticity and cross-

section dependence. The Driscoll and Kraay estimator does not assume a fixed number 

of panel units, so that the N size does not become a constraint in finite samples. The 

variance-covariance matrix is estimated in a consistent manner, regardless of the sample 

size ( N ), which goes for N  . The Monte Carlo simulations made by Hoechle (2007) 

indicate that the estimator properties of Driscoll and Kraay in finite samples are better 

than those obtained by the PCSE and cluster estimators in the presence of 

contemporaneous correlation, including large panels ( 2500N  ) and a few remarks in 

time (( 10T  for example). To decide between the model of fixed or random effects, the 

Hausman specification test is used.  

This study uses data from micro panel, with a significant number of sectorial 

observations. The sectorial dimension N is relatively high (104 cross-sections), for a 

small number of time units (7 annual observations), that is a small temporal dimension 

T. Comparing the results from the so-called conventional models of fixed effects and 

random effects with those from the Panel Corrected Standard Errors method, there are 

particularities that justified the present methodological option. Since Panel T is small and 
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N is large and/or may grow indefinitely, the asymptotic properties of estimators favour 

setting up a high N when compared to T, as suggested by Wooldridge (2002). 

To understand these issues, estimation diagnostic tests were carried out. To test 

the hypothesis of heteroscedasticity between the cross-sections units, the Wald test 

proposed by Greene (2000, p. 598) was used. This test has been employed in 

econometric software Stata by Baum (2001). The spatial correlation hypothesis was 

studied through three different tests: Friedman's test (1937), Frees’ test (1995) and 

Pesaran’s test (2004), also employed in Stata software by Hoyos and Sarafidis (2006). 

The Lagrange multiplier test by Breusch and Pagan (1980) is commonly used to test the 

dependency between the cross-section in a data panel units, but the test assumes a 

fixed N and T tending to infinity. The Friedman test, the Frees test and the Pesaran test, 

on the other hand, are valid when T<N, which is the case for the present study. The serial 

correlation may be tested through the Wooldridge test (2002), introduced in Stata by 

Drukker (2003). 

 

3.3.2. Dynamic data models in panel – GMM 

Panel data models lack a component that represents the dynamics of economic 

relations experienced in a society which is changing ever faster. 

The estimation of dynamic linear models with panel data, including a number of 

p lags (lag) of the dependent variable (as explanatory) and fixed or unobserved random 

effects, there is a correlation between the lagged dependent variable and the error term 

(fixed or random effects not observed). This problem causes the OLS estimation to be 

skewed and not consistent. 

The dynamic panel data models are characterized by (1) autocorrelation due to 

the presence of the lagged dependent variable among the regressors, and (2) individual 

effects characterized by heterogeneity between individuals. In the dynamic data 

modelling in micro panels, according to Matyas and Sevestre (2008, p. 251), one of the 

assumptions is that being reduced and fixed number of time units T, such admissibility 

implies that the analysis of stationarity is not necessary. Furthermore, the process of 

generating the initial observations is important in these models, as whether there is 

endogeneity or exogeneity between the covariates because these situations may occur 

from the moment the various covariates are considered.  

In this context, the traditional estimators are inconsistent, and the estimation by 

the Generalized Method of Moments (GMM), proposed by Arellano and Bond (1991), is 

most commonly used solution to overcome this problem (B. H. Baltagi, Mátyás, & 

Sevestre, 2008). An alternative is to consider the processing method of the first 
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differences (FD), and in this case, the correlation will be easily resolved. With these initial 

differences, instrumental variables (IV) will be built. These instrumental variables will 

provide a consistent but not necessarily efficient estimation method for model 

parameters. According to Matyas and Sevestre (2008) the method of instrumental 

variables (IV), proposed by Balestra and Nerlove (1966), is the preferred method for 

estimation,  assuming there is no correlation between the individual or sectional effects 

and the error term, thus justifying the use of these variables as valid instruments. 

If there is correlation, it is necessary to consider the alternative transformation of 

FD, which means the reformulation of the model through the use of first differences and 

then applying the method of instrumental variables (IV), i.e. the GMM method. 

Alternatively to GMM, Matyas and Wild (2008) advise the use of the Maximum 

Likelihood Estimator (MLE) method, where it is assumed that the sectional effects and 

the error term is normally distributed, however, it should be noted a specific case, the 

case of small size samples that can apparently show a good performance in the 

estimation of dynamic data models in micro panel. In the estimation of dynamic models 

with panel data, there is a correlation between the lagged dependent variable and the 

error term. This problem causes the OLS estimation method to be skewed and not 

consistent. The solution to this problem is to use the GMM method, which refers to the 

use of instrumental variables to obtain the weighted weights matrix, where the 

transformation of variables is performed by an operator, that instead of considering the 

transformation of the first differences, considers the transformation in "orthogonal 

differences", i.e. via the respective orthogonal projection that constitutes transformation 

to deviations from the average future values as a means of eliminating the individual 

effects without compromising the orthogonality of the terms processed disturbances 

(Brandao Marques, 2000). The matrix of weights is a need caused by the greater number 

of instruments in relation to the number of parameters to be estimated. 

In dynamic models of panel data, the methods used for estimation of dynamic 

models of panel data are the Generalized Method of Moments (GMM), the method of 

Two- Stage Least Squares (TSLS) (Wooldridge, 2002), the method of instrumental 

variables, the method of least squares (OLS) and Maximum Likelihood method (MLE). 

However, the same methods are considered special cases of the GMM; as suggested 

by Wooldridge (2002). 

The use of the GMM method, compared with the TSLS method has the 

advantage of facilitating the definition and choice of instrumental variables, as well as 

using more variables than necessary. The GMM method estimation involves conducting 

specification tests, namely the J test, also called Hansen-Sargan test initially proposed 

by Sargan (1958) to test the model specification, then used by Hansen (1982) to assess 
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the specification of a model estimated by GMM. The TSLS method and GMM are the 

most used in data modelling in micro panel with dynamic behaviour. In addition, Stock 

and Watson (2011) consider that if the errors have homoscedasticity then the choice 

should be TSLS, which in this case is the most efficient estimator. If errors present 

heteroscedasticity the choice should be the method of instrumental variables, or GMM, 

which in this case is the most efficient. 

Focusing on the estimations of absolute and conditional convergence of 

Innovation Efficiency across the EU regions, it is used the dynamic panel data 

methodology as other authors have used, for example, Islam (1995), Caselli, Esquivel 

and Lefort (1996), Blundell, Bond and Windmeijer (2001) and Hoeffler (2002). 

Specifically, Arellano and Bover (1995) and Blundell Bond (1998) argue that the System 

Generalized Method of Moments (GMM) estimator is the best to overcome modelling 

issues such as fixed effects, potential endogeneity of regressors and dynamic panel bias. 

In fact for the dynamic panel data framework, the OLS levels and Within Groups 

techniques are not well recognized in the literature although they are widely applied in 

several studies. The main reasons for this are that the estimations of OLS levels and 

Within Groups are inconsistent and biased because in the case of OLS levels omits 

unobserved time invariant country effects and the Within Groups takes account for the 

unobserved country specific effects with a fixed time period in dynamic panel data model 

(Hsiao, 2014; Nickell, 1981). For these reason, several authors, such as Arellano and 

Bover (1995), Blundell, et. al. (2001) and Blundell and Bond (1998, 2000) recognize the 

GMM System is better because the results are not biased, in comparison with the OLS 

levels and Within Groups practises. Moreover, Roodman (2009b) argues that the 

estimations of consistent and efficient parameters of a regression are obtained through 

the System GMM because it’s a technique that takes into account the endogeneity issue 

in which the independent variables are correlated with past and current realizations of 

the error, and/or in which heteroscedasticity and autocorrelation within individuals exist. 

This means that the independent variables are not strictly exogenous and the System 

GMM uses, as an instrument, the lagged dependent variable and/or any other 

endogenous variables with variables, which are thought to be uncorrelated with the fixed 

effects (Nickell, 1981; Roodman, 2009a) as a solution for the endogeneity issue.  

This way, the GMM System is recognised as more efficient than other techniques, 

for example, the Difference GMM estimator (Arellano & Bond, 1991) because it considers 

that the first differences of instruments are uncorrelated with the fixed effects, which in 

turn allows the inclusion of more instruments (Roodman, 2009b), and contrary to the 

Difference GMM estimator, that tends to be biased with large finite sample when the 
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series are close to being random and when the instruments are weak, the System GMM 

allows obtaining efficient estimates (Blundell & Bond, 2000; Hoeffler, 2002). 

Essentially, and according to Blundell (2001) and Blundell and Bond (1998, 

2000), the System GMM estimator is designed for panel data sets with small time 

dimension, and relatively large cross-sectional dimension. In this sense, Blundell et al. 

(2001) and Roodman (2009a) argue that this estimator is very important for empirical 

growth models due to the adequacy to linear equations with one dynamic dependent 

variable, additional control variables, and fixed effects.  

On the other hand, the System GMM estimator consists of two sets of equations. 

The first set of equations is the original equation in levels, for which the lagged first 

differences of the dependent variable and the control variables are used as instruments. 

The second set of equations is the transformed equation in first differences, for which 

the lagged levels of the dependent variable and the control variables are used as 

instruments. 

Additionally, it is important to verify the validity of the assumptions the System 

GMM estimator is based on. Firstly, the Arellano Bond test (1991) is employed to verify 

if the error term does not have serial correlation problem. The Hansen (1982) test is 

subsequently employed to certify the validity of the instruments that should not be 

correlated with the error term. Lastly, the Difference-in-Hansen test is used for additional 

moment restrictions. Particularly, the Arellano-Bond (1991) test identifies the first and the 

second order serial correlations in the first-differenced residuals and it takes into account 

the second-order correlation in differences to analyse the first-order serial correlation in 

levels, since this will determine the correlation between dependent and independent 

variables. AR (2) reports the p-values for the null hypothesis of no second-order serial 

correlation in the first-differenced residuals. The Hansen (1982) test of over-identifying 

restrictions allows to identify the p-values for the null hypothesis of instrument validity. 

Finally, the Difference-in Hansen test reports the p-values for the null hypothesis of the 

validity of additional moment conditions. There is a fourth condition to ensure the 

consistency of the System GMM estimations which is the number of instruments should 

be smaller than or equal to the number of groups in a regression to avoid finite sample 

bias caused by overfitting (Roodman, 2009a). 
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4. Results 
 

This section presents the main results of this study, namely the efficiency analysis 

and the econometric application. 

 

4.1. Efficiency Analysis 

Firstly, this section focus on the efficiency analysis with the DEA methodology 

performed on the 104 DMUS for the two models. The two assumptions, CRS and VRS are 

considered and discussed.  The results are presented by a different set of analyses, namely 

in global terms and, after, are presented the results of UK, Spain and Poland. The regions 

from these three countries were chosen because these countries have more regions. 

Specifically the UK has 29 regions Nut-II, Spain has 17 regions and Poland has 16 regions. 

Furthermore, the choice between this 3 countries are also based on the division in groups 

that Filippetti and Archibugi (2011) did in their article. The countries are divided in 4 groups: 

Frontrunners, Declining, Lagging-behind and Catching-up and each group has its 

characteristics. Frontrunners have a consolidated position not only in terms of investment 

in R&D by firms but also in terms of NSI. Declining countries, where is UK, show high levels 

of NSI but the investment in R&D by firms is reduced. Next, Lagging-behind group, where 

Spain and Portugal are, is characterized by the darker scenario because show low levels 

of NSI and firms don’t invest in R&D activities. Last but not least, the Catching-up group, 

where are the more recent Member States of UE, such Poland or Romania, is characterized 

by high levels of investment in R&D by firms, but in terms of NSI the levels are very low. 

Filippetti & Archibugi (2011), analysed the countries’ position before the financial crisis 

(2006-2008) and during the crisis (2009) and verified that the countries of declining group 

tend to move towards frontrunners group, the lagging-behind groups are getting close to 

the catching-up group and the catching-up countries tend to move close of lagging-behind 

countries. Based on this evidence it is important to analyse some countries of each group, 

namely UK, Spain and Poland.      

 The DEA Super-efficiency results are also considered. 

All Tables presented in this section include the efficient scores from DEA 

methodology for each model under CRS and VRS assumption and the results are presented 

in Annex and Appendix.  

The descriptive statistics of all variables used in this study are shown in Table 2 

below. 
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Table 2. Definition, sources and descriptive statistics of variables used in the DEA 

methodology 

Variable Description Source Obs Mean Std. Dev. Min Max 

Dependent 

Variables /Outputs 
       

Regional GDP 

Gross Domestic Product at current 

prices by NUT II regions (PPS per in 

habitant) 

EUROSTAT 728 20999.86 8432.087 6100 57700 

Patents 

Number of patent applications per 

million of in habitants (EPO) by 

NUT-II regions (per capita) 

EUROSTAT 728 44.4065 58.43013 0.177 409.817 

Innovation 

Efficiency Ratio 

(IER) 

Ratio between Regional GDP and 

Patents - This ratio measures the 

inverse of the Regional 

Technological Production Intensity 

by NUT-II regions (per capita) 

Self Elaboration 

(Numerator and 

Denominator - 

EUROSTAT) 

728 3358.199 7011.088 73.935 60326.09 

Independent 

Variables / Inputs 
       

HRST 

Human Resourses with tertiary 

education and/or employed in 

Science and Tecnology sectors by 

NUT-II regions (thousand) 

EUROSTAT 728 365.0613 299.4402 41.6 2077.2 

Employment 

Employment in technology and 

Knowlegde intensive sectors by 

NUT-II regions (High-technology 

sectors) (% total employment) 

EUROSTAT 728 3.422802 1.972424 0.6 11.7 

Population 

Population aged 25-64 by 

educational attainment level by 

NUTS 2 regions - Tertiary Education 

(%) 

EUROSTAT 728 25.34739 9.177118 6.8 55.7 

R&D Expenditure 

(GERD) 

Intramural R&D expenditure 

(GERD) by sectors of performance 

(all sectors) PPS per in habitant 

EUROSTAT 728 275.6772 334.9594 5.3 2767 

R&D Expenditure 

(GERD) Ratio 

Ratio between Intramural R&D 

expenditures (GERD) and Regional 

GDP (per capita) 

Self Elaboration 

(Numerator and 

Denominator - 

EUROSTAT) 

728 1.079279 1.019535 0.06 8.044 

R&D Personnel 

Total R&D personnel and 

researchers by sectors of 

performance by NUTS II regions - 

Full-time equivalent (FTE) 

EUROSTAT 728 7363.366 8542.089 191 54721 

GVA-Industry Ratio 

Industrial Structural economic 

growth ratio (GVA Industry/GDP) 

(per capita) 

Self Elaboration 

(Numerator and 

Denominator - 

EUROSTAT) 

728 27.93723 19.16048 1.584 138.079 

 

 

 

The first model considers two outputs: The Regional GDP per inhabitant and the 

number of patents (EPO) under the two assumptions CRS and VRS. The second model 

considers just one output that is Innovation Efficiency Ratio, with some others inputs that 

Source: Our Elaboration 
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aren’t used in the model 1 as described in the previous section. The main results from Model 

1 application are also in Annex. 

 

 

4.1.1. CRS and VRS analysis by Model 2 

The Top 20 Efficient Regions in the European Union and the Top 10 efficient regions 

in the UK, Spain and Poland were analysed adding a time frame from before and during the 

financial crisis (2006-2008 / 2009-2012), as shown in all tables below. 

Table 3 shows the global Top 20 ranking. The results are a little different from Model 

1 (see Table A1). Romania and Bulgaria are the countries with more regions in this Top 20, 

7 and 5 regions, respectively. Furthermore, Belgium and the UK don’t have any regions in 

this Top 20, as can be seen in the Model 1 (see Table A1).On the other hand, Yugoiztochen, 

region of Bulgaria, is the first in this Top 20, the second is Sud-Est (Romania), and the third 

is Algarve (Portugal). 

In general, comparing the before and during financial crisis time frame, several 

regions increased their efficiency score, such as Algarve (Portugal), Nord-Vest and Vest 

(Romania). 

Specifically in Table 4, UK are the country with more regions with a score of 100% 

and Cornwall and Isles of Scilly is the first on Top 10. Extremadura in Spain is also a 100% 

efficient region in all time period. Poland doesn’t have regions 100% efficient in all time 

period but Podlaskie is the first in this Top 10. Furthermore, several regions decreased their 

score during the financial crisis, for example Northern Ireland (UK), Illes Balears (Spain) 

Swietokrzyskie (Poland) and Lubuskie (also Poland). 
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Table 3. Top 20 of Efficient Regions (Model 2 - CRS) - All Regions 

Model 2 – CRS 

All regions - Top 20 

 Before During 

Country Region 2006 2007 2008 2009 2010 2011 2012 

Bulgaria Yugoiztochen 100.0% 100.0% 100.0% 62.4% 100.0% 70.5% 100.0% 

Romania Sud-Est 32.6% 100.0% 100.0% 100.0% 100.0% 100.0% 75.4% 

Portugal Algarve 100.0% 54.0% 39.9% 100.0% 100.0% 100.0% 100.0% 

Romania Sud - Muntenia 100.0% 100.0% 50.9% 73.0% 74.5% 62.4% 26.9% 

Romania Sud-Vest Oltenia 100.0% 33.6% 41.6% 26.1% 28.3% 79.6% 100.0% 

Romania Nord-Vest 44.4% 54.9% 20.0% 100.0% 20.2% 12.9% 26.5% 

Romania Vest 100.0% 17.6% 9.6% 81.0% 23.5% 10.0% 19.6% 

Romania Centru 65.2% 29.8% 61.6% 12.9% 18.3% 29.1% 26.3% 

Spain Extremadura 22.9% 43.1% 16.8% 78.3% 16.0% 33.0% 31.0% 

Bulgaria Severoiztochen 21.9% 21.7% 26.4% 64.4% 58.7% 15.5% 26.2% 

Romania Nord-Est 18.0% 88.4% 17.0% 26.9% 18.4% 30.1% 21.2% 

Poland Podlaskie 68.5% 11.0% 23.4% 20.7% 18.2% 35.6% 40.9% 

Bulgaria Severozapaden 34.3% 30.5% 24.0% 40.8% 33.0% 29.7% 18.4% 

Bulgaria Severen tsentralen 19.1% 100.0% 10.0% 34.4% 27.0% 8.9% 7.9% 

Poland Warminsko-
Mazurskie 

28.5% 32.7% 16.6% 76.9% 12.6% 20.1% 13.4% 

Portugal Alentejo 19.1% 49.2% 9.3% 62.4% 15.6% 5.0% 9.2% 

Poland Opolskie 11.9% 16.2% 5.0% 25.5% 4.9% 100.0% 4.4% 

Poland Swietokrzyskie 81.3% 20.1% 12.2% 8.9% 13.9% 8.9% 12.5% 

Bulgaria Yuzhen tsentralen 14.6% 56.6% 8.6% 15.0% 6.3% 28.8% 7.5% 

Slovakia Stredné Slovensko 9.1% 24.7% 21.0% 23.5% 10.9% 11.9% 20.6% 

Annual Average – 104 regions 12.9% 12.8% 7.6% 12.7% 9.0% 10.2% 9.2% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Our Elaboration 
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Table 4. Top 10 of Efficient Regions (Model 2 - CRS) - UK, Spain and Poland 

Model 2 - CRS  

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Cornwall and Isles of Scilly 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Cumbria 100.0% 100.0% 61.2% 100.0% 70.4% 100.0% 87.8% 

Devon 100.0% 100.0% 73.7% 98.1% 59.2% 100.0% 88.3% 

East Yorkshire and Northern Lincolnshire 86.7% 55.8% 74.8% 100.0% 100.0% 100.0% 100.0% 

Northern Ireland (UK) 100.0% 100.0% 100.0% 67.4% 97.4% 95.2% 37.2% 

West Midlands 84.9% 90.3% 73.8% 100.0% 86.4% 80.2% 44.8% 

South Yorkshire 83.1% 85.3% 49.7% 97.1% 69.1% 96.2% 67.3% 

West Yorkshire 72.1% 72.7% 57.3% 87.9% 82.0% 100.0% 67.2% 

Greater Manchester 77.8% 72.0% 73.7% 69.6% 96.7% 83.3% 56.4% 

West Wales and The Valleys 100.0% 94.0% 85.6% 62.0% 75.7% 53.1% 40.5% 

Annual Average – 29 regions 60.7% 58.0% 51.2% 55.9% 56.1% 61.8% 47.6% 
        

Spain 
       

Extremadura 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Canarias (ES) 100.0% 55.2% 44.2% 47.1% 100.0% 80.3% 48.0% 

Illes Balears 100.0% 58.1% 60.5% 33.7% 68.2% 100.0% 48.6% 

La Rioja 44.8% 12.5% 51.3% 12.2% 47.9% 72.4% 38.2% 

Castilla-la Mancha 49.5% 24.5% 31.5% 14.9% 36.0% 52.4% 24.3% 

Andalucía 33.5% 23.5% 23.3% 7.1% 25.8% 31.8% 13.2% 

Región de Murcia 32.1% 17.1% 30.0% 8.3% 21.0% 23.8% 7.3% 

Cantabria 24.3% 27.1% 15.8% 5.0% 23.4% 20.0% 12.7% 

Castilla y León 20.4% 9.1% 13.2% 6.6% 26.4% 27.3% 10.7% 

Galicia 23.5% 15.7% 15.9% 6.8% 20.1% 16.6% 13.5% 

Annual Average – 17 regions 35.3% 22.0% 24.8% 15.3% 31.5% 33.9% 20.9% 
        

Poland 
       

Podlaskie 100.0% 60.1% 100.0% 42.0% 100.0% 52.0% 100.0% 

Warminsko-Mazurskie 53.0% 100.0% 100.0% 100.0% 100.0% 23.4% 60.3% 

Swietokrzyskie 100.0% 100.0% 77.2% 15.3% 100.0% 13.0% 83.6% 

Opolskie 20.2% 93.8% 35.2% 41.9% 76.1% 100.0% 26.8% 

Lubuskie 23.2% 80.1% 99.9% 17.8% 44.1% 5.7% 16.0% 

Zachodniopomorskie 21.6% 62.1% 38.7% 21.2% 92.3% 10.2% 16.6% 

Kujawsko-Pomorskie 42.7% 34.3% 33.6% 33.1% 72.8% 15.2% 23.6% 

Slaskie 18.2% 56.1% 30.6% 9.8% 81.8% 9.0% 20.2% 

Wielkopolskie 24.8% 29.9% 28.8% 15.4% 49.7% 25.1% 19.7% 

Pomorskie 58.7% 17.6% 27.6% 19.2% 41.8% 9.6% 16.7% 

Annual Average – 16 regions 35.1% 47.4% 42.9% 23.6% 57.6% 19.4% 29.6% 

 

 

 

Source: Our Elaboration 
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Table 5. Top 20 of Efficient Regions (Model 2 - VRS) - All Regions 

Model 2 - VRS  

All regions - Top 20 

 Before During 

Country Region 2006 2007 2008 2009 2010 2011 2012 

Belgium Prov. Luxembourg 
(BE) 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Bulgaria Severozapaden 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Bulgaria Severen tsentralen 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Bulgaria Yugoiztochen 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Czech 
Republic 

Severozápad 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Portugal Algarve 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Romania Sud-Est 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Romania Sud - Muntenia 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

UK Cornwall and Isles of 
Scilly 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Poland Lubuskie 100.0% 100.0% 100.0% 100.0% 93.6% 95.8% 99.6% 

Bulgaria Severoiztochen 96.9% 100.0% 100.0% 100.0% 100.0% 91.6% 100.0% 

Romania Vest 100.0% 84.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

Portugal Alentejo 100.0% 96.3% 85.8% 100.0% 100.0% 97.7% 100.0% 

Romania Sud-Vest Oltenia 100.0% 100.0% 86.8% 91.6% 97.9% 95.8% 100.0% 

Poland Opolskie 96.9% 97.7% 90.5% 91.0% 97.2% 100.0% 88.2% 

Romania Centru 98.4% 99.4% 100.0% 85.6% 94.1% 89.5% 92.4% 

Poland Podlaskie 82.0% 78.3% 100.0% 100.0% 97.1% 100.0% 100.0% 

Poland Swietokrzyskie 100.0% 100.0% 100.0% 99.1% 72.6% 84.4% 100.0% 

Romania Nord-Est 93.7% 100.0% 84.4% 85.8% 84.0% 89.3% 95.1% 

Portugal Centro (PT) 100.0% 99.5% 89.7% 98.1% 86.8% 80.8% 76.6% 

Annual Average – 104 regions 61.4% 58.7% 62.0% 64.5% 61.0% 62.3% 64.4% 

 

 

Considering VRS, Romania, Bulgaria and Poland are the three countries with more 

regions in the Top 20 ranking of Model 2. With Model 1 (Table A3), the 100% efficient 

regions were less, but the Province of Luxembourg (Belgium) is also one of the most 

efficient. Portugal has more regions in this ranking, namely Algarve, Alentejo and Centro. 

The UK is represented by Cornwall and the Isles of Scilly, considered 100% efficient.  

Also, it is possible to verify that in this ranking regions increased or kept their scores 

during the period of financial crisis, for example, Alentejo (Portugal) and Sud-Vest Oltenia 

(Romania).However, the efficiency score for Lubuskie (Poland) decreased after 2009. 

 

Source: Our Elaboration 
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Table 6. Top 10 of Efficient Regions (Model 2 -VRS) -UK, Spain and Poland 

Model 2 - VRS  

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Cumbria 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Lincolnshire 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Cornwall and Isles of Scilly 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

East Yorkshire and Northern Lincolnshire 100.0% 100.0% 99.0% 100.0% 100.0% 100.0% 100.0% 

Essex 99.8% 95.6% 99.0% 100.0% 100.0% 100.0% 100.0% 

West Midlands 95.8% 98.7% 96.5% 100.0% 100.0% 100.0% 100.0% 

Tees Valley and Durham 93.2% 97.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

South Yorkshire 97.8% 100.0% 89.8% 100.0% 100.0% 100.0% 95.4% 

Northern Ireland (UK) 100.0% 100.0% 100.0% 91.2% 100.0% 100.0% 86.0% 

West Yorkshire 88.2% 91.9% 91.1% 100.0% 100.0% 100.0% 100.0% 

Annual Average – 29 regions 86.7% 87.8% 86.1% 87.8% 89.5% 87.9% 86.5% 
        

Spain 
       

La Rioja 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Extremadura 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Illes Balears 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Canarias (ES) 100.0% 100.0% 100.0% 96.0% 100.0% 100.0% 100.0% 

Región de Murcia 100.0% 100.0% 100.0% 92.0% 100.0% 100.0% 90.1% 

Castilla-la Mancha 100.0% 96.8% 98.3% 93.3% 94.8% 94.3% 95.5% 

Andalucía 93.1% 91.2% 88.0% 87.7% 88.7% 92.6% 89.4% 

Cantabria 87.2% 91.5% 85.9% 86.4% 83.9% 83.1% 83.8% 

Comunidad Foral de Navarra 90.6% 91.1% 79.6% 79.0% 76.6% 83.2% 73.6% 

Comunidad Valenciana 81.5% 86.4% 82.5% 83.4% 80.4% 80.3% 78.7% 

Annual Average – 17 regions 84.3% 84.3% 81.9% 81.4% 81.9% 82.5% 80.7% 
        

Poland 
       

Swietokrzyskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Podlaskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Lubuskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Opolskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Warminsko-Mazurskie 100.0% 100.0% 100.0% 100.0% 100.0% 96.6% 100.0% 

Kujawsko-Pomorskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 96.4% 

Podkarpackie 97.3% 87.1% 100.0% 100.0% 100.0% 100.0% 91.0% 

Wielkopolskie 78.2% 85.4% 97.5% 100.0% 100.0% 100.0% 94.2% 

Zachodniopomorskie 86.5% 86.3% 95.1% 97.4% 100.0% 92.6% 88.4% 

Pomorskie 83.9% 74.0% 98.6% 93.0% 86.2% 90.3% 89.6% 

Annual Average – 17 regions 86.0% 85.1% 92.4% 90.7% 90.8% 90.8% 88.0% 

 

 Source: Our Elaboration 
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More specifically, in the Top 10, Poland and UK are the countries with more regions 

100% efficient. Even so, UK have regions with a higher score and some regions have 

become 100% efficient from 2008 to 2009, for instance, East Yorkshire and Northern 

Lincolnshire, Essex and West Midlands had 99.0%, 99.0% and 96.5%, in 2008 respectively 

and in 2009 had 100% of efficiency. In Spain, Canarias (ES) and Región de Murcia 

decreased their score from 2008 to 2009 but recovered in the following years. 

 

 
4.1.2. CRS and VRS Super-efficiency analysis by Model 2 

This sub-section analyses Super-efficiency through the DEA methodology based on 

both assumptions, CRS and VRS. This allows identifying the regions with the best efficiency 

performance. Again, the results are from model 2 and show a division between the pre and 

during financial crisis period. The results from model 1 are shown in Annex. 

Table 7 shows the ranking with no region optimized across the analysed time period. 

Yugoiztochen (Bulgaria), Sud-Est (Romania) and Algarve (Portugal) are the regions 

reaching the best score. Romania and Bulgaria are the countries with more regions in this 

Top 20. On the other hand, there is no uniformity concerning the behavior of super-efficiency 

levels during the financial crisis period. Some regions went up while others went down the 

ranking in this period. 

In Table 8 , where are represented the Top 10 of each country, Cornwall and Isles 

of Scilly (UK), Extremadura (Spain) and Opolskie (Poland) are the three regions with best 

performance. Both the UK and Spain have only a region with higher performance during the 

all the time period (2006-2012). 
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Table 7. Top 20 – Super-efficiency Analysis (Model 2 - CRS) - All Regions 

Model 2 – Super-efficiency CRS 

All region - Top 20 

 Before During 

Country Region  2006 2007 2008 2009 2010 2011 2012 

Bulgaria Yugoiztochen 177.6% 183.8% 277.2% 62.4% 132.0% 70.5% 401.4% 

Romania Sud-Est 32.6% 106.5% 203.4% 109.9% 340.6% 315.7% 75.4% 

Portugal Algarve 183.3% 54.0% 39.9% 109.6% 114.2% 124.2% 102.3% 

Romania Sud - Muntenia 150.8% 166.3% 50.9% 73.0% 74.5% 62.4% 26.9% 

Romania Sud-Vest Oltenia 134.0% 33.6% 41.6% 26.1% 28.3% 79.6% 119.0% 

Romania Nord-Vest 44.4% 54.9% 20.0% 190.1% 20.2% 12.9% 26.5% 

Poland Opolskie 11.9% 16.2% 5.0% 25.5% 4.9% 271.2% 4.4% 

Bulgaria Severen tsentralen 19.1% 188.6% 10.0% 34.4% 27.0% 8.9% 7.9% 

Romania Vest 104.0% 17.6% 9.6% 81.0% 23.5% 10.0% 19.6% 

Romania Centru 65.2% 29.8% 61.6% 12.9% 18.3% 29.1% 26.3% 

Spain Extremadura 22.9% 43.1% 16.8% 78.3% 16.0% 33.0% 31.0% 

Bulgaria Severoiztochen 21.9% 21.7% 26.4% 64.4% 58.7% 15.5% 26.2% 

Romania Nord-Est 18.0% 88.4% 17.0% 26.9% 18.4% 30.1% 21.2% 

Poland Podlaskie 68.5% 11.0% 23.4% 20.7% 18.2% 35.6% 40.9% 

Bulgaria Severozapaden 34.3% 30.5% 24.0% 40.8% 33.0% 29.7% 18.4% 

Poland Warminsko-
Mazurskie 

28.5% 32.7% 16.6% 76.9% 12.6% 20.1% 13.4% 

Portugal Alentejo 19.1% 49.2% 9.3% 62.4% 15.6% 5.0% 9.2% 

Poland Swietokrzyskie 81.3% 20.1% 12.2% 8.9% 13.9% 8.9% 12.5% 

Bulgaria Yuzhen tsentralen 14.6% 56.6% 8.6% 15.0% 6.3% 28.8% 7.5% 

Slovakia Stredné Slovensko 9.1% 24.7% 21.0% 23.5% 10.9% 11.9% 20.6% 

Annual Average – 104 
regions 

15.3% 15.1% 10.3% 13.8% 11.8% 14.1% 12.3% 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Our Elaboration 
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Table 8. Top 10 – Super-efficiency Analysis (Model 2 - CRS) - UK, Spain and Poland 

Model 2 – Super-efficiency CRS 

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Cornwall and Isles of Scilly 521.2% 479.4% 721.9% 308.5% 558.7% 236.0% 239.0% 

East Yorkshire and Northern 
Lincolnshire 

86.7% 55.8% 74.8% 128.5% 120.9% 118.4% 222.7% 

Devon 111.8% 127.0% 73.7% 98.1% 59.2% 212.4% 88.3% 

Cumbria 115.5% 107.3% 61.2% 129.9% 70.4% 118.8% 87.8% 

Northern Ireland (UK) 100.6% 100.6% 126.1% 67.4% 97.4% 95.2% 37.2% 

West Midlands 84.9% 90.3% 73.8% 147.3% 86.4% 80.2% 44.8% 

West Yorkshire 72.1% 72.7% 57.3% 87.9% 82.0% 143.3% 67.2% 

South Yorkshire 83.1% 85.3% 49.7% 97.1% 69.1% 96.2% 67.3% 

Greater Manchester 77.8% 72.0% 73.7% 69.6% 96.7% 83.3% 56.4% 

West Wales and The Valleys 100.5% 94.0% 85.6% 62.0% 75.7% 53.1% 40.5% 

Annual Average – 29 regions 76.2% 72.3% 73.5% 66.8% 72.6% 73.1% 56.6% 
        

Spain 
       

Extremadura 238.5% 410.3% 432.4% 679.5% 141.4% 273.5% 553.2% 

Canarias (ES) 101.7% 55.2% 44.2% 47.1% 214.5% 80.3% 48.0% 

Illes Balears 111.1% 58.1% 60.5% 33.7% 68.2% 105.3% 48.6% 

La Rioja 44.8% 12.5% 51.3% 12.2% 47.9% 72.4% 38.2% 

Castilla-la Mancha 49.5% 24.5% 31.5% 14.9% 36.0% 52.4% 24.3% 

Andalucía 33.5% 23.5% 23.3% 7.1% 25.8% 31.8% 13.2% 

Región de Murcia 32.1% 17.1% 30.0% 8.3% 21.0% 23.8% 7.3% 

Cantabria 24.3% 27.1% 15.8% 5.0% 23.4% 20.0% 12.7% 

Castilla y León 20.4% 9.1% 13.2% 6.6% 26.4% 27.3% 10.7% 

Galicia 23.5% 15.7% 15.9% 6.8% 20.1% 16.6% 13.5% 

Annual Average – 17 regions 44.2% 40.3% 44.4% 49.4% 40.7% 44.4% 47.5% 
        

Poland 
       

Opolskie 20.2% 93.8% 35.2% 41.9% 76.1% 1113.6% 26.8% 

Podlaskie 223.9% 60.1% 291.9% 42.0% 132.1% 52.0% 530.2% 

Warminsko-Mazurskie 53.0% 223.4% 108.6% 465.2% 106.2% 23.4% 60.3% 

Swietokrzyskie 197.0% 127.1% 77.2% 15.3% 124.3% 13.0% 83.6% 

Lubuskie 23.2% 80.1% 99.9% 17.8% 44.1% 5.7% 16.0% 

Zachodniopomorskie 21.6% 62.1% 38.7% 21.2% 92.3% 10.2% 16.6% 

Kujawsko-Pomorskie 42.7% 34.3% 33.6% 33.1% 72.8% 15.2% 23.6% 

Slaskie 18.2% 56.1% 30.6% 9.8% 81.8% 9.0% 20.2% 

Wielkopolskie 24.8% 29.9% 28.8% 15.4% 49.7% 25.1% 19.7% 

Pomorskie 58.7% 17.6% 27.6% 19.2% 41.8% 9.6% 16.7% 

Annual Average – 16 regions 48.9% 56.8% 55.4% 46.4% 61.5% 82.8% 56.5% 

 
Source: Our Elaboration 
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Table 9. Top 20 – Super-efficiency Analysis (Model 2 - VRS) - All Sample 

Model 2 – Super-efficiency VRS 

All region - Top 20 

 Before During 

Country Region  2006 2007 2008 2009 2010 2011 2012 

Romania Sud-Est 121.2% 138.1% big 138.7% big 318.3% 183.0% 

Romania Sud - Muntenia big big 110.5% 115.6% 103.1% 105.2% 114.3% 

Bulgaria Yugoiztochen 199.3% 193.6% 278.7% 115.8% 134.2% 118.5% big 

Poland Opolskie 96.9% 97.7% 90.5% 91.0% 97.2% big 88.2% 

Romania Nord-Vest 95.1% 81.9% 90.2% big 82.8% 86.7% 90.6% 

Portugal Algarve 378.9% 286.9% 270.5% 268.0% 277.8% 292.4% 271.5% 

Belgium Prov. Luxembourg 
(BE) 

133.8% 154.7% 170.1% 184.3% 193.5% 199.5% 200.6% 

UK Cornwall and Isles of 
Scilly 

186.0% 171.6% 143.0% 133.1% 127.0% 126.6% 104.8% 

Czech 
Republic 

Severozápad 122.7% 128.5% 146.9% 131.2% 120.5% 125.0% 113.5% 

Bulgaria Severen tsentralen 117.7% 196.8% 125.2% 115.2% 102.4% 102.7% 127.3% 

Romania Vest 108.1% 84.2% 123.4% 160.8% 118.5% 117.3% 136.4% 

Bulgaria Severozapaden 102.0% 103.6% 115.1% 118.8% 119.4% 126.4% 109.6% 

Poland Lubuskie 110.6% 115.7% 112.3% 133.1% 93.6% 95.8% 99.6% 

Poland Swietokrzyskie 150.0% 112.7% 111.6% 99.1% 72.6% 84.4% 121.4% 

Romania Sud-Vest Oltenia 136.3% 106.6% 86.8% 91.6% 97.9% 95.8% 124.6% 

Portugal Alentejo 119.1% 96.3% 85.8% 119.6% 102.6% 97.7% 111.8% 

Poland Podlaskie 82.0% 78.3% 113.4% 111.5% 97.1% 111.9% 122.7% 

Bulgaria Severoiztochen 96.9% 104.2% 104.6% 104.7% 107.1% 91.6% 103.4% 

Romania Centru 98.4% 99.4% 108.5% 85.6% 94.1% 89.5% 92.4% 

Romania Nord-Est 93.7% 111.8% 84.4% 85.8% 84.0% 89.3% 95.1% 

Annual Average – 104 regions 67.8% 64.4% 67.9% 69.7% 64.6% 68.2% 69.4% 

 

 

 

In this Top 20, VRS model 2, almost all regions have a score greater than 100%. 

The indication of big means the region remains efficient with arbitrary increased inputs. 

However, none of them has a score of big during both time periods. The values of super-

efficiency are lower than for model 1. On the other hand, this Top 20 doesn’t include the 

same regions than the Top 20 of model 1 (see Table A7 in Annex).  

 

 

 

Source: Our Elaboration 



 

48 

 

Table 10. Top 10 – Super-efficiency Analysis (VRS) - UK, Spain and Poland 

Model 2 – Super-efficiency VRS 

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Cornwall and Isles of Scilly 881.4% 606.1% big 339.8% big 260.5% 285.2% 

Devon big big 83.7% 152.2% 85.0% big 96.3% 

East Yorkshire and Northern 
Lincolnshire 

104.1% 106.6% 99.0% big 131.2% 120.8% big 

Cumbria 128.2% 118.8% 103.4% 138.7% 104.9% 148.6% 128.9% 

Lincolnshire 107.4% 111.6% 109.3% 133.8% 122.4% 137.8% 137.8% 

West Midlands 95.8% 98.7% 96.5% 156.1% 110.1% 106.4% 111.1% 

Tees Valley and Durham 93.2% 97.6% 118.2% 104.9% 116.9% 126.8% 112.8% 

West Yorkshire 88.2% 91.9% 91.1% 115.2% 100.1% 145.9% 110.8% 

Northern Ireland (UK) 101.6% 101.3% 133.6% 91.2% 101.9% 101.5% 86.0% 

Essex 99.8% 95.6% 99.0% 102.6% 103.0% 104.2% 100.5% 

Annual Average – 29 regions 115.9% 107.2% 87.9% 103.2% 92.8% 100.3% 96.3% 
        

Spain        

Extremadura big big big big 146.7% big big 

Canarias (ES) 102.7% 104.4% 102.9% 96.0% big 129.9% 101.6% 

La Rioja 201.4% 194.0% 206.1% 183.3% 192.8% 209.5% 201.6% 

Illes Balears 227.2% 203.8% 201.7% 187.1% 174.3% 186.5% 186.9% 

Región de Murcia 106.7% 154.6% 119.8% 92.0% 115.3% 104.1% 90.1% 

Castilla-la Mancha 102.5% 96.8% 98.3% 93.3% 94.8% 94.3% 95.5% 

Andalucía 93.1% 91.2% 88.0% 87.7% 88.7% 92.6% 89.4% 

Cantabria 87.2% 91.5% 85.9% 86.4% 83.9% 83.1% 83.8% 

Comunidad Foral de Navarra 90.6% 91.1% 79.6% 79.0% 76.6% 83.2% 73.6% 

Comunidad Valenciana 81.5% 86.4% 82.5% 83.4% 80.4% 80.3% 78.7% 

Annual Average – 17 regions 98.4% 99.3% 95.2% 90.9% 95.1% 95.8% 91.3% 
        

Poland        

Podlaskie big 123.4% big 100.0% 139.3% 159.8% big 

Swietokrzyskie 232.9% 132.2% 125.9% 100.0% big 101.8% 178.4% 

Opolskie 121.9% 123.0% 103.3% 100.0% 130.3% big 113.4% 

Warminsko-Mazurskie 101.5% big 119.5% 100.0% 107.2% 96.6% 112.2% 

Lubuskie 111.0% 121.9% 167.9% 100.0% 161.7% 173.3% 140.6% 

Kujawsko-Pomorskie 119.0% 117.6% 100.0% 100.0% 110.3% 101.2% 96.4% 

Podkarpackie 97.3% 87.1% 103.3% 100.0% 101.9% 101.8% 91.0% 

Wielkopolskie 78.2% 85.4% 97.5% 100.0% 105.0% 102.4% 94.2% 

Zachodniopomorskie 86.5% 86.3% 95.1% 97.4% 100.1% 92.6% 88.4% 

Pomorskie 83.9% 74.0% 98.6% 93.0% 86.2% 90.3% 89.6% 

Annual Average – 16 regions 97.4% 92.0% 99.8% 90.7% 100.6% 99.5% 96.9% 

 
 Source: Our Elaboration 
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Lastly, it is possible to verify UK is the country with higher scores of super-efficiency 

and Cornwall and Isles of Scilly and Devon are the most efficient. However, Extremadura 

(Spain) and Podlaskie (Poland) have score of big during some years, which means that this 

regions remain efficient under arbitrary large increased inputs. 

 

4.2. Econometric Analysis with PCSE methodology 

This subsection presents econometric results, starting with the application of some 

diagnosis tests and PCSE tests. The main goal of the econometric analysis is to analyse 

the differentials impact of determinants of Innovation Efficiency.  

Firstly, Table 11 presents the correlation matrix and the Variance Inflation Factor 

(VIF). It should be noted that in order to avoid any problems of estimation, the variables 

were firstly centred. The highest values of correlation are between Ln gvaindustry, Ln 

personnel and Ln hrst. Relatively to the VIF, the Ln hrst and Ln personnel show the highest 

values. 

Table 11. Correlation matrix and Variance Inflation Factor VIF 

 Ln IE Ln hrst Ln empl Ln pop Ln gerd Ln personnel Ln gvaindustry 

Ln IE 1 
      

Ln hrst 0.2639 1 
     

Ln empl -0.0744 0.1464 1 
    

Ln pop 0.005 0.2441 0.2396 1 
   

Ln gerd -0.7235 -0.0637 -0.0489 -0.1981 1 
  

Ln personnel -0.1695 0.7165 0.04 -0.0477 0.5591 1 
 

Ln gvaindustry -0.0192 0.7714 0.0342 -0.1184 0.1927 0.6978 1 

 
       

VIF - 11.69 1.07 1.7 4.84 9.9 3.86 

1/VIF - 0.08553 0.930597 0.589496 0.206505 0.101024 0.259029 

Mean VIF 5.51 
      

 

 

The following Tables 12 and 13 present diagnostic tests and PCSE methodology, 

respectively. 

 

 

Source: Our Elaboration 



 

50 

 

Table 12. Specification and diagnosis tests – All Regions 

 

 

 

 

 

Table 12 shows it is possible with the Pesaran’s Test to reject the null hypothesis of 

cross-sectional independence for Random and Fixed Effects. However, according to the 

Wooldridge Test for autocorrelation in panel data isn’t possible to reject the null hypothesis 

of no first order autocorrelation, at 1% level. A modified Wald statistics for group wise 

heteroscedasticity was also used to analyse the existence of heteroscedasticity. This way, 

the results suggest the presence of contemporaneous correlation across all the regions and 

through both fixed and random effects model, at 1% significance level, leading to the 

rejection of the null hypothesis of cross-sectional independence. 

Table 13 shows the estimation results of five models using the PCSE methodology. 

The first model used was the Linear Regression (Model I) that is a PCSE model specification 

of correlation over regions and no autocorrelation. Subsequently, an independent 

correlation structure was used, consisting of AR1 hetonly – heteroskedastic over regions 

and common first order autoregressive correlation error and the AR1 model, corresponding 

to the Models IV and II, respectively. The Panel Specific first order autoregressive 

correlation structure (psAR1) for correlation over regions and autocorrelation by sector, was 

also used (Model III). Lastly, the Linear Regression hetonly – heteroskedastic over regions 

and no autocorrelation (Model V) was also included. 

This way it is possible to verify that all models (Model I through V) estimated 

coefficients 𝛽1significantly positive and 𝛽2, 𝛽3, 𝛽4and 𝛽6 significantly negative. The coefficient 

𝛽5 is only significantly positive to the models I and V.  

 

Model 2 - All Sample » 104 regions 
 

Pooled Random Effects Fixed Effects 

Modified Wald Test (χ²)   20804.39*** 

Pesaran's Test  16.766*** 9.306*** 

Frees' Test  2.118 1.374 

Friedman's Test   24.944 

Wooldridge Test F(N(0,1)) 0.031   

Notes: The Modified Wald Test has a χ² distribution and tests the null hypothesis of group wise 

heteroskedasticity using stata; Pesaran tests the null hypothesis of cross section independence. 

Pesaran's test is a parametric test procedure and follows a standard normal distribution; Frees’ 

test uses Frees’ Q-distribution and also tests cross sectional independence. The Wooldridge 

test is normally distributed N(0,1) and tests the null hypothesis of no serial correlation. 

***, ** and * denotes 1%, 5% and 10% significance level, respectively. 

Source: Our Elaboration 
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Table 13. Results of PCSE methodology – All Regions 

 

Consequently, these results show a positive relationship between Innovation 

Efficiency and Tertiary education and/or employed in Science and Technology (HRST), and 

a negative relationship between this dependent variable, IE, and Employment in 

Technology, Population with tertiary education, R&D expenditures and GVA - industry. 

Although the relationship between IER and R&D Personnel is not significant for most 

models, it is positive. Furthermore, the most significant relationships are for HRST, 

Population with tertiary education and GVA - industry. 

Dependent Variable: Ln 

IE 

PCSE – Model 2 

Independent Variables (I) Linear 
 

(II) AR1 
 

(III) PSAR1 
 

(IV) AR1 

Hetonly 

 (V) Linear 

Hetonly           

Ln hrst 0.54 
 

0.88 
 

0.88 
 

0.88 
 

0.54 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Ln empl -0.50 
 

-0.41 
 

-0.32 
 

-0.41 
 

-0.50 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Ln pop  -1.74 
 

-1.86 
 

-1.78 
 

-1.86 
 

-1.74 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Ln gerd -0.86 
 

-0.57 
 

-0.65 
 

-0.57 
 

-0.86 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Ln personnel 0.41 
 

0.07 
 

0.06 
 

0.07 
 

0.41 
 

[0.000]*** [0.672] 
 

[0.529] 
 

[0.591] 
 

[0.000]*** 

Ln gvaindustry -0.70 
 

-0.72 
 

-0.71 
 

-0.72 
 

-0.70 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Constant 8.54 
 

9.91 
 

9.60 
 

9.91 
 

8.54 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Observations 728 
 

728 
 

728 
 

728 
 

728 

R² /Pseudo- R² 0.73 
 

0.83 
 

0.98 
 

0.83 
 

0.73 
          

Wald Test (χ²) 3519.08 
 

784.53 
 

987.27 
 

784.53 
 

1634.27 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Notes: The Wald test has χ2 distribution and tests the null hypothesis of non significance of all coefficients of explanatory 

variables; panel corrected standard errors are reported in brackets. ***, **, *, denote significance at 1%, 5% and 10% 

significance levels, respectively; Corr (AR1) - first-order autoregressive error, Corr (psAR1) – correlation over regions and 

autocorrelation region; Corr (AR1) hetonly – heteroskedastic over regions and common first order autoregressive error 

AR(1); Corr (linear) – correlation over regions and no autocorrelation; Corr (linear) hetonly - heteroskedastic over regions 

and common correlation over regions and no autocorrelation. 

Source: Our Elaboration 
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Table 14. Results from usual panel data estimators – All Regions 

Dependent Variable: Ln IE Model 2 - All Sample » 104 regions 
 

Random 

Effects 

 
Fixed 

Effects 

 
Random 

Effects 

 
Fixed 

Effects 

Independent Variables CSE 
 

CSE 
 

RSE 
 

RSE 
        

Ln hrst 0.93 
 

0.77 
 

0.93 
 

0.77 
 

[0.000]*** 
 

[0.009]*** 
 

[0.000]*** 
 

[0.015]** 

Ln empl -0.09 
 

0.07 
 

-0.09 
 

0.07 
 

[0.071]* 
 

[0.187] 
 

[0.127] 
 

[0.137] 

Ln pop  -1.49 
 

-0.85 
 

-1.49 
 

-0.85 
 

[0.000]*** 
 

[0.003]*** 
 

[0.000]*** 
 

[0.009]*** 

Ln gerd -0.42 
 

-0.14 
 

-0.42 
 

-0.14 
 

[0.000]*** 
 

[0.141] 
 

[0.001]*** 
 

[0.406] 

Ln personnel -0.14 
 

0.06 
 

-0.14 
 

0.06 
 

[0.170] 
 

[ 0.632] 
 

[0.298] 
 

[0.714] 

Ln gvaindustry -0.51 
 

-0.18 
 

-0.51 
 

-0.18 
 

[0.000]*** 
 

[0.413] 
 

[0.000]*** 
 

[0.368] 

Constant 9.26 
 

5.33 
 

9.26 
 

5.33 
 

[0.000]*** 
 

[0.001]*** 
 

[0.000]*** 
 

[0.011]** 

Observations 728 
 

728 
 

728 
 

728 
        

F test 
  

2.81 
   

1.7 
   

[0.0105]** 
   

[0.1286] 

Wald Test (χ²) 272.36 
   

158.38 
  

 
[0.000]*** 

   
[0.000]*** 

  

 

To verify the correct use of PCSE methodology and its adequacy, Table 14 shows 

the results of usual panel data estimators of random effects and fixed effects for 

comparison. These tests with usual panel data will allow verifying the robustness of the 

results obtained through the PCSE estimator, which will be robust if the estimations 

obtained through other methods are different. Furthermore, these tests also allow verifying 

if there are inconsistencies in coefficient estimations and bias in standard errors estimation. 

Note: The F-test is normally distributed N(0.1) and tests the null hypothesis of non-significance as a whole of the estimated 

parameters; The Wald test has Qui-Quadratic distribution and tests the null hypothesis of non-significance of all coefficients 

of explanatory variables; Standard errors are reported in brackets. ***, **, *, denote significance at 1%, 5% and 10% 

significance levels, respectively; CSE stands for Conventional Standard Errors; RSE for Robust Standard Errors; the 

regressions were performed in Stata 12. 

Source: Our Elaboration 
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The conventional standard errors (CSE) and robust standard errors (RSE) were applied to 

obtain robust heteroscedastic estimates. 

As shown, the F-test results don’t reject the null hypothesis of non-significance as a 

whole of the estimated parameters. However the Wald test allows rejecting the null of non-

significance of coefficients of explanatory variables as a whole. Comparing the coefficient 

estimates of the several explanatory variables from Table 13 and Table 14 it is clear that 

results are more significant through PCSE. As a consequence, the results of usual panel 

data estimators confirm Greene’s theory (2003) that the OLS method produces inefficient 

estimates for coefficients. 

 

The following Tables present the results from UK, Spain and Poland for diagnosis 

tests and PCSE. 

 

Table 15. Specification and diagnosis tests - UK 

 

 

 

 

 

 

 

Table 15 shows that through the Pesaran’s Test it is possible to reject the null 

hypothesis of cross-sectional independence for Random and Fixed Effects, as previously 

shown for the global sample. By the opposite, Frees’ Test does not allow rejecting the null 

hypothesis, so this test indicates the presence of contemporaneous correlation. Also, the 

Wooldridge Test for autocorrelation in panel data indicates the non-rejection of the null 

hypothesis of no first order autocorrelation, at 1% level. Lastly, a modified Wald statistics 

for group wise heteroscedasticity indicates rejection of null hypothesis. 

Model 2 - UK » 29 regions 
 

Pooled Random Effects Fixed Effects 

Modified Wald Test (χ²) 
  

3459.67*** 

Pesaran's Test 
 

5.628*** 4.648*** 

Frees' Test 
 

0.238 0.032 

Friedman's Test 
  

22.877 

Wooldridge Test F(N(0,1)) 1.414 
  

Notes: The Modified Wald Test has a χ² distribution and tests the null hypothesis of 

group wise heteroskedasticity using stata; Pesaran tests the null hypothesis of cross 

section independence. Pesaran's test is a parametric test procedure and follows a 

standard normal distribution; Frees’ test uses Frees’ Q-distribution and also tests 

cross sectional independence. The Wooldridge test is normally distributed N(0,1) and 

tests the null hypothesis of no serial correlation. 

***, ** and * denotes 1%, 5% and 10% significance level, respectively. 

 Source: Our Elaboration 



 

54 

 

 

Table 16. Results of PCSE methodology - UK 

Dependent Variable: Ln IE PCSE – UK » 29 regions 

Independent Variables (I) Linear 
 

(II) AR1 
 

(III) 

PSAR1 

 
(IV) AR1 

Hetonly 

(V) Linear 

Hetonly           

Ln hrst 0.08 
 

-0.22 
 

-0.07 
 

-0.22 
 

0.08 
 

[0.458] 
 

[0.327] 
 

[0.633] 
 

[0.222] 
 

[0.578] 

Ln empl -0.04 
 

-0.08 
 

-0.06 
 

-0.08 
 

-0.04 
 

[0.584] 
 

[0.331] 
 

[0.454] 
 

[0.232] 
 

[0.531] 

Ln pop  -0.23 
 

0.60 
 

0.63 
 

0.60 
 

-0.23 
 

[0.461] 
 

[0.184] 
 

[0.060]* 
 

[0.048]** 
 

[0.376] 

Ln gerd -0.28 
 

-0.32 
 

-0.28 
 

-0.32 
 

-0.28 
 

[0.000]*** [0.001]*** 
 

[0.001]*** 
 

[0.002]*** 
 

[0.003]*** 

Ln personnel -0.18 
 

-0.11 
 

-0.15 
 

-0.11 
 

-0.18 
 

[0.091]* 
 

[0.382] 
 

[0.529] 
 

[0.409] 
 

[0.126] 

Ln gvaindustry 0.17 
 

0.39 
 

0.33 
 

0.39 
 

0.17 
 

[0.000]*** [0.038]** 
 

[0.004]*** 
 

[0.021]** 
 

[0.140] 

Constant 7.34 
 

5.03 
 

4.55 
 

5.03 
 

7.34 
 

[0.046]** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Observations 203 
 

203 
 

203 
 

203 
 

203 

R² /Pseudo- R² 0.41 
 

0.90 
 

0.98 
 

0.90 
 

0.41 
          

Wald Test (χ²) 866.73 
 

96.21 
 

145.60 
 

60.18 
 

158.65 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

 

As for the whole sample, the same five models (Models I to V) of the PCSE 

methodology were used for the UK. It is possible to verify that for all models (I to V) only 𝛽4  

representing Ln of Expenditures on R&D, is significant, with a negative relationship with the 

IE ratio. 𝛽2 and 𝛽5 are non-significant and negative for almost all models, although, 𝛽5 is 

significant at 10% level to model I. The coefficient of Ln of GVA industry (𝛽6) shows a 

significant and positive relationship with IE, except for Model V (Linear regression – hetonly) 

which is not significant. 𝛽3 is not significant for Linear Regression Models (I and V) and AR1 

Model (II) and is significant and positive to the models III and IV at a 5% and 10% level of 

Notes: The Wald test has χ2 distribution and tests the null hypothesis of non significance of all coefficients of 

explanatory variables; panel corrected standard errors are reported in brackets. ***, **, *, denote significance at 1%, 

5% and 10% significance levels, respectively; Corr (AR1) - first-order autoregressive error, Corr (psAR1) – correlation 

over regions and autocorrelation region; Corr (AR1) hetonly – heteroskedastic over regions and common first order 

autoregressive error AR(1); Corr (linear) – correlation over regions and no autocorrelation; Corr (linear) hetonly - 

heteroskedastic over regions and common correlation over regions and no autocorrelation. 

Source: Our Elaboration 
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significance, respectively. GVA industry is one of the most significant, with higher 

coefficient. 

 

 
Table 17. Results from usual panel data estimators - UK 

Dependent Variable: Ln IE Model 2 - UK » 29 regions 
 

Random 

Effects 

 
Fixed 

Effects 

 
Random 

Effects 

 
Fixed 

Effects 

Independent Variables CSE 
 

CSE 
 

RSE 
 

RSE 
        

Ln hrst -0.16 
 

0.06 
 

-0.16 
 

0.06 
 

[0.417] 
 

[0.869] 
 

[0.429] 
 

[0.860] 

Ln empl -0.05 
 

-0.06 
 

-0.05 
 

-0.06 
 

[0.342] 
 

[0.330] 
 

[0.265] 
 

[0.178] 

Ln pop  1.17 
 

1.10 
 

1.17 
 

1.10 
 

[0.000]*** 
 

[0.029]** 
 

[0.000]*** 
 

[0.021]** 

Ln gerd -0.21 
 

-0.17 
 

-0.21 
 

-0.17 
 

[0.014]** 
 

[0.069]* 
 

[0.016]** 
 

[0.123] 

Ln personnel -0.23 
 

-0.08 
 

-0.23 
 

-0.08 
 

[0.023]** 
 

[0.512] 
 

[0.100] 
 

[0.654] 

Ln gvaindustry 0.50 
 

0.66 
 

0.50 
 

0.66 
 

[0.001]*** 
 

[0.001]*** 
 

[0.001]*** 
 

[0.003]*** 

Constant 3.42 
 

0.55 
 

3.42 
 

0.55 
 

[0.000]*** 
 

[0.701] 
 

[0.000]*** 
 

[0.698] 

Observations 203 
 

203 
 

203 
 

203 
        

F test 
  

8.31 
   

7.45 
   

[0.0000]*** 
   

[0.0001]*** 

Wald Test (χ²) 58.06 
   

102.51 
  

 
[0.000]*** 

   
[0.000]*** 

  

 

 

Once again the adequacy of PCSE methodology was verified, now for the UK, and 

the results of usual panel data estimators of random and fixed effects with CSE and RSE 

are presented on Table 17. It is shown that the F-test and Wald test results lead to the 

rejection of the null hypothesis of non-significance as a whole of the estimated parameters 

Notes: The F-test is normally distributed N(0.1) and tests the null hypothesis of non-significance as a whole of the 

estimated parameters; The Wald test has Qui-Quadratic distribution and tests the null hypothesis of non-significance 

of all coefficients of explanatory variables; Standard errors are reported in brackets. ***, **, *, denote significance at 

1%, 5% and 10% significance levels, respectively; CSE stands for Conventional Standard Errors; RSE for Robust 

Standard Errors; the regressions were performed in Stata 12. 

Source: Our Elaboration 



 

56 

 

and the rejection of the null hypothesis of non-significance of coefficients of explanatory 

variables as a whole, respectively. 

Furthermore, comparing these results with the results presented in the previous 

Table 16, it is possible to verify that the coefficients of the usual panel data estimators are 

lower than the PCSE methodology coefficients. However, here 𝛽3 and 𝛽6 are some of the 

most significant coefficients.  

Nevertheless, the results indicate that the PCSE’s are more significant. 
 

Table 18. Specification and diagnosis tests - Spain 

Model 2 - Spain » 17 regions 
 

Pooled Random Effects Fixed Effects 

Modified Wald Test (χ²) 
  

636.04*** 

Pesaran's Test 
 

0.517 0.163 

Frees' Test 
 

-0.498 -0.376 

Friedman's Test 
  

6.05 

Wooldridge Test F(N(0,1)) 6.614** 
  

 

 

Table 18 shows the results of specification and diagnosis tests and it is possible to 

verify that Pesaran’s Test, contrary to previous results, lead to non-rejection of null 

hypothesis of cross-sectional Independence for random and fixed effects. On the other 

hand, the Frees’ Test shows the existence of contemporaneous correlation. Furthermore, 

the Wooldridge Test for autocorrelation in panel data indicates the rejection of the null 

hypothesis of no first order autocorrelation, at 1% level and the modified Wald statistics for 

group wise heteroscedasticity indicates the rejection of null hypothesis. 

As shown in Table 19 , for Spain were also used the same PCSE methodology with 

the Linear Regression Model, AR1, PSAR1, AR1 – hetonly and Linear Regression – 

hetonly, Model I to V, respectively. In fact, it’s possible to verify that for the first time the 

coefficients of all models (Model I to V) are significant. 𝛽1and 𝛽4 are the only positive 

coefficients and the remaining coefficients (𝛽2, 𝛽3, 𝛽5 and 𝛽6) are negative. This means that 

for Spain, Tertiary education and/or employed in Science and Technology (HRST) and R&D 

expenditures have a positive relationship with the IE ratio and Employment in Technology, 

Population with tertiary education, R&D Personnel and GVA – industry have a negative 

Notes: The Modified Wald Test has a χ² distribution and tests the null hypothesis of group wise 

heteroskedasticity using stata; Pesaran tests the null hypothesis of cross section independence. 

Pesaran's test is a parametric test procedure and follows a standard normal distribution; Frees’ 

test uses Frees’ Q-distribution and also tests cross sectional independence. The Wooldridge 

test is normally distributed N(0,1) and tests the null hypothesis of no serial correlation. 

***, ** and * denotes 1%, 5% and 10% significance level, respectively. 

***, ** and * denotes 1%, 5% and 10% significance level, respectively. Source: Our Elaboration 
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relationship with the IE ratio. Furthermore, HRST, Population with tertiary education and 

R&D personnel are the most significant variables. 

 

 
Table 19. Results of PCSE methodology - Spain 

Dependent Variable: Ln IE PCSE – Spain » 17 regions 

Independent Variables (I) Linear 
 

(II) AR1 
 

(III) PSAR1 
 

(IV) AR1 

Hetonly 

(V) Linear 

Hetonly           

Ln hrst 2.56 
 

2.09 
 

2.06 
 

2.09 
 

2.56 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Ln empl -0.51 
 

-0.45 
 

-0.46 
 

-0.45 
 

-0.51 
 

[0.001]*** [0.025]** 
 

[0.005]*** 
 

[0.038]** 
 

[0.002]*** 

Ln pop  -2.20 
 

-1.86 
 

-1.98 
 

-1.86 
 

-2.20 
 

[0.000]*** [0.002]*** 
 

[0.001]*** 
 

[0.004]*** 
 

[0.000]*** 

Ln gerd 1.25 
 

0.80 
 

0.91 
 

0.80 
 

1.25 
 

[0.000]*** [0.088]* 
 

[0.030]** 
 

[0.057]* 
 

[0.000]*** 

Ln personnel -1.88 
 

-1.51 
 

-1.40 
 

-1.51 
 

-1.88 
 

[0.000]*** [0.001]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Ln gvaindustry -0.79 
 

-0.66 
 

-0.81 
 

-0.66 
 

-0.79 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Constant 19.10 
 

17.02 
 

17.09 
 

17.02 
 

19.10 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Observations 119 
 

119 
 

119 
 

119 
 

119 

R² /Pseudo- R² 0.77 
 

0.91 
 

0.98 
 

0.91 
 

0.77 
          

Wald Test (χ²) 1379.26 
 

195.82 
 

385.79 
 

166.77 
 

460.7 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

 

 

 

 

 

 

 

 

Notes: The Wald test has χ2 distribution and tests the null hypothesis of non significance of all coefficients of explanatory 

variables; panel corrected standard errors are reported in brackets. ***, **, *, denote significance at 1%, 5% and 10% 

significance levels, respectively; Corr (AR1) - first-order autoregressive error, Corr (psAR1) – correlation over regions and 

autocorrelation region; Corr (AR1) hetonly – heteroskedastic over regions and common first order autoregressive error AR(1); 

Corr (linear) – correlation over regions and no autocorrelation; Corr (linear) hetonly - heteroskedastic over regions and 

common correlation over regions and no autocorrelation. 

Source: Our Elaboration 
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Table 20. Results from usual panel data estimators - Spain 

Dependent Variable: Ln IE Model 2 - Spain » 17 regions 
 

Random Effects 
 

Fixed 

Effects 

 
Random 

Effects 

 
Fixed 

Effects 

Independent Variables CSE 
 

CSE 
 

RSE 
 

RSE 
        

Ln hrst 1.02 
 

-1.74 
 

1.02 
 

-1.74 
 

[0.025]** 
 

[0.298] 
 

[0.232] 
 

[0.338] 

Ln empl -0.35 
 

-0.15 
 

-0.35 
 

-0.15 
 

[0.048]** 
 

[0.440] 
 

[0.090]* 
 

[0.505] 

Ln pop  -0.66 
 

1.37 
 

-0.66 
 

1.37 
 

[0.170] 
 

[0.345] 
 

[0.345] 
 

[0.402] 

Ln gerd -0.43 
 

-1.17 
 

-0.43 
 

-1.17 
 

[0.248] 
 

[0.008]*** 
 

[0.570] 
 

[0.074]* 

Ln personnel -0.57 
 

0.48 
 

-0.57 
 

0.48 
 

[0.121] 
 

[0.295] 
 

[0.385] 
 

[0.380] 

Ln gvaindustry -0.45 
 

0.69 
 

-0.45 
 

0.69 
 

[0.136] 
 

[0.310] 
 

[0.244] 
 

[0.333] 

Constant 10.21 
 

6.45 
 

10.21 
 

6.45 
 

[0.000]*** 
 

[0.215] 
 

[0.007]*** 
 

[0.260] 

Observations 119 
 

119 
 

119 
 

119 
        

F test 
  

1.89 
   

1.27 
   

[0.0895]* 
   

[0.3260] 

Wald Test (χ²) 50.58 
   

34.73 
  

 
[0.000]*** 

   
[0.000]*** 

  

 

Table 20, concerning Spain, shows the results from the application of usual panel 

data estimators to verify the correct use of PCSE estimators. Specifically, the F-test leads 

to rejecting the null hypothesis for CSE but to reject the null hypothesis of non-significance 

as a whole of the estimated parameters for RSE. Wald Test results lead to the rejection of 

the null hypothesis of non-significance of coefficients of explanatory variables as a whole. 

In fact, through these estimators of random effects and fixed effects with CSE and 

RSE methodology, it’s possible to confirm that the coefficients are not significant when 

compared to the previous PCSE results. The results of usual panel data estimators for Spain 

Notes: The F-test is normally distributed N(0.1) and tests the null hypothesis of non-significance as a whole of the estimated 

parameters; The Wald test has Qui-Quadratic distribution and tests the null hypothesis of non-significance of all coefficients 

of explanatory variables; Standard errors are reported in brackets. ***, **, *, denote significance at 1%, 5% and 10% 

significance levels, respectively; CSE stands for Conventional Standard Errors; RSE for Robust Standard Errors; the 

regressions were performed in Stata 12. 

Source: Our Elaboration 
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show that the OLS method produces inefficient estimates for the coefficients (Greene, 

2003). 

 

Finally, the results of Poland, which consists of 16 NUT-II regions, are presented in 

Tables 21, 22 and 23.  

 

 
Table 21. Specification and diagnosis Tests - Poland 

Model 2 - Poland » 16 regions 
 

Pooled Random 

Effects 

Fixed 

Effects 

Modified Wald Test (χ²) 
  

432.82*** 

Pesaran's Test 
 

1.034 1.162 

Frees' Test 
 

0.425 0.416 

Friedman's Test 
  

8.196 

Wooldridge Test F (N (0,1)) 0.573 
  

 

 

 

 

 

 

 

 

Table 21 shows that only the modified Wald Test leads to rejection of null hypothesis 

of group wise heteroscedasticity. The results of Pesaran’s Test and Frees’ Test indicate the 

non-rejection of null hypothesis of cross sectional independence and the Wooldridge Test 

results don’t allow rejecting the null hypothesis of no serial correlation. 

 

 

 

 

Notes: The Modified Wald Test has a χ² distribution and tests the null hypothesis of 

group wise heteroskedasticity using stata; Pesaran tests the null hypothesis of cross 

section independence. Pesaran's test is a parametric test procedure and follows a 

standard normal distribution; Frees’ test uses Frees’ Q-distribution and also tests 

cross sectional independence. The Wooldridge test is normally distributed N(0,1) and 

tests the null hypothesis of no serial correlation. 

***, ** and * denotes 1%, 5% and 10% significance level, respectively. 

. 
Source: Our Elaboration 
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Table 22. Results of PCSE methodology - Poland 

Dependent Variable: Ln IE PCSE - Poland » 16 regions 

Independent Variables (I) Linear 
 

(II) AR1 
 

(III) 

PSAR1 

 
(IV) AR1 

Hetonly 

(V) Linear 

Hetonly           

Ln hrst 0.31 
 

0.54 
 

-0.07 
 

0.54 
 

0.31 
 

[0.462] 
 

[0.347] 
 

[0.874] 
 

[0.371] 
 

[0.526] 

Ln empl -0.25 
 

-0.26 
 

-0.08 
 

-0.26 
 

-0.25 
 

[0.138] 
 

[0.212] 
 

[0.592] 
 

[0.184] 
 

[0.135] 

Ln pop  -1.50 
 

-1.99 
 

-0.77 
 

-1.99 
 

-1.50 
 

[0.010]** 
 

[0.007]*** 
 

[0.194] 
 

[0.013]** 
 

[0.028]** 

Ln gerd 0.05 
 

0.29 
 

-0.05 
 

0.29 
 

0.05 
 

[0.743] 
 

[0.178] 
 

[0.752] 
 

[0.196] 
 

[0.811] 

Ln personnel 0.01 
 

-0.16 
 

0.17 
 

-0.16 
 

0.01 
 

[0.942] 
 

[0.479] 
 

[0.272] 
 

[0.522] 
 

[0.957] 

Ln gvaindustry -0.65 
 

-0.78 
 

-0.68 
 

-0.78 
 

-0.65 
 

[0.000]***  [0.027]** 
 

[0.032]** 
 

[0.033]** 
 

[0.028]** 

Constant 12.93 
 

15.11 
 

11.63 
 

15.11 
 

12.93 
 

[0.014]** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 
 

[0.000]*** 

Observations 112 
 

112 
 

112 
 

112 
 

112 

R² /Pseudo- R² 0.20 
 

0.69 
 

0.98 
 

0.69 
 

0.20 
          

Wald Test (χ²) 216.25 
 

81.28 
 

140.47 
 

28.53 
 

30.99 
 

[0.000]*** [0.000]*** 
 

[0.000]*** 
 

[0.0001]*** 
 

[0.000]*** 

 

Based on PCSE methodology results for Poland, presented in Table 22, it is possible 

to conclude that these coefficients are not very significant except for 𝛽3 and 𝛽6. Both 

coefficients are the most significant and indicate a negative relationship between them and 

the dependent variable. This means the Population with Tertiary Education and GVA – 

industry have a negative relationship with IE ratio. 𝛽6 is the only significant coefficient in all 

models (Model I to V). 𝛽2 also presents a negative relationship with Ln IER but not 

significant. Although 𝛽1 and 𝛽4 are not significant, the results indicate a positive relationship 

with the dependent variable, except for the Model of PSAR1 (III). 

 

Notes: The Wald test has χ2 distribution and tests the null hypothesis of non significance of all coefficients of explanatory 

variables; panel corrected standard errors are reported in brackets. ***, **, *, denote significance at 1%, 5% and 10% 

significance levels, respectively; Corr (AR1) - first-order autoregressive error, Corr (psAR1) – correlation over regions and 

autocorrelation region; Corr (AR1) hetonly – heteroskedastic over regions and common first order autoregressive error 

AR(1); Corr (linear) – correlation over regions and no autocorrelation; Corr (linear) hetonly - heteroskedastic over regions 

and common correlation over regions and no autocorrelation. 

Source: Our Elaboration 
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Table 23. Results from usual panel data estimators - Poland 

Dependent Variable: Ln IE Model 2 - Poland » 16 regions 
 

Random 

Effects 

 
Fixed 

Effects 

 
Random 

Effects 

 
Fixed 

Effects 

Independent Variables CSE 
 

CSE 
 

RSE 
 

RSE 
        

Ln hrst 0.61 
 

-0.62 
 

0.61 
 

-0.62 
 

[0.349] 
 

[ 0.666] 
 

[0.143] 
 

[0.677] 

Ln empl -0.04 
 

-0.03 
 

-0.04 
 

-0.03 
 

[0.793] 
 

[0.858] 
 

[0.747] 
 

[0.783] 

Ln pop  -2.39 
 

-1.54 
 

-2.39 
 

-1.54 
 

[0.001]*** 
 

[0.214] 
 

[0.000]*** 
 

[0.204] 

Ln gerd 0.32 
 

0.40 
 

0.32 
 

0.40 
 

[0.146] 
 

[0.109] 
 

[0.367] 
 

[0.359] 

Ln personnel -0.19 
 

-0.38 
 

-0.19 
 

-0.38 
 

[0.531] 
 

[0.322] 
 

[0.558] 
 

[0.353] 

Ln gvaindustry -0.90 
 

-1.41 
 

-0.90 
 

-1.41 
 

[0.082]* 
 

[0.121] 
 

[0.011]** 
 

[0.012]** 

Constant 16.35 
 

24.33 
 

16.35 
 

24.33 
 

[0.000]*** 
 

[0.001]*** 
 

[0.000]*** 
 

[0.012] 

Observations 112 
 

112 
 

112 
 

112 
        

F test 
  

3.84 
   

12.35 
   

[0.0019]*** 
   

[0.0000]*** 

Wald Test (χ²) 24.01 
   

45.28 
  

 
[0.0005]*** 

   
[0.0000]*** 

  

 

Lastly, Table 23 shows the results of usual panel data estimators. The use of these 

estimators intends to confirm the adequacy of PCSE methodology. It is possible to 

determine that the F-Test results lead to the rejection of null hypothesis of non-significance 

as a whole of the estimated parameters. Also, the Wald test results indicate the rejection of 

null hypothesis of non-significance of coefficients of explanatory variables as a whole. 

Furthermore, it is also shown that almost all usual panel data estimators are not 

significant. 𝛽3 is significant only in random effects and 𝛽6 is significant for all estimations 

Notes: The F-test is normally distributed N(0.1) and tests the null hypothesis of non-significance as a whole of the 

estimated parameters; The Wald test has Qui-Quadratic distribution and tests the null hypothesis of non-significance 

of all coefficients of explanatory variables; Standard errors are reported in brackets. ***, **, *, denote significance at 

1%, 5% and 10% significance levels, respectively; CSE stands for Conventional Standard Errors; RSE for Robust 

Standard Errors; the regressions were performed in Stata 12.  

Source: Our Elaboration 
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except for the fixed effects with conventional standard errors (CSE). Even so, both 

coefficients are the most significant.     

 

4.3. Econometric Analysis with GMM estimators 
 

The table 24, below, present the DIF-GMM and SYS-GMM parameter estimates of 

Equation 5 regarding the 104 NUT-II regions of EU. (I) represents the Dynamic panel-data 

estimation, one-step difference GMM, (II) Dynamic panel-data estimation, one-step system 

GMM, (III) Dynamic panel-data estimation, two-step difference GMM and (IV) Dynamic 

panel-data estimation, two-step system GMM.  

 

Table 24. Estimations Results of GMM Method » 104 regions 

Dependent Variable: Ln IE Results of GMM Estimations - All sample » 104 regions 

Independent Variables One-step Two-step 
 

(I) (II) (III) (IV) 

Ln IE (-1) -0.33 0.75 -0.09 0.15 
 

[0.000]*** [0.000]*** [0.482] [0.353] 

Ln hrst 1.38 -0.70 1.12 -0.29 
 

[0.004]*** [0.231] [0.039]** [0.642] 

Ln empl -0.03 -0.16 -0.12 -0.09 
 

[0.610] [0.207] [0.188] [0.434] 

Ln pop -1.22 -0.22 -0.56 -0.95 
 

[0.017]** [0.032]** [0.337] [0.003]*** 

Ln gerd -0.09 -0.30 -0.11 -1.08 
 

[0.678] [0.006]*** [0.709] [0.000]*** 

Ln personnel -0.05 -0.17 0.001 0.22 
 

[0.787] [0.421] [0.996] [0.457] 

Ln personnel (-1) 0.60 0.33 0.40 0.18 
 

[0.002]*** [0.075]* [0.178] [0.446] 

Ln gvaindustry 0.12 -0.14 0.31 -0.55 
 

[0.675] [0.031]** [0.428] [0.002]*** 

Ln gvaindustry (-1) -0.66 - -0.28 - 
 

[0.019]** - [0.464] - 
     

Instruments 32 37 31 35 

Groups 104 104 104 104 

Hansen 39.07 49.68 35.53 39.62 

AR1 -3.15 -3.79 -2.34 -2.61 

AR2 -1.00 1.63 0.38 1.09 

 
Source: Our Elaboration 
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The results show that the SYS-GMM estimations are more statistically significant 

and the coefficients of the lagged dependent variable are higher in SYS-GMM than in DIF-

GMM. However, the One-step models, generically, present better estimations that are 

statistically significant, as can be seen in the case of the lagged dependent variable the 

population variable (Ln pop) and the lagged independent variable Ln personnel. One the 

other hand, the HRST variable, for the DIF-GMM show the highest coefficients that are 

statistically significant and positive. This is means that the human resources have a positive 

relationship with the Innovation Efficiency. Furthermore, the lagged independent variable, 

Ln Personnel is statistically significant and negative in Dynamic panel-data estimation, one-

step. Although the variables Ln employment and Ln population show a negative relationship 

with the dependent variable, their coefficients are not statistically significant. 

 

The following tables show the results of GMM estimation for UK, Spain and Poland. 

(I) represents the Dynamic panel-data estimation, one-step difference GMM, (II) Dynamic 

panel-data estimation, one-step system GMM, (III) Dynamic panel-data estimation, two-

step difference GMM and (IV) Dynamic panel-data estimation, two-step system GMM.  

 

Table 25 shows the results of GMM parameters for UK. It is possible to verify that 

the SYS-GMM estimations are more statistically significant and the lagged dependent 

variable also present the highest coefficients in SYS-GMM. However, the coefficients of 

lagged dependent variable are only significant in the DIF-GMM estimations. Furthermore, 

the independent variables Ln Pop, Ln personnel and Ln gvaindustry present a positive 

relationship with the lagged dependent variable, Ln IE, in all estimations and the variable 

that represents the R&D expenditures (Ln gerd) is the only one that shows a negative 

relationship with the Ln IE, for all models. Even so, the highest coefficients are those of the 

independent variable Ln gvaindustry. In the case of Ln personnel and Ln gvaindustry, when 

the lagged variables are joined, the values of the coefficients become significant, which 

shows the importance of the lags of these variables. 
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Table 25. Estimations Results of GMM Method » UK - 29 regions 

Dependent Variable: Ln IE Results of GMM Estimations - UK » 29 regions 

Independent Variables One-step Two-step 
 

(I) (II) (III) (IV) 

Ln IE (-1) -0.24 0.83 -0.43 0.25 
 

[0.016]** [0.000]*** [0.109] [0.327] 

Ln hrst -0.56 0.49 0.15 1.44 
 

[0.518] [0.573] [0.843] [0.069]* 

Ln empl -0.03 0.07 -0.06 0.08 
 

[0.589] [0.350] [0.361] [0.541] 

Ln pop 1.23 0.18 0.62 -0.47 
 

[0.055]* [0.778] [0.237] [0.585] 

Ln gerd -0.20 -0.12 -0.15 -0.22 
 

[0.095]* [0.140] [0.384] [0.094]* 

Ln personnel 0.04 0.15 0.10 0.03 
 

[0.763] [0.245] [0.471] [0.869] 

Ln personnel (-1) - -0.26 - - 
 

- [0.075]* - - 

Ln gvaindustry 1.03 1.05 1.01 0.70 
 

[0.018]** [0.013]** [0.046]** [0.072]* 

Ln gvaindustry (-1) - -0.89 - - 
 

- [0.033]** - - 
     

Instruments 28 40 26 38 

Groups 29 29 29 29 

Hansen 22.31 18.65 17.27 11.05 

AR1 -3.96 -3.45 -0.75 -2.00 

AR2 0.28 1.56 -0.34 0.81 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Our Elaboration 
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Table 26. Estimations Results of GMM Method » Spain - 17 regions 

Dependent Variable: Ln IE Results of GMM Estimations - Spain » 17 regions 

Independent Variables One-step Two-step 
 

(I) (II) (III) (IV) 

Ln IE (-1) -0.32 0.67 -0.34 0.55 
 

[0.000]*** [0.000]*** [0.014]** [0.401] 

Ln hrst -4.30 0.79 -9.37 1.13 
 

[0.254] [0.123] [0.537] [0.538] 

Ln empl -0.51 -0.17 -0.24 0.45 
 

[0.044]** [0.370] [0.078]* [0.766] 

Ln pop 1.70 0.45 0.11 4.58 
 

[0.630] [0.162] [0.994] [0.471] 

Ln gerd -0.96 -0.002 -0.002 -0.44 
 

[0.286] [0.995] [0.998] [0.449] 

Ln personnel -1.44 -0.51 -5.69 -0.56 
 

[0.095]* [0.198] [0.056]* [0.605] 

Ln personnel (-1) 2.14 - - - 
 

[0.023]** - - - 

Ln gvaindustry 1.00 -0.28 3.10 -0.69 
 

[0.381] [0.041]** [0.289] [0.405] 
     

Instruments 33 34 26 32 

Groups 17 17 17 17 

Hansen 0.00 8.57 1.51 7.95 

AR1 -2.07 -2.24 0.02 -1.30 

AR2 -1.41 -0.19 0.48 -0.80 

 

 

Table 26 presents the results concerning Spain. It shows the lagged dependent 

variable is statistically significant for One-Step GMM, and is also significant for DIF-GMM 

Two-Step, at 5% level. Even so, overall the results are not too much significant not only for 

DIF-GMM but also SYS-GMM. Additionally, the independent variable Ln pop have the 

highest and positive coefficients. Ln gvaindustry also present high coefficients in DIF-GMM 

but are not significant and Ln personnel and Ln gerd show a negative relationship with the 

dependent variable. One the other hand, when the lagged independent variable Ln 

personnel is included their coefficients become statistically significant. 

 

 

Source: Our Elaboration 
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Table 27. Estimations Results of GMM Method » Poland - 16 regions 

Dependent Variable: Ln IE Results of GMM Estimations - Poland » 16 regions 

Independent Variables One-step Two-step 
 

(I) (II) (III) (IV) 

Ln IE (-1) -0.38 0.42 -0.30 0.13 
 

[0.001]*** [0.004]*** [0.610] [0.780] 

Ln hrst -0.73 -1.63 2.97 -1.92 
 

[0.615] [0.115] [0.766] [0.444] 

Ln empl -0.21 -0.42 0.001 -0.16 
 

[0.299] [0.033]** [1.000] [0.634] 

Ln pop 2.07 1.75 -0.23 6.31 
 

[0.221] [0.266] [0.987] [0.360] 

Ln gerd 0.71 0.948 0.49 0.03 
 

[0.160] [0.041] [0.672] [0.965] 

Ln gerd (-1) - -1.04 - - 
 

- [0.009]*** - - 

Ln personnel -0.77 -1.34 -0.79 -0.13 
 

[0.100] [0.000]*** [0.493] [0.855] 

Ln personnel (-1) - 1.48 - - 
 

- [0.000]*** - - 

Ln gvaindustry -4.20 -4.26 0.28 2.29 
 

[0.048]* [0.009]*** [0.964] [0.403] 

Ln gvaindustry (-1) - 4.43 - - 
 

- [0.014]** - - 
     

Instruments 28 40 26 32 

Groups 16 16 16 16 

Hansen 7.75 0.00 6.08 4.25 

AR1 -2.58 -2.46 -0.99 -1.48 

AR2 -0.60 0.19 0.55 1.19 

 

 

Table 27 shows the results regarding Poland and confirms that the SYS-GMM One-

Step show the more coefficients statistically significant due essentially to the inclusion of 

lagged independent variables, namely for the R&D expenditures (Ln gerd), R&D personnel 

(Ln personnel) and the GVA Industry (Ln gvaindustry). As previously, the coefficients of 

lagged independent variable are statistically significant only in One-Step GMM. 

Furthermore, the R&D expenditures show a positive relationship with the dependent 

variable, the logarithm of Innovation Efficiency (LN IE), and, on contrary, the R&D personnel 

show a negative relationship with Ln IE, such as Ln HRST and Ln Empl, except for model 

III. However these coefficients are not statistically significant.    

Source: Our Elaboration 
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4.4. Discussion 

 The application of the DEA methodology in this study shows that Belgium with 

eleven NUT-II and Romania with eight regions are among the countries with the highest 

number of regions in the Top 20 ranking. One the other hand, also UK, the country with 

more regions in this sample have always some regions that stand out, for example, Cornwall 

and Isles of Scilly, Cumbria and Lincolnshire. Already in Spain, the second country with 

more NUT-II regions, the regions that stand out are Comunidad Foral de Navarra, 

Extremadura, La Rioja e Illes Balears. Finally, Poland, with sixteen NUT-II regions gains 

prominence through the Lubuskie, Opolskie and Podlaskie regions. All these regions 

present, at least in one model used, very high efficiency values in comparison with other 

regions under study. 

 Furthermore, the estimated parameters of the empirical models employed show the 

differentials impact of determinants of Innovation Efficiency and the results suggest that 

education and/or employed in Science and Technology (HRST) and the GVA – Industry are 

the most significant variables. Hence, it would be useful to evaluate their evolution during 

the analysed period, namely, making the division between the period before the financial 

crisis and during crisis. 

 As a matter of fact, there are some studies (Filippetti & Archibugi, 2011; Kalapouti 

et al., 2017; Rodríguez-Pose & Crescenzi, 2008) that confirm the human resources are an 

essential part of the innovation process, namely when the country is in crisis. When the 

country is in crisis the levels of GVA and GDP decrease, but the most innovative firms tend 

not to reduce their innovation intensity. The most efficient regions remain the same during 

the crisis period, as shown. 

 In the charts below relating Innovation Efficiency and HRST and GVA-Industry. 
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Charts 2 and 3 show the position of Top 20 NUT-II regions based on model 2 VRS 

ranking, considering the period before and during the financial crisis (2006-2008 and 2009-

2012). Upper regions remain the same before and during crisis, with higher values of 

Innovation Efficiency. Bottom regions have lower IE, left side regions have lower levels of 

human resources in science and technology (HRST) and right side regions have higher 

levels of HRST. Considering possible to verify that regions are more concentrated in the left 

and bottom side, they have low levels of HRST and IE. The most efficient regions 

considered by the Top 20 ranking, such as the Province of Luxembourg (Belgium), 

Severozapaden (Bulgaria) and Severn Tsentralen (Bulgaria) are in the left and bottom side.  

Yugoiztochen (Bulgaria) is the region with the highest IE ratio, but in terms of HRST 

ratio, the levels are low. By the contrary, Nord-Est (Romania) shows low levels of IE ratio 

and the highest levels of HRST. The position of each region changes downwards to the 

bottom from the pre-crisis period to the during-crisis period. The levels of HRST almost 

don´t change from one period to another. This means that the levels of HRST tend to 

increase while regional GDP decrease in this period. In terms of IE ratio, the levels fall 

slightly but recover in the during and post-crisis period namely for Yugoiztochen (Bulgaria), 

Sud-Muntenia (Romania) and Opolskie (Poland). The Sud-Est shows a positive evolution 

in IE ratio across periods. The regions from Romania show a positive evolution on HRST, 

but when considering the different Eurostat reports (2017) and RIS (2017), Romania regions 
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such as Sud-Muntenia and Nord-Est always show the worst results in terms of HRST and 

are considered modest innovators.  

 

 

Charts 4 and 5 show the position of the Top 20 NUT-II regions in model 2, VRS, 

considering GVA Industry and Innovation Efficiency. These charts represent the pre-crisis 

period (Chart 4) and the during-crisis period (Chart 5). As before, the upper side regions 

present higher IER values and bottom regions lower values. Left side regions have lower 

levels of GVA Industry ratio and right side regions show higher. The Sud-Muntenia region 

(Romania) has the highest ratios of GVA Industry, but is not the best region concerning 

Innovation Efficiency. The most efficient regions are concentrated on the left side of the 

chart and from 2006-2008 to 2009-2012 their position shifts downwards, translating the 

decrease of IE ratios from the pre-crisis period to the during-crisis period. The GVA-Industry 

ratio has no especial change because both variables GVA-Industry and Regional GDP 

decrease from one period to another. 

These regions were considered inefficient comparatively to other regions with lower 

GDP ratios because they didn’t generate enough real output. On the other hand, regions 

with lower GDP ratios were considered efficient because even with a reduced input level 

they reached better economic results. This indicates that human resources and tertiary 

education in science and technology are fundamental indicators to create more value added 

for regions. Investment in these indicators may not guarantee per se that the regions will 
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Source: Our Elaboration 



 

70 

 

reach higher levels of value added and higher levels of efficiency. However, policy makers 

should pay more attention to these indicators and ponder how to improve regional 

innovation policies, namely regarding inefficient regions that may increase the generates 

output with the same innovation inputs (Dzemydaitė et al., 2016). Also, Kalapouti et al. 

(2017), showed that high levels of innovative activity through patents production allow high 

levels of innovative efficiency. 

 

Next, are presented the Charts that correspond to the UK, Spain and Poland 

regions. 

 

 

Specifically, Charts 6 and 7 represent the Top 10 UK regions, under the VRS 

assumption, in the pre-crisis period (Chart 6) and in the during-crisis period (Chart 7) 

corresponding to the relationship between the HRST/regional GDP and IE. As can be seen 

the regions are more concentrated in the left side, in the pre-crisis period. This means that 

these regions have lower levels of HRST but even so, the same regions have higher levels 

of IE, for example, Cornwall and Isles of Scilly, Cumbria and Lincolnshire. These last regions 

are also considered as the most efficient in the Top 10. West Midlands is the regions that 

show highest levels of HRST ratio. Somehow, these results are in line with the EU reports, 

showing that the UK is well positioned in all regions under study and thus presents high 

levels of HRST, namely in southern and eastern regions. 

On the other hand, the UK is included in the Declining group which means that this 

country is efficient and has a strong National Innovation System but doesn’t investment in 
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innovation. In times of crisis, the UK tends to move to the right side because it benefits from 

National Systems of Innovation (NSI). Furthermore, according to Filippetti and Archibugi 

(2011) the NSI shows the importance of human resources for enterprises, namely in the 

UK. 

 

 

Charts 8 and 9 show the relationship between the GVA Industry ratio and the IE ratio 

for the Top 10 UK regions; these regions are more concentrated in the middle of the charts, 

which means the levels of GVA are higher compared with the previous charts showing the 

Top 20. When compared, this two charts show that some regions decreased a little 

concerning Innovation Efficiency, however, this decrease is not significant. Once again, this 

relationship between Innovation Efficiency and in this case GVA of industry is assured by 

the National Innovation System and by government support. 
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The following Charts 10 and 11 represent the Top 10 NUT-II Regions in Spain.   

 

Charts 10 and 11 show the relationship between HRST and IER based on GDP. 

These Charts allow concluding that the most efficient regions considered by the DEA 

methodology are more concentrated on the left side. Extremadura is the region with higher 

levels of Innovation Efficiency and La Rioja has the lower levels of HRST. Finally, 

Comunidad Foral de Navarra has lowest levels of HRST and IER and Andalucia the highest 

values of HRST ratio, although with a low IE ratio.  

In fact, Spain is included in the Lagging-behind group where the level of investment 

on R&D is low, and productivity levels and NSI are also low. Hence, the levels of HRST are 

low and during the financial crisis the regions tend to move to the right side, which means 

that although GDP decreases, the number of human resources (HRST) increases slightly.    

On the other hand, the Regional Innovation Scoreboard (RIS) (European 

Commission, 2017), considered the regions of Spain as a moderate innovators, and the 

region that stands out most is Pais Vasco. Furthermore, Cataluña, Comunidad de Madrid 

and Comunidad Foral de Navarra are in the Top 10 of the Moderate Innovators and 

Canarias is in the Top 10 of Modest Innovators. 
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Charts 12 and 13 show the relationship between the GVA industry ratio and IE ratio 

and indicate that regions are more dispersed but more concentrated at the bottom and left 

side. Furthermore, the regions considered more efficient are on the left side, with 

Comunidad Foral de Navarra having low levels of Innovation Efficiency, and Extremadura 

having high levels of IE. From the pre-crisis period to the during-crisis period, the regions 

move further to the right side, which means that the regions recover soon after the crisis. 

 The following Charts, 14 and 15, show the position of the Top 10 NUT-II regions in 

Poland. 
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Charts 14 and 15 show the relationship between HRST and IE ratios. It is possible 

to verify that the regions are more concentrated in the middle of the chart, meaning that 

these regions have high levels of Innovation Efficiency and the HRST ratio is relatively low. 

Opolskie and Podlaskie are the regions that decreased the most the IE ratio from the pre-

crisis period to the during-crisis period. In fact, Poland is considered a catching-up Country, 

since Poland invests significantly in R&D, yet doesn’t receive much support from the NSI. 

These are some of the characteristics of the New Member States in the European Union 

included in the Catching-up Group defined by Filippetti and Archibugi (2011).  

 

 

To conclude the analysis of the position of the Top 10 Poland regions, Charts 16 

and 17 show the relationship between GVA industry and IE ratios. Contrary to the previous 

Charts of Poland, the regions are more dispersed but more on the left side. The regions 

considered more efficient by the DEA methodology are Opolskie, Podlaskie and Lubuskie, 

more concentrated on the left side. This means that the ratio of GVA industry and GDP is 

low. During the financial crisis it is possible to detect that regions decrease their levels of 

IER and they move further downwards in response to the crisis, except Opolskie, which 

increased the levels of IE, since the Regional GDP increased for Opolskie. 

Also, the regions from Poland are considered Modest Innovators by RIS (European 

Commission, 2017). Even so, Wielkopolskie, Lubelskie, Podlaskie and Opolskie are 

included in the Top 10 of Modest Innovators. Notwithstanding, the Eurostat report (2017) 

shows that Poland regions tend to recover more easily in the during-crisis period.  

Chart 17. Region Position during-crisis - GVA Industry (Poland) 

G

C

A

HE

J I
F

B

D

0

2000

4000

6000

8000

10000

12000

14000

0 0.1 0.2 0.3 0.4 0.5 0.6

IE

GVA-INDUSTRY/Regional GDP

G
C

A

H

E

J

I

F

B

D
0

2000

4000

6000

8000

10000

12000

14000

0 0.1 0.2 0.3 0.4 0.5 0.6

IE

GVA-INDUSTRY/Regional GDP

Note: A –Podlaskie; B – Warminsko-Mazurskie; C – Swietokrzyskie; D – Pomorskie; E – Zachodniopomorskie; F – Kujawsko-Pomorskie; G 
– Podkarpackie; H – Wielkopolskie; I – Opolskie; J – Lubuskie;  

Chart 16. Region Position pre-crisis -GVA Industry (Poland) 

Source: Our Elaboration 



 

75 

 

Beside this, it is also important to analyse the same factors, considered for the 

discussion, i.e. the HRST and GVA-Industry for Romania and Bulgaria that are also 

considered Catching-up countries: 

  

 

Charts 18 and 19 show the relationship between HRST and IE ratios for the Romania 

regions. It is possible to verify that the regions are more concentrated in the middle of the 

chart showing high levels of IER and the levels of HRST are also high comparatively with 

other regions, such as, UK regions. During the crisis the regions move further downwards, 

decreasing the levels of IER, even though, the levels of HRST don’t decrease in the same 

proportion.  
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Charts 20 and 21 show the relationship between GVA-Industry and IER for Romania 

regions and it is possible to verify that regions are concentrated in the middle of the charts 

with similar levels of GVA-Industry comparatively with the regions of the other countries 

analysed. Once again, it is possible to see that the regions tend to move further downwards 

during the crisis period. 

 

Charts 22 and 23 show the relationship between HRST and IER for Bulgaria regions. 

Bulgaria are represented in this sample with 6 regions and Yugoiztochen is the region with 

higher levels of IER. The levels of HRST are low and tend to decrease from the pre-crisis 

period to during-crisis period. 

 

Charts 24 and 25 show the relationship between GVA-Industry and IER. It is 

possible to see that the levels of GVA-Industry are relatively low and Yugoiztochen is, once 

again, the region that stands out the most. From the pre-crisis period to during-crisis period 

the regions move further downwards. 
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In fact, Romania and Bulgaria are considered as modest innovators and are the less 

developed countries of UE, however the results of DEA application show high scores on 

innovation efficiency for their regions, namely for Romania. The truth is that Romania, 

shows high levels of HRST comparatively with other regions analysed and this can be a 

reason for the high levels of IER, that is, the fact of Romania show high levels of HRST 

allows it has a bigger absorption capacity where the knowledge spillovers play a 

fundamental role and without this the regions of Romania don’t innovate. 

This analysis impacts public policies because as aforementioned, human resources 

play a key role towards the innovation process, namely during crisis, because they reduce 

the effects from crisis (Crescenzi et al., 2016; Kalapouti et al., 2017).  

On the other hand, the regions that suffer the most due to financial crisis are those 

from countries with the lowest levels of government support to innovation, namely New 

Member States and Poland. 

 Furthermore, the results indicate persistency on innovation process over time, which 

means that in time of crisis, the regions choose technological accumulation. This doesn’t 

mean the regions follow the same sectors of innovation. In fact, financial crisis may 

represent an opportunity for government support, especially concerning new sectors such 

as environmental issues.
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5. Conclusions and limitations 

 

The main goal of this thesis is to measure the efficiency in terms of innovation of EU 

regions and understand the impact of innovation in EU regions, namely during the recent 

global financial crisis. The second goal is to organize an up-to-date ranking with the most 

efficient regions in the EU. To achieve these goals the methodology used included the DEA 

methodology with a new indicator, Innovation Efficiency Ratio, the PCSE methodology and 

the GMM estimations for 104 EU NUT-II regions during the period of time from 2006 to 

2012. The results indicate that Romania is one of the countries with more regions on the 

Top 20 ranking, followed by Bulgaria.  

Answering the questions that were posed at the beginning, the most efficient regions 

are the Sud-Est and Sud-Muntenia in Romania, Yougoiztochen, Severozápaden and 

Severen Tsentralen in Bulgaria, the Province of Luxembourg in Belgium and the Algarve in 

Portugal.  

The results from the different Eurostat reports (2011; 2017) and reports from the 

European Commission (2017) do not support the present results. In fact, the regions from 

Romania are considered the most modest in terms of innovation, although present results 

indicate they are the most efficient regions.  

On the other hand, it is important to take into account that in this study the majority 

of the regions are located in the Southern and Eastern EU, precisely the regions that 

according to previous reports have lower scores in wealth creation and innovation. 

Regarding the main factors affecting innovation and efficiency these include HRST 

supporting conclusions by Crescenzi et al. (2016), Filippetti and Archibugi (2011), Kalapouti 

et al. (2017) and Patra and Krishna (2015). Effectively, in this study, the HRST have proved 

to be the most significant factor that affects the Innovation Efficiency positively. In this way, 

the qualified human resources are a key-factor for innovation, namely in time of crisis. 

Therefore they should be part of any strategy towards innovation because they are able to 

improve and innovate. On the other hand, the Gross Value Added of Industry affects 

negatively the Innovation Efficiency. 

Thirdly, the crisis accentuated disparities between the regions. The results obtained 

allow confirming that regions from Spain, such as Illes Balears, La Rioja, Andalucia e 

Region de Murcia were those that decreased the most in efficiency scores from 2008 to 

2009, also, some regions from Poland, such as Podlaskie and Lubuskie and from the UK, 

Northern Ireland was the worst from 2008 to 2009. Moreover, in the Top 20, Yugoiztochen 

(Bugaria) and Centru (Romania) also decreased their levels of efficiency from 2008 to 2009. 
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However, all these regions had a good recovery between 2009 and 2012 improving their 

efficiency levels.  

An interesting aspect is that regions considered 100% efficient before the crisis tend 

to keep these scores during the financial crisis, and most of the regions in the Top 20 tend 

to increase efficiency levels after 2008. Hence, disparities between regions do persist, as 

among regions within the same country. The effect of crisis in the different EU countries is 

different because it depends on factors such as fiscal systems, capital flows and credit 

markets. Ultimately, the investment reduction on innovation is the main consequence of 

such factors.  

To sum up, there are significant divergences between EU regions and the financial 

crisis has hindered bridging such gaps, because the most vulnerable countries reduced 

their investment on innovation (Archibugi & Filippetti, 2011). Innovation efforts are not yet 

translated into results, and as a consequence southern regions are still far behind 

northernmost regions. In addition, the disparities among regions from the same country still 

persist, especially peripheral regions, more distant from capital city regions. Concerning the 

regions from Poland, Spain and Romania, there are serious disparities when compared with 

regions from Germany, France, Finland or Sweden. Hence, full recovery from the crisis by 

all EU regions is only possible in the long term, which constitutes an additional obstacle to 

convergence among regions. These differences impact the EU as a whole because the EU 

also moves away from other world leading economies such as the USA, Japan, India or 

China, meaning the European economy will not be so attractive on a global scale. 

Focusing on regional innovation may constitute a solution for regional disparities, as 

well as government investment at a regional level, with the support from the EU and specific 

innovation policies, directed related to NSI and human capital, to allow convergence among 

regions regarding efficiency. 

Finally, this study presents some limitations. The first limitation concerns data 

collection, since there is a limited amount of data available since 2012, particularly regarding 

patents and other variables such as number of publications or exports of medium and large 

enterprises. In addition, some regions from Germany and France, the main powers of the 

European Union, could not be considered in this study due to lack of data regarding the 

selected timeframe. Also, the different types of innovation were not contemplated. One the 

other hand, the number of patents is an imperfect variable to measure the Innovation 

Efficiency because it doesn’t capture much of innovation because it is not always patented. 

For future research, it would be interesting to obtain more updated data and for more 

regions in order to re-compare them and use other variables as proxy of innovation, such 
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as Intellectual Property Rights, more specifically, the European Union Trademarks 

applications and Community Design Applications. Furthermore, it would be also interesting 

to consider the targets and benchmarks of the results of DEA in the study, as well as to 

focus more in the super-efficiency results. Last but not least, it would be interesting analyse 

the several strategies of innovation in territorial terms with the aim of re-orienting them, 

based on this study. 
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Annex 
 

 

 

 

 

 

Figure A1. Gross domestic product (GDP) per inhabitant, in 

purchasing power standard (PPS), by NUTS 2 2008 (Turkey, 

2006) (in percentage of EU-27 = 100) 

 

Figure A2. Gross domestic product (GDP) per inhabitant in 

purchasing power standards (PPS) in relation to the EU‑28 average, 

by NUTS 2 regions, 2015 (% of the EU-28 average, EU-28 = 100) 

Source: Eurostat (online data code: nama_r_e2gdp). 

Notes: Ireland, Norway and Albania: 2014. Switzerland and Serbia: 

national data. Switzerland: provisional.  

 

Source: Eurostat (online data codes: nama_10r_2gdp and 

nama_10_pc) 
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Figure A3. R & D intensity, by NUTS 2 regions, 2008(1) 

(total R & D expenditure as % of GDP) 

Figure A4. R & D intensity — gross domestic expenditure on R 

& D (GERD) relative to gross domestic product (GDP), by 

NUTS 2 regions, 2014 (%) 

Notes: (1) EU-27, Eurostat estimate; Belgium, Denmark, 

Germany, Ireland, Netherlands, Austria and Sweden, 2007; 

Greece, 2005; France, 2004; Belgium, Départements d’outre-mer 

(France) and Croatia, by NUTS 1 regions; Norway, Switzerland 

and Turkey, national level; Niederbayern and Oberpfalz 

(Germany), confidential data; Estonia, Ireland, Luxembourg and 

Malta, provisional data; Netherlands, estimate; Sweden, in some 

cases researchers are allocated to the head office; Denmark, break 

in series with previous year for which data is available. 

 

Source: Eurostat (online data code: rd_e_gerdreg). 

Notes: Départements d’outre-mer (FR): NUTS level 1. Switzerland, 

Serbia and Turkey: national data. Belgium, Germany, Ireland, 

Greece, France, Austria, Finland, Sweden and Norway: 2013. 

Switzerland: 2012. Italy and the United Kingdom: estimates.  

 

Source: Eurostat (online data code: rd_e_gerdreg) 
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Figure A2. Human resources in science and technology by 

virtue of occupation (HRSTO), by NUTS 2 regions, 2009 (1) 

(% of active population) 

 
Figure A3. Human resources in science and technology by 

virtue of occupation (HRSTO), by NUTS 2 regions, 2009 (1) 

(% of active population) 

Notes: (1) Corse (France) and Åland (Finland), data lack reliability 

due to reduced sample size, but publishable. 

 

Source: Eurostat (online data code: hrst_st_rcat). 

Source: Eurostat (online data code: hrst_st_rcat) 

Figure A1. Share of human resources in science and technology 

(HRST) within the economically active population, by NUTS 2 

regions, 2015 (%) 
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Source: Our elaboration 
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Chart A4. EPO patent applications - RIS 2017 
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Chart A5. Employment medium and high tech manufacturing & 

knowledge-intensive services - RIS 2017 

Source: Our elaboration 

Data: Regional Innovation Scoreboard (Available on: http://ec.europa.eu/growth/industry/innovation/facts-figures/regional_en)  

Source: Our elaboration 

Data: Regional Innovation Scoreboard (Available on: http://ec.europa.eu/growth/industry/innovation/facts-figures/regional_en)  
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The results of application of DEA methodology in Model 1 are presented in the 

tables below: 

Table A1. Top 20 of Efficient Regions (Model 1 – CRS) – All Regions 

Model 1 - CRS 

All regions - Top 20 

 Before  During 

Country Region 2006 2007 2008 2009 2010 2011 2012 

Belgium Prov. Luxembourg (BE) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Spain 
Comunidad Foral de 
Navarra 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Poland Lubuskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Portugal Algarve 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

UK Cornwall and Isles of Scilly 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Spain La Rioja 99.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Belgium Prov. Brabant Wallon 100.0% 100.0% 100.0% 100.0% 100.0% 87.9% 98.0% 

Belgium Prov. West-Vlaanderen 100.0% 91.8% 99.4% 100.0% 100.0% 91.0% 100.0% 

Romania Sud-Est 84.9% 100.0% 100.0% 87.1% 100.0% 100.0% 100.0% 

Bulgaria Severen tsentralen 83.9% 100.0% 100.0% 78.1% 100.0% 99.9% 100.0% 

Spain Illes Balears 100.0% 90.9% 92.2% 100.0% 83.5% 84.3% 95.3% 

Romania Vest 61.0% 53.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

UK Lincolnshire 89.9% 100.0% 70.7% 100.0% 86.1% 73.4% 79.1% 

Spain Región de Murcia 82.3% 100.0% 92.3% 81.5% 83.6% 77.0% 81.2% 

Belgium Prov. Limburg (BE) 95.3% 94.0% 75.7% 79.5% 88.0% 81.6% 75.5% 

Poland Opolskie 80.7% 86.5% 83.9% 65.8% 100.0% 81.5% 89.9% 

Bulgaria Yugoiztochen 70.9% 83.9% 88.7% 81.2% 74.0% 93.3% 89.8% 

Bulgaria Severozapaden 68.2% 70.2% 82.5% 68.8% 99.8% 100.0% 88.4% 

UK East Anglia 65.6% 77.0% 74.9% 82.1% 94.5% 90.7% 88.4% 

Belgium Prov. Oost-Vlaanderen 77.0% 93.2% 76.4% 68.6% 75.7% 73.0% 98.1% 

Annual Average – 104 regions 62.2% 63.1% 63.2% 62.4% 61.0% 60.4% 62.8% 

 

 

As can be seen, under the CRS assumption the most efficient region in the European 

Union are the Province of Luxembourg in Belgium, Comunidad Foral de Navarra (Spain), 

Lubuskie (Poland), Algarve in Portugal and Cornwall and Isles of Scilly (UK). These regions 

present 100% of efficiency in all time period. Furthermore, Severen tsentralen (Bulgaria),

 Región de Murcia (Spain), Opolskie (Poland), Severozapaden (Bulgaria) and Prov. 

Oost-Vlaanderen (Belgium) were the regions that most suffered in terms of efficiency when 

are analysed the time period before and during financial crisis. Others, like East Anglia (UK) 

Source: Our Elaboration 
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have a higher score in 2009. It is possible to observe that in this Top 20 Belgium and Spain 

are the countries with more regions represented.  

 

Table A2. Top 10 of Efficient Regions (Model 1 - CRS) - UK, Spain and Poland 

Model 1 - CRS 

UK, Spain and Poland - Top 10 

 Before  During 

UK 2006 2007 2008 2009 2010 2011 2012 

Cumbria 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Lincolnshire 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Cornwall and Isles of Scilly 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

East Anglia 100.0% 100.0% 100.0% 92.8% 100.0% 100.0% 97.4% 

East Yorkshire and Northern Lincolnshire 90.2% 98.4% 91.5% 100.0% 100.0% 91.5% 94.0% 

Berkshire, Buckinghamshire and 
Oxfordshire 

87.5% 71.1% 100.0% 100.0% 89.3% 100.0% 100.0% 

West Yorkshire 76.9% 64.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Tees Valley and Durham 92.4% 60.0% 100.0% 98.0% 97.6% 100.0% 91.1% 

Derbyshire and Nottinghamshire 89.8% 79.7% 91.6% 83.5% 98.2% 100.0% 81.5% 

Herefordshire, Worcestershire and 
Warwickshire 

95.2% 57.9% 85.6% 100.0% 100.0% 86.7% 81.6% 

Annual Average – 29 regions 78.5% 72.3% 82.1% 80.7% 82.8% 80.4% 81.3%         

Spain 
       

Comunidad Foral de Navarra 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

La Rioja 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Aragón 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Illes Balears 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Región de Murcia 82.5% 100.0% 100.0% 97.2% 100.0% 100.0% 100.0% 

Canarias (ES) 65.9% 93.8% 95.5% 89.7% 100.0% 100.0% 98.2% 

Cantabria 90.7% 84.0% 85.2% 91.0% 75.0% 80.4% 79.8% 

Extremadura 61.7% 72.3% 74.0% 98.5% 76.4% 87.6% 98.2% 

Cataluña 100.0% 82.4% 85.9% 74.0% 72.7% 56.0% 69.8% 

Castilla-la Mancha 83.9% 80.3% 78.9% 75.2% 73.7% 73.5% 72.8% 

Annual Average – 17 regions 77.1% 80.6% 80.5% 81.5% 77.7% 78.3% 79.4% 

        

Poland 
       

Lubuskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Opolskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Wielkopolskie 78.2% 88.8% 87.6% 100.0% 100.0% 100.0% 98.2% 

Swietokrzyskie 100.0% 100.0% 100.0% 98.3% 83.6% 86.5% 81.7% 

Podlaskie 77.0% 72.9% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Pomorskie 52.4% 79.5% 100.0% 95.8% 86.4% 100.0% 100.0% 

Podkarpackie 100.0% 77.2% 96.6% 94.8% 85.1% 68.4% 62.5% 

Kujawsko-Pomorskie 76.5% 98.3% 85.2% 69.8% 77.4% 85.2% 75.6% 

Zachodniopomorskie 61.4% 58.9% 100.0% 93.5% 86.2% 77.4% 78.6% 

Lódzkie 84.8% 91.2% 75.8% 100.0% 65.5% 59.6% 75.5% 

Annual Average – 16 regions 79.1% 81.9% 87.7% 83.5% 78.1% 79.1% 77.2% 

 

 

Specifically, this Table 2 confirms that the regions in the Top 20 in the global ranking 

are part of this Top 10 of each country and almost all of them are considered 100% efficient. 

It is also important to note the regions Cumbria (UK) and Aragón (Spain) that have a value 

of 100% but do not appear in the Top 20. Here, it is possible to confirm the lower score of 

Region de Murcia (Spain) from 2008 to 2009. 

 

Table A3. Top 20 of Efficient Regions (Model 1 - VRS) - All Regions 

Model 1 - VRS  

All regions - Top 20 

 Before  During 

Country Region 2006 2007 2008 2009 2010 2011 2012 

Belgium Région de Bruxelles-Capitale / 
Brussels Hoofdstedelijk Gewest 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Belgium Prov. Brabant Wallon 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Belgium Prov. Luxembourg (BE) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Bulgaria Severozapaden 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Bulgaria Severen tsentralen 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Spain Comunidad Foral de Navarra 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Spain La Rioja 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Spain Illes Balears 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Poland Lubuskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Portugal Algarve 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Romania Sud-Est 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Slovakia Bratislavský kraj 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

UK Cornwall and Isles of Scilly 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Belgium Prov. West-Vlaanderen 100.0% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

UK 
Berkshire, Buckinghamshire and 
Oxfordshire 

100.0% 96.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

Bulgaria Yugoiztochen 97.1% 100.0% 100.0% 100.0% 94.9% 100.0% 100.0% 

Belgium Prov. Vlaams-Brabant 90.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Poland Opolskie 100.0% 97.4% 88.8% 79.9% 100.0% 86.1% 90.3% 

Source: Our Elaboration 
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Bulgaria Severoiztochen 96.2% 93.6% 94.3% 89.6% 86.2% 80.9% 94.1% 

Poland Podlaskie 82.2% 77.2% 100.0% 95.3% 87.5% 89.9% 97.1% 

Annual Average – 104 regions 70.0% 69.7% 69.7% 68.9% 67.6% 65.7% 67.7% 

  

 

Firstly, it is possible to observe that the number of regions 100% efficient is bigger 

with the VRS assumption and all the regions in this ranking have a higher value under this 

assumption. This happens because the variables considered are almost all in ratio. Once 

again, Belgium is the country with more regions in this ranking. However, some of the 

regions considered in the Top 20 with the CRS assumption don’t appear in this Top 20, for 

example the Province of Limburg (Belgium) and Región de Murcia (Spain). Additionally, 

Opolskie (Poland), Severoiztochen (Bulgaria) and Podlaskie (Poland), are the only regions 

in this ranking with lower ranking from 2008 to 2009, i.e. during the financial crisis. 

 

Table A4. Top 10 of Efficient Regions (Model 1 - VRS) - UK, Spain and Poland 

Model 1 - VRS  

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Cumbria 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Lincolnshire 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Berkshire, Buckinghamshire and Oxfordshire 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Surrey, East and West Sussex 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Cornwall and Isles of Scilly 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

East Anglia 100.0% 100.0% 100.0% 96.6% 100.0% 100.0% 100.0% 

West Yorkshire 100.0% 94.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

East Yorkshire and Northern Lincolnshire 95.0% 100.0% 93.0% 100.0% 100.0% 100.0% 95.7% 

North Yorkshire 100.0% 100.0% 95.2% 100.0% 100.0% 100.0% 86.0% 

Tees Valley and Durham 100.0% 63.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

Annual Average – 29 regions 84.0% 81.5% 85.2% 84.4% 88.1% 87.2% 85.4%  
       

Spain        

País Vasco 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Comunidad Foral de Navarra 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

La Rioja 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Aragón 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Comunidad de Madrid 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Extremadura 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Source: Our Elaboration 
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Illes Balears 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Región de Murcia 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Canarias (ES) 77.8% 99.4% 100.0% 95.1% 100.0% 100.0% 99.1% 

Cataluña 100.0% 98.4% 86.9% 96.7% 89.5% 81.2% 94.6% 

Annual Average – 17 regions 89.7% 92.2% 90.7% 91.7% 88.0% 88.5% 88.7% 

        

Poland        

Mazowieckie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Wielkopolskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Lubuskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Dolnoslaskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Opolskie 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Pomorskie 94.5% 100.0% 100.0% 99.8% 94.9% 100.0% 100.0% 

Slaskie 98.8% 100.0% 100.0% 93.1% 99.6% 93.8% 96.2% 

Podlaskie 86.1% 85.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

Swietokrzyskie 100.0% 100.0% 100.0% 100.0% 84.3% 87.1% 87.2% 

Lódzkie 95.9% 94.5% 100.0% 100.0% 100.0% 63.6% 100.0% 

Annual Average – 16 regions 92.2% 93.6% 97.7% 93.4% 88.7% 88.9% 88.8% 

  

 

 As in the previous Table the number of 100% efficient regions for each country is 

bigger. However compared with the Top 10 under CRS assumption, the 100% efficient 

regions are the same and compared with the Top 20 under VRS assumption, Podlaskie is 

not considered as 100% efficient in the Top 10. One the other hand it is possible to see that 

the regions considered 100% efficient before the crisis are the same regions 100% efficient 

after 2008, except for East Anglia (UK), Canarias (Spain) and Slaskie (Poland) because 

their score is lower from 2008 to 2009. Even so, East Anglia (UK) and Canarias (Spain) 

recover their efficiency score of 100% in the following years. 

 

The results of super-efficiency of Model 1 are presented in following tables: 

Table A5. Top 20 – Super-efficiency Analysis (Model 1 - CRS) - All Regions 

Model 1 - Superefficiency CRS 

All regions - Top 20 

 Before During 

Country Region 2006 2007 2008 2009 2010 2011 2012 

Belgium Prov. Luxembourg 
(BE) 

196.7% 281.4% 436.7% 336.1% 269.7% 440.7% 374.2% 

Portugal Algarve 164.0% 182.1% 147.9% 136.2% 154.0% 143.4% 126.0% 

Source: Our Elaboration 
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UK Cornwall and Isles of 
Scilly 

179.6% 159.9% 146.4% 128.7% 132.9% 125.5% 109.0% 

Belgium Prov. Brabant Wallon 257.1% 156.1% 103.8% 103.8% 136.6% 87.9% 98.0% 

Spain Comunidad Foral de 
Navarra 

131.6% 154.3% 154.4% 120.7% 123.4% 111.2% 115.9% 

Romania Sud-Est 84.9% 101.9% 105.3% 87.1% 126.4% 182.8% 194.0% 

Romania Vest 61.0% 53.0% 134.8% 189.5% 145.2% 141.5% 147.4% 

Poland Lubuskie 109.1% 121.7% 121.4% 145.4% 112.5% 110.0% 100.9% 

Romania Bucuresti - Ilfov 24.4% 30.2% 142.8% 126.4% 154.9% 155.4% 172.4% 

Spain La Rioja 99.4% 100.5% 135.1% 129.7% 106.5% 106.5% 118.3% 

Belgium Prov. West-
Vlaanderen 

123.1% 91.8% 99.4% 135.4% 135.6% 91.0% 105.4% 

Bulgaria Severen tsentralen 83.9% 125.0% 112.6% 78.1% 100.4% 99.9% 101.3% 

Spain Illes Balears 127.4% 90.9% 92.2% 102.8% 83.5% 84.3% 95.3% 

Spain Región de Murcia 82.3% 116.1% 92.3% 81.5% 83.6% 77.0% 81.2% 

UK Lincolnshire 89.9% 105.4% 70.7% 100.1% 86.1% 73.4% 79.1% 

Poland Opolskie 80.7% 86.5% 83.9% 65.8% 110.1% 81.5% 89.9% 

Belgium Prov. Limburg (BE) 95.3% 94.0% 75.7% 79.5% 88.0% 81.6% 75.5% 

Bulgaria Severozapaden 68.2% 70.2% 82.5% 68.8% 99.8% 104.4% 88.4% 

Bulgaria Yugoiztochen 70.9% 83.9% 88.7% 81.2% 74.0% 93.3% 89.8% 

UK East Anglia 65.6% 77.0% 74.9% 82.1% 94.5% 90.7% 88.4% 

Annual Average – 104 regions 67.2% 67.9% 69.4% 67.8% 65.9% 66.3% 68.3% 
  

 

With CRS assumption is can be seen that are only 3 regions with a score higher 

than 100% during all time period analysed, which are the Province of Luxemburg (Belgium), 

the most superefficient, that is, this region have the best performance on ranking of all 

regions, secondly, are Algarve (Portugal) and in third is Cornwall and Isles of Scilly. In this 

Top 20 Belgium and Spain stand out as being represented by a greater number of regions. 

Some other regions, namely the Comunidad Fural de Navarra decreased the score from 

2006 to 2012, even with a score higher than 1. This decrease is most remarkable between 

2008 and 2009. 

 

Table A6. Top 10 – Super-efficiency Analysis (Model 1 - CRS) - UK, Spain and Poland 

Model 1 - Superefficiency CRS 

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Source: Our Elaboration 
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Cornwall and Isles of Scilly 239.1% 241.4% 269.9% 156.2% 285.9% 210.9% 167.8% 

Lincolnshire 100.7% 124.1% 114.1% 196.5% 183.8% 138.6% 247.2% 

Cumbria 126.7% 116.4% 133.1% 122.9% 123.2% 138.9% 141.3% 

East Anglia 137.9% 135.0% 112.6% 92.8% 123.0% 100.8% 97.4% 

West Yorkshire 76.9% 64.0% 102.0% 126.0% 102.8% 118.7% 114.0% 

Berkshire, Buckinghamshire and Oxfordshire 87.5% 71.1% 113.3% 107.5% 89.3% 102.7% 108.5% 

East Yorkshire and Northern Lincolnshire 90.2% 98.4% 91.5% 103.5% 108.4% 91.5% 94.0% 

Tees Valley and Durham 92.4% 60.0% 109.4% 98.0% 97.6% 127.9% 91.1% 

West Midlands 53.2% 60.3% 85.9% 105.3% 99.0% 102.4% 135.9% 

Herefordshire, Worcestershire and 
Warwickshire 

95.2% 57.9% 85.6% 123.7% 110.4% 86.7% 81.6% 

Annual Average – 29 regions 85.9% 80.0% 91.8% 89.2% 95.2% 89.0% 92.2% 

        

Spain 
       

Comunidad Foral de Navarra 313.8% 279.3% 407.5% 232.2% 288.7% 170.1% 207.8% 

La Rioja 209.0% 205.6% 200.3% 183.8% 189.2% 205.6% 203.2% 

Illes Balears 185.9% 194.5% 200.1% 188.0% 178.2% 185.2% 181.1% 

Aragón 114.2% 144.4% 103.3% 149.2% 109.2% 259.0% 186.1% 

Región de Murcia 82.5% 130.7% 103.5% 97.2% 106.1% 100.7% 105.6% 

Canarias (ES) 65.9% 93.8% 95.5% 89.7% 120.5% 127.3% 98.2% 

Cantabria 90.7% 84.0% 85.2% 91.0% 75.0% 80.4% 79.8% 

Extremadura 61.7% 72.3% 74.0% 98.5% 76.4% 87.6% 98.2% 

Cataluña 120.6% 82.4% 85.9% 74.0% 72.7% 56.0% 69.8% 

Castilla-la Mancha 83.9% 80.3% 78.9% 75.2% 73.7% 73.5% 72.8% 

Annual Average – 17 regions 103.2% 107.4% 110.8% 102.2% 100.8% 104.6% 102.0%         

Poland 
       

Lubuskie 165.0% 166.5% 163.3% 503.9% 275.4% 399.5% 288.1% 

Opolskie 111.1% 110.8% 176.4% 110.8% 117.1% 121.5% 108.6% 

Wielkopolskie 78.2% 88.8% 87.6% 124.7% 147.4% 122.1% 98.2% 

Podlaskie 77.0% 72.9% 111.6% 116.3% 107.9% 117.7% 130.8% 

Swietokrzyskie 144.5% 114.1% 103.0% 98.3% 83.6% 86.5% 81.7% 

Pomorskie 52.4% 79.5% 135.2% 95.8% 86.4% 108.3% 111.3% 

Podkarpackie 108.5% 77.2% 96.6% 94.8% 85.1% 68.4% 62.5% 

Kujawsko-Pomorskie 76.5% 98.3% 85.2% 69.8% 77.4% 85.2% 75.6% 

Zachodniopomorskie 61.4% 58.9% 107.7% 93.5% 86.2% 77.4% 78.6% 

Lódzkie 84.8% 91.2% 75.8% 110.8% 65.5% 59.6% 75.5% 

Annual Average – 16 regions 87.1% 87.6% 104.7% 112.6% 93.6% 102.1% 92.1% 

  

 

As expected, the regions with best efficiency performance on Top 20 are also 

represented in this Top 10 of each country. Effectively, Cornwall and Isles of Scilly (UK), 

Source: Our Elaboration 
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Comunidad Foral de Navarra (Spain) and Lubuskie (Poland) are considered the regions 

with higher magnitude in terms of efficiency under the CRS assumption. One the other hand, 

Lubuskie is the only region that from 2008 to 2009 increased the score of efficiency of 

163.3% to 503.9%. 

 

Table A7. Top 20 – Super-efficiency Analysis (Model 1 - VRS) - All Regions 

Model 1 – Super-efficiency VRS 

All regions - Top 20 

 

 Before During 

Country Region 2006 2007 2008 2009 2010 2011 2012 

Belgium Région de Bruxelles-Capitale 
/ Brussels Hoofdstedelijk 
Gewest 

big big big big big big big 

Belgium Prov. Brabant Wallon big big big 261.2% big big 244.2% 

Belgium Prov. Luxembourg (BE) 199.1% 287.8% 562.0% 357.7% 287.6% 613.6% 764.8% 

Belgium Prov. Vlaams-Brabant 90.1% 147.7% 100.7% big 136.8% 161.0% big 

UK Berkshire, Buckinghamshire 
and Oxfordshire 

101.7% 96.8% 141.6% big 113.6% 141.8% 117.8% 

\UK Cornwall and Isles of Scilly 228.6% 205.1% 189.6% 169.0% 197.8% 153.0% 134.3% 

Portugal Algarve 164.2% 182.2% 149.6% 143.5% 164.8% 152.9% 136.7% 

Romania Bucuresti - Ilfov 25.9% 34.4% 170.5% 164.6% 202.0% 226.4% 261.1% 

Spain Illes Balears 204.3% 166.0% 150.6% 153.3% 129.1% 136.4% 139.3% 

Romania Sud-Est 105.5% 106.2% 122.2% 106.0% 144.2% 186.6% 244.7% 

Spain Comunidad Foral de Navarra 134.4% 164.4% 176.3% 136.9% 127.7% 119.5% 118.6% 

Romania Vest 68.2% 59.7% 140.6% 190.0% 169.7% 162.5% 149.3% 

Spain La Rioja 137.3% 125.7% 146.9% 137.1% 123.5% 126.2% 132.5% 

Slovakia Bratislavský kraj 100.6% 115.2% 132.8% 144.6% 152.0% 120.0% 118.2% 

Bulgaria Severen tsentralen 121.4% 179.2% 135.1% 115.7% 100.9% 106.3% 121.7% 

Belgium Prov. West-Vlaanderen 123.7% 99.5% 115.0% 150.0% 152.9% 103.3% 116.9% 

Poland Lubuskie 111.1% 133.0% 128.0% 153.3% 112.6% 111.2% 103.4% 

Bulgaria Severozapaden 102.6% 110.4% 112.2% 118.9% 118.1% 115.6% 112.8% 

Bulgaria Yugoiztochen 97.1% 113.7% 112.0% 112.4% 94.9% 105.3% 103.9% 

UK Surrey, East and West Sussex 145.0% 101.8% 89.5% 157.9% 106.9% 43.2% 74.2% 

 Annual Average – 104 regions 75.8% 76.3% 79.9% 78.7% 75.5% 75.4% 79.3% 

  

 

Now, it is possible see the Top 20 under VRS assumption. So, Belgium is the country 

with the regions more developed in terms of efficiency and the two first regions that are 

Source: Our Elaboration 
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Région de Bruxelles-Capitale / Brussels Hoofdstedelijk Gewest and Province of Brabant 

Wallon are those that present best performance. One the other hand, all regions on this Top 

20 are superefficient, on average. 

 

Table A8. Top 10 – Super-efficiency Analysis (Model 1 - VRS) - UK, Spain and Poland 

Model 1 – Super-efficiency VRS 

UK, Spain and Poland - Top 10 

 Before During 

UK 2006 2007 2008 2009 2010 2011 2012 

Berkshire, Buckinghamshire and Oxfordshire big big big big big big big 

Gloucestershire, Wiltshire and Bristol/Bath area 99.5% 94.5% 78.2% 87.4% 100.5% 128.2% big 

Cornwall and Isles of Scilly 299.3% 244.0% 293.5% 191.6% 295.9% 213.0% 187.0% 

Lincolnshire 101.0% 129.6% 114.6% 214.5% 188.8% 151.3% 321.7% 

Surrey, East and West Sussex 185.9% 169.5% 165.6% 171.3% 146.2% 125.7% 145.6% 

Cumbria 128.2% 118.5% 204.3% 151.2% 155.2% 155.1% 180.7% 

East Anglia 154.6% 176.0% 116.3% 96.6% 131.3% 102.6% 100.5% 

North Yorkshire 162.4% 148.4% 95.2% 102.4% 107.6% 113.5% 86.0% 

West Yorkshire 109.2% 94.2% 106.1% 145.5% 103.4% 133.9% 121.1% 

East Yorkshire and Northern Lincolnshire 95.0% 135.3% 93.0% 125.5% 114.2% 111.0% 95.7% 

Annual Average – 29 regions 99.2% 95.9% 101.5% 100.2% 106.8% 101.2% 103.3%  
       

Spain        

Comunidad de Madrid big big big big big big big 

Comunidad Foral de Navarra big big big big big 327.9% 325.0% 

País Vasco 114.6% 121.4% 171.6% 123.1% big big big 

Aragón 114.8% 145.5% 103.7% 150.0% 109.6% big 192.2% 

Illes Balears 306.1% 252.5% 260.8% 260.2% 231.7% 236.5% 243.1% 

La Rioja 219.7% 213.1% 215.1% 193.5% 203.9% 218.6% 213.3% 

Región de Murcia 107.6% 155.8% 124.6% 107.3% 119.4% 110.3% 123.5% 

Extremadura 101.3% 108.7% 106.9% 127.1% 107.3% 118.8% 129.5% 

Canarias (ES) 77.8% 99.4% 102.1% 95.1% 123.8% 128.8% 99.1% 

Cataluña 131.3% 98.4% 86.9% 96.7% 89.5% 81.2% 94.6% 

Annual Average – 17 regions 114.7% 117.6% 115.1% 114.7% 106.6% 125.8% 129.0% 

Poland        

Mazowieckie big big big big big big big 

Malopolskie big 178.3% big 94.3% 40.2% big 75.7% 

Lubuskie 317.8% 233.8% 163.6% 509.0% 433.5% 400.7% 343.2% 

Lódzkie 95.9% 94.5% 110.1% big 109.8% 63.6% 155.7% 

Lubelskie 75.6% 90.7% big 56.8% 58.7% 61.1% 45.5% 

Opolskie 121.9% 118.4% 241.8% 112.6% 119.8% 123.2% 111.6% 
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Dolnoslaskie 133.1% 159.8% 118.8% 117.0% 137.4% 146.1% 122.3% 

Wielkopolskie 111.2% 112.7% 111.3% 133.8% 160.9% 134.9% 110.8% 

Podlaskie 86.1% 85.8% 127.2% 136.5% 129.1% 136.9% 163.2% 

Pomorskie 94.5% 145.5% 136.7% 99.8% 94.9% 110.5% 111.5% 

Annual Average – 16 regions 117.1% 122.3% 124.0% 130.5% 121.2% 119.6% 116.0% 

  

 

In particular, in the Top 10 of UK, Spain and Poland rankings, the regions with best 

performance have all of them big, namely Berkshire, Buckinghamshire and Oxfordshire 

(UK), Comunidad de Madrid (Spain) and Mazowieckie (Poland) and the other regions also 

have a high score.  

 

 

 

 

 

  

 

Source: Our Elaboration 


