
 

Universidade de Aveiro 

2018  

Departamento de Biologia 

Joana Patrícia  
da Silva Santos  
 

Effects of sub-lethal heat shock in the 
tolerance of Danio rerio embryos to cadmium 
exposure 
 
Efeitos de um choque térmico sub-letal na 
tolerância a cádmio em embriões de Danio 
rerio 

  

 

 

 

 



2 

 

DECLARAÇÃO 

 
 
Declaro que este relatório é integralmente da minha autoria, estando devidamente 
referenciadas as fontes e obras consultadas, bem como identificadas de modo claro 
as citações dessas obras. Não contém, por isso, qualquer tipo de plágio quer de 
textos publicados, qualquer que seja o meio dessa publicação, incluindo meios 
eletrónicos, quer de trabalhos académicos. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

 

Universidade de Aveiro 

2018  

Departamento de Biologia 

Joana Patrícia  
da Silva Santos  
 

Effects of sub-lethal heat shock in the 
tolerance of Danio rerio embryos to cadmium 
exposure 
 
Efeitos de um choque térmico sub-letal na 
tolerância a cádmio em embriões de Danio 
rerio 

  
Dissertação apresentada à Universidade de Aveiro para 
cumprimento dos requisitos necessários à obtenção do grau de 
Mestre em Toxicologia e Ecotoxicologia, realizada sob a orientação 
científica da Doutora Inês Domingues, Investigadora em Pós-
Doutoramento do Departamento de Biologia da Universidade de 
Aveiro e do Doutor João Pestana, Investigador auxiliar do 
Departamento de Biologia e CESAM da Universidade de Aveiro. 

 

 



4 

 

o júri   
 

presidente Prof. Doutor Fernando José Mendes Gonçalves 
Professor associado do departamento de Biologia da Universidade de Aveiro 

  

 

 Doutora Marta Sofia Soares Craveiro Alves Monteiro dos Santos 
Investigador em Pós-Doutoramento do departamento de Biologia da Universidade de Aveiro 

  

 

 Doutora Paula Inês Borralho Domingues 
Investigadora de Pós-Doutoramento do departamento de Biologia da Universidade de Aveiro 

 

 

 

 

 

 



5 

 

agradecimentos 

 
Agradeço a todas as pessoas que me apoiaram durante o decorrer 
da elaboração desta tese. Em especial ao Nuno Barbosa, ao Ricardo 
Santos, à Ana Sousa, à Ana Domingues, à Vera Maria e à Anabela 
Simões pelo apoio e pela boa disposição nos momentos mais 
difíceis, aos meus pais por fazerem possível a elaboração desta tese 
e aos meus orientadores por partilharem o seu conhecimento. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

palavras-chave 

 
Choque térmico, cádmio, Danio rerio, peixe-zebra, embrião, 
tolerância induzida, tolerância-cruzada, comprimento total, largura 
do saco vitelino, comportamento, biomarcadores, stress oxidativo, 
proteínas de choque térmico, metalotioninas  

resumo 
 

 

Os organismos aquáticos estão frequentemente expostos a 
múltiplos stressores e sabe-se que um stressor pode afetar a 
tolerância a outro subsequente stressor de diferente natureza 
(processo conhecido como tolerância cruzada). Para determinar os 
efeitos de um choque térmico na tolerância ao cádmio (Cd), os 
embriões de peixe-zebra foram expostos a um choque térmico (HS) 
de 37°C durante 1h e posteriormente expostos a uma gama de 
concentrações letais de Cd durante 5 dias. Os embriões que foram 
previamente expostos ao HS mostraram-se mais tolerantes ao Cd, 
comparativamente aos embriões mantidos à temperatura normal; no 
entanto, após 48h, esta tolerância não é mais evidente. Para avaliar 
o impacto da tolerância cruzada no estado de saúde geral dos 
embriões e os possíveis mecanismos envolvidos neste processo, os 
organismos foram também expostos a concentrações sub-letais de 
Cd (após o HS) e parâmetros de vários níveis foram medidos: 
comportamento, comprimento total e largura do saco vitelino, 
respostas de vários biomarcadores (Colinesterase (ChE), Glutationa 
S-Transferase (GST), Catalase (CAT), Glutationa Total (TG), 
Sistema de Transporte de Eletrões (ETS), Peroxidação Lipídica 
(LPO)) e também os níveis de proteínas de choque térmico 70 
(HSP70) e metalotioninas (MTs). Os nossos resultados mostraram 
que o HS diminui o comprimento total e a largura do saco vitelino 
das larvas, provoca hiperactividade e afeta a atividade da ChE e da 
GST e o conteúdo em TG em larvas de peixe-zebra. Os níveis de 
MTs não foram afetados pelo Cd ou pelo HS. O Cd também não 
afetou os níveis de HSP70, no entanto, o HS resultou num aumento 
do conteúdo de HSP70. Embora o HS tenha aumentado a atividade 
da GST e o conteúdo em TG, que poderia subsequentemente 
proteger os embriões da exposição ao Cd nas primeiras 48 horas, o 
nosso estudo não aponta claramente o envolvimento desta resposta 
geral ao stress na tolerância cruzada ao Cd relatada no ensaio 
agudo . Por sua vez, embora a exposição ao Cd não tenha tido 
qualquer efeito sobre os níveis de HSP70, estes resultados sugerem 
que o aumento dos níveis de HSP70 induzidos pelo HS pode estar 
envolvido na tolerância cruzada ao Cd. São necessários estudos 
futuros para confirmar o envolvimento do aumento da atividade da 
GST, do aumento do conteúdo em TG e do aumento dos níveis de 
HSP70 no processo de tolerância cruzada e abordar a regulação 
dos genes destas respostas gerais de stress e as suas funções 
celulares que culminam na tolerância induzida ao Cd. 
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abstract 

 
Aquatic organisms are often exposed to multiple stressors and it is 
known that one stressor can affect the tolerance to another 
subsequent stressor of different nature (a process known as cross-
tolerance). To determine the effects of a heat shock on cadmium (Cd) 
tolerance, zebrafish embryos were exposed to a heat shock (HS) of 
37°C during 1 h and then exposed to a range of lethal concentrations 
of Cd during 5 days. Embryos that were previously exposed to HS 
were more tolerant to Cd, compared to embryos maintained at 
normal temperature; however, after 48 hours, this tolerance is no 
longer evident. In order to evaluate the impact of cross-tolerance on 
the general health status of embryos and the possible mechanisms 
involved in this process, organisms were also exposed to sub-lethal 
concentrations of Cd (after HS) and multilevel endpoints were 
measured: behavior, total length and width of yolk sac and a set of 
biomarker responses were assessed (Cholinesterase (ChE), 
Glutathione S-Transferase (GST), Catalase (CAT), Total Glutathione 
(TG), Electron Transport System (ETS), Lipid Peroxidation (LPO)) 
and also the Heat shock protein 70 (HSP70) and Metallothioneins 
(MTs) content.  Our results showed that HS decreases the total 
length and width of yolk sac of larvae, causes hyperactivity and 
affects the activity of ChE and GST and TG content in zebrafish 
larvae. MTs content was not affected by Cd or HS. Cd also did not 
affect HSP70 levels, however HS resulted in increased HSP70 
content in zebrafish. Although HS increased GST activity and TG 
content, which could subsequently protect the embryos from Cd 
exposure within the first 48h, our study does not clearly indicate the 
involvement of this general stress response on cross-tolerance to Cd 
reported in the acute assay. In turn, although Cd exposure had no 
effect on HSP70 levels, our results suggest that increased HSP70 
levels induced by HS could be involved in cross-tolerance to Cd. 
Moreover future studies are required to confirm the involvement of 
increased GST activity, increased TG content and increased HSP70 
levels in the cross-tolerance process and address the regulation of 
these general stress responses genes and their cellular functions 
that ultimately culminate in induced tolerance to Cd. 
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Chapter 1 - Introduction 

Exposure to multiple stressors  

 Stress can be defined as a state in which organisms are challenged by biotic and/or 

abiotic stressors in their environment, translating into a response, usually at the 

biochemical and molecular level (Parker, 1999; Van Straalen, 2003). Some of these 

responses are general and do not depend on the nature of the stressor, such as the 

development of oxidative stress and the induction of defense proteins (Steinberg, 2012). 

 In their natural environments, aquatic organisms, like fish, are frequently exposed 

to multiple stressors that have either a natural or anthropogenic origin, for example, in 

addition to daily and seasonal temperature variations, fishes are often affected by the 

release of heated waste water and toxic chemicals such as metals (Hallare et al., 2005; 

Todgham et al., 2005; Vergauwen et al., 2013a). 

Temperature  

One of the physical factors that most influence fish is temperature. Several authors 

even considered temperature as the “abiotic master factor” because it influences the 

behavior, physiology and distribution of aquatic organisms (Brett, 1971; López-Olmeda and 

Sánchez-Vázquez, 2011). In addition, the study of its effects became more urgent with the 

evidence of climate changes and with an increase in the frequency of extreme events like 

heat waves (Vergauwen et al., 2013a). Anthropogenic activities can affect water bodies’ 

temperature through global climate change, regional land-use alteration, heated effluents 

from power generation plants, and summertime urban stormwater runoff (Kinouchi et al., 

2007). 

Temperatures over and below the range of tolerated ambient temperature 

generate a state of stress in fish including sublethal physiological and behavioral responses 

or even death (Gordon, 2005). Fish are particularly vulnerable to environmental 

temperature variations since they are poikilotherms and have a blood-water 

countercurrent respiratory system (Beitinger et al., 2000; Schmidt-Nielsen, 1997; 

Vergauwen et al., 2013b). As a result, temperature has been identified as one of the most 

vital abiotic factors for fish, since it can potentially affect all the metabolic, physiological 
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and also ecological aspects and behaviour of fish life cycle (Almeida et al., 2014). 

Temperatures beyond the optimal limits of a particular fish species adversely influence fish 

health by increasing the metabolic rate, oxygen consumption, and the invasiveness and 

virulence of pathogens, which, in turn, will cause a variety of pathophysiological 

disturbances that can lead to fish death (Dalvi et al., 2009; Gordon, 2005). 

Sudden acute changes in temperature act on physiological processes predictably, 

with cold temperatures slowing, and warmer temperatures accelerating them. Therefore, 

fish can compensate temperature changes by appropriate alterations in metabolic rates 

and oxygen consumption. However, these alterations may induce thermal stress with the 

formation of reactive oxygen species (ROS), which can lead to protein, lipid or DNA damage, 

and potentially increase energy demand. All these physiological alterations can be 

measured using biomarkers, which have been considered as useful tools in detecting early 

adverse effects (Almeida et al., 2014).  

In zebrafish, it was reported that temperature above the optimum (26–28°C) 

affected the rate of development, occurring faster at 33°C (Kimmel et al., 1995), decreased 

the size of the embryos (Atkinson, 1994) and increased their heart rate (López-Olmeda and 

Sánchez-Vázquez, 2011). 

Cadmium 

Chemical pollution is one of the main causes suggested to explain the decline of 

aquatic species worldwide (Wu et al., 2017). Metals reach the aquatic ecosystems as a 

consequence of anthropogenic activities, thus this form of pollution is one of the five 

principal types of pollutants commonly present in surface waters (Atli et al., 2006; Giri et 

al., 2016; van Dyk et al., 2007). The ubiquity of metal pollution is probably due to some 

specific characteristics, such as, tendency to accumulate in organisms, persistence in 

environment due to their chemical stability or poor biodegradability and environmental 

mobility because they are readily soluble (van Dyk et al., 2007). Metals, despite being found 

naturally in the ground and surface waters, are considered hazardous pollutants with a 

significant ecological impact since they can modify the chemical and physical properties of 

the water bodies, thus affecting aquatic flora and fauna (Giri et al., 2016; van Dyk et al., 

2007). 
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Some metals are essential elements for the normal metabolism of organisms, while 

others are nonessential and play no significant biological roles (van Dyk et al., 2007). 

Cadmium (Cd) is a nonessential metal and an important source of contamination to the 

aquatic ecosystems, since it cannot be degraded, accumulate via the food chain, increasing 

the risk of environmental exposure (Cuypers et al., 2010; van Dyk et al., 2007). Studies 

indicate that Cd bioaccumulates in phytoplankton and complex food webs involving aquatic 

animals such as mollusks, crustaceans and fish (Acosta et al., 2016; Vergauwen et al., 

2013b). 

Cd contamination has received more importance over the past two centuries since 

its concentration in aquatic ecosystems have been increased by anthropogenic activities 

(Wu et al., 2017; Zheng et al., 2016). Some of these activities are the production of nickel 

Cd batteries, stabilizers, synthetic pigment, metals melting, discharge of municipal 

effluents, industrial discharges, and mining activities (Guo et al., 2017; Vergauwen et al., 

2013b; Wu et al., 2017). Cd pollution is a serious global problem, because Cd causes 

irreversible toxicity in organisms and is a highly toxic pollutant in rivers, estuaries and 

nearshore waters (Giri et al., 2016; Ma et al., 2008). Besides that Cd is toxic to humans 

causing developmental defects, cognitive dysfunction and acting as a carcinogenic agent 

(classified by the International Agency for Research) (Chow et al., 2008; Vergauwen et al., 

2013b; Yuan et al., 2017; Wang et al., 2015). 

The most problematic case is in China, where the fossil fuel burning, the waste 

incineration, the industrial waste discharges and mining activities has contributed to 

widespread Cd contamination (Ma et al., 2008). Normally, the dissolved Cd levels ranged 

from 10 to 500 ng L−1, but in some industrialized areas in China the levels exceed 1 mg L−1 

and in some waste waters from mines and smelter, the levels can reach 26.5 mg L−1 (Jin et 

al., 2015; Ma et al., 2008; Yuan et al., 2017; Zheng et al., 2016). 

Since Cd is extremely toxic to humans, animals, and plants even at low 

concentrations, its toxicity is a well-studied topic in aquatic toxicology (Zheng et al., 2016). 

Cd can cause diverse effects such as DNA damage and oxidative stress, impairment of 

reproduction and disruption of ion-osmoregulation, also it is well known that the initial 

effects of metal pollution may be evident only at cellular or tissue levels before significant 
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changes can be identified at the whole organism level (Jia et al., 2011; Sellin and Kolok, 

2006; Suresh et al., 1995; van Dyk et al., 2007).   

Cd is a bivalent cation unable to generate free radicals directly, however exerts its 

toxicity by the production of ROS leading to impairment of normal oxidative metabolism 

and oxidative stress (Cuypers et al., 2010; Wang and Gallagher, 2013; Wu et al., 2017). ROS 

are products of normal cellular metabolism and play an indispensable role in anti-oxidative 

and anti-microbial defenses, acting directly or as signaling molecules in oxidative stress and 

inflammatory responses (Zheng et al., 2016). However, excessive ROS can overwhelm cell’s 

intrinsic antioxidant defenses and attack cellular macromolecules including lipids, proteins 

and DNA leading to oxidative stress and causing lipid peroxidation, protein oxidation and 

DNA damage (Cuypers et al., 2010; Wang et al., 2015). A proper ROS balance must be 

maintained for survival, therefore the organisms have developed antioxidant defenses and 

innate immune systems that helps them cope with the threat (Wu et al., 2017; Zheng et al., 

2016). Like other organisms, fish combat elevated levels of ROS with protective antioxidant 

enzymes, such as superoxide dismutase (SOD), catalase (CAT) glutathione-dependent 

enzymes (GSH) namely glutathione peroxidases (GPx) and glutathione-s-transferases (GST). 

However, once these enzymes are overwhelmed by excessive ROS production, irreversible 

cellular damage and death can occur (Craig et al., 2007; Lushchak and Bagnyukova, 2006). 

Cross-tolerance and general stress responses 

Several studies addressed the combined effects of elevated temperature and Cd, 

concluding that elevated temperature increases the toxicity and bioaccumulation of metals 

in aquatic organisms, but few studies have investigate the effects when these stressors are 

applied sequentially, which may also occur in natural ecosystems (Abdel-Tawwab and 

Wafeek, 2014; Guinot et al., 2012; Olsvik et al., 2016; Piazza et al., 2016). 

 In 1978, Li and Hahn were among the first researchers to observe that cultures of 

mammalian cells pre-exposed to sublethal thermal stress acquired greater resistance to 

subsequent chemical exposure (Li and Hahn, 1978). Thus, it was verified that the 

phenotypic plasticity in physiological mechanisms of defense against environmental 

stressors can allow an increased tolerance (Pestana et al., 2016). With the observation of 

this process, the concept of cross-tolerance or cross-protection emerges, which translates 
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into the capacity of the exposure to one stressor to alter the tolerance of an organism to 

other stressors of different nature (Kampinga et al., 1995; Sabehat et al., 1998). Thus 

exposure to mild stress, which can occur naturally in ecosystems, can be beneficial to the 

organisms, even if they exhibit typical stress responses, because it can stimulate the stress 

defense system, increasing the ability of the organisms against future stressors (Minois, 

2000; Steinberg, 2012; Suhett et al., 2011).  

 Based in these investigations, Suhett et al. defined a conceptual model 

representing a sequential exposure to two stressors. In this model it is possible to verify 

that the exposure to the first, low intensity, stressor can activate a stress defense system, 

giving the organism more resistance to a second stressor. However, this phenomenon 

occurs only in a range of intensities of the first stressor very restricted, below which the 

defense system is not activated and above which, the energy cost will suppress the possible 

beneficial effects of the first stressor, leading to synergistic effects of the two stressors. 

Moreover, above this range of intensities, the stress caused by the first stressor becomes 

energetically expensive, preventing the occurrence of beneficial effects (Suhett et al., 

2015).   

 Regardless of the intensity of the first stressor, increasing the intensity of the 

second stressor always reduces the likelihood of beneficial effects of the first exposure 

(Suhett et al., 2015). Thus, we can conclude that this phenomenon is very limited by the 

intensity of the stressors involved and by the protective capacity of the stress defense 

system activated. In addition, adaptive processes of defense require a lot of energy 

expenditure and the reallocation of energy resources can lead to negative consequences 

on the suitability of the organisms, for example, more energy is spent in detoxification than 

in reproduction, leading to a decrease in production of descendants (Haap et al., 2016; 

Klerks et al., 2011). 

 Despite the obvious importance of the concept of cross-tolerance for species 

survival, few studies have been concerned with sequential exposures and investigated how 

stress induced by an environmental factor, like temperature, may alter the response to 

another stress, like Cd (Li and Hahn, 1978). The existence of cross-tolerance between these 

two stressors is only possible if the defense mechanism induced by the first stressor is also 
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involved in the protection against the second stressor. Although researchers have 

suggested other mechanisms of common defense against Cd and thermal stress such as 

increased activity of antioxidant enzymes (Muyssen et al., 2010) or metabolic depression 

(Leung et al., 2000), induction of heat shock proteins (HSPs) (Pestana et al., 2016) and 

increased metallothioneins (MTs) content (van Cleef-Toedt et al., 2001) are stated as the 

general stress responses most probably involved. These common mechanisms could allow 

a cross-induced tolerance because when the second stressor appears, the defense is 

already present and ready to act.   

Heat shock proteins  

 When temperature is the first stressor most authors suggest the involvement of 

HSPs in cross-tolerance. These proteins normally represent 5-10% of the total proteins in 

the cell and increase in amount when cells are exposed to natural or anthropogenic 

stressors such as temperature, salinity, hormones, nutrient deficiencies, hypoxia or anoxia, 

diseases, pesticides, metals, desiccation, ultraviolet radiation, parasites, bacterial and viral 

infections and predators (Basu et al., 2002; Lewis et al., 1999; Pestana et al., 2016; Pirkkala, 

Lila; Nykanen, Paivi; Sistonen, 2001; Sung et al., 2011). These proteins were first described 

in cells from Drosophila melanogaster during exposures to high temperature (Ritossa, 

1962) and so the term ‘‘heat shock protein’’ (Lewis et al., 1999). HSPs are present in all 

organisms from bacteria to mammals and play important roles in protecting against 

stressors that can cause cell damage (Pestana et al., 2016; Todgham et al., 2005; Werner 

et al., 2007). Although most HSPs have a relatively short half-life, some persist in the cell 

after removal of the stressor and thus may play an important role in long-term adaptation 

(Dubeau et al., 1998). HSPs are usually classified into different families according to their 

molecular size and it is known that the family most involved in the responses to stressors 

is HSP70, the most highly conserved of the HSPs (Lewis et al., 1999; Mahmood et al., 2014). 

Various studies with zebrafish have already identified and cloned a number of HSPs, 

including HSP70, HSP47, HSP27, HSP90a and HSP90b (Krone et al., 1997; Krone and Sass, 

1994; Lele et al., 1997; Råbergh et al., 2000). 

 HSPs are involved in essential cell roles such as protein assembly, correct folding 

and translocation, as well as in regulating interactions between hormones and their 
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receptors (Iwama et al., 1998). These proteins may thus play a key role in the cross-

tolerance process by preventing protein denaturation, by restructuring damaged proteins 

or by ensuring the degradation of irreversibly damaged proteins, preventing their 

accumulation and aggregation (Sung et al., 2011). Todgham et al. investigated cross-

tolerance to osmotic stress after mild thermal stress in Oligocottus maculosus and 

concluded that this process was associated with the induction of HSP70 in the gills of the 

organisms (Todgham et al., 2005). Dubeau et al. obtained similar results in Salmo salar 

(Dubeau et al., 1998). In turn, Tedengren et al. examined cross-tolerance to Cd induced by 

mild thermal stress in Mytilus edulis and also detected an increase in HSP70 induction in 

the organisms (Tedengren et al., 2000). These studies demonstrate that HSPs are a general 

defense response likely involved in the cross-tolerance process and are therefore central 

to the survival of natural populations. 

Metallothioneins 

 When one of the stressors is a metal the authors suggest the involvement of MTs 

in cross-tolerance. MTs are a family of low molecular weight cytosolic proteins that contain 

highly conserved cysteine residues and occur in a large number of phylogenetically diverse 

organisms. These residues allow these proteins to bind, carry and store various metals. It 

has been proposed that MTs play an important role in regulating the intracellular 

availability of essential metals such as zinc and copper and in the detoxification of toxic 

metals such as Cd and mercury. Metal sequestration may be a mechanism by which MTs 

confer protection against Cd toxicity (Guinot et al., 2012; Ma et al., 2008; van Cleef-Toedt 

et al., 2001). 

 Thus, the increase in cell resistance to Cd toxicity can be achieved by processes 

that result in increased ability to synthesize MTs (Ma et al., 2008). Since the synthesis of 

these proteins can be induced by endogenous and exogenous processes as general stress 

conditions, such as heat stress, their involvement in cross-tolerance processes is very likely 

(Guinot et al., 2012; Plautz et al., 2013). Some studies have demonstrated that a mild 

thermal stress causes a significant increase in the induction of MTs in tissues such as liver, 
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gills and intestine of Fundulus heteroclitus and in the liver of Sparus aurata (Guinot et al., 

2012; van Cleef-Toedt et al., 2001).  

Zebrafish 

Zebrafish (Danio rerio Hamilton, 1822) belongs to the family of freshwater fishes 

Cyprinidae and in the wild, it can be found in north-eastern India, Bangladesh and Nepal. 

These areas have a typical monsoon climate with marked seasonal variations, so there is a 

wide variation in temperatures, with both daily and seasonal variations being reported 

(Craig et al., 2007; López-Olmeda and Sánchez-Vázquez, 2011; Spence et al., 2008). 

Embryonic development of zebrafish has a thermal optimum of 28.5°C and thus laboratory 

experiments using zebrafish as a test species mostly use 26–28°C as a standard 

temperature (Kimmel et al., 1995; López-Olmeda and Sánchez-Vázquez, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zebrafish has become one of the most highly valued model organism in many fields 

of research, including genetics, neuroscience, development, physiology, toxicology and 

biomedicine, and it is frequently used as a model of many human diseases because 

cardiovascular, nervous and digestive systems of this model are similar to mammals and a 

high level of resemblance exists among the human and zebrafish genomes (more or less 

75% similarity) (Chakraborty et al., 2016; Chow et al., 2008; Fishman, 2001; Haffter et al., 

Figure 1. Representation of Zebrafish life cycle since the egg phase to the adult fish (Aluru, 2017). 
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1996; Langheinrich, 2003; Vascotto et al., 1997). Some characteristics have contributed to 

the common use of this species, namely its small size (3-5 cm), high fecundity, short 

generation time (embryo to adult in 3-4 months), external fertilization and development, 

well-characterized embryonic development (Kimmel et al., 1995), easy maintenance and 

breeding in laboratory, optical transparency during early development stages and its rapid 

absorption of substances added directly to the water (Acosta et al., 2016; Aluru, 2017; Craig 

et al., 2007; Lawrence, 2007). 

 Zebrafish eggs and larvae’ transparency, its fast development and external 

fertilization allow live embryos to be manipulated throughout their developmental stages, 

visualization of any developmental abnormalities and enables exposure of embryos to 

stressors immediately after fertilization, in the absence of any maternal influence. In 

addition, it is a robust fish, has a mean lifespan of 42 months and large numbers can be 

kept easily and cheaply in the laboratory. Females can spawn every 2-3 days and a single 

spawn may contain several hundred eggs, making it possible to obtain high sample sizes for 

experiments (Aluru, 2017; López-Olmeda and Sánchez-Vázquez, 2011; Spence et al., 2008). 

Fish are commonly used for toxicological studies because they are affected both 

directly through contact with contaminated water and indirectly through their diet. Thus, 

fish may reflect contamination in other organisms and trophic levels within the aquatic 

ecosystem and are an important part of the diets of other organisms (Acosta et al., 2016). 

Zebrafish is a popular vertebrate model system in toxicology and it is recommended as a 

test species for use in the fish acute, prolonged and chronic toxicity test by OECD (guideline 

203, 1992 and 204, 1984) and EPA (OPPTS 850.1075, 1996 and 850.1730, 1996). So there 

are a number of larval and adult behavioral assays developed to assess the effects of 

exposure to toxicants (Aluru, 2017; López-Olmeda and Sánchez-Vázquez, 2011; Zheng et 

al., 2016). Besides that, according to European Union legislation for the protection of 

animals used for scientific purposes, the use of embryonic stages of vertebrates is not 

regulated so, the fish embryo toxicity tests (FET) are considered as alternative to animal 

experiments (Embry et al., 2010; Scholz et al., 2008). 
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Objectives 

The objective of this work was to increase the knowledge about cross-tolerance in 

aquatic organisms, using zebrafish embryos (Danio rerio) as our research model organism, 

a sublethal heat shock as the first mild stressor and Cd as the second stressor. Our 

hypothesis is that an exposure to a nonlethal heat stress in the early stages of development 

will trigger a biochemical general response to stress that will later increase the tolerance 

of these embryos when exposed to Cd. 

To better understand the embryos health status after previous exposure to heat 

stress and subsequent exposure to Cd and to elucidate about the general stress responses 

that are involved with the process of induced tolerance to Cd, several parameters were 

analyzed: the appearance of malformations during embryo development, the total size of 

the larvae and the width of the yolk sac, changes of behavior and changes in biomarkers 

(catalase activity (CAT), glutathione s-transferase activity (GST), total glutathione content 

(TG), lipid peroxidation levels (LPO), cholinesterase activity (ChE) and the activity of the 

electron transport system (ETS)) in chapter 2, and changes in MTs and HSP70 contents in 

chapter 3.   
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Chapter 2 - Previous heat shock affects cadmium tolerance in 
Danio rerio embryos 

 
J. Santos,  J. Pestana, A. R. Almeida, C. Gravato, I. Domingues 
Department of Biology, University of Aveiro, Portugal 
 
Abstract 

Aquatic organisms are often exposed to multiple stressors and it is known that a stressor 

can affect the tolerance to a different subsequent stressor (process known as cross-tolerance). To 

determine the effects of a heat shock on cadmium (Cd) tolerance, zebrafish embryos were exposed 

to a heat shock of 37°C during 1h and posteriorly exposed to a range of lethal concentrations of Cd 

during 5 days.  Embryos that were previously exposed to heat shock showed to be more tolerant to 

Cd, compared with embryos of the control treatment; however after 48h this tolerance is not 

evident anymore. To assess the impact of cross-tolerance in the general embryo health status and 

the possible mechanisms involved in this process, organisms were also exposed to sublethal 

concentrations of Cd (after the heat shock) and multilevel endpoints were measured: behavior, 

total length and width of yolk sac and also a set of biomarker responses were assessed 

(Cholinesterases, Glutathione S-Transferase, Catalase, Total Glutathione, Electron Transport 

System, Lipid Peroxidation).  Our results showed that a heat shock of 37°C during 1h reduces the 

total length and the width of yolk sac, causes hyperactivity and affects Cholinesterase and 

Glutathione S-Transferase activity and Total Glutathione content in zebrafish larvae. Although 

previous heat shock increased the activity of Glutathione S-Transferase and Total Glutathione 

content which could subsequently protect the embryos from Cd exposure in the first 48h, our study 

does not clearly point out the involvement of this general stress response on cross-tolerance to Cd 

reported in the acute assay. Moreover future studies should address the general stress responses 

responsible for the process of cross-tolerance between heat shock and Cd in Danio rerio. 
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Cadmium, heat stress, induced cross-tolerance, behavior, growth, biomarkers, 

general stress response, zebrafish embryos 
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Introduction 

Aquatic organisms are often exposed to multiple, natural or anthropogenic 

stressors in water bodies, including daily and seasonal temperature changes and metal 

discharges like cadmium (Cd), a non-essential metal (Hallare et al., 2005; Pan and Hunt von 

Herbing, 2017; Todgham et al., 2005; Vergauwen et al., 2013b). Contamination by Cd has 

received considerable attention in the last years because its concentrations in water have 

been markedly increased by human activities like mining, metal processing facilities, 

agriculture and discharge of sewage effluents (Abdel-Tawwab and Wafeek, 2014; Bouraoui 

et al., 2008; Cuypers et al., 2010). It is estimated that approximately 25000 tons of Cd per 

year are dumped into the environment, from which about half is released by human 

activities (Zhang et al., 2017).  In industrialized areas in China and India, Cd environmental 

concentrations are much higher than those in normal freshwater (<0.0005 mg L-1) ranging 

(e.g.) from 0.008 mg L-1 in East Lake, 0.05 mg L-1 in Beijiang River, 0.06 mg L-1 in Kali 

Riverwhich, 0.47 mg L-1 in Subernarekha River and 0.68 mg L-1 in Matla River (Guo et al., 

2017; Malarvizhi et al., 2017; Zheng et al., 2016). Moreover Cd is not eliminated by 

biotransformation mechanisms bioaccumulating and biomagnificating in phytoplankton 

and complex food webs involving aquatic animals such as mollusks, crustaceans and fish 

(Acosta et al., 2016; Baudou et al., 2017; Giri et al., 2016; Jia et al., 2011; López et al., 2006). 

Mechanisms of Cd toxicity involve disruption of ion regulation, oxidative damage, 

endocrine disruption, genotoxicity, olfactory and renal impairments, histopathological 

effects and adverse effects on behavior, survival, reproductive parameters and growth 

(Renieri et al., 2017). 

As a primary consequence of global warming, the frequency of extreme events like 

heat waves and the annual mean of water temperature is increasing, because of that, 

researchers have been studying, in recent years, the interactions between increased 

temperature and contaminants (Airaksinen et al., 2003; Klein et al., 2017; Olsvik et al., 

2016). Many studies addressed the impacts of increasing temperature in combination with 

Cd exposure generally concluding that elevated temperatures increase Cd toxicity (Abdel-

Tawwab and Wafeek, 2014; Guinot et al., 2012; Muyssen et al., 2010; Piazza et al., 2016; 

Vergauwen et al., 2013a). This occurs because metal uptake rate and reaction rates 
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increased with elevated water temperatures. Metabolic rates of poikilothermic organisms 

are also increased at higher temperatures and physiology, ecology and behavior of fish are 

affected altering energy consumption. Besides that, elevated water temperature may also 

become a stressor per si especially near the thermal tolerance limits (Beitinger et al., 2000; 

Dalvi et al., 2009; López-Olmeda and Sánchez-Vázquez, 2011; Vergauwen et al., 2013b). In 

spite of the relevance of studying the effects of temperature and metal exposure 

simultaneously,  in natural environments sequential exposures of two different stressors 

also occur (Zhu et al., 2017).  

Few studies have investigated how stress induced by an environmental factor can 

modify the response to subsequent chemical stress (Pestana et al., 2016). However it has 

been reported that pre-exposure to a sublethal stressor, that frequently occurs in natural 

ecosystems, may turn out to be beneficial to the overall fitness of organisms, even though 

they show typical stress responses (Suhett et al., 2015). Cross-tolerance (also known as 

cross-protection) is the ability of one stressor to transiently increase the tolerance of an 

organism to a subsequent heterologous stressor that occurs later (Basu et al., 2002; 

Todgham et al., 2005). It is possible that numerous combinations of stressors can cause 

such responses but little research has been conducted despite the potentially 

repercussions for populations maintenance that are sequentially exposed to multiple 

environmental stressors (Pestana et al., 2016). Some studies have shown that a previous 

exposure to sublethal heat stress allowed organisms to better resist Cd exposure in 

microalgae (Tukaj and Tukaj, 2010), brine shrimp (Pestana et al., 2016), mussels (Tedengren 

et al., 2000), mouse embryos (Kapron-Brás and Hales, 1991) and fish (Vergauwen et al., 

2013b; Zheng et al., 2017). The existence of cross-tolerance between these two stressors 

is only possible if the defense mechanisms induced by the first stressor are also involved in 

the protection against the second stressor. Several studies have suggested possible 

mechanisms of common defense against Cd and thermal stress such as increased activity 

of antioxidant enzymes (Muyssen et al., 2010), increased levels of metallothioneins (MTs) 

(van Cleef-Toedt et al., 2001), metabolic depression (Leung et al., 2000), and induction of 

heat shock proteins (HSPs) (Pestana et al., 2016). 
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Zebrafish, Danio rerio, is commonly used for toxicological studies because of its 

small size, high fecundity, short generation time, external fertilization, well-characterized 

embryonic development, easy maintenance and breeding in laboratory and optical 

transparency during early development stages (Chakraborty et al., 2016; Craig et al., 2007; 

Lawrence, 2007; Spence et al., 2008). Also it is very important to investigate toxicology 

effects in developing embryos because normally early life stages are the most sensitive 

periods in the life-cycle of fish, where selective pressures are strong, and when the greatest 

impact on future adult populations may occur (Aluru, 2017; Hallare et al., 2004; Pan and 

Hunt von Herbing, 2017). Besides that, according to European Union legislation for the 

protection of animals used for scientific purposes, the use of embryonic stages of 

vertebrates is not regulated so, the fish embryo toxicity tests (FET) are considered an 

alternative to animal experiments (Embry et al., 2010; Scholz et al., 2008). In laboratory, 

zebrafish are normally kept at 25–28°C and classified as eurythermal, having a particularly 

high temperature tolerance (Zheng et al., 2017). 

Behavior assays with zebrafish larvae have been used to detect neurotoxic effects 

of various xenobiotics and some authors have stated that neurobehavioral development is 

the most sensitive indicator of developmental toxicity of Cd (Chow et al., 2008). The 

neurotoxic nature of metals like Cd had been confirmed by the inhibition of locomotor 

activity in zebrafish larvae (Hallare et al., 2005; Jin et al., 2015). In turn, heat stress has been 

reported to cause hyperactivity in fish (López-Olmeda and Sánchez-Vázquez, 2011; 

Sfakianakis et al., 2012). The determination of a neurotransmission parameter, as the 

activity of cholinesterase (ChE), may also be useful to demonstrate stress interferences 

with neural and nervous functions that may compromise behavior and other important 

physiological functions (Airaksinen et al., 2003) and metals have been reported to inhibit 

the activity of ChE (Domingues et al., 2010).  

Acute changes in temperature act on physiological processes predictably, with cold 

temperatures slowing, and warmer temperatures accelerating them. Thus, fish can 

compensate temperature changes by appropriate alterations in metabolic rates. 

Metabolism is generally measured in terms of an organism’s oxygen consumption and was 

recorded to increase when organisms are exposed to heat stress. Organisms are expected 
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to use their metabolic energy twice as much at higher than at low temperature, leading to 

faster energy reserve depletion and thus to increased susceptibility to toxicants (Airaksinen 

et al., 2003; Piazza et al., 2016). Exposure to metals has also been associated with increases 

in Electron Transport System activity (ETS) (Baudou et al., 2017; Bednarska and Stachowicz, 

2013; Novais et al., 2013; Pedrosa et al., 2017) reflecting metabolic requirements and 

energy expenditure due to detoxification. 

It is well known that the initial effects of metal pollution may be evident at cellular 

or tissue levels before significant changes are identified in the organism (van Dyk et al., 

2007). Metal accumulation causes an increase in highly reactive oxygen species (ROS) 

leading to oxidative stress in cells and tissues of fish, hence lipid peroxidation (LPO) have 

been used as endpoint measures of metal toxicity (Atli et al., 2006; Cambier et al., 2010; 

Cao et al., 2010; Giri et al., 2016) and in fact  several studies concluded that Cd exposure 

lead to elevated LPO in zebrafish (Jin et al., 2015; Ling et al., 2017; Wang et al., 2015; Yuan 

et al., 2017; Zheng et al., 2016) . Alterations in environmental temperature may also induce 

formation of ROS, which can provoke protein, lipid or DNA damage, and potentially require 

additional energy (Heise, 2006; Lushchak, 2011). Accordingly to this, fish would develop 

various enzymatic and non-enzymatic defense mechanisms to counteract oxidative stress, 

such as: Glutathione (GSH), a widely distributed tripeptide that can either act as a non-

enzymatic antioxidant through the direct interaction of the SH group with ROS or serve as 

a cofactor in the enzymatic detoxification of ROS; Glutathione S-Transferase (GST), an 

enzyme involved in phase II of biotransformation that catalyzes the conjugation of GSH to 

several dangerous compounds and Catalase (CAT), an enzyme that degrades hydrogen 

peroxide into water and oxygen (Bouraoui et al., 2008; Jia et al., 2011). Conflicting results 

of changes in activity/content of this defense mechanisms have been observed in studies 

with Cd exposure since it depends on the concentration, the species or the route of 

exposure (Cao et al., 2010; López et al., 2006; Shi et al., 2005).  

The objective of this work was to increase knowledge about tolerance to Cd induced 

by heat shock, using zebrafish embryos (Danio rerio) as our research model organism. Our 

hypothesis is that an exposure to a sublethal heat shock in the early stages of development 

will trigger a biochemical general stress response that will later provide increased tolerance 
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to Cd. In this context, to reach a comprehensive assessment of the impacts of cross-

tolerance in general embryo health status and the possible mechanisms involved it seems 

suitable to consider a multiparameter approach at different levels of biological 

organization, including individual and sub-individual. This approach consists of several 

endpoints including a behavior assay, the measurement of total length and width of the 

yolk sac of zebrafish larvae and the measurement of physiological changes in levels of 

oxidative damage (LPO), in the activity of ChE, in energetic parameters like ETS activity and 

in antioxidants involved with detoxification and protection against oxidative stress such as 

CAT, GST and Total Glutathione content (TG). 

 

Material and methods 

Test organisms 

Zebrafish (D. rerio) eggs were obtained from a culture maintained in carbon-filtered 

water at the Department of Biology, University of Aveiro. These organisms were kept at 

27.0±1°C under a 16:8h light/dark photoperiod cycle, with conductivity at 550±50µS, pH at 

7.5±0.5 and dissolved oxygen at 95% saturation. Adult fish are fed twice daily with 

commercially available artificial diet (ZM 400 Granular) and brine shrimp. 

Test chemicals 

Zebrafish embryos were exposed to solutions of Cd obtained from dilution of a 

cadmium chloride stock (CdCl2; CAS number 10108-64-2; purity ≥ 99.0%). Water of the 

zebrafish culture was used for dilutions and as control in all tests. 

Acute assay 

The assay was based on the OECD guideline on Fish Embryo Toxicity Test (OECD, 

2013). Reproductive groups of zebrafish adults were placed in aquarium with marbles in 

the bottom, in the afternoon of the day before the collection of the eggs. Two hours after 

the beginning of the illumination in the next morning the eggs were collected and cleaned 

from residues.  
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Newly fertilized eggs were divided in two groups: in one group (HS) embryos were 

exposed to a heat shock (HS) of 37°C during one hour while in the other group (N) embryos 

were kept at 27±1°C. The HS temperature was chosen based on preliminary tests and based 

on different studies dealing with induction of HSPs in zebrafish, where the control 

temperature is usually set at 28°C and the temperature used for the HS is commonly set at 

37°C (Airaksinen et al., 2003; Hallare et al., 2005; Krone and Sass, 1994; Lele et al., 1997; 

Råbergh et al., 2000).  

After the exposure, Zebrafish eggs from both groups with normal development 

were selected for the toxicity test (using a Stereoscopic Zoom Microscope-SMZ 1500, 

Nikon). The embryos were distributed in 6-well plates, where each well contained five 

organisms in 10 ml of the test solution. Three replicates were made for each treatment. 

Eggs from HS and N groups were exposed to 0; 3.0; 4.2; 5.9; 8.2; 11.5; 16.1; 22.6; 31.6 and 

44.3 mg L-1 of Cd and kept at 27±1°C. The test lasted five days and embryos and larvae were 

observed daily with a stereomicroscopic. In the embryo phase, the egg coagulation and the 

hatching were evaluated whereas in the larvae phase, edemas, spine malformation and 

mortality were observed. 

Sublethal assay 

Procedure was the same as for the acute assay but a sublethal range of 

concentrations was used: 0; 0.02; 0.22 and 2 mg L-1 of Cd. At the fifth day larvae were 

photographed with the help of a stereomicroscopic (Stereoscopic Zoom Microscope-SMZ 

1500, Nikon). The total length and the width of the yolk sac of larvae was measured using 

the software NIS Elements D 3.2. Larvae locomotor behavior was analysed using the 

Zebrabox (Viewpoint, Lyon, France) tracking system over a period of 20 minutes. Dead 

larvae or larvae exhibiting physical abnormalities were not included in the locomotor 

analyses. The temperature was maintained stable at 26±1°C and movement was stimulated 

by alternating light and dark periods. The test consisted of a cycle with four alternating 

periods: 5 minutes light; 5 minutes dark; 5 minutes light and 5 minutes dark. The swimming 

distance and the swimming time were measured during each period. 
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Biochemical analyses 

Test procedure was the same as for the acute assay but zebrafish embryos were 

exposed only to 0 and 2 mg L-1 of Cd. After HS, the organisms were distributed in petri 

plates, with 25ml of the test solution. Seven replicates were made for each treatment and 

were kept at 27± 1°C during the test. Based on the results of the acute test, the test was 

done using two exposure times: 48 hours of exposure to Cd corresponding to a time point 

where induced cross-tolerance to Cd was verified or 96 hours of exposure where tolerance 

of the two groups was similar. At the end of the exposures, samples of 15 embryos from 

each condition were frozen in liquid nitrogen and kept at -80°C until further analyses.  

Each sample was homogenized in 1200µL of ultra-pure water, on ice, using a sonic 

homogenizer (Sonifier 250, Branson sonicator). The homogenate was divided into different 

aliquots for the different biochemical analyses: 150µL for LPO, 250µL for ETS and 300µL for 

analyses of TG, GST, CAT, ChE and protein quantification. To the last aliquot 300µL of K-

phosphate buffer (0.2M; pH=7.4) were added followed by its centrifugation at 10000g for 

20 minutes at 4°C, originating the Post-Mitochondrial Supernatant (PMS). 

Lipid peroxidation 

The determination of endogenous LPO levels was performed measuring the 

thiobarbituric acid reactive species (TBARS) based on the work of Ohkawa et al. (1979) and 

Bird and Draper (1984) and preventing artifactual lipid oxidation by adding BHT 4% in 

methanol (2,6-Di-tert-butyl-4-methylphenol) (Torres et al., 2002). To each sample 3µL of 

BHT, 100µL of cold TCA 100% (trichloroacetic acid) and 1000µL of TBA 0.73% (2-

Thiobarbituric acid) were added. The samples were incubated at 100°C during 1 hour, 

centrifuged at 6000g for 10 minutes at 25°C and the supernatant was pipetted to a 

microplate (3 replicates of 100µL). LPO levels were determined at 535nm and expressed in 

nmol TBARS per embryo, using ε=1.56×105 M−1 cm−1.  

Electron Transport System 

The measurement of ETS was done following a protocol adapted from De Coen and 

Janssen (1997) and modified by Rodrigues et al. (2015). The fraction for ETS activity 

measurements was obtained adding 150µL of homogenization buffer and centrifuging at 
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1000g for 10 minutes at 4°C. To each 50µL of supernatant it was added 150µL of buffered 

solution and 100µL of INT solution (p-iodonitrotetrazolium). The absorbance was measured 

kinetically at 490nm during 3min every 20 seconds at 25°C. The oxygen consumption rate 

conversion was calculated based on the stoichiometric relationship: 2 µmol of formazan 

formed ≈ 1 µmol of oxygen consumed. The formula of Beer-Lambert was applied to 

quantify the oxygen consumed, using ε=1.59×104 M−1 cm−1. 

Protein quantification 

The quantification of the protein on each sample was done following the Bradford 

method (1976), adapted to 96 well plates, using bovine γ- globuline as a standard. To each 

10µL of PMS, 250µL of BioRad solution were added, the plates were placed in the dark, and 

after 15 minutes the absorbance was read at 600nm. 

Cholinesterase 

The measurement of ChE activity was done following the protocol defined by Ellman 

et al. (1961), and adapted to microplate by Guilhermino et al. (1996). To each 50µL of PMS, 

250µL of reaction buffer were added and the absorbance was read at 414nm. The formula 

of Beer-Lambert was then applied to quantify the ChE activity expressed in nmol/min/mg 

protein, using ε=13.6×103 M−1 cm−1. 

Catalase 

The determination of CAT activity was done measuring the decomposition of the 

substrate hydrogen peroxide (H2O2) (Clairborne, 1985). To each 10µL of PMS, 140µL of K-

phosphate (0.05M, pH=7.0) and 150µL of reaction buffer were added. The absorbance was 

read at 240nm during 2 minutes. The formula of Beer-Lambert was then applied to quantify 

CAT activity expressed in µmol/min/mg protein, using ε=40 M−1 cm−1. 

Glutathione S-Transferase 

The measurement of GST activity was done following the method of Habig et al. 

(1974), reading the conjugation of GSH with 1-chloro-2,4-dinitrobenzene. To each 50µL of 

PMS, 250µL of reaction solution were added and the absorbance was read at 340nm. The 
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formula of Beer-Lambert was applied to quantify GST activity expressed in nmol/min/mg 

protein, using ε=9.6x103 M−1 cm−1. 

Total glutathione 

TG content was determined based on the methods of Tietze (1969) using a recycling 

reaction of reduced glutathione with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) in the 

presence of glutathione reductase excess. To each 50µL of PMS, 250µL of reaction solution 

were added. The formula of Beer-Lambert was then applied to quantify TG content 

expressed in pmol/min/mg protein, using ε=14.1x103 M−1 cm−1.  A Labsystem Multiskan EX 

microplate reader was used for all biochemical determinations. 

Statistical analysis 

The median lethal concentrations (LC50) at the lethal assay were estimated using 

three-parameter logistic dose-response curves within the dose response package using the 

program of analysis R. LC50 values were statistically compared according to Sprague and 

Fogels (1976). Shapiro-Wilk and Levene’s test were done to assess the normality and 

homoscedasticity of data, respectively. Two-way Anova’s were performed for analysis of 

the data of the sublethal assay and biochemical analyses using the program SigmaPlot 12.5. 

The Holm-Sidak method was used for multiple comparisons versus control group. All 

statistical analyses were performed with a significance level of 0.05. 

 

Results 

Acute assay 

Zebrafish eggs subjected to HS and the control group maintained in the normal 

temperature conditions were exposed to several concentrations of Cd during 120 hours. 

Figure 2 displays the dose-response curves of the 2 groups throughout the 5 days of test 

and the evolution of the LC50 values. Embryo mortality in the control was always below 

10%. As we hypothesized, our results demonstrate that a previous HS affected the 

tolerance to subsequent Cd exposure and that thermal stress induced cross-tolerance to 

Cd.  In the first two days of exposure the LC50 of HS embryos is higher than the LC50 of N 
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embryos. However we detected significant differences only on the second day. After 72 

hours of exposure both groups show similar sensitivity towards Cd and the LC50 values of 

the two groups remains similar until the end of the test. We also observed that exposure 

to Cd caused a delay on hatching and induced malformations on the embryos such as 

edemas and spinal deformations (Figure 3).  We did not find any significant effect of the 

previous HS on the hatching time or appearance of malformations. 

Sublethal assay 

The ANOVAs results for endpoints of behavior, total length and width of yolk sac 

are depicted in table 1.  Cd exposure alone affects the growth of zebrafish larvae in a dose-

response manner, with larvae exposed to higher concentrations of Cd showing decreased 

total length (Figure 4A). Previous HS also reduced the total length of zebrafish larvae (Figure 

4A). Statistically significant interaction between the two stressors was not detected. 

Exposure to Cd alone significantly decreased the width of yolk sac of zebrafish larvae in a 

dose-response manner, with larvae exposed to higher concentrations of Cd showing the 

highest reduction (Figure 4B). A similar result was also observed for HS alone, where larvae 

previous exposed to HS exhibited a reduction on width of yolk sac (Figure 4B). Statistically 

significant interaction between the two stressors was also not detected. 

Control larvae exhibited a regular pattern of locomotor activity: in periods of light 

the larvae decreased the movement but in periods of dark the larvae rapidly increased 

locomotor activity. This consistent pattern of activity in response to light-dark stimulation 

was perturbed by Cd in a concentration-dependent manner (see supplemental material, 

Figure S1). Larvae treated with higher concentrations of Cd (≥0.22 mg L-1) also showed 

inhibition of activity with reduced swimming distance in periods of dark and light (Figure 

5). The total time spent swimming was also reduced by Cd exposure (data not showed). In 

turn, larvae treated with previous HS showed a higher degree of hyperactivity visible in the 

treatment without Cd in dark and light periods, although we only detected significant effect 

of HS in the light period. Previous HS effect of hyperactivity is completely imperceptible in 

the presence of Cd, however a statistically significant interaction between the two stressors 

was not detected. 
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Figure 2. Dose-response curves throughout the 5 days of test (A-E). The black dots represent the embryos of 
the group exposed to HS (HS), and the white dots represent the embryos of the group kept at normal 
temperature (N). The graphic F represents the evolution of the LC50 values (mg L-1 of Cd) of embryos in the 2 
groups during the five days of test. All values are presented as mean ± standard error. The asterisk (*) 
represents the day where the LC50 values of the two groups (HS and N) were significantly different; *** 
indicates P < 0.001; **indicates P < 0.01; * indicates P < 0.05. 
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Figure 3. A) Zebrafish larvae developed in control conditions; B) Larvae exposed to 2 mg L-1 of Cd showing tail 
deformation (TD) and pericardial edema (PE); C) Larvae exposed to 2 mg L-1 of Cd showing tail deformation 
(TD). 
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PE 

TD 

TD 

Figure 4. Total length (A) and width of the yolk sac (B) of zebrafish larvae after 120h of exposure to Cd. The 
black bars represents the embryos of the group exposed to HS, and the grey bars represents the embryos 
of the group kept at normal temperature (N). All values are presented as mean ± standard error. Asterisks 
(*) denote significant differences compared to the control group, *** indicates P < 0.001; **indicates P < 
0.01; * indicates P < 0.05. 
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Figure 5. Total distance of zebrafish larvae in the periods of dark and light, after 120h of exposure to Cd. 
The black dots represents the embryos of the group exposed to HS, and the white dots represents the 
embryos of the group kept at normal temperature (N). All values are presented as mean ± standard error. 
Asterisks (*) denote significant differences compared to the group N, *** indicates P < 0.001; **indicates P 
< 0.01; * indicates P < 0.05. 

 

* 

*** 

Table 1. ANOVAs results of the effects of Cd alone, HS alone and their interaction (HS*Cd) on total 
length, width of yolk sac and behavior; df-degrees of freedom; ss-sums of squares; MS - mean sums 
of squares; F-F-statistic. 
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Biochemical analyses 

The results obtained, after 48h and 96h of test, regarding the biomarkers analyzed, 

are exhibited on figure 5 and table 2 demonstrate the ANOVAs results. Regarding the effect 

of HS alone, GST activity demonstrate a significant induction after 48h, with an increase of 

50% compared with the control group, however, after 96h, a significant decrease was 

observed, with a reduction of 36% compared with the control group. Similarly, TG content 

was increased by HS after 48h, with an increase of 8% compared with the control group, 

and decreased after 96h, with reduction of 62% compared with the control group. CAT 

activity, LPO levels and ETS activity were not affected by HS. Regarding ChE activity, a 

significant induction by HS was observed after 48h of test, with an increase of 42% 

compared with the control group, however after 96h an inhibition of ChE activity was 

detected, with a reduction of 9% compared with the control group.   

Cd exposure alone resulted in increased GST activity after 48h of test, with an 

increase of 39% compared with the control group, however, after 96h a significant decrease 

was observed. Concerning CAT activity a significant inhibition was observed after 96h, with 

a reduction of 54% compared with the control group.  TG content was also decreased by 

Cd exposure after 48h and 96h, with reduction of 5% and 61% respectively. LPO levels were 

not affected by Cd after 96h of exposure, but after 48h a significant decrease was observed, 

with a reduction of 14% compared with the control group. ETS activity demonstrate a 

significant induction on zebrafish embryos exposed 96h to Cd. The increase in ETS activity 

was 21% compared with the control group. Regarding ChE activity, a significant induction 

by Cd was observed after 48h of test, with an increase of 43% compared with the control 

group, however, after 96h, an inhibition of ChE activity was detected, with a reduction of 

25% compared with the control group. 

Concerning the biomarker’s response when the embryos were exposed to the two 

stressors, after 48h of test, previous HS influence the Cd effect, with significant 

interactions, on GST activity, ChE activity and TG content.  Larvae previously exposed to HS 

and posteriorly exposed to Cd showed an induction of GST activity and ChE activity very 

similar to the effects on larvae only exposed to HS or Cd. However the pattern of response 

to Cd was altered by HS since larvae without HS had a more pronounced increase in this 
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enzymes activity. Regarding TG content, larvae previous exposed to HS and posteriorly 

exposed to Cd showed a reduction of 36% contrarily to the larvae exposed to HS or Cd alone 

that have TG contents similar to control group. In this case, the pattern of response to Cd 

was altered by HS since larvae with HS had a more pronounced reduction on TG content 

compared with larvae only exposed to Cd.  

After 96h, HS influenced the effects of Cd exposure, with significant interactions, on 

GST activity, LPO levels and TG content. In this three biomarkers the pattern of response to 

Cd is altered by HS in a similar way. Larvae exposed to HS and posteriorly exposed to Cd 

increased their GST activity, TG content and LPO levels, while larvae kept at normal 

temperature and exposed to Cd decreased their GST activity, TG content and LPO levels. 

Although no significant interaction was detected, CAT activity seems to exhibit the same 

pattern of response. 
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Figure 6. Biomarker responses of zebrafish larvae kept at normal temperature and exposed to Cd (N) and 
zebrafish larvae previously exposed to HS and posteriorly exposed to Cd (HS) during 48h or 96h. All values are 
presented as mean ± standard error.  
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Table 2. ANOVAs results of the effects of Cd alone, HS alone and their interaction (HS*Cd) on the biomarkers 
analyzed; df-degrees of freedom; ss-sums of squares; F-F-statistic. 
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Discussion 

Cross-tolerance occurs when previous exposure to a stressor increase the tolerance 

of an organism to a subsequent different stressor (Todgham et al., 2005). In this study sub-

lethal HS seems to induce cross-tolerance to later Cd exposure, since embryos that were 

pre-exposed to 37°C during 1h exhibited higher LC50 values than embryos kept at 27°C. 

Other studies offer evidence of the capacity of thermal stress to increase tolerance to Cd 

in zebrafish (Hallare et al., 2005; Vergauwen et al., 2013b; Zheng et al., 2017). For example, 

Hallare et al. exposed embryos to combinations of three temperatures and Cd and reported 

lower rate of mortality at the highest temperature (33°C). The authors hypothesized that 

this could be due to the high production of HSPs, which provided greater resistance (Hallare 

et al., 2005). On the other hand, Vergauwen et al. acclimated adults to different 

temperatures for 1 month prior to 96h Cd exposure at the respective acclimation 

temperatures. Based on LC90 values, the lowest Cd toxicity was detected at the highest 

temperature tested (34°C). The authors suggested that the warm acclimation provoked a 

general stress response, such as increased activity of antioxidant enzymes, metabolic 

depression or induction of HSPs, which protected the organisms against subsequent Cd 

exposure (Vergauwen et al., 2013b). Zheng et al. exposed adults to 26°C and 34°C for 4 

days, and posteriorly to Cd for 1 week at 26°C. The authors discover that preheating in 

combination with Cd increased survival rate. Once more, they suggested that preheating 

provoked a general stress response, like MTs increase or HSPs induction, that facilitated a 

quick response of fish to severe stress situations (Zheng et al., 2017). 

However, our results show that this induced cross-tolerance is transient and only 

observed until 48h of Cd exposure, thus suggesting an energetic/physiological cost of this 

process. Hallare et al. also reported more susceptibility of larvae post-hatched (after 48h) 

as compared to embryos pre-hatched (before 48h). Pre-hatched embryos, exposed to 

higher temperatures were protected from Cd, however, after hatching the larvae showed 

an increased sensitivity. The author suggested that the production of HSPs have reached 

its maximum just prior to the time of hatching and thus, the stress induced by both 

stressors would have overridden the capability of cells to generate more HSPs (Hallare et 

al., 2005). Biochemical stress response mechanisms, such as the increased of HSP70 or MTs 
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levels, have been described to follow an optimum curve, so loss of cross-tolerance to Cd 

could be caused by a reduction in the levels of defense proteins as resulting from damage 

to the proteosynthetic machinery. The phenomenon of overwhelming biochemical 

processes could be due to negative effect of Cd on cellular biosynthetic capacity such as 

transcription and/or translation processes or due to cellular energy deficiency that can limit 

the energy available for synthesis and/or function of the stress proteins involved (Haap et 

al., 2016). Zebrafish larvae with less than 120h use only the energy reserves of the yolk sac 

for their development. Since induced tolerance to Cd probably required induction of a 

general stress response and since adaptive processes of defense, detoxification, and repair 

are largely energy demanding, embryos exposed to HS may undergo re-allocation of energy 

resources with negative consequences for maintenance, growth and reproduction 

(Bednarska and Stachowicz, 2013; Haap et al., 2016). For example, populations of Tigriopus 

japonicus that were more resistant to copper showed a reduction of reproductive output 

and growth rate (Kwok et al., 2009).  

Differences in the lethality of a chemical between pre and post hatching periods 

may also be attributed to the interference of the chorion in the embryos (Domingues et al., 

2010). This acts as a barrier to Cd transfer to the developing embryo. Matz et al. stated that 

the protective effect of the chorion is evident in observations that hatched larvae are more 

susceptible than unhatched embryos and that, once hatched, zebrafish larvae readily 

accumulate Cd from their environment most likely leading to an increased sensitivity (Matz 

et al., 2007). 

Exposure to lethal concentrations of Cd provoke delay in development and hatching 

and the appearance of malformed embryos which indicate that Cd can bear a teratogenic 

risk. Several studies also reported the same effect of Cd on zebrafish embryos (Hallare et 

al., 2005; Jin et al., 2015; Zhang et al., 2015). Although elevated temperatures are reported 

to induced abnormalities in zebrafish embryos (Krone et al., 2003; López-Olmeda and 

Sánchez-Vázquez, 2011), in our study no effects of HS were observed which is in line with 

previous studies (Hallare et al., 2005).   

In this study, a previous HS alone, in early-fertilized zebrafish embryos, had impact 

in many endpoints analyzed. The reduction in the total length and the width of the yolk sac 



49 

 

of zebrafish larvae caused by HS is in agreement with other studies where zebrafish 

embryos exposed to increased temperatures developed faster but were smaller (López-

Olmeda and Sánchez-Vázquez, 2011). In the light, zebrafish larvae usually show reduced 

locomotor activity, however, when larvae were pre-exposed to HS they showed a higher 

degree of hyperactivity, with increased swimming distance. Other studies agreed with our 

findings that fish are more active at higher temperatures (López-Olmeda and Sánchez-

Vázquez, 2011; Sfakianakis et al., 2012). The fact that larvae exposed to HS are smaller and 

have a smaller yolk sac suggests that these organisms spent more energy on defense 

processes which limited their growth and reduced their available energy reserves. On the 

other hand, the hyperactivity caused by HS can have an impact on the metabolism of the 

larvae and consequently also increase their energy consumption. Either way this effect of 

HS may lead to future negative consequences. 

HS also affected the activity of ChE and GST and the TG content of zebrafish larvae. 

This effect is noticed even after 96h of the occurrence of the HS. Contrarily to what we 

expected, HS did not change ETS activity during the test, probably because of the small 

duration and intensity of the HS or because after 48 and 96h the effect was no longer 

detected due to recovery. The induction of ChE activity by heat stress at 48h, observed in 

our study, was already reported in other studies (Airaksinen et al., 2003; Almeida et al., 

2014). In agreement with our study, other researchers also reported increased transcript 

levels of GST after short-term warm acclimation, increased liver GST activity after exposure 

to increased temperature for 1 day and increased liver GST activity after 24h recovery of 

HS (Klein et al., 2017; Lushchak and Bagnyukova, 2006; Vergauwen et al., 2013a). Increased 

TG content due to HS after 48h of test, is in agreement with Heise that detected an increase 

in TG content after exposure to heat stress in the North Sea eelpout (Heise, 2006). As GST 

and GSH are involved in detoxification these increases in activity and content may confer 

advantages to embryos previously exposed to HS in terms of protection against ROS. 

However, after 96h, we observed that HS has an opposite response: inhibition of GST 

activity, inhibition of ChE activity and decrease in TG content; which could be related to 

metabolic costs of heat stress.      
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Cd exposure alone and as expected also affected several endpoints. The reduction 

in total length caused by Cd exposure is in agreement with other studies where this effect 

in growth was also reported (Abdel-Tawwab and Wafeek, 2014; Wold et al., 2017; Wu et 

al., 2017a; Yuan et al., 2017; Zheng et al., 2016). Smaller larvae with reduced yolk sac 

suggest that extra energy was consumed to detoxify the accumulated Cd, leading to less 

energy reserve for development, growth and reproduction (Cao et al., 2010). This could 

result in several adverse consequences in later life stages since smaller larvae are more 

vulnerable to predation (Wu et al., 2017b). The normal behavioral pattern produced in 

response to dark–light stimulation was also impaired by Cd exposure and the average 

swimming distance and time decreased in a dose-response manner. The neurotoxic nature 

of metals had been reported in zebrafish larvae (Hallare et al., 2005; Jin et al., 2015) and 

lead to severe consequences since decreased swimming capacities increase mortality by 

predation, reduce fish growth by difficulties in prey capture and influence a successful 

reproduction cycle (Almeida et al., 2014).   

Cd affected all the biomarkers analyzed in this study. Although metals are generally 

associated with inhibition of ChE activity, after 48h of exposure to Cd we detected a 

significant induction. Other studies also reported similar results (Jebali et al., 2006). 

Inhibition of ChE activity caused by Cd after 96h of exposure is in agreement with our 

previous behavior assay where we recorded reduced swimming activity and with previous 

works reporting inhibition of this enzyme after metal exposure (Domingues et al., 2010). 

Increased ETS activity caused by Cd exposure observed here was also already recorded in 

other studies. For example, Baudou et al. reported that fish exposed to 0.8 mg L-1 of Cd 

showed a considerable increase in oxygen consumption. ETS increase reflects the allocation 

of energy resources for defense and repair mechanisms that are necessary to maintain the 

physiological homeostasis. This energy consumed in detoxification/defense mechanisms  is 

no longer available for maintenance, growth and reproduction, suggesting potential effects 

on the health status of organisms and the fate of populations (Baudou et al., 2017; 

Bednarska and Stachowicz, 2013; Novais et al., 2013; Pedrosa et al., 2017). 

After 48h, GST activity was increased by Cd. Similarly, other studies recorded an 

increase in GST activity in fish after exposure to Cd (Bouraoui et al., 2008; Jin et al., 2015). 



51 

 

However, after 96h, we observed an opposite response of inhibition of GST activity by Cd. 

GST inhibition occurs either via direct action of Cd on the enzyme or indirectly via the 

production of ROS (Malarvizhi et al., 2017). No significant changes in CAT activity was 

detected after 48h of exposure to Cd and this may be attributed to the increase in content 

or activity of other enzymatic or non-enzymatic antioxidants such as GST (Atli et al., 2006). 

After 96h, the inhibition of CAT activity may be related to the direct binding of metal ions 

to –SH groups on the enzyme molecule (Atli et al., 2006; Cao et al., 2010). Other studies 

reported Cd induced inhibition of CAT in zebrafish (Yuan et al., 2017; Zheng et al., 2017). 

As Cd shows a high affinity for thiols, GSH is a primary target for free Cd-ions, therefore Cd 

induced depletion of the reduced GSH pool can be related to the reduced TG content 

observed in our study after 48 and 96h of exposure to Cd (Cuypers et al., 2010). Also, 

fluctuations on TG content might be related to GST activity changes (Cao et al., 2010). Other 

studies detected similar results in zebrafish larvae (Jin et al., 2015). Although various 

studies concluded that Cd exposure increases LPO in zebrafish  (Jin et al., 2015; Ling et al., 

2017; Wang et al., 2015; Yuan et al., 2017; Zheng et al., 2016) in this study, Cd exposure 

reduced LPO on zebrafish embryos. This may be due to the ability of antioxidant defenses, 

like GST, to adequately protect from oxidative stress or because Cd concentration was too 

low to cause oxidative damage in lipids (Campana et al., 2003).   

HS altered Cd effect on GST activity and TG content after 48h. As induced cross-

tolerance, observed in the acute assay in the first 48h, is only possible if the defense 

mechanisms induced by the first stressor are also involved in the protection against the 

second stressor, increased activity of GST could be involved in this process. GST activity was 

increased after previous exposure to HS alone and also by Cd exposure alone as detected 

after 48h of test, which means that is involved in the protection against the two stressors. 

If previous HS increases this enzyme activity, when zebrafish embryos were exposed to Cd 

this defense mechanism is already present which is an advantage in terms of defense 

against Cd. However, after 48h, the levels of GST activity of larvae pre-exposed to HS and 

later exposed to Cd are very similar to the levels of the larvae kept at normal temperature 

and exposed to Cd. This may be because GST activity has reached its maximum and could 
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not be induced anymore due to metabolic costs or because in larvae previously exposed to 

HS its maximum has happened earlier in time, probably right after HS.   

GSH may also be involved in cross-tolerance to Cd. After 48h, HS exposure lead to 

increased TG content while Cd alone reduced its content. GSH is a very important non-

enzymatic antioxidant defense mechanism namely on the direct interaction of the SH group 

with ROS. The pronounced depletion of TG content after 48h in larvae with HS and 

posteriorly exposed to Cd may suggest that GSH is in the form of Cd–GSH. This 

complexation makes free Cd unavailable for the cell metabolism, blocking the mechanisms 

leading to Cd-induced oxidative stress. The reduced LPO levels also suggest the protective 

role of this process. The reduction in TG content may also be related with increased GST 

activity since GSH plays a predominant role as a substrate for GST. 

After 96h larvae pre-exposed to HS and posteriorly exposed to Cd increased their 

GST activity, TG content and LPO levels, while larvae kept at normal temperature and 

exposed to Cd decreased their GST activity, TG content and LPO levels. The higher GST 

activity and TG content of larvae with HS could be an advantage in terms of detoxification. 

Although larvae with HS also had higher levels of LPO than larvae without HS these levels 

are very similar to control. Despite no significant interactions observed, CAT activity seems 

to follow the same pattern of response with larvae pre-exposed to HS and posteriorly 

exposed to Cd increasing CAT activity while larvae kept at normal temperature and exposed 

to Cd decreasing their activity. Even though the HS seems to ameliorate the effects of Cd 

on some antioxidants after 96h of exposure this advantage does not translate in cross-

tolerance induced to Cd, since at 96h on the acute assay we did not observe any differences 

in the tolerance of the two groups. However we have to take into account that sublethal 

concentrations of Cd were used for the biochemical analyses which could result in different 

patterns of response from what occurs at organismal level when using lethal 

concentrations.  

Zheng et al. exposed zebrafish adults to 26°C and 34°C for 4 days, and posteriorly 

to Cd for 1 week at 26°C and also concluded that previous acclimation to elevated 

temperatures had a protective role against the effects of Cd exposure. The authors 

reported that the treatment previously acclimated to 34°C and exposed to Cd exhibited 
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higher CAT and SOD activities compared with the treatment of Cd exposure alone, and that 

the LPO levels were restored to the control levels (Zheng et al., 2017). Other studies 

reported that previous thermal stress ameliorates effects of Cd in other endpoints, not 

reported in our study, such as appearance of malformations (Kapron-Brás et al., 1991) and 

growth rates (Tedengren et al., 2000; Tukaj et al., 2010). 

In conclusion the present study demonstrates that a HS modify Cd tolerance in 

zebrafish embryos. Embryos previously exposed to HS exhibits higher LC50 values, probably 

because HS induced a general stress response that protected the embryos from Cd toxicity. 

However, after hatching, this induced tolerance is not evident anymore. This may be due 

to the loss of protection of the chorion or the limited protection capacity of the general 

stress responses caused by negative effects of Cd on cellular biosynthetic capacity or 

cellular energy deficiency. 

Although increased activity/content of enzymatic or non-enzymatic antioxidants, 

like GST or GSH, is one of the common defense mechanisms related to heat stress and Cd 

exposure, our results do not allow us to clearly confirm that they are in fact responsible for 

the observed induced cross-tolerance to Cd. Further studies are necessary to investigate 

the specific mechanism of cross-tolerance in Danio rerio embryos. A possible approach 

would be to investigate the induction of MTs or HSPs since they also are suggested as 

general stress responses involved in this process according to the literature.   

 

 

Acknowledgments 

Authors acknowledge Abel Ferreira from University of Aveiro for the laboratory 

support. 

 
 
 
 
 
 



54 

 

References 
Abdel-Tawwab, M., Wafeek, M., 2014. Influence of water temperature and waterborne 

cadmium toxicity on growth performance and metallothionein-cadmium distribution in different 
organs of Nile tilapia, Oreochromis niloticus (L.). Journal of Thermal Biology, 45, 157–162.  

Acosta, I.B., Junior, A.S.V., e Silva, E.F., Cardoso, T.F., Caldas, J.S., Jardim, R.D., Corcini, C.D., 
2016. Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio. Toxicology Reports, 
3, 696–700.  

Airaksinen, S., Jokilehto, T., Råbergh, C.M.I., Nikinmaa, M., 2003. Heat- and cold-inducible 
regulation of HSP70 expression in zebrafish ZF4 cells. Comparative Biochemistry and Physiology - B 
Biochemistry and Molecular Biology, 136, 275–282.  

Almeida, J.R., Gravato, C., Guilhermino, L., 2014. Effects of Temperature in Juvenile Seabass 
(Dicentrarchus labrax L.) Biomarker Responses and Behaviour: Implications for Environmental 
Monitoring. Estuaries and Coasts, 38, 45–55.  

Aluru, N., 2017. Epigenetic effects of environmental chemicals: Insights from zebrafish. 
Current Opinion in Toxicology.  

Atli, G., Alptekin, Ö., Tükel, S., Canli, M., 2006. Response of catalase activity to Ag+, Cd2+, Cr6+, 
Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and 
Physiology - C Toxicology and Pharmacology, 143, 218–224.  

Basu, N., Todgham, A.E., Ackerman, P.A., Bibeau, M.R., Nakano, K., Schulte, P.M., Iwama, 
G.K., 2002. Heat shock protein genes and their functional significance in fish. Gene, 295, 173–183.  

Baudou, F.G., Ossana, N.A., Castañé, P.M., Mastrángelo, M.M., Ferrari, L., 2017. Cadmium 
effects on some energy metabolism variables in Cnesterodon decemmaculatus adults. 
Ecotoxicology, 26, 1250–1258.  

Bednarska, A.J., Stachowicz, I., 2013. Costs of living in metal polluted areas: Respiration rate 
of the ground beetle Pterostichus oblongopunctatus from two gradients of metal pollution. 
Ecotoxicology, 22, 118–124.  

Beitinger, T., Bennett, W., McCauley, R., 2000. Temperature tolerances of North American 
freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58, 
237–275.  

Bird, R.P., Draper, H.H., 1984. Comparative studies on different methods of malonaldehyde 
determination. Methods in enzymology, 105, 299–305.  

Bouraoui, Z., Banni, M., Ghedira, J., Clerandeau, C., Guerbej, H., Narbonne, J.F., Boussetta, 
H., 2008. Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein 
accumulation on sea bream Sparus aurata. Fish Physiology and Biochemistry, 34, 201–207.  

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–
254.  

Cambier, S., Gonzalez, P., Durrieu, G., Bourdineaud, J.P., 2010. Cadmium-induced 
genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicology and Environmental 
Safety, 73, 312–319.  

Campana, O., Sarasquete, C., Blasco, J., 2003. Effect of lead on ALA-D activity, metallothionein 
levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. 
Ecotoxicology and Environmental Safety, 55, 116–125.  

Cao, L., Huang, W., Liu, J., Yin, X., Dou, S., 2010. Accumulation and oxidative stress biomarkers 
in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comparative 
Biochemistry and Physiology - C Toxicology and Pharmacology, 151, 386–392.  

Chakraborty, C., Sharma, A.R., Sharma, G., Lee, S.-S., 2016. Zebrafish: A complete animal 
model to enumerate the nanoparticle toxicity. Journal of Nanobiotechnology, 14, 65.  

Chow, E.S.H., Hui, M.N.Y., Lin, C.C., Cheng, S.H., 2008. Cadmium inhibits neurogenesis in 



55 

 

zebrafish embryonic brain development. Aquatic Toxicology, 87, 157–169.  
Clairborne, A., 1985. Catalase activity, in: Greenwald, R.A.E. (Ed.), Handbook of Methods for 

Oxygen Radical Research. CRC Press, Boca Raton, pp. 283–284. 
Craig, P., Wood, C., McClelland, G., 2007. Oxidative stress response and gene expression with 

acute copper exposure in zebrafish (Danio rerio). American journal of physiology. Regulatory, 
integrative and comparative physiology, 293, R1882-92.  

Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., Opdenakker, K., 
Nair, A.R., Munters, E., Artois, T.J., Nawrot, T., Vangronsveld, J., Smeets, K., 2010. Cadmium stress: 
An oxidative challenge. BioMetals, 23, 927–940.  

Dalvi, R.S., Pal, A.K., Tiwari, L.R., Das, T., Baruah, K., 2009. Thermal tolerance and oxygen 
consumption rates of the catfish Horabagrus brachysoma (Günther) acclimated to different 
temperatures. Aquaculture, 295, 116–119.  

De Coen, W., Janssen, C.R., 1997. The use of biomarkers in Daphnia magna toxicity testing. 
IV.Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed 
Daphnia populations. Journal of Aquatic Ecosystem Stress and Recovery, 6, 43–55.  

Domingues, I., Oliveira, R., Lourenço, J., Grisolia, C.K., Mendo, S., Soares, A.M.V.M., 2010. 
Biomarkers as a tool to assess effects of chromium (VI): Comparison of responses in zebrafish early 
life stages and adults. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 
152, 338–345.  

Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid 
colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.  

Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., 
Léonard, M.A., Lillicrap, A., Norberg-King, T., Whale, G., 2010. The fish embryo toxicity test as an 
animal alternative method in hazard and risk assessment and scientific research. Aquatic 
Toxicology, 97, 79–87.  

Giri, S.S., Sen, S.S., Jun, J.W., Sukumaran, V., Park, S.C., 2016. Immunotoxicological effects of 
cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish and Shellfish 
Immunology, 54, 164–171. 

Guilhermino, L., Lopes, M.C., Carvalho, A.P., Soares, A.M.V.M., 1996. Acetylcholinesterase 
activity in juveniles of Daphnia magna straus. Bulletin of Environmental Contamination and 
Toxicology, 57, 979–985.  

Guinot, D., Ureña, R., Pastor, A., Varó, I., Ramo, J. del, Torreblanca, A., 2012. Long-term effect 
of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus 
aurata. Chemosphere, 87, 1215–1221.  

Guo, S.N., Zheng, J.L., Yuan, S.S., Zhu, Q.L., Wu, C.W., 2017. Immunosuppressive effects and 
associated compensatory responses in zebrafish after full life-cycle exposure to environmentally 
relevant concentrations of cadmium. Aquatic Toxicology, 188, 64–71.  

Haap, T., Schwarz, S., Köhler, H.R., 2016. Metallothionein and Hsp70 trade-off against one 
another in Daphnia magna cross-tolerance to cadmium and heat stress. Aquatic Toxicology, 170, 
112–119.  

Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-Transferases, The first enzymatic 
step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130–7139. 

Hallare, A. V, Köhler, H.R., Triebskorn, R., 2004. Developmental toxicity and stress protein 
responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere, 
56, 659–666.  

Hallare, A. V, Schirling, M., Luckenbach, T., Köhler, H.R., Triebskorn, R., 2005. Combined 
effects of temperature and cadmium on developmental parameters and biomarker responses in 
zebrafish (Danio rerio) embryos. Journal of Thermal Biology, 30, 7–17.  

Heise, K., 2006. Oxidative stress during stressful heat exposure and recovery in the North Sea 
eelpout Zoarces viviparus L. Journal of Experimental Biology, 209, 353–363.  



56 

 

Irons, T.D., MacPhail, R.C., Hunter, D.L., Padilla, S., 2010. Acute neuroactive drug exposures 
alter locomotor activity in larval zebrafish. Neurotoxicology and Teratology, 32, 84–90.  

Jebali, J., Banni, M., Guerbej, H., Almeida, E.A., Bannaoui, A., Boussetta, H., 2006. Effects of 
malathion and cadmium on acetylcholinesterase activity and metallothionein levels in the fish 
Seriola dumerilli. Fish Physiology and Biochemistry, 32, 93–98.  

Jia, X., Zhang, H., Liu, X., 2011. Low levels of cadmium exposure induce DNA damage and 
oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var. color. Fish 
Physiology and Biochemistry, 37, 97–103.  

Jin, Y., Liu, Z., Liu, F., Ye, Y., Peng, T., Fu, Z., 2015. Embryonic exposure to cadmium (II) and 
chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish 
(Danio rerio). Neurotoxicology and Teratology, 48, 9–17.  

Kapron-Brás, C.M., Hales, B.F., 1991. Heat-shock induced tolerance to the embryotoxic 
effects of hyperthermia and cadmium in mouse embryos in vitro. Teratology, 43, 83–94.  

Klein, R.D., Borges, V.D., Rosa, C.E., Colares, E.P., Robaldo, R.B., Martinez, P.E., Bianchini, A., 
2017. Effects of increasing temperature on antioxidant defense system and oxidative stress 
parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. Journal of Thermal 
Biology, 68, 110–118.  

Krone, P.H., Evans, T.G., Blechinger, S.R., 2003. Heat shock gene expression and function 
during zebrafish embryogenesis. Seminars in Cell and Developmental Biology, 14, 267–274.  

Krone, P.H., Sass, J.B., 1994. HSP 90 alpha and HSP 90 beta genes are present in the zebrafish 
and are differentially regulated in developing embryos. Biochemical and biophysical research 
communications, 204, 746–52.  

Kwok, K.W.H., Grist, E.P.M., Leung, K.M.Y., 2009. Acclimation effect and fitness cost of copper 
resistance in the marine copepod Tigriopus japonicus. Ecotoxicology and Environmental Safety, 72, 
358–364. 

Lawrence, C., 2007. The husbandry of zebrafish (Danio rerio): A review. Aquaculture, 269, 1–
20.  

Lele, Z., Engel, S., Krone, P.H., 1997. hsp47 and hsp70 gene expression is differentially 
regulated in a stress- and tissue-specific manner in zebrafish embryos. Developmental genetics, 21, 
123–33.  

Linde-Arias, A.R., Inácio, A.F., Novo, L.A., de Alburquerque, C., Moreira, J.C., 2008. 
Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraiba 
do Sul. Environmental Pollution, 156, 974–979.  

Ling, L. Bin, Chang, Y., Liu, C.W., Lai, P.L., Hsu, T., 2017. Oxidative stress intensity-related 
effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair 
activities in zebrafish (Danio rerio) embryos. Chemosphere, 167, 10–18.  

López-Olmeda, J.F., Sánchez-Vázquez, F.J., 2011. Thermal biology of zebrafish (Danio rerio). 
Journal of Thermal Biology, 36, 91–104.  

López, E., Arce, C., Oset-Gasque, M.J., Cañadas, S., González, M.P., 2006. Cadmium induces 
reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radical 
Biology and Medicine, 40 (6), 940–951. 

Lushchak, V.I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic 
Toxicology, 101, 13–30.  

Lushchak, V.I., Bagnyukova, T. V., 2006. Temperature increase results in oxidative stress in 
goldfish tissues. 2. Antioxidant and associated enzymes. Comparative Biochemistry and Physiology 
- C Toxicology and Pharmacology, 143, 36–41.  

Madeira, D., Narciso, L., Cabral, H.N., Vinagre, C., Diniz, M.S., 2013. Influence of temperature 
in thermal and oxidative stress responses in estuarine fish. Comparative Biochemistry and 
Physiology - A Molecular and Integrative Physiology, 166, 237–243.  

Malarvizhi, A., Saravanan, M., Poopal, R.K., Hur, J.H., Ramesh, M., 2017. Accumulation of 



57 

 

Cadmium and Antioxidant and Hormonal Responses in the Indian Major Carp Cirrhinus mrigala 
During Acute and Sublethal Exposure. Water, Air, and Soil Pollution, 228, 1–14.  

Matz, C.J., Treble, R.G., Krone, P.H., 2007. Accumulation and elimination of cadmium in larval 
stage zebrafish following acute exposure. Ecotoxicology and Environmental Safety, 66, 44–48.  

Muyssen, B.T.A., Messiaen, M., Janssen, C.R., 2010. Combined cadmium and temperature 
acclimation in Daphnia magna: Physiological and sub-cellular effects. Ecotoxicology and 
Environmental Safety, 73, 735–742.  

Novais, S.C., Soares, A.M.V.M., De Coen, W., Amorim, M.J.B., 2013. Exposure of Enchytraeus 
albidus to Cd and Zn - Changes in cellular energy allocation (CEA) and linkage to transcriptional, 
enzymatic and reproductive effects. Chemosphere, 90, 1305–1309.  

OECD, 2013. Fish embryo toxicity test. Organization for Economic Co-Operation and 
Development, Paris 1–22. 

Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by 
thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.  

Olsvik, P.A., Søfteland, L., Hevrøy, E.M., Rasinger, J.D., Waagbø, R., 2016. Fish pre-acclimation 
temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes. Journal of 
Thermal Biology, 57, 21–34.  

Pan, T.C.F., Hunt von Herbing, I., 2017. Metabolic plasticity in development: Synergistic 
responses to high temperature and hypoxia in zebrafish, Danio rerio. Journal of Experimental 
Zoology Part A: Ecological and Integrative Physiology, 327, 189–199.  

Pedrosa, J., Gravato, C., Campos, D., Cardoso, P., Figueira, E., Nowak, C., Soares, A.M.V.M., 
Barata, C., Pestana, J.L.T., 2017. Investigating heritability of cadmium tolerance in Chironomus 
riparius natural populations: A physiological approach. Chemosphere, 170, 83–94.  

Pestana, J.L.T., Novais, S.C., Norouzitallab, P., Vandegehuchte, M.B., Bossier, P., 
Schamphelaere, K.A.C. De, 2016. Non-lethal heat shock increases tolerance to metal exposure in 
brine shrimp. Environmental Research, 151, 663–670.  

Piazza, V., Gambardella, C., Canepa, S., Costa, E., Faimali, M., Garaventa, F., 2016. 
Temperature and salinity effects on cadmium toxicity on lethal and sublethal responses of 
Amphibalanus amphitrite nauplii. Ecotoxicology and Environmental Safety, 123, 8–17.  

Råbergh, C.M., Airaksinen, S., Soitamo,  a, Björklund, H. V, Johansson, T., Nikinmaa, M., 
Sistonen, L., 2000. Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs 
in response to heat stress. The Journal of experimental biology, 203, 1817–1824.  

Renieri, E.A., Sfakianakis, D.G., Alegakis, A.A., Safenkova, I. V., Buha, A., Matović, V., Tzardi, 
M., Dzantiev, B.B., Divanach, P., Kentouri, M., Tsatsakis, A.M., 2017. Nonlinear responses to 
waterborne cadmium exposure in zebrafish. An in vivo study. Environmental Research, 157, 173–
181.  

Rodrigues, A.C.M., Gravato, C., Quintaneiro, C., Golovko, O., Žlábek, V., Barata, C., Soares, 
A.M.V.M., Pestana, J.L.T., 2015. Life history and biochemical effects of chlorantraniliprole on 
Chironomus riparius. Science of the Total Environment, 508, 506–513.  

Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach, T., Voelker, D., 2008. The zebrafish 
embryo model in environmental risk assessment - Applications beyond acute toxicity testing. 
Environmental Science and Pollution Research, 15, 394–404.  

Sfakianakis, D.G., Leris, I., Kentouri, M., 2012. Exercise-related muscle lactate metabolism in 
zebrafish juveniles: The effect of early life temperature. Italian Journal of Zoology, 79, 568–573.  

Shi, H., Sui, Y., Wang, X., Luo, Y., Ji, L., 2005. Hydroxyl radical production and oxidative 
damage induced by cadmium and naphthalene in liver of Carassius auratus. Comparative 
Biochemistry and Physiology - C Toxicology and Pharmacology, 140, 115–121.  

Spence, R., Gerlach, G., Lawrence, C., Smith, C., 2008. The behaviour and ecology of the 
zebrafish, Danio rerio. Biological Reviews, 83, 13–34.  

Sprague, J., Fogels, A., 1976. Watch the y in Bioassay. Aquatic Tocxicity Workshop 107–118. 



58 

 

Suhett, A., Steinberg, C., Farjalla, V.F., 2015. An overview of the contribution of studies with 
cladocerans to environmental stress research. Acta Limnologica Brasiliensia, 27, 145–159. 

Tedengren, M., Olsson, B., Reimer, O., Brown, D.C., Bradley, B.P., 2000. Heat pretreatment 
increases cadmium resistance and HSP 70 levels in Baltic Sea mussels. Aquatic Toxicology, 48, 1–
12.  

Tietze, F., 1969. Enzymic method for quantitative determination of nanogram amounts of 
total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical 
Biochemistry, 27, 502–522.  

Todgham, A.E., Schulte, P.M., Iwama, G.K., 2005. Cross-tolerance in the tidepool sculpin: the 
role of heat shock proteins. Physiological and biochemical zoology : PBZ, 78, 133–144.  

Torres, M.A., Testa, C.P., Gáspari, C., Masutti, M.B., Panitz, C.M.N., Curi-Pedrosa, R., Almeida, 
E.A., Mascio, P. Di, Filho, D.W., 2002. Oxidative stress in the mussel Mytella guyanensis from 
polluted mangroves on Santa Catarina Island , Brazil. Marine Pollution Bulletin, 44, 923–932. 

Tukaj, S., Tukaj, Z., 2010. Distinct chemical contaminants induce the synthesis of Hsp70 
proteins in green microalgae Desmodesmus subspicatus: Heat pretreatment increases cadmium 
resistance. Journal of Thermal Biology, 35, 239–244.  

Ulhaq, M., Örn, S., Carlsson, G., Morrison, D.A., Norrgren, L., 2013. Locomotor behavior in 
zebrafish (Danio rerio) larvae exposed to perfluoroalkyl acids. Aquatic Toxicology, 144–145, 332–
340.  

van Dyk, J.C., Pieterse, G.M., van Vuren, J.H.J., 2007. Histological changes in the liver of 
Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology and 
Environmental Safety, 66, 432–440.  

Vergauwen, L., Hagenaars, A., Blust, R., Knapen, D., 2013a. Temperature dependence of long-
term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: Evidence from 
transcript expression to physiology. Aquatic Toxicology, 126, 52–62.  

Vergauwen, L., Knapen, D., Hagenaars, A., Blust, R., 2013b. Hypothermal and hyperthermal 
acclimation differentially modulate cadmium accumulation and toxicity in the zebrafish. 
Chemosphere, 91, 521–529.  

Wang, J., Zhang, H., Zhang, T., Zhang, R., Liu, R., Chen, Y., 2015. Molecular mechanism on 
cadmium-induced activity changes of catalase and superoxide dismutase. International Journal of 
Biological Macromolecules, 77, 59–67.  

Wold, M., Beckmann, M., Poitra, S., Espinoza, A., Longie, R., Mersereau, E., Darland, D.C., 
Darland, T., 2017. The longitudinal effects of early developmental cadmium exposure on 
conditioned place preference and cardiovascular physiology in zebrafish. Aquatic Toxicology, 191, 
73–84.  

Wu, C., Zhang, Y., Chai, L., Wang, H., 2017a. Oxidative stress, endocrine disruption, and 
malformation of Bufo gargarizans embryo exposed to sub-lethal cadmium concentrations. 
Environmental Toxicology and Pharmacology, 49, 97–104.  

Wu, C., Zhang, Y., Chai, L., Wang, H., 2017b. Histological changes, lipid metabolism and 
oxidative stress in the liver of Bufo gargarizans exposed to cadmium concentrations. Chemosphere, 
179, 337–346.  

Yuan, S.S., Lv, Z.M., Zhu, A.Y., Zheng, J.L., Wu, C.W., 2017. Negative effect of chronic cadmium 
exposure on growth, histology, ultrastructure, antioxidant and innate immune responses in the liver 
of zebrafish: Preventive role of blue light emitting diodes. Ecotoxicology and Environmental Safety, 
139, 18–26.  

Zhang, T., Zhou, X.Y., Ma, X.F., Liu, J.X., 2015. Mechanisms of cadmium-caused eye hypoplasia 
and hypopigmentation in zebrafish embryos. Aquatic Toxicology, 167, 68–76.  

Zhang, Z., Zheng, Z., Cai, J., Liu, Q., Yang, J., Gong, Y., Wu, M., Shen, Q., Xu, S., 2017. Effect of 
cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by 
transcriptome analysis. Aquatic Toxicology, 192, 171–177.  



59 

 

Zheng, J.L., Guo, S.N., Yuan, S.S., Xia, H., Zhu, Q.L., Lv, Z.M., 2017. Preheating mitigates 
cadmium toxicity in zebrafish livers: Evidence from promoter demethylation, gene transcription to 
biochemical levels. Aquatic Toxicology, 190, 104–111.  

Zheng, J.L., Yuan, S.S., Wu, C.W., Lv, Z.M., 2016. Acute exposure to waterborne cadmium 
induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). 
Aquatic Toxicology, 180, 36–44.  

Zhu, Q.L., Guo, S.N., Yuan, S.S., Lv, Z.M., Zheng, J.L., Xia, H., 2017. Heat indicators of oxidative 
stress, inflammation and metal transport show dependence of cadmium pollution history in the 
liver of female zebrafish. Aquatic Toxicology, 191, 1–9.  

 
 
Supplementary material: 

 
 
 
 

Figure S1. Locomotor behavior of zebrafish larvae after 120h of exposure to Cd. The black dots represents 
the embryos of the group with thermal stress (HS), and the white dots represents the embryos of the group 
without thermal stress (N). In all the graphics, white and black areas denote light and dark periods, 
respectively. All values are presented as mean ± standard error.  
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Abstract 

Many studies have suggested the involvement of general stress responses such as metallothioneins 

(MTs) and heat shock proteins (HSPs) in the process of cross-tolerance. To address the general stress 

responses responsible for the induced cross-tolerance reported in our last study between a previous heat 

shock (HS) of 37°C during 1 hour and cadmium (Cd) exposure in Danio rerio, we exposed the embryos to four 

different treatments, control (no HS and no Cd), HS alone (no Cd), Cd alone (no HS) and HS with later exposure 

to 2 mg L-1 of Cd.  We obtained samples of each treatment and quantified the content of MTs after 48h and 

96h of exposure to Cd and the content of HSP70 after 24h, 48h and 96h of exposure to Cd. We did not obtain 

any significant effects of HS or Cd in MTs content but increased levels of HSP70 were observed in HS treated 

zebrafish larvae. Although Cd exposure did not had any effect on HSP70 levels, these results suggest that 

increased HSP70 levels induced by HS could be involved in cross-tolerance to Cd detected in our last study 

however other mechanisms may also be involved. Moreover future studies should confirm the involvement 

of HSP70 and address the regulation of HSPs genes and their cellular functions that ultimately culminate in 

cross-tolerance. 
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Introduction 

Aquatic organisms are constantly exposed to multiple stressors and thus, studying 

their possible interactions is very important especially within the context of climate change. 

Cross-tolerance (or cross-protection) occurs when exposure to one stressor alter the 

tolerance of an organism to other future stressor of different nature and is commonly 

observed in organisms across a wide range of taxa (Kampinga et al., 1995; Sabehat et al., 

1998). In 1978, Li and Hahn were among the first researchers to observe this phenomenon 

in mammalian cells pre-exposed to sublethal thermal stress. These cells acquired higher 

resistance to subsequent chemical exposure (Li and Hahn, 1978). Several studies have 

shown that mild stress, which can occur naturally in ecosystems, even eliciting stress 

responses, can be favourable to the general fitness of organisms, because it stimulates the 

stress defense system, increasing the protection of the organisms against future stressors 

(Minois, 2000; Suhett et al., 2011). Thus, it was verified that the phenotypic plasticity in 

physiological mechanisms of defense against environmental stressors can allow an increase 

of tolerance (Pestana et al., 2016). After the discovery of this process, some researchers 

tried to propose explaining mechanisms. When the stressors involved are elevated 

temperature and metal exposure, the involvement of increase of metallothioneins (MTs) 

(Haap et al., 2016; Plautz et al., 2013) and/or induction of heat shock proteins (HSPs) 

(Dubeau et al., 1998; Pestana et al., 2016; Tedengren et al., 2000; Tukaj and Tukaj, 2010) 

are usually suggested as main drivers of the induced cross-tolerance. 

HSPs were first described in cells from Drosophila melanogaster during exposures 

to high temperature and so the term ‘‘heat shock protein’’ (Lewis et al., 1999). They 

normally represent 5-10% of the total proteins in the cell and increase in amount when 

cells are exposed to various stressors such as temperature, salinity, hormones, nutrient 

deficiencies, hypoxia or anoxia, diseases, pesticides, polycyclic aromatic hydrocarbons, 

metals, desiccation, ultraviolet radiation, parasites, reactive oxygen species, bacterial and 

viral infections and predators (Basu et al., 2002; Currie, 2011; Lewis et al., 1999; Madeira 

et al., 2013; Pirkkala, Lila; Nykanen, Paivi; Sistonen, 2001; Sung et al., 2011). Given that 

some researchers suggest that all stressors may induce HSPs expression, so these proteins 

are also known as stress proteins (Augustyniak et al., 2017; Currie, 2011; Dubeau et al., 
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1998).  HSPs are present in all organisms from bacteria to mammals and they play 

important roles in protecting against stressors that can cause cell damage (Basu et al., 2002; 

Pestana et al., 2016; Todgham et al., 2005; Werner et al., 2007). According to their 

molecular size, there are six main families of HSPs namely HSP100, HSP90, HSP70, HSP60, 

HSP40, and the small HSPs (Al-Zhgoul et al., 2013; Currie, 2011; Kalmar and Greensmith, 

2009).  Various studies with zebrafish have already identified and cloned a number of HSPs, 

including HSP70, HSP47, HSP27, HSP90a and HSP90b (Krone et al., 1997; Krone and Sass, 

1994; Lele et al., 1997; Råbergh et al., 2000). HSP70 are stress-inducible highly conserved 

molecular chaperones and are probably the best characterized and best studied of the 

stress protein family (Blechinger et al., 2007; Hallare et al., 2004; Lewis et al., 1999; 

Tedengren et al., 2000).  

Although most HSPs have a relatively short half-life, some persist in the cell after 

removal of the stressor and thus may play an important role in long-term adaptation (Basu 

et al., 2002; Dubeau et al., 1998). Thus, HSPs are an important component of the cellular 

stress response and play a critical role in the recovery of cells from stress because they 

prevent protein denaturation, restructure damaged proteins or ensure the degradation of 

irreversibly damaged proteins, preventing their accumulation and aggregation (Sung et al., 

2011; Todgham et al., 2005). HSPs are also important in routine housekeeping functions 

associated with protein synthesis and maturation and therefore may exhibit patterns of 

both constitutive and inducible expression. In fish, constitutive HSPs commonly include 

heat shock cognate 70 (HSC70) and HSP90β, whereas HSP70, HSP90α, HSP47 are inducible 

HSPs whose concentrations increase in response to stress (Currie, 2011; Stefanovic et al., 

2016). Some studies that investigate cross-tolerance between thermal stress and exposure 

to Cd in aquatic organisms have suggested the involvement of HSP70. Tedengren et al. 

concluded that pretreatment at 20°C in the blue mussel Mytilus edulis significantly 

enhanced the HSP70 response and seemed to confer greater resistance to Cd since they 

observed maintained filtration rates and only minor reductions in scope for growth 

(Tedengren et al., 2000). Pestana et al. also investigated the effects of elevated 

temperature on metal toxicity in Artemia franciscana and found that a non-lethal heat 

shock induced Cd tolerance and enhanced HSP70 production (Pestana et al., 2016). These 
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studies demonstrate that HSPs are a general defense response likely involved in the cross-

tolerance processes. However HSPs expression is sensitive to various factors regarding the 

stressors and the organism, such as, developmental stage, sex, nutritional status, genetic 

variability and age of the organism, intensity and duration of the first mild stressor, 

previous history of exposure to this stressor and recovery time between the two stressors 

(Augustyniak et al., 2017; Currie, 2011; López-Olmeda and Sánchez-Vázquez, 2011; 

Mahmood et al., 2014; Sung et al., 2011; Tedengren et al., 2000; Todgham et al., 2005). 

Metallothioneins (MTs) are a family of low molecular weight (6-8 kDa), cysteine-rich 

(20–30%), inducible, cytosolic proteins well known for their high affinity to metals (Cuypers 

et al., 2010). Their cysteine residues allow them to bind, carry and store various metals 

reducing their toxicity (Abdel-Tawwab and Wafeek, 2014; van Cleef-Toedt et al., 2001). 

These proteins occur in a large number of phylogenetically diverse organisms (Ma et al., 

2008). It has been proposed that MTs play an important role in homeostasis of essential 

metals such as copper (Cu) and zinc (Zn), and in the detoxification of toxic metals such as 

cadmium (Cd) and mercury (Hg) (Bouraoui et al., 2008; Campana et al., 2003). MTs protect 

against metal toxicity by three possible mechanisms: reduction of metal uptake into the 

cells, metal sequestration and enhancing metal export out of the cells (Park et al., 2001). 

Thus, metal sequestration may be a mechanism by which MTs confer cellular protection 

against metal toxicity since Cd-MT complexation makes Cd unavailable for cell metabolism, 

blocking the mechanisms leading to Cd-induced oxidative stress (Cuypers et al., 2010; 

Guinot et al., 2012; Ma et al., 2008; Park et al., 2001; van Cleef-Toedt et al., 2001). 

We can then conclude that the increase in cell resistance to metal toxicity can be 

achieved by processes that result in increased ability to synthesize MTs (Guinot et al., 2012; 

Pedrosa et al., 2017; van Cleef-Toedt et al., 2001). It is well known that the induction of  

MTs occurs in aquatic organisms after exposure to metals, including Cd (Eroglu et al., 2005; 

Jebali et al., 2006; Maria et al., 2014; Renieri et al., 2017; Šrut et al., 2017; van Cleef-Toedt 

et al., 2001). However, the synthesis of these proteins can also be induced by general stress 

conditions, such as heat stress, hunger, desiccation and hypoxia (Guinot et al., 2012; Leung 

et al., 2000; Plautz et al., 2013). Some studies have demonstrated that thermal stress 

affects the induction of MTs (Abdel-Tawwab and Wafeek, 2014; Guinot et al., 2012; Olsvik 
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et al., 2016; van Cleef-Toedt et al., 2001). Thus the involvement of MTs induction as a 

general stress response in cross-tolerance processes is plausible.  

Although the cross-tolerance process is very likely to occur in natural ecosystems, 

mechanisms underlying this phenomenon are still poorly understood. In our last study we 

concluded that a previous heat shock of 37°C during 1 hour led to a transient increased 

tolerance to subsequent exposure to lethal concentrations of Cd in Danio rerio embryos. 

Based on this, it might be hypothesized that MTs and/or HSP70 synthesis induced by the 

HS provided a protection against Cd exposure. The objective of this work is to elucidate 

about the role of MTs and HSPs as general stress responses that are involved in the process 

of induced cross-tolerance.  

Material and methods 

Test organisms 

Zebrafish (D. rerio) eggs were obtained from a culture maintained in carbon-filtered 

water at the Department of Biology, University of Aveiro. These organisms were kept at 

27.0±1°C under a 16:8h light/dark photoperiod cycle, with conductivity at 550±50µS, pH at 

7.5±0.5 and dissolved oxygen at 95% saturation. Adult fish are fed twice daily with 

commercially available artificial diet (ZM 400 Granular) and brine shrimp. 

Test chemicals 

Zebrafish embryos were exposed to solutions of Cd obtained from dilution of a 

cadmium chloride stock (CdCl2; CAS number 10108-64-2; purity ≥ 99.0%). Water of the 

zebrafish culture was used for dilutions and as control in all tests. 

Experimental design 

The assay was based on the OECD guideline on Fish Embryo Toxicity Test (OECD, 

2013). Reproductive groups of zebrafish adults were placed in aquarium with marbles in 

the bottom, in the afternoon of the day before the collection of the eggs. Two hours after 

the beginning of the illumination in the next morning the eggs were collected and cleaned 

from residues. 

Half of the newly fertilized eggs were exposed to a heat shock (HS) of 37°C during 

one hour (group HS) while the other half were kept at 27±1°C (group N). These 

temperatures were chosen based on preliminary tests and based on different studies 
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dealing with induction of HSPs in zebrafish, where the control temperature is usually set at 

28 °C and the temperature used for the HS is commonly set at 37°C (Airaksinen et al., 2003; 

Hallare et al., 2005; Krone and Sass, 1994; Lele et al., 1997; Råbergh et al., 2000). 

After the exposure, Zebrafish eggs from both groups with normal development 

were selected for the toxicity test (using a Stereoscopic Zoom Microscope-SMZ 1500, 

Nikon) and unfertilized, irregular or injured eggs were discarded. Zebrafish embryos from 

each group (with or without previous HS) were then divided and exposed to 0 or 2 mg L-1 

of Cd, totalizing 4 treatments. The eggs were exposed in petri plates and kept at 27±1°C.  

For quantification of MTs, ten replicas for treatment were made and the test was 

done using two exposure times: 48 hours of exposure to Cd corresponding to a time point 

where, on our last study, induced cross-tolerance to Cd by HS was verified or 96 hours of 

exposure where tolerance of the two groups was similar. For the test of 48h we exposed 

20 eggs per sample, while for the test of 96h we exposed 10 eggs per sample.  

For quantification of HSP70 levels, six replicates for treatment were made and the 

test was done using three exposure times; in addition to 48 and 96 hours, we also 

performance a test with 24 hours of exposure based on the rapid induction of HSPs 

reported in other studies (Basu et al., 2002). For the tests of 24h and 48h we exposed 100 

eggs per sample, while for the test with 96h we exposed 50 eggs per sample.  

The embryos and larvae were observed daily with a stereomicroscopic 

(Stereoscopic Zoom Microscope-SMZ 1500, Nikon). Embryos were sampled in microtubes 

after exposure, frozen in liquid nitrogen and kept at -80°C until further analyses. 

 

MTs quantification 

The quantification of the metallothioneins content (MT) was done following a 

protocol adapted from Viarengo et al. (1997). Each sample was homogenized in 650µL of 

phosphate buffer (0.1M, pH 7.4) with DTT (1Mm) and EDTA (1mM), on ice, using a sonic 

homogenizer (Sonifier 250, Branson sonicator). The homogenate tissue was centrifuged at 

12000g during 10 minutes and divided into two aliquots for the protein and MTs analyses.  

The quantification of the protein on each sample was done following the method 

of Bradford (1976), adapted to 96 well plates, using bovine γ-globuline as a standard. To 
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each 10µL of post-mitochondrial supernatant 250 µL of BioRad solution were added, plates 

were then placed in the dark, and after 15 minutes absorbance was read at 600nm. 

For the MT evaluation, 500µL of 95% ethanol with 8% chloroform were added to 

each sample followed by centrifugation at 6000g during 10 minutes. To the supernatant 

50µL of RNA (1mg/ml), 10µL of HCl (6M) and 1.2ml of cold ethanol (100%) were added. The 

mixture was frozen for 15 minutes at -80°C and centrifuged as indicated above. The MT-

containing pellet was washed with 300µL of 87% ethanol with 1% chloroform and 

centrifuged at 6000g during 1 minute. The pellet was resuspended with 150µL of 0.25M 

NaCl and 150µL of 0.2M HCl with 4mM EDTA. After addition of Ellmans reactive 

(dithionitrobenzoate 0.4mM, 2M NaCl and 0.2M KH2PO4, pH 8), the absorbance was 

measured at 412nm and the MT concentration was estimated using the reduced 

glutathione as a reference standard. 

 

HSP70 quantification 

HSP70 was determined using an Enzyme Linked Immunosorbent Assay (ELISA) kit 

(CUSABIO) in 96 well microplates and following the procedure described in the kit. This 

procedure employs the competitive inhibition enzyme immunoassay technique, where a 

competitive inhibition reaction is launched between HSP70 on the samples and biotin-

conjugated HSP70 with the pre-coated antibody specific for HSP70 present in the 

microplate wells. For quantification purposes, a calibration curve was constructed using 

the standards in a range from 18.75 pg/ml to 300 pg/ml.  

 

Statistical analysis 

Shapiro-Wilk and Levene’s test were performed to assess the normality and 

homoscedasticity of data, respectively. Two-way Anova’s were performed to access 

significant effects of HS, Cd and their combination on HSP70’s and MT’s levels using the 

program SigmaPlot 12.5. The Holm-Sidak method was used for multiple comparisons. All 

statistical analyses were performed with a significance level of 0.05. 
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Results 

MTs content 

At 48h, although there is a trend for higher MT-equivalents content in all treatments 

comparing to control group (Figure 7A), the great variability of the data resulted in no 

significant effects of Cd, HS or interaction on MT-equivalents content in zebrafish embryos 

(Table 4).  

At 96h, results suggest lower MT-equivalents content in all treatments comparing 

to control group (Figure 7B); still the great variability of the data resulted in no significant 

effects of Cd, HS or interaction (Table 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. MT-equivalents content of zebrafish larvae kept at normal temperature and exposed to Cd (N) and 
zebrafish larvae pre-exposed to HS and posteriorly exposed to Cd (HS) during 48h (A) or 96h (B). All values 
are presented as mean ± standard error. 
  

B A 

Table 3. ANOVAs results of the effects of Cd alone, HS alone and their interaction (HS*Cd) on MTs content; 
df-degrees of freedom; ss-sums of squares; MS - mean sums of squares; F-F-statistic. 
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HSP70 content 

At 24h, we detected an effect of HS on HSP70 values; embryos pre-exposed to HS 

have increased HSP70 content compared to group N (Figure 8). Cd exposure did not affect 

HSP70 content and a significant interaction between the two stressors was not detected 

(Table 5). At 48h, embryos pre-exposed to HS and posteriorly exposed to Cd have increasing 

levels of HSP70 compared to group N (Figure 8). In agreement, although no statistical 

differences were detected for factors individually a significant interaction was observed 

(Table 5). At 96h, HSP70 content was increased in the HS treated larvae (Figure 8). No 

effects were detected for Cd and no interaction occurred between the two stressors (Table 

5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. ANOVAs results of the effects of Cd alone, HS alone and their interaction (HS*Cd) on HSP70 content; 
df-degrees of freedom; ss-sums of squares; MS - mean sums of squares; F-F-statistic. 

Figure 8. HSP70 content of zebrafish larvae kept at normal temperature and exposed to Cd (N) and zebrafish 
larvae pre-exposed to HS and posteriorly exposed to Cd (HS) during 24h, 48h or 96h. All values are presented 
as mean ± standard error. 

24h 96h 48h 
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Discussion 

In our last study, preheating of 37°C during 1h induced cross-tolerance to Cd 

exposure in Danio rerio embryos. Our hypothesis to explain this induced cross-tolerance 

were that an exposure to a sublethal HS in the early stages of development will trigger a 

biochemical general stress response, such as MTs synthesis and/or HSP70 induction, which 

will later provide increased tolerance to these embryos when exposed to Cd. In this study, 

we provided evidences that a 1h HS of 37°C results in increased HSP70 levels. This increased 

HSP70 levels may be associated with induced cross-tolerance to Cd. 

Although some studies reported that exposure to thermal stress significantly 

elevated MT induction or MT gene expression (Guinot et al., 2012; Olsvik et al., 2016; van 

Cleef-Toedt et al., 2001), HS had no influence on MT levels on zebrafish embryos. Zheng et 

al. acclimated zebrafish adults to 34°C for 4 days and exposed to 0 or 200 μgL−1 Cd at 26 

°C for 1 week and, also reported that preheating alone does not affect MTs levels after 1 

week (Zheng et al., 2017). Nevertheless, the lack of response in terms of MTs content to HS 

in our study could be due to the low intensity and duration of the HS or because the effect 

occurs earlier and we could not detect it due to recovery to basal levels.  

Exposure to metals, like Cd, normally activates the transcription of MT genes via the 

binding of metal-binding regulatory factors to the metal-responsive elements (Ma et al., 

2008). In our study however, MTs levels in zebrafish embryos remain the same after 48 and 

96h of exposure to 2mg L-1 of Cd. The observed lack of MTs induction in response to Cd 

exposure could be related to the low concentration used. However, Zheng et al. exposed 

zebrafish adults to 0.2 mg L-1 Cd during 1 week and reported increased MTs levels. So 

another factor could be the short-term exposure period. Ma et al. reported that increase 

in MT levels can be delayed depending on the exposure period (Ma et al., 2008). Maria et 

al. only detected an increase in MT levels after 6 days of exposure in Folsomia candida 

(Maria et al., 2014) and Marie et al. also did not observe significant increases of MTs after 

24h and 72h of exposure to Cd in Dreissena polymorpha and Corbicula fluminea (Marie et 

al., 2006).  

On the other hand, the method here used produced data with higher variability which 

could mask the effects of HS and Cd on MTs levels and the differences between the 
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treatments, so further studies are necessary to improve this method of detection for 

zebrafish embryos. Besides that, as described by Viarengo et al., the cysteine residues of 

the measured MT must be free for the DTNB to bind and further MT assessment (Viarengo 

et al., 1997). Therefore, higher levels of MTs could be present in our samples, but since 

some are fully bound to Cd in the form of Cd-MT complexes, exerting their protective roles, 

they were not detected in our study.  

Thermal stress among other stressors, like metals, triggers a cellular program called 

the heat shock response, i.e. elevated expression of HSPs (Airaksinen et al., 2003). Since 

most of the HSPs genes do not contain introns, the mRNA is translated within minutes 

following exposure to a stressor (Basu et al., 2002).  In this work, a 1h HS of 37°C increased 

HSP70 levels in zebrafish embryos. This increase is still noticed after 96h of the occurrence 

of the HS. It seems that HSPs are either relatively stable or continue to be over-expressed 

due to continued cellular stress (Werner et al., 2007).  Airaksinen et al. also reported that 

HSP70 levels were markedly elevated in zebrafish cell lines after a 1h HS at 37°C and 

continued to accumulate at 2,4 and 6h (Airaksinen et al., 2003). Boerrigter et al. also 

exposed zebrafish larvae to a 1h HS of 37°C and observed a 1500-fold increase in HSP70 

mRNA expression (Boerrigter et al., 2014). Hallare et al. exposed zebrafish embryos to 

thermal stress of 33°C and reported a higher induction of HSP70 after 48h of exposure 

(Hallare et al., 2005). Råbergh et al. also observed a markedly increased HSP70 mRNA levels 

in zebrafish tissues after 1h HS at 37°C (Råbergh et al., 2000). Krone et al. detected that 

post-blastula and later stage zebrafish embryos first exhibited inducible HSPs mRNA 

accumulation following a 1h HS at 34 ◦C with maximum induction occurring at 37 ◦C (Krone 

et al., 2003).  Zheng et al. also obtained similar results with up-regulated HSP70 mRNA 

levels by 1 week after preheating of 34 °C for 4 days in zebrafish adults (Zheng et al., 2017). 

All these studies confirm that thermal stress strongly induces HSP70 synthesis in zebrafish.  

Increased expression of HSP70 is reported as a short-term adaptation to Cd exposure 

(Renieri et al., 2017).  However, we did not detect any effect of Cd alone or after a previous 

HS on HSP70 levels. This result is in agreement with other studies that also reported no 

effect of Cd on HSP70 levels or expression (Giri et al., 2016; Tedengren et al., 2000; Zheng 

et al., 2017). This suggests that HSP70 in zebrafish embryos is primarily induced by 
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increased temperature and remains unaffected by exposure to other stressors such as Cd 

(Hallare et al., 2005).  However there are some studies that reported an increase in HSP70 

transcript levels caused by Cd exposure in zebrafish (Hallare et al., 2005; Vergauwen et al., 

2013b), so this absence of Cd effect in our study could also be related to the low 

concentration used.  

After 24h, 48h and 96h we detected the same tendency: larvae pre-exposed to HS 

and subsequent exposed to Cd had superior levels of HSP70 than larvae kept at normal 

temperature conditions and posteriorly exposed to Cd. These results suggest a protective 

role of previous HS and indicates the HSP70 as possible candidates responsible for the 

process of induced cross-tolerance to Cd reported in our last study. Other studies have also 

linked the induction of cross-tolerance to Cd with increasing levels of HSP70 in the 

organisms. Tukaj et al. found that microalgae exposed to 40°C for 1h had higher HSP70 

levels and were more tolerant to further exposure to Cd (Tukaj and Tukaj, 2010). Hallare et 

al. exposed zebrafish embryos to combinations of three temperatures (21°C, 26°C and 

33°C) and Cd concentrations and reported that embryos exposed to 33°C have significantly 

higher expression of HSP70 and were more tolerant to Cd exposure (Hallare et al., 2005). 

Similarly, Zheng et al. exposed zebrafish adults to 26°C or 34°C for 4 days, and posteriorly 

to 0 or 200 μg L-1 of Cd for 1 week at 26 °C and reported that preheating treated fish have 

decreased mortality and lipid peroxidation and increased mRNA levels of HSP70 (Zheng et 

al., 2017). 

Although in this study lower Cd concentrations (2 mg L-1 of Cd) did not increase the 

levels of HSP70, many studies conclude that exposure to Cd increases HSP70 levels and 

these proteins are involved in protection against this metal, so induction of HSP70 could 

still be involved in the process of cross-tolerance detected in our first study since there we 

use higher Cd concentrations (3.0 to 44.3 mg L-1 of Cd). In our first study, after 48h of 

exposure to Cd, cross-tolerance was not evident anymore. However in this study after 96h 

of exposure the levels of HSP70 of zebrafish larvae pre-exposed to HS are still elevated. 

Although HSP70 levels remain high, these proteins may not be exerting their protective 

function due to cellular energy deficiency that can limit the energy available for function of 

the stress proteins involved (Haap et al., 2016). 
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In conclusion, although Cd exposure did not had any effect on HSP70 levels, these 

results suggest that increased HSP70 levels induced by previous HS could be involved in 

cross-tolerance to Cd observed in our last study.  The occurrence of cross-tolerance 

demonstrates that organisms are capable of adaptive responses to stress, which results in 

an overall enhancement of a cell's tolerance for stress, where all defence mechanisms act 

synergistically against any subsequent stress (Kalmar and Greensmith, 2009). Thus, in the 

process of cross-tolerance multiple pathways can be included and not observed in our 

study, such as oxidative stress, inflammatory responses, and metal transport and we 

cannot exclude the possibility that other HSPs might also be involved (Pestana et al., 2016; 

Zheng et al., 2017). As climate change threats the world’s fish stocks and future scenarios 

of Cd pollution are provably to occur, it is critical that we understand the mechanisms 

underlying the adaptive responses to stress of fish in cases of exposure to multiple 

stressors. Future research must establish a direct role for HSP70 in cross-tolerance and 

integrate the regulation of HSPs genes and their cellular functions that ultimately culminate 

in this induced tolerance. More studies are also necessary to investigate the involvement 

of MTs in this process.  
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Chapter 4 - General discussion 

Aquatic organisms exposed to multiple stressors are capable of adaptive responses 

to stress, which result in an overall enhancement of cell's tolerance, like the process of 

cross-tolerance (Kalmar and Greensmith, 2009). This process occurs when a previous 

exposure to a stressor increases the tolerance of an organism to a subsequent stressor of 

different nature (Todgham et al., 2005).  In our study we observed that previous exposure 

to a sublethal heat shock (HS) of 37°C during 1h, on early fertilized zebrafish embryos, 

resulted in induced cross-tolerance to subsequent exposure to lethal concentrations of Cd 

in the first 48h. In other words, mild heat stress resulted in increased tolerance to Cd, since 

the embryos exhibited higher LC50 compared with embryos kept at normal temperature 

conditions. These results are in accordance with our hypothesis that an exposure to a 

sublethal heat shock in the early stages of development will trigger a biochemical general 

stress response that will later provide increased tolerance to these embryos when exposed 

to Cd. Other studies also concluded that a previous exposure to sublethal heat stress 

allowed organisms to better resist Cd exposure in microalgae (Tukaj and Tukaj, 2010), brine 

shrimp (Pestana et al., 2016), mussels (Tedengren et al., 2000), mouse embryos (Kapron-

Brás and Hales, 1991) and fish (Vergauwen et al., 2013; Zheng et al., 2017). As climate 

change threats the world’s fish stocks and future scenarios of Cd pollution are probable to 

occur this result is extremely important in the context of population’s maintenance.  

Considering our initial hypothesis, cross-tolerance between the two stressors can 

only occur if the previous HS triggered defense mechanisms also involved in the protection 

against Cd, such as, increased activity of antioxidant enzymes, induction of heat shock 

proteins (HSPs) and increased metallothioneins (MTs) content (Muyssen et al., 2010; 

Pestana et al., 2016; van Cleef-Toedt et al., 2001). During our work we tried to discover the 

general stress responses involved in this process. Although our results do not clearly point 

out the defense mechanism involved, they give possible candidates, such as GST and TG 

that are important antioxidants to the organisms and protect against reactive oxygen 

species (ROS) (Bouraoui et al., 2008; Jia et al., 2011) and HSP70, general stress proteins that 

protect the cells against numerous stressors since they are involved in prevent protein 

denaturation, restructure damaged proteins or ensure the degradation of irreversibly 
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damaged proteins, preventing their accumulation and aggregation (Sung et al., 2011; 

Todgham et al., 2005). 

 All these general stress responses, according to the literature, meet the necessary 

requirements to confer tolerance between these two stressors. In the case of GST activity 

and TG content, we find that they are induced by HS and Cd, thus, they are involved in 

protection against the two stressors. However, the levels measured after 48h (when 

differences in mortality are still detected between the two groups) are similar between the 

embryos submitted to HS and exposed to Cd and the embryos that remained at control 

temperature and were subsequently exposed to Cd. This may be because the maximum 

levels have been reached and could not increase anymore due to metabolic costs or 

because in larvae previously exposed to HS its maximum has happened earlier in time, 

probably closer to the HS exposure and at 48h the levels have already been reduced. In the 

case of HSP70, although many studies conclude that exposure to Cd increases HSP70 levels 

and these proteins are involved in protection against Cd, in our study this is not verified, 

probably because we used low Cd concentrations to trigger the induction. Regarding the 

involvement of MTs, according to the literature it is very likely that these proteins are 

involved in the cross-tolerance conference to Cd, however, in our study it was not possible 

to verify any effect of HS or Cd on the levels of these proteins probably due to the method 

we used that produced data with high variability which could mask the effects of Cd on MTs 

levels and the differences between the treatments. 

However, after 48h of exposure, this tolerance is not evident anymore, which may be 

caused by a reduction in the protection of the general stress response involved as resulting 

from damage to the proteosynthetic machinery. This phenomenon of overwhelming 

biochemical processes could be due to negative effects of Cd on cellular biosynthetic 

capacity such as transcription and/or translation processes or due to cellular energy 

deficiency that can limit the energy available for synthesis and/or function of the stress 

proteins involved (Haap et al., 2016). As zebrafish larvae with less than 120h use only the 

energy reserves of the yolk sac and the induction of a general stress response for defense, 

detoxification, and repair is largely energy demanding, embryos exposed to HS may 

undergo re-allocation of energy resources with consequent metabolic costs which can 
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negatively affect maintenance, growth and reproduction of the organisms (Bednarska and 

Stachowicz, 2013; Haap et al., 2016).   

Although previous HS seems beneficial for survival against Cd exposure, the analyses 

of other endpoints at individual level, led us to conclude that negative consequences could 

also occur. Previous HS influence zebrafish growth and behavior, resulting in smaller 

embryos with higher degree of hyperactivity, and reduce the width of the yolk sac, which 

suggest that heat stress increased the energy consumed by zebrafish embryos. Regarding 

Cd our study indicates clear effects at the individual level, such as development and 

hatching delay and the occurrence of malformed embryos. Also, Cd reduced embryo 

growth and yolk sac width which, as in the case of HS, suggests that extra energy is being 

consumed by the embryos under metal exposure (Baudou et al., 2017). The normal 

behavioral pattern in response to dark–light stimulation was also impaired by Cd and 

decreased swimming capabilities were detected. This effect on behavior may lead to severe 

consequences since decreased swimming capabilities can increase mortality by predation, 

reduce fish growth by difficulties in prey capture and influence a successful reproduction 

cycle (Almeida et al., 2014).  Nevertheless, at sub-individual level, Cd exposure affected all 

the analyzed biomarkers in our study but did not influence MTs and HSP70 contents, 

probably due to the low concentration used or the short-term exposure period. 

It is very likely that the process of cross-tolerance involves multiple pathways not 

observed in our study, such as oxidative stress, inflammatory responses, and metal 

transport and other HSPs, which result in an overall enhancement of cell's tolerance to 

stress, where all defence mechanisms act synergistically against any subsequent stress 

(Pestana et al., 2016; Zheng et al., 2017). Nevertheless more studies are needed to confirm 

this. Future research must also establish a direct role of increased GST activity, increased 

TG content and increased HSP70 levels in cross-tolerance and integrate the regulation of 

their genes and their cellular functions that ultimately culminate in this induced tolerance. 

More studies are also necessary to improve the method used and investigate the 

involvement of MTs in this process. Also it could be important to investigate the process of 

transgenerational transfer of induced cross-tolerance since it can affect the survival of the 

future generations and influence natural populations survival in future scenarios of climate 
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change and metal pollution. Hence, since HS can induce a general stress response that can 

confer later protection to Cd we suggest that heat history should be considered when 

assessing the effects of metal exposure on aquatic organisms. 
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