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"Imagination is more important than knowledge. Knowledge is limited. Imagination encircles
the world."

- Albert Einstein





Resumo Nos dias que correm, os robôs são usados na investigação, para uso pri-
vado, como nos programas espaciais para explorarem planetas, ou para um
projeto Universitário. Este projeto terá como foco o desenvolvimento de
um braço antropomórfico, e possível instalação na plataforma móvel CAM-
BADA@Home, para este poder participar na competição do RoboCup e con-
seguir alcançar mais objetivos do que aqueles que faz atualmente. Nesta
dissertação irá ser explicado como os braços para o CAMBADA@Home serão
desenvolvidos, explicando os motores que foram usados, motor BLDC e os
servo motores, e como foram aplicados, o desenvolvimento de um mod-
elo virtual a partir um software CAD e a construção do modelo físico. Irá
também conter a informação de como a placa de controlo dos motores foi
desenvolvida, o software usado assim como as ferramentas necessárias para
este trabalho, incluindo o simulador usado para testar o modelo.

palavras chave: ROS, anthropomorphic arm, BLDC motor, Dynamixel
servo motor, GAZEBO, MoveIt!





Abstract Nowadays, service robots are used for private or research usage, like in space
programs to explore planets, or in an University project. This dissertation is
mainly focused on the development of an anthropomorphic arm and its as-
semble on the platform CAMBADA@Home to participate and achieve better
results in the RoboCup competition. In this dissertation it will be explained
how the robotic arm for CAMBADA@Home was developed. This will include
the motors used, BLDC motor and Dynamixel servo motors, as well as the
construction of a model of the arm with the use of a CAD software, which
involves the use of the motors designed and the creation of some parts to
connect them, as well as the assembly of the physical model. Afterwards the
hardware and software control were developed. It was also used a simulator
in order to safely test the model. Then a few test were run which consisted
on the use of no load an with a load of 263 grams. Additional test were run
to verify if the planning sequence matched the physical trajectory.

key words: ROS, anthropomorphic arm, BLDC motor, Dynamixel servo
motor, GAZEBO, MoveIt!





Contents

Contents i

List of Figures iii

List of Tables vii

Glossary ix

Glossary ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 CAMBADA@Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Robocup@Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Concepts 5
2.1 Types of robotic arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Types of grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Application of robotic arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Robotic arms on medical field . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Robotic arm for underwater . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Service robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Development of HARM 15
3.1 Development of the arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Motor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 CAD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Motor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Communication architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Development of the Controller board . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Control board for the BLDC motor . . . . . . . . . . . . . . . . . . . . . 31

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



4 ROS Integration 35
4.1 Robot Operation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Computation graph level . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Unified Robot Description Format . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Coordinate Frames and Transformations . . . . . . . . . . . . . . . . . . 37

4.2 HARM integrated with ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 MoveIt! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 The move_group node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 RViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 RViz concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 RViz motion planing using MoveIt! . . . . . . . . . . . . . . . . . . . . . 41
4.4.3 RViz motion planning plugin . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.4 Software view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.1 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 HARM simulation with Gazebo . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Results 47

6 Conclusions 55
6.1 Future work and possible applications . . . . . . . . . . . . . . . . . . . . . . . 56

References 57

7 Anex 61

Side notes 65

ii



List of Figures

1.1 Current CAMBADA@Home robot. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Representation of the first layer on the CAD Model. . . . . . . . . . . . . . . . 3
1.3 Representation of the Top layer on the CAD Model. . . . . . . . . . . . . . . . 3

2.1 Example of some configurations where a) is a polar configurarion b) is a SCARA
configuration, c) represents an articulated configuration and d) represents a
cartesian configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Example of a robotic arm with a vacuum gripper. . . . . . . . . . . . . . . . . . 7
2.3 Example of a pneumatic gripper. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Example of a three-finger servo gripper. . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Example of an electromagnetic gripper used to lift ferromagnetic objects. . . . . 7
2.6 FinRay gripper in resting position with no force applied. . . . . . . . . . . . . . 8
2.7 FinRay gripper holding an egg. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Representation of the da Vinci Surgical System. . . . . . . . . . . . . . . . . . . 8
2.9 Experimental setup of the CManipulator system. . . . . . . . . . . . . . . . . . 9
2.10 Kinova JACO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11 Kinova JACO attached to a wheelchair. . . . . . . . . . . . . . . . . . . . . . . 11
2.12 Representation of AMIGO robot. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.13 Representation of the TIAGo robot. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.14 Representation of the PR2 robot. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Coordination system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Representation of the servo motor with its basic operation. . . . . . . . . . . . . 16
3.3 Representation of the servo as a pitch movement. . . . . . . . . . . . . . . . . . 16
3.4 Representation of two servo motors working as one for a pitch movement. . . . 16
3.5 Representation of two servo motors, one that performs a pitch movement at-

tached to one that rotates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 General representation of an anthropomorphic arm with 6 degrees of freedom. . 17
3.7 CAD model for the arm created with SolidWorks. . . . . . . . . . . . . . . . . . 18
3.8 Representation of Joint 1, 2 and 3 in the CAD model. . . . . . . . . . . . . . . 18
3.9 Representation of Joint 4 and 5 in the CAD model. . . . . . . . . . . . . . . . . 19
3.10 Representation of Joint 6 and Gripper in the CAD model. . . . . . . . . . . . . 19
3.11 Designed CAD parts to help preventing the horn of the motor to twist ( a) and

b). c) is the assembly of a) and b) with the motor. . . . . . . . . . . . . . . . . 19
3.12 Example of a hobby servo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Designed CAD parts to work with the gripper. . . . . . . . . . . . . . . . . . . 20

iii



3.14 CAD model of the designed mechanical structure used to connect the gearhead
shaft to the base of the Dynamixel servo, where a) is used to establish the
connection between the shaft and b) and b) is used to hold the Dynamixel
servo motors at joint 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.15 Representation of mechanical drawing to hold HARM at joint 2. . . . . . . . . 21
3.16 Mechanical part with the motors assembled. . . . . . . . . . . . . . . . . . . . 22
3.17 Joints and links of the robotic arm. . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.18 Representation of the BLDC motor. . . . . . . . . . . . . . . . . . . . . . . . . 23
3.19 Representation of the Planetary Gearhead. . . . . . . . . . . . . . . . . . . . . . 24
3.20 Actuator model which is incorporated in Dynamixel, image taken from. . . . . . 25
3.21 Chart of different Dynamixels servos, with stall torque in function of speed. . . 25
3.22 Anthropomorphic arm mounted vertically on plywood. . . . . . . . . . . . . . . 28
3.23 Representation of the big picture of the control architecture implemented. . . . 29
3.24 HARM node communication diagram. . . . . . . . . . . . . . . . . . . . . . . . 29
3.25 Communication done and pinage usage seen by micro controller. . . . . . . . . 33

4.1 Example of "Node A" publishing in "Topic" and "Node B" is subscribing from
"Topic". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Representation of nodes and topics publishing and subscribing between different
namespaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Representation of Topics and Nodes needed for a base communication with
HARM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 MoveIt! architecture diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 MoveIt! plugin for RViz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 MoveIt! plugin for RViz with Planning tab open. . . . . . . . . . . . . . . . . . 42
4.7 Image taken from RViz. In grey it is represented the state read from the physical

module and in orange the goal position. . . . . . . . . . . . . . . . . . . . . . . 42
4.8 HARM’s flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.9 HARM joint state publisher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 Published nodes and topics created by gazebo in order to replicate the real arm

topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Joint 2 moving from 0 degrees to -90 degrees, creating a downward movement
on the robotic arm ,with the respective force being applied. . . . . . . . . . . . 47

5.2 Joint 2 moving from -90 to 0 degrees, creating an upward movement of the
robotic arm, with the respective force being applied. . . . . . . . . . . . . . . . 48

5.3 joint 4 moving from -90 degrees to 90 degrees with the respective force being
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Arm joint 2 moving from 0 degrees to -90 degrees while holding a load. . . . . . 50
5.5 Arm joint 2 moving from -90 degrees to 0 degrees while holding a load. . . . . . 51
5.6 Joint 4 moving from -90 degrees to 90 with a load of 236 grams. . . . . . . . . . 52
5.7 Movement provided by the planner and the movement performed by HARM. . 53
5.8 Movement provided by the planner and the movement performed by HARM,

with repetition to guarantee repeatability. . . . . . . . . . . . . . . . . . . . . . 53

7.1 View of the PCB design in green the top layer and in red the bottom layer. . . 61
7.2 schematic for the digital and communication part. . . . . . . . . . . . . . . . . 62

iv



7.3 schematic for the power controller. . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4 Representation of the model from the URDF file with the use of the tool

urdf_to_graphiz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



vi



List of Tables

3.1 Motor BLDC maxon-EC-90 24V 90W general description. . . . . . . . . . . . . 23
3.2 Planetary Gearhead GP 52 series 223091. . . . . . . . . . . . . . . . . . . . . . 24
3.3 Servo Dynamixel General Description. . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Minimum torque required for each joint considering the maximum payload of

500 g plus the highest weight of the servo motor available (153g), times the
number of joints it is going to support. . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Stable fluid movements guaranteed according to ROBOTIS. . . . . . . . . . . . 27
3.6 PIC32MX795F512H Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Difference between controller A4910, A3930-1 and FCM8201. . . . . . . . . . . 32

vii



viii



Glossary

AMIGO Autonomous Mate for InteliGent Operations.
10, 11

CAD computer-aided design. 3, 11, 16, 17
CAMBADA Cooperative Autonomous Mobile roBots with

Advanced Distributed Architecture. 1, 2, 10,
15, 21, 27, 30, 35, 45, 56

DFKI DeutschesForschungszentrum für Künstliche
Intelligenz. 9

DOF Degrees of Freedom. 1, 2, 5, 12, 15

GUI Graphical User Interface. 41

HARM Humanoid Arm For Manoeuvring. iv, 4, 15,
16, 21, 28, 38, 43, 45, 46, 52

IFR International Federation of Robotics. 10
IRIS Intelligent Robotics and Intelligent Systems.

2, 10, 35

OSRF Open Source Robotics Foundation. 45

PERA Philips Experimental Robotic Arms. 11

ROS Robot Operating System. 1–4, 10–12, 35–37,
45, 46, 55, 56

SCARA Selective Compliant Articulated Robot for As-
sembly. 5

SRDF Semantic Robot Description Format. 39

TIAGo Take It And Go. 10, 12

URDF The Unified Robot Description Format. 37,
46

ix



x



Chapter 1

Introduction

Nowadays our households are equipped with machines that get smarter everyday, in the
sense that they make some of our daily tasks easier and even create new needs and habits. With
the increase of the capabilities in processing units and the decrease in power consumption, the
creation of mobile service robots can be facilitated due to their improved autonomy and their
complex systems, which allows them the ability to understand some of our requests.

A Service Robot is able to assist some of the human beings’ needs, therefore it should be
able to interact and communicate with humans (human-robot interaction), as well as with its
surrounding environment. This kind of robots are typically autonomous and are operated by
a built-in control system.

This dissertation will describe the work developed for the CAMBADA1@Home, focusing
mainly on the development of an anthropomorphic arm, which was required for the project
@Home. It will also take into consideration some of the previous work done by a previous
master student [1], who also dedicated some effort into the development of such a project.
It should also be mentioned that, in the global scope of these projects, human interaction,
computer vision as well as navigation and mapping for CAMBADA@Home have already been
developed. All of which have been integrated in the Robot Operating System (ROS)[2], an
Open source community that have been giving a boost into developing robots.

1.1 Motivation

This specific robot, CAMBADA@HOME, requires the manipulation of objects which in
the present state does not do so. In order to accomplish this objective, it was needed to develop
a robotic arm with a gripper to allow the agent to perform such task. Tasks that would involve
picking up objects, opening bottles, manipulating other kind of instruments’ interface, among
others. Making the focus of this project the development and implementation of two identical
anthropomorphic arms with a total of 6 Degrees of Freedom (DOF) plus the gripper to be
able to perform the required tasks proper of functional human limbs.

1CAMBADA is an acronym of Cooperative Autonomous Mobile roBots with Advanced Distributed Archi-
tecture
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1.2 Objectives

The purpose of this dissertation should be described as the understanding and the setting
up of the features of an anthropomorphic arm and its development, as well as the development
of a simulation environment in order to test it.

This work aims to create a usable arm with 6 DOF plus the gripper and the solution
providing the control and manipulation of the arm. The model and control of the arm within
ROS will also be developed for future merge within the rest of the already existing project.

1.3 CAMBADA@Home

The CAMBADA@Home was created in 2011 following a past experience from CAMBADA
robotic soccer team, which competes in the Middle Size League. CAMBADA@Home is aimed
to compete in the RoboCup@Home league, representing the University of Aveiro. It has
already participated in the RoboCup 2011, DutchOpen 2012 and reached the second stage
of the competition in RoboCup2012. The CAMBADA@Home platform, which can be seen
in Figure 1.1, was designed, developed and assembled in the IRIS (Intelligent Robotics and
Intelligent Systems) Laboratory. The platform consists of three layers.

Figure 1.1: Current CAMBADA@Home robot.
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The bottom layer consists of a stable four wheels configuration, by using fixed swedish
wheels positioned in a 45o angle compared to its normal configuration, which allows the robot
to have an omnidirectional drive, allowing it to move in every direction. This layer also
contains three 4 cells Lithium Polymer (Li-Po) batteries, a SICK LMS100 laser range finder
and a support for all the control hardware. This bottom layer consists on tree sub-layers,
whose top is used to carry a standard laptop. By using this approach, the robot’s center of
mass was lowered, which increases the stability of the agent. Figure 1.2 represents the CAD
model for this layer.

The second layer is represented as the torso of the robot, whose height is designed to be
variable between 95 cm and 140 cm. This layer also contains a speaker and a Voice Tracker
multi directional microphone array allowing Human-Robot Interaction by voice.

The top layer has the robot’s vision system. Currently the robot uses a single Microsoft
Kinect camera placed on top of the robot in a pand&tilt configuration, composed of two
Dynamixel servos (RX-28), which allows the Kinect to capture the surrounding environment.
Figure 1.3 represents the CAD model of the top layer where it is possible to see how the servo
motors and the Kinect are assembled.

Figure 1.2: Representation of the first
layer on the CAD Model.

Figure 1.3: Representation of the Top
layer on the CAD Model.

At software level, the Robotic Operating System (ROS) framework was adopted.

1.3.1 Robocup@Home

The Robocup@Home league [3] is aimed for the development of service and assertive robots
for future personal domestic applications. It evaluates the abilities and performance of the
agent in a realistic home environment, focused in Human-Robot-Interaction and cooperation,
navigation and mapping of the environments. Computer Vision and Object Recognition un-
der natural light conditions, object manipulation, adaptive behaviour, behaviour integration,
ambient intelligence, standardization and system integration, must be part of the robots’ skill
which aim to participate in the competition.

The competition consists of challenges which the robots have to meet. The criteria for
the test consists of: having a human machine interaction, be socially relevant, be application
oriented, easy to set up and low in cost, and finally, take a small amount of time when
performing the given tasks.

3



1.4 Dissertation Structure

Chapter 2: Concepts - This chapter describes some of the different classifications of
service robots, as well as the different types of grippers that are available in the market. Then
there will be a brief section to give some examples of robotic arms application in the medical
field which requires great precision and an underwater applications to show some versatility
of a robotic arm.

Since this project is dedicated to the development of a robotic arm aimed to be imple-
mented on a service robot, some examples are given, ranging from a robotic arm to the
integration of robotic arms in moving platforms and its capability for human interaction.

Chapter 3: HARM Development - This chapter presents the proposed solution, for
the robotic arm denominated by HARM (Humanoid Arm For Manoeuvring): the first section
describes how the arm was planned, taking into consideration some of the available motors in
the laboratory, as well as the required force and weight, in order to make the robotic arm as
light weighed and robust as possible.

The following section describes the used servos and why they were chosen, as well as their
communication protocol.

The third section follows up with the control architecture, by explaining the development
of the control board, the hardware and the communication system used. The final section will
describe the BLDC motor, how it was used, its requirements, as well as the development of
its control board.

Chapter 4: ROS Integration - This chapter describes the tools that were used to integrate
this project with ROS. It explains the provided tools in order to develop the software. It starts
with an overall description of ROS to understand how it works, then the use of the planner
MoveIt! which uses the inverted kinematic, and the use of Rviz so it is possible to preview the
movement before executing it. After that, the software implementation to provide an overall
view of the robot’s functionalities. Finally, Gazebo, a simulation for the physical model, will
be introduced.

Chapter 5: Validation - This chapter describes the tests performed with HARM in order
to validate the performance of the project and help to build a base line of the capabilities of
HARM.

Once the basic tests are done to evaluate the performance, the planner integrated within
this project will be used, in order to compare the outcome of what was expected, (the move-
ment that the planner wishes the HARM to perform), with the actual outcome of the physical
model, and so conclude if it performs as expected.

Chapter 6: Conclusion - In this chapter, the overall conclusion of the project is described.
It mentions some possible implementations where HARM can be used and also making a few
references in order to improve the work done.
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Chapter 2

Concepts

When one thinks about robotic arms it usually comes to mind something similar to a
human arm which is capable of operating and performing functions similar to human limbs.
This tells us that the arm possesses articulated joints and links that are in between these
joints, as well as an end effector, which can be represented by the gripper.

Nowadays, robotic arms are used in many fields such as, medicine, automotive assembly
lines, bomb defusal and in space programs. The type of robotic arm depends on the application
which is aimed at, therefore, the number of joints may vary, the payload that each one can
handle as well as the precision, control, feasibility and its robustness.

2.1 Types of robotic arms

There are many types of configurations of robotic arms. However, the most important ones
in the industry are: cartesian, Selective Compliant Articulated Robot for Assembly (SCARA),
cylindrical, delta, polar and vertically articulated.

Each of these types have a different joint configuration, as described below.

• Cartesian: these robotic arms have three linear joints that use the cartesian system.
They can also have an attached wrist to allow rotational movement.

• SCARA: is commonly used in assembly application, due to their stiffness and the two
parallel joints that provide compliance in one selected plane.

• Polar: in this configuration, the arm is connected to the base with a twisting joint.
With a combination of two rotary joints and one linear joint, the axes form a polar
coordinate system, creating a spherical-shaped work envelope. Some applications of this
type of arm can be for loading and unloading tasks.

• Articulated: this design features rotary joints in which the range of joint structure can
go from two to ten or more. The arm is connected to the base with a twisting joint.
Each link in the arm is connected by a rotary joint, each of these joints will provide
a new DOF. Industrial robots commonly have four or six axes. This configuration is
commonly used for spray painting, fettling, gas welding, etc.

Some examples of these configurations can be seen in Figure 2.1.

5



(a) [4] (b) [5]

(c) [6] (d) [7]

Figure 2.1: Example of some configurations where a) is a polar configurarion b) is a SCARA
configuration, c) represents an articulated configuration and d) represents a cartesian config-
uration.

For these types of robotic arms, the number of joints varies depending on their configura-
tion and system needs.

2.2 Types of grippers

As there is a wide number of joints available to a robotic arm, there are also a wide number
of type of grippers available. For example:

• Vacuum: This kind of gripper is frequently used for grasping non-ferrous objects. It uses
vacuum cups as the gripping device, it is also commonly known as suction cups. This
type of grippers will provide good handling if the objects are smooth, flat, and clean.
With this gripper there is only one surface for gripping the objects.

• Mechanical: This kind of gripper is used as an end effector in a robot for grasping
objects with mechanical fingers. Two fingers are enough for holding purposes, but more
than three can be also used depending on the application. The actuator system can be
either electrical, hydraulic or pneumatic, since it is able to produce power for the input
signal.

• Magnetic: Magnetic grippers are most commonly used in a robot as an end effector
for grasping ferrous materials, with the use of electromagnets or permanent magnets.
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This kind of grippers only require one surface to grasp the material, it does not require
different designs to handle different size materials and the material can have holes.

Figure 2.2: Example of a robotic arm with
a vacuum gripper.

Figure 2.3: Example of a pneumatic grip-
per.

Figure 2.4: Example of a three-finger servo
gripper.

Figure 2.5: Example of an electromagnetic
gripper used to lift ferromagnetic objects.

It is worth noting that mechanical grippers can have different kinds of fingers, which can
be seen in Figure 2.3 and 2.4.

Another example would be the Fin Ray from Festo [8]. It consists of two flexible bands,
which meet at the top featuring a triangular format. The bands are connected by ribs spaced
in regular intervals which make these fingers flexible and sturdy and allows them to adapt to
the objects. In Figure 2.6, it is possible to see these kinds of gripper when no force is being
applied to it and, in Figure 2.7, it is also possible to observe how it adapt themselves when
holding an egg.
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Figure 2.6: FinRay gripper in resting po-
sition with no force applied.

Figure 2.7: FinRay gripper holding an egg.

This was just an example of fingers which may be used in mechanical joints. While there
are many other kinds available, these in particular were the most suitable, regarding the
function which they are used for.

2.3 Application of robotic arms

As it was mentioned previously there are many areas where robotic arms can be applied,
namely, medicine, underwater exploration, space programs, among others.

2.3.1 Robotic arms on medical field

As an example in the medical field, it is worth mentioning the robot da Vinci Surgical
System[9] [10] , (Figure 2.8).

This kind of system needs to be stable and have high precision in order to perform the
smallest movements. The controller of the robot is able to see where each arm is looking at
due to a camera placed on each one. It is also possible to control each arm individually. Since
it requires a high precision on each of them, they can be used for holding objects to act as
scalpels, scissors, etc.

Figure 2.8: Representation of the da Vinci Surgical System.
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With the stable motion of the da Vinci Surgical System, it is possible to use it in situations
where the surgeon must look into a 2D video monitor, to observe an image of the target
anatomy and have the camera in the right position, while holding the surgical tools. While
most of these surgical interventions are done while the surgeon is standing, with the da Vinci
System, it is possible to do all this while the surgeon is seated in front of the console.

2.3.2 Robotic arm for underwater

When it comes to robots operating underwater, the main topics that one usually focuses
on are: developing a system that supports remote control, designing methods for autonomous
manipulation and mission planning of robot arms in underwater applications, image processing
and object recognition.

The CManipulator-Project[11] is a project focused on methods for visual detection of
objects underwater and for autonomous manipulator control. This system is planned for
underwater inspection and maintenance tasks which include autonomous picking, placing and
connecting certain objects (e.g. an underwater plug).

Figure 2.9 is an example of a test of the arm in an underwater tested at the DFKI
(Deutsches Forschungszentrum für Künstliche Intelligenz) robotics lab.

Figure 2.9: Experimental setup of the CManipulator system.

This setup is able to grasp a range of different objects up to 30 kg in water. The gripper
is designed to grasp objects that are cylindrical for underwater transport and objects with a
handle that enables them to be grasped by CManipulator.
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2.4 State of the art

There is a necessity of comparing the service robot, CAMBADA@HOME, to the ones
already existing in the market. This specific robot needs to be placed withing the exiting
classes and compare it with them.

2.4.1 Service robot

According to the International Federation of Robotics (IFR), a service robot can be clas-
sified in the following classes.

• service robot: service robot is a robot which performs useful tasks for humans or
equipment, excluding industrial automation application. Note: the classification of a
robot into industrial robot or service robot is done according to its intended application
[12].

• personal service robot: a personal service robot is a service robot used for a non-
commercial task, usually by disable people. For example, domestic servant robot, auto-
mated wheelchairs[12].

• professional service robot: a professional service robot is a service robot used for
a commercial task, usually operated by a properly trained operator, for example, a
cleaning robot for public places[12].

With this information, it is possible to say that CAMBADA@Home belongs to the category
of a personal service robot. For that reason, even though this project is of an academic studies
level, it is possible to mention some similar projects that follow in this category, starting with
Kinova JACO [13], a robotic arm with similar functionalities to the one covered in the main
topic of this dissertation. Other similar projects include robotic arms integrated in a moving
platform, like TIAGo[14], PR2 [15] and AMIGO [16], mainly because the main objective for
the development of the robotic arm in this dissertation is to incorporate it in the platform
@Home.

Kinova JACO

JACO[13] enables the user to interact with the environment. The arm moves smoothly
and silently with unlimited rotation on each axis. The axes are of aluminum compact actuator
discs and contain elements that are easily replaceable and maintained.

Its main structure is entirely made of carbon fibre, which makes it robust, durable and
light. The arm is mounted on a standard aluminum support structure that can be attached
to almost any surface, as long as it is stable and strong enough to handle its weight. The
gripper consists of 2 or 3 fingers which can be individually controlled, allowing it to hold an
egg, as well as a jar firmly. JACO can be controlled through software, some of which is being
developed in ROS, or with a controller Kinova’s 3-axis, and a 7-button joystick.

A representation of the JACO arm can be seen in Figure 2.10, as well as a representation
of the arm mounted on a wheel chair on Figure 2.11.

Some applications involving the JACO arm have been done in the IRIS lab some of which,
involve playing tick tack toe with the help of a Microsoft Kinect against a human player, and
picking an object and placing it on a desired location.
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Figure 2.10: Kinova JACO. Figure 2.11: Kinova JACO attached to a
wheelchair.

AMIGO

AMIGO[16] is an acronym for Autonomous Mate for InteliGent Operations. AMIGO is a
service and care taking robot developed by Eindhoven University of Technology. It is used as a
demonstrator in several projects and also competes in the RoboCup@Home league. The CAD
model of AMIGO can be seen in figure 2.12 it consists of a head with a laser range finder in
order to visualise the environment. Two Philips Experimental Robotic Arms (PERA) interact
with its surroundings, a torso containing a spindle which enables AMIGO to translate the
upper body in vertical direction and a base containing the batteries, electronics and four omni
wheels. It is also worth to mention that the software is developed using the ROS framework.

Figure 2.12: Representation of AMIGO robot.
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TIAGo robot

TIAGo (Take It And Go) robot[14], was developed by PAL Robotics Team. TIAGo is
a mobile research platform enabled for perception, manipulation and interaction tasks. The
robot comprises a sensory pan and tilt head, a lifting torso and arms. It was designed to
have a versatile hand for manipulation. TIAGo is an advanced robot to boost research areas
from low level control to high level applications and service robotics. It is fully compatible
with ROS and comes with multiple functionalities like, multi sensor navigation, collision free
motion planning, detection of people, faces and objects and speech recognition and synthesis.

Figure 2.13: Representation of the TIAGo robot.

PR2

PR2[15] is a personal service robot. It is a combination of mobility in order to navigate
in human environments as well as it is capable to grasp and manipulate objects. Its software
system development is written entirely in ROS, giving access to all of its capabilities available
via ROS interface. The PR2 has 4 DOF on the arm 3 on the wrist and 1 on the gripper
making a total of 8 DOF. It has a maximum payload of 1.8kg. For the sensors it includes a 5-
megapixel camera, a tilting laser range finder and an inertial measurement unit. Its structure
is composed of a pan and tilt head, a telescoping spine so it is capable of changing its total
height an omni directional base and two on-board servers.

PR2 software has been developed within ROS which provides a wide variety of libraries
that can be used for the vision, navigation, grasping, etc. It is also possible to test the robot
within Gazebo [17] in order to understand its behaviour and develop new applications.
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Figure 2.14: Representation of the PR2 robot.

2.4.2 Discussion

The project that is proposed for this dissertation, compared with the other robotic arms,
is aimed to be more affordable and lightweight in a way that anyone can build it at home and
assemble it in an appropriate platform. Even though this is most desired when compared with
other technology available in the market, it may have a reduced precision and lower maximum
payload when compared with JACO and the arms that are present in TIAGo and AMIGO.

13



14



Chapter 3

Development of HARM

HARM is an acronym for Humanoid Arm For Manoeuvring, that was developed with the
intention of implementing it on CAMBADA@Home. It would be simpler to just implement
an existent robotic arm on the platform, for example, JACO, this would bring up a number
of main issues: each JACO arm weights about 5.5 kg, which would change the center of mass
of the platform. Also, the arms are extremely expensive, increasing the funds of the project
CAMBADA@Home. For that reason, the focus of this dissertation was to develop a robotic
arm which fills in the basic requirements, and try to reduce its cost and its total weight, by
also reducing some performance or even precision.

The basic requirements for the robotic arm, developed in this project, consists on being
as lightweight as possible, so it does not affect the stability of the current platform, be able
to lift 500 grams when fully extended and have seven DOF.

3.1 Development of the arm

For a better understanding on how it was possible to connect each joint, so they would have
the desired performance and resemblance to a human arm, the characteristics of the motors
were taken into consideration. In order to classify the movement of each joint, in order to
define them as roll or pitch movement, it was used a coordination system as shown in Figure
3.1, where the x-axis is aligned with the motor shaft.

Figure 3.1: Coordination system [18].

3.1.1 Motor configuration

As mentioned previously, there was a need to understand how the motors could be as-
sembled together, before trying to create a basic design, so, this section started by explaining
most of the configurations studied with the Dynamixel servo motors.
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ROBOTIS [19], already provides some of the possible combinations that are possible to
use with Dynamixel servo motors. Here, it will only be discussed the ones that were used in
this project.

In figure 3.2, it is possible to see the motor whose function is to rotate over its own axis.
For a pitch movement it was used the configuration shown in Figure 3.3. It is also possible, to
assemble two motors together, Figure 3.4, to perform a pitch movement, improving the total
output force.

As it is shown in Figure 3.5, it is possible to use these configurations assembled together,
in a pitch and rotational movement. These configurations were the ones used in this work.

Figure 3.2: Representation of the servo motor
with its basic operation. Figure 3.3: Representation of the servo as a

pitch movement.

Figure 3.4: Representation of two servo mo-
tors working as one for a pitch movement.

Figure 3.5: Representation of two servo mo-
tors, one that performs a pitch movement at-
tached to one that rotates.

With these configurations, it is possible to build the CAD model and have a first look of the
HARM model. The following section, will explain in detail, the CAD model’s development,
along with a description of the parts that were needed, in order to establish a connection
between joints.

16



3.1.2 CAD model

To provide a general idea of the behaviour of each joint, as well as their location, it was
used a general representation of an anthropomorphic arm, Figure 3.6.

Figure 3.6: General representation of an anthropomorphic arm with 6 degrees of freedom [20].

With the basic aspect in mind and with the help of SolidWorks1, it was possible to create a
CAD model for the robotic arm, Figure 3.7. In this section, only the model will be discussed.

Within the CAD model, it was defined the terms short-link and a long-link. The term
short-link is used when two motors are assembled together, in a pitch and rotating movements,
as it is shown in Figure 3.5. While the term long-link is applied when it is used a carbon fibre
rod or a gearbox, serving the purpose of distancing the joints.

1http://www.solidworks.com/sw/183_ENU_HTML.htm
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Figure 3.7: CAD model for the arm created with SolidWorks.

In the following close up, Figures 3.8 ,3.9, 3.10, it is possible to have a better understanding
on how the motors were assembled.

Figure 3.8: Representation of Joint 1, 2
and 3 in the CAD model.

18



Figure 3.9: Representation of Joint 4 and
5 in the CAD model.

Figure 3.10: Representation of Joint 6 and
Gripper in the CAD model.

In the previous Figures 3.8, 3.9 and 3.10 ,it is possible to observe some of the parts that
were developed, where most of them have been used to perform the connection between the
servo motor, with the carbon fibre rod. This component can be seen in Figure 3.11a.

Since it was possible that the weight of the arm could cause the shaft, from joint 3 and 5,
to bend against its axis direction. The parts represented in Figure 3.11b, were designed and
placed in order to prevent possible malfunctions and make it sturdier.

In Figure 3.11c, it is possible to see how they were assembled with the servo motor.

(a) (b)

(c)

Figure 3.11: Designed CAD parts to help preventing the horn of the motor to twist ( a) and
b). c) is the assembly of a) and b) with the motor.
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In order to use the gripper shown in Figure 3.10, there was a necessity to adapt it, since
it had been designed to be used with a hobby servo, represented in Figure 3.12, instead of a
Dynamixel servo motor.

For that reason, the following parts, seen in Figures 3.13a and 3.13b, were designed. With
these two combined, it is possible to hold the servo in place. Then, to control the gripper
itself, an extension for the shaft was designed as shown in Figure 3.13c. In Figure 3.13d, it is
possible to see all the components assembled together to make the gripper operational.

Figure 3.12: Example of a hobby servo.

(a) (b)

(c)
(d) CAD model of the complete gripper as-
sembled.

Figure 3.13: Designed CAD parts to work with the gripper.
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The adapter shown in Figure 3.14 was created, to connect the gearbox with joint 2.

(a) (b)

Figure 3.14: CAD model of the designed mechanical structure used to connect the gearhead
shaft to the base of the Dynamixel servo, where a) is used to establish the connection between
the shaft and b) and b) is used to hold the Dynamixel servo motors at joint 2.

Although this connection is used in the CAD model, it was not used with the physical
model, since the hardware which provided the control for the BLDC motor was not available
at the time. To test the physical model, it was created the part that can be seen in Figure
3.15, making it possible to hold the HARM at joint 2 and attach it to a solid surface.

Figure 3.15: Representation of mechanical drawing to hold HARM at joint 2.

In Figure 3.16 it is possible to see this part, Figure 3.15, assembled with two servo motors
working together in a configuration of a pitch movement.

After the discussion of the reasons that led to the above-mentioned connections, it is now
possible to focus on the size of each link. Knowing that the CAMBADA@Home platform has
95 cm height, and the location of the shaft of the main motor is going to be located at 75
cm height, the total length of the robotic arm was planned to be 70 cm from joint 2 to the
gripper, preventing it from dragging.
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Figure 3.16: Mechanical part with the motors assembled.

As a reminder of each joint and link location, of the robotic arm Figure 3.17 was created,
were it was establish the length of each link. Where short-link 1 and 2 have 8 cm of length,
long-link 1 with 7.85 cm, long-link 2 have 20 cm and long-link 2 have 18 cm. The gripper has
a total length of 15 cm.

Figure 3.17: Joints and links of the robotic arm.

With the lengths chosen, it is possible to select the appropriate Dynamixel servo motors
according to their specification, which it will be discussed next. Also, it will be explained why
a reducer was planned to be used with the BLDC motor.

3.1.3 Motor Selection

In this project, two types of motors were used, the BLDC and the Dynamixel servo motors.
The BLDC was discussed firstly, followed by the Dynamixel servo motors.
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BLDC motor

In this work, it was planned to use a single BLDC motor, which would be applied at joint
1. However it was not used or tested, due to the control board not being ready at the time
being. The motor used was the EC-90 series 323772[21], from maxon motors, Figure 3.18,
whose characteristics can be seen in Table 3.1.

Figure 3.18: Representation of the BLDC motor [21].

Table 3.1: Motor BLDC maxon-EC-90 24V 90W general description.

EC-90
Operation Voltage 24V
Nominal Power 90W
Stall Torque 50.373 kg∗cm

Nominal current 6.06A
Nominal Torque (max. - continuous torque) 4.527 kg*cm

Max. efficiency 84%

Since there was no information available, about the starting torque required for the motor
to start moving, it was considered that it would take half of the stall torque value.

By applying the basic design of the robotic arm, it was possible to calculate how much
force it would have, with the use of the torque Equation 3.1, where τ represents the maximum
torque, F being the force and d the distance from the shaft. Since the maximum distance
from the shaft to the tip of the robotic arm is 70 cm, the motor provides a total force of 0.359
kg (considering no losses).

τ = F ∗ d (3.1)

Then there is still a need to consider the nominal torque, to have a continuous movement
without overheating the motor. In which the value for the maximum force at a distance of 70
cm would be of 64 grams. The obtained values are still far from the main objective of being
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able to handle 0.5 kg and there is still a need to consider the total weight of the robotic arm,
which is 1kg. Although the total weight will be driven along the arm, for our calculations it
will be considered that all the weight will be located at the end effector.

Taking this into consideration the motor needs to surpass a total force of 1.5 kg, at a
distance of 70 cm. For that reason the BLDC motor was already assembled with a planetary
Geardhead (maxon Planetary Gearhead GP 52 series 223091 [22]) seen in Figure 3.19, with
the specifications present in table 3.2.

Figure 3.19: Representation of the Planetary Gearhead [23].

Table 3.2: Planetary Gearhead GP 52 series 223091 [22].

Gearhead Data
Reduction 66:1

Absolute reduction 1183/18
Max. continuous torque 305.91kg*cm
Max. intermittent torque 458.87kg*cm

Max. transmittable power (continuous) 290W
Max. efficiency 75%

With the applied gearhead the output starting torque would be improved to 1034 kg*cm
(with the maximum efficiency already taken into consideration). Unfortunately, the value
would surpass the maximum intermittent torque, allowed by the gearhead, which would
shorten the life of the component, since it will be used for position control.

Then there is still a need to verify the conditions for the nominal torque, to guarantee that
the motor will not overheat, taking the maximum efficiency into consideration the nominal
torque obtained at the output of the geardhead would be of 188.2 kg*cm, fortunately this
value will not reduce the life time of the component, since the value obtained is within the
parameters.

With the use of the torques equation 3.1 and taking into consideration the total length
of 70 cm, it would give a total continuous force of 2.68 kg, at the end effector, meaning that
even though it was considered a weight of 1.5 kg, it is possible for the arm itself to have a
little more weight than what was considered, to maintain a continuous movement.

Even though the hall-sensors from the BLDC motor are used to drive its half bridge, it
would not be wise to use those them, to detect the position of the gearhead’s output shaft,
since it would be bound to errors, due to the energy transfer between the motor and the
gearhead, the reduction, among others.
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For the reasons mentioned, an absolute encoder AEAT-6012 [24] and a magnetic encoder
with 12-bit resolution (ideal for angular detection within 360o) were attached to the output
shaft of the gearhead.

For the remaider of the joints only Dynamixel servo motors were used. Since ROBOTIS
[19] has a wide variety of Dynamixel servo motors, which can be used in different combinations,
the next section will be devoted them. It will be also explained the chosen motors for each
joint.

Dynamixel servos

The Dynamixel servo motor, is an actuator system developed for connecting joints on
a robot or in a mechanical structure. They are designed to be modular and daisy chained
(since they have a simple connection structure), in order to obtain fluid movements on most
mechanical designs. The Dynamixel is a model actuator, which incorporates most of the
functions that are required on the robot joints, as it can be seen in Figure 3.20.

Figure 3.20: Actuator model which is incorporated in Dynamixel, image taken from [19].

The control network is able to access the actuator information, so it can be read and written
through a data packet stream. The Dynamixel servo motors have an unique ID between them,
and it is referred in the data packet, allowing to communicate with multiple servos at once.
Depending on the model used, the physical network can be TTL or RS 485.

In Figure 3.21, it is possible to observe some of the Dynamixel servo motors available in
the market.

Figure 3.21: Chart of different Dynamixels servos, with stall torque as a function of speed
[19].
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In analysis of the previous Figure, it is possible to have a basic idea of each servo motors
stall torque as a function of their speed. By only taking into consideration the stall torque, it
is possible to have an idea of which servo motor can be used, at each joint.

Selection according to the specifications

When choosing the Dynamixel servo motors, there was a trade-off between the maximum
torque as well as their weight. By analyzing the available motors in the laboratory, it was
possible to choose those who have the necessary requirements, Table 3.3.

Table 3.3: Servo Dynamixel General Description.

Servo MX-106R RX-64R RX-28R
Operation Voltage (V) 14.8 12 11.1 18 14.8 16 12
Stall Torque (kg*cm) 102 85.6 81.5 64 53 37.7 28.3

Weight (grams) 153 125 72
Operating Angle 360◦ or Continuous Turn 300◦ or Continuous Turn

Protocol RS 485 asynchronous Serial
Dual Joint* Yes No
Control PID Slope

* Dual joint is a master-slave configuration between two motors, with the use of a syn-
chronisation cable, allowing 2 motors to work simultaneously and allowing for certain
configurations to double the output torque.

During the prototype phase, it was used a voltage of 14.8 V for all Dynamixels, since all
the servos mentioned, in table 3.3, can operate at that voltage. This would avoid the use
of DC/DC converters, which require extra hardware during the prototyping phase. For this
reason, the RX series will not be able to work at full capacity. It is also worth to mention,
that the communication protocol used by these motors, is the RS 485.

By taking into consideration their stall torque, as well as the location of each joint, Table
3.4 was created. In this Table it was taken into consideration, the maximum distance (dmax)
that each motor would have to handle and it was considered that all the weight is located at
the end effector. The total weight that it is going to be considered is the weight of the motors,
as well as the maximum payload of 500 g.

Table 3.4: Minimum torque required for each joint considering the maximum payload of 500
g plus the highest weight of the servo motor available (153g), times the number of joints it is

going to support.

Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
dmax (cm) 65 38 38 11 11

Minimum torque (kg*cm) 71,724 36,442 30,628 7,183 5.5

It is to note, that the typical stall torque only provides an estimate for the maximum
payload, the minimum load torque required to stall a spinning motor. The minimum load
torque required to prevent a motor from starting is expected to be lower, due to the inertia
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of the system. ROBOTIS advise to use 1/5 or less of the stall torque in order to guarantee
stable motions[19].

Table 3.5 was created to have an idea of the torque of each motor, in order to maintain
stable fluid motions.

Table 3.5: Stable fluid movements guaranteed according to ROBOTIS.

MX-106R RX-64R RX-28
Torque (kg*cm) 20.4 12.8 7.54

Table 3.5 establishes the choice’s for the several joints. Joint 2, to use two servos MX-
106R, with a dual joint configuration. Joint 3 and 4 used a MX-106R. Joint 5 and 6 it was
used a RX-64R. The gripper, a single RX-28 servo.

Assuming that each motor is working at full capacity, the maximum payload that each one
can handle, with a stable and fluid motion at the end effector will be: joint 2 - 0.627 kg, joint
3 and 4 - 0.536 kg, joint 5 and 6 - 1.09 kg. These values were obtained using the Equation
3.1, the information in Table 3.5 and the distance present at Table 3.4.

Even with this selection, it is not guaranteed that the arm is going to have a stable fluid
motion when dealing with 500 grams, since there is still a need of handling its own weight. In
order to improve the movement in joint 3 and 4, it could be used a dual joint configuration.
This would increase the weight of the arm and at the same time, degrad the behaviour of joint
2. For those reasons it was chosen to use the selection of motors already establish.

With the motors selected the physical model was assembled, with the parts that have
been designed in this work, section 3.1.2, the selected motors, as well as the parts provided by
ROBOTIS. Figure 3.22 is an actual picture of the physical model, and as previously mentioned,
the arm was assembled without the BLDC motor and it was only used the Dynamixel servo
motors. For safety reasons, the servo motors were configured to have their limits at +90 and
-90 degrees. The origin position of the arm (when they read 0 degrees) is the same as it is
represented in Figure 3.22.

This concludes the selection of motors, which were used in the robotic arm. With the known
communication protocols required for each motor, it is now possible to start the development
of the communication board and its implementation.

The next section will describe the communication protocol used in this project, the RS
485 which is needed for the Dynamixel servo motors, the CAN protocol, which will be needed
in order to integrate this project with the current CAMBADA@Home platform and it will
also be discussed the selection of the controller used for the BLDC motor.

3.2 Communication architecture

In order to propose a communication architecture, there was a need to understand the cur-
rent architecture implemented on the CAMBADA@Home, so it would be possible to integrate
this work with the existing one.

The current architecture possesses a CAN network, in which it is already implemented
the motion wheels with odometry and pan&tilt nodes. The CAN network is responsible to
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Figure 3.22: Anthropomorphic arm mounted vertically on plywood.

act as the nervous system of the robot, in the sense that each node can control a different
low-level sensing and actuation system, where the communication with the processing unit is
made through a CAN bus.

For those reasons the HARM node will need to be integrated in the same CAN network.
In figure 3.23, it is possible to view the CAN network for the @Home platform. The HARM
node needs to be able to interact with different devices, Dynamixel servo motors, BLDC motor,
encoder, have a debugging feature and all of the communication protocols required. In Figure
3.24 it is possible to see the representation of the HARM node.
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Figure 3.23: Representation of the big picture of the control architecture implemented.

Figure 3.24: HARM node communication diagram.
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3.2.1 Development of the Controller board

A previous project[1] has already shown some work when it comes to the development
of the communication board. After an attentive analysis of the work, it was clear that the
communication part with the servo motors was possible to reuse, but the part that was able to
control the BLDC motor had to be remade, due to the fact that the controller used, FCM8201
[25], has since become obsolete.

As is was mentioned in chapter 1.3, the power supply is composed of three four cells LiPo
batteries which supply all the logic and power devices on the CAMBADA@Home platform.
When a battery is fully charged it supplies 16.8 V, more than enough to supply all the logical
circuits. For those reasons the CAMBADA@Home platform supplies 7.5 V for all the logical
signals, by using a step-down DC to DC converter. For the HARM control board, it is
required to have a supply voltage of 5 V and 3.3 V, this voltages can be obtained with two
linear regulators, KF50B [26] and MCP1703-330 [27] respectively.

In order to supply the motors of the platform, two batteries in series were used. By doing
so, a voltage of of 30 V is made available to them. The BLDC motor from the robotic arm as
well as the base motors can work directly with 30 V. For the Dynamixels servo motors it is
required to use voltage regulators to obtain 18 V, to be used with the RX series and 14.8 V
for the MX series.

The actuators in this project are all rotational ones, where the Dynamixel servo motors
have an inner control which enables an easy way to interact with them, in which they provide
access to the position, velocity, torque, among others.

For the BLDC motor, there was a need to find a controller for it, in which the controller.
The controller needs be able to drive the half bridge, according to our requirements, as well
as being able to detect errors, such as low voltage, over current, among others. It was also
used an encoder to detect the position of the gearhead’s output shaft. The development of
the controller for this motor will be later discussed in section 3.2.2.

The following section, will reintroduce the elements that have been previously selected for
communicating with the servo motors, as well as the chosen µC, that will deal with the
communication (CAN, RS 485, TTL, etc.), actuators and sensors.

Previous work

This section, will start by explaining the chosen components that have been selected in a
previous dissertation [1]. Since these components were still available on the market and still
fulfills the requirements, that were necessary for the implementation of the communication
protocol needed for the system and the Dynamixel servo motors. The µC used was the
PIC32MX795F512H [28], whose description can be seen in table 3.6.

This µC provides all the I/O and PWM pins, as well as UART, SPI, CAN, I2C commu-
nication models needed for this project. The UART protocol helps with the implementation
of TTL and RS-485 protocol, which are required to communicate with the Dynamixel servo
motors, that either use TTL or RS-485 protocol depending on the series.
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Table 3.6: PIC32MX795F512H Features.

Microchip PIC32MX795F512H
Recommended Voltage 3.3 V
Maximum Frequency 80 MHz

Flash Memory 512 KB
RAM 128 KB

Timers 16-bit 5
Timers 32-bit 2

UART 6
SPI 3
I2C 4

CAN models 2

The RS-485 protocol is a half-duplex asynchronous serial communication protocol. It uses
a UART of the µC to generate data with 8 data bits, 1 stop bit and no parity. In order to
implement this physical protocol, it is necessary to add an extra component, the transceiver
MAX3362 [29]. This device is composed by a differential transceiver, that consists on a line
driver and receiver, which allows to select the direction of the data flow. Here the µC acts as
a master and the Dynamixel actuators as slaves.

The TTL protocol, a half-duplex asynchronous serial communication protocol, it uses a
UART of the µC to generate data with 8 data bits and 1 stop bit. The protocol does not
allow to transmit and receive data at the same time. Therefore, one device is transmitting
while the other ones needs to be listening. In order to implement this protocol in this project
it was used an internal UART of the µC and a quad buffer MC74LCX125 [30] to control the
direction of the data flow.

For the CAN protocol it is used a transceiver, MAX3051 [31], responsible for the estab-
lishment of the communication between the CAN controller and the CAN bus lines.

This concludes the overview communication system which was possible to reuse. The next
section will explain how the control board for the BLDC motor was developed.

3.2.2 Control board for the BLDC motor

The controller that was previously chosen, in the last dissertation [1] was the FCM8201
3.7, but since then it became obsolete. With some research of the available controllers in
the market, there were three that satisfied the requirements. One of them can be provided
by maxon motors, but the price for this controller [32] was too high when compared with
the other ones available, A4910 [33] and A3931 [34]. On Table 3.7 it is possible to see the
general description of these controllers. In this table it is also possible to see the FCM8201
[25] description.
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Table 3.7: Difference between controller A4910, A3930-1 and FCM8201.

A4910 A3930-1 FCM8201
communication Serial Parallel SPI

Function Controller - Commutation, Direction Management
Output Configuration Pre-Driver - Half Bridge (3)

Input Logic inverted direct direct
Read Hall Sensors No Yes Yes

Integrated charge pumps Yes Yes No

The controller A3931 was chosen over the A4910, for being able to read the hall sensors
directly. While the A4910 required that the µC processed the information gathered from the
hall sensors and then communicate with the controller, to be able to drive the half-bridge.

The controller A3931, has charge pumps incorporated, avoiding any extra hardware to
drive the mosfets that compose the half-bridge. This controller works by providing a logical
input signal for the direction, break, reset and a PWM for control. The controller also provides
two fault flags, (FF1 and FF2, logical output signals). These flags are used to detect possible
errors, for example logical fault, undervoltage, overtemperature, among others. All logical
signals are connected to the µC via optocouplers.

3.3 Summary

This chapter starts with the introduction on the composition that the robotic arm should
have. Afterwards it explains how it is possible to combine the Dynamixel servo motors to-
gether.

It was also mentioned the CAD model and how it was created, by explaining some of the
components that were required, to perform some connections between joints. After presenting
the final design, it was discussed the selection of the Dynamixel servo motors, based on
the requirements which were needed at each joint. In the end, it is possible to see how the
communication board was created and developed, in order to communicate with the Dynamixel
servo motors using the RS-485 protocol, as well as the controller chosen in order to drive the
BLDC motor.

In Figure 3.25 is the representation of the overall communication board. Here it is possible
to see the connections used, as well as their names.

In the Anex it is possible to see the schematic of the developed board in page 62 and 63.
In page 61 of the Anex it is represented the CAD view of the PCB.
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Figure 3.25: Communication done and pinage usage seen by micro controller.

33



34



Chapter 4

ROS Integration

To develop an interface between the user and the robotic arm, two large software applica-
tions were used. Those being the following: MoveIt! [35] and GAZEBO [17]. It was also used
the Robot Operation System (ROS) [2] framework. These applications and framework will be
discussed in detail along this chapter.

4.1 Robot Operation System

ROS is a flexible framework for writing robot software. It has a collection of tools like
live plotting a 3D visualisation and processing the sensor data. There is also a collection of
libraries that aim to simplify the task of creating complex and robust robot behaviour across
a wide variety of robotic platforms.

This framework is completely free and has already been used in the IRIS lab for projects
like ROTA and CAMBADA@Home. For the CAMBADA@Home project, it has already been
developed, within ROS, the computer vision, navigation and mapping . For these reasons, it
would be wise to develop the application, which is going to be used for this project, in ROS,
so it would allow a possible merge with the existing software.

In order to develop the software, there was a need to understand how ROS works.

4.1.1 Computation graph level

ROS computational graph level is based on a peer to peer network of ROS processes, in
which the basic elements that it uses are: nodes, messages, topics, services, master, namespace.

• Nodes: Nodes are processes which perform computation. Each ROS node is written
with ROS client libraries such as roscpp and rospy. By using the client libraries API, it
is possible to implement different types of communication methods [36].

A robot controller can have multiple nodes to perform different kinds of tasks, for ex-
ample controlling motors, processing image from the kinect etc. It is also possible to use
multiple nodes, in order to build multiple but simple processes, instead of only using one
to process all the information. This would make it easier to understand their behaviour
and isolate possible errors.

Nodes are represented as an ellipse with its given name inside it, as it is represented in
Figure 4.1.
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Figure 4.1: Example of "Node A" publishing in "Topic" and "Node B" is subscribing from
"Topic".

• Messages: Nodes communicate with each other with the use of messages, a simple data
structure known to both nodes. These messages can have various types like integer,
floating point, boolean, among others, which are supported by ROS messages. It is also
possible to build different types of message structures using different combinations of
standard types [36].

• Topics: Each message in ROS is transported using named buses called topics. When
a node sends a message through a topic, is publishing a topic. When a node receives a
message through a topic, is subscribing to a topic. The publishing node and subscribing
node are not aware of each other’s existence. It is also possible to subscribe a node into
a topic that might not have any publisher. Each topic has a unique name, and any node
can access this topic and send data through it, if it possesses the right message type [36].

Figure 4.1 represents two nodes and one topic, Node A is publishing into Topic and
Node B is subscribing from Topic

• Services: Services are a well defined pair of message structures, containing a request
and a reply. When sending a message, one expects a confirmation of its acceptance.
[36].

• Master: The ROSMaster provides the name registration and lookup for all ROS services.
Without it nodes would not be able to find each other or exchange messages or even
invoking services [36].

• Namespace: A namespace is used to organise topics as well as nodes which belong to
a structure. This process establishes the difference between nodes and services which
might share a similar name, as the example bellow represents
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Figure 4.2: Representation of nodes and topics publishing and subscribing between different
namespaces.

This is the basic communication graph level, which is required to understand in order to
develop the software for this project.

4.1.2 Unified Robot Description Format

The Unified Robot Description Format (URDF) is an XML dialect used in ROS, which
describe the model of a robot. As an example it is used to define the visual model representing
the robot in Gazebo[17]. To apply it on Gazebo it is possible to join specific elements to the
simulation environment with the use of an extension. The URDF lets the user describe the
physical structure of the robot, and correlate it with the model collisions and define some of
its physical properties, like the friction coefficient between links, the dynamics of the joints,
etc. Even though it is possible to build a model of the robot, it is not possible to add sensors
to it and some relevant physical components like kinetic friction and static friction. In order
to do so, it is needed to add the Gazebo extension to have access to those elements.

In anex 7.4 it is possible to see the structure of the model used in this work.

4.1.3 Coordinate Frames and Transformations

Normally robotic systems need to track spatial relationships for a wide variety of reasons:
between a moving part of the robot given a fixed frame for reference localization, between
various sensors and manipulator frames, or for simple pick and place objects for control pur-
poses.

To simplify the treatment of spatial frames ROS provides a transformation system/package
called tf. The tf package keeps track of all the transformations and by doing so it is able to
construct a dynamic transformation tree, which correlates all the frames of the system. As
information streams in form of subsystems of the robot, (this includes joint encoders, local-
ization algorithms, etc), the tf package produces streams of transformation between nodes on
the tree, constructs a path between the desired nodes and performs the necessary calculations.
An example that can be used thanks to the tf package is the possibility to perform forward
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kinematic and know the location of end effector of the robot by knowing the relative movement
at each joint and the dimension of each link.

4.2 HARM integrated with ROS

Figure 4.3 represents the topics and nodes used in this work, in order to communicate with
the robotic arm. These nodes and topics are the communication that the anthropomorphic
arm creates when launched.

Figure 4.3: Representation of Topics and Nodes needed for a base communication with HARM.

Each Topic that is present in the namespace "cambada" contains the following information:

• joint_state: Contains the information of the current position of each joint. The mes-
sage structure of this topic is the following:

– string[] name: Name of each joint available
– float64[] position: Current angle read by each joint
– float64[] velocity: Current angular speed of each joint
– float64[] effort: Current effort of each joint

• joint_control: This topic exists for the debugging mode to control each joint individ-
ually, to verify if everything is in order and if the angle we sent corresponds to the actual
angle in the arm, this topic contains the following information:

– string[] name: Name of each joint to be controlled
– float64[] position: Goal angle for each joint
– float64[] velocity: Angular speed that each joint will use to reach their goal

position

• action_topics: This topic contains all the information of the trajectory of each joint,
as well as their velocity and accelerations. It also contains feedback from the hardware
interface. The action_topic will be used by the planner which will be described on
section 4.3. The action_topic contains a series of subtopics such as, feedback, goal,
result, status and cancel. Among them it will be only focused the goal subtopic, since
it is the one that contains the information provided by the planner which contain the
trajectory to be performed. The message structure of this topic contains the following
information:
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– joint_names[]: contains the name of each joint in an array.

– JointTrajectoryPoint[] points: Array that contains the information of all the
points calculated for the whole trajectory.

float64[] positions: the angular position that each joint should be at a given
time

float64[] velocities: angular speed that should be applied at each joint
float64[] accelerations: accelerations that each joint should have
float64[] effort: the possible effort present.
duration time_from_start: time that occurred since the movement has started

The node hardware_interface is responsible for processing all the information that needs
to be published and subscribed from the namespace cambada. The hardware_interface is
responsible to communicate with HARM, so it can provide the information from the motor
controller and publish it in the correct topic, as well as subscribing from the correct topic and
send the commands to the motors.

4.3 MoveIt!

MoveIt! provides the capability which allows it to work in a human presence environment,
since the robots needs to avoid the collision with humans, as well with other obstacles. Since
MoveIt! [35], is capable of performing such tasks and has been integrated with ROS, it allows
the robots to have a representation of the environment around them, using data fused from a
three-dimensional and other types of sensors and is capable of generating motion plans. For
these reasons it was chosen to use MoveIt! as the planner for this dissertation.

In order to fully understand how MoveIt! works, a representation of its high level system
communication can be seen in Figure 4.4. Here it can be seen the communications provided
by MoveIt (represented as the move_group), this node serves as an integrator that pulls all
the components together to provide the actions and services present in ROS, allowing the user
to operate with it.

The "move_group" communicates with the robot through ROS topics and actions. In this
way it is possible to get the current state information from the encoders of each joint, as well
as communicating with the controller of the robot.

4.3.1 The move_group node

The "move_group" node is able to integrate various components of the robot, working as
the heart of MoveIt!. From the architecture present in Figure 4.4, the "move_group" gathers
the information from the "Robot Sensors" and "Robot State Publisher". It collects the robot
kinematic data, such as the URDF and the configurations from the parameter server. A
Semantic Robot Description Format (SRDF) file, and the configurations files are generated
once the MoveIt! package of the robot is created. The file contains the information about
the joint limits, maximum velocity and acceleration, which link represents the end effector,
etc. Once MoveIt! is able to collect all the information about the robot, it is possible to start
commanding it from the user interface.
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Figure 4.4: MoveIt! architecture diagram [37].

4.3.2 Motion planning

The motion planning plugin interface allows MoveIt! to communicate with different motion
planners’ libraries, which allow the planning of a trajectory and the avoidance of obstacles. In
a typical application, regarding the topic of this project, it would be provided a new location
for the end effector. One can also attach an object to the end effector, to perform a pick
and place action, allowing the planner to consider the motion of that object, while planning
trajectories.

The motion planning result will generate a desired trajectory according to the planning
request. This will lead the robot to the desired location, by providing the trajectory which it
should take at each moment, as well as its velocities and acceleration.

With the use of this tool and the current arm model, created with the CAD software , that
had been previously used, the model was load and it was possible to start planning movements
by providing the right Cartesian coordinates and orientation of the end effector.

When a valid goal position is provided for the end effector to reach, MoveIt! will start
planing a possible trajectory.

MoveIt! calculates multiple trajectories, but it will only provide one of them. The provided
trajectory might not be the best one when considering the work done by each joint, since the
current planner is optimised to take the shortest trajectory. Once a trajectory is available it
will start the movement.

Since providing a valid goal position by hand has proven to be somewhat difficult a visu-
alizer (Rviz) was used, this lets the user to choose the target location and it also provides a
visualisation of the trajectory before executing it.
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MoveIt! can be configured by running the command "roslaunch moveit_setup_assistant
setup_assistant.launch". With the use of this tool, it is possible to properly configure the
robot, as long as the URDF file is provided.

4.4 RViz

This section will start by describing RViz, and how it was used with MoveIt!

4.4.1 RViz concept

RViz is a tool for visualisation of sensor data that can be extended with plugins. With
this tool it is possible to visualise the robot and its surrounding environment and can also be
adapted with different configuration files.

RViz comes with a Graphical User Interface (GUI) that provides more than just pure data
visualisation. This offers ways for creating maps, defining navigation points and the capability
for monitoring the navigation, also enabling the user to test objects for objects recognition
and to monitor and define commands for human-robot interaction. It is also possible to have
basic state behaviour and task execution that can be defined in the GUI.

4.4.2 RViz motion planing using MoveIt!

MoveIt! provides a plugin for RViz that allows to create new planning scenes in the robot
workspace, create motion generation plans, add new objects and visualize the planning result.
It also allows direct interaction with the visualized robot.

4.4.3 RViz motion planning plugin

The plugin provided by MoveIt! which works with RViz, Figure 4.5 and 4.6. In which
they provide several tabs like, Planning, Manipulation, among others. In the Context tab it is
possible to change the Planning Library that is currently in use. The Planning tab is used to
define the starting and goal state, plan the trajectory and execute it, as it is shown in Figure
4.6. Under the Query panel it is located the Start State and Goal state of the robot, and with
Plan button located under Commands. By which the planned trajectory from the Start state
to the Goal state and its executions can be foreseen.

It is also possible to set the goal position of the end effector of the HARM, with the use
of an interactive marker attached on the gripper. In Figure 4.7 it is possible to see a target
location for the HARM represented in orange, the marker in blue and in grey is the current
state of the HARM.
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Figure 4.5: MoveIt! plugin for RViz.
Figure 4.6: MoveIt! plugin for RViz with
Planning tab open.

Figure 4.7: Image taken from RViz. In grey it is represented the state read from the physical
module and in orange the goal position.
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4.4.4 Software view

This section will be dedicated to an overview of the software implementation. It will start
with an overview of the software that is implemented for the HARM with MoveIt! and then
how to test each joint individually.

Figure 4.8 represents the HARM flow diagram. Once the process starts the HARM will move
automatically to its starting state (where all joints read 0 degrees) and maintain that position,
then it will check if a new position is provided. This information can be provided with simple
communication with MoveIt! where it is possible to specify the cartesian coordinates and the
yaw, pitch, and roll rotations for the end effector, or as previously mentioned, or the plugin
for RViz could be used to set the target location. Then the process will verify if the position
is valid. If the position is valid it will start executing the planned trajectory, if the provided
coordinates are no valid it will report an error while maintaining the current position.

The HARM had to be tested to ensure the movements of each joint individually. Even
though the project at the moment has a fixed velocity, when in debug mod, for every movement
it is recommended to perform a few tests first, in order to see the motors behaviour. Figure
4.9 represents the joint state publisher used to test each joint. This tool refers to each HARM
joint as cambada_joint and the number correspond to the actual joint number of the HARM.
The interface lets the user to move the joints freely from -90 to 90 degrees. It is also possible
to press the Randomize button to go to a random position, or just place the HARM in the
original position with the Center button and it will go to the center/origin state. AS a side
note when using this tool, the movement is automatically executed.
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Figure 4.8: HARM’s flow diagram. Figure 4.9: HARM joint state publisher.

4.5 Simulation

The HARM structure underwent through a necessary simulation environment.
The simulation is a technique used to test the dynamics of a system. The simulation can

have a wide range of objectives, in which one of those goals can be to test the behaviour of
the model within the simulation that will be as similar as possible to the performance of the
physical model.

Simulators help to develop virtual models of physical systems and its surrounding environ-
ment, which allows to perform virtual actions that correspond to the real ones. This allows
to test ideas, and test the software without harming the hardware, causing major cost in case
of accident.

Since the physical model has already been assembled it was possible to compare both
performances, the simulation and the physical model and verify if the virtual model actions,
correspond to the real ones and if there is a discrepancy in the results. It is possible to tune the
parameters of the virtual model to make it more accurate. Even though these parameters can
be tuned by performing various tests, it is not possible to predict the material wear, battery
level, etc, meaning that the parameters might have to change over time.
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In this dissertation the choice for the simulator was based on some previous work that has
been done for the CAMBADA@Home platform, and since the software has been developed
for ROS, the simulator chosen was Gazebo.

4.5.1 Gazebo

Gazebo is a multi robot 3D open source simulator developed in C++. The Open Source
Robotics Foundation (OSRF) is the current responsible for keeping the development of Gazebo.
That lets us model the systems with multiple sensors, actuators and objects.

Gazebo provides an API inside the simulation, that allows to access the actuators and
data about the world through the libraries provided by the community. Since all objects have
physics associated to them apart from the light, it is possible to obtain a real behaviour from
the system.

Gazebo provides some simulation models of popular robots, sensors, and a variety of 3D
objects, making it easier to use these models directly without having to create them.

Gazebo interface is connected with ROS, in order to control the robot, which allows the
controller developed in ROS to work exactly in the same way with the simulation running in
Gazebo and in the actual system.

4.5.2 HARM simulation with Gazebo

When using Gazebo there is a need to use the exact same topics and nodes that the
physical model uses. This made it possible to have the same controller that was developed for
HARM, work with both models, physical and virtual, in the exact same way.

In the representation on Figure 4.10 it is possible to verify that the simulation also uses
the same topics as our physical arm, guaranteeing similar information and behaviour results.
The planner used would not distinguish a simulation from a real environment.

Figure 4.10: Published nodes and topics created by gazebo in order to replicate the real arm
topics.
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Even though the simulation (running in Gazebo) has created more nodes then HARM, the
main topics associated to it are the same as well as the communication between them, which
makes it possible to run the same program with both. The extra topics that are present in
the gazebo namespace are the resources that it needs to properly simulate the robot and its
surrounding environment.

It is to note that the current simulation still has no noise associated to it, and that
the values for the friction coefficients and components mass still need to be correctly tuned,
meaning that its movements will be exactly as the planner provided. This should not invalidate
the simulation, since it still represents the behaviour that the physical model would take,
making it still valid to use the simulation first to test new algorithms, as well as to introduce
it to new users, etc and then proceeding to the physical one.

4.6 Summary

This chapter focus on understanding the framework used to control the HARM. Starting
with the introduction of the framework, how it works, its computation graph level, URDF and
what it does, as well as the coordinate frames and transformations, it also explains how the
HARM interacts with ROS and the messages required to establish a proper communication.
The needs to have a planner, for that the MoveIt! was used, by command or even with the
interaction with RViz.

Then a presentation of the software implemented within ROS will be explained. The
chapter ends with the simulation environment.
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Chapter 5

Results

To properly test the performance of the robotic arm, it was taken into consideration all
the worst case scenarios. The first couple of tests were performed without any load, to see how
the robotic arm would handle with its own weight. The first test consists on only using joint
2 and with the arm fully extended, since it would create a downward movement and a upward
movement of the robotic arm. These tests can be seen in Figure 5.1 and 5.2 respectively.

Figure 5.1: Joint 2 moving from 0 degrees to -90 degrees, creating a downward movement on
the robotic arm ,with the respective force being applied.
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Figure 5.2: Joint 2 moving from -90 to 0 degrees, creating an upward movement of the robotic
arm, with the respective force being applied.

In the test shown in Figure 5.1, it is possible to observe that the force that the motor is
applying floats during its movement. The starting force can be explained due the starting
movement, then the force required to be made starts to decrease. Then it just needs to adjust
the force applied, to guarantee that it flows at a constant velocity. Once the robotic arm
reaches the -45o mark (at sample 7), the motor increases the force applied, due to the gravity
starting to have more influence on the arm.

Even though the movement are linear on both tests, the second test where the arm is
moving upwards uses more force at the beginning of the movement. Such is expected since it
needs to counter the force of gravity.

Since joint 3 and 4 shared the same type of motor and the distance from their axis to the
end effector are similar, only the test performed with joint 4 will be shown. The test can be
seen in Figure 5.3, where the motor is performing a rotation from -90 to 90 degrees and it is
also possible to see the force that it applies at each moment. In this test the position of joint
2 was left at 0 degrees.
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Figure 5.3: joint 4 moving from -90 degrees to 90 degrees with the respective force being
applied.

In this movement it is possible to see some acceleration at the beginning of the movement,
as the force required increases. Then when the velocity of the movement is constant, the force
required starts to decrease. This peak in the force can be due to the static friction being
higher than the dynamic friction, another reason could be that the movement started against
the force of gravity.

Once the movements of the robotic arm were stable and fluid, a higher load of 263 grams
was put to the test. Since the movements of the robotic arm were stable and fluid, with no
load attached to the end effector, it was performed the same tests as before, this time it will
used a load of 263 grams at the end effector.

In Figure 5.4 and 5.5 its represented the movement of the arm when its fully extended
and as the first test. Only joint 2 will be operating all the other motors will be fixed at 0
degrees. Although joint 4 should be fixed in this test, it was also taken into consideration
its performance. Since it might be affected, due to the starting movement of joint 2 and the
counterweight caused by the load.
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Figure 5.4: Arm joint 2 moving from 0 degrees to -90 degrees while holding a load.
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Figure 5.5: Arm joint 2 moving from -90 degrees to 0 degrees while holding a load.

In analyses of the previous Figures it is possible to verify that joint 2 acts as expected and
can deal with the load, and once again it is possible to verify that the force required when
performing an upward movement, Figure 5.5, is almost the double as the downward movement.
It also possesses an error of 8.77% since it should stop at set point given, 0 degrees, and instead
it finished the movement at -7.9 degrees. It should be possible to reduce the error with a better
tuning of the internal PID of the motor.

As it was predicted the motor at joint 4 was affected, as it is shown in Figure 5.5. Once
the movement of the arm started, the motor did not had the required force to maintain its
position and had a maximum deviation of -17 degrees, at the same time it used its maximum
force to guarantee that it would not fall over that value. This effect could be reduced, by
ensuring that the movement of joint 4 is not in favour of the one being made at joint 2.

Since joint 4 was tested previously with no load and it has shown to be problematic in the
previous test, it was performed a test considering the worst case scenario, but with joint 2
fixed at 0 degrees, to ensure that it would not affect the performance of joint 4. Figure 5.6
shows the graphics of the movement performed, from -90 to 90 degrees, as well as the force it
needs to perform the movement while holding the load.
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Figure 5.6: Joint 4 moving from -90 degrees to 90 with a load of 236 grams.

Here it is possible to verify that the behaviour presented in joint 4 is linear and that it
performs most of the force when lifting the object. Once the joint starts approaching the 0
degrees mark, the force required is greatly reduced. After the 0 degrees mark, the force that
it needs to apply is reduced, since it only needs to counter the gravity to ensure that it moves
with the correct velocity.

With the basic tests performed and with some notions of the HARM capabilities, it was
time to test it with the planner. The planner provides different velocities for each joint, as
well as the trajectory that the arm should take. In Figure 5.7 it is shown a planned trajectory
for each joint and the result of their physical movement.

In the previous test the movements performed were close to the ones that were planned, so
in order to ensure repeatability, multiple test were performed. Each with a different trajectory
to ensure that each joint would move more then just a few degrees as it is shown in figure 5.8.
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Figure 5.7: Movement provided by the planner and the movement performed by HARM.

Figure 5.8: Movement provided by the planner and the movement performed by HARM, with
repetition to guarantee repeatability.

In this final test it is possible to verify a gap between the planner and the real trajectory,
this could be related to the mass of the robotic arm, kinetic friction, among others physical
details that were not focused in this work. It would be also possible to adjust the velocity
provided by the planner which is applied to the motors.
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Chapter 6

Conclusions

The first step taken towards this work was the familiarisation with the Dynamixel servos
and their communication protocol, as well as the Maxon EC-90(BLDC motor). It was also
required to develop an interface in order to control the said motors, which led to an extensive
study of the components, (microcontrolers, integrated circuits) needed to develop the hardware
and the circuit board.

Afterwards, in order to make a 3D model and the eventual manufacturing of some needed
mechanical parts, the research of the mechanical joints and the nature of the arm was per-
formed. Finally, an integration of this system with ROS framework was performed in order
to merge it with the current existence of the CAMBADA@Home model.

Even though one of the objectives was being able to have stable and smooth motion with a
payload of 500 grams with the current configuration, this requirements could not be fulfilled.
The movement at joint 3 and 4, could be improved by using two motors in a master slave
configuration. This would rise the mass of the arm and it would deteriorate the movement at
joint 2 and in order to improve it, there would be a need to select a different motor. It is also
possible to improve the arm behaviour with the maximum payload by reducing the length of
each link.

The Dynamixel servo motors have proven to be very versatile in terms of operation and
communication. The MX-series allows us to adjust the controller with the PID and the RX
and AX series can be tuned by adjusting the slop in order to improve the precision that can
be adjusted in order to improve their precision.

The 3D model that has been developed in this dissertation, using the CAD software,
SolidWorks, made a decisive contribution by allowing to perform an analysis of the mechanical
structure, as well as understanding the safe operating range of some motors. With the model,
it was also possible to dimension the links for the HARM, choose the motors depending on
their location and the design of some mechanical components to be assembled with the arm.
This model was also used to export its properties, into an URDF file to work with ROS.

ROS has proven to be useful for the development of the project, even considering the initial
difficulties that it brought. With the use of ROS it was possible to integrate the planner,
MoveIt! and the visualiser RViz, which provided a way to observe the trajectory provided by
the planner, before giving the command to execute the movement.

With the use of ROS it was also possible to take advantage off the simulation, with the
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use of Gazebo, to represent a virtual structure of HARM and test the algorithms in order to
see if they would work on the physical model.

In this work there is still room for improvement that should be done in the future, and
even though this project was aimed to be applied on a moving platform, CAMBADA@Home
it might have other applications.

6.1 Future work and possible applications

Some of the ways to improve this project would be to perform a fine tuning of the PID
controller of the MX series from Dynamixel servor motors and the slop control of the RX
series. Once the control board, that was developed during this project, is available it should
be possible to test the BLDC controller. Then test if it is possible tp install it with the rest
of the HARM and associate with the controller, that has been already develop with ROS.
Once this is done all the board should be tested and see if all the communications are working
properly and then implement this project with the rest of the CAMBADA@Home platform,
since it is one of the objectives for this work.

Since the mechanical structures which have been developed in this dissertation were only
prototypes, they were made with a 3D printer. There for it would be recommended the usage
of a stronger material.

As mentioned, the URDF file contains the physical properties of the model of the robotic
arm, which is important for the simulation since it contains the basic parameters like mass,
friction, etc, which can be and should be calibrated.

Some of the future applications, regarding the one that it was made for, can be place on
a wheel chair, and be control by a joystick or even use the robotic arm as it is at its present
state.

56



References

[1] Luís Filipe PereiraAlmeida Santos. Project of an anthropomorphic manipulator for the
cambada@home robot. Master’s thesis, Universidade de Aveiro, 2013.

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, 2009.

[3] RoboCup. Available: http://www.robocupathome.org/. Last access 2017-06-16.

[4] ST Robotics. Available: https://www.prnewswire.com/news-releases/
st-robotics-offers-new-super-fast-robot-arm-300412383.html, Last seen 2017-
07-14.

[5] yamaha. Available: https://global.yamaha-motor.com/business/robot/lineup/
ykxg/middle/img/index/img_l.jpg, Last seen 2017-07-14.

[6] Global Robots LTD. Available: http://www.globalrobots.com/product.aspx?
product=24914, Last seen 2017-07-14.

[7] Machine Design. Available: http://www.machinedesign.com/industrial-automation/
reshoring-boost-american-manufacturing, Last seen 2017-07-14.

[8] Festo. Available: https://www.festo.com/group/en/cms/index.htm. Last access 2017-
07-14, 2017.

[9] American company Intuitive Surgical. Da vinci surgical system. Available: http://www.
davincisurgery.com/safety/. Last access: 2017-07-14, 2017.

[10] Intuitive surgical. Da vinci surgical system. Available: https://www.
intuitivesurgical.com/products/davinci_surgical_system/. Last access: 2017-07-
14, 2017.

[11] Dirk Spenneberg, Jan Albiez, Frank Kirchner, Jochen Kerdels, and Sascha Fechner. C-
manipulator: An autonomous dual manipulator project for underwater inspection and
maintenance. In Proceedings of OMAE, 2007.

[12] Intl. Federation of Robotics (IFR). Service robots - definition and classification. Available:
https://ifr.org/service-robots/. Last access 2017-07-14, 2016.

[13] Kinova Robotics. Kinova jaco2. Available: http://www.kinovarobotics.com/. Last
access 2017-07-14, 2017.

57

http://www.robocupathome.org/
https://www.prnewswire.com/news-releases/st-robotics-offers-new-super-fast-robot-arm-300412383.html
https://www.prnewswire.com/news-releases/st-robotics-offers-new-super-fast-robot-arm-300412383.html
https://global.yamaha-motor.com/business/robot/lineup/ykxg/middle/img/index/img_l.jpg
https://global.yamaha-motor.com/business/robot/lineup/ykxg/middle/img/index/img_l.jpg
http://www.globalrobots.com/product.aspx?product=24914
http://www.globalrobots.com/product.aspx?product=24914
http://www.machinedesign.com/industrial-automation/reshoring-boost-american-manufacturing
http://www.machinedesign.com/industrial-automation/reshoring-boost-american-manufacturing
https://www.festo.com/group/en/cms/index.htm
http://www.davincisurgery.com/safety/
http://www.davincisurgery.com/safety/
https://www.intuitivesurgical .com/products/davinci_surgical_system/
https://www.intuitivesurgical .com/products/davinci_surgical_system/
https://ifr.org/service-robots/
http://www.kinovarobotics.com/


[14] PAL robotics. Available: http://tiago.pal-robotics.com/. Last seen 2017-07-14.

[15] Willow Garage. Available at: http://www.willowgarage.com/pages/pr2/overview.
Last access 2017-07-17.

[16] Robotic Open Platform. Available: http://roboticopenplatform.org/wiki/AMIGO.
Last access 2017-07-14, 2017.

[17] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages 2149–2154. IEEE,
2004.

[18] Katherine Ellis, Suneeta Godbole, Simon Marshall, Gert Lanckriet, John Staudenmayer,
and Jacqueline Kerr. Identifying active travel behaviors in challenging environments using
gps, accelerometers, and machine learning algorithms. 2:36, 04 2014.

[19] ROBOTIS. Available: http://en.robotis.com/index/index.php Last seen 2017-07-17,
2017.

[20] Industrial Robot/Research Development Open Source Ecology. Available: http://
opensourceecology.org/wiki/Industrial_Robot/Research_Development. Last seen
2017-06-15.

[21] Maxon Motors. BLDC motor especifications available at: http://pdf.directindustry.
com/pdf/maxon-motor/program-2014-15/7173-600371.html, Last seen 2017-07-14.

[22] Maxon Motors. Planetary Gearhead GP 52 specifications available at: https://www.
maxonmotor.com/medias/sys_master/root/8825548144670/17-EN-350-351.pdf, Last
seen 2017-07-14.

[23] Maxon Motors. Image of a Planetary Gearhead https://www.maxonmotor.com/maxon/
view/product/gear/planetary/gp52/223080, Last seen 2017-07-14.

[24] Avago. Available: https://www.broadcom.com/site-search?q=aeat-6012, Last seen
2017-07-14.

[25] Fairchild FCM8201 datasheet. Available: https://media.digikey.com/pdf/Data%
20Sheets/Fairchild%20PDFs/FCM8201_Rev_1.0.4.pdf, Last seen 2017-07-14.

[26] STMicroelectronics. data sheet available at: http://www.st.com/content/ccc/
resource/technical/document/datasheet/d7/80/b5/a2/a2/93/49/59/CD00000970.
pdf/files/CD00000970.pdf/jcr:content/translations/en.CD00000970.pdf. Last
access 2017-06-16.

[27] Microchip. datasheet available: http://ww1.microchip.com/downloads/en/
DeviceDoc/22049f.pdf, Last seen 2017-07-14.

[28] Microchip Technology Inc. Available: http://www.microchip.com/wwwproducts/en/
pic32mx795f512h. Last access 2017-07-14, 2017.

[29] Maxim Integrated Products Inc. 3.3v, high-speed, rs-485/rs-422 transceiver in sot. Pack-
age, March 2007. 3 rd revision., 2007.

58

http://tiago.pal-robotics.com/
http://www.willowgarage.com/pages/pr2/overview
http://roboticopenplatform.org/wiki/AMIGO
http://en.robotis.com/index/index.php
http://opensourceecology.org/wiki/Industrial_Robot/Research_Development 
http://opensourceecology.org/wiki/Industrial_Robot/Research_Development 
http://pdf.directindustry.com/pdf/maxon-motor/program-2014-15/7173-600371.html
http://pdf.directindustry.com/pdf/maxon-motor/program-2014-15/7173-600371.html
https://www.maxonmotor.com/medias/sys_master/root/8825548144670/17-EN-350-351.pdf
https://www.maxonmotor.com/medias/sys_master/root/8825548144670/17-EN-350-351.pdf
https://www.maxonmotor.com/maxon/view/product/gear/planetary/gp52/223080
https://www.maxonmotor.com/maxon/view/product/gear/planetary/gp52/223080
https://www.broadcom.com/site-search?q=aeat-6012 
https://media.digikey.com/pdf/Data%20Sheets/Fairchild%20PDFs/FCM8201_Rev_1.0.4.pdf
https://media.digikey.com/pdf/Data%20Sheets/Fairchild%20PDFs/FCM8201_Rev_1.0.4.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/d7/80/b5/a2/a2/93/49/59/CD00000970.pdf/files/CD00000970.pdf/jcr:content/translations/en.CD00000970.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/d7/80/b5/a2/a2/93/49/59/CD00000970.pdf/files/CD00000970.pdf/jcr:content/translations/en.CD00000970.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/d7/80/b5/a2/a2/93/49/59/CD00000970.pdf/files/CD00000970.pdf/jcr:content/translations/en.CD00000970.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22049f.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22049f.pdf
http://www.microchip.com/wwwproducts/en/pic32mx795f512h
http://www.microchip.com/wwwproducts/en/pic32mx795f512h


[30] MC74LCX125 Datasheet ON Semiconductor. Available: https://www.onsemi.com/pub/
Collateral/MC74LCX125-D.PDF, Last seen 2017-07-14.

[31] Maxim Integrated Products Inc. +3.3v, 1mbps, low-supply-current can transceiver.
datasheet available at :https: // datasheets. maximintegrated. com/ en/ ds/ MAX3051.
pdf , 2007.

[32] Maxon Motors. Available: http://www.maxonmotor.pt/maxon/view/product/control/
Positionierung/EPOS-4/504383. Last access 2017-07-14.

[33] Allegro A4910 datasheet. Available: https://www.digikey.pt/product-detail/
en/allegro-microsystems-llc/A4910KJPTR-T/620-1534-1-ND/4448874. Last access
2017-07-14.

[34] Allegro A3930-31 datasheet. Available: https://www.digikey.pt/product-detail/
en/allegro-microsystems-llc/A3930KJPTR-T/620-1289-2-ND/1972824. Last access
2017-07-14.

[35] Ioan A Sucan and Sachin Chitta. Moveit! Online at http://moveit. ros. org, 2013.

[36] Lentin Joseph. Mastering ROS for robotics programming. Packt Publishing Ltd, 2015.

[37] MoveIt! Image Available at: http://moveit.ros.org/documentation/concepts/, Last
seen 2017-07-14.

59

https://www.onsemi.com/pub/Collateral/MC74LCX125-D.PDF 
https://www.onsemi.com/pub/Collateral/MC74LCX125-D.PDF 
https://datasheets.maximintegrated.com/en/ds/MAX3051.pdf
https://datasheets.maximintegrated.com/en/ds/MAX3051.pdf
http://www.maxonmotor.pt/maxon/view/product/control/Positionierung/EPOS-4/504383
http://www.maxonmotor.pt/maxon/view/product/control/Positionierung/EPOS-4/504383
https://www.digikey.pt/product-detail/en/allegro-microsystems-llc/A4910KJPTR-T/620-1534-1-ND/4448874
https://www.digikey.pt/product-detail/en/allegro-microsystems-llc/A4910KJPTR-T/620-1534-1-ND/4448874
https://www.digikey.pt/product-detail/en/allegro-microsystems-llc/A3930KJPTR-T/620-1289-2-ND/1972824
https://www.digikey.pt/product-detail/en/allegro-microsystems-llc/A3930KJPTR-T/620-1289-2-ND/1972824
http://moveit.ros.org/documentation/concepts/


60



Chapter 7

Anex

Figure 7.1: View of the PCB design in green the top layer and in red the bottom layer.
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Figure 7.4: Representation of the model from the URDF file with the use of the tool
urdf_to_graphiz.
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Side notes

Here it will be introduced and how to operate HARM, commands that one needs to use
to start controlling it.

The first thing to do before connecting the arm, it to make sure that no joint is facing
the -90o mark (downwards), to ensure that once it starts it wont miss behave or even fall due
to the motors not being in a lock position. Once the arm is connected, it is possible to start
the communication. In a ROS environment run the command rosrun cambadacontrol_test
cambadacontrol_test_node, this will connect the hardware with ROS. To operate the arm
freely it is possible to run the command roslaunch cambada_test aver.launch this will bring
the GUI with all the joint possitions, like its represented in FIGURE 4.9 in page 44.

In order to connect the planner with the system one should run the command roslaunch
cambada_test_moveit cambada_test_moveit.launch in a ROS environment, make sure that
the GUI for the free joint control is off otherwise once the movement provided by the planner
finish executing it will go back to the position that the GUI has. In order to run RViz run the
command roslaunch cambada_test_moveit cambada_test_rviz.launch and it will bring the
RViz window up letting the user see the planned trajectory and decide to execute it or not.

If the user does not want to run the physical HARM it can run the simulation for
that instead of using the rosrun cambadacontrol_test cambadacontrol_test_node, just run
the command roslaunch cambada_test cambada_test_gazebo_controlled.launch and it will
bring up the gazebo with HARM on it that performs the same way that the physical model
does, it is also possible to run this command and bring the state publisher right away by
adding load_joint_state_publisher:=true in front of the last command like so roslaunch cam-
bada_test cambada_test_gazebo_controlled.launch load_joint_state_publisher:=true
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