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Resumo 

 

 

A sociedade nunca foi tão dependente de dispositivos eletrónicos e elétricos 
como é hoje. Como resultado desta crescente utilização, o lixo eletrónico tornou-
se um problema mundial, não apenas devido às alterações ambientais que 
surgiram com o seu tratamento e armazenamento incorreto, mas também 
porque a quantidade de lixo eletrónico aumenta a cada ano. Outro problema 
inerente aos dispositivos elétricos e eletrónicos é o facto de dependerem de 
elementos de terras-raras para serem produzidos. Atualmente, eles são 
considerados as “vitaminas” da indústria moderna, devido ao seu papel crucial 
no desenvolvimento de novas tecnologias e às suas propriedades químicas e 
físicas distintas. No entanto, a elevada procura e os recursos limitados de 
elementos de terras-raras (REEs), combinados com os problemas ambientais 
associados à sua exploração pelas atividades de mineração, reforçam a 
necessidade de desenvolver novas formas de recuperar estes elementos a partir 
de lixo eletrónico e de águas residuais que os contenham. Portanto, o 
desenvolvimento de técnicas e materiais de baixo custo para a recuperação 
destes elementos é extremamente importante. 
Desta forma, o principal objetivo deste trabalho foi desenvolver materiais 
compósitos à base de carbono que fossem eficientes para a recuperação de 
terras-raras. A maioria dos estudos de sorção reportados na literatura foram 
realizados em água ultrapura e com soluções monoelementares de 
concentrações elevadas de terras-raras; assim, o objetivo é estudar a 
recuperação destes elementos em matrizes mais complexas, tais como na 
presença de outros iões, e usando concentrações mais realistas de terras-raras.
Os materiais sintetizados e usados neste trabalho foram a grafite esfoliada 
magnética funcionalizada com ácidos húmicos (MEG-HÁ), óxido de grafeno 
funcionalizado com 25% de polietilenimina (GO-PEI) e óxido de grafeno 
funcionalizado com quitosana (GO-CH) e estes foram avaliados quanto à sua 
capacidade de recuperação de REEs, utilizando diferentes quantidades de 
material/sorvente e na presença de diferentes tipos de águas. Em água 
ultrapura, foram obtidas percentagens médias de recuperação de 47%, 97% e 
71%, utilizando 100 mg/L de MEG-HÁ, GO-PEI e GO-CH. O comportamento de 
sorção dos compósitos permitiu verificar que a recuperação é mais eficiente em 
água mineral, quer usando MEG-HÁ ou GO-PEI, atingindo percentagens de 
recuperação de cerca 100%. No entanto, em água do mar, as percentagens de 
recuperação diminuem para cerca 60 e 50% usando 100 mg/L de GO-PEI e 
MEG-HÁ, respetivamente. Os resultados foram ajustados utilizando modelos 
cinéticos de pseudo primeira ordem, pseudo segunda ordem e Elovich e o 
mecanismo de sorção que melhor descreveu a interação entre os 
nanocompósitos e as REEs foi a quimiossorção. A aplicação dos 
nanocompósitos testados para a recuperação de REEs a partir de soluções 
aquosas confirma que os compósitos MEG-HÁ e GO-PEI têm um elevado 
potencial para serem utilizados na recuperação de REEs de águas.  
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abstract 

 

The society has never been so much dependent on electronic and electric 
devices as it is today. As a result, e-waste has become a worldwide problem not 
only due to environmental changes that have emerge from the incorrect 
treatment and storage of e-waste but also because the amount of e-waste is 
increasing each year. Another problem inherent to electrical and electronic 
devices is their dependence on rare earth elements. Currently, they are 
considered as the “vitamins” of modern industry due to their vital role on the 
development of new cutting-edge technologies due to their distinctive chemical 
and physical properties. However, the high demand and the limited resources of 
rare earth elements, combined with the environmental problems associated with 
their exploration by mining activities, enforce the development of new ways to 
recover these elements from e-waste and wastewaters. Therefore, the 
development of low cost techniques and materials for recovery these valuable 
elements from e-waste is important to face and resolve both issues. 
In this way, the main objective of this work was to develop an efficient carbon-
based composite towards the recovery of rare earths. Most of the sorption 
studies reported in the literature were performed with ultrapure waters spiked 
with tens to hundreds mg/L of single rare earth elements; so the objective is to 
study the recovery from waters of different matrices and using lower element 
concentrations. 
The materials synthesized in this work were magnetic exfoliated graphite 
functionalized with humic acids (MEG-HA), graphene oxide functionalized with 
ca. 25% of polyethylenimine (GO-PEI) and graphene oxide functionalized with 
chitosan (GO-CH), and they were evaluated for the REEs recovery capacity, 
using different amount of sorbent and in the presence of different type of waters. 
In ultrapure water, average recovery percentages of 47%, 97% and 71% were 
obtained using 100 mg/L of MEG-HA, GO-PEI and GO-CH, respectively. The 
sorption behaviour of the composites showed that the recovery is more efficient 
in mineral water, either using MEG-HA or GO-PEI, achieving recovery 
percentages around 100%. However, in saline water, the recovery percentages 
decrease to ca. 60 and 50% using 100 mg/L of GO-PEI and MEG-HA, 
respectively. The results were adjusts using kinetic models of pseudo first order, 
pseudo second order and Elovich and the sorption mechanism that better 
described the interaction between the nanocomposites and REEs was
chemisorption. The application of the nanocomposites tested for the recovery of 
rare earth elements from aqueous solutions confirms that the carbon-based 
composites have a great potential to be used in the recovery of REEs. 
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1.1. Contextualization 

The development of emerging key technologies – including renewable energy, 

energy efficiency, electronics and aerospace industries – are taking an important role in the 

current socio-economic, environmental and public health challenges that countries are facing 

and therefore the pursuit for solutions to support our transition towards an economy and 

lifestyle sustainable is crucial. In this context, the increasing use of technology-critical 

elements (TCEs) – that are essentials to this emerging key technologies – and their associated 

environmental impacts (from mining to end-of-life waste products) are a big concern for all 

the countries nowadays. These elements – which includes Ga, Ge, In, Te, Nb, Ta, Tl, the 

platinum group elements (PGEs: Pt, Pd, Rh, Os, Ir, Ru), and most of the rare earth elements 

(REEs: Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) – have gained an enormous 

importance due to their high economic relevance and to European Union (EU) dependency 

on their imports, mainly from China. For this reason, EU labelled these elements as TCEs 

since there are, at the moment, no mining zones with an acceptable short/mid-term profit 

within the EU borders (Cobelo-García et al., 2015). 

Currently, the extraction of TCEs from ores involves large energy costs and serious 

environmental risks due to the chemicals involved in the mining (Environmental Law 

Alliance Worldwide, 2014). An alternative source to obtain and to produce TCEs is Waste 

Electrical and Electronic Equipment (WEEE or e-waste). However, the current processes of 

recycling and treatment of this waste have very low efficacy and are expensive. This means 

that the recovery of TCEs from this growing "source" is very small, and therefore large 

amounts of TCEs are wasted. In addition, several inadequate and careless recycling 

approaches by developing countries and/or countries with less environmental awareness are 

causing serious health and environmental damage (Atibu et al., 2016; Gonzalez et al., 2014; 

Hao et al., 2015; Medas et al., 2013; Meryem et al., 2016; Pagano et al., 2015; Ramos et al., 

2016; Rim, 2016; Rim et al., 2013; Wei et al., 2013; Yang et al., 2016; Zhuang et al., 2016). 

It is not yet entirely understood neither there are not enough data about the full impact of 

this exponential use of TCEs since these studies are only now being done. However, recent 

studies report, for example, the disturbance of the natural environmental distributions of 

various rare earth elements (REEs) in the waters of the Rhine River in Germany (Kulaksiz 

and Bau, 2013) and San Francisco Bay in USA (Hatje et al., 2014), indicating that human 

activities are already impacting the geochemical cycles of these elements. It should be noted 
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that these TCEs can be released into the environment and become in contact with the 

biosphere at any stage of their life cycle (Zaimes et al., 2015). Hence, it is essential to 

develop more effective and ecologically systems to respond to these manifold challenges of 

the recovery of TCEs from WEEE like concerted collection, pre-treatment and refining 

processes for an utmost efficient recovery. 

 

1.2. Waste electrical and electronic equipment 

There are several definitions and different classifications about what waste electrical 

and electronic equipment (WEEE or e-waste) is or is not. In general, e-waste is a chemical 

and physical specific form of municipal and industrial waste that covers, mainly, old, end-

of-life and/or discarded appliances that use electricity, such as consumer electronics (like 

computers, LCD screens, smartphones), large appliances (like refrigerators, washers or 

dryers) and similar consumer products that have been discarded by their original users or by 

having a manufacturing defect (Hobohm and Kuchta, 2015; Tansel, 2017).  

The global quantity of e-waste generated in 2014 was around 41.8 million tonnes 

(Mt). However, in 2016, the amount of e-waste generated worldwide increase to 44.7 Mt 

(figure 1), approximately more 3 million tonnes of e-waste produce in just 2 years, which is 

equivalent to 6.1 kilogram of e-waste per inhabitant (kg/inh) in 2016 - in contrast to the 5.8 

kg/inh generated in 2014. The amount of e-waste is expected to increase to 52.2 million 

tonnes, or 6.8 kg/inh by 2021 (figure 1). Most of the e-waste was generated in Asia: 16 Mt 

in 2014 and 18.2 Mt in 2016, which corresponds, respectively, to 3.7 and 4.2 kg for each 

inhabitant (kg/inh). Although the Asia is the continent that produces more quantity of e-

waste, Asia is also the continent that generates less e-waste per inhabitant. In this case, the 

highest per inhabitant e-waste quantity (15.6 kg/inh) was generated in Europe (including 

Russia), which correspond to a total of 11.6 Mt e-waste generated. Of the 44.7 Mt of e-waste 

generated in 2016, approximately 1.7 Mt are thrown into the residual waste in higher-income 

countries, and are likely to be incinerated or land-filled; furthermore, only 8.9 Mt (about 

20%) of e-waste are documented to be collected and recycled (Baldé et al., 2017, 2015). 
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Figure 1 - Amount of global e-waste generated from 2014 to 2016 and the estimate values 
for the following years (2017 to 2021) (left, retired from Baldé et al. (2017)), and the 
typology of e-waste produced in 2016 (right, adapted from Baldé et al. (2017)).  
 

The total value of all raw materials present in e-waste is estimated at approximately 

55 Billion Euros in 2016 (Baldé et al., 2017). According to an European report (Tsamis and 

Coyne, 2015), the European recycling market for REEs is estimated to be worth 1 billion 

euros. Although, recycling of e-waste is strongly encouraged, only 9% is collected and 

recovered for recycling (the remaining e-waste is exported to developing countries or ends 

up in electronic waste crusher without pre-separation and appropriate treatment (Hobohm 

and Kuchta, 2015)) and the recycling (“urban mining”) rate of REEs is less than 1% 

worldwide. This can be explained by the unbridled proliferation of the electronic and electric 

equipment (EEE) in the society, the short lifetime of these products as well as the complexity 

of the process of recycling and recovery of these critical elements. According to the existing 

literature on recovery technologies of REEs from e-waste, although there has been a 

significant level of R&D, very little activity has moved to an industrial scale. Perhaps it is 

for this reason that there are only a few companies, in Europe, which are actively involved 

in REEs recovery (Hobohm and Kuchta, 2015). In terms of industrial scale applications, the 

recovery of REEs from lamp phosphors is the most developed process (Tsamis and Coyne, 

2015).  

Fortunately, there is an increasing awareness of this global problem of environmental 

and public health, and a higher perception of the socio-economic impact that the recycling 

of these elements has nowadays. A clear example of this change is this new quest of the 

technologies companies that aiming closing the loop in their supply chain. Namely, Apple 

published in its annual environmental responsibility report along with a public statement 

announcing their goal of using 100% recycled materials or renewable resources to produce 
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iPhones, Macbooks and other electronic products in the future in order to reduce its reliance 

on mined raw materials (figure 2). In the case of REEs, Apple manages to recover about 24 

kg of rare earths in 100 000 iPhone 6 devices (Schischke and Clemm, 2016). Recovery of 

the REEs content is the most drastic method of recycling, but it delivers the purest end 

products, in the form of high-purity rare-earth oxides. 

 

Figure 2 - Representation of the supply chain of the Apple production products (Schischke and 
Clemm, 2016). 
 

1.3. Technology-critical elements 

Technology-critical elements (TCEs) - represented in figure 3 - are all the elements 

which have an important role in high-technology, energy supply and green applications, but 

their supply and demand is unbalanced. Generally, they include Ga, Ge, In, Te, Nb, Ta, Tl, 

the platinum group elements (PGEs: Pt, Pd, Rh, Os, Ir, Ru), and most of the rare earth 

elements (REEs: Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) (Directorate 

General Enterprise and Industry, 2014). 

 

Figure 3 – Periodic table with the technology-critical elements in red (European Comission, 2014) 
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1.3.1. Rare earth elements 

The International Union of Pure and Applied Chemistry (IUPAC) defines the rare 

earth elements (REEs) as a group of 17 elements consisting of the 15 lanthanoids (La to Lu), 

Sc and Y. Scandium and Yttrium are also considered REEs since they tend to occur in the 

same ore deposits as the lanthanoids and share many chemical and physical properties 

(Tsamis and Coyne, 2015). The REEs are usually subdivided into groups: light REEs 

(LREEs), the heavy REEs (HREEs) and sometimes medium or middle REEs (MREEs). The 

grouping to these three classes is not consistent among different authors, as can be seen in 

Zepf (2013). The LREEs includes, generally, the elements La to Pm, the elements Sm, Eu 

and Gd are MREEs, and the elements Tb to Lu, including Y are designated as HREEs. 

Yttrium is included in the HREEs group based on its similar ionic radius and chemical 

properties. On the contrary, Scandium, although its trivalent state, the other properties are 

not similar enough to classify it in any group. REEs naturally occur together in mineral 

deposits, however they are often widely dispersed and found in very low concentrations 

(typical the concentration range is 10 to a few hundred ppm by weight), resulting in energy 

intensive, large amounts of waste and environmental taxation of mining, extraction, and 

refining processes which represents an additional difficulty in obtaining these metals 

(European Rare Earths Competency Network (ERECON), 2014). For example, the values 

reported to produce 1 tonne of rare earth oxide (REO) in China are 60 000 m3 of waste gases, 

200 m3 of acidified water and 1.4 tonnes of radioactive waste since most REEs deposits 

contain uranium or thorium; besides the electricity required for its production that generally 

comes from unclean sources (Royen and Fortkamp, 2016).  

Towards the expected growth of demand for REEs and possible supply restrictions, 

it is important to characterise the “criticality” of raw materials and metals, including rare 

earths (Tsamis and Coyne, 2015). In this way, REEs – mostly dysprosium, terbium, yttrium, 

europium, and neodymium (Dutta et al., 2016) – were described as critically at-risk 

marketable elements (figure 4).  
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Figure 4 - Criticality assessment of REEs and other elements. 

 

Moreover, the rare earths supply crunch in 2010/2011 served as a “wake-up call” to 

businesses and governments, bringing up the discussion about the future rare earths supply. 

Consequently, China – which is the main country supplying rare earth elements – imposed 

tight export restrictions and a ban on exports to Japan leading to speculative price increase 

where prices of different REEs ranged between four and nine times. The price spike led to a 

global exploration boost of REEs, with miners scrambling to access old mines and hundreds 

of new exploration projects being announced around the world, including some in Europe 

(European Rare Earths Competency Network (ERECON), 2014). In figure 5, it is possible 

to observe a prediction of the evolution of global rare earth demand and supply from 2016 

to 2020 (Dutta et al., 2016).  
 

 

Figure 5 - Anticipated evolution of global rare earth demand and supply from 2016 to 2020 (Dutta 

et al., 2016). 
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REEs usually occur together with oxygen in oxide, silicate or phosphate 

combinations and always together with other REEs as accessories in minerals. Typical 

occurrences of REE are in granites, pegmatites, carbonatites – usually enriched with 

phosphate-minerals (like apatite, monazite or xenotime), bastnaesite and others – and 

perovskites. In general, there is an aggregation as LREE or HREE and some complex 

mineral ores. Thus, monazite and bastnaesite are the main minerals of LREEs and xenotime 

is the main font of HREEs (specifically Y, Dy, Ho, Er, Tm, Yb and Lu) (Vogel, 2011). 

 

1.3.1.1. Chemistry of the rare earth elements – the singularity of 

lanthanoids 

In the periodic table, lanthanoids (Lns) as well as scandium, yttrium and actinides 

belong to the third subgroup of the transition metals – designated as the Sc-group. The 

lanthanoids are soft and white metals which have special electronic configurations on the 

atomic level providing them unique properties. Instead of the valence electrons attach to the 

outer orbitals, they are accommodated in a deeper lying orbital, the 4f-orbital. This leads to 

the outer orbital of Lns being the same for all of them and, consequently, to its chemical 

resemblance. A clear example is their oxidation state, since Lns favour the oxidation state 

Ln(III) with unprecedented uniformity in the periodic table. The prevalence of their trivalent 

oxidation state regardless of atomic number is due to the nature of their 4f-orbitals (Shriver 

et al., 2014; Vogel, 2011). However, some lanthanoids (Lns) may show other states (like 

Ln2+ or Ln4+); thus, the preferred stable states are those attained by empty, half or full 

occupied orbitals: La3+ (f0), Ce4+ (f0), Eu2+ (f7), Gd3+ (f7), Tb4+ (f7), Yb2+ (f14) and Lu3+ (f14) 

(Vogel, 2011). Other consequence of the 4f subshell is the Lns size, since as the atomic 

number increases, the ionic radii gets smaller along the period (from La to Lu) which is 

known as lanthanoid-contraction. Complexes of Ln(III) are usually form by electrostatic 

interactions – due to the anionic polydentate ligands containing oxygen-atom donors – rather 

than covalent interactions which are very stable. Coordination numbers usually exceed 6 and 

the ligands adopt geometries that minimize interligand repulsions; all Lns form complexes 

with complexing agents like EDTA, however, lutetium forms a stronger complex than 

cerium because it is the smallest in the series (Huang, 2010). Nevertheless, their chemical 

resemblance does not have influence on the physical properties since lanthanoids (Lns) 

display different physical behaviours. Among its physical properties, the Lns – which are 

metals - have relatively poor thermal and electrical conductivities (about 25 and 50 times 
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lower than copper, respectively). Most metals adopt the hexagonal close-packed structure 

type, although cubic close-packed forms are also known for most of the elements, 

particularly under high pressure (Zepf, 2013).  

 

1.3.1.2. Rare earth elements in devices 

Among the wide variety of REEs applications, there are four markets – magnets, 

metallurgy, catalysts and polishing powder – which account for nearly three quarters of total 

rare earth used in 2012. However there are other applications important for several rare 

earths, such as glass, phosphors and ceramics (European Rare Earths Competency Network 

(ERECON), 2014). Figure 6 shows the current consumption of REEs in several applications, 

as well as the respective susceptibility to be replaced.  
 

 

Figure 6 - Current consumption of REEs in several applications, as well as the respective 
susceptibility to be replaced (European Rare Earths Competency Network (ERECON), 
2014). 
 

In this figure, it is possible to observe the areas where REEs have the most impact 

and where they are irreplaceable – like the catalysis, phosphors, ceramics and glass industry 

– but also other areas where they have a huge impact and where they are very difficult to 

replace – as is the case of magnets, and iron and steel applications, for example. 
 

1.3.1.3. Rare earth elements in effluents 

REEs contained in non-recycled waste materials may end up in surface waters and 

oceans. For example, the highest REEs concentration in well water in Chinese mining areas 

is 130 μg/L. However, Sidaosha River – which has highest level of REEs – has a total of 



10 

 

REEs concentration in suspended particles and surface sediments of 31 524 and 30 461 μg/L, 

respectively (Liang et al., 2014). Recently, significantly high concentrations of rare earths 

were detected in the surface water of San Francisco Bay area (Hatje et al., 2014) presumably 

due to the wastewater treatment plant discharges of refractory magnetic resonance imaging 

(MRI) contrast agents used in hospitals and medical research centres (Dutta et al., 2016). In 

addition, it has been found that anthropogenic gadolinium contaminates surface and ground 

water. Therefore, it is necessary the treatment of these wastewaters. Furthermore, wastewater 

could also be a source of REEs, but its potential remains largely unexplored. In the first 

instance, rare earths could be recovered from wastewater produced during the extraction and 

separation of rare earths. However, the recovery of REEs from acidic industrial waste water 

streams and mining effluents is still in its infancy since their concentrations in industrial 

waste residues are very low compared to primary rare earth ores and e-waste, whereby it is 

necessary develop special processes dedicated to the recovery of rare earths from these dilute 

waste streams. 

 

1.3.1.4. Recycling of rare earth elements and barriers to end-of-life 

recycling 

A major challenge in recycling REE has been its low yield rate which can be 

explained by the lack of proper recycling design and by the tedious steps involved in their 

separation. These problems have led to a false premise that is the virtual impossibility to 

recycle REE in any profitable quantity, since they are used in very small quantities (Dutta et 

al., 2016). In the last years, several examples of REE recovery from end-of-life products 

have been presented such as wastes from fluorescent lamps (Binnemans and Jones, 2014; 

Ruiz-Mercado et al., 2017; Tan et al., 2015; Wu et al., 2014), magnets (Abrahami et al., 

2015; Firdaus et al., 2016; München and Veit, 2017; Yang et al., 2017; Yoon et al., 2016), 

batteries (Innocenzi et al., 2017) and mobile phones (Lister et al., 2014). Many of these 

studies report a reasonably good yield, which in some cases may goes up to 99% of re-usable 

REEs. An example of this scenario is the study of Kim et al. (2015) where the recovery of 

REEs oxides (namely Nd, Pr and Dy) was made from commercial magnets and industrial 

scrap magnets by employing membrane-assisted solvent extraction. Good yields without any 

co-extraction of non-REEs over the 120 hours run were obtained. Although many lab-scale 

experiments have reported a good REEs recovery (Sun et al., 2016), cooperation among 
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companies to develop techniques and processes in order to recover high purity REE from e-

waste are scarse (Dutta et al., 2016). A mature recycling route for REE could offer a number 

of important advantages over primary production, such as a smaller environmental footprint 

(even because recycling does not leave radioactive elements to dispose of), shorter lead times 

and a cheaper source of material compared to primary production.  

Regardless of the recycling techniques used, there are several barriers to overcome 

and to the recycling of REEs content products become a reality on a large scale, such as 

(European Rare Earths Competency Network (ERECON), 2014): 

 Insufficient and often non-selective collection rates; 

 Lack of information about the quantity of REE materials available for recycling; 

 Dissipative use, since the quantity of rare earths per component or device is often 

very small, which can make it difficult to detect the REEs products in mixed waste 

streams and uneconomical to separate them; 

 Presence of contaminants; 

 Price volatility for scrap and products like magnets or phosphors; 

 Shipping of e-waste. 

 

1.4. Pre-treatment of e-waste 

Most of the REE are intricately embedded into e-wastes, and hence pre-treatment 

procedures towards their recovery from goods at end-of-life vary with their typology. The 

first step that e-waste undergo is dismantled, separated and crushed by mechanical processes 

such as shredding, cutting, grinding or milling, followed by physical processes which may 

be separation by vibration, gravity, buoyancy, magnetic or Eddy current. It follows a 

chemical decomposition step through leaching or other chemical treatment to solubilise the 

REE (Kaya, 2016), for later recovery of REEs from aqueous systems (figure 7). 
 

 

Figure 7 - Steps of a general process of REEs recycling from e-waste. 

 

Liquid-liquid extraction (LLE) and solid phase extraction (SPE) procedures have 

been applied to separate and extract REE from aqueous solutions.  
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LLE implies two different immiscible liquids, such as aqueous and organic solvents, 

to separate compounds through the attraction of the desired element from one side of the 

liquid phase towards another liquid phase (Hidayah and Abidin, 2017). Among the LLE 

procedures commonly used in metallurgy, there are the pyrometallurgical and 

hydrometallurgical techniques, in which metals are melted by heat or dissolved by a liquid, 

respectively (Kaya, 2016). Low extraction, loss of extractant into aqueous, and low purity in 

the final product are the major limitations of those processes (Hidayah and Abidin, 2017).  

SPE consists of the extraction of the desired element from liquid phase towards the 

solid phase of large surface (Hidayah and Abidin, 2017). Among of the SPE, batch (offline) 

and column (online) procedures have been widely used (Pyrzynska et al., 2016). In batch 

pre-concentration procedure, the solids are manually mixed with the liquid, filtered, and 

finally the enriched solid phase is transferred to the detector. On the contrary, all operations 

are automatic in the column procedure. High extraction, selectivity, quality of the products 

in the separation and extraction of REE are generally obtained (Xiaoqi et al., 2009; Zhu et 

al., 2012). When compared to LLE, the solid phase extraction offers a number of important 

advantages, such as reduced organic solvents use and exposure, high enrichment factor, rapid 

phase separation and the possibility of combination with different detection techniques 

(Płotka-Wasylka et al., 2015; Pyrzynska et al., 2016). 

 

1.5. Materials commonly used as solid phase sorbent 

Several nanomaterials have been investigated as solid phase sorbents in batch 

technique, such as polymers supports, carbon-based composites (carbon nanotubes and 

graphene oxide) and nanoparticles (NPs); particularly, magnetic NPs which have very 

interesting magnetic properties (Cao et al., 2015; Ghazaghi et al., 2016; Giakisikli and 

Anthemidis, 2013). Examples are:  

(i) Ion imprinted polymers (IIPs) of specific binding sites for a particular metal ion; 

interactions between the polymer framework and the complexed ion are based on 

coordinative bonds from some electron donating heteroatoms (such as oxygen, nitrogen 

or sulphur) to the unfilled orbitals of the outer sphere of the metal ions (Branger et al., 

2013; Hu et al., 2013; Pyrzynska et al., 2016).  
 

(ii) Silica-based materials due to their good porous structure, good quality of mechanical 

properties, good physical and chemical stability, and the possibility to immobilised 
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various functional groups on its surface to enhance the sorption to metal ions; drawbacks 

are related to easy degradation at high pH and difficult separation from water under 

continuous industrial operation (Fisher and Kara, 2016; Hidayah and Abidin, 2017; 

Pyrzynska et al., 2016). 
 

(iii) Membrane supports as poly(tetrafluoroethylene), poly(vinylidene) fluoride, 

polyamide, and ceramic membranes are common supporting material used in SLE with 

the advantage of low consumption of energy, high selectivity, and the easy to manage 

(Fisher and Kara, 2016; Hidayah and Abidin, 2017; Pyrzynska et al., 2016).  
 

(iv)  Microorganisms, such as Bacillus subtilis, Escherichia coli, Pseudomonas 

fluorescens, Paracoccus denitrificans, Schwanella putrefaciens, and Alcaligenes faecalis 

have efficient and environmentally friendly interactions with metal ions through surface 

adsorption, adsorption on extracellular biopolymer, biologic absorption, and adsorption 

on extracellular bio-mineral (Fisher and Kara, 2016; Hidayah and Abidin, 2017; 

Pyrzynska et al., 2016);  

(v) Nanomaterials have an enormous potential for water remediation and elements 

recovery due to their size dependent properties and surface characteristics (Martins and 

Trindade, 2012; Quina, 2004). Among these properties, specific surface area is obviously 

of paramount relevance because leads to higher chemical activity at the solids surfaces. 

Additionally, nanomaterials can be surface functionalized with specific ligands to 

increase the affinity to specific targets (elements or compounds) (Francisquini et al., 

2014; Martins and Trindade, 2012). More recently, there has been an increasing interest 

for magnetic nanosorbents because their easy separation from aqueous solutions by using 

an external magnetic field (Carvalho et al., 2016). This property is a great practical 

improvement for water treatment units due to practicability and time saving because there 

is no need of conventional separation methods. 
 

(vi)  Carbon-based nanomaterials are essential building blocks due to their capability 

of having variable oxidation states and/or coordination numbers which makes carbon one 

of the few elements to have multiple numbers of allotropic forms like graphite, graphene, 

graphene oxide, carbon nanotubes, carbon nanofibers, carbon dots, among others (figure 

8); sorption of REEs to those forms is mainly controlled by electrostatic forces, which are 

related to the various surface oxygen-containing functional groups, such as hydroxyl, 

carbonyl and carboxyl groups O donors (Pyrzynska et al., 2016). Nowadays, it has been 
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very frequent combine these materials with ferrites or iron oxide nanoparticles to provide 

magnetic properties to the materials. 
 

 

Figure 8 - Carbon allotropic forms: i) graphite, ii) graphene, iii) graphene oxide, iv) carbon nanotube, 
v) carbon nanofibers, vi) carbon dot. Figure adapted from Kiew et al. (2016) and Tripathi et al. 
(2015). 

 

1.5.1. Functionalizations 

As already mentioned, REEs show a great affinity to O donors and although the 

graphene oxide has great adsorption properties (essentially due to its O-based surface 

functional group), in more complex aqueous environments it loses some efficiency. In this 

context, a variety of methods for the graphene surface modification have been developed in 

order to improve its sorption efficiency and to give new properties to the material. Therefore, 

in table I, it was collected a number of ligands that have already been used to functionalised 

graphene oxide and others ligands that have a great potential to be used in carbon 

functionalizations for REEs recovery at low pH, due to their low pka values – which makes 

the surface of the material negative and, therefore, available for sorption of REEs – and their 

level of proticity – since, theoretically, a higher level of proticity correspond to a higher 

number of sites, which may mean a higher sorption capacity of the material. Note that the 

majority of these ligands have already been used to functionalized different nanomaterials 

(ferrites NPs, silica NPs, among others) to recovery critical elements such as rare earth 

elements. In the preparation of this table, a number of factors were taken into account in 



15 

 

order to propose the best functionalization hypotheses. They are: water solubility, number 

of O donors, low pka values and number of sites to interact with REEs. Many of these ligands 

have already been applied to REEs recovery in various ways as it is the case of 

ethylenediaminetetraacetic acid (EDTA) (Dupont et al., 2014; Zhao et al., 2016), 

diethylenetriaminepentaacetic acid (DTPA) (Noack et al., 2016), diglycolamic acid (DGA) 

(Juère et al., 2016; Ogata et al., 2016; Sengupta et al., 2017), humic acids (Yang et al., 2012) 

and others chelating ligands (Huang and Hu, 2008), for example. These functionalizations 

can be obtain, for example, through the preparation of nanostructured silica-coated magnetite 

(in a first step) and then coating them with the proposed functionalizations. Applying this 

method, the resulting material would get not only higher sorption capacity of REEs, but also 

magnetic properties that would be very important in the separation process of the material 

in aqueous media. 

 

Table I - Carbon functionalization hypotheses for REEs recovery at low pH. 

Functionalizations Formula 
Level of 
proticity 

pka 

Pentetic acid (DTPA) C14H23N3O10 Penta 1.80 
Ethylenediamine tetraacetic 

acid (EDTA) 
C10H16N2O8 Tetra 

0.0, 1.5, 2.00, 2.69, 
6.13, 10.37 

Ethylene glycol tetraacetic 
acid (EGTA) 

C14H24N2O10 Tetra <2, 2.7, 8.8, 9.5 

Nitrilotriacetic acid (NTA) C6H9NO6 Tri 1.89, 2.49, 9,73 
Perchloric acid HClO4 Mono -10 

Hydrochloric acid HCl Mono -7 
Sulfuric acid H2SO4 Tri -3, 1.92, 6.91 
Nitric acid HNO3 Mono -1.3 

(Chloro)acetic acids 
CCl3COOH 

CH2ClCOOH 
CH3COOH 

 
Mono 

0.52 
2.85 
4.75 

Argininosuccinate C10H18N4O6 Tetra 1.62, 2.70, 4.26, 9.58 
Histidine C6H9N3O2 Tri 1.80, 6.04, 9.33 

Aspartic acid C4H7NO4 Tri 1.99, 3.90, 9.90 
Phosphoric acid H3PO4 Tri 2.12, 7.21, 12.3 

Citric acid C6H8O7 Tri 3.08, 4.74, 5.40 
Pyruvic acid C3H4O3 Mono 2.39 

Glutamic acid C5H9NO4 Di 2.13, 4.31 
Malonic acid C3H4O4 Di 2.83, 5.69 
Tartaric acid C4H6O6 Di 2.98, 4.34 
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Mesaconic acid C5H6O4 Di 3.09, 4.75 
Malic acid C4H6O5 Di 3.40, 5.11 

Glyceric acid C3H6O4 Mono 3.52 
Formic acid HCOOH Mono 3.77 
Glycolic acid C2H4O3 Mono 3.83 

Thioglycolic acid C2H4O2S Di 3.83, 9.3 
Lactic acid C3H6O3 Di 3.86, 15.1 

Ascorbic acid (Vitamin C) C6H8O6 Di 4.10, 11.8 
Benzoic acid C7H6O2 Mono 4.19 
Succinic acid C4H6O4 Di 4.22, 5.64 

Carboxylic acids RCOOH  4.8 (4 to 5) 
Humic acid (HA)    

Fulvic Acid    
Chitiosan   ~5.5 

PEG   ~3 
PEI    

Crown ethers    
Chalcogenides  (S2-, Se2-, Te2-, O2-)   
Carbonic acid H2CO3 Di 6.35, 10.2 

 

1.6. Sorption as a recovery of rare earth elements process 

As already mentioned, there are a lot of materials which can be used as sorbents for 

the REEs recovery. Also, sorption has many other advantages when compared to the 

common techniques, namely high removal efficiency, easy to operate and installation, and 

low maintenance costs. 

 Nevertheless, the efficiency of this process is dependent from some factors, which 

will, consequently, influence the REEs recovery (either the kinetics or the sorption capacity). 

These factors are the typology of the sorbent and the metal ion (to be recovered), as well as 

the experimental conditions. Among the experimental parameters, there are: 

 pH of the batch, because it will affect either the metal ions and the sorbent. The 

surface charge of the sorbents depends on the acidity of the surrounding electrolyte. 

Since the sorption of REEs occur mainly by electrostatic forces, the surface charge 

of the sorbents need to be negative; 

 temperature, since inadequate temperatures can decrease the efficiency of the 

sorption process; 

 dose of sorbent, since theoretically, as higher it become, better will be the recovery 

rate; 
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 REEs initial concentration because, for the same dose of sorbent, higher values of 

concentration, lead to lower sorption rates; 

 stirring speed, which control the dispersion of particles and the mass transfer rate. 

 Besides these, the presence of other metal ion species – that is a reality in real 

effluents – can influence the recovery of REEs due to the competition for the binding site. 

Therefore, these factors should be considered for an efficient recovery of REEs. These 

factors will be discussed in more detail in the following sections  

 

1.7. Recovery of rare earth elements using different carbon materials: a 

literature review 

In the literature, several papers describe the use of carbon (nano)composites for the 

recovery of REEs either in batch or column experiments. Table II shows the carbon materials 

and batch experimental conditions used in different studies. It should be noted that this table 

was divided into three sections: -A) GO composites, -B) CNTs and -C) other types of carbon 

materials for the recovery of REEs. This division is mainly based on the number of papers 

found in the literature for each nanomaterial. More specifically, the following materials – 

activated carbon, fullerenes, carbon dots, mesoporous carbon, carbon nanofibers and carbon 

black – were placed in the third section due to the reduced number of reports found in the 

literature. However, the volume of studies of GO and CNTs composites reported in the 

literature made it possible to placed them into individual sections, leading to a more easier 

and full understanding of the experimental conditions employed. It should also be noted that 

the optimal experimental conditions are represented by shading and the other conditions 

tested and described in the papers are represented on a white background (without shading). 

 

 

Recovery of rare earth elements using graphite oxide composites 

The first section of the table (table II-A) presented several studies of the recovery of 

REEs using GO composites. In this section, it is possible to conclude that almost all the 

studies were performed in Milli-Q water with the exception of one study that used HClO4 

(aq, 0.01 mol/L) performed by Sun et al. (2013). This is expected since Milli-Q water has no 

competitive ions, so the most studies are performed in this type of water because it is the 

simplest system to study. Regarding the contact time between the nanomaterial and the rare 
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earth solution there was a widely range of times used, nevertheless, there are no published 

studies over 48 hours. In the case of the temperature, most of reported studies were 

performed at room temperature. However, it is possible to verify that the increase of the 

temperature provides better rates of rare earth sorption. Thus, the reason to work at room 

temperature, even with a slight decrease of the sorption rate, is due to the lack of practicality 

and associated cost of working at higher and controlled temperature environments 

particularly on an industrial scale; even because the purpose of most of these studies is to 

have industrial applicability. This is also the reason to not study the sorption during a period 

over 48 hours. 

A set of materials based on graphene oxide with different C:O ratios were found. In 

addition, to the GO several functionalizations were performed to make the material more 

efficient, such as: magnetite (Fe3O4) (D. Li et al., 2015) with the purpose of afford magnetic 

proper ties to the material, making the material more efficient for the REEs separation from 

solution, or polyaniline (PANI) (Sun et al., 2013) to increase the maximum adsorption 

capacity of the material. It is possible to find in the literature ratios mass of sorbent per 

volume of solution between the minimum of 40 mg/L and the maximum of 5 000 mg/L for 

the REEs recovery, being that the m/v ratio most reported in the literature equal to 1 000 

mg/L. The studies of Chen et al. (Chen et al., 2014a) and Chen et al. (Chen et al., 2014b) 

were the ones that reported the lowest value of sorbent mass/volume (40 mg/L), which was 

used in the recovery of Gd(III) and Y(III) ions, respectively, at pH 5.9 ± 0.1.  

Regarding the study of rare earth elements, it is possible to verify that most studies use mono-

elemental systems in order to obtain the simplest system to study; there are only two studies 

– of Ashour et al. (Ashour et al., 2017) and Su et al. (Su et al., 2014) – reported in the 

literature that used multielementar system. In the mono-elemental system, Europium is the 

rare earth element most studied by far, but there are also studies with other REEs like two 

studies with Cerium by Fakhri et al. (2017) and Farzin et al. (Farzin et al., 2017) and one 

study of Gadolinium, Scandium and Yttrium by W. Chen et al. (Chen et al., 2014a), Kilian 

et al. (2017) and Chen et al. (Chen et al., 2014b), respectively. In the multi-elemental 

systems, Ashour et al. (Ashour et al., 2017) used a quaternary system with Lanthanum, 

Neodymium, Gadolinium and Yttrium, and Su et al. (Su et al., 2014) studied a mixture of 

fifteen REEs (leaving only the Pm(III) and Sc(III) ions). As for the rare earth concentration, 

a wide variety of intervals are published, as shown in table II-A. Most of the studies to the 
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date have used concentrations between the minimum of 10 µg/L (Xie et al., 2016) and the 

maximum of 300 000 µg/L (Kilian et al., 2017), being that the majority of the used 

concentrations varies between 1 and 100 µg/L (Ashour et al., 2017; Chen et al., 2014a, 

2014b; Fakhri et al., 2017; D. Li et al., 2015; Sun et al., 2013, 2012; Yao et al., 2016). The 

studies that used lower concentration values, namely 10 and 50 µg/L of Eu(III) and Ce(III) 

ions, in mono-elemental solutions, were the studies of Xie et al. (Xie et al., 2016) and Farzin 

et al. (Farzin et al., 2017), respectively; moreover, Su et al. (Su et al., 2014) used 10 µg/L 

for 15 elements in multi-elemental solution. Concerning the pH, the rates of rare earth 

adsorption are strongly pH dependent, so the maximum adsorption values of REEs using 

different types of GO composites are highly dependent on the chosen working pH. In this 

way, several authors have done the study of pH, varying mostly between 2-11, in order to 

find out the optimal pH and/or the working pH. The most used working pH is 6 (Ashour et 

al., 2017; Chen et al., 2014a, 2014b; Fakhri et al., 2017; Sun et al., 2012); also, the lowest 

pH used  was 2 (Kilian et al., 2017; Sun et al., 2012) whereas the highest working pH chosen 

was 7 (Li et al., 2014; D. Li et al., 2015; Sun et al., 2012). A clear example that evidences 

this pH dependence on REEs adsorption is the study of Li et al.(2014) in which 

approximately 7% and 10% of Eu(III) adsorption was obtained for pH 1 using GO and 

titanium phosphate modified GO composite (GTiP-2), respectively; at pH 3.7 and 5, it was 

possible to obtained 20% with GO and 45-50% using GTiP-2 ; and finally, at pH 7.3, they 

achieved an Eu(III) adsorption rate of 28% using GO and 80% using GTiP-2. Nevertheless, 

at least two studies have been reported in the literature that have achieved adsorption of 

approximately 100% using a pH of 5.5 (Yao et al., 2016) and 7 (Sun et al., 2012), and it is 

possible to find more studies with values around 80% and 90% of adsorption. Finally, the 

material with the highest maximum adsorption capacity (qm) of REEs reported in the 

literature to date was PANI@GO with 250.74 mg/g achieved (Sun et al., 2013). 
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Table II-A - Recovery of REEs using graphene oxide (GO) composites and the respectively experimental conditions used as reported in the literature. Note that 

in this table it is only presented the best results and consequently the optimal experimental conditions (see complete table in the attachments present in chapter 

6, table A1). 

Ref. Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 
(µg/L) pH T (ºC) 

Time of 
contact (h) 

m (sorbent)/ 
V(solution) 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Ashour et 
al., 2017) 

GO colloid Ultrapure 
Multi 

elemental 
La, Nd, 
Gd, Y 

5 x 103 6 r.t. 0.5 10 x 102 

La = 85.67 mg/g 
Nd = 188.6 mg/g 
Gd = 225.5 mg/g 
Y = 135.7 mg/g 

(Li D. et al., 
2015) 

GO 
(Graphene Oxide) 

Ultrapure 
Mono 

elemental 
Eu 

10 x 103 
NaClO4= 0.01 
mol/L 

4.5, 
7 

20 0-24 10 x 102 
90 %, 

89.654 mg/g 

(Li D. et al., 
2015) 

MGO 
(Magnetic Graphene Oxide) 

Ultrapure 
Mono 

elemental 
Eu 

10 x 103 
NaClO4= 0.01 
mol/L 

4.5, 
7 

20 0-24 10 x 102 
80 %, 

70.15 mg/g 

(Sun et al., 
2012) 

GONS 
(Graphene Oxide 

Nanosheets) 
Ultrapure 

Mono 
elemental 

Eu (1)
51 x 103 

NaClO4= 0.01 
mol/L 

7 25 48 2 x 102 100 % 

(Farzin et al., 
2017) 

TGA/CdTeQDs/Fe3O4/rG
ONS 

Distilled 
Mono 

elemental 
Ce 

0.05 x 103 
(1-100)x103 5.0 35 0.17 7 x 102 

95 % 
56.82 mg/g 

(Yao et al., 
2016) 

GO 

Ultrapure 
Mono 

elemental 
Eu 

10 x 103 
NaCl= 0.1, 
0.01, 0.001 
mol/L 

5.5 20 0-24 5 x 102 

100%, 142.8 mg/g 

GO-OSO3H 90%, 125.0 mg/g 
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Ref.   Sorbent 

Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
V(solution) 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Chen et al., 
2014a) 

GO colloid Ultrapure 
Mono 

elemental 
Gd 12 x 103 

5.9 
(2-11) 

30 0.5 0.4 x 102 286.86 mg/g 

(Chen et al., 
2014b) 

GO colloid Ultrapure 
Mono 

elemental 
Y 12 x 103 5.9 30, 40 0.42 0.4 x 102 190.48 mg/g 

(Xie et al., 
2016) 

GO Ultrapure 
Mono 

elemental 
Eu 0.01 x 103 

NaCl= 0.01M 
5.0, r.t. 48 1 x 102 78 mg/g 

(Kilian et al., 
2017) 

GO Ultrapure 
Mono 

elemental 
Sc 300 x 103 2 r.t. 4 50 x 102 ~ 95%, 36.5 mg/g 

(Fakhri et al., 
2017) 

30%Mo4W8@EDMG,  
 

30%Mo2W10@EDMG 
Ultrapure 

Mono 
elemental 

Ce 10 x 103 
6 

(2-6) 
20 0.08-3 17 x 102 

90.90 mg/g,  
 

96.15 mg/g 

(Su et al., 
2014) 

MPANI-GO Ultrapure 
Multi 

elemental 
All REEs 0.01 x 103 4 r.t. 0.33 4 x 102 ~ 95% 

(Sun et al., 
2013) 

PANI@GO 
HClO4 (aq) 
0.01 mol/L 

Mono 
elemental 

Eu 15 x 103 3 25 48 2.5 x 102 250.74 mg/g 

 
GTiP-1 

(titanium phosphate 
modified GO composite) 

Ultrapure 
Mono 

elemental 
Eu 100 x 103 7.3 25 2 10 x 102 

~ 72 % 

(Li C. et al., 
2014) 

GTiP-2 ~ 80 % 

 GO ~ 28 % 
 (1) Adsorptions experiments were conducted under N2 conditions. 
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Recovery of rare earth elements using carbon nanotubes 
In the table II-B, studies of the recovery of REEs using carbon nanotubes composites 

are presented. It is possible to observe that all the studies were performed in Milli-Q or 

distilled water, with the exception of only one study performed by Yadav et al. (2015) that 

used HCl (aq, 0.5 mol/L). Regarding the contact time between the nanocomposite and the 

rare earth solution there was a widely range of times used, nevertheless, there are no studies 

published over 96 hours and the majority of the studies performed had a duration time of 2 

and 4 hours (Behdani et al., 2013; Kilian et al., 2017; Koochaki-Mohammadpour et al., 2014; 

K. Li et al., 2015; Yadav et al., 2015). In the case of the temperature, there was also a widely 

range used such as 20, 25, 30, 43 and 65 ºC, but most of reported studies were performed at 

30 ºC (Behdani et al., 2013; Koochaki-Mohammadpour et al., 2014; Yadav et al., 2015).  

For a set of materials based on carbon nanotubes, in most studies the oxidized multi-

walled carbon nanotubes (MWCNTs-oxidized) were chosen since they are a more efficient 

and cheaper material when compared to the single-walled carbon nanotubes (SWCNTs-

oxidized). In addition to the CNTs, some studies show some sorption experiments using 

CNTs with several functionalizations to improve even more the efficiency of the material or 

to introduce others properties in the material, such as: magnetite (Fe3O4) (Chen et al., 2009) 

with the purpose of afford magnetic properties to the material, or chitosan (K. Li et al., 2015) 

to increase the maximum adsorption capacity of the material. It is possible to find, in the 

literature, ratios mass of sorbent per volume of solution between the minimum of 600 mg/L 

and the maximum of 100 000 mg/L for the REEs recovery, however, the m/v ratio most 

reported in the literature was 600, 1 000 and 5 000 mg/L. The studies of Fan et al. (2009), 

Chen et al. (2009) and Chen et al. (2008) were the ones that reported the lowest value of 

sorbent mass/volume (600 mg/L), which was used in the recovery of Eu(III) in mono-

elemental solutions and at a pH between 5 and 6. Finally, the material with the highest 

maximum adsorption capacity (qm) of REEs reported in the literature to the date was mIIP-

CS/CNT composite with 121.51 mg/g achieved (K. Li et al., 2015). 

In REEs sorption studies using CNTs composites, it is easily perceptible that there 

are a higher number of studies using multi-elemental systems when compared with the 

number of the REEs sorption studies using GO composites, since half of the studies in this 

section were performed in multi-elemental systems. The REEs studied in mono-elemental 

systems were scandium and europium; in multi-elemental systems cerium, samarium, 
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lanthanum, dysprosium, terbium, lutetium and gadolinium ions were the only ones studied; 

and yttrium was studied in both types of system. The two elements most studied were La(III) 

and Eu(III). It should also be noted that the adsorption studies in multi-elemental systems 

were performed with a maximum of 3 elements by Tong et al. (2011) and Yadav et al. (2015). 

As for the rare earth concentration, a wide variety of intervals are published, as shown in 

table II-B. Most of the studies to the date have used concentrations between the minimum of 

30 µg/L (Chen et al., 2008) and the maximum of 1 000 000 µg/L (Yadav et al., 2015), being 

that most of them used concentrations varies between 10 000 and 40 000 µg/L. The studies 

that used lower concentration values, namely 30 and 61 µg/L of Eu(III), in mono-elemental 

solutions, were the studies of Chen et al. (2008) and Chen et al. (2009), respectively; 

moreover, K. Li et al. (2015), Koochaki-Mohammadpour (2014) and Behdani et al. (2013) 

used 10 000 µg/L for different REEs like La(III) and Dy(III) or Ce(III) and Sm(III), in multi-

elemental solutions.  

Concerning the pH, the maximum adsorption values of REEs using CNTs 

composites are highly dependent on the chosen working pH, as previously mentioned. In 

other words, for different pH values, the acidity of the surrounding electrolyte will be 

different, which affects the surface charge and, consequently, the sorption of metal ions on 

CNTs. Generally, by increasing the pH, the sorption of metal ions increases; this occurs 

because, at pH superior to pHPZC (point of zero charge), the positively-charged metal ions 

can be adsorbed on the negatively-charged oxidized CNTs (Pyrzynska et al., 2016). In this 

way, several authors have done the study of pH, varying mostly between 5-7, in order to find 

out the optimal pH and/or the working pH. The most used working pH is 5 (Behdani et al., 

2013; Chen et al., 2009; Fan et al., 2009; Koochaki-Mohammadpour et al., 2014; Tong et 

al., 2011); also, the lowest pH used was 1.5 (Kilian et al., 2017; Tong et al., 2011) whereas 

the highest working pH chosen was 8 (Behdani et al., 2013; Fan et al., 2009). Nevertheless, 

at least two studies have been reported in the literature that have achieved adsorption rates 

of approximately 100% using a pH of 5 (Behdani et al., 2013) and 5.5 (Chen et al., 2009), 

and it is possible to find studies with values around 90% of adsorption. 
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Table II  B - Recovery of REEs using Carbon nanotubes (CNTs) and the respectively experimental conditions used as reported in the literature. Note 

that in this table it is only presented the best results and consequently the optimal experimental conditions (see complete table in the attachments 

present in chapter 6, table A2). 

Ref. Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ V 
(solution) 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Kilian et al., 
2017) 

CNTs-COOH Ultrapure 
Mono 

elemental 
Sc  300 x 103 

2 
4 

r.t. 4 50 x 102 
37.9 mg/g 
42.5 mg/g 

(Behdani et 
al., 2013) 

MWCNTs-oxidized Distilled 
Multi 

elemental 
Ce 
Sm 

10 x 103 5 30 2 10 x 102 
~ 97 % 

~ 100 % 

(Koochaki-
Mohammadpo
ur et al., 2014) 

MWCNTs-oxidized Distilled 
Multi 

elemental 
La 
Dy 

10 x 103 5 30 2 10 x 102 
93 % 
98% 

(Tong et al., 
2011) 

TA-MWCNTs Distilled 
Multi 

elemental 

La 
Tb 
Lu 

40 x 103 5 20 1 50 x 102 
5.35 mg/g, 
8.55 mg/g, 
3.97 mg/g 

(Chen et al., 
2008) 

MWCNTs-oxidized Distilled 
Mono 

elemental 
Eu 

0.03 x 103 
NaClO4= 

0.001, 0.01, 
0.1 mol/L 

6 25 48 6 x 102 
98 % 

for all the ionic 
strengths 

(Li K. et al., 
2015) 

mIIP-CS/CNT 
composite 

Distilled 
Multi 

elemental 
Gd b 10 x 103 7 43 4 20 x 102 c 121.51 mg/g 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
V (solution) 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Tong et al., 
2011) 

TA-MWCNTs Distilled  
Mono 

elemental 
La 40 x 103 5 20 1 

50 x 102  
(with 0.12x102 

being TA) 
75 % 

(Tong et al., 
2011) 

TA-MWCNTs Distilled  
Multi 

elemental 
(La, Tb, 

Lu) 
40 x 103 1.5-4 20 1 50 x 102 0.4-6.0 mg/g 

(Fan et al., 
2009) 

MWCNTs-oxidized Ultrapure  
Mono 

elemental 
Eu 0.99 x 103 

5 
(2-8) 

25 96 6 x 102 90 % 

(Chen et al., 
2009) 

MWCNTs/Fe3O4 
composite 

Ultrapure  
Mono 

elemental 
Eu a 

0.061 x 103 
NaClO4= 
0.1 mol/L 

5.5 25 48 6 x 102 ~ 100 % 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Mono 
elemental 

Y 1000 x 103 – 30 8 1000 x 102 95 % 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Mono 
elemental 

Y 
(80-3300) 

 x 103 – 30-65 0-8 1000 x 102 44.09 mg/g 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Multi 
elemental 

Y 
Sm 
 La 

100 x 103 – 30 4 1000 x 102 
 94 % 
82% 
30% 

a Adsorptions experiments under N2 conditions.  
b Gd3+ adsorption experiments with two competitive ions (La3+ and/or Ce3+). 
c10 mg of IIP-CS/CNT (or NIP-CS/CNT) and 30 mg of SiO2@Fe3O4 were added into a vial, which contained 20 mL of REEs.  
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Recovery of rare earth elements using other carbon materials 
Table II-C has the studies of the REEs recovery using the other types of carbon 

materials which do not belong to the graphene or carbon nanotubes families (activated 

carbon, fullerenes, carbon dots, mesoporous carbon, carbon nanofibers and carbon black). 

This review is focused in batch experimental studies whereby there are a few studies in the 

literature that are not been explored in this review because they are column experiments 

(Agrawal, 2007; Chen et al., 2007a, 2007b; Pyrzynska et al., 2016). However, it was possible 

to verify that carbon nanotubes and carbon nanofibers are the most used materials for column 

experimental studies. 

It is possible to observe that all the studies were performed in Milli-Q, with the 

exception of two studies performed by Gad and Awwad (2007) that used laboratory 

wastewaters beyond Milli-Q water and Marwani et al. (2017) that used distilled water, tap 

water, lake water and seawater. Regarding the contact time between the nanocomposite and 

the rare earth solution there was a widely range of times used, nevertheless, there are no 

studies published over 48 hours (Sun et al., 2012) and the majority of the studies performed 

had a duration time of 1 and 24 hours (Gad and Awwad, 2007; Marwani et al., 2017; Smith 

et al., 2016). In the case of the temperature, there was also a widely range used such as 20, 

25, 40, 60 and 80 ºC, but most of reported studies were performed at room temperature, 25 

ºC.  

The most used material was activated carbon. In addition to these carbon materials, 

several studies used different types of functionalizations to improve the efficiency and to 

increase the maximum adsorption capacity of the material. It is possible to find, in the 

literature, ratios mass of sorbent per volume of solution between the minimum of 3 and 25 

mg/L and the maximum of 5 000 mg/L for the REEs recovery, however, the m/v ratio most 

reported in the literature was 1 000 mg/L. The study of Smith et al. (2016) reported the 

lowest values of sorbent mass/volume (3 and 25 mg/L), which was used in the recovery of 

La(III), Ce(III), Nd(III), Sm(III) and Y(III) in multielementar solutions and at natural pH. 

Finally, the material with the highest maximum adsorption capacity (qm) of REEs reported 

in the literature to the date was oxygen and phosphorus functionalized nanoporous carbon 

with 335.5 mg/g and 344.6 mg/g achieved of Nd and Dy, respectively, at pH 6.1 and 6.6 in 

multielementar solution (Saha et al., 2017). However, the best removal achieved was 99.60% 

of La by BETADHBA functionalized activated carbon at pH 6 (Saha et al., 2017). 
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In REEs sorption studies using the carbon composites of these section, it is easily 

perceptible that there are a higher number of studies using multielementar systems when 

compared with the number of the REEs sorption studies using GO composites, since there 

are at least two times more studies in this section that were performed in multi-elemental 

solutions when compared with the studies performed in monoelementar solutions. The 

elements most studied were La(III), Nd(III) and Eu(III). As for the rare earth concentration, 

a wide variety of intervals are published, as shown in table II-C. Most of the studies to the 

date have used concentrations between the minimum of 0.3 µg/L (Perreault et al., 2017) and 

the maximum of 300 000 µg/L (Kilian et al., 2017), however, most of the concentrations 

used were 50 000 and 100 000 µg/L. The studies that used lower concentration values, 

namely 70 µg/L of Sm(III), in monoelementar solutions, was the study of Perreault et al. 

(2017), which also used 0.3 µg/L for different REEs like La(III). Concerning the pH, the 

rates of rare earth adsorption are once again strongly pH dependent, so the maximum 

adsorption values of REEs using these types of composites are highly dependent on the 

chosen working pH. The most used working pH were 5 and 6; also, the lowest pH used was 

2 (Gad and Awwad, 2007; Kilian et al., 2017; Perreault et al., 2017) whereas the highest 

working pH chosen was 7 (Saha et al., 2017; Smith et al., 2016). A clear example that 

evidences this pH dependence on REEs adsorption is the study of Gad and Awwad (2007) 

which got an increase of adsorption capacity from 20 mg/g at pH 2 for 32 mg/g at pH 5, 47 

mg/g at pH 6 and 50 mg/g of Eu at pH 7. Furthermore, the study of Marwani et al. (2017) 

demonstrate an increase of sorption rate from 40% of La(III) at pH 4 to 85% at pH 5 and 

99.60% at pH 6. This study reported the best sorption rate in the literature. Finally, the 

material with the highest maximum adsorption capacity (qm) of REEs reported in the 

literature to date was oxide and phosphorous functionalized nanoporous carbon with 344.6 

mg/g of Dy achieved (Saha et al., 2017); and, the best maximum adsorption capacity by an 

activated carbon was BETADHBA functionalized activated carbon (AC-BETADHBA) with 

144.80 mg/g for La(III) (Marwani et al., 2017). 
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Table II  C - Recovery of REEs using other carbon materials (Activated Carbon, Fullerene, C-Dots, Carbon Black, Mesoporous Carbon, Carbon 

nanofibers) and the respectively experimental conditions used as reported in the literature. Note that in this table it is only presented the best results 

and consequently the optimal experimental conditions (see complete table in attachments present in chapter 6, table A3). 

Ref. Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
V(solution) 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Sun et al., 
2012) 

AC 
(Activated Carbon) 

Ultrapure 
Mono 

elemental 
Eu 

10 x 103 

NaClO4= 
0.01 mol/L 

4.5 25 48 2 x 102 20 mg/g 

(Saha et al., 
2017) 

Phosphorous functionalized 
nanoporous carbon 

Ultrapure 
Multi 

elemental 
Nd 
Dy 

0.5 x 103 
6.1 
6.6 

25 4 10 x 102 
Nd= 335.5 mg/g 
Dy= 344.6 mg/g 

(Smith et 
al., 2016) 

F-CCB 
(Functionalized 

commercial carbon black) 

Ultrapure 
Multi 

elemental 

La, Ce, 
Nd, Sm, 

Y 

100 x 103 

Natural 
pH 

25 24 0.25 x 102 
La = 15 %, Ce = 41 % 

Nd = 22.5 %, Sm = 14 % 
Y = 17 % 

RTCB 

(Recycled tire carbon black) 
100 x 103 80 24 0.5 x 102 

La= 69%, Ce = 90% 
Nd = 75%, Sm = 75% 

Y = 75% 

RTCB 
(Recycled tire carbon 

black) 
20 x 103 25 12 0.5 x 102 

La = 60%, Ce = %, 95% 
Nd = 83%, Sm = 88% 

Y = 77% 

RTCB 
(Recycled tire carbon 

black) 
20 x 103 80 12 0.5 x 102 

La = 75%, Ce = 95% 
Nd = 91%, Sm = 95% 

Y = 90% 

RTCB 
(Recycled tire carbon 

black) 
100 x 103 60 24 0.5 x 102 

La= 51.5%, Ce = 90% 
Nd = 70%, Sm = 72% 

Y = 70% 
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Ref.   Sorbent 

Type of 

water 

Type of 

system 

REEs 

(III) 
[REEs]0 

(µg/L) pH T (ºC) 

Time of 

contact(h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Gad and 

Awwad, 

2007) 

H-APC AC 

(HPO4-APC activated 

carbon) 

Ultrapure 
Mono 

elemental 
Eu 50 x 103 5 20 2 

5 x 102 

17.5 x 102 
60 % 
93 % 

H-APC AC Ultrapure 
Mono 

elemental 
Eu 50 x 103 7 20 2 10 x 102 50 mg/g 

H-APC AC Ultrapure 
Mono 

elemental 
Eu 50 x 103 5 20 2 10 x 102 29 mg/g 

H-APC AC 
Laboratory 
wastewaters 

Mono 
elemental 

Eu - 5 20 0.7 25 x 102 99.10 % 

(Marwani 
et al., 2017) 

AC-DETADHBA Distilled 
Multi 

elemental 
La 5 x 103 6 25 1 25 mg* 99. 60%, 144.80 mg/g 

AC-COOH Distilled 
Multi 

elemental 
La 5 x 103 6 25 1 25 mg* 89.50 mg/g 

AC-DETADHBA Tap water 
Mono 

elemental 
La 10 x 103 6 25 1 25 mg* 100 % 

AC-DETADHBA Lake water 
Mono 

elemental 
La 

5 x 103 
10 x 103 

6 25 1 25 mg* 
100 % 
100 % 

AC-DETADHBA Seawater 
Mono 

elemental 
La 10 x 103 6 25 1 25 mg* 99.65 % 

(Perreault 
et al., 
2017) 

CMK-8-O 
(CMK-8-Oxidezed) 

Ultrapure 
Multi 

elemental 
Sm 0.07 x103 2.6 r.t. 0.5 10 x 102 14 mg/g 

CMK-8-DGO 
(DGO: diglycolyl-type 

organic) 
Ultrapure 

Multi 
elemental 

La 
0.0003 
x103 

2.6 
3.8 
5.7 

r.t. 4 10 x 102 
23 mg/g 
27 mg/g 
22 mg/g 

*There are not any mention of the volume of REEs solution used.  
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1.8. Hypothesis of work and objectives  

 The main goals of this master thesis are to draw attention to the growing problem of 

e-waste and to change the misconception currently associated with e-waste: a nightmare for 

business and governments, which need to manage and treat it. In the near future, e-waste 

will no longer be an expense for companies and governments and will become a source of 

profit; but, for this, we must invest in the research of technologies and methods for recovery 

of TCEs. 

 

The objectives are: 

 Synthesize, functionalize and characterize carbon-based nanocomposites; 

 Evaluate the efficiency of the different carbon-based materials in the recovery of 

REE; 

 Evaluate the influence of the experimental conditions (mass of sorbent, ionic 

strength, time of contact) in order to visualize which are the key parameters for rare 

earth recovery. 

 Identify a material able to recovery efficiently rare earth elements from contaminated 

wastewaters 

 

  



31 

 

 

 

 

 

Chapter 2 

 

 

 

 

 

 

Materials and methods 
 

 

 

 

 

 



32 

 

2.1. Reagents and solutions 

Chemicals were readily available from commercial sources and were used as 

received without further purification: Ammonium hydroxide solution (NH3 in H2O, 25%, 

Riedel-de-Häen), Ethanol (C2H5OH, >99%, Panreac), Humic acid sodium salt (technical 

grad, Sigma-Aldrich), Iron(II) sulfate heptahydrate (FeSO4.7H2O, >99%, Merk), Graphene 

Oxide (0.4% wt, Graphenea, Spain), Polyethylenimine (PEI, Fluka, analytical standard 50%, 

w/v in water, CAS Number: 9002-98-6), Chitosan (Aldrich, CAS Number 9012-76-4), 

Graphite powder (EDM, 99.95% of % C, Graphit Kropfühl GmbH), Nitric acid (HNO3, 

puriss. p.a., 65%, Merck), Potassium hydroxide (KOH, >98%, Pronolab), Potassium nitrate 

(KNO3, >99%, Merk), Sodium hydroxide (NaOH, >98%, Pronolab), N,N-

Dimethylformamide (DMF, 99.50%, Carlo Erba).  

Rare earth(III) multi-element solutions were prepared by adding required volume of 

a certified reference solutions (1000 µg/L; Alfa Aesar Specpure®, plasma standard solutions 

in 5% HNO3 for La, Eu; Gd, Tb, Dy and Y; Inorganic VenturesTM, certified reference 

materials for ICP in 3.5% HNO3 for Nd and Ce) to different matrixes: ultrapure Milli-Q 

water (produced by a Millipore system), mineral water (Serra da Estrela mineral water) and 

filtered real saline water (salinity 15). 

 

2.2. Chemical synthesis of the nanomaterials 

2.2.1. Synthesis of magnetic exfoliated graphite functionalized with humic 

acids 

The synthesis of magnetic exfoliated graphite functionalized with humic acids 

(MEG-HA) was based on previous reports (Oliveira-Silva et al., 2014; Paul et al., 2015). 

Firstly, the exfoliated graphite was made and then the growth of magnetite (Fe3O4) 

nanoparticles and humic acids functionalization on the exfoliated graphite were carried out 

through the co-precipitation method. 

The exfoliation of graphite was done by ultrasonic treatment (Sonics Vibra Cell 

Sonicator, VC70, 130 W, 20 kHz) in N,N-dimethylformamide (DMF). Briefly, 5.0 g of 

graphite powder was sonicated in 100 mL of DMF for 5 hours using a 250 mL glass beaker 

and kept under ice bath (0-5 ºC). Then, the mixture was centrifugated at 5000 rpm for 20 

min, for purification (to separate the exfoliate graphite from the non-exfoliated graphite). 
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After centrifugation, exfoliated graphite (EG) was filtrated under vacuum and dried at room 

temperature. The desired product (EG) was obtained as a black powder. 

Magnetic iron oxide NPs with an average size of 50 nm were synthesized by 

oxidative hydrolysis of iron(II) sulphate in alkaline conditions followed by the coating of 

the material (MEG) with humic acid, as follows. Ultrapure water was first deoxygenated 

with N2 under vigorous stirring for 2 hours. Then, 1.90 g (34 mmol) of KOH and 1.52 g (15 

mmol) of KNO3 were added to 25 mL of deoxygenated water using a 250 mL round flask. 

This mixture was heated at 60ºC, under N2, and mechanically stirred at 500 rpm. After total 

dissolution, 25 mL of an aqueous solution of FeSO4.7H2O (4.75 g, 17 mmol) and EG (200 

mg) previously mixed and dispersed was added drop-by-drop to the mixture and mechanical 

stirring was increased to 700 rpm. Immediately thereafter, 25 mL of and aqueous solution of 

humic acids (200 mg) was added to the mixture. The solution reacted for 30 minutes. After 

reaction, the round flask was transferred to a hot oil bath at 90 ºC under N2, but without 

stirring, for 4 hours. Finally, the resulting black powder was washed several times with 

deoxygenated water and ethanol. After washing, particles were dried by evaporating the 

solvent in an oven at 40ºC. 

 

2.2.2. Synthesis of graphene oxide functionalized with poly(ethyleneimine) 

The synthesis of graphene oxide functionalized with poly(ethyleneimine) (GO-PEI) 

was based on previous reports (Cai et al., 2012; Girão et al., 2016). Briefly, a 

poly(ethyleneimine) (PEI) solution was prepared in distilled water and acetic acid aqueous 

solution (1% v/v) with a concentration of 5 mg/mL. Then, graphene oxide water dispersion 

was directly mixed with the PEI solution with a ratio of 24 % w/w (GO/PEI) and before 

shaking, the pH of the reaction was adjusted to 2.  After that, the solution was then rapidly 

shaken for 10 seconds to form a hydrogel. After synthesis, the hydrogel was freeze-dried by 

lyophilization (Telstar lyoQuest HT-40, Beijer Electronics Products AB, Malmoe, Sweden) 

at -80 ºC obtaining three dimensional (3D) porous structures. The lyophilized sample was 

then washed in ultrapure water for 12 hours to remove acidic residues. Finally, the samples 

were freeze-dried again.  

 



34 

 

2.2.3. Synthesis of graphene oxide functionalized with chitosan 

The synthesis of graphene oxide functionalized with chitosan (GO-CH) was based 

on previous reports (Girão et al., 2016). The experiment above was repeated but, in this 

synthesis, GO was directly mixed with chitosan to prepare GO-CH. 

 

2.3. Characterization of the materials 

In order to confirm the identity of the materials involved in this work and to 

determine some of its characteristics, a large number of characterization techniques were 

used.  

 

2.3.1. General characterization methods 

Fourier Transform Infrared (FT-IR) spectra (in the range 4000-350 1/cm) were 

recorded as KBr pellets (typically 2 mg of the sample were mixed in a mortar with ca. 200 

mg of KBr) using a Bruker Tensor 27 spectrometer by averaging 256 scans at a maximum 

resolution of 4 1/cm. FT-IR spectra (in the range 4000-350 1/cm) were also recorded by 

directly placing of the samples on the diamond crystal unit of Reflectance Total Attenuated 

(ATR), using a Bruker Tensor 27 spectrophotometer after 256 scans with resolution of 4 

1/cm. 

Routine Power X-Ray Diffraction (PXRD) data for all materials were collected at 

ambient temperature on a Empyrean PANalytical diffractometer (Cu K1,2 X-radiation, λ1 = 

1.540598 Å; λ2 = 1.544426 Å), equipped with an PIXcel 1D detector and a flat-plate sample 

holder in a Bragg-Brentano para-focusing optics configuration (45 kV, 40 mA). Intensity 

data were collected by the step-counting method (step 0.04º), in continuous mode, in the ca. 

3.5 ≤ 2θ ≤ 50º range. 

Raman spectra were obtained using a combined Raman-AFM-SNOM confocal 

microscope (alpha 300 RAS+, WITec, Germany). Nd:YAG laser operating at 532 nm was 

used as excitation source. The power of the laser was varied from 0.1 to 1 mW, in order not 

to damage/heat the sample.   

For STEM (Scanning Transmission Electron Microscopy) analysis, samples were 

prepared by evaporating dilute suspensions of the nanocomposite on a copper grid coated 

with an amorphous carbon film. Experiments were performed on a HR-FESEM SU-70 

Hitachi instrument operating at 25 kV. 
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Brunauer-Emmet-Teller (BET) surface area analyses were performed on an 

automated surface area analyser (Micromeritics Gemini 2380) by means of nitrogen 

adsorption-desorption.  

Magnetic properties of the nanomaterial were studied by performing measurements 

of hysteretic cycle using the VSM magnetometer at room temperature (~ 293K). The 

magnetization was normalized to the total mass of the sample. 

Isoelectric point of nanomaterial was determined by zeta potential measurements, 

using a Zetasizer Nano ZS (Malvern Instruments). A solution of nanomaterial was prepared 

in ultrapure water. The pH of the solution was adjusted for different pH (between 2 and 10) 

using NaOH or HNO3 solutions. Furthermore, the temperature was fixed at 25ºC and three 

replicate measurements of zeta potential were performed for each sample. 

Termogravimetric analyses (TGA) were carried out using a Shimadzu TGA 50, from 

ambient temperature to ca. 800 ºC, with a heating rate of 5 ºC/min, under a continuous stream 

of air at flow rate of 20 mL/min. 

The concentration of all elements (rare earth elements(III) – Y, La, Ce, Nd, Eu, Gd, 

Tb, Dy and other interpretative elements such as iron, manganese, calcium, cupper, 

potassium, magnesium and sodium) were performed by Inductively Coupled Plasma-Optical 

Emission Spectometry (ICP-OES), on a Horiba Jobin Yvon Activa M spectrometer with a 

Burgener MiraMist nebulizer (1.0 mL/min), peristaltic sample delivery pump, argon flow 

plasma of 12 L/min, sheath gas of 0.8 L/min and algorithm background correction. The 

elements content in the materials were also determined by ICP-OES. Briefly, about 20 mg 

of sample were accurately weighted into an acid-washed Teflon reactor; then 3 mL of HNO3 

(70%) were added, and reactors were placed on a CEM - MDS-81D microwave digestion 

system (equipped with 13 pressurized vessels) at 60 °C for 30 min, and then at 100 °C for 

15 min (Monterroso et al., 2003). After digestion, samples were diluted with ultrapure water 

and then analyzed by ICP-OES. 

 

2.4. Sorption experiments to evaluate the removal/recovery of rare earth 

elements 

The efficiency of the synthesized materials to remove REE(III) from aqueous 

solutions (ultrapure, mineral and saline waters) was evaluated by performing batch 

(discontinuous) experiments. In these experiments, the effect of mass of sorbent used and 
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the effect of increasing the ionic strength of the solution in the recovery of rare earth elements 

were evaluated.  

 

2.4.1. Washing of the material used 

All the glass material used in the sorption tests was properly washed before and after 

use to avoid possible contaminations and to minimize the impact of solute losses which can 

be very significant in case of low rare earths concentrations. In a first step all the material 

was washed with tap and distilled water. Then, it was placed in HNO3 25% (v/v) for 24 

hours. After that, the material was washed again several times with distilled water. Finally, 

all material was dried at room temperature and protected from the air. The SCHOOT bottles 

used for the sorption tests were also washed with the matrix further used in the experiments. 

 

2.4.2. Experimental conditions 

In order to study the behaviour of the different materials firstly synthesized in this 

work (exfoliated graphite with different oxidation levels), a set of preliminary experiments 

were carried out. The sorbents tested were: i) Commercial Graphite (GC); ii) Magnetic 

Commercial Graphite (MGC); iii) Exfoliated Graphite of 5 hours (EG-5h); iv) Magnetic 

Exfoliated Graphite of 5 hours (MEG-5h); v) Exfoliated Graphite of 9 hours (EG-9h); vi) 

Magnetic Exfoliated Graphite of 9 hours (MEG-9h); vii) Magnetic Graphene Oxide (MGO) 

and viii) Magnetite (Fe3O4). However, these experiments were not continued due to the low 

efficiency of the materials towards the recovery of REEs under the defined conditions and 

no information’s regarding these materials is shown in the thesis. 

Since the results obtained from the previous experiments were not as desired (high 

recovery rates), three new materials were tested in order to try to obtain better sorption rates. 

The materials chosen were magnetic exfoliated graphite functionalized with humic acid 

(MEG-HA), graphene oxide functionalized with 25% of polyethylenimine (GO-PEI) and 

graphene oxide functionalized with chitosan (GO-CH). The experimental conditions used in 

each test are described below: 

 Elements in study – REE(III): Yttrium (Y), Lanthanum (La), Cerium (Ce), 

Neodymium (Nd), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium 

(Dy). 
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 Initial concentrations (µg/L)*:  

Y=58.50  La=91.41  Ce=92.20 

 Nd=94.92  Eu=100.00  Gd=103.48 

 Tb=104.58  Dy=106.93  

*Theses concentrations values correspond to an initial concentration of 100 µmol/L for 

the elements. 

 Mass per volume ratio: 50 and 100 mg/L. 

 Type of water: ultrapure water from Milli-Q water, mineral water from Serra da 

Estrela water and filtered real saline water (salinity 15). 

 Contact time:  

- To test the effect of dose of sorbent: 0, 1 and 24 hours. 

- To perform the kinetic studies: 0, 0.25, 0.5, 1, 3, 6, 12, 24 and 48 hours. 

 Initial pH: 5.5±0.1 

 Technique used for the separation of the solid from the water: magnetic 

separation (in the case of MEG-HA) and filtration (to the GO-PEI). 

 

Results from materials comparison and mass effect were expressed in terms of 

recovery efficiency (𝑅𝑒𝑐 (%)), eq. 1): 
 

Rec (%) =
(஼బି ஼೟)

஼బ
× 100      (1) 

where 𝐶଴ and 𝐶୲ (both µg/L) are the initial and at time t concentration of each element in 

solution. 

Kinetics of REE removal process was studied by exposing 50 and 100 mg of 

nanomaterials to 1 L of multi-elemental solutions of La(III), Ce(III), Nd(III), Eu(III), 

Gd(III), Tb(III), Dy(III) and Y(III) (solutions pH adjusted to ca. 5.5), and by collecting 10 

mL of water at pre-defined times (0, 0.25, 0.5, 1, 3, 6, 12, 24 and 48 hours). The kinetic 

results were expressed in terms of normalized concentration (𝐶୲ 𝐶଴)⁄  and solid loadings (eq. 

2) at time t, qt (µg/g): 
 

𝑞௧ =
(஼బି ஼೟)

୫
× 𝑉       (2) 

 

where 𝑉 and 𝑚 are respectively the volume of solution (L) and the mass of composite (g).  
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Equilibrium of rare earth recovery process was studied by exposing different 

amounts (50 and 100 mg/L) of composite to multi-elements solutions of the REEs in study 

(solutions pH adjusted to 5.5±0.1) during 24 hours. Results were expressed as solid loading 

at equilibrium, using Eq. 2 where 𝑞୲ = 𝑞ୣ and 𝐶௧ = 𝐶ୣ. 

All experiments were performed in duplicate and with controls running in parallel 

with the experiments and under the same experimental conditions. Solution pH was 

monitored at the beginning and end of the essays.  

 

2.4.3. Kinetic models 

The kinetics of the rare earth recovery from the multi-elemental solution was 

investigated and the experimental results were interpreted by three of the most used kinetic 

models (Cardoso et al., 2013; Figueira et al., 2017; Lopes et al., 2014; Tavares et al., 2012): 

i) Lagergren or pseudo-first order equation (Lagergren, 1898), ii) pseudo-second order 

equation (Ho and McKay, 1999) and iii) Elovich model (Aharoni and Tompkins, 1970). 

The pseudo 1st order model after the integration is expressed by the equations 3 (3.a 

and 3.b): 

   
ௗ௤೟

ௗ೟
 =  𝑘ଵ(𝑞௘ −  𝑞௧)         (3.a) 

After integration of t = 0 (qt = 0) to t = t (qt = qe), the equation obtained is expressed by: 

 

𝑞௧ = 𝑞௘(1 − 𝑒ି௞భ௧)     (3.b) 

 

qe and qt (mg/g) are the sorbed phase concentration at equilibrium and at time t, respectively, 

and k1 (1/h) is the rate constant of pseudo-first order adsorption. 

 

The pseudo-second order model can predict the system behaviour over the whole 

range of sorption and, is also based on the sorption capacity of the solid (Aksu, 2005; Kumar, 

2006). The kinetics rate law (Ho and McKay, 1999) is described by equations 4 (4.a and 

4.b): 
ௗ௤೟

ௗ೟
 = 𝑘ଶ(𝑞௘ − 𝑞௧)ଶ    (4.a) 

where k2 (g/mg/h) is the rate constant of pseudo-second order sorption. After the integration 

with the initial condition (t = 0, qt = 0), the obtained equation (4.b) is expressed by: 
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𝑞௧ =
௤೐

మ௞మ௧

ଵା௤೐௞మ௧
     (4.b) 

 

The Elovich model is also a second order model, the equation 5 does not propose a 

defined mechanism for the sorbent-adsorbate process and it is described by: 

 

     𝑞௧ = ቀ
ଵ

ఉ
ቁ ln (1 + αβt)    (5) 

 

where α and β are, respectively, the initial sorption rate, and the desorption constant. 

All models previously described were tested to study the sorption of chosen REEs 

and on the MEG-HA and GO-PEI composites using the GraphPad Prism 7 program. 

 

2.4.4. Quantification of rare earth elements by inductively coupled plasma - 

optical emission spectrometry 

The inductively coupled plasma - optical emission spectrometry (ICP-OES) is a 

technique used for the quantitative determination of elements at concentration levels varying 

from the higher concentrations values to mg/L and even μg/L in several matrices such as 

soils, sediments, waters, food, and others. This technique of atomic emission consists of the 

excitation of atoms and ions that emit energy upon returning to the fundamental state at 

characteristic wavelengths for each element. The intensity of this emission is indicative of 

the concentration of the analyte in the sample (Murray et al., 2000). 

ICP-OES consists in a radio frequency generator, a plasma inductor, a torch, a sample 

introduction system (including a nebulizer, nebulizer chamber and injector), a collimator 

(lenses and mirrors), a and a detector. The emission phenomenon occurs in the plasma and 

the gas used is Argon, which has a high energy of ionization (15.6 eV), allowing to atomize, 

ionize and excite most of the elements of the periodic table. The main components of an 

ICP-OES are shown in figure 10 (Boss et al., 1997). 
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Figure 9 – Scheme of ICP-OES principal components (Boss et al., 1997). 

 

Quality Control 

Quality control is a requirement for the reliability of the results obtained in ICP-OES 

analysis. Thus, all the results presented in this work accomplished the following criteria. 

First of all, a calibration curve – for further comparation of the analytical signal 

intensity of the sample – is obtained using at least 5 standards with concentrations between 

4 and 100 µg/L. The standards are prepared from a multi-elemental solution; the error of 

each standard has to be less than 10% and the correlation coefficient has to be at least 0.9995. 

The quantification limit considered in the sample analysis was 4 µg/L (the value of 

lower concentration standard) and the detection limit was 1.3 µg/L (one third of the 

quantification limit). 

Additionally, to the calibration curve, it was also analysed a blank, a check standard 

and a replica – to verify the drift of the equipment. Finally, in each set of ten samples, a 

duplicate – to verify the repeatability of the quantification process – and a recovery test – to 

evaluate the matrix interference – are also required. The blank concentration was always 

inferior to 1.3 µg/L; check standard, replica and duplicate were only accepted until a 

maximum error of 10% and the range of accepting of recovery test varied between 85% and 

115%. No certified reference material was used since there is no reference material for REEs 

available in the market. 
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3.1. Structural characterization of the nanomaterials 

After synthesizing the nanomaterials, it was made a set of solid state techniques to 

discover its structure and morphology, namely, Fourier Transform Infrared spectroscopy 

(FTIR), Raman spectroscopy, powder X-ray Diffraction (PXRD), Scanning Transmission 

Electron Microscopy (STEM), BET surface area, thermogravimetry and Zeta potential. 

Magnetic measurements were also performed for the magnetic nanocomposite. 

 

3.1.1. X-ray diffraction  

Single-crystal X-ray diffraction is a key technique to solve the structures of solids. 

However, it was not possible to obtain suitable single crystals, so it was used the powder X-

ray diffraction (PXRD) technique.  

Figure 11 shows the PXRD patterns of nanocomposite used (MEG-HA) and its 

precursors (graphite, exfoliated graphite, Fe3O4 NPs and humic acids). It was not possible to 

obtain the PXRD of GO-PEI and GO-CH composites since they are not crystalline materials. 

2  (degrees)

20 40 60 80

(1 1 1)
(2 2 0)

(3 1 1)

(4 2 2)

(4 4 2)
(5 1 1)(4 4 0)

(0 0 2)
(1 0 1) (0 0 4)

(2 2 2)

 
Figure 10 – Powder XRD patterns of Meg-HA (blue), Fe3O4 (red), humic acid (purple), EG (green) 
and GC (black). 
 

Through the comparison of different PXRD patterns of the isolated compounds that 

compose MEG-HA (EG, Fe3O4 NPs and humic acids (HA)) it was possible to confirm their 

presence in the desired product (MEG-HA) and confirm that the synthesis was performed 

correctly (figure 11). The diffraction pattern of EG (figure 11 – green line) gives a narrow 
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peak (0 0 2) with very high intensity (2θ = 26.5º, corresponding to the interlayer distance d 

= 0.34 nm), characteristic of graphite (GC) (figure 11 – black line). Additionally, the 

broadened graphitic peak observed in EG suggests a decrease in the thickness of the samples 

in comparison to the precursor graphite (figure 11 – black line), confirming the exfoliation 

process (Song et al., 2013). In the diffractogram of Fe3O4 NPs (figure 11 – line red), the 

peaks at 2θ values of 18.19º,30.00º, 35.39º,36.99º,43.06º,53.43º,56.98º and 

62.54º can be assigned to (1 1 1), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1) and (4 4 2) 

Bragg's reflections, respectively, and may be indexed on the face centred cubic structures of 

magnetite (Chomchoey et al., 2010; Girginova, 2009; Shen et al., 2012). The humic acid 

(HA) is an unknown structure, and therefore, the HA diffractogram could not be solved 

(figure 11 – purple line). However, the diffractogram of HA is quite important to confirm 

his presence in final product, MEG-HA (figure 11 – blue line). Through the diffractogram 

of the magnetic nanocomposite, MEG-HA (figure 11 – blue line), it is possible to confirm 

the presence of all the materials despite the overlap of most peaks.  

 

3.1.2. Fourier-transform infrared spectroscopy 

In order to know better the material synthesized it was made a fourier-transform in 

infrared spectroscopy (FT-IR) to see the links between the elements of the composites. FT-

IR spectra of the composite (MEG-HA) (figure 12 – blue line) and the materials that 

compose it were analysed and the results are summarized in the table III. This analysis was 

based on a vibration frequencies table of chemical groups (Socrates, 2004) and in the 

information relating to the characterization of materials presented in Das et al. (2017) and in 

Paul et al. (2015). 

Table II 
Table III – Summary of some of the bands obtained in the FT-IR spectra of the MEG-HA composite 
(its possible correlation with the materials that compose it) and the possible correspondence with 
the vibrations chemical groups. 

FT-IR of MEG-HA composite  

Vibrational mode Position (1/cm) From / Present in 

ν(OH) 3664-3110 All 

Functional groups* 

ν(C=C) 
1627 and 1572 

HA 

EG, GC and HA 

δ(N-H) of NH2 1627 HA 
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ν(C=O) of NHCO 1572 HA 

Aromatic C-N bond 1379 HA 

δ(C-C-C) 1111 HA e GC 

ν(C-O) 1033 HA 

ν(Fe-O) 587 Fe3O4 

*functional groups such as aldehydes, ketones, esters, amide and carboxylic groups 
δ – bending vibration, ν – stretching vibration. 
 

 

Figure 11 – FT-IR spectra of MEG-HA (in blue), Fe3O4 NPs (in red), HA (in orange), EG (in green) 
and graphite (GC, in black). 
 

Despite the difficulty encountered in analysing the spectra and assigning the peaks 

to their precursors due to the overlap of the bands, it is possible to conclude, even by 

comparison of the spectra, that the synthesis was successful and all the precursors are present 

in the final product, MEG-HA. 

Figure 13 illustrates the FT-IR spectra of GO-CH (in green) and GO-PEI (in black) 

and its analyses was summarized in table IV.  
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Table IV – Summary of some of the bands obtained in the FT-IR spectra of the GO-PEI and GO-CH 
composites and the possible correspondence with the vibrations chemical groups. 

Vibrational mode Position (1/cm) Present in 

broad ν(OH) 

 overlapping ν(NH2) 
3525-3010 

GO-CH 
δ(N-H) of NH2 1613 

δ(C-H) 1379 

ν(C-O-H) 1257 

ν(C=O) of NHCO 1052 

broad ν(OH)  

overlapping ν(NH2) 
3710-3059 

GO-PEI 

νasym(CH2) 2967 

ν(-CH2CH2NH-) 2932 

νsym(CH2) 2861 

C-H2 symmetry shrinkage 2359 and 2343 

Imide group 

ν(O=C-N-C=O)* 1716 

δ(NH2) + ν(CH) 1386 

ν(C-O-C) 1110 

ν(C-N) and δ(C-N) 777 

ω(-NH) 617 

δ – bending vibration, ν – stretching vibration, νasym – asymmetric stretching vibration, νsym – 
symmetric stretching vibration, ω – wagging. 
* Typical of imide carbonyl asymmetric and symmetric stretching vibration 

 

 

Figure 12 – FT-IR spectra of GO-CH (in green) and GO-PEI (in black). 
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Based on a vibration frequencies table of chemical groups (Socrates, 2004) and in 

the information relating to the characterization of materials presented in Itta and Tseng 

(2011), Kumirska et al. (2010), Yasmeen et al. (2016) and Zhang et al. (2016), it is possible 

to conclude that the nanocomposites were well synthesized. 

 

3.1.3. Electron microscopy 

Figure 14 illustrates the scanning electron microscopy images of GO-CH and GO-

PEI composites. The samples were prepared by deposition in aluminium sample holder and 

with carbon coating.  

 

  

Figure 13 – SEM images of GO-CH (left) and GO-PEI (right). 

 

The images show that the structures present similarities (due to the presence of 

graphene oxide nanosheets), namely a high degree of crosslinking, which results in a large 

surface area. It is also possible to observe that all structures are semi-transparent.  

STEM images of MEG-HA were not acquired in this work, however, according BET surface 

area results, it seems that this material is smaller (in terms of size) than GO-PEI and GO-

CH. 

3.1.4. Raman spectroscopy 

Figure 15 illustrates the Raman spectra of GC, EG, Fe3O4, MEG-HA and GO-PEI. 

Raman is a non-destructive technique sensitive to geometric structures and so can be used 

in the study of allotropes of carbon as they differ only in the nature of bonding and position 

of the carbon atoms.  
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Figure 14– Raman spectra of MEG-HA (blue), Fe3O4 (red), EG (green) and GC (black) in the left 
image and GO-PEI (orange) in the right image. 

 

The spectra of GC and EG exhibit simple structures characterized by two main bands 

(G- and 2D-bands, the Raman signature of graphitic sp2 materials) in GC and a third band in 

the EG ascribed to the D mode that is induced by structural disorder (in this case defects and 

impurities in the carbon lattice, introduced during the ultrasonic treatment). The sharp and 

intense band that appears at around 1580 cm-1 in both GC and EG spectra, is the G band that 

corresponds to the first-order scattering of the E2g mode of the sp2 carbon atoms in a 2D 

hexagonal lattice (Zhang et al., 2013). Since this band arises from the stretching of the C-C 

bond in graphitic materials, is common to all sp2 carbon systems. Another band that appears 

in the Raman spectra of all kinds of sp2 carbon materials, usually between 2500 and 2800 

cm-1, is the 2D band, and results of a second-order two-phonon process. The D band (sp3 

carbon) at 1344 cm-1 in the EG spectrum and its inexistent in the GC spectrum, is related to 

the presence of structural defects that were introduced during the ultrasonic treatment. 

Moreover, the intensity of the G band is much higher than the one of D band for EG 

indicating a low number of defects in the sample. Indeed, the ratio of the D to G band (ID/IG) 

is a very useful tool to evaluate the change of defects in the carbon framework (Araújo et 

al., 2017).  

The spectrum of MEG-HA keeps the signature of graphitic sp2 materials (G and 2D 

bands), together with the D band associated with structural defects in the carbon lattice, and 

a peak at 670 cm-1 ascribed to magnetite nanoparticles (Fe3O4) (Chourpa et al., 2005). In 

comparison with the EG spectrum the ID/IG ratio is larger in the MEG-HA. As ID/IG ratio is 

proportional to the average size of the sp2 carbon domain, an increase in the ID/IG value is 

attributed to the introduction of defects and to the conversion of sp2 to sp3 carbons. 



48 

 

The spectrum of GO-PEI shows clearly the D and G bands. The main feature of this 

spectrum is that the ID/IG ratio is higher than 1 (higher domain of sp3 carbons) characteristic 

of graphene oxide, while in the MEG-HA the same ratio is lower than 1. 
 

3.1.1. BET surface area 

Table V shows BET surface area, pore volume and the pore diameter of the 

nanocomposites used in this work (GO-PEI, GO-CH and MEG-HA).  
 

Table V – Values of BET surface area (m2/g), pore volume (cm3/g) and pore diameter of the different  

 
 

Through the analysis of these results, it was verified that the MEG-HA has the largest 

BET surface area (35.6 m²/g) from the three composites. These results indicate that the 

MEG-HA is smaller than the other two composites, since the surface area increases with the 

decreasing of the material size. 
 

3.1.2. Magnetic properties 

Figure 16 shows the results of magnetic measurements performed for the magnetic 

composite.  

 

Figure 15 – Magnetization curve of the MEG-HA composite (in left (a)) and its magnification (in right 
(b)) as a function of the magnetic field for MEG-HA composite. 
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As it can be seen it the left image, the magnetization presents a fast approach to 

saturation in the presence of an external magnetic field (reaching saturation for about 1 kOe). 

The estimated saturation magnetization, at 300 K, is about 76 emu/g. The coercive field (Hc) 

for the MEG-HA composite is 36 Oe, at room temperature, which evidences ferrimagnetic 

behaviour characteristic of magnetite nanoparticles in this size range (Batlle and Labarta, 

2002). The low value of Hc indicates that the material is easily demagnetized. 

 

3.1.1. Zeta potential 

Zeta potential is a physical parameter, which can be used to quantify the electrical 

potential of the solid particle surface at different pH level. This technique is usually used to 

determine the isoelectric point (or the point of zero charge) of the nanomaterials.  

 

 

Figure 16 – Zeta potential of MEG-HA (a), GO-CH (b) and Go-PEI (c) composites. 
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Through the potential zeta analysis of MEG-HA (figure 17, a)), it was verified that 

the surface charge of MEG-HA is only positive at very low pH values since the isoelectric 

point is a pH = 2.49. From the pHPZC, the zeta potential remained negative under the pH 

studied. 

In contrast, the zeta potential of GO-CH (figure 17, b)) remained positive over a 

broad pH range (2.8-6.5) and negative between 6.7 and 11.0 The isoelectric point determined 

was at pH = 6.60. 

Lastly, the zeta potential of GO-PEI was also negative over the almost investigated 

pH range (figure 17, c)). The isoelectric point was achieved at pH=2.65). 

 

3.1.2. Thermogravimetry 

The thermal behaviour of MEG-HA composite (figure 18) and GO-PEI composite 

(figure 19) was investigated between ambient temperature and ca. 800 ºC from 

thermogravimetric analysis.  

 

 

Figure 17 – Thermogram of the MEG-HA composite 

 

From the thermogravimetric curve of MEG-HA it is possible to observe three weight 

losses: the first (of ca. 0.5%) occurs up to 100 ºC which indicates the presence of water, the 
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second (of ca. 4%) occurs (between ca. 265 ºC and 400 ºC) and the third weight loss (of ca. 

9.5%) occurs between ca. 500 ºC and 790 ºC. These losses are related with the decomposition 

of the organic components. Note that this material shows an outstanding high thermal 

stability which can be a great advantage over other materials in applications that requires 

more severe conditions. 

 

 

Figure 18 – Thermogram of the GO-PEI composite 

 

From the thermogravimetric curve of GO-PEI it is possible to observe four weight 

losses: the first (of ca. 16%) occurs up to 100 ºC which indicates the presence of water. Then, 

between ca. 125 ºC and 380 ºC occurs the decomposition of the ethyleneimine polymer with 

a weight loss of ca. 28% which is in agreement with the data found in the literature (Zhang 

et al., 2016) and the last weight loss (of ca. 45%) occurs between ca. 500 ºC and 760 ºC 

which are related to the decomposition of the GO leading to the collapse and total 

degradation of the material. This thermogram indicates that the synthesis of GO-PEI was 

successful. Note that TGA of GO-CH were not acquire since this material was not studied 

with detail in this work. 

 

3.2. Sorption experiments to evaluate the recovery of rare earth elements 

After the synthesis and characterization of the nanomaterials (MEG-HA, GO-PEI 

and GO-CH), its efficiency was studied in the removal and recovery of rare earth elements 
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present in aqueous solutions. In this work, recovery studies using multi-element solutions of 

REEs (La, Ce, Nd, Eu, Gd, Tb, Dy and Y) were carried out. For this purpose, the following 

tests were performed: (i) evaluate the influence of the amount of sorbent mass, (ii) evaluate 

the effect of salinity and (iii) study the kinetic behaviour of the recovery process. The results 

presented were calculated through equation 1. All experiments were performed at an inicial 

pH ca. 5.5. This work pH was choose because  the pH of common wastewater from REE 

mines and refineries is usually about 6 or less (Chen et al., 2014b). However, other REEs 

recovery applications from e-waste can work at lower pH values. In order to facilitate the 

discussion among the rare earths elements, such as, the different behaviours evidenced in the 

analysis of the results, the REEs were grouped in three categories: light REE (LREE: La, Ce 

and Nd), medium REE (MREE: Eu and Gd) and heavy REE (HREE: Tb, Dy and Y). 

 

 

3.2.1. Effect of amount of sorbent 

The effect of the amount of sorbent in the recovery of REE(III) was studied, since it 

is an important parameter to evaluate the sorption capacity of the materials. For this purpose, 

the masses of sorbent used were 50 and 100 mg/L while the other experimental conditions 

were kept the same. In Figure 20, it is possible to observe the recovery (%) of REEs [100 

µmol/L] from ultrapure water at pH ca. 5.5 and room temperature, using the three 

nanocomposites after 1 and 24 hours of contact time. 
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Figure 19 – Recovery percentages of rare earths elements (%) in aqueous solution (ultrapure water) after 
1 (black) and 24 hours (grey) of contact time, pH ca. 5.5, CREE(III)=100 µmol/L, T=25 ºC, m/V=50 and 
100 mg/L (in left and right sides, respectively). Each graphic represents one material by the following 
order: a) MEG-HA (50 mg/L), b) MEG-HA (100 mg/L), c) GO-PEI (50 mg/L), d) GO-PEI (100 mg/L), e) 
GO-CH (50 mg/L), f) GO-CH (100 mg/L).  

 

The results obtained show recoveries of REEs in all the experiments and the effect 

of the amount of sorbent was verified. The experiments where it was used a mass sorbent of 

50 mg/L, it was achieved an average recovery of 44% and when using 100 mg/L of sorbent 

mass, it was achieved an average recovery of 72%. It is also possible do observe that GO-

PEI and GO-CH need more time to achieve the maximum capacity of sorption than MEG-

HA. The nanomaterial that achieved the best sorption percentage was GO-PEI (100 mg/L) 

around 100%, the other materials (GO-CH and MEG-HA) achieved sorption around 70 and 

50%, respectively.  
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In the case of MEG-HA composite, the recovery of REEs using 50 and 100 mg/L 

was not statistically different, with only a 7% of improvement (from 40 to 47%). However, 

it is possible to verify that the equilibrium was reached faster using the larger mass since it 

took only 1 hour to achieve the maximum recovery (47%). As for the differences between 

the elements, it was verified that MREE were the most recovered in general, with Eu being 

the most recovered element (48 and 59% using 50 and 100 mg/L of sorbent, respectively). 

On the other hand, light REE (LREE) were the least recovered, with La being the least 

recovered element (30 and 31% for a mass of sorbent of 50 and 100 mg/L, respectively). 

As for GO-PEI composite, the increase in the amount of sorbent was very evident, 

with a ranged of recovery of 50% (using a m/V ratio of 50 mg/L) and 97% (using a m/V 

ratio of 100 mg/L). As for the differences between the elements, it was verified that in 

general in the lower mass (50 mg/L) the MREE were the most recovered elements and the 

heavy REE (HREE) were the least ones. 

For GO-CH composite, the increase of the amount of elements removed with the 

increase on mass of sorbent was also verified, with a range between 43% (using a m/V ratio 

of 50 mg/L) and 71% (using a m/V ratio of 100 mg/L). Yttrium was the least recovered 

element (34 and 58% for a mass of sorbent of 50 and 100 mg/L, respectively), and HREE 

showed the worst removal percentages. The values presented here were obtained after 24 

hours of contact time. 

 After the analysis of the results it was decided to perform further studies with only 2 

nanomaterials: GO-PEI and MEG-HA. GO-PEI was chosen since it showed the most 

promising results and the choice of MEG-HA was due to its magnetic properties since it 

offers more practicable in the separation of the nanomaterial from the solution; moreover, it 

has a different chemistry and it is cheaper than GO-PEI or GO-CH (which are similar). 

 

3.2.2. Effect of ionic strength 

To evaluate the ionic strength effect, 100 mg/L of MEG-HA and GO-PEI were used 

for the REEs recovery (100 µmol/L) from ultrapure, mineral and saline water at pH ca. 5.5 

and room temperature. 

Figure 21 and 22 show the variation of the normalized concentration (ratio between 

the concentration at time 𝑡, 𝐶୲, and the initial concentration, 𝐶଴) over time for rare earth 

elements, in the presence of 100 mg/L of MEG-HA and GO-PEI, respectively. 
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Figure 20 – Variation profile of normalized concentrations of rare earth elements multi-elemental solution (100 µmol/L) in waters (ultrapure 
(a), mineral (b) and saline (c) waters), in function of contact time with the MEG-HA (100 mg/L). Note that the values represented in the graphics 
are average values. The data were separated in three graphics for a better visualization of the results: left - LREEs (La, Ce and Nd), centre - 
MREEs (Eu and Gd), and right - HREEs (Tb, Dy and Y). 
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For the tests in mineral water using MEG-HA (figure 21-b), it can be observed 

that the normalized concentration in solution of each REE showed a fast decrease in the 

first minutes, pointing to a high recovery rate of REEs (> 95%) from solutions. Then, for 

a short period of time, evolves into a slower kinetics reaching equilibrium in less than 3 

hours. This behaviour is explained by the large mass transport driving forces observed at 

the beginning of the experiment, since the composite is free of REE ions. The decrease 

on REEs concentration can be related to the nanocomposites since in its absence, the REE 

concentration in solution remained nearly constant. Regarding the test in ultrapure and 

saline water, the recovery rates were not so good; even so, REEs concentration decreases 

to almost half of the initial concentration. Overall, it is possible to conclude that regardless 

the water type, the equilibrium is reached fast (few hours). Comparing the results between 

the REEs, it is possible to observe that regardless the water type: i) for MREEs, Eu(III) 

have better recovery rates than Gd(III); ii) for HREEs, Y(III) is the least recovered 

element and iii) in the LREE, Nd(III) is the most recovered element, mainly when 

comparing the results obtained with La(III). 

The recovery of only ca. 50% for all the REEs in ultrapure water can be explained 

by the low ionic conductivity of this kind of water, that can difficult the movement of the 

ions in solution and its transport to the material surface. Regarding the results obtained in 

mineral water, there is a significant increase in the recovery percentage which means that, 

or there is no formation of competitive complexes for the binding sites of MEG-HA 

(despite the increase of ions in solution) or the increase in conductivity originated from 

the introduction of more ions is greater than possible negative effects arising from the 

increase in matrix complexity. The percentage recovery in saline water (that is the more 

complex water type tested in this work) is the lower one, suggesting the occurrence of 

complexation of REE with water constituents which could change the affinity of the REEs 

for the material. 
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Figure 21 – Variation profile of normalized concentrations of rare earth elements multi-elemental solution (100 µmol/L) in waters (ultrapure 
(a), mineral (b) and saline (c) waters), in function of contact time with the GO-PEI (100 mg/L). Note that the values represented in the graphics 
are average values. The data were separated in three graphics for a better visualization of the results: left - LREEs (La, Ce and Nd), centre - 
MREEs (Eu and Gd), and right - HREEs (Tb, Dy and Y). 
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The removal of REEs from different water types using GO-PEI is shown in Figure 

21-b, and it can be observed that best results were achieved for mineral water. Overall, in 

these experiments it was obtained recoveries around 90% in mineral water and 60% in 

ultrapure and saline water. The explanations for these observations are analogous to those 

referred for MEG-HA.  

Note that either using MEG-HA or GO-PEI, in some cases, the recovery rate of REEs 

decreases between 24 and 48 hours. This decrease was previously reported in the literature 

(Carvalho et al., 2016) and can be explained by the possible presence hydroxo(oxo) or 

carbonated species; these species are insoluble, so they can originate competitive equilibria, 

affecting the recovery efficiency of REEs for prolongated contact time with sorbent. 

Nevertheless, this decrease is not significant when compared to the initial concentration of 

REEs.  

Figure 23 resumes the recovery of REEs from the figures 21 and 22, after 24 hours 

of contact time with 100 mg/L of two different sorbents: MEG-HA (a) e GO-PEI (b).  
 

 

Figure 22 - Recovery of rare earths elements (%) in aqueous solution (ultrapure, mineral and saline 
waters) after 24 hours of contact time, pH ca. 5.5, CREE(III)=100 µmol/L, T=25 ºC, using 100 mg/L 
of MEG-HA (a) and GO-PEI (b). 

 

Comparing the results obtained for the recovery of each REE after 24 hours of 

contact with the two nanocomposites, it is possible to conclude that the removal percentage 

of each REE is similar whatever the material used and for all the water types. This can be 

explained by the similar PZC of both materials (2.49 for MEG-HA and 2.65 for GO-PEI). 

Although, the similar PZC values, the sorption mechanism for both materials is different. 
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For the GO-PEI, PEI molecules played bilateral roles: on one hand they serve as the binding 

bridge for conjugation and on the other hand they improve the sorption affinity of the 

material to REEs (Wang et al., 2013). Thus, REEs species can sorbed in any of the adsorption 

sites (−N=, −NH−, −NH2, −NH3) (Choi et al., 2018) of PEI: through covalent bonds directly 

with N atoms or through hydrogen bonding with the functional group NH3
+. We could 

confirm theses hypothesis by performing XPS analyses, however it was not possible to 

acquire for this work. Regarding the MEG-HA, the sorption process of REEs using humic 

acids functionalized materials is general associated to surface complexation (Yang et al., 

2012). 

Thus, MEG-HA would be a better choice for the recovery of REEs due to its 

magnetic properties, facilitating the recovery process and it is possible to observe a higher 

removal of MREEs using both of materials.  

3.2.3. Kinetic studies 

The application of kinetic models allows to understand the interaction dynamics 

between solid (adsorbent) and liquid (adsorbate), namely, the speed at which this interaction 

occurs. The sorption rate depends on the structural properties of the solid (porosity, specific 

area and particle size), liquid properties (such as concentration) and the type of interactions 

between the adsorbate and the active sites of the adsorbent (Oliveira et al., 2005). 

Only results were the correlation between experimental data and model estimates 

were considered higher than the statistically accepted value for a probability of 99% and for 

a data of n=17 were considered. 

The experimental kinetic data of the REEs recovery from a multi-elemental solution 

(100 µmol/L) in mineral and saline waters by MEG-HA (100 mg/L) and in saline water by 

GO-PEI (100 mg/L) composites at room temperature were fitted by pseudo-first order, 

pseudo-second order and Elovich models, represented by equations (3), (4) and (5). 

The solid loadings of REEs on the MEG-HA and GO-PEI composites (𝑞୲, µg/g) 

versus contact time (t), for mineral (a) and saline waters (b), is shown in Figures 24 and 25, 

respectively. For all sorbent-sorbate(s) systems the kinetic profiles are characterized by an 

abrupt increase of the solid loading of the rare earths in the nanocomposites, followed by a 

less pronounced increase, reaching a horizontal branch (plateau). The fit parameters for 

each data set are summarized in Table VI, VII and VIII.  
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Figure 23 – Adjustment of the kinetic models (pseudo-first order, pseudo-second order and Elovich) 

to the best result obtained in REEs recovery (100 mg/L of MEG-HA composite in mineral (a) and 

saline (b) waters). 
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Table VI - - Values obtained in the adjustment of experimental results to the pseudo 1st order, pseudo 2nd order and Elovich’s models, using 

the software GraphPad Prism 7. These results were obtained in the recovery of REEs using 100 mg/L of MEG-HA, in mineral waters. 
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Table VII - Values obtained in the adjustment of experimental results to the pseudo 1st order, pseudo 2nd order and Elovich’s models, using 

the software GraphPad Prism 7. These results were obtained in the recovery of REEs using 100 mg/L of MEG-HA, in saline waters. 
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Overall, the fitting curves based on three kinetic models, namely, pseudo-first order, 

pseudo-second order and Elovich provided good adjustments to the experimental data 

corresponding to the recovery using MEG-HA in mineral water, with most of the coefficient 

of determination (𝑅ଶ) above 0.95. Regarding the recovery with the same material but from 

saline water, despite the coefficients of determination were not so good, the values of 𝑅ଶ are 

within the expected for adjustment obtained for the recovery of cerium (n=17 experimental 

values and an alpha of 0.01). 

For the experiments using MEG-HA, the fitting of the Elovich model presents the 

highest coefficient of determination. This means that the sorption mechanism between REEs 

and MEG-HA may correspond to chemisorption (Jacinto et al., 2018). 
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Figure 24  – Adjustment of the kinetic models( pseudo-first order, pseudo-second order and Elovich) 

to the best result obtained in REEs recovery (100 mg/L of MEG-HA composite and saline water). 
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Table VIII - Values obtained in the adjustment of experimental results to the pseudo 1st order, pseudo 2nd order and Elovich’s models, using 

the software GraphPad Prism 7. These results were obtained in the recovery of REEs using 100 mg/L of GO-PEI, in saline waters. 
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Overall, the fitting curves based on three kinetic models, namely, pseudo-first order, 

pseudo-second order and Elovich provided reasonable adjustments to the experimental data 

corresponding to the recovery using GO-PEI in saline water, with most of the coefficient of 

determination (R2) above 0.80, which is within the expected value for n=17 and an alpha of 

0.01. 

In the experiments using GO-PEI, the fitting of the pseudo second order model 

presents the highest coefficient of determination. This means that the sorption mechanism 

between REEs and the nanocomposite is of chemical nature involving covalent or ionic 

forces and as the material surface is heterogeneous more than one type of interactions could 

occur simultaneously (Ho and McKay, 1999). 

The following analysis concerns only the best results, namely, recovery of REEs 

from mineral waters using MEG-HA. Thus, comparing the values obtained for the 

parameters of Elovich model in its application to the recovery of REEs, it is noted that the α 

value corresponding to recovery of Tb(III) and Eu(III) is higher than that obtained for the 

recovery of the other REEs and the lowest α value corresponds to the recovery of La(III) and 

Y(III). This means that the initial rate of sorption of Tb(III) and Eu(III) is, in that case, much 

higher than the other REEs, which translates to higher affinity of Tb(III) and Eu(III) to MEG-

HA. So, in the affinity of REEs to MEG-HA is as follows: Tb(III) ~ Eu(III) > Nd(III) ~ 

Gd(III) ~ Dy(III) ~ Ce(III) > La(III) ~ Y(III). 
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Chapter 4 

Conclusions and suggestions for future work 
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4.1. Conclusions and Future work 

The world has never been so much dependent on electronic devices as it is today and 

that means, consequently, REEs dependency. The problem of the electronic devices is the 

fact they become obsolete too quickly which generate great amounts of e-waste. E-waste is 

already a worldwide problem due to the enormous amount produced annually, making it 

very difficult to manage. It is known that an incorrect approach in the treatment and storage 

of e-waste can cause serious damage to the environment. For this reason, it is necessary to 

create and promote recycling approaches to the e-waste. 

Recently, increasing attention has been given to carbon nanostructure materials. A 

review of the literature published in the last decade about carbon-based materials as sorbents 

to remove rare earth elements or technology-critical elements from spiked waters was 

presented here. Most of the studies tested high REE concentrations, tens to hundreds mg/L 

of single elements, in deionised waters. So, this work intended to recovery the rare earth 

elements under realistic conditions, with more complex water types, using lower element 

concentrations, and in multi-elemental systems using different carbon composites, like 

magnetic exfoliated graphite functionalized with humic acids (MEG-HA), graphene oxide 

functionalized with ca. 25% of polyethylenimine (GO-PEI) and graphene oxide 

functionalized with chitosan (GO-CH), that were synthetized and characterized, and then, 

their ability for the recovery of REEs was evaluated.  

Regarding the results obtained for the effect of the amount of sorbent, it was possible 

to conclude that this factor has impact on the recovery percentage, ranging between 44 to 

72% by doubling the mass of sorbent 50 to 100 mg/L). It is also possible do observe that 

GO-PEI and GO-CH need more time to achieve the maximum removal capacity than MEG-

HA. In the case of the recovery of REEs from different matrices using MEG-HA or GO-PEI, 

it is possible to conclude that the composite has its most efficiency in mineral water with 

recovery rates around 100%, followed by saline water and ultrapure waters.  

In the kinetic studies it was concluded that the Elovich model presents the highest 

coefficient of determination which means that the sorption mechanism between REEs and 

MEG-HA may correspond to chemisorption, being that Tb(III) and Eu(III) are the REEs 

with higher affinity to the materials. As for the kinetic studies of GO-PEI the pseudo second 

order model presents the highest coefficient of determination which indicates that the 

sorption mechanism between REEs and the nanocomposite is of chemical nature involving 
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covalent or ionic forces and as the material surface is heterogeneous more than one type of 

interactions could occur simultaneously.  

 As a suggestion for future work, it will be of interest to conduct regeneration studies 

by desorption processes. Also, it could be interesting to test other functionalizations methods 

and other ligands as functionalizations. Regarding the removal/recovery studies, it will be 

interest to apply these nanocomposites in the recovery of rare earths from real wastewaters 

and also from e-waste.  

In addition to kinetic evaluation, it would be also necessary to perform equilibrium 

studies in order to determine the maximum sorption capacity of the materials as well as to 

confirm the sorption mechanisms involved in the REEs removal. 
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II 

Table A1 - Recovery of REEs using Graphene oxide (GO) composites and the respectively experimental conditions used as reported in the 

literature.  

Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 
(µg/L) pH T (ºC) 

Time of 
contact (h) 

m (sorbent)/ 
V(solution) 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Ashour et 
al., 2017) 

GO colloid Ultrapure 
Multi 

elements 
La, Nd, 
Gd, Y 

5 x 103 6 r.t. 0.5 10 x 102 

La = 85.67 mg/g 
Nd = 188.6 mg/g 
Gd = 225.5 mg/g 
Y = 135.7 mg/g 

(Ashour et 
al., 2017) 

GO colloid Ultrapure 
Multi 

elements 
La, Nd, 
Gd, Y 

 (5 – 50)  
x103 3-8 5-45 0.02-2 10 x 102  

(Li D. et al., 
2015) 

GO 
Ultrapure 

Mono 
element 

Eu  
10 x 103  
NaClO4= 

0.01 mol/L 

4.5,  
7 

20 0-24 10 x 102 
90 %,  

89.654 mg/g 

(Li D. et al., 
2015) 

MGO 
Ultrapure 

Mono 
element 

Eu  
10 x 103  
NaClO4= 

0.01 mol/L 

4.5,  
7 

20 0-24 10 x 102 
80 %,  

70.15 mg/g 

(Li D. et al., 
2015) 

GO e MGO 
Ultrapure Mono 

element 
Eu  

(1– 50)  
x103 

2-11 
20, 40, 

60 
0-24 10 x 102  

(Sun et al., 
2012) 

GONS 

Ultrapure 
Mono 

element 
Eu (1) 

51 x 103 
NaClO4= 

0.01 mol/L 

2 
4.5 
6 
7 

25 48 2 x 102 

65 %, 167.16 mg/g 
161.29 mg/g 
175.44 mg/g 

100 % 

(Sun et al., 
2012) 

GONS 
Ultrapure 

Mono 
element 

Eu 
51 x 103 
NaClO4= 

0.01 mol/L 
2-11 

25,45, 
65 

48 2 x 102  



III 

 

Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Yao et al., 
2016) 

GO Ultrapure 
Mono 

element 
Eu 

10 x 103 
NaCl= 0.1, 
0.01, 0.001 

mol/L 

5.5 20 0-24 5 x 102 
100%, 142.8 mg/g 

 

(Yao et al., 
2016) 

GO-OSO3H Ultrapure 
Mono 

element 
Eu 

10 x 103 
NaCl= 0.1, 
0.01, 0.001 

mol/L 

5.5 20 0-24 5 x 102 90%, 125.0 mg/g 

(Yao et al., 
2016) 

GO e GO-OSO3H  Ultrapure 
Mono 

element 
Eu 

10 x 103 
NaCl= 0.1, 
0.01, 0.001 

mol/L 

1-11 20 0-24 5 x 102  

(Chen et al., 
2014a) 

GO colloid Ultrapure 
Mono 

element 
Gd 12 x 103 

5.9 
(2-11) 

30 0.5 0.4 x 102 286.86 mg/g 

(Chen et al., 
2014b) 

GO colloid Ultrapure 
Mono 

element 
Y 12 x 103 5.9 30, 40 0.42 0.4 x 102 190.48 mg/g 

(Xie et al., 
2016) 

GO Ultrapure 
Mono 

element 
Eu 

0.01 x 103 

NaCl= 
0.01M 

5.0, 
 

2.7-7.3 
r.t. 48 1 x 102 

78 mg/g, 
 

97% 

(Xie et al., 
2016) 

GO Ultrapure 
Mono 

element 
Eu 

(0.01–100) 
x103  

1-8 
2,4,6 

r.t. 48 1 x 102  

(Kilian et al., 
2017) 

GO Ultrapure 
Mono 

element 
Sc 300 x 103 

2 
4 

r.t. 4 50 x 102 
~ 95%, 36.5 mg/g 

39.7 mg/g 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Kilian et al., 
2017) 

GO Milli-Q 
Mono 

element 
Sc 

(1-300) 
x103 

1-5.5 r.t. 0.02-0.5 50 x 102  

(Fakhri et al., 
2017) 

30%Mo4W8@EDMG,  
 

30%Mo2W10@EDMG 
Milli-Q 

Mono 
element 

Ce 10 x 103 
6 

(2-6) 
20 0.08-3 17 x 102 

90.90 mg/g,  
 

96.15 mg/g 
 

(Su et al., 
2014) 

MPANI-GO Milli-Q 
Multi 

elements 

Y, La, Ce, 
Pr, Nd, 
Sm, Eu, 
Gd, Tb, 
Dy, Ho, 
Er, Tm, 
Yb, Lu 

0.01 x 103 4 r.t. 0.33 4 x 102 

~ 95% 
Y=8.1, La=15.5, 
Ce=8.6, Pr=11.1, 
Nd=8.5, Sm=7.7, 
Eu=11, Gd=16.3, 
Tb=11.8, Dy=16, 
Ho=8.1, Er=15.2, 

Tm=10.4, Yb=10.3, 
Lu=14.9 mg/g 

 

(Su et al., 
2014) 

MPANI-GO Milli-Q 
Multi 

elements 

Y, La, Ce, 
Pr, Nd, 
Sm, Eu, 
Gd, Tb, 
Dy, Ho, 
Er, Tm, 
Yb, Lu 

(0.00025, 
0.0005, 

0.001, 0.002, 
0.01)  
x103 

2-9 r.t. 
0.02-0.25, 

0.33 
(0.25-20) 

x102 
 

(Sun et al., 
2013) 

PANI@GO 
HClO4 (aq) 
0.01 mol/L 

Mono 
element 

Eu 15 x 103 3 25 48 2.5 x 102 250.74 mg/g 



V 

 

Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Farzin et al., 
2017) 

TGA/CdTeQDs/Fe3O4/r
GONS 

Distilled 
Mono 

element 
Ce 

0.05 x 103 
 

(1-100) 
x103 

5.0 35 0.17  7 x 102 

95 % 
 

56.82 mg/g 
 

(Farzin et al., 
2017) 

TGA/CdTeQDs/Fe3O4/r
GONS 

Distilled 
Mono 

element 
Ce 

(1-100) 
x103 

2-8 35 0.02-0.25 
(2 – 9) 
x102  

(Li C. et al., 
2014) 

GTiP-1 Milli-Q 
Mono 

element 
Eu 100 x 103 

1 
3.7 
5.5 
7.3 

25 2 10 x 102 

~ 3 % 
~ 32 % 
   35 % 
~ 72 % 

((Li C. et al., 
2014) 

GTiP-2 Milli-Q 
Mono 

element 
Eu 100 x 103 

1 
3.7 
5.5 
7.3 

25 2 10 x 102 

~ 10 % 
~ 45 % 
  50 % 
~ 80 % 

(Li C. et al., 
2014) 

GO Milli-Q 
Mono 

element 
Eu 100 x 103 

1 
3.7 
5.5 
7.3 

25 2 10 x 102 

~ 7 % 
~ 20 % 
  20 % 
~ 28 % 

(Li C. et al., 
2014) 

GO, GTiP-1, GTiP-2 Milli-Q 
Mono 

element 
Eu 

(5-200)x103 

Na+= 1, 10, 
100, 1000 

mM 

1.7, 3.7, 
5.5, 7.3 

25 2, 4 10 000 x 102  

 (1) Adsorptions experiments were conducted under N2 conditions. 
Note that the optimal experimental conditions are represented by shading and the other conditions tested and described in the papers are 
represented on a white background (without shading). 



 

VI 

Table A2 - Recovery of REEs using Carbon nanotubes (CNTs) and the respectively experimental conditions used as reported in the literature. 

Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Kilian et al., 
2017) 

CNTs-COOH Milli-Q  
Mono 

element 
Sc  300 x 103  

2 
4 
 

r.t. 4 50 x 102 
37.9 mg/g 
42.5 mg/g 

 

(Kilian et al., 
2017) 

CNTs-COOH Milli-Q  
Mono 

element 
Sc 

(1-300) 
x103 

1-5.5 r.t. 0.02-0.5 50 x 102 - 

(Behdani et 
al., 2013) 

MWCNTs-oxidized Distilled  
Multi 

elements 
Ce 

20 x 103 
20 x 103 
10 x 103 

5 30 2 
12 x 102 
10 x 102 
10 x 102 

~ 87 % 
~ 82 % 
~ 97 % 

(Behdani et 
al., 2013) 

MWCNTs-oxidized Distilled  
Multi 

elements 
Sm 

20 x 103 
20 x 103 
10 x 103 

5 30 2 
12 x 102 
10 x 102 
10 x 102 

~ 98 % 
~ 95 % 

~ 100 % 

(Behdani et 
al., 2013) 

MWCNTs-oxidized Distilled  
Multi 

elements 

Ce,  
Sm 

 
– 

(10, 20,50, 
75, 100, 

150, 200) 
 x 103 

2-8 
30, 40, 
50, 60 

0.08,0.17, 
0.25,0.33, 

0.5, 
0.67,0.83, 

1, 1.25, 
1.5, 2 

(2, 4, 6, 8, 10, 
12) 

x102 
- 

(Koochaki-
Mohammadp

our et al., 
2014) 

MWCNTs-oxidized Distilled  
Multi 

elements 
La 

20 x 103 
20 x 103 
10 x 103 

5 30 2 
12 x 102 
10 x 102 
10 x 102 

80 %  
80 % 
93 % 

(Koochaki-
Mohammadp

our et al., 
2014) 

MWCNTs-oxidized Distilled  
Multi 

elements 
Dy 

20 x 103 
20 x 103 
10 x 103 

5 30 2 
12 x 102 
10 x 102 
10 x 102 

98 % 
97 % 
98 % 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Koochaki-
Mohammadp

our et al., 
2014) 

MWCNTs-oxidized Distilled  
Multi 

elements 

La, Dy 
 

– 

(10 – 200) 
x103 

2-6 
30, 40, 
50, 60 

0.08,0.17, 
0.25,0.33, 
0.5,0.67, 
0.83, 1, 

1.25,1.5, 2 

(2-12) 
x102 

- 

(Tong et al., 
2011) 

TA-MWCNTs Distilled  
Multi 

elements 

La 
Tb 
Lu 

40 x 103 5 20 1 50 x 102 
5.35 mg/g,  
8.55 mg/g, 
3.97 mg/g 

(Tong et al., 
2011) 

TA-MWCNTs Distilled  
Mono 

element 
La 40 x 103 5 20 1 

50 x 102  
(with 0.12x102 

being TA) 
75 % 

(Tong et al., 
2011) 

TA-MWCNTs Distilled  
Multi 

elements 
(La, Tb, 

Lu) 
40 x 103 1.5-4 20 1 50 x 102 0.4-6.0 mg/g 

(Tong et al., 
2011) 

TA-MWCNTs Distilled  
Multi 

elements 
(La, Tb, 

Lu) 
(5 –  50) 

x103 
1.5-7 20 0.08-2 

(20-200) 
x102 

- 

(Fan et al., 
2009) 

MWCNTs-oxidized Milli-Q  
Mono 

element 
Eu 0.99 x 103 

5 
(2-8) 

25 96 6 x 102 90 % 

(Chen et al., 
2009) 

MWCNTs/Fe3O4 
composite 

Milli-Q  
Mono 

element 
Eu a 

0.061 x 103 
NaClO4= 
0.1 mol/L 

5.5 25 48 6 x 102 ~ 100 % 

(Chen et al., 
2009) 

MWCNTs/Fe3O4 
composite 

Milli-Q  
Mono 

element 
Eu a 0.61 x 103,  

6.1 x 103 
2.5-7 25 48 6 x 102 - 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Mono 
element 

Y 1000 x 103 – 30 8 1000 x 102 95 % 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Mono 
element 

Y 
(80-3300) 

 x 103 – 30-65 0-8 1000 x 102 44.09 mg/g 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Multi 
element 

Y 
Sm 
 La 

100 x 103 – 30 4 1000 x 102 
 94 % 
82% 
30% 

(Yadav et al., 
2015) 

PES/PVA/MWCNT/ 
D2EHPA beads 

HCl  
(aq, 0.5 
mol/L) 

Multi 
element 

Y 
Sm 
 La 

(150–1000) 
x103  

– 30 0-8 1000 x 102 - 

(Chen et al., 
2008) 

MWCNTs-oxidized Distilled  
Mono 

element 
Eu 

0.03 x 103 
NaClO4= 

0.001, 0.01, 
0.1 mol/L 

6 
(2-7) 

25 48 6 x 102 
98 % 

for all the ionic strengths 

(Li K. et al., 
2015) 

mIIP-CS/CNT 
composite 

Distilled  
Multi 

elements 
Gd b 10 x 103 7 

20 
33 
43 

4 20 x 102 c 
79.48 mg/g 
109.3 mg/g 

121.51 mg/g 

(Li K. et al., 
2015) 

mNIP-CS/CNT 
composite 

Distilled  
Multi 

elements 
Gd b 10 x 103 7 33 4 20 x 102 c 96.15 mg/g 

(Li K. et al., 
2015) 

mIIP-CS/CNT and 
mNIP-CS/CNT 

composites 
Distilled  

Multi 
elements 

Gd b 
(2, 10, 50, 
100, 200) 

x103  
2-7 

20, 33, 
43 

0.05-8 20 x 102 c - 

a Adsorptions experiments under N2 conditions. b Gd3+ adsorption experiments with two competitive ions (La3+ and/or Ce3+). c10 mg of IIP-CS/CNT (or NIP-CS/CNT) 
and 30 mg of SiO2@Fe3O4 were added into a vial, which contained 20 mL of REEs.  
- the optimal experimental conditions are represented by shading and the others conditions tested and described in the papers are represented on a white background 
(without shading). 



IX 

 

Table A3 - Recovery of REEs using other carbon materials ((Activated Carbon, Fullerene, C-Dots, Carbon Black, Mesoporous Carbon, 

Carbon nanofibers)) and the respectively experimental conditions used as reported in the literature. 

Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Sun et al., 
2012) 

AC 
(Activated Carbon) 

Milli-Q  
Mono 

element 
Eu 

10 x 103 

NaClO4= 
0.01 mol/L 

4.5 25 48 2 x 102 20 mg/g 

(Kilian et 
al., 2017) 

AC-COOH Milli-Q 
Mono 

element 
Sc  300 x 103 2 r.t. 4 50 x 102 2.1 mg/g 

AC-COOH Milli-Q 
Mono 

element 
Sc  300 x 103 4 r.t. 4 50 x 102 2.2 mg/g 

AC-COOH Milli-Q 
Mono 

element 
Sc 

(1-300) 
x103 

1-5.5 r.t. 0.02-4 50 x 102  

(Smith et 
al., 2016) 

F-CCB 
(Functionalized 

commercial carbon black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 Natural 

pH 
25 24 0.25 x 102 

La = 15 % 
Ce = 41 % 
Nd = 22.5 % 
Sm = 14 % 
Y = 17 % 

F-CCB 
(Functionalized 

commercial carbon black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 Natural 

pH 
25 24  

(0.03, 0.05, 
0.15) 
x102 

La = 12%, 13%, 14% 
Ce = 35.5%, 36%, 35% 
Nd = 10%, 12%, 16% 
Sm = 10%, 10%, 12.5% 
Y = 12%, 13%, 13% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 Natural 

pH 
25 24 0.25 x 102 

La = 27.5 % 
Ce = 68 % 
Nd = 34 % 
Sm = 41 % 
Y = 28 % 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Smith et 
al., 2016) 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 
(0.03, 0.05, 

0.15) 
x102 

La = 3.5%, 6%, 17.5% 
Ce = 11%, 15%, 42% 
Nd = 5%, 7.5%, 22% 
Sm = 5.5%, 9%, 25.5% 
Y = 3.5%, 6%, 17.5% 

F-AC 
(Functionalized activated 

carbon) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 0.25 x 102 

La = 7.5 % 
Ce = 12 % 
Nd = 31 % 
Sm = 7.5 % 
Y = 12.5 % 

F-AC 
(Functionalized activated 

carbon) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 
(0.03, 0.05, 

0.15) 
x102 

La = 1.5%, 2.5%, 6.5% 
Ce = 2.5%, 8%, 11% 
Nd = 9%, 17%, 24% 
Sm = 0%, 7.5%, 5% 
Y = 6%, 9%, 11% 

CCB 
(commercial carbon black) 

Milli-Q 
Multi 

elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 
(0.15, 0.25) 

 x102 

La = 2.5%, 2.5% 
Ce = 1%, 1% 
Nd = 5%, 8% 
Sm = 1%, 2.5% 
Y = 2.5%, 3% 

CCB 
(commercial carbon black) 

Milli-Q 
Multi 

elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 
(0.03, 0.05) 

x102 

La = 2.5%, 2.5% 
Ce = 1%, 1% 
Nd = 5%, 5% 
Sm = 1%, 1% 
Y = 2.5%, 2.5% 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Smith et 
al., 2016) 

AC Milli-Q 
Multi 

elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 
(0.15, 0.25) 

 x102 

La = 1%, 1% 
Ce = 1%, 1% 
Nd = 12.5%, -  
Sm = 0%, 0% 
Y = 0%, 0% 

AC Milli-Q 
Multi 

elementar 

La 
Ce 
Nd 
Sm 
Y 

100 x 103 Natural 
pH 

25 24 
(0.03, 0.05) 

x102 

La = 1%, 1.5% 
Ce = 1%, 1% 
Nd = 7.5%, 8% 
Sm = 0%, 1% 
Y = 1.5%, 1% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

20 x 103 Natural 
pH 

80 1 0.5 x 102 
La = 40%, Ce = 95% 
Nd = 75%, Sm = 80% 
Y = 63% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

20 x 103 
Natural 

pH 
80 2 0.5 x 102 

La = 45%, Ce = 95% 
Nd = 80%, Sm = 82% 
Y = 72% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

20 x 103 
Natural 

pH 
80 12 0.5 x 102 

La = 75%, Ce = 95% 
Nd = 91%, Sm = 95% 
Y = 90% 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Smith et 
al., 2016) 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

20 x 103 Natural 
pH 

25 1 0.5 x 102 

La = 25% 
Ce = 85% 
Nd = 68% 
Sm = 60% 
Y = 48% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

20 x 103 
Natural 

pH 
25 2 0.5 x 102 

La = 45% 
Ce = 90%  
Nd = 70% 
Sm = 73%  
Y = 60%  

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La 
Ce 
Nd 
Sm 
Y 

20 x 103 
Natural 

pH 
25 12 0.5 x 102 

La = 60% 
Ce = %, 95% 
Nd = 83% 
Sm = 88% 
Y = 77% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La,Ce 
Nd, Sm 

Y 
100 x 103 

Natural 
pH 

40 24 0.05 x 102 
La= 5.5%, Ce= 23% 
Nd= 9%, Sm= 9% 
Y= 9% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce 
Nd, Sm 

Y 
100 x 103 

Natural 
pH 

60 24 0.05 x 102 
La= 7.5%, Ce= 25% 
Nd= 16%, Sm= 16% 
Y= 16% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce 
Nd, Sm 

Y 
100 x 103 

Natural 
pH 

80 24 0.05 x 102 
La= 12.5%, Ce= 30% 
Nd= 20%, Sm= 20% 
Y= 21% 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 
Time of 

contact (h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Smith et 
al., 2016) 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 

Natural 
pH 

40 24 0.25 x 102 

La= 29% 
Ce = 75% 
Nd = 40% 
Sm = 40% 
Y = 40% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 

Natural 
pH 

60 24 0.25 x 102 

La= 32.5% 
Ce = 81% 
Nd = 50%,  
Sm = 55%,  
Y = 50%,  

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 

Natural 
pH 

80 24 0.25 x 102 

La= 48% 
Ce = 84% 
Nd = 58% 
Sm = 60% 
Y = 60% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd, Sm, 

Y 
100 x 103 

Natural 
pH 

40 24 0.5 x 102 

La= 45% 
Ce = 85% 
Nd = 65% 
Sm = 68% 
Y = 60% 

RTCB 
(Recycled tire carbon 

black) 
Milli-Q 

Multi 
elementar 

La, Ce, 
Nd,Sm, 

Y 
100 x 103 

Natural 
pH 

60 24 0.5 x 102 
La= 51.5%, Ce = 90% 
Nd = 70%, Sm = 72% 
Y = 70% 
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Ref.   Sorbent 

Type of 

water 

Type of 

system 

REEs 

(III) 

[REEs]0 

(µg/L) pH T (ºC) 

Time of 

contact 

(h) 

m (sorbent)/ 

Vsolution 

(mg/L) 

qm (mg/g) or 

REEs adsorption (%) 

 

RTCB 

(Recycled tire carbon 

black) 

Milli-Q 
Multi 

elementar 

La, Ce, 

Nd, Sm, 

Y 

100 x 103 
Natural 

pH 
80 24 0.5 x 102 

La= 69%, Ce = 90% 

Nd = 75%, Sm = 75% 

Y = 75% 

F-CCB, RTCB, F-AC, AC 

Milli-Q 

(Shaker: 

200 rpm) 

Multi 

elementar 

La, Ce, 

Nd, Sm, 

Y 

(100-200) 

x103 

Natural 

pH 

r.t. (25), 

40, 60, 

80 

1-24 
(0.25-0.5) 

x102  

(Gad and 

Awwad, 

2007) 

H-APC AC 

(HPO4-APC activated 

carbon) 

Milli-Q 
Mono 

elementar 
Eu 50 x 103 5 20 2 

2.5 x 102 

5 x 102 

7.5 x 102 

10 x 102 

12.5 x 102 

15 x 102 

17.5 x 102 

45 % 

60 % 

60 % 

72 % 

80 % 

90 % 

93 % 

H-APC AC Milli-Q 
Mono 

elementar 
Eu 50 x 103 

2 

5 

6 

7 

20 2 10 x 102 

20 mg/g 

32 mg/g 

47 mg/g 

50 mg/g 

(X. Sun 

et al., 

2016) 

Carbonized polydopamine 

nano 

carbon shells (C-Dots) 

Milli-Q 
Multi 

elementar 

La, Pr, 

Nd, Eu, 

Gd,Dy, 

Ho, Er, 

Tm, Yb, 

Lu 

- 5.3 r.t. 1 20 x 102 - 
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Ref.   Sorbent 

Type of 

water 

Type of 

system 

REEs 

(III) 

[REEs]0 

(µg/L) pH T (ºC) 

Time of 

contact (h) 

m (sorbent)/ 

Vsolution 

(mg/L) 

qm (mg/g) or 

REEs adsorption (%) 

(Gad and 
Awwad, 

2007) 

H-APC AC Milli-Q 
Mono 

elementar 
Eu 50 x 103 5 20 

1 
2 

10 x 102 
29 mg/g 
29 mg/g 

H-APC AC Milli-Q 
Mono 

elementar 
Eu 50 x 103 5 

20 
40 
60 

2 10 x 102 
28.9 mg/g 
29 mg/g 

29.9 mg/g 

H-APC AC 
Laboratory 
wastewater

s 

Mono 
elementar 

Eu - 5 20 0.7 

5 x 102 
10 x 102 
15 x 102 
20 x 102 
25 x 102 

97.55 
98.47 
98.63 
99.07 
99.10 

(Marwani 
et al., 2017) 

AC-DETADHBA Distilled 
Multi 

elementar 
La 5 x 103 

6 
5 
4 

25 1 25 mg* 
99. 60%, 144.80 mg/g 

85% 
40% 

AC-DETADHBA Distilled 
Multi 

elementar 
La 5 x 103 6 25 

0.17 
0.5 
1 

25 mg* 

121 mg/g 

135 mg/g 

144.80 mg/g 

AC-COOH Distilled 
Multi 

elementar 
La 5 x 103 6 25 1 25 mg* 89.50 mg/g 

AC-DETADHBA Distilled 
Multi 

elementar 
La 

(10-400) 
x103 

1-7 25 

0.002, 
0.0083, 

0.17, 0.33, 
0.5, 0.67, 

0.83, 1 

25 mg*  
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 

Time of 
contact 

(h) 

m (sorbent)/ 
Vsolution 

(mg/L) 
qm (mg/g) or 

REEs adsorption (%) 

(Marwani 
et al., 
2017) 

AC-DETADHBA Tap water 
Mono 

elementar 
La 

5 x 103 
10 x 103 
50 x 103 

6 25 1 25 mg* 
98.54 % 
100 % 

95.76 % 

AC-DETADHBA 
Lake 
water 

Mono 
elementar 

La 
5 x 103 

10 x 103 
50 x 103 

6 25 1 25 mg* 
100 % 
100 % 

93.48 % 

AC-DETADHBA Seawater 
Mono 

elementar 
La 

5 x 103 
10 x 103 
50 x 103 

6 25 1 25 mg* 
98.86 % 
99.65 % 
93.24 % 

(Saha et 
al., 2017) 

Phosphorous 
functionalized 

nanoporous carbon 

Milli-Q 
Multi 

elementar 
Nd 
Dy 

0.5 x 103 
6.1 
6.6 

25 4 10 x 102 
Nd= 335.5 mg/g 
Dy= 344.6 mg/g 

Milli-Q 
Multi 

elementar 
Nd 
Dy 

0.5 x 103 
6.1 
6.6 

25 
3 

0.033 
10 x 102 

Nd= 68% 
Dy= 67% 

Phosphorous 
functionalized 

nanoporous carbon 
Milli-Q 

Multi 
elementar 

Nd 
Dy 

(0.05-0.5) 
x103 

2, 4, 
6.1 or 

6.6 
25 

0.033, 
0.25, 0.67, 
1, 2, 3, 4 

10 x 102  

(Perreault 
et al., 
2017) 

CMK-8 Milli-Q 
Multi 

elementar 
Sm 0.02 x103 2.6 r.t. 

0.5 
2.5 

10 x 102 
1 mg/g 

1.5 mg/g 

14 mg/g 
13.8 mg/g 
13 mg/g 

CMK-8-O 
(CMK-8-Oxidezed) 

Milli-Q 
Multi 

elementar 
Sm 0.07 x103 2.6 r.t. 

0.5 
1 

2.5 
10 x 102 
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Ref.   Sorbent 
Type of 
water 

Type of 
system 

REEs 
(III) 

[REEs]0 

(µg/L) pH T (ºC) 

Time of 
contact 

(h) 

m (sorbent)/ 
Vsolution 

(mg/L) 

qm (mg/g) or 

REEs adsorption (%) 

(Perreault et 
al., 2017) 

CMK-8-DGO 
(DGO: diglycolyl-type 

organic) 
Milli-Q 

Multi 
elementar 

La 0.04 x103 2.6 r.t. 
0.5 
1 

2.5 
10 x 102 

10 mg/g 
9 mg/g 
9 mg/g 

CMK-8-DGO 
(DGO: diglycolyl-type 

organic) 
Milli-Q 

Multi 
elementar 

La 
0.0003 
x103 

2.6 
3.8 
5.7 

r.t. 4 10 x 102 

23 mg/g 
27 mg/g 
22 mg/g 

CMK-8 Milli-Q 
Multi 

elementar 
Sm 

(0.0025-
0.025) 
x103 

2.6 r.t. 4 10 x 102 8 mg/g 

CMK-8-O 
(CMK-8-Oxidezed) 

Milli-Q 
Multi 

elementar 
Sm 

(0.05-0.2) 
x103 

2.6 r.t. 4 10 x 102 23 mg/g 

CMK-8-DGO 
(DGO: diglycolyl-type 

organic) 
Milli-Q 

Multi 
elementar 

La 
(0.01-0.1) 

x103 2.6 r.t. 4 10 x 102 10 mg/g 

(Turanov and 
Karandashevb

, 2009) 

FB-D2EHPA sorbent 
(Fullerene Black 
functionalized) 

HNO3 
(0.0031 

M) 

Multi 
elementar 

La, Ce, 
Pr, Nd, 
Sm,Eu, 
Gd, Tb, 
Dy,Ho, 
Er, Tm, 
Yb, Lu 

(0.02-1) 
x10-3 - 20 2 100 x 102 - 

*There are not any mention of the volume of REEs solution used. 
- The optimal experimental conditions are represented by shading and the others conditions tested and described in the papers are represented on a white 
background (without shading 
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Table A4 - Values obtained in the adjustment of experimental results to the pseudo 1st order, pseudo 2nd order and Elovich’s models, using 

the software GraphPad Prism 7. These results were obtained in the recovery of REEs using 100 mg/L of GO-PEI, in mineral waters. 
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