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resumo O aparecimento de metodologias de sequenciação de elevado rendimento após 

a conclusão do Projeto do Genoma Humano foi um avanço fundamental para a 

pesquisa biológica e biomédica na área da genómica. Embora as mutações 

genéticas tenham sido durante décadas o foco principal na causa de certas 

desordens, atualmente demonstrou-se que os mecanismos epigenéticos estão 

envolvidos na programação celular e na regulação genética, providenciando 

variações adaptativas do mesmo gene a um determinado ambiente e possuindo 

ainda uma associação direta com a diferenciação celular. 

O desenvolvimento científico no campo da metilação de DNA revela atualmente 

factos essenciais na biologia molecular, como a existência de metilação nas ilhas 

CpG e em contextos alternativos que influenciam a expressão genética nos 

diferentes tecidos humanos. Para além disso, a influência dos estilos de vida no 

processo de envelhecimento já demonstrou estar relacionada com o estado do 

epigenoma, nomeadamente com as variações no metiloma humano. No caso do 

cancro, a cooperação dos fatores genéticos e epigenéticos é essencial para a 

compreensão do desenvolvimento desta patologia no organismo humano 

nomeadamente através do silenciamento de genes reguladores essenciais. Uma 

hipometilação global no genoma do cancro conduz geralmente a uma ativação 

de oncogenes enquanto que hipermetilações localizadas estão associadas com 

o silenciamento de genes supressores de tumores. Por estes motivos, o 

desenvolvimento de novas terapias para o cancro ou o envelhecimento torna-se 

um tópico de interesse pela comunidade científica da área da epigenómica. 

Com o objetivo de desenvolver estes temas e melhorar a determinação de 

variações globais no epigenoma humano, esta investigação desenvolveu-se 

com base na utilização de dados de bases de dados públicas de indivíduos 

saudaveis de forma a extrair marcadores de metilação diferenciada em variados 

tecidos ao longo do envelhecimento saudável. O projeto foi validado através da 

utilização de amostras saúdaveis e de indivíduos com boas ou más 

performances cognitivas disponíveis no iBiMED. Em ambas as situações os 

genes ELOVL2 (cg16867657) e FHL2 (cg06639320) foram identificados como 

bons marcadores da idade dos indivíduos. 
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abstract The emergence of high-throughput methodologies after the conclusion of the 

Human Genome Project has brought genomic and epigenomic wide studies to 

the forefront of current research of biological and biomedical knowledge. 

Currently, the focus in genetic mutations as primary cause of certain disorders is 

not so relevant as before, since it was demonstrated that epigenetic mechanisms 

are involved in cellular programming and gene regulation providing adaptive 

variants of a given gene to a changing environment with an association to cellular 

differentiation. 

The research in the DNA methylation field has already revealed essential facts 

as the existence of methylation in CpG islands and alternative contexts that 

influence gene expression in tissue-specific manner. The influence of lifestyle 

choices in aging processes has also been related to methylome variations. And, 

in the case of cancer, the cooperation of epigenetic and genetic information is 

essential to understand the progress of cancer development as well as the 

silencing of key regulatory genes. An overall hypomethylation in cancer genome 

leads to oncogene activation whereas hypermethylation in specific regions is 

associated with silencing of tumour suppressor genes. For that reason, the 

research for new therapeutic approaches to cancer and aging is a current issue 

of the scientific community that work in the epigenomic field. 

In order to contribute to the study of mammalian epigenomes during lifespans, 

this research focused on the usage of public databases datasets to further 

investigation about DNA methylation across aged individuals in order to extract 

tissue-specific markers related with healthy aging. The validation of results was 

made through the usage of samples, form healthy individuals with good or bad 

cognitive performances, available in iBiMED. In both situations the genes 

ELOVL2 (cg16867657) and FHL2 (cg06639320) were identified as good markers 

of age. 
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GENERAL OVERVIEW 

Since the beginning of the Human Genome Project (HGP) in 1990 until 2003 (Wilson & 

Nicholls 2015), a global effort was made in order to sequence and map the majority of the 

euchromatic portion of the human genome(International Human Genome Sequencing 

Consortium 2004). The advances achieved in the HGP were one of the major scientific 

endeavours in modern scientific research(Wilson & Nicholls 2015) since they gave access 

to a large domain of important biological and biomedical knowledge(International Human 

Genome Sequencing Consortium 2004). Previously, few genes were used to investigate 

the patterns of genetic variation among individuals, but the advances in sequencing 

technology made it possible to study genome wide variation among individuals relatively to 

several biological conditions(Borevitz et al. 2015). These achievements were possible due 

to the development of next generation sequencing (NGS) technologies, which are now 

available to the scientific world(Wilson & Nicholls 2015). 

One of the most recent fields in the genome wide analysis has been the epigenomics 

where is made an analysis of the global patterns of cytosine methylation, chromatin state 

and non-coding RNA abundance(Friedman & Rando 2015). For many decades much focus 

was placed on genetic mutations as primary cause of certain disorders. However, in the last 

years the study of epigenetic mechanisms in the mammalian genome has demonstrated its 

influence on several cellular events as gene expression regulation, cell programming and 

differentiation as well as at the organism level, such as development, disease and aging 

(Bell et al. 2012)(Bollati et al. 2010). 

Therefore, there is not only a current need in analyzing the epigenetic patterns among 

individuals in order to determine its influence in a specific biological condition but also a 

demand on high-throughput technologies that are able to tackle this problem at low cost, 

short time and with effective alignment and variant call tools. 

This Master’s Thesis aimed to: 

a) Perform a rigorous literature review on the field of epigenomics, focusing on different 

available methodologies in a comparative perspective and recapitulating major 

findings relative to the evaluation of epigenetical marks with age; 

b) Build a genomic map of age-dependent epigenetic markers in mammals, based on 

public data and state-of-the-art high-throughput methodologies that would allow to 



 

 

reduce the costs of routine analysis at iBiMED, by turning from whole genome to 

targeted-based analysis, focusing only on those relevant regions of the genome; 

c) Validate the bioinformatics pipeline build by us for methylome analysis, using in-

house generated data, so that this methodology can become available at iBiMED. 
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CHAPTER I      INTRODUCTION  

Epigenomics and gene regulation 
 
 

1. EPIGENOMICS 

1.1. Overview 

Despite an identical genetic background, different cell types execute distinct 

programmes of gene expression highly influenced by developmental, physiological and 

environmental stimulus, which means that the marks of developmental history are unlikely 

to be caused by widespread somatic mutations(McGowan & Szyf 2010),(Bird 2002). This 

evidence brings us the concept of epigenetics that, by definition, is the study of mitotically 

and/or meiotically heritable changes in gene function that cannot be explained by changes 

in DNA sequence and that are potentially reversible(Bird 2002). 

One of the main functions of epigenetic processes is the packaging of genetic information 

in the nucleus of eukaryotic cells. Each diploid cell with 46 chromosomes contains 

approximately 6 billion base pairs (bp) of DNA that are condensed by histone proteins, the 

main characters of the organization of genetic information in cells. Additionally, the covalent 

modifications of histone proteins and DNA cytosine methylation-state are associated with 

different forms and functions of chromatin that regulate gene expression. Non-coding RNAs 

(ncRNAs) have also emerged as important epigenetic regulators in crucial biological 

processes as differentiation and development(Falahi et al. 2015). 

Currently, the scientific community has been focused on the study of the phenotypic 

differences across humans by crossing it with genetic and epigenetic variations(McGowan 

& Szyf 2010). Until the emergence of epigenomics, the researchers were able to identify 

the genes that contributed to a particular trait or phenotype. However, if the variant were 

located in a non-coding region of DNA, sometimes there weren’t insights into the regulatory 

mechanisms underlying the association. In these cases, providing the missing connection 

between genomic variation and cellular phenotype was essential(Romanoski et al. 2015). 

The role that epigenetics has in gene regulation it’s important to study the adaptive variants 

of a given gene to a changing environment but it might also be associated with cellular 

differentiation(Mensaert et al. 2014),(Bird 2002). Since cellular differentiation is a 
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prerequisite for complex multicellular organisms, than it is expected that almost all species 

in this category can benefit from epigenetic control(Mensaert et al. 2014). 

Therefore, it is crucial that the studies related with phenotypic diversity consider 

epigenetic variations in addition to genetic sequence polymorphisms, not only to identify 

pathology associated epigenetic aberrations but also to understand how these marks are 

patterned across the genome and how these mechanisms can control biological 

processes(Mensaert et al. 2014),(McGowan & Szyf 2010). 

1.2. DNA methylation 

One example of an essential epigenetic process involved in cellular development, 

differentiation and regulation is methylation of cytosines (5mC) in DNA. This enzymatic 

reaction (Figure 1) is mediated by DNMTs (DNA methyltransferases) that transfer a methyl 

group from SAM (S-adenosyl-L-methionine) to the carbon 5 of a cytosine. Since carbon 5 

is a weak nucleophile unable to interact with SAM on its own, a nucleophile from DNMT can 

attack the carbon 6 of the cytosine, covalently binding the enzyme to the DNA which will 

activate the nucleophilic character of the carbon 5, facilitating the transfer of the methyl 

group from SAM. After this, the enzyme nucleophile is eliminated and deprotonation at the 

carbon 5 separated the nucleotide-DNMT complex(Johnson et al. 2012). 

The most common form of DNA methylation is present in C-G dinucleotides, referred to 

as CpGs(Jones et al. 2015). The regions with high density of CpGs are known as CpG 

islands (CGI), regions with more than 200 base pairs (bp), with a percentage of guanine 

and cytosine above 50% and 0.6 observed/expected ratio of CpGs (Jones et al. 2015). The 

regions immediately surrounding CGIs are referred to as shores followed by shelves (Jones 

et al. 2015). Previously, the scientific community thought that methylated CGI were 

unmethylated in normal cells, with the exception of those that were associated with 

imprinted genes and genes on the inactive X chromosomes. However, it was shown that 

Figure 1 -  Reversible enzymatic reaction of cytosine methylation. 5-methylcytosine (5mC) is obtained using 

DNMTs and a methyl donor (SAM) while cytosine can be obtained from 5mC through dMTases. Adapted from 
(McGowan & Szyf 2010) 
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non-imprinted autosomal CpG islands are methylated in normal cells and might use this 

mechanism for the control of gene expression (Laird 2003). Additionally, most methylated 

cytosine residues are found in CpG dinucleotides that are located outside of CpG islands 

and although the methylation in some CGI increase with age, the global genomic content 

of 5mc decreases with age (Laird 2003). In mammalian somatic cells, 5mC accounts for 1% 

of total DNA bases and affects 70-80% of CpG dinucleotides of the genome(Bird 2002). 

1.2.1 Mechanisms and machinery 

By definition, we know that the epigenetic features can be inherited, however methylation 

patterns are not copied by the DNA replication machinery (McGowan & Szyf 2010),(Toyota 

et al. 2009). There are three DNMTs (DNMT1, DNMT3A, DNMT3B) which catalyze the 

methylation of a variety of genes, including genes involved in cell-cycle checkpoints, 

apoptosis, DNA repair, cell adhesion and signal transduction (Toyota et al. 2009). 

This enzymatic machinery can be involved in two different methylation processes (Figure 

2): maintenance of methylation patterns and de novo methylation. DNMT1 is the main 

enzyme responsible for the post-replicative restoration of the full methylation sites using a 

process called maintenance methylation. This procedure allows the reproduction of DNA 

methylation patterns through cell generations since it depends on semiconservative copying 

of the parental strand methylation pattern to the offspring DNA strand (Holliday & Pugh 

1975),(A.D. Riggs 1975). 

On the other hand, de novo methylation is characterized by the appearance of new DNA 

methylated spots by DNMT3A and DNMT3B(McGowan & Szyf 2010),(Okano et al. 1999). 

De novo methylation events occur in germ or early embryonic cells but it can also be present 

Figure 2 -  DNA methylation mechanisms. Maintenance methylation by DNMT1 and de novo methylation by 
DNMT3A and DNMT3B. Adapted from (McGowan & Szyf 2010) 
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in adult somatic cells and not all regions of the genome are equally accessible to DNA 

methyltransferases(Bird 2002). 

1.2.2 DNA methylation patterns 

Traditionally, the majority of genomic 5mC lies in CpG sites within CGI located in 

transposable repetitive elements and also in promoters(Schroeder et al. 2011). However 

there are recent evidences suggesting that methylation can also be found in alternate 

contexts including CHG and CHH (where H indicate non-G nucleotides)(Lister et al. 2009).. 

The human genome has about 60% of human genes associated with CGI(Antequera & Bird 

1993). 

For that reason, the driving force in DNA methylation studies has been particularly 

focused on CpG islands methylation in view of its demonstrated ability to silence genes in 

mammalian cells(Jones & Baylin 2007). However, it is worth noting that about 40% of 

human genes do not contain CpG islands in their promoters(Takai & Jones 2002). The most 

recent genome-wide analysis has been investigating the role of methylation in non-CpG 

islands because its mechanistic links have not been so well demonstrated and recent work 

have shown strong correlations between tissue-specific expression and methylation of non-

CpG islands(Jones & Baylin 2007). 

Tissue-specific differential methylated regions (T-DMR) have been reported in several 

human tissues along with partially methylated domains (PMD) and allele-specific 

methylation(Schultz et al. 2015). Therefore, since it is known that the methylation pattern is 

a balance of methylation and demethylation events which are responsible for a relationship 

between gene expression and environmental signals(McGowan & Szyf 2010); the functional 

consequences of DNA methylation as well as its interactions with the transcriptional 

machinery have been investigated in order to understand the diversity of human tissues 

and its relation with disease(Laird 2003),(Schultz et al. 2015). 

As expected, DNA methylation of promoter regions is negatively associated with gene 

expression(Schroeder et al. 2011), whereas gene-body methylation has been reported to 

positively correlate with gene-expression levels(Tsai et al. 2012),(Parle-McDermott & Ozaki 

2011). Often, DNA methylation also functions to repress repetitive elements, such as Alu 

and LINE-1, which are generally highly methylated in the human genome(Jones et al. 2015). 

Cancer is an example of DNA methylation patterning that has medical interest and is 

associated with a number of genome-wide alterations. In this case, a global 

hypomethylation is related with oncogene activation(Wu et al. 2005) whereas 
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hypermethylation is associated with tumor suppressor gene silencing(Esteller 2002). Then, 

since the epigenetic alterations are more readily reversible than genetic events, DNA 

methylation markers might be a promising future in both clinical diagnostics and 

therapeutics and also in the area of molecular diagnosis and early detection(Laird 2003). 

1.2.3 DNA Demethylation 

The DNA demethylation process, or loss of DNA methylation (concept known as 

hypomethylation), is also important to study the global DNA methylation patterns since it 

has been already observed in different biological contexts like mammalian embryogenesis 

or in specific loci in rapid response to environmental stimuli or in post-mitotic cells(Kohli & 

Zhang 2013). DNA demethylation can occur actively through an enzymatic process that 

removes or modifies the methyl-group in 5mC or passively through subsequent rounds of 

replication that does not replicate the 5mC in previous generation(Kohli & Zhang 2013). 

The study of active demethylation, however, has been technically challenging and there 

are several proposed mechanisms to study it. Currently, the most convincing method 

involves the study of 5-hydroxymethylcytosine (5hmC), the key intermediate in active 

demethylation pathways. Briefly, the ten eleven translocation (TET) enzymes are known to 

be responsible for the oxidation of 5mC to 5hmC, to 5-formylcytosine (5fC) and finally to 5-

carboxylcytosine (5caC) that can be descarboxylated by thymine-DNA glycosylase (TDG) 

regenerating normal cytosine. On the other hand, others have used the base excision repair 

(BER) mechanism that remove an entire modified base replacing it by an unmodified 

cytosine(Johnson et al. 2012),(Kohli & Zhang 2013). 

1.3. Histone modifications 

The base element of chromatin is the nucleosome that is the basis for packaging of 

genetic information in the nucleus of eukaryotic cells. This chromatin structure is made up 

of two copies of each of the four core histones (H3, H4, H2A, H2B) around which 146 bp of 

DNA are wrapped(Kornberg & Lorch 1999). The histone proteins are modified by 

methylation(McGowan & Szyf 2010),(Lehninger et al. 2005), phosphorylation(McGowan & 

Szyf 2010),(Lehninger et al. 2005), acetylation(McGowan & Szyf 2010),(Lehninger et al. 

2005), ubiquitination(McGowan & Szyf 2010) and ADP-ribosylation(Lehninger et al. 2005) 

with consequences in the accessibility of the DNA wrapped around the nucleosome 

core(McGowan & Szyf 2010). 

The histone proteins are evolutionarily conserved proteins characterized by molecular 

weights between 11 000 and 21 000 Da(Lehninger et al. 2005). They have an accessible 
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amino terminal tail and a histone fold domain that mediates interactions between histones 

to form the nucleosome scaffold(Luger et al. 1997). These proteins are very rich in the basic 

amino acids arginine and lysine(Lehninger et al. 2005) and the ones involved in DNA 

compaction and chromatin remodeling are H1, H2A, H2B, H3 and H4(Falahi et al. 2015). 

The DNA backbone, negatively charged, interacts with these proteins, positively charged, 

thus blocking the interaction of transcription factors with the DNA(McGowan & Szyf 2010). 

Histone post-transcriptional modifications are reversible and are added by several enzymes 

like HATs (histone acetyltransferases), HDACs (histone deacetylases) and HMTs (histone 

methyltransferases)(McGowan & Szyf 2010). In general, gene repression is associated with 

H3K27me3 (designates 3 methylation groups on lysine 27 in the histone H3 tail) and 

H3K9me2/3 while active gene expression is associated with H3K4me3 and H3/H4 

acetylation(Falahi et al. 2015),(Barski et al. 2007). Although the vast majority of these 

modifications remain poorly understood, the histone code, which postulates that a specific 

combination of modifications affects gene expression, is becoming unveiled in order to 

understand its roles in transcriptional regulation(Hon et al. 2009),(Suganuma & Workman 

2011). 

Histone modifications and DNA methylation are not independent events since global 

hypomethylation might lead to global alterations in histone acetylation and vice versa. It was 

already shown that cytosine methylation could attract methylated DNA binding proteins and 

histone deacetylases to methylated CpG islands during chromatin compaction and gene 

silencing(Jones & Baylin 2007),(Jones et al. 1998). The interplay between DNA methylation, 

histone covalent modifications and nucleosomal remodeling is involved in heritable gene 

repression at the start site of several genes, resulting in gene silencing. As an example, it 

is known that the nucleosomal remodeling complex (NuRD) and the SWI/SNF chromatin 

remodeling complex interact with DNA methylation binding proteins(Zhang et al. 1999). 

1.4. Non-coding RNAs 

Although only a small percent of the total amount of RNA is protein coding, up to 75% of 

the human genome is known to be transcribed into RNA(Djebali et al. 2012). Until recently, 

most of the known ncRNAs were associated with cell functions, i.e. rRNAs and tRNAs were 

involved in translation, snRNAs were involved in splicing and snoRNAs were involved in the 

modification of rRNAs(Mattick & Makunin 2006). Currently, there is an increasing number 

of non-coding RNA that function in association with introns and UTR(Daniel et al. 2015) that 

have been shown to regulate gene expression in response to stress and environmental 

stimuli as miRNAs, siRNAs and lnRNAs, among others(Kaikkonen et al. 2011). 
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Several researchers have identified functional and important roles of ncRNAs in diverse 

biological processes, such as in the recruitment of chromatin regulatory proteins to genomic 

DNA locations, or in the organization of distinct nuclear structures. Additionally, it was 

already determined the role of several ncRNAs in shaping aspects of 3D nuclear 

organization and on the emerging mechanisms to regulate gene expression(Quinodoz & 

Guttman 2014). 

2. ROADMAP FOR REGULATION 

2.1. Epigenome-wide analysis 

Evidences suggest that exposure to particular environmental factors like nutrition during 

early development, may affect susceptibility to certain chronic diseases(Mensaert et al. 

2014),(Ozanne & Constância 2007). The stimulus applied at a critical period of development 

that result in long-term effects on the structure or function of an organism is called 

programming(Ozanne & Constância 2007). It is known that these kinds of changes in gene 

expression are maintained in spite of cell division, which means that a mechanism which 

allows the stable propagation of gene activity-states from one generation of cells to the next 

is required(Ozanne & Constância 2007). Epigenetic mechanisms are one such possibility, 

since it is known that epigenetic arrangements are important for gene regulation providing 

variants to a changing environment(Mensaert et al. 2014),(Bird 2002),(Ozanne & 

Constância 2007). 

Several studies revealed that the analysis and comparison of epigenomes is essential 

for detecting and understanding the drivers of certain diseases and traits. In order to 

understand the role of epigenetics in developmental programming, it is necessary to 

measure the epigenetic marks throughout the genome using robust and sensitive 

quantification methods(Ozanne & Constância 2007). Once the role of epigenetics in 

programming is known, it will be possible to understand the correlations between chromatin 

components and therefore the scientific community will be closer to improve the prevention, 

detection and therapy of certain chronic diseases like cancer(Jones & Baylin 2007). 

However, it is known that epigenetic variants are often located in tissue-specific 

regulatory regions. For that reason, each cell type must be analyzed in several individuals 

to assess the effect of genetic variation on personal cell-type specific epigenomes in normal 

and disease states(Mensaert et al. 2014),(Hirst & Marra 2011),(Romanoski et al. 2015). One 

example of a relevant epigenetic mark in human disease and in the biological processes is 



 
 

 
 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 

 

8 Chapter I – Introduction: Epigenomics and Gene Regulation 

 

gene silencing which is essential for the life of eukaryotic organisms and can be mediated 

by DNA methylation and covalent modification of histones(Jones & Baylin 2007). 

Although epigenome-wide association studies (EWAS) have already been focusing on 

characterizing of genome-wide DNA methylation, currently it aims to examine additional 

epigenetic marks in order to analyze the association between epigenetic variants and 

disease(Tsai et al. 2012). This approach already identified DMRs for several traits, but many 

aspects still require careful consideration owing to the unique features of DNA 

methylation(Tsai et al. 2012). 

2.2. Tissue-specific differential methylated regions 

Although epigenetic variants can be tissue-specific or shared across tissues, there have 

been identified more dissimilarities in different tissues from the same individual than in the 

same type of cell from the same tissue from unrelated individuals(Tsai et al. 2012). For that 

reason, it is fundamental to link genetic information, which is identical in most of an 

individual’s cells with epigenetic mechanisms that have tissue-specific roles in order to 

understand the diversity of human tissues(Schultz et al. 2015). 

The determination of tissue-specific differential methylation (T-DMRs), partially 

methylated domains, allele-specific methylation and transcription and also the presence of 

non-CpG methylation were already analyzed in all contexts of the major human organ 

systems(Schultz et al. 2015). Transcription is strongly associated with intragenic DMRs in 

tissues and it was suggested before that these intragenic methylation differences mark 

intragenic CpG islands. However, additional data suggests that predicted enhancers and 

putative promoters only accounted for 23% and 22% of intragenic DMRs, which means that 

the remaining DMRs represent an unrecognized set of functional elements. It is also known 

that the methylation level of uiDMRs (undefined intragenic DMRs) is strongly correlated with 

the expression of the genes containing them(Schultz et al. 2015). 

Schultz et al. 2015 examined whether variation in methylation is associated with genetic 

variation across individuals. In this study, the tissue-specific methylation from DNA motifs 

was predicted and the motif groups were clustered by their tissue hypo and 

hypermethylation specificities. Additionally, evidence was found about the existence of 

methylation outside of the CG contexts, as in CH contexts. This analysis revealed a negative 

correlation between expression and methylated CH. 

The partially methylated domains (PMDs) have not yet been extensively studied but its 

presence is known to involve several organ systems and it is suggested that they could 
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mark transcriptionally repressive genomic domains. The IMR90 human fetal fibroblast cells 

and the human SH-SY5Y neuronal cells are an example of cells which have large regions 

of their genome, 41% and 19% respectively, with PMDs. In (Schroeder et al. 2011), autism 

candidate genes were also enriched within PMDs and the largest one showed a strong 

genetic association to autism. 

On the other hand, although CpG methylation has been thought to disrupt the 

interactions between trancription factors and DNA, it was already shown that the 

transcription factors preferentially bind to methylated CpG sites. Wan, J. et al. (2015) 

characterised T-DMRs and correlated them with the expression levels of associated genes. 

It was found that genes whose expression was negatively correlated with T-DMRs were 

enriched for functions carried out in adult tissues, while the positively correlated genes were 

enriched for negative regulators such as transcriptional repressors (Wan et al. 2015).. 

Additionally, only 14% of the predicted motifs associated with negative gene regulation 

contain a CpG site, while 78% of the positive gene regulation motifs contained at least one 

CpG (Wan et al. 2015). For the positively associated motifs that contain a CpG site, it may 

be the methylation of that specific CpG, which allows the binding of a particular transcription 

factor that only binds to methylated DNA and promotes transcription (Wan et al. 2015). On 

the other hand, on negative T-DMRs, generalized methylation of the T-DMR may be more 

likely to inhibit transcription by the binding of methyl-binding proteins rather than a specific 

transcription factor that only binds to methylated DNA(Wan et al. 2015). 

2.3. The age-associated epigenome 

Remarks about the influence of lifestyle choices in the aging process have led to the 

search for biological markers involved in the aging process that can be used to provide 

some insights into age decline and disease(Hannum et al. 2013). The progression of 

multiple degenerative processes and the progressive loss of regenerative capacity and 

tissue function within an individual is the key to understand the molecular mechanisms of 

normal and premature aging(Bell et al. 2012),(Bewerunge-Hudler et al. 2014),(Winnefeld & 

Lyko 2012). 

The factors that contribute to the rate of healthy aging within an individual were already 

identified by several studies(Bell et al. 2012). It was also shown that stress may affect gene 

expression patterns through specific changes in DNA methylation. However, spontaneous 

epigenetic changes may also occur without environmental stress, leading to unpredictable 

differences in the epigenome between individuals. These ones are caused by chemical 
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agents that disrupt methyl groups or through errors in copying methylations states during 

replication(Hannum et al. 2013). 

Besides the expression of genes especially involved in metabolic and DNA repair 

pathways, telomere length is also an aging-marker that shows an accelerated rate of decay 

under environmental stress.(Hannum et al. 2013) Blood pressure, lung function, bone 

mineral density and serum levels of 5-dehydroepiandrosterone (DHEAS), cholesterol, 

albumin and creatinine were also considered biomarkers of aging.(Bell et al. 2012) 

DNA methylation is the most commonly studied epigenetic modification in humans and 

has been linked to complex age-associated diseases like metabolic disease, cancer, 

diabetes and cardiovascular disease(Hannum et al. 2013),(Bewerunge-Hudler et al. 2014). 

Additionally, it was already observed a phenomenon called epigenetic drift where increasing 

differences in DNA methylation marks were observed in identical twins as a function of 

age(Hannum et al. 2013). 

For these reasons, the scientific community has been focusing the attention on the 

associations between age and the state of the epigenome even though the rate of change 

and contribution to biological aging are poorly understood(Tsai et al. 2012),(Bell et al. 2012). 

The determination of a quantitative measurement of methylome states in order to identify 

relevant factors and to detect different rates of human aging is essential in order to stablish 

relations to clinical or environmental variables(Hannum et al. 2013). 

Since aging is associated with multifactorial changes that are beginning to be 

understood(Winnefeld & Lyko 2012), the determination of differential methylated regions 

during lifetime is an important goal that requires the characterization of methylation patterns 

in large (Bewerunge-Hudler et al. 2014). Although global changes in DNA methylation may 

be due to a progressive loss of methylation in repetitive sequences throughout the genome, 

individual CpG sites that specifically change with age have already been reported (Tsai et 

al. 2012),(Bewerunge-Hudler et al. 2014). Several epigenome-wide scans have identified 

age-associated changes in the methylome at some CpG sites and also at non-island loci, 

with a positive and negative correlation between methylation in CpG and non-CpG contexts 

being found, respectively (Bewerunge-Hudler et al. 2014). 

These kind of studies are made by determining the genome localization of age related-

DMRs (a-DMRs) and their functional role (Bell et al. 2012). Comparisons have been made 

between the epigenetic variations and aging-related traits that are essential biomarkers of 

aging (Bell et al. 2012). Distinct studies showed that the aging rate is influenced by several 
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parameters like gender, body mass index and specific genetic variants. In the case of 

gender, it is known that the methylome of men appears to age approximately 4% faster than 

that of women (Hannum et al. 2013). 

On the other hand, the majority of a-DMRs lay within genes with aging-related functions. 

For example, methylation markers have been related to the gene for somatostatin (SST), a 

key regulator of endocrine and nervous systems, and transcription factor KLF14, an 

important regulator of obesity and other metabolic traits. These have highlighted an 

association between aging, longevity, metabolic activity and have been implicated in obesity 

and metabolism (Hannum et al. 2013). 

Additionally, it was already shown that although a-DMRs do not appear to be random 

events, the majority of observed a-DMRs may either be neutral to measures of biological 

age at later stages of life, or may relate to yet unknown pathways that correlate with 

biological aging(Bell et al. 2012). However, the timing of the age-related trigger at each CpG 

site remains unclear although it is known that DNA methylation plays a key role in 

development and tissue (Bell et al. 2012). 

The methylation levels of DMRs and the expression of the closest genes also showed a 

negative correlation that was stronger closer to the transcription start site (Schultz et al. 

2015). These tend to be associated with epigenetic marks targeting low levels of 

transcription and gene expression in samples of middle-aged individuals and present in 

tissues functionally linked to development and aging (Bell et al. 2012). Several results 

indicate that a proportion of a-DMRs are conserved across tissues in samples of different 

ages and genders which suggests that there the epigenetic mechanisms represent a 

potential pathway for mediating healthy aging and age-related traits (Bell et al. 2012). 

3. METHODOLOGIES TO STUDY THE METHYLOME 

One of the unique contributions of epigenomic data to the study of genomic sciences is 

its quantitative nature in contrast to the sequence itself, which is discrete (Callinan & 

Feinberg 2006). The measurement of these epigenetic marks is crucial to identify those that 

are associated with pathology or to the control of biological processes. The emergence of 

high-throughput methodologies as microarrays and next-generation sequencing coupled to 

innovative molecular and computational techniques has brought epigenomic studies to the 

forefront of current research (Mensaert et al. 2014),(Hirst & Marra 2011). 
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The research community has been improving these techniques at an exponential rate 

and has revolutionized molecular biology with genomic studies focused on mRNA 

abundance and on fields ranging from cancer genome sequencing to systematic dissection 

of protein structure and function (Friedman & Rando 2015),(Hirst & Marra 2011). Currently, 

the NGS technology enables parallel sequencing of millions of DNA fragments in a short 

time and provides accurate information on the composition of DNA samples, making it the 

method of choice for genomics and epigenomics (Dijk et al. 2014). 

3.1. DNA Methylation Profiling 

The profiling of DNA methylation since the recognition of its importance to gene 

expression in 1975(Holliday & Pugh 1975),(A.D. Riggs 1975) has evolved a lot, firstly with 

the development of early non-specific methods and differential gene methylation analysis 

and then with the appearance of the microarray technology and NGS methods (Harrison & 

Parle-McDermott 2011). 

The earliest breaches were based on the separation of methylated and unmethylated 

deoxynucleosides using HPLC or TLC, enzymatical incorporation of tritium-labelled methyl 

groups to unmethylated cytosines and posterior radioactivity measurement, quantification 

of radiolabeled DNA retained by polyclonal antibodies followed by visualization by electron 

microscopy or even usage of anti-5mC monoclonal antibody and secondary antibodies 

labelled with fluorescent isothyocianate (Harrison & Parle-McDermott 2011). Then, the 

differential gene methylation analysis emerged where methylation-sensitive restriction 

enzymes are used followed by radiolabeling, TLC, Southern-blot or even methylated-

sensitive PCR methods (Harrison & Parle-McDermott 2011). Currently, the categorization 

of DNA methylation profiling methods can be made into three main methods: restriction 

enzyme, affinity enrichment and bisulfite conversion-based methods; all of them followed 

by microarray or next-generation sequencing techniques (Yong et al. 2016). 

The restriction enzyme-based methods take advantage of the differential digestion 

properties of isoschizomers and neoschizomers since it exhibit different sensitivities to DNA 

methylation state (Yong et al. 2016). The cleavage is made by methylation-sensitive 

restriction enzymes (MRE) like BstUI, HpaII, NotI or SmaI that leave the methylated DNA 

intact, cleaving only the unmethylated one (Yong et al. 2016). On the other hand, the affinity 

enrichment-based methods use proteins like methyl CpG-binding domains (MBDs) or 

antibodies with specificity to methylated cytosines to enrich methylated DNA sequences 

(Yong et al. 2016). 
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The particular case of bisulfite conversion was described simultaneously by the Shapiro 

and Hayatsu groups in the early 1970s (Hirst & Marra 2011) and is based on the ability of 

sodium bisulfite to deamine the unmethylated cytosine residue to uracil in single-stranded 

DNA which is read as thymidine, whereas 5mC remains non-reactive (Mensaert et al. 

2014),(Clark et al. 1994). This process is made through a multistep process with 1) an 

reversible addition of bisulfite to the 5-6 double bound of cytosine; 2) hydrolytic deamination 

of the resulting cytosine derivative to give an uracil-bisulfite derivative; 3) the sulphonate 

group is removed by a subsequent alkali treatment to give uracil (Figure 3)(Mensaert et al. 

2014). Then, the sequence is amplified using PCR in which all uracil and thymine residues 

are amplified as thymine and only 5mCs are amplified as cytosines(Mensaert et al. 2014). 

3.2. Next-Generation Sequencing 

Since the conclusion of the Human Genome Project, substantial changes have occurred 

in NGS methods especially at the whole-genome sequencing scale. These technologies 

have a major impact on the ability to explain and study genome-wide biological questions 

since they not only change our sequencing approaches but also accelerated the 

process.(Mardis 2008) The availability of NGS techniques to study genomic DNA is 

transforming the biological and medical science in several fields.(Ansorge 2009) 

These methodologies enhanced the epigenomics studies in several organisms. The 

quantification of the expression level and its correlation with changes in environmental 

factors will intensify the annotation of sequenced genomes while the impact of mutations 

will become more broadly interpretable across the genome.(Mardis 2008) The research 

about ancient genomes has also been a difficult task in the genomics research since the 

characterization of ancient DNAs has been limited by the degraded state of samples. 

However, the NGS technology made it possible to directly sample the nuclear genomes of 

the cave bear, mammoth and the Neanderthal and with NGS evolution we expect to 

increase this sort of evidences.(Mardis 2008) In the field of Microbial Genomics, the goal is 

Figure 3 – Bisulfite conversion of cytosine to uracil. The reaction is a multistep procedure where firstly is a 

sulphonation followed by a hydrolytic deamination and finally an alkali desulphonation. 
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to measure the genetic diversity encoded by microbial life in organisms inhabiting a 

common environment. This research has been supported by the Human Microbiome Project 

where comparative analysis of the collection of microbes in and on the human body is being 

made that could contribute to further understanding human health and disease.(Ansorge 

2009) 

Therefore, the benefits from recent advances of the NGS technology should burst 

several multidisciplinary fields as epigenomics, genomics, proteomics, microbiology, 

medical research and anthropology.(Ansorge 2009) 

3.2.1. Genomic DNA preparation 

The NGS technology requires the conversion of the nucleic acid material to be 

sequenced into standard libraries suitable for loading onto a sequencing instrument (Figure 

4).(Dijk et al. 2014) For that purpose, it is necessary to carry out a library preparation 

process that can be divided into two distinct steps: the fragmentation of genomic DNA and 

the preparation of the fragments for sequencing. (Hirst & Marra 2011)All of these processes 

are dependent of the kind of sequencing that is made.(Hirst & Marra 2011) 

The starting material for epigenomic studies is generally double-stranded DNA in the 

form of isolated genomic DNA or chromatin (ChIP-Seq) which should be fragmented using 

one of the third available methods (Dijk et al. 2014). First, physical fractionation methods 

as sonication, apply force to break chromatin. Second, nuclease-susceptibility methods as 

MNase-Seq (Micrococcal Nuclease Sequencing), DNase-Seq (DNase I digestion 

Sequencing) and ATAC-Seq (Assay for Transposase Accessible Chromatin Sequencing) 

are based in the susceptibility of certain regions of the genome to enzymatic attack and to 

separate accessible regions from compact ones. Third, the chemical susceptibility of 

chromatin could be used such as hydroxyl radical cleavage of DNA backbone or bisulfite 

treatment to distinguish between cytosine and 5mC (Friedman & Rando 2015). 

Then, if the used method requires it, methods of separation or enrichment are used to 

enrich the sample in specific classes of chromatin and to provide insight into packaging of 

genomic regions (Friedman & Rando 2015),(Mensaert et al. 2014). It can be made using 

physical methods as solubility or FAIRE (Formaldehyde-Assisted Isolation of Regulatory 

Elements)(Friedman & Rando 2015), or immunoprecipitation as ChIP where antibodies are 

attached to the post-translational modification of histones under study (Hirst & Marra 2011). 

Finally, further processing is made according to the correspondent sequencing protocol 

described in the next sections. In order to obtain homogenous and blunt-end fragments, a 
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previous end-repair is made, together with adapter ligation and usually a size selection step 

to remove free adapters and to select molecules in the desired size range. It is performed 

a PCR amplification to generate sufficient quantities of template DNA to allow accurate 

quantification (Dijk et al. 2014). Although the PCR amplification is known to introduce bias 

in sample composition due to the fact that not all fragments in the mixture are amplified with 

the same efficiency, currently several DNA Polymerases or additives minimize amplification 

bias which is crucial to rise the quality of the library preparation (Dijk et al. 2014). After all 

these processes the DNA is ready to be sequenced.  

3.2.1.1. Whole Genome Bisulfite Sequencing 

Whole Genome Bisulfite sequencing, also called MethylC-Seq or BS-Seq, is useful to 

determine the methylation status of cytosines at single nucleotide level but at genome scale. 

Figure 4 - Library preparation using as starting material a chromatin sample. First, chromatin is fragmented 

using one of several methods – sonication, enzyme digestion or chemical attack. Second, methods of 
enrichment or affinity should be used to enrich the sample in specific classes of chromatin and to provide insight 
into packaging of genomic regions. Third, the DNA is processed according to the correspondent treatment 
protocol of each study and after end-repair, adapter ligation and PCR the DNA is sequenced. Each sequencing 
method has a specific and more appropriate protocol according to the aim of the study. Adapted from (Friedman 
& Rando 2015). 
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This method was first tested in Arabidopsis thaliana and was recently adapted to the human 

genome. Despite all the advantages of bisulfite conversion, in the original methodology the 

results of the reaction were amplified by PCR and subjected to Sanger sequencing which 

does not scale well and cannot be applied to whole genome studies. Currently, with the 

advent of next generation sequencing it is possible to directly shotgun sequence bisulfite 

treated genomic DNA (Hirst & Marra 2011). 

The library preparation of this particular sequencing method is made using a similar 

approach to the one explained before. After the fragmentation of genomic DNA, the ends 

of sheared-DNA are repaired to ensure that each molecule is free of overhangs and 

contains 5’-phosphate and 3’-hydroxyl groups and to allow the addition of sequencing 

adapters. Klenow polymerase is used to remove 3’-overhands, T4 DNA polymerase to fill 

in 5’-overhangs and T4 polynucleotide kinase to phosphorylate 5’-OH(Pomraning et al. 

2009). Then, genomic DNA is ligated to sequence adapters, artificial sequences where DNA 

sequencing will be initiated(Goodwin et al. 2016), where all cytosines are methylated.(Hirst 

& Marra 2011) Bisulfite conversion only takes place after all these processes and since 

adapters do not have unmethylated cytosines, they are protected of deamination (Lister & 

Ecker 2009). 

After bisulfite conversion, the library preparation can be made in a directional or non-

directional manner.(Krueger et al. 2012) In the first one, adapters are attached to the DNA 

fragments such that only the original top or bottom strands will be sequenced, resulting in 

either BSW (Bisulfite Watson) or BSC (Bisulfite Crick) reads that correspond to a bisulfite 

converted version of either the original strands (Krueger et al. 2012),(Hackenberg et al. 

2012). Only one round of PCR is performed, in which the primers should be complemented 

to adapter sequences producing the final library that can be sequenced(Lister & Ecker 

2009). On the other hand, the non-directional libraries consist of two PCR rounds with two 

different adapter sequences and consequently two primers complemented to them (Lister 

& Ecker 2009). This results in either BSW and BSC reads plus their reverse complementary 

strands (BSWRC and BSCRC) which does not preserve strand identity (Hackenberg et al. 

2012),(Krueger & Andrews 2011). Therefore, all four DNA strands that arise through bisulfite 

treatment and amplification can be sequenced with the same frequency(Krueger et al. 2012) 

(Figure 5). 

The paired-end read concept is also important for bisulfite sequencing since a 

considerable number of wrong mappings can be detected and removed. In this 

methodology both end of the DNA fragment are sequenced and since the distance between 
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them is known, it is possible to determine a region where both reads must map (Hackenberg 

et al. 2012). Paired-end reads contain one read from one original strand (BSW or BSC) and 

one complementary strand. In the case of a directional paired-end library, the first read 

always come from either the BSW or BSC strand, while in a nondirectional paired-end 

library, the first read may originate from any of the four possible bisulfite strands (Babraham 

Bioinformatics 2013).  

3.2.1.2. Reduced Representation Bisulfite Sequencing 

Reduced Representation Bisulfite Sequencing (RRBS) is a method with prior enrichment 

for genomic regions of interest and was introduced to reduce sequence redundancy 

associated to a whole genome sequencing method (Hirst & Marra 2011). In the case of CpG 

island methylation, the cost of bisulfite sequencing data can be reduced using RRBS that 

enriches the library on CpG-dense regions (Krueger et al. 2012). The RRBS technique is 

started by a fragmentation of genomic DNA using a restriction enzyme like BglII or more 

frequently MspI (Laird 2010). In the case of the methylation insensitive MspI restriction 

enzyme, the phosphodiester bond upstream of the CpG dinucleotide is cleaved in its CCGG 

recognition element (Lister & Ecker 2009). Often, the library is size-selected using gel-

electrophoresis to generate a fragment library within the range of next-generation 

sequencing platforms, allowing the creation of a reproducible but reduced representation of 

the DNA methylome (Mensaert et al. 2014),(Hirst & Marra 2011). The process follows the 

workflow of WGBS in library preparation being the size selection followed by end-repair, A-

tailing, adapter ligation, bisulfite conversion and amplification by PCR with primers 

complementary to the adapter sequences (Babraham Bioinformatics 2013). 

Figure 5 – Representation of a non-directional library. After the DNA genomic fragments are end-repaired and 

have adapter sequences, the bisulfite conversion is made in both top and bottom strands. Then, at least two 
rounds of PCR initialized by primers complementary to adapter sequences are performed. In the first round of 
PCR after bisulfite treatment, all uracil and thymine residues are amplified as thymine and only the methylated 
cytosine is amplified as cytosine. In the second round of amplification, both the BSWRC (in the figure CTOT – 
strand complementary to the original top strand) and BSCRC (in the figure CTOB – strand complementary to 
the original bottom strand) are produced and therefore, all four DNA strands can be sequenced with the same 
frequency. Adapted from (Krueger et al. 2012). 
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3.2.1.3. Single-Cell Methylome 

The currently most used DNA methylation profiling techniques requires large amounts of 

cells per experiment, making it difficult to study rare cell populations and hetegogeneity 

among individual cells (Farlik et al. 2015). For these reasons, the development of single-

cell epigenome mapping had to depend on very small amount of initial DNA and originated 

scWGBS, scRRBS and scPBAT (post-bisulfite adapter tagging) that are particularly useful 

for specific cell types that play important roles in early development such as sperm cells, 

oocytes, primordial germ cells and embryonic stem cells (Yong et al. 2016). 

The scRRBS provides information in one individual mouse or human cell by using 

multifluidics or emulsion-based single-cell lysates in which the MspI digestion is carried out 

directly, in order to minimize DNA loss (Yong et al. 2016). On the other hand, scPBAT uses 

the PBAT protocol where it is made an adapter tagging process after bisulfite conversion 

treatment, eliminating the need of an amplification step (Yong et al. 2016). As to scWGBS 

it is the method of choice for analyzing large number of single cells at low sequencing 

coverage (Farlik et al. 2015). 

3.2.1.4. Methylated DNA Immunoprecipitation Sequencing 

The Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) is an 

immunoprecipitation technique that aims at enriching the fragmented DNA pool according 

to its methylation content, by using an antibody specific for methylated cytosines. The 

technique should be used in a denatured state since the antibodies might be raised against 

a single-stranded methylated cytosine and the library preparation is made prior to 

immunoprecipitation step to avoid over representation of high methylated genomic repeats. 

3.2.1.5. Methylated DNA Binding Domain Sequencing 

The Methylated DNA Binding Domain Sequencing (MBD-Seq) is a method with high 

similarity to MeDIP-Seq in which bead immobilized high affinity methyl-binding proteins 

MECP2 or MBD2 are used to enrich methylated DNA fragments from a pool of genomic 

DNA fragments. In the MBD-Seq, while the weakly methylated DNA fragments are eluted 

at lower salt concentrations, the densely methylated DNA fragments are eluted at high salt 

concentrations (Hirst & Marra 2011). 

3.2.1.6. Methyl-sensitive restriction sequencing (MRS-Seq) 

The Methyl-sensitive Restriction Sequencing (MRS-Seq) also known as Methyl-sensitive 

Restriction Enzyme Sequencing (MRE-Seq) is a restriction enzyme-based method to profile 

the unmethylated fraction of the genome using restriction enzymes that are sensible to the 
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CpG methylation state (Hirst & Marra 2011). After the cleavage of unmethylated target 

sequenced for enzymes like BstUI, HpaII, NotI and SmaI, the resulting DNA fragments are 

selected by size, it is made a library construction step and then a NGS method is performed 

(Yong et al. 2016). 

The NGS methods are divided between first-generation sequencing platforms, also 

called basic sequencing methods, mainly based on fluorescence methods, second-

generation sequencing that introduced the whole-genome and high-throughput concept and 

third-generation sequencing, mainly baised on real-time and single-cell detections. 

Currently, a fourth-generation concept is emerging. This technology enable highly spatially 

resolved transcriptomics regardless of the specimen by sequencing nucleic acids directly in 

cells and tissues (Ke et al. 2016). 

3.2.2. Basic Sequencing Methods 

3.2.2.1. Sanger Method 

The Sanger method (Figure 6) was developed by Frederick Sanger in 1977 and was 

based on chain-termination method also known as Sanger sequencing (Sander et al. 

1975),(Sanger & Nicklen 1977). This method was adopted as the primary technology in 

laboratory sequencing applications and suffered a gradual improvement yielding capillary-

based(Swerdlow et al. 1990), semi-automated implementations of the Sanger biochemistry. 

Firstly, DNA is prepared by one of two mechanisms. In the shotgun de novo sequencing 

mechanism, the fragmented DNA is cloned into a plasmid that is used to transform, for 

example, Escherichia coli. On the other hand, in the target resequencing approach, the 

Figure 6 – High-throughput Sanger sequencing. Starting with a fragmentation of DNA (a), followed by an 

implication in vivo (b) and a cycle sequencing using ddNTPs (c) and finally a capillary-based electrophoresis 
(d)(Shendure & Ji 2008) 
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fragmented DNA is amplified using primers that flank the target. After DNA preparation, the 

sequencing reaction takes place through several cycles of denaturation, primer annealing 

and primer extension. Since dideoxynucleotides (ddNTPs) fluorescently labelled are 

provided in the reaction media, each one being marked with a different fluorophore, the 

extension reaction is terminated when one of these molecules is incorporated in the 

sequence. The outcomes of the Sanger sequencing reaction will be DNA fragments with 

different lengths and a ddNTP in its end. Then, the end-labelled products are separated by 

size by capillary-based electrophoresis and through laser excitation of fluorescent labels, 

the DNA sequence can be reconstructed (Shendure & Ji 2008). 

3.2.2.2. Maxam Gilbert Method 

Allam Maxam and Walter Gilbert developed in 1977 a sequencing method called Maxam 

Gilbert sequencing(Maxam & Gilbert 1977) which was used in sequence cases which could 

not easily be resolved with Sanger technique (Ansorge 2009). This technology was based 

on chemical modification of DNA and subsequent cleavage at specific bases (Liu et al. 

2012). 

Firstly, the DNA molecules (double or single stranded) are labelled with 32P at one end 

of one strand. Then, the DNA molecule is broke at guanine, adenine, cytosine and thymine 

with chemical agents, producing a nested set of radioactive fragments from the labelled end 

to each of the positions of that base. Finally, the fragments are separated according to its 

size and analyzed through an autoradiograph of the gel (Maxam & Gilbert 1977). 

3.2.3. Second generation sequencing platforms 

Although the automated Sanger sequencing has dominated the industry for several 

years, its limitations showed a need for new and improved technologies for DNA sequencing 

(Ansorge 2009). The second-generation sequencing platforms avoid the need for cloning 

of DNA fragments by the determination of the sequence data from amplified single DNA 

fragments without major increase of sequencing errors in comparison with Sanger 

sequencing technique. However, these technologies remain expensive for generating 

sequences with high-throughput and producing very short read lengths which are a 

challenge to developers of software computer algorithms and for resolving repetitive regions 

as CpG islands (Ansorge 2009). 

The main second-generation sequencing platforms are Roche 454 Pyrosequencer 

Instrument released in 2005, Illumina Genome Analyser firstly known as Solexa Genome 

Analyser in 2006, SOLiD Applied Biosystems in 2007 and Life Technologies Ion Torrent in 
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2010. These technologies include a number of similar methods that can be grouped as 

template preparation, sequencing and imaging and data analysis. The combination of 

specific protocols distinguishes one technology from another and determines the data 

output on each platform (Michael L Metzker 2010). Although all chemistries were studied 

under the scope of this thesis, only Illumina protocol will be described, since this is the one 

that iBiMED has. 

Table 1 - Comparison of second-generation sequencing techniques regarding sequencing mechanism, year 

and company of release (Liu et al. 2012) (Goodwin et al. 2016). 

 
The second NGS platforms, also called short-read length NGS platforms(Goodwin et al. 

2016), are divided into sequencing-by-synthesis (SBS) or sequencing-by-ligation (SBL) 

mechanisms (Table 1). In the SBS approach the methods are DNA-Polymerase dependent 

and its action is reported by a signal, whereas in the SBL techniques imaging depends on 

an hybridization of a probe to a DNA fragment (Goodwin et al. 2016). 

3.2.3.1. Illumina Sequencing Technology 

The original Illumina Sequencing Technology used four nucleotides that are reversibly 

labelled with a different fluorescent dye and added simultaneously to the surface of a flow 

cell channel along with DNA Polymerase responsible for DNA synthesis (Mardis 

2008),(Ansorge 2009). 

Firstly, the DNA fragments are ligated to their adapter and, after denaturation, the single-

stranded chains are immobilized on a proprietary flow cell surface designed to facilitate 

access to enzymes while ensuring high stability of surface-bound template and low non-

specific binding of fluorescently labelled nucleotides (Mardis 2008),(Illumina 2010). The 

single stranded fragments will perform bridge amplification where a bridge structure is 

created through hybridization of the free end to the complementary adapter on the surface 

of the support (Ansorge 2009). After the addition of the PCR amplification reagents, the 

DNA Polymerase will produce double-stranded bridges using as primers the adapters on 

the flow cell surface (Ansorge 2009). The denaturation of double-stranded bridges leaves 

single-stranded templates anchored to the substrate (Illumina 2010). When the amplification 

Platform Sequencing Mechanism Year of release Company releaser 

Roche 454 Pyrosequencer 
Instrument 

Sequencing by synthesis 2005 Life Sciences 

Illumina Sequencing Technology Sequencing by synthesis 2006 Solexa 

Life Technologies SOLiD 
System 

Sequencing by ligation 2007 Applied Biosystems 

Life Technologies Ion Torrent Sequencing by synthesis 2010 Life Technologies 
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is complete, there are several million of dense clusters in each channel of the flow cell 

(Figure 7). 

This technology uses labelled nucleotides to sequence the clusters on the flow cell 

surface, DNA polymerase and primers (Ansorge 2009),(Illumina 2010). In the sequencing 

cycle (Figure 8), a single labelled deoxynucleoside triphosphate (dNTP) is added to the 

nucleic acid chain (Illumina 2010). This dNTP is a reversible terminator of DNA sequencing 

and after its incorporation, an imaging step is performed followed by washing of the remain 

nucleotides and cleavage of the terminating group (Michael L Metzker 2010). This process 

is called cyclic reversible termination since after the cleavage step, the amplification 

continues through the following nucleotides (Michael L Metzker 2010). Finally, it is 

performed an imaging step where the images are subsequently analyzed to generate a 

focal map for each cluster (Hirst & Marra 2011). 

Figure 8 – Sequencing cycle of Illumina technology. (A) After the addition of DNA polymerase, dNTPs each 

one with a different dye and primers the amplification will start. (B) The addition of a dNTP is followed by an 
imaging step. (C) The nucleotides are washed and the terminating group of amplification is performed. The 
process will repeat in cycles. Adapted from (Michael L Metzker 2010). 
 

Figure 7 – Illumina immobilization strategy. After the sample preparation in which are obtained single stranded 

DNA fragments ligated to their adapters, the chains are immobilized in a flow cell surface where they will suffer 
bridge amplification though the addition of template dNTPs and DNA polymerase . The denaturation of double-
stranded bridges leaves the single-stranded templates anchored to the substrate. Adapted from (Michael L 
Metzker 2010) 
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3.2.4. Third-generation sequencing platforms 

The Third-generation Sequencing Platforms, also called long-read sequencing methods, 

consist of single-molecule real time sequencing approaches or synthetic approaches which 

rely on existing short-read technologies to construct long read in silico (Goodwin et al. 

2016). These technologies require an extremely sensitive light detection system capable of 

detecting and identifying signal from single molecules (Ansorge 2009). Particularly 

interesting for the scope of this thesis are the Pacific Biosciences SMRT system and 

Nanopore Sequencer, described bellow. 

3.2.4.1. Pacific Biosciences SMRT System 

This technology was introduced in 2010 by Pacific Biosciences and is called single-

molecule real time (SMRT) DNA-sequencing platform (Shokralla et al. 2012). The method 

of real-time sequencing involves imaging the continuous incorporation of dye-labelled 

nucleotides during DNA synthesis and uses hairpin library structures (Michael L Metzker 

2010). 

The method is performed in individual picolitre wells with Zero Mode Waveguide (ZMW) 

detectors in their bottom along with a stationary DNA Polymerase (Goodwin et al. 2016). 

The natural capacity of DNA polymerase to incorporate nucleotides is used in this method 

followed by a fluorescence detection. However, in this case the fluorescent label is attached 

to the terminal phosphate group rather than in the nucleotide base (Shokralla et al. 2012). 

Then, the incorporated laser and camera system records the color and duration of emitted 

light as the nucleotide momentarily pauses during incorporation in the bottom of the ZMW. 

The polymerase cleaves the dNTP-bound fluorophore during incorporation, allowing it to 

diffuse away from the sensor area before the next labelled dNTP is incorporated(Goodwin 

et al. 2016). 

This technology has already been reported as a possible sequencing method to detect 

directly DNA methylation without the use of bisulfite conversion method. Since it is known 

that SMRT sequencing polymerase synthesis rates are sensitive to DNA primary and 

secondary structure, the methylated bases in a DNA template might be detected directly on 

the principle that their presence affects polymerase kinetics during SMRT sequencing 

(Flusberg et al. 2010). 

3.2.4.2. Nanopore sequencer 

In the nanopore sequencing the nucleic acids are driven through a nanopore either a 

biological membrane protein or a synthetic pore and the detection is not made through 
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incorporations of nucleotides during synthesis that cause variations of measurable 

parameters like light, color or pH (Goodwin et al. 2016). On the other hand, a direct detection 

of DNA composition is made using a ssDNA or ssRNA native molecules (Goodwin et al. 

2016). The translocation of DNA through the nanopore induces fluctuations in DNA 

conductance through the pore or can cause interactions of individual bases with the pore 

which can be used to infer the nucleotide sequence (Shendure & Ji 2008). The first 

consumer prototype of this sequencer is the MinION from the Oxford Nanopore 

Technologies, released in 2014, that uses a hairpin library structure (Goodwin et al. 2016). 

This method was also already reported as a detector of DNA methylation without 

chemical modifications of the strand (Simpson et al. 2017). Hidden Markov models (HMMs) 

were used to analyse nanopore sequencing data and there were clear differences in the 

electrical current distributions of methylated and unmethylated DNA (Simpson et al. 2017). 

3.2.5. Comparison of several NGS platforms 

The continuous emergence of new generation sequencing technologies has been due 

to the demand of efficient quantification of DNA sequence. For that reason, every method 

has their own advantages and disadvantages as well as differences in several factors: 

sequencing mechanism, read lengths, run time, output per run and machine cost (Table 2). 

The Sanger sequencing turned automatic after years of improvement by Applied 

Biosystems and was adopted as the primary technology in the first generation era due to 

its high efficiency and low radioactivity when compared to Maxam Gilbert sequencing 

method. Although Sanger sequencing was the main tool for the development of the human 

genome project, the appearance of second and third next-generation sequencing platforms 

allowed a massively parallel analysis of genomes, high throughput and reduced cost (Liu et 

al. 2012). 

Since 2005, Life Sciences and Roche have made significant improvements to the 454 

Pyrosequencer instrument and currently it can generate about one million reads with about 

700 bp read length in a 24 hours run (Liu et al. 2012),(Shokralla et al. 2012),(Escalante et 

al. 2014). The biggest advantages of this technology are the faster run times (Michael L. 

Metzker 2010), the large read lengths that improve mapping in repetitive regions (Michael 

L. Metzker 2010) and its automation possibility in library construction and emulsion PCR 

(Liu et al. 2012). However, this methodology is not used for epigenomics studies due to its 

high cost, limited number of reads and reduced reading accuracy (Liu et al. 2012),(Hirst & 

Marra 2011). The major limitation of 454 Pyrosequencer is related with homopolymers since 
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the technology can’t properly interpret long stretches of the same nucleotide. This results in 

high error rates caused by base insertions or deletions during base calling (Mardis 

2008),(Shendure & Ji 2008). In 2016 the 454 platform, due to its incapability of compete in 

yield and cost, was discontinued (GenomeWeb n.d.). 

Table 2 - Comparison of NGS platforms regarding read lengths, number of reads, run time, output per run, 

machine cost and cost of service per Gb (adapted from (Liu et al. 2012),(Goodwin et al. 2016),(Escalante et al. 
2014),(Liu et al. 2012)) 

 
About Illumina Sequencing Technology, the evolution is also remarkable and has 

dominated the short-read sequencing industry in the last years (Quail et al. 2012) due to its 

high quality sequences and high throughput range (Escalante et al. 2014). The HiSeqX can 

generate about 2.6 to 3 billion paired-end (PE) reads with up to 150 bp PE read length in a 

3 days maximum run time. Although HiSeqX is the highest-throughput device available, its 

acquisition is limited for an all-purpose instrument since it can only be efficiently used for 

Whole Genome Sequencing (WGB) or Whole Genome Bisulfite Sequencing (WGBS) 

(Goodwin et al. 2016). MiSeq, a limited data throughput sequencer, was designed to clinical 

applications and small labs and that has special interest in bacterial sequencing(Liu et al. 

2012). The main errors of Illumina platforms are related to the underrepresentation of AT 

and GC-rich regions and substitution errors (Goodwin et al. 2016). 

Type Platform 
Read Length 
(bp) 

Number of 
reads 

Run Time 
Output per 
run (Gb) 

Machine 
cost 

Cost of 
service 

(per Gb) 

1st NGS 
Sanger 
3730xl 

400-900 N/A 20-180 min 
1.9-84 (x10-

9) 
$95 000 N/A 

2nd NGS 

454 GS  

FLX Titanium 
700 1 M 24 hours 0.7 $500 000 

$9500-
$12000 

Illumina 
HiSeqX 

150 PE 2.6 – 3 B <3 days 800-900 $1000 $7 

Illumina 
MiSeqv3 

75 PE 
44 – 55 B 21-56 hours 

3.3-3.8 
$99 000 $142-1000 

300 PE 13.2-15 

SOLiD 

5500xl 

50 SE 

1.4 B 10 days 

160 

$251 000 $70 75 SE 240 

50 SE 320 

Ion Torrent 
PGM318 

200 SE 
4 – 5.5 M 

4 hours 0.6-1 $700 – $1 
000 

$450-$800 
400SE 7.3 hours 1 - 2 

Ion Torrent  

S5 540 
200 (SE) 60 – 80 M 2.5 hours 10-15 $65 $300 

3rd NGS 

HeliScope 30-35 1 B <1 day 20-28 N/A N/A 

PacBio RS II 20 000 55 000 4 hours 0.5-1 $695 $1000 

Mk1 MinION <200 000 >100 000 <48 hours <1.5 $1000 $750 

PE – Paired-end; SE – Single-end; B – Billions; M - Millions 
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Concerning Life Technologies SOLiD system, its relevance arises from a high accuracy 

level caused by multiple-time base probing (Goodwin et al. 2016) and a low error rate due 

to an inherent error correction(Michael L Metzker 2010). The biggest disadvantages of this 

platform are the long run times (Michael L Metzker 2010), the underrepresentation of AT 

and GC-rich regions (Michael L Metzker 2010) and probably the short read lengths 

(Goodwin et al. 2016). SOLiD 5500xl, the most recent update of SOLiD technology, could 

generate about 1.4 billion reads with up to 75 bp read length in a 10 days run time (Goodwin 

et al. 2016). However, as well as the Roche 454 Pyrosequencer, in 2016 the manufacture 

and sale was discontinued and is now only available as a service platform for human whole 

genome sequencing (Thermo Fisher Scientific n.d.). 

Finally, Life Technologies currently commercialize an Ion Torrent Personal Genome 

Machine (PGM), similar to MiSeq of Illumina at output level (Liu et al. 2012), with three 

available ion chips (Shokralla et al. 2012). Its popularity in the market is explained by the 

higher speed, lower cost and smaller instrument size that doesn’t need many technical 

requirements or maintenance (Escalante et al. 2014). The Ion Torrent PGM 318 can 

generate 4 to 5.5 million reads with up to 400 bp of read length in 7.3 hours maximum run 

time (Goodwin et al. 2016). However, as well as the Roche 454 Pyrosequencer, it also has 

a higher error rate caused by difficulties in homopolymer detection and by insertions and 

deletions (Goodwin et al. 2016). 

It is known that although PCR amplification has revolutionized DNA analysis, it may 

introduce base sequence errors into the copied DNA strands, disturbing their abundance 

levels (Ansorge 2009). For that reason, the third generation sequencing methods offer a 

much simplified library generation process, long-read and real-time detection. Among them, 

the most widely used instrument is the PacBio RS II, although its limited throughput and 

high cost place it out of the reach of many small laboratories. The instrument has also high 

error rates for longer reads (Goodwin et al. 2016). 

3.3. Microarray Technologies 

As for methylome analysis, this technique was initially used together with a methyl-

sensitive digestion of DNA and later with immunoprecipitation and bisulfite-conversion 

techniques (Table 3)(Hackenberg et al. 2012). The principle of the microarray technique is 

that methylated and unmethylated fragments of the genome are separated and analyzed 

using single-stranded DNA probes that are immobilized on a substrate (Harrison & Parle-

McDermott 2011). The targeted DNA from the sample is labelled with a fluorophore and 
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hybridized to the array and the intensity of the signal will determine the number of bound 

molecules (Goodwin et al. 2016). 

3.3.1. Microarray-based methylation profiling 

The three main categories of DNA microarrays – endonuclease restriction, bisulfite 

conversion and affinity based analyses – are consistent with the DNA methylation profiling 

techniques described previously (Huang et al. 2010). The several methods are described 

in Table 3 and in the following paragraphs. 

Table 3 – Distribution of several microarrays used for DNA methylation profiling across years and according to 

its pre-treatment protocol. Adapted from (Harrison & Parle-McDermott 2011),(Laird 2010). 

Abbreviation Method Year Pre-treatment 

DMH Differential methylation hybridization 1999 

Endonuclease digestion 

PMAD 
Promoter-associated methylated DNA 
amplification DNA chip 

2004 

HELP 
HpaII tiny fragment enrichment by ligation-

mediated PCR 
2006 

CHARM 
Comprehensive high-throughput arrays for 
relative methylation 

2008 

MeDIP Methylated-DNA immunoprecipitation 2005 

Immunoprecipitation MeCIP Methyl-CpG immunoprecipitation 2006 

MIRA Methylated-CpG island recovery assay 2005 

BiMP Bisulfite methylation profiling 2008 
Bisulfite treatment 

Infinium Illumina Infinium 2011 

 
The endonuclease restriction-based microarrays analyses started with differential 

methylation hybridization (DMH) and methylated CpG island amplification (MCA) that 

evolved to methylated CpG island amplification microarray (MCAM), methylation 

amplification DNA chip (MAD) and promoter-associated methylated DNA amplification 

DNA-chip assay (PMAD). All of these methods can be differentiated by the type of enzymes 

used and its implications on the resulting DNA (Huang et al. 2010). In 2006 a most reliable 

method, updated in 2009, emerged. HpaII tiny fragment enrichment by ligation-mediated 

PCR assay (HELP) was reported to measure 28-34% methylated CpG islands and to 

identify T-DMRs (Bibikova & Fan 2010). Currently, comprehensive high-throughput arrays 

for relative methylation (CHARM) is the most known method in this category of microarrays 

since in 2008 it was created due to a need of a new platform of original array design 

strategies and statistical procedures involving genome-weighted averages from larger 

genomic areas (Harrison & Parle-McDermott 2011). With this method, it has been possible 

to discover that the highest differences in methylation between cells from colon cancer and 

its adjacent normal cells were located on CpG islands shores and that DMRs in CpG islands 

shores have a strong inverse relationship with differential gene expression (Yong et al. 
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2016). This method uses the McrBC enzyme that cleaves half of the methylated DNA and 

all the methylated CpG islands. The unmethylated DNA is size-selected and hybridized to 

DNA similarly processed but no cut with the enzyme, on high density arrays (Yong et al. 

2016). 

The affinity-based microarray analyses rely in an enrichment of the methylated or 

unmethylated fraction of the genome.(Huang et al. 2010) Methylated DNA 

immunoprecipitation (MeDIP-chip), similarly to MeDIP-Seq, uses an anti-methylcytosine 

antibody to immunoprecipitate DNA with methylated CpG sites.(Yong et al. 2016) The 

genomic DNA is sheared to produce random fragments, denatured and incubated with the 

antibody (Bibikova & Fan 2010). This is followed by purification of the enriched fraction of 

the genome and the immunoprecipitated fraction is hybridized to a microarray (Huang et al. 

2010). An alternative approach is methyl-CpG immunoprecipitation (MeCIP) that is similar 

to MeDIP in terms of techniques but uses a recombinant protein complex with the same 

properties of the antibody. In methylated CpG island recovery assay (MIRA) another protein 

complex, MBD3LI bound to MBD2, uses the high-binding affinity of its methyl-binding 

domain to double-stranded DNA. This binding domain is not sequence specific except for 

methylated CpG (Huang et al. 2010). 

The bisulfite conversion-based microarray analyses are based on a bisulfite treatment 

followed by a special PCR, as described in the beginning of section 3. In a methylation-

specific oligonucleotide assay, the PCR amplicons generated function as probes to 

hybridize targets corresponding to the methylated or unmethylated regions of the genome 

(Huang et al. 2010). This hybridization produces a fluorescent signal that is measured and 

analysed (Huang et al. 2010). 

3.3.2. Microarray platforms 

The modern microarray platforms are classified into three basic types of arrays: printed 

arrays or spotted arrays on glass, in situ synthesized oligonucleotide arrays and high-

density bead arrays or self-assembled arrays (Huang et al. 2010),(Bumgarner 2013). This 

methods can be distinguished based upon characteristics such as the nature of the probe, 

the solid-surface support used and the specific method used for probe addressing or target 

detection (Miller & Tang 2009). The emergence of these platforms progressed rapidly as 

new methods of production and fluorescence detection and the increasing knowledge of 

multiple genomes provided the raw information necessary to ensure that arrays could be 

made that represented a large fraction of genes in a genome (Bumgarner 2013). 
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3.3.2.1. Printed or Spotted Arrays 

The printed arrays, or spotted arrays on glass, emerged in 1996 and were made in poly-

lysine-coated glass microscope slides that provided a good binding of DNA (Bumgarner 

2013). In order to spot multiple glass slide arrays from DNA stored in microtiter dishes, it is 

used a robotic spotter in this technology (Bumgarner 2013). The spotting process made on 

glass allows for a fluorescence labeling of the sampling, which brings several advantages 

in comparison to the radioactive or chemiluminescent labels, such as higher sensitivity, 

larger dynamic range, lower costs and simplicity (Bumgarner 2013). 

Arrays can be divided into double-stranded DNA or oligonucleotide microarrays, 

depending on the nature of the probes (Miller & Tang 2009). The dsDNA probes are 

amplification products obtained by PCR, shotgun library clones or cDNA that are denatured 

and attached to the glass slide surface through an electrostatic interaction between the 

negative phosphate backbone of DNA and the positive charged coating of glass surface or 

by UV cross linked covalent bonds between thymine bases of DNA and amine groups on 

slides.(Miller & Tang 2009) The dsDNA probes are typically 200 to 600 bp long and each 

one represents a different gene. Although dsDNA probes have a high sensitivity and 

hybridization strength, they suffer in specificity because they have higher melting 

temperatures and greater mismatch tolerance.(Miller & Tang 2009) Even though the 

decreased specificity in the study of a genomic sequence rich in natural polymorphisms can 

be beneficial, it is disadvantageous when trying to discriminate among highly similar target 

sequences and unacceptable for clinical diagnostic applications.(Miller & Tang 2009) 

On the other hand, the oligonucleotide probes range from 25 to 80 bp to studies out of 

gene expression field.(Miller & Tang 2009) The probes are attached to the glass slides by 

covalent linkage and the probes are coupled to the microarray surface by 5’ or 3’ ends on 

aldehyde or epoxy functional groups provided by coated slides.(Miller & Tang 2009) With 

shorter length than the dsDNA probes, the oligonucleotide probes introduce fewer errors 

during probe synthesis and facilitates the interrogation of small genomic regions, including 

polymorphisms.(Miller & Tang 2009) However, they need comparable melting temperatures 

and lack palindromic regions, which forces more a careful design.(Miller & Tang 2009) 

In general, the printed microarrays are distinguished by their simplicity, cost accessibility 

and flexibility, being useful in study organisms that are not fully sequenced.(Miller & Tang 

2009) However, their use in clinical diagnostics is limited to specific research applications 

since they need complex monitoring tasks to ensure reproducibility and quality of 

data.(Miller & Tang 2009) 
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3.3.2.2. In-situ Synthesized Oligonucleotide Arrays 

The in-situ synthesized oligonucleotide arrays were introduced in 1991 and later 

optimized by several public commercial microarrays like Affymetrix GeneChips, Roche 

NimbleGen or Agilent.(Miller & Tang 2009) In all of the methods, the oligonucleotide probes 

are synthesized directly on the surface of the microarray and multiple probes per target are 

included to improve sensitivity, specificity and statistical accuracy.(Miller & Tang 2009) The 

probes are grouped in sets that include one perfect-match probe and one mismatch probe 

with a single-nucleotide difference in the middle of the probe, allowing the identification of 

possible nonspecific cross-hybridization events.(Miller & Tang 2009) 

The Affymetrix GeneChips technology, with typically more than 106 features(Miller & 

Tang 2009), uses probes that are synthesized using semiconductor-based photochemical 

method in which the nucleotides are protected by light-sensitive protecting groups and the 

microarray surface is chemically protected from nucleotide addition until deprotected by 

light.(Bumgarner 2013) When the array surface is exposed to UV light, the nucleotides are 

deprotected and can be added to the growing oligonucleotide chain.(Miller & Tang 2009) 

The photolithographic masks are used to determine the specific nucleotides to probe sites 

because each mask has a defined pattern of windows that act as a filter that block or 

transmit light. This feature provides a pattern of windows in each mask that directs the order 

of nucleotide addition. (Miller & Tang 2009) 

On the other hand, Agilent technologies, are able to go up to 244 000 features(Huang et 

al. 2010), acquired a method developed in 1996 that uses inkjet printing technology, 

standard oligonucleotide synthesis chemistry and longer oligonucleotide 

probes.(Bumgarner 2013) The glass slide of this technology is adapted to contain 

hydrophilic regions surrounded by hydrophobic regions that will receive the inkjet printer 

heads with the four different nucleotides phosphoramidites.(Bumgarner 2013) The 

presence of both hydrophilic and hydrophobic regions will provide a surface to which the 

phosphoramidites will couple and where the droplets emitted by the inkjets will be, 

respectively.(Bumgarner 2013) 

The Roche NimbleGen technology, that can contain up to 2.1 million features per 

slide(Huang et al. 2010), is similar the Affymetrix GeneChip platform but in this case the 

photolithographic masks are replaced by virtual or digital masks in a maskless synthesizer 

technology.(Miller & Tang 2009)  This technology generates probes that use an array of 

programmable micromirrors to create digital masks that reflect the desired pattern of UV 

light to deprotect the features where the next nucleotide will be coupled.(Miller & Tang 2009) 
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In both cases of NimbleGen and Agilent platforms, the hybridization are multicolour and use 

longer oligonucleotide probes ( 60 bp) while Affymetrix is limited to one label and shorter 

probes (20-25 bp) are used.(Huang et al. 2010),(Bumgarner 2013) 

One of the biggest challenges of in-situ synthesized oligonucleotide microarrays is 

related to the complex nature of its chemical synthesis and expenses involved in production, 

which turns the synthesized microarrays not conducive to user-defined development.(Miller 

& Tang 2009) For these reasons, the usage of this method relies on its customization to the 

specific study of interest.(Miller & Tang 2009) Although this was the biggest disadvantage 

of Affymetrix, in 2002 the technology was improved with a micro-mirror system coupled to 

the photo-deprotection step to direct light at the pixels on the array, which allows a lower 

manufacturing cost of custom arrays.(Bumgarner 2013) On the other hand, the Agilent and 

Roche NimbleGen technologies can be easily customized with unique oligonucleotide 

sequence content.(Miller & Tang 2009) These systems are advantageous because of their 

reproducibility, standardization of reagents, instrumentation, data analysis and improved 

the accuracy and reproducibility of data through time, due to their ability of standardize 

probe concentrations and hybridization temperatures while controlling the nonspecific 

hybridization.(Miller & Tang 2009) 

3.3.2.3. High-density Bead or Self-assembled Arrays 

The third platform type was created in 2000 and lately adopted by Illumina.(Bumgarner 

2013) In this case, instead of glass slides or silicon wafers as substrate, 3 µm silica beads 

are assembled to one of two available subtracts (SAM – Sentrix Array Matrix or Sentrix 

BeadChip) with a fiber-optic composition.(Miller & Tang 2009) (Figure 9) However, 

BeadChips are more appropriate for very-high density applications like whole-genome 

genotyping, which require up to 105 to 106 features.(Miller & Tang 2009) Since each 

manufactured microarray will not be identical, the BeadArrays have the built-in redundancy 

advantage, a crucial experimental control for intermicroarray comparative data. Additionally, 

altering the bead pattern helps identifying spatial biases.(Miller & Tang 2009) 

In early versions of these arrays, the beads were encoded with different fluorophore 

combinations that were used for the decoding process.(Bumgarner 2013) However, this 

method limited the total number of unique beads that could be distinguished.(Bumgarner 

2013) Currently, each bead is covered with several copies of a specific oligonucleotide that 

capture specific sequences and these beads are deposited in the end of the fiber-optic array 

in which the ends of the fibers were etched to provide a well that is slightly larger than one 

bead.(Bumgarner 2013) Unlike the known locations of printed and in-situ hybridized 



 
 

 
 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 

 

32 Chapter I – Introduction: Epigenomics and Gene Regulation 

 

microarray features, the beads in BeadArrays randomly assort to their final location on the 

array.(Miller & Tang 2009) Since the specific oligonucleotide attached to each bead is 

unique, the bead location is decoded through the identification of this sequence.(Miller & 

Tang 2009) Then, the mapping of Illumina beads is made by a series of hybridization and 

washing steps, allowing fluorescently labelled complementary oligonucleotides to bind to 

their specific bead sequence and track the location of the bead type.(Miller & Tang 2009) 

Later versions of BeadArrays, used a pitted glass surface to contain the beads instead of 

fiber-optic arrays.(Bumgarner 2013)  

The particular case of Illumina Methylation 450k technology is an example of bisulfite-

conversion microarray(Huang et al. 2010) and BeadChip technology that allows to assess 

the methylation status of 485 577 cytosines, specifically 482 421 CpG sites, 3091 non-CpG 

sites and 65 random SNPs(Bibikova et al. 2011); with a 99% coverage of RefSeq genes 

and all the differential epigenetically important genomic regions such as CpG island, island 

shore and shelf, 5’ and 3’ UTRs and promoter, gene body and intergenic 

regions.(Dedeurwaerder et al. 2011) This technology emerged in 2011 as an extension of 

Illumina Methylation 27k technology(Dedeurwaerder et al. 2011), however whereas Illumina 

27k only includes one type of assay currently known as Infinium I or Type I, the 450k 

technology includes two different probes, with about 50 bases long, referred to as Infinium 

I and Infinium II or Type I and Type II, which differ at the end-nucleotide that matches the 

cytosine position of a CpG.(Bibikova et al. 2011) In both cases, it is made a single-base 

Figure 9 – Structure of Illumina BeadArray. The Sentrix Array Matrix has several fiber-optic bundles with a 

microwell for a single bead with a specific oligonucleotide attached to it. After several hybridization and washing 
steps, the fluorescence is determined. 
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extension step using fluorescent-labeled nucleotides which originates the signal.(Chen et 

al. 2013) 

The Type I methylation-specific assay design, used in 28% of the cases, uses methylated 

or unmethylated paired probes, located on two different bead types, that measure the 

methylated and unmethylated DNA, respectively.(Dedeurwaerder et al. 2011) The 3’ 

terminus of the probe match either the protected cytosine or the thymine base resulting from 

bisulfite-conversion.(Bibikova et al. 2011) Since both bead types will incorporate the same 

labeled nucleotide that precedes the interrogated cytosine in the CpG locus, the signal will 

be detected in the same color channel, using either red or green signal (Figure 10).(Bibikova 

et al. 2011) 

On the other hand, the Type II methylation-specific assay design, used on 72% of the 

cases, uses an unique probe that complements the 3’ terminal last base of the bisulfite-

Figure 10 – Infinium I Methylation Assay scheme. Uses two bead types that correspond to the methylated and 

unmethylated state of the site. The nucleotide incorporated is the same for both locus and the detection is made 
using the same color channel. 
 

Figure 11 – Infinium II Methylation Assay scheme. Uses one bead typesto both methylated and unmethylated 

state of the site and the methylation state is detected by single-base extension and the detection is made using 
two color channels. 
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converted DNA and that after a single-base extension result in the addiction of a guanine 

complementary to a methylated cytosine which results in a green signal or an adenine 

complementary to a thymine which results in a red signal (Figure 11).(Bibikova et al. 2011) 

Although the Infinium II type of probe is used to determine more methylated cytosines in 

the 450k technology, it is known that this assay is less accurate, reproductible and sensitive 

than the Infinium I.(Dedeurwaerder et al. 2011) There are several differences between the 

data produced by both techniques: a difference between the β-values and an average 

probe-variance between replicates.(Dedeurwaerder et al. 2011) This means that Infinium I 

and Infinium II data cannot be comparable before a complex downstream bioinformatics 

analysis.(Dedeurwaerder et al. 2011) However, with this problem solved, the technology 

turns into one of the most attractive technologies to study the human 

methylome.(Dedeurwaerder et al. 2011) 

Illumina Infinium HumanMethylation450 BeadChip is a user-friendly DNA methylation 

microarray that has reached a predominant place in the market and the scientific 

arena.(Moran et al. 2016) This methodology has already been used at The Cancer Genome 

Atlas (TCGA) and for projects focusing on the aging process or interindividual 

variability.(Moran et al. 2016) Additionally, the versatibility of this technique has also been 

shown by its capacity to determine 5mC DNA patterns from formalin-fixed paraffin-

embedded samples and for the 5hmC mark.(Moran et al. 2016) Currently, Illumina Infinium 

MethylationEPIC BeadChip is the standard method used for methylation variations in 

enhancers with a good ovelap with the 450k DNA methylation data. 

3.4. Comparison between profiling methods 

The comparison between the several available DNA methylation profiling techniques is 

essential to choose correctly the most appropriate method according to the research goals, 

available amount of samples, available bioinformatics tools and desired coverage and 

resolution.(Laird 2010) The DNA microarray technology provides cheap and accessible 

insights into the DNA methylation status of a sample or a large number of samples and 

initially was the leading platform to profile the DNA methylation status.(Harrison & Parle-

McDermott 2011) However, the appearance of NGS methods allowed allele-specific DNA 

methylation analysis, can cover more of the genome with less input DNA and avoids 

hybridization artefacts although it is subjected to sequence library preparation and does not 

need an appropriately designed microarray.(Laird 2010) 
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Inside the NGS methods, WGBS is the golden standard method for genome-wide DNA 

methylation and hydroxymethylation analysis due to its capacity to capture information in 

all cytosine positions, to profile the methylation state across all the genome and to be 

accurate and reproducible. One of the biggest disadvantages of WGBS is the facility of 

failure of bisulfite conversion which can lead to an incomplete conversion of DNA easy to 

reach due to the restricted laboratory conditions that this method needs. The appearance 

of RRBS was a big advance compared to the bisulfite conversion methods since it allows 

the study of targeted regions with high density of CpG sites while the WGBS, due to the 

number of sequences that yield no relevant information, its complexity and high costs, would 

not be efficient in this kind of study. However, WGBS is still the standard profiling method 

for studies interested in regions outside of CpG islands such as in major epigenome 

consortiums like NIH Roadmap, ENCODE, Blueprint and IHEC.(Yong et al. 2016) 

Additionally, MeDIP-Seq and MBD-Seq also revealed advantageous in the DNA 

methylation estimation for single CpG resolution but its lack of adaptability to low CpG 

content regions is a big disadvantage. Although the MeDIP-Seq has also a low resolution 

due to the limited size of fragments from immunoprecipitation and the efficiency of its affinity 

purification assay can be affected by CpG density and GC content of samples, this method 

is unique in its application to the study of 5-formylcytosines and 5-carboxylcytosines, has a 

low cost per CpG and is more tolerant to DNA impurity and integrity. Similarity to the 

enrichment based methods, the MRE-Seq is also limited in the coverage and resolution due 

to the sequence type specificity of enzymes. Currently, it is already quite common to 

combine individual methods to increase coverage or efficiency. A combination of MeDIP-

Seq and MRE-Seq can be made to provide the appropriate balance among genomic CpG 

coverage, resolution, quantitative accuracy, and cost. (Li et al. 2015) In 2016, it was also 

shown that coupling MeDIP-Seq with bisulfite treatment in a process called methylated DNA 

immunoprecipitation Bisulfite Sequencing (MeDIP-BS) remarkably improves cost-

effectiveness but also enhances analysis resolution when compared to WGBS, Targeting-

BS, RRBS and MeDIP-Seq. In this case, the immunoprecipitation step is made before the 

bisulfite conversion that is followed by library preparation and NGS.(Jeong et al. 2016) 

The development of Illumina Infinium Methylation Assay allowed user-friendly feature to 

the measurement of DNA methylation, cost-effective experiments and with low amounts of 

input DNA, which is a big advantage for small institutes.(Yong et al. 2016) Despite the 

coverage of the method being highly dependent on the array design, the Illumina Infinium 

Methylation Array 450k already has a big CpG coverage that further evolved to the 850k in 
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the last years.(Yong et al. 2016) For all of these reasons, we can conclude that the Illumina 

Infinium Methylation Array is a great alternative to NGS to study the DNA methylation in 

humans.(Yong et al. 2016) 

3. BIOINFORMATICS 

4.1. Bioinformatics in NGS-based methods for methylome 

analysis 

Most NGS technology produces tens of millions of short reads in a single run(Li et al. 

2008) which makes the analysis of this data a significant challenge to the genomics’ 

research.(Hirst & Marra 2011), requiring highly efficient and accurate algorithms.(Li et al. 

2008) The analysis of genomic data is made using several Bioinformatics’ Tools optimized 

for certain types of information and can be broken down into four steps (Figure 12) starting 

with the NGS output data as strings of base pairs(Hirst & Marra 2011) or color space base 

transitions(Hirst & Marra 2011). 

Firstly, a filtration is made where the NGS output data (fastq file(Hirst & Marra 2011)) is 

scanned according to the reads quality score, length and ambiguity level. Then, the 

alignment process is developed where the output filtered data is aligned to a reference 

genome in order to generate a data set consisting of the genomic coordinates of the aligned 

reads to the reference genome. The obtained files are on the SAM (Sequence Alignment 

Map) or BAM (Binary Alignment Map) file format(Hirst & Marra 2011). 

Since mutations or sequencing errors may lead to read mapping to the wrong location 

or mapping of reads equally well in multiple positions, it is necessary to filter the mapped 

reads according to mapping quality, sequence identity and insert size. Then, it is made an 

extraction process where the filtered data is submitted to a variant calling according to the 

genomic variant under study. Finally, the filtered data may be viewed directly by converting 

the read alignments into read density maps and displaying the result on a genome 

browser.(Hirst & Marra 2011) 

Figure 12 – Typical procedure of a bioinformatics NGS protocol. Begins with NGS output data and ends in 

visualization and data analysis. (Hirst & Marra 2011) 
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4.1.1. NGS Output Data 

To obtain genomic position data it is necessary to adopt several procedures that 

manipulate the raw reads and uncover the genomic structures and variations of 

interest.(Zhang 2016) These processes might produce files from few gigabytes to terabytes 

in size that need to be efficiently stored, parsed and analysed(Pavlopoulos et al. 2013). For 

this reason, several file formats have been developed during the last years.(Zhang 2016)  

The FASTA sequence file format (commonly “.fa” or “.fasta”) was originally invented by 

Bill Pearson(Cock et al. 2009) and has been the standard format for nucleotide sequence 

since the first generation sequencing.(Zhang 2016) This file format is a text-based format 

where the sequencing data represented by a single letter code is preceded by a title line 

that begins with a “>” symbol followed by a summary description of the sequence containing 

its accession number, organism designation and sequence location.(Zhang 2016) (Figure 

13) 

Furthermore, FASTQ file format (commonly “.fq” or “.fastq”) was originally invented by 

Jim Mullikin at the Wellcome Trust Sanger Institute. Its simplicity, interchangeable file format 

and ability to store a numeric quality score (PHRED) associated with each nucleotide in a 

sequence, makes the FASTQ the most common file format used in NGS.(Cock et al. 2009) 

This file is also a text-based format where each sequence is defined by four lines of text: 1) 

a header line with a sequence identifier and optional additional information with no length 

limit that starts with a “@” symbol; 2) the whole sequence nucleotides in IUPAC 

nomenclature (A,T,G,C and N for unknown) and uppercase letters and without spaces or 

tabs; 3) a finisher line with a “+” symbol that represents the end of the sequence and that 

can be followed by a full repeat of the header line; 4) a quality line that must contain the 

same number of symbols that letters in the sequence based on ASCII printable 

representation.(Zhang 2016)-(Cock et al. 2009) (Figure 14) 

Figure 13 – Representation of a FASTA sequence file format. In the first line it’s a summary description of the 

sequence, beginning with its accession number and preceded by an optional additional information section and 
after that the sequencing data is present. (Adapted from (Zhang 2016)) 
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FASTQ file format has several variants that depend on the NGS technology used and 

that affects the structure and format of the quality line, but all of them are based in the 

PHRED quality score (QPHRED), defined in terms of estimated probability of error (Pe), where 

the higher the QPHRED is, the more reliable the base is.(Zhang 2016),(Cock et al. 2009) The 

quality score format varies according to the used type of FASTQ file (Table 4) but their 

quality values can be converted between them using specific formulas available on the 

literature.(Cock et al. 2009) 

Table 4 - Representation of the differences between the several variants of FASTQ – quality score range and 

type and ASCII characters range and correspondent string. (Pavlopoulos et al. 2013)(Cock et al. 2009) 

 

4.1.2. Pre-processing of the reads 

The pre-processing of the reads is a multistep process that aims to make a thorough 

assessment of the raw sequence data.(Krueger et al. 2012) Although the risk of losing some 

valid information exists, the increased confidence level of alignments and methylation calls 

resulting from this pre-processing step overcome this problem.(Krueger et al. 2012) Firstly 

the data is filtered for the elimination or manipulation of low quality reads and then 

preparation for the alignment step is made through quality and adapter trimming of the 

reads.(Krueger & Andrews 2012),(Hackenberg et al. 2012) Since read with errors are 

FASTQ 
format 

Quality score ASCII characters 

Range Type Range String 

Sanger 0-93 PHRED 33-126 

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFG 

HIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl 

mnopqrstuvwxyz{|}~ 

Illumina 1.0 -5-62 Solexa 59-126 
;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`a
bcdefghijklmnopqrstuvwxyz{|}~ 

Illumina 1.3+ 0-62 PHRED 64-126 
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdef
ghijklmnopqrstuvwxyz{|}~ 

Figure 14 – Representation of an Illumina FASTQ file. The file starts with a “@” symbol before a sequence 

identification code. In the next line it is presented the sequencing data that is terminated in the third line with the 
“+” symbol and an optional additional sequence identifier reference. In the fourth and last line the symbols follow 
the ASCII printable representation and present the quality score of the sequencing data. (Adapted from 
(Pavlopoulos et al. 2013)) 
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infrequent and random, low-frequency reads are candidates for error correction 

algorithms.(El-Metwally et al. 2013) 

4.1.3. Genome Assembly 

The genome assembly process is the natural step after a pre-processing of NGS reads 

and consists of two different approaches: the comparative approach and the de novo 

approach.(El-Metwally et al. 2013) While the first one aligns the NGS reads to a reference 

genome of the same organism or a similar one, the second reconstructs genomes that are 

not similar to any available.(El-Metwally et al. 2013) The choice of an approach is based on 

the intended biological application, cost and time available(Michael L Metzker 2010). 

Genome assembly has a lot of associated challenges that makes the process really 

complex.(Escalante et al. 2014) The increased number of reads to be assembled that 

increases the complexity in placing each read in the correct position is one of the first 

obstacles.(El-Metwally et al. 2013) The genome sequences can also be repetitive and since 

the sequencing errors may impact in this, it is necessary to know how to distinguish 

both.(Escalante et al. 2014) The rate of overlapping between reads, that happens when 

there is a sequence match between reads that is long enough to be reliably distinguished 

from a random event, has also consequences in the accuracy of the assembly(Escalante 

et al. 2014). Lastly, coverage and read length increase confidence levels of the assembly 

process but even with high coverage, overcoming the problem of repeats and derived 

assembly gaps sometimes needs to be spanned by paired-reads sequencing.(Escalante et 

al. 2014) These facts make genome assembly a process that requires major computational 

capacities and a lot of software evolution.(Escalante et al. 2014) 

In the particular case of bisulfite-sequencing, since all cytosines with the exception of 

5mC become converted into thymines, it is not known whether a thymine base call is 

actually a thymine or a bisulfite converted cytosine.(Pomraning et al. 2009) This decreases 

the complexity of the sequence as the concentration of methylated cytosines increases, 

challenging the alignment process.(Hackenberg et al. 2012) Consequently, the NGS reads 

cannot be aligned directly to the reference genome otherwise the bisulfite converted 

cytosines would be mismatched and this would make the alignments less specific and the 

CpG highly methylated dense regions unsequenced.(Hackenberg et al. 2012)  

For these reasons, it is necessary to adopt a special alignment method for bisulfite-

sequencing data (Figure 15): 1) the wild card aligner that replaces all the Cs in the reference 

genome by the wild-card letter Y or modify the scoring matrix in such a way that mismatches 
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are not penalized;(Bock 2012) 2) the three letter aligner which use two difference reference 

genomes that substitute all Cs by Ts or all Gs by As.(Hackenberg et al. 2012) While the 

wild-card aligner can achieve a higher genomic coverage, it  is a slower method with an 

increased risk of introducing bias towards higher methylation levels, the three letter aligner 

has a large percentage of reads discarded due to ambiguous alignment 

positions.(Hackenberg et al. 2012),(Bock 2012) 

As before, the output file of the genome assembly process has a SAM format that when 

compressed turns into a binary representation of SAM, named BAM, and both serve as 

inputs for various downstream analysis such as feature counts and variant calling.(Zhang 

2016) The BAM files are used in a BGZF format and hold the same information as SAM but 

with a higher store efficiency and lower intensive data processing.(Pavlopoulos et al. 2013) 

The BAM/SAM file format support both short and long reads produced by sequencing 

platforms and are tab-delimited text files with a header and an alignment 

section.(Pavlopoulos et al. 2013) Like the other file formats explained before, the header 

section contains generic information divided according to its specifications in four types - 

@HD, @SQ, @RG and @PG - delimited by tabs. On the other hand, the alignment section 

contains sequences with genomic position and other descriptive information. Each 

sequence is present in one line text and each-line consists of at least eleven mandatory 

tab-delimited text fields.(Zhang 2016) (Figure 16) 

Figure15 – Alignment of several bisulfite-sequencing reads. a) Representation of eight reads obtained from a 

bisulfite sequencing method originated by a genomic DNA sequence with known DNA methylation content at 
four CpG sites. b) Wild-card alignment approach where each C in the reference sequence is replaced by a wild-
card letter Y and with a consequent increasing of DNA methylation level. c) Three letter alignment approach 
where each C is replaced by a T and with a consequent reduced sequence complexity that clearly affects the 
alignment. In both methods the reads with more than one perfect alignment are discarded (represented in grey). 
Adapted from (Bock 2012) 
 



 
 

 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 
 

 

Chapter I – Introduction: Epigenomics and Gene Regulation 41 

 

4.1.4. Post-processing of the reads 

After the genome assembly step is complete, the post-processing of the reads occurs 

and a profiling of the methylation states is made from the alignments where the absolute 

DNA methylation levels are inferred from the frequency of cytosines and thymines that align 

to each cytosine in the genomic DNA sequence.(Bock 2012) In order to do so, if the 

alignment uses the three-letter approach, the reference genome would need to be 

converted to a four-letter sequence. Then, a thymine that turns into a cytosine after the four-

letter conversion and makes a C/T mismatch indicates an unmethylated cytosine while a 

cytosine in both the read and the reference genome indicates methylation. The same 

happens to the reverse complement reads.(Hackenberg et al. 2012) (Figure 17) 

The methylation level is designated between 1 and 0 for completely methylated and 

completely unmethylated, respectively. This concept is determined by a relation between 

Figure 16 – Representation of a SAM/BAM file. a) Alignment of two reads to a reference genome; b)  SAM/BAM 

files correspondent to the representation in a) with both the header section with its specifications and the 
alignment section with its tab-delimited text fields. Adapted from (Pavlopoulos et al. 2013) 
 

Figure 17 – Representation of the inference of methylation state. The reads and the reference genome are 

converted again into the four-letter sequence and this allows the inference of methylation state. The C/T 
mismatches indicate an unmethylated cytosine (green) while a cytosine in both the read and the reference 
genome indicated methylation (red). Adapted from (Hackenberg et al. 2012) 
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the total number of reads and the number of methylcytosines that map to a certain 

position.(Hackenberg et al. 2012) However, certain technologies can improve the accuracy 

of methylation calls by local realignment, analysis of sequence quality scores and statistical 

modelling of allele distributions.(Bock 2012)  

4.1.5. Quality Control 

The quality control of mapped data is essential to guarantee high-quality information 

about DNA methylation. Therefore, it is essential to determine common sources of errors 

and possible solutions for that, as well as to report the quality of data during the processing 

(Figure 18). 

Firstly, it is essential to guarantee that the methylation calling is made correctly by 

measuring the base quality in PHRED.(Hackenberg et al. 2012)  This parameter is often 

Figure 18 - Representation of the recommended workflow to analyse bisulfite-sequencing data. Each quality 

control step presented involves the use of several appropriate bioinformatics tools. The grey narrows represent 
optional steps and the black ones mandatory steps. Adapted from (Krueger et al. 2012) 
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visualized through a PHRED score versus cycle plot and it is common to observe that the 

quality score tend to decrease at the end of the reads.(Guo et al. 2013) To avoid incorrect 

methylation calls it is recommended to only use the good quality portion of the data, 

trimming the end of the reads. (Krueger & Andrews 2012) This step should be taken in the 

pre-processing of the raw sequencing data. Selecting restricted alignment parameters 

would also increase the mapping stringency preventing sequences with several mismatches 

from aligning, thus reducing the number of erroneously inferred methylation states but at 

the cost of reducing mapping efficiency.(Krueger et al. 2012)  

Secondly, the incomplete bisulfite conversion can cause an overestimation or 

underestimation of DNA methylation levels in some difficult samples that require extensive 

optimization.(Bock 2012) It was already proposed to use non-CpG contexts to detect reads 

that are likely not bisulfite-converted, discarding reads with more than 3 methylated 

cytosines in a non-CpG context but this will affect the studies that involve non-CpG 

methylation analysis.(Krueger & Andrews 2012) Another possible solution could be an 

extended or repeated bisulfite treatment that could raise the conversion of unmethylated 

cytosines but this would also affect the quality of DNA of the accuracy of bisulfite 

conversion.(Bock 2012) Thirdly, it is possible to use spike-in controls of non-native DNA 

with a known methylation state but it can’t be forgot that such controls might not have the 

same conversion properties that the DNA of interest.(Krueger et al. 2012)  

Lastly, if the 3’ adaptor sequences are not removed correctly, they will remain in the 

reads, decreasing dramatically the mapping efficiency of the read and causing random 

methylation calls. It was already shown that mapping efficiency decreases with adaptor 

contamination and that each addition of cytosine in the adaptor spikes the level of 

methylation. For these reasons, it is essential to trim the 3’ adaptor sequences in the pre-

processing of the reads step.(Krueger et al. 2012) The monitorization of GC content 

distribution and cytosine distribution can give some insights about a possible adapter 

contamination. Although this analysis yields variable results across species, it is known that 

the GC content distribution and the cytosine distribution can vary between 20-30% and 1-

2% in mammalians, respectively. Then, if the occurrence of GC content and cytosine 

content rises up to 40-60% and 20%, respectively, this might indicate an adapter 

contamination.(Krueger & Andrews 2012) 

Another common source of errors in methylation sequencing are the Single Nucleotide 

Variants (SNVs) (Hackenberg, Barturen & J.L. Oliver 2012). SNVs are variations in just one 

nucleotide between the reference and the sequenced genome(Hackenberg et al. 2012) . In 
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a CpG sequence context there are usually two alleles, C and T, corresponding to the 

reference genome and sequence genome respectively. (Hackenberg et al. 2012) If the 

presence of this sequence variant is unknown or ignored, the inference would be that the 

cytosine annotated in the reference genome is unmethylated, while the correct conclusion 

should be that no cytosine exists in the genome and therefore no methylation state can be 

detected.(Krueger et al. 2012) 

Lastly, given the size of a mammalian genome, the appearance of several independent 

fragments which align to the same genomic position is unlikely. However, a look at 

sequence distribution levels can quickly tell whether it is expected a lot of duplicate 

alignments, whether the library is diverse or whether the sample suffered from PCR 

amplification errors. In mammals, a sequence duplication level of 10% is indicative of a 

diverse library, but an 80% level indicates that the sample suffered from PCR duplication. 

Then, for large genomes removing duplicate reads that have the same orientation, start and 

end positions is essential.(Krueger & Andrews 2012)  

4.1.6. Data visualization, statistical analysis and validation of results 

After the data quality control and mapping steps, it is necessary to proceed to data 

visualization, statistical analysis and validation of results. Firstly, a genome browser is used 

to visualize and inspect a selection of genomic regions. It is necessary to use web available 

genome annotations to compare with the sequencing data. Then, it is important to identify 

differential methylated regions that exhibit consistently different DNA methylation levels 

between sample groups.(Bock 2012) 

Lastly, the biological interpretation of data is done by comparison of the obtained list of 

DMRs. This list might be validated in accuracy and reproducibility by a manual comparison 

of the strongest DMR in a genome browser, visualization of global properties of the DMR 

list by quality-control plots and confirmation of the biological reproducibility of a DMR. Then, 

the data is interpreted by the biologist with help of additional computational tools.(Bock 

2012) 

4.1.7. Bioinformatics Tools 

The evolution of the NGS technologies and the study of its data has demanded the 

development of several software applications in the last years.(Hackenberg et al. 2012) In 

the case of methylome analysis there has been an effort to develop bioinformatics tools that 

integrate several of the above mentioned steps. Currently, it is possible to distinguish two 

types of tools – alignment tools that perform the pre-processing of the reads and the 
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alignment step but do not report methylation levels and the full pipeline tools that perform 

all necessary steps from the pre-processing to the methylation profiling, error control and 

statistical analysis.(Hackenberg et al. 2012) Hereafter, the three bioinformatics tools that 

were used in this project will be presented: Bismark Bisulfite Mapper(Babraham 

Bioinformatics 2016), Integrative Genomics Viewer(Robison T. et al. 2012) and Methy-

Pipe(Jiang et al. 2014). 

4.1.7.1. Bismark Bisulfite Mapper 

Bismark Bisulfite Mapper is a set of tools for a time-efficient analysis of bisulfite-

sequencing data written on Perl(Babraham Bioinformatics 2016) that has as main features: 

bisulfite mapping and methylation calling in one single step, support of single-end or paired-

end read alignments, possibility to adjust the seed length and number of mismatches and 

the possibility of a discriminated output between cytosine methylation in a CpG, CHH or 

CHG context.(Babraham Bioinformatics 2016)  

Bismark uses a three-letter aligner named Bowtie that aims to find a unique alignment 

(i.e. the genome position to which the read aligns under a given set of 

parameters(Hackenberg et al. 2012)) by running four alignment processes 

Figure 19 – Overview of Bismark bisulfite mapper. a) After the bisulfite treatment, the reads are converted (C 

to T and G to A) and each of them is aligned to a reference genome that suffers the same type of conversion in 
order to determine the unique best alignment. B) The sequence reads with a unique alignment are compared 
to the original strand that allows the software to determine the cytosine methylation states in all methylation 
contexts. 
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simultaneously.(Krueger & Andrews 2011) The number of alignment processes of a mapper 

should be adaptable to all types of library preparation methods. For example, since in the 

non-directional library four alignments are built, Bismark should handle them (Krueger & 

Andrews 2011) (Figure 19). Sequence reads are firstly transformed into bisulfite-converted 

forward and reverse reads(Babraham Bioinformatics 2016) where the cytosines are 

converted to thymines and guanines to adenines, respectively. Each of them is aligned in 

parallel to reference genomes that suffer the same type of transformation(Krueger & 

Andrews 2011) and then the sequence reads with an unique alignment are compared to 

the normal genomic sequence that allows the inference of all cytosine methylation 

states.(Babraham Bioinformatics 2016) 

Unlike other bisulfite mappers, Bismark contains an extraction process that determines 

the methylation state of each cytosine position in the read(Krueger & Andrews 2011), 

producing a report containing several useful information: 1) summary of alignment 

parameters used; 2) number of sequences analysed; 3) number of sequences with a unique 

best alignment; 4) statistics summarising the bisulfite strand where the best unique 

alignment came from; 5) number of cytosines analysed; 6) number of methylated and 

unmethylated cytosines and 7) percentage cytosines methylation in CpG, CHH or CHG 

context.(Babraham Bioinformatics 2016) 

4.1.7.2. Integrative Genomics Viewer 

The Integrative Genomics Viewer (IGV) is a high-performance desktop tool for interactive 

visual exploration of diverse and large-scale genomic data written in Java that appeared in 

2007 but only in 2009 was adapted to short-read sequence alignments.(Thorvaldsdóttir et 

al. 2013) IGV supports integration of aligned sequence reads, mutations and copy number 

data, RNAi screens, gene expression, methylation and genome annotations.(Robison T. et 

al. 2012) This software also allows investigators to flexibly visualize different types of data 

together, supporting the view and the manipulation of multiple genomic regions side by side. 

Additionally, it integrates data with the display of sample attribute information, supports 

direct manipulation, navigation and real-time interaction at all scales of genome resolution, 

from whole-genome to single base pairs.(Thorvaldsdóttir et al. 2013)  

In the IGV, the reference genome must be selected from several reference genomes 

available from public sources or user incorporated. About loading and viewing data, IGV 

supports a wide variety of file formats for genome annotation, sequence alignment, variant 

call and microarray data as also imported metadata information. IGV allows a simultaneous 
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viewing of multiple data sets with default appearance and has available view options 

depending on the data type.(Thorvaldsdóttir et al. 2013) 

4.1.7.3. Methy-Pipe 

Methy-Pipe was implemented in 2014 by Jiang, P. et al.(Jiang et al. 2014) and is a full 

pipeline tool that not only meets the core methylation data analysis but also provides tools 

to facilitate the downstream analysis in an efficient and integrative manner. It is 

implemented using Perl, R and C++ and can be run in a Linux operating system. Methy-

Pipe analyzes high-throughput bisulfite sequencing reads on FASTQ format from either 

single or paired-end libraries using two consecutive software modules.(Jiang et al. 2014) 

The first module, named BSAligner, is designed bisulfite-treated read alignment, but 

includes data pre-processing. In the pre-processing step, the adaptors and the bases with 

quality score below five are removed. After the preparation of reference genome and reads 

through the three-letter approach, where all Cs are converted to Ts, the pre-processed and 

converted reads are aligned to the pre-converted reference genomes and all the reads that 

Figure 20 – Representation of bisulfite sequence read alignment in BS Aligner. Its process starts with a 

conversion of reference genomes and bisulfite sequencing reads in FASTQ format. A BWT (Burrows-Wheeler 
Transform) algorithm is used to create whole genome sequence indices that are firstly loaded into the computer 
memory. In the alignment the paired-end or single-end reads have a different process where in the paired-end 
reads the insert size is also taken in account addition to considering the number of mismatches. After this, it is 
obtained a text file with output information and mapping positions. 
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can be aligned back to the Watson and Crick strands are discarded. The remaining are 

replaced by the original bisulfite sequencing reads and used for downstream analysis 

(Figure 20). (Jiang et al. 2014) 

The second module is a data analysis tool named BS Analyzer that reports the basic 

statistics and sequencing quality of the data, profiles the regional and global methylation 

level, identifies DMRs for paired samples, annotates and visualizes genome-wide 

methylation data.(Jiang et al. 2014)  

Jian, P. et al. (2014) demonstrated that Methy-Pipe can efficiently and accurately analyze 

the whole genome bisulfite sequencing data and in comparison with other software 

packages, it has more functionality and greater usability since it integrates the core and the 

downstream data analysis into one single package and uses high-performance computing 

clusters to parallelize data analysis, speeding up the analysis of bisulfite sequencing.(Jiang 

et al. 2014) Particularly, the BSAligner demonstrated on outperformance in comparison to 

Bismark Bisulfite Mapper in terms of computation time and with a comparable alignment 

accuracy.(Jiang et al. 2014) Since Bismark Bisulfite Mapper has shown to outperform many 

previously reported mapping programs, like BSMAP, BS Seeker and MAQ in terms of the 

ability for paired-end read alignment and running time, Methy-Pipe became quite relevant 

in the epigenomics research community.(Jiang et al. 2014)  

4.2. Bioinformatics in microarray-based methods for methylome 

analysis 

The accurate interpretation and analysis of microarray data requires the application of 

several bioinformatics methodologies that can be structured into several steps - file 

extraction, quality control, normalization, data analysis and biological interpretation (Figure 

21). 

The Illumina BeadChip 450k array originates an Illumina Intensive Data (idat) file format 

as raw data and each sample has a Red and a Green idat file that represent the intensities 

of the methylated and unmethylated probes. They are used to determine the β-value 

(Equation 1), obtained through the methylation scores for each CpG, ranging from 0 

(unmethylated) to 1 (fully methylated) on a continuous scale. It is calculated from the 

intensity of the M and U alleles as the ratio of fluorescent signals and the 100 constant 

exists to stabilize the β-values when the intensities are low.(Wu & Kuan 2018) The M-value 

can also be used to measure methylation where a normalized M-value near 0 signifies a 

semi-methylated locus, a positive M-value indicates that more molecules are methylated 
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than unmethylated and a negative M-value have the opposite interpretation (Equation 

2).(Wright et al. 2016) Although an M-value is attractive in that it can be used in many 

statistical models derived for expression arrays that assume normality, β-values are much 

more biologically interpretable.(Wright et al. 2016)  

 
β =

M

M+ U + 100
 

Equation 1 

 
M = log2

Max(M, 0)

Max(U, 0)
= log2

β

1 − β
 

Equation 2 

 
Some examples of software tools for the analysis and interpretation of DNA methylation 

microarray data are methylumi, minfi, wateRmelon, ChAMP and RnBeads. All of them are 

Bioconductor R packages (Figure 22) that will be explained bellow. 

methylumi enables the user to perform quality control interrogation, three methods of 

background correction and normalization and also works with GoldenGate and 27k array. 

minfi does not provide a single function to run the entire pipeline but it is frequently updated 

to offer methods for the newest analysis options available to 450k users. It has DMR calling, 

block finding modules and a new between-array normalization algorithm, termed functional 

normalization. It has quality control reports with a HTML option that included visualization 

of the array’s internal controls(Morris & Beck 2015). watermelon provides access to 15 

Figure 21 – Typical procedure of a bioinformatics microarray protocol. Starts with the quality control steps and 
is followed by normalization, statistical analysis, biological interpretation and validation of data. 
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normalization methods and 3 performance metrics based on three natural controls. ChAMP 

automates some of the minfi functions for a more inexperienced R user and offers eight 

functions that can be manipulated to set parameters. RnBeads has four normalization 

methods and a detailed HTML report that describes the analyses done along with results 

and images. It includes functions for annotation inference and data visualization. 

4.2.1. Quality control 

The quality control step is the first step in any pipeline for microarrays, consisting on the 

estimation of the quality of a dataset and selection of reliable probes and 

samples.(Touleimat & Tost 2012) The quality control or sample filtering is made because 

the Infinium arrays include several control probes for determining the data quality including 

sample-independent and dependent controls.(Wilhelm-Benartzi et al. 2013) Some probes 

can assess the bisulfite conversion efficiency or background fluorescence levels.(Wright et 

al. 2016) The process can be made through the detection of poorly performing samples 

using diagnostic plots of control probes or using the raw signal intensities of the control 

probes and determining whether they are beyond the expected range of the signal 

intensities across all samples. (Wilhelm-Benartzi et al. 2013) If the control probe intensity 

values fall outside the clustering values for other samples, this could indicate a 

compromised sample.(Wright et al. 2016) Usually, principal component analysis is 

Figure 22 – Pipeline steps offered by several softwares used in 450k methylation array. With a broadest offer 
proposed by ChAMP, RnBeads and minfi. Adapted from (Morris & Beck 2015) 
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performed to detect potential batch effects when samples are processed on more than one 

array. 

On the other hand, the filtering of probes is made if a certain proportion of samples have 

a detection P-value below a certain specified threshold.(Wright et al. 2016) This method 

can eliminate probes with intensity levels at or near background intensity, determined by 

several negative probe controls included in 450k array, poorly represented CpG sites and 

variable target sequences.(Wright et al. 2016) The quality control of probes can be made 

removing probes that fail to measure DNA methylation in a certain proportion of the total 

samples, through the identification of probes that failed to hybridize to a minimum of beads 

and cannot be detected by array.(Wright et al. 2016) Additionally, the probes located 

between single nucleotide polymorphisms (SNPs) should also be excluded, since this 

features can disrupt probe binding at that site, representing false low intensity signals, 

affecting the DNA methylation measurement.(Wright et al. 2016) The probes associated 

with sex chromosomes (X and Y) can also be removed since they account for the larger 

gender effects that researchers have found, or even the CpG probes located near short 

insertions or deletions or the ones that map to multiple locations on the genome, since they 

can produce difficult results to interpret.(Wright et al. 2016),(Wilhelm-Benartzi et al. 2013) 

4.2.2. Preprocessing and normalization 

The measurement of methylation levels can be affected by several sources of systematic 

variation in microarray experiments and so the data generated need to be normalized before 

the application of any mathematical methods.(Khademhosseini et al. 2013) Normalization 

removes the impact of nonbiological influences on the data, requiring the adjustment in 

three technical artifacts: non-specific background fluorescence, red/green dye bias and 

rescaling for probe type differences.(Wright et al. 2016) The normalization is made through 

between-array normalization, removing technical artefacts between samples on different 

arrays or through within-array normalization, correcting for intensity-related dye biases. 

(Wilhelm-Benartzi et al. 2013) 

The background correction methods help to remove nonspecific signal from total signal 

and corrects for between-array artefacts.(Wilhelm-Benartzi et al. 2013) More advanced 

model-based background correction methods take advantage of the 450k array technology 

to measure the intensity level of type I probes outside of their specified color band and have 

been shown to be superior to subtractive methods that rely exclusively on the negative 

probes.(Wright et al. 2016) Additionally, owing to the difference in labeling efficiency and 

scanning properties of the two color channels, the intensities measured in the two color 
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channels might be imbalanced.(Touleimat & Tost 2012) Therefore, it is necessary to make 

a color balance adjustment if the color effect is inconsistent across samples.(Touleimat & 

Tost 2012) 

Furthermore, as referred before, the 450k array technology uses two different types of 

probes that need to be rescaling to make its distributions comparable.(Wilhelm-Benartzi et 

al. 2013) The first method proposed to correct this divergence was peak-based correction 

where the Infinium II data is rescaled on the basis of the Infinium I data, assuming a bimodal 

shape of the methylation density profiles.(Wilhelm-Benartzi et al. 2013) However, it is known 

that the density distribution does curves and does not work well when the density distribution 

does not exhibit well-defined peaks or nodes.(Wilhelm-Benartzi et al. 2013) Therefore, 

currently there are four alternative approaches to this method – subset-quantile within-array 

normalization (used in minfi), subset quantile normalization, β-mixture quantile dilation 

(BMIQ) normalization method (used in wateRmelon) and funnorm normalization method 

(also available in minfi).(Wilhelm-Benartzi et al. 2013) The first determines an average 

quantile distribution using a subset of probes defined to be biologically similar on the basis 

of CpG content and allows the Infinium I and II probes to be normalized together.(Wilhelm-

Benartzi et al. 2013) The second uses the genomic location of CpGs to create probe groups 

through which they apply subset quantile normalization.(Wilhelm-Benartzi et al. 2013) The 

reference quantiles used in this approach are based on type I probes with significant 

detection P-values.(Wilhelm-Benartzi et al. 2013) The third uses quantiles to normalize the 

type II probes using a β-mixture model fit to the type I and II probes separately and then 

transforms the probabilities of class membership of the type II probes into quantiles using 

the parameters of the β-distributions of the type I distribution.(Wilhelm-Benartzi et al. 2013) 

Finally, the fourth is used when a global DNA methylation shift is expected, using internal 

control probes present on the array to infer between-array technical variations.(Hansen 

2018) 

4.2.3. Batch correction and cell composition 

DNA methylation arrays are susceptible to batch effects, effects caused by a group of 

samples that undergo an experimental processing step in tandem, potentially introducing 

DNA methylation differences that reflect differences between batches and not in 

experimental factors of interest.(Wright et al. 2016) The most common type of batch is 

observed when experimental procedures necessitate the processing of samples in separate 

groups or in different days.(Wright et al. 2016) Although normalization has already been 
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shown to reduce some component of batch effects, not all are adjusted, being necessary to 

use methods to correct batch effects.(Wilhelm-Benartzi et al. 2013) 

However, array position effects may also exist and thus new batch correction techniques 

may be needed to take those into account.(Wilhelm-Benartzi et al. 2013) In the cases where 

the true sources of batch effects are unknown or cannot be correctly modelled, is necessary 

to use a method that estimates the source of batch effects, like Surrogate Variable Analysis 

(SVA), or a method that identifies features that correlate the phenotype of interest in the 

presence of potential confounding factors, like Independent Surrogate Variable Analysis 

(ISVA).(Wilhelm-Benartzi et al. 2013) 

Additionally, it is known that the DNA methylation can vary by cell type and when we 

compare a group of samples that contain different cell types if its amount changes, it can 

affect the results.(Wright et al. 2016) Therefore, if a sample include abnormal cell-type 

proportions, the identification of significant DNA methylation differences due to this is 

essential to avoid associations of this variations to the health condition being evaluated in 

the research.(Wright et al. 2016) So, the evaluation of DNA methylation in mixed cell tissues 

should use statistical corrections to estimate heterogeneity of cell types found among 

samples.(Wright et al. 2016) 

4.2.4. Data analysis 

After all the quality control and normalization steps, methylated positions need to be 

properly compared between groups through several statistical methods, mainly through the 

identification of differential methylated individual CpG positions (DMPs) and DMRs and 

clustering analysis. The former is an essential step in the analysis of array-based DNA 

methylation data since it consists on the grouping of objects into clusters according to their 

similarity.(Wilhelm-Benartzi et al. 2013) 

The identification of DMRs, composed of multiple near DMPs, is essential to identify 

methylation differences, like probe-wise or locus-specific methylation differences, between 

specific groups such as cases and controls. (Wright et al. 2016),(Wilhelm-Benartzi et al. 

2013) Since the probes are placed in a sparse and non-uniform way in 450k, the 

identification of DMRs remains a challenge.(Wright et al. 2016) Therefore, it is 

recommended that both DMPs and DMRs detection be run in tandem.(Wright et al. 2016) 

Additionally, it is essential to take into account CpG proximity, since nearby CpG loci tend 

to have methylation levels highly correlated, and the tissue being sampled because the 

extent of methylation can reflect true changes to the methylome but can also represent 
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heterogeneity in underlying cell-type distributions.(Wilhelm-Benartzi et al. 2013) Some tool 

examples to determine DMPs and DMRs are MethVisual, minfi, limma, IMA, CHARM and 

EVORA, each one with specific features.(Wilhelm-Benartzi et al. 2013) Once the analysis 

has identified top hits, it is necessary to make a multiple testing correction to reduce the 

likelihood of false-positive loci by adjusting statistical confidence measures by the number 

of tests performed.(Wright et al. 2016) 

4.2.5. Biological interpretation 

The interpretation of biological data is the most important step once the bioinformatics 

analysis of genomic data is concluded(Wright et al. 2016). There are several interpretation-

oriented approaches aimed at understanding the biological and clinical significance of DNA 

methylation data.(Wright et al. 2016) 

Many researchers use functional enrichment analysis to reveal biological roles of 

differentially expressed DMRs through mapping them to the nearby genes in a process 

named Gene Ontology (GO).(Wright et al. 2016),(Wilhelm-Benartzi et al. 2013) Although 

the mapping process is made associating the probe ID of each DMR with gene names, if a 

CpG site maps to several nearby genes, one may elect to use all these genes.(Wright et al. 

2016) It is recommended in the DNA methylation analysis to stratify the data by gene region 

to decrease the potential for bias originated by the different number of probes in specific 

regions.(Wright et al. 2016) After this, the functional enrichment can be performed using 

Gene Set Enrichment Analysis (GSEA), Database for Annotation, Visualization and 

Integrated Discovery (DAVID) or ToppGene.(Wright et al. 2016) However, if a CpG site 

maps to multiple nearby genes, the regulatory context of DMRs should be evaluated, in a 

process named regulatory enrichment analysis, since it may be difficult to know which gene 

is truly regulated by the methylation differences in that CpG site.(Wright et al. 2016) 
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CHAPTER II     OBTAINING DATA  

Using data from public databases 
 
 

1. INTRODUCTION 

Employing informatics to study biological data has become a routine in recent 

epigenomic studies, rising the concept of “in silico experiments”, i.e. the use of several 

bioinformatics tools to extensively study biological systems, saving time, expenses and 

human resources. Therefore, retrieving information from databases of genomic, proteomic 

and transcriptomic data, even if already studied, is essential so that researches can use 

them differentially or to validate different approaches. Under this goal data mining becomes 

an important step for successful retrieving of required contents from any database. 

The International Nucleotide Sequence Database (INSD) is one of the major initiatives 

in public domain data sharing and consists of three collaborators: DNA Data Bank of Japan 

(DDBJ), European Nucleotide Archive (ENA) and National Center for Biotechnology 

Information (NCBI).(Karsch-Mizrachi et al. 2018) These partners work together to preserve 

all public domain nucleotide sequence data, turning it accessible in standardized formats 

across the three sites through daily data exchange. INSD data is free to users leading to 

future new important discovers since INSD databases are data hosts but not 

owners.(Karsch-Mizrachi et al. 2018) In 2017 the assembled and annotated data consisted 

of a 2,650 total trillion bases, i.e. about 3,2 Petabytes.(Karsch-Mizrachi et al. 2018) 

The National Center for Biotechnology Information (NCBI) was created in 1988 as a 

division of the United States National Library of Medicine (NLM) at the National Institute of 

Health (NIH). Currently, it provides biological data and resources focused on literature, 

health, genomes, genes, protein and chemicals. (Agarwala et al. 2016) 

GEO, Gene Expression Omnibus, is a NCBI’s data repository that aims to provide high-

throughput functional genomic data through a user-friendly database with an open and 

flexible design that facilitates submission and can hold raw and processed data for further 

study.(Edgar 2002) This platform contains data from gene expression, gene copy number, 

gene-protein interactions and methylation profiling generated by microarray and NGS 

technology. (Agarwala et al. 2016),(Edgar 2002) 
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GEO is organized into two Entrez databases: GEO datasets where the data is organized 

in a study-level format so that users can search for studies relevant to their interests and 

GEO profiles where the data is organized in a gene-level manner that users can search for 

gene expression profiles.(NCBI n.d.) In both cases, the information is organized in 

platforms, series and experiments. A platform, represented as GPL prefix, defines the 

technology used in an experiment and is associated with a list of probes that may detect a 

certain set of molecules. A sample, represented as a GSM prefix, defines an individual 

sample, its handling conditions and characteristics. A series, represented with a GSE prefix, 

defines an organization of samples that belong to the same experiment.(Edgar 2002) 

A particular advantage of GEO is its usage through Bioconductor, a software project that 

provides tools for the analysis and comprehension of high-throughput genomic data, using 

the R programming language.(Bioconductor n.d.) GEOmetadb, GEOquery, GEOsearch 

and GEOsubmission are examples of this applicability. GEOmetadb makes querying the 

GEO metadata easier and more effective through the use of GEOmetadb.SQLite, a locally 

database that is regularly updated. This allows the GEO search to be more detailed than 

using the online search NCBI tool.(Zhu et al. 2008) On the other hand, GEOquery is a 

package that downloads the Simple Omnibus Format in Text (SOFT) files, that are designed 

for rapid batch submission and includes information about the experiment, from GEO.(Sean 

& Meltzer 2007) 

Since one of the objectives of this thesis was to process and analyze raw data, obtained 

from public databases, as a way to gather some genome-wide tissue-specific epigenetic 

information related to aging and to gain experience with the bioinformatical tools needed to 

do so, the first step was to obtain the files before its analysis. The Sequence Read Archive 

(SRA) is an international public archive for next-generation sequencing data that is also 

under the guidance of INSDC and its usage is also facilitated by Bioconductor, specifically 

SRAdb. SRAdb.SQLite is also regularly updated and therefore this package was used to 

download the necessary raw data for our analysis. (Leinonen et al. 2011),(Zhu et al. 2013) 

2. METHODOLOGIES ADOPTED 

Due to the reduced costs associated with in silico approach to study epigenomic 

variances, this Master’s Thesis was early based on the study and data mining of metadata 

available on public databases. Firstly, Mus musculus was used as model organism of aging, 

since the institute aimed to study mice using bisulfite targeted sequencing in the near future. 

However, due to the limitations verified in this process and described on the discussion of 
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this chapter, we turned our attention Homo sapiens. Still, the main goal was to construct 

tissue-specific genomic maps with age-related DMPs in human and use it in further studies 

of iBiMED. 

2.1. Obtaining NGS data of Mus musculus 

The process of obtaining NGS data is made in several steps, starting with the selection 

of datasets from GEO, extracting additional information present in the files that are relevant 

for the analysis, and finally downloading the raw NGS data. All of these processes were 

made using several packages of Bioconductor in RStudio 64 bits version 3.4.3. 

Firstly, datasets were obtained using GEOmetadb package (Zhu et al. 2008). In this 

process, a script was written to select datasets by organism, methylation profiling method 

and technology. (Box 1) 

Box 1 – Script for obtainment Mus musculus dataset after filtration using GEOmetadb package 

#install Geometadb 
source(https://bioconductor.org/biocLite.R) 
biocLite(“GEOmetadb) 
 
#Download the data and library Geometadb 
library(GEOmetadb) 
if(!file.exists('GEOmetadb.sqlite')) getSQLiteFile() 
con <- dbConnect(SQLite(),'GEOmetadb.sqlite') 
 
#Filtration by features of our interest 
sql<-paste("SELECT gse.gse, gse.type, gse.title, gse.summary, gse.overall_design, 
gse.status, gse.pubmed_id, gpl.gpl, gpl.title, gpl.technology, gpl.organism, 
gsm.gsm, gsm.type, gsm.organism_ch1, gsm.source_name_ch1, gsm.characteristics_ch1, 
gsm.supplementary_file, gsm.characteristics_ch2, gsm.status", 

"FROM", 
" gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm", 
" JOIN gse ON gse_gsm.gse=gse.gse", 
" JOIN gse_gpl ON gse_gpl.gse=gse.gse", 
" JOIN gpl ON gse_gpl.gpl=gpl.gpl", 
"WHERE", 
"gse.type LIKE '%Methylation profiling by high throughput sequencing%' AND  
gpl.technology LIKE '%high-throughput sequencing%' AND  
gsm.organism_ch1 LIKE 'Mus%' AND  
gpl.organism LIKE 'Mus%' AND  
gsm.type LIKE '%SRA%'", sep=" ") 

data <- dbGetQuery(con,sql)  
 
library(xlsx) 
write.xlsx(data, file="data.xlsx") 

 
Then, the dataset was manually refined to assume that only healthy, adult and bisulfite-

seq analysed mice were included. The GEOquery package, downloaded using getGEO 

command, was used to obtain the metadata in SOFT files of the list of experiments obtained 

before.Finally, the FASTQ files were downloaded using SRAdb package(Zhu et al. 2013) 

(Box 2). 

https://bioconductor.org/biocLite.R
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Box 2 – Script for downloading SOFT and FASTQ files from samples of Mus musculus 

#install GEOquery 
source("https://bioconductor.org/biocLite.R") 
biocLite("GEOquery") 
 
library(GEOquery) 
geo <- c('GSM0000000') # where geo is a vector of multiple GSMs 
for (i in 1:length(geo)){ 

getGEO(geo[i]) 
} 
 
#install SRAdb 
source(“https://bioconductor.org/biocLite.R”) 
biocLite(“SRAdb”) 
library(SRAdb) 
sra_dbname <- 'SRAmetadb.sqlite' 
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname) 
list <- c('SRX000000') # where list is a vector of multiple SRXs 
getSRAfile(in_acc=(list),sra_con=sra_con,destDir=getwd(),fileType='fastq') 

 

2.2. Filtering and quality control of Mus musculus NGS data 

Mus musculus samples obtained as explained above went through the first step of the 

bioinformatics pipeline described in the previous chapter in section 4. Samples were filtered 

using our homemade protocol (BIOVIA PipelinePilot 2017) with filters that trim reads by 

quality with a quality cutoff of 20, length with a minimum length of 50, ambiguity with a 

threshold of 5 and average quality with a quality score lower than 20 (Figure 23). The 

choosen parameter values have already been tested and were used routinely at iBiMED. 

The reads were then quality controlled using FASTQC (version 0.11.5) (Babraham 

Bioinformatics 2010). This is a Babrahams Bioinformatics software that provides a graphical 

Figure 23 - Homemade pipeline for the preprocessing and filtering of reads in Pipeline Pilot. Filters for trimming 

by quality, length, ambiguity and average quality were used with standard parameters. 
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environment for quality control checks on raw sequence data coming from high throughput 

sequencing pipelines. Since in paired read situations, files with paired reads should have 

the same number of reads, it becomes necessary a last filtering step to discard the reads 

that have no pair in the opposite file (Figure 24). 

2.3. Alignment of Mus musculus samples 

Following the preprocessing and quality control steps, the samples wen’t to the alignment 

step. At this moment, and since the software used in our pipeline (MethyPipe) was not 

prepared for the alignment of samples other than human, we decided to run them on 

Bismark. For this, Bismark Bisulfite Mapper version 0.14.4 (Babraham Bioinformatics 2016) 

was used. The specifications used were the default ones and the reference genome was 

mm10 from C57BL/6J mouse strain. 

2.4. Obtaining microarray data from Homo sapiens 

Human samples were obtained on GEO DataSets(NCBI n.d.) query and browsed using 

the following parameters: “Homo sapiens [Organism] AND (“methylation profiling by array” 

[DataSet Type] OR “methylation profiling by genome tiling array” [DataSet Type] OR 

“methylation profiling by high throughput sequencing” [DataSet Type] OR “methylation 

profiling by SNP array” [DataSet Type])”. This procedure reduced the 96453 available series 

of samples in GEO to 2513 that were filtered with “age” as the “Attribute Name”. This 

resulted in 471 series of samples. 

Figure 24 - Homemade pipeline for filtering unpaired reads in Pipeline Pilot. The process is runned after the 

first preprocessing step and further quality control using FASTQC. 
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Afterwards, the series were manually analyzed to assure that samples were from tissues 

of perfectly healthy adult individuals. Individuals with reported bad life styles (e.g. smoking, 

drinking) and known diseases were excluded. Experiences that manipulated individuals 

were also discarded. The ethnic differences were ignored. Then, the GEOquery package, 

downloaded using getGEO command, was used to obtain the metadata in SOFT files and 

idat files from these experiments, using RStudio 64 bits version 3.4.3 as below (Box 3). 

Box 3 – Script for downloading SOFT and idat files using GEOquery 

library(GEOquery) 
 
getGEOSuppFiles("GSE105123")  
untar("GSE105123_RAW.tar", exdir = "GSE105123/idat") 

 

3. RESULTS 

3.1. Dataset from Mus musculus 

13302 samples, 574 series and 23 platforms were obtained using GEOmetadb package. 

These were refined, through a manual analysis, to check for healthy, non-embryo, non-

embryonic stem cells, non-cell lines, bisulfite-seq samples and with age information, which 

resulted in 64 samples and 10 series (Supplementary Table 1). However, to turn this set 

comparable, a lot of similarities were necessary - mouse strain, library preparation strategy 

and type of reads used in library preparation. Since we wanted to compare the methylation 

status through age in several tissues, it was necessary to have at least two samples with 

different ages from each tissue. In the case of GEO samples with the same tissue and age 

specificity, they were selected according to the higher number of final reads, after the 

filtration step described below. The resultant Dataset A is represented on Table 5. 

Table 5 - Dataset A obtained for Mus musculus with information about GEO experiment, GEO sample, strain, 

age, tissue, technology, its reference genome and library strategy. 

GEO Series GEO Sample Strain Age Tissue 
Reference 
Genome 

Platform 
Library 
strategy 

GSE68618 GSM1677165 C57B|6 16-18 mo Pancreas mm9 HiSeq2000 
Bisulfite-
seq 

GSE68618 GSM1677166 C57B|6 4-6 w Pancreas mm9 HiSeq2000 
Bisulfite-
seq 

GSE70317 GSM1723692 C57BL/6N 7 w Liver mm9 MiSeq 
Bisulfite-
seq 

GSE72177 GSM1857045 C57/BL6 22 w Liver mm9 HiSeq2000 
Bisulfite-
seq 

GSE92486 GSM2430564 C3B6F1 5m Liver mm10 HiSeq2500 
Bisulfite-
seq 

GSE92486 GSM2430570 C3B6F1 26m Liver mm10 HiSeq2500 
Bisulfite-
seq 

 



 
 

 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 
 

 

Chapter II – Obtaining data 61 

 
 

3.1.1. Preprocessing steps 

After sample selection quality and trimming, the retrieving fastq files were selected 

according to the higher number of final reads. The results of the selected fastq files are 

summarized in Table 6. The complete list of results before selection can be seen in 

Supplementary Table 2. 

Table 6 – First filtering step of Dataset A and the distribution of filtered reads among the several stages of the 

process of the already selected samples. The selection was made according do the higher mean final reads of 
each sample. 

GEO 
Series 

GEO Sample 
Acession fastq 
file 

Initial reads Trim Filter  
Ambiguity 
Filter 

Quality 
Filter 

Final reads 
Mean 
reads 
filtered 

GSE68618 GSM1677165 

SRR2034989_1 240688878 16247555 94637 635 224346051 
7% 

SRR2034989_2 240688878 16301684 104652 66285 224216257 

SRR2034993_1 213105508 2564085 52936 34 210488453 
2% 

SRR2034993_2 213105508 6646782 48550 13029 206397147 

GSE70317 GSM1723692 
SRR2079727_1 199775 0 29 0 199746 

0,05% 
SRR2079727_2 199775 1 168 3 199603 

GSE72177 

GSM1857045 
SRR2173864_1 37550718 260253 3477 0 37286988 

1% 
SRR2173864_2 37550718 603998 5235 766 36940719 

GSM1857046 
SRR5115679_1 70538476 1414173 4174 18413 69101716 

2% 
SRR5115679_2 70538476 1414173 4174 18413 69101716 

GSE92486 GSM2430570 
SRR5115685_1 229564398 500653 1784 1777 229060184 

0,4% 
SRR5115685_1 229564398 1090046 114848 7429 228352075 

 

3.1.2. Quality control 

Samples were quality-controlled using FASTQC. This tool produces reports about the 

base sequence quality, sequence quality scores, base sequence content, base GC content, 

sequence GC content, base N content, sequence length distritution, sequence duplication 

levels, overrepresented sequences and Kmer content.(Babraham Bioinformatics 2010) This 

information was analysed in our samples and decisions were based in the official 

documentation of FASTQC. (Babraham Bioinformatics 2010) 

In general, all the samples presented a bad quality control in kmer plots and base 

sequence content and several warnings in sequence GC content. However, there is 

empirical evidence of overrepresentation of reads in methylated DNA that can arise in the 

construction of sequencing libraries using bisulfite.(Ji et al. 2014) In any case, the other 

reports generally presented a good quality and we decided to continue the procedure to the 

alignment step. (Table 7) 
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Table 7 – FASTQC outcome across Dataset A in both paired reads demonstrated a bad quality in kmer content 

and base sequence content and several warnings in sequence GC content. 

FASTQC 
Steps 

SRR2034989 SRR2034993 SRR2079727 SRR2173864 SRR5115679 SRR5115685 

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

Base 
sequence 
quality 

G G G G G G G G G G G G 

Tile 
sequence 
quality 

W G G W N/A N/A G G G G G G 

Sequence 
quality 
scores 

G G G G G G G G G G G G 

Base 
sequence 
content 

B B B B B B B B B B B B 

Sequence 
GC content 

B G B B B B W W G G G G 

Base N 
content 

G G G G G G G G G G G G 

Sequence 
Length 
Distribution 

W W W W W W W W W W W W 

Sequence 
Duplication 
Levels 

W G B B B B G G G G W W 

Overrepre-
sented 
sequences 

B W W W B B G G G W G G 

Adapter 
Content 

B G B B G G G G G G G G 

Kmer 
Content 

B B B B B W B W W B B B 

G – Good quality control | W – Warning quality control | B – Bad quality control | N/A – non-available 

 
Bellow we exemplify the plots available and the rest of the data is presented in 

Supplementary Figures 1-10. The plot of base sequence quality score (Figure 25, left) 

shows that the sample presented a good quality although it is possible to see a falling of 

quality in the end of the run progress which is normal since the sequencing chemistry tends 

to degrade with increasing read length especially for long runs. However, in this case the 

trimming was not necessary since that was not significantly lower in quality. In the case of 

per sequence quality scores (Figure 25, right), we also had a good quality of samples, since 

they were all above 27 of quality score. 

On the other hand, we compared of two samples with a better and worst scenario using 

per tile sequence quality as can be assessed in Figure 26. The worst samples in this case 

represent individual specific events confined to a specific area or range of cycles since they 

do not appear all over the run and cannot be considered bad quality samples. 
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In the case of base sequence content, the proportion of each base, for which each of the 

normal DNA bases has been called, is presented in a plot. It would be expected that the 

lines in this plot run parallel with each other reflecting no major difference between the 

different bases of a sequence run. However, some types of library will always produce 

biased sequence composition as bisulfite converted sequences, since most of cytosines 

were converted to thymines yielding an excel of thymines in the plot. In the case of Figure 

27, FASTQC rejects the sample based on the 20% greater amount of thymines and 

adenines. The warnings presented in the per sequence length distribution (Figure 27, right) 

are related to sequences that possibly are not of the same length. 

In Figure 28 we present a normal distribution of GC content (Figure 28, right) and a bad 

one (Figure 28, left). The sequence GC content measures the GC content across the whole 

length of each sequence in a file and compares it to a modelled normal distribution of GC 

content made from the observed data and used to build a reference distribution. The second 

Figure 25 - Base sequence quality (left) and sequence quality score (right) of the SRR2173864 sample. The 

sample reveals a good quality in both categories of FASTQC. 
 

Figure 26 - Comparison of per tile sequence quality FASTQC step of a bad sample (SRR2034989, left) and a 

good sample (SRR2173864, right). 
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peak observed in the graphs corresponds to the overall GC content of the underlying 

sample. Any unusually shaped distribution could indicate a contaminated library since the 

sum of the deviations from the normal distribution represents more than 30% of the reads. 

Additionally, the sequence duplication levels represents the degree of duplication for 

every sequence in a library. While a low level of duplication may indicate a very high level 

of coverage of the target sequence, a high level is more likely to indicate some kind of 

enrichment bias. According to the literature, contaminants will tend to produce spikes 

towards the right of the plot and if peaks appear in the blue trace there should be a large 

number of different highly duplicated sequences which might indicate either a contaminant 

set or a severe technical duplication, as we can see in Figure 29 with the failure of 

SRR2034993, caused by more than 50% of non-unique sequences. 

To evaluate call quality of bases, the percentage of FASTQC plots positions for which 

an N was called (Figure 30). This happens because when a sequencer is unable to make 

Figure 27 – Quality control per base sequence content and sequence length distribution of SRR5115679 

sample. The sample revealed a bad quality in per base sequence content and several warnings in sequence 
length distributions. 
 

Figure 28 – Comparison of per sequence GC content FASTQC step of a bad sample (SRR2034989, left) and 

a good sample (SRR5115685, right). 
 



 
 

 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 
 

 

Chapter II – Obtaining data 65 

 
 

a base call with sufficient confidence, then it will call it an N. FASTQC also builts Kmer 

profiles, which report possible overrepresentated sequences in samples. In the figure, we 

show a bad sample with this respect, since six most biased Kmers are represented by sharp 

spikes of enrichment at a single point in the sequence, rather than a progressive or broad 

enrichment. 

3.1.3. Alignment step 

After the alignment step using Bismark Bisulfite Mapper, we obtained the results 

presented in Table 8 with a really low mapping efficiency. Therefore, through this results we 

concluded that the alignment of reads to the reference genome had not a good quality, 

which could probably be caused by the several problems detected in the FASTQC step. For 

all those reasons, we could not use these samples to study the T-DMRs across age, since 

differences reported between the samples could be caused by a bad quality of samples or 

alignment instead of methylation differences. 

Figure 29 – Comparison of sequence duplication levels FASTQC step of a bad sample (SRR2034993, left) and 

a good sample (SRR5115679, right) 
 

Figure 30 - Quality control per base N content (left) and Kmer content (right) of SRR2173864 sample. The 

sample reveals a good quality in per N content and bad quality in Kmer content. 
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Table 8 – Results obtained from the Bismark bisulfite mapper with mapping efficiency and the methylated 

cytosines detected in the several contexts. 

 Mapping 
efficiency (%) 

C methylated in 
CpG context (%) 

C methylated in 
CHG context (%) 

C methylated in 
CHH context (%) 

C methylated in 
unknown context (CN 
or CHN) (%) 

SRR2034989 40,30 72,60% 8,10% 11,50% 5,00% 

SRR2034993 43,4 76,4 13,9 19,8 6,5 

SRR2079727 0 0 0 0 0 

SRR5115679 75 75,7 0,4 0,5 1,1 

SRR5115685 76,4 75,9 0,3 0,3 0,8 

 

3.2. Dataset from Homo sapiens 

After the first filtering step using GEOmetadb we obtained 2103 samples from healthy 

individuals, together with age and gender information. However, due to the need for raw 

data to proceed to the bioinformatics protocol, the previous number of samples was reduced 

to 1703, as summarized in Table 9. 

Since, data from Illumina BeadChip 450k was prevalent, representing 97% of the already 

filtered total, the following plots only focused on the GPL13534 platform and this was the 

only one being used in our analysis. This resulted in 27 series and 1650 samples from 12 

different tissues as distributed in Figure 31. Visibly, blood was the overrepresented sample 

type with 1334 samples, followed by buccal, lung and brain cells. 

0 500 1000 1500

Intestine

Cornea

Liver

Adipose Tissue

Bronch

Nasal Epithelia

Kidney

Nose

Brain

Lung

Buccal

Blood

Figure 31 – Distribution of tissues among Dataset B.2 with a prevalent advantage of blood with 1333 samples, 

followed by buccal cells, lung and brain. 
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Table 9 – Dataset B.1 obtained for Homo sapiens and microarray search with information about GEO 

experiment, superseries, article PMID, number of samples across gender, age interval, tissue type and 
platform used 
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The blood samples consisted of two types of blood cell populations – whole blood and 

peripheral blood. Between the samples from peripheral blood we got peripheral blood 

mononuclear cells (PBMCs), undefined leukocytes or undefined peripheral blood samples, 

with a visible advantage of PBMCs with 17% of the samples (Figure 32). 

Additionally, it is known that PBMCs include several types of mononuclear cells of 

peripheral blood like lymphocytes and monocytes. In our dataset we obtained both types of 

PBMCs and a small contribution of undefined PBMCs. Between lymphocytes our dataset 

had a prevalent presence of undefined lymphocytes, followed by lymphocytes CD4 T cells, 

also known ad T helper cells (Th), lymphocytes CD8 T cells, also known as cytotoxic T cells 

(Tc), and CD3 T cells. Lastly, we also had 10% of monocytes CD14 (Figure 33). 

The collected data had also a wide variety of individual ages with a prevalence of 

individuals with ages between 41 and 60 years as shown in Figure 34. However, as referred 

before it is known that the methylome has a big importance in the early development of an 

individual and several appreciations have been made to methylome in childhood and 

Figure 33 – Blood specificity across Dataset B.2 with a prevalence of whole blood samples (67%). The peripheral 

blood samples included undefined samples, leukocytes and PBMCs. 
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Figure 32 – Representation of different types of PBMCs present in Dataset B.2 with a biggest prevalence of 

lymphocytes. 
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adolescence that are not related with aging. Therefore, the samples with ages below 18 

were eliminated from our dataset. In the end, our dataset was ready for further studies and 

its full details are presented in Supplementary Table 3 (Dataset B.2). 

4. DISCUSSION 

In silico experiments can be used in genomics to improve data throughput, especially in 

experiments that usually would be expensive and prolongated. The use of public databases 

and data mining to recicle datasets already used by biological scientists for the same or 

different purposes is essential in this process. Additionally, wanted to use age-specific Mus 

musculus samples as a biological model, since it can be taken as representative of human 

methylome has already been reported. Therefore, our research started looking for a dataset 

that would be explored and used as a basis to do targeted bisulfite sequencing studies with 

aged murines at iBiMED. 

The murine dataset initially consisted of 64 samples from healthy mice. These excluded 

those samples from embryo, embryonic stem cells, cell lines and were only from bisulfite-

seq. However, due to the need of an age time course inside the selected tissue, the 

research focused only on 6 samples from pancreas and liver those with the highest number 

of final reads after filtration with Pipeline Pilot, although with variances in the used reference 

genomes and technologies. The preprocessing steps associated with NGS technologies 

were developed, starting with a filtering step followed by a quality control and a last filtering 

step that filtered the unpaired reads. Since the samples had a general good quality, they 

were ready to proceed to the alignment step, which started with MethyPipe but later 

changed to Bismark, due to the above mentioned limitations of the previous software. In 
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Figure 34 – Age distribution on dataset with a prevalence of individuals between 41 and 60 years old and low 

amount of individuals with 81-100 and 0-10 years old. 
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this last step, it was concluded that MethyPipe could not be used with samples that were 

human, since the software has an incorporation of the alignment genome and this feature 

cannot be changed. For this reason, Bismark Bisulfite Mapper was used to map the reads 

and a low efficiency (<50%) was obtained for three samples and only two samples had a 

better alignment efficiency (70%). 

Additionally, our Dataset A didn’t include samples from the same sequencing platform 

and the number of available samples could not provide a relevant statistical analysis of 

methylation across tissues so, it was useless to continue with this approach. Previous work 

in the Institute also recommended the usage of a significant amount of human samples that 

would improve the statistical relevance of the study, suggesting microarray technologies as 

a potential escape from NGS expenses and lack of available data.(Cluny 2016) Through a 

database search it was concluded that the microarray approach had a more prevalent 

contribution than NGS for past methylation studies and that NGS data was distributed by a 

lot of library preparation protocols that could not be compared between each other. 

Therefore, in view of the advantages and disadvantages stated above, we concluded 

that the usage of Homo sapiens and microarray as keywords for our search would be the 

best approach to study DNA methylation variation across age and tissue. Furthermore, this 

stratedy is also supported by the fact that in the future the institute aims to study the 

methylome across age through young and old people using microarrays. In the new dataset, 

the diversity of tissues and age ranges were appreciable and the usage of the same platform 

and DNA treatment techniques was also a remark. Globally, the aim of our search could be 

reached and a wide methylation map could be constructed. 

In the Dataset B.2 from Homo sapiens, we obtained 1650 samples from the most widely 

used microarray chip – Illumina Methylation 450k - to study human methylation with a huge 

diversity in tissue types. However, given the general limitation in obtaining large number of 

samples from all tissues, blood has already been reported as an attractive, easy and 

available source of DNA.(Reinius et al. 2012) According to several studies, it is known that 

alteration in DNA methylation patterns can be detected in the blood of patients with diseases 

or even solid tumours samples.(Reinius et al. 2012) Therefore, our study was focused on 

blood as the primary tissue for methylation variations to be used routinely at iBiMED. 

However, the tissue-specific cell variation in our dataset was visible since it integrated 887 

whole blood samples and 443 peripheral blood ones. Between them 17% were PBMCs 

distributed in lymphocytes of several types (76%), monocytes (10%) and cells without any 

specification (14%). 
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According to literature, cell heterogeneity among blood samples may act as a confounder 

when measuring DNA methylation in whole blood. It was already reported that there are 

differentially methylated regions between the several purified cell populations of blood and 

caution should be taken in the interpretation of whole blood results particularly for immune-

related genes. The comparison between granulocytes and monocytes has already revealed 

some cell-specific differentially methylated sites. To diminuish this problem, alghorithms 

have been developed to use cell-type-specific positions to determine the relative amount of 

each cell type per sample. 

Elsewhere, it is also known that CpG islands and 5’UTR – CpG sites in regions of high 

density - are more often unmethylated, while CpG sites located in introns, 3’UTRs and 

repetitive elements were methylated. Lastly, the existence of sex-specific methylation 

patterns have also been studied. This patterns are present not only in sex chromosomes 

but also in autosomal ones – it is known that global and autosomal CpG methylation has a 

tendency for higher methylation in males and sex-specific differences at varying numbers 

of CpG probes, across different chromosomes. The X-chromossome inactivation is 

accompanied with widespread CpG hypermethylation but sex-specific methylation has also 

been shown to be modified by sex hormones and there are already several DMRs that are 

known to exist in autosomal chromosomes, related with sex variances. Although the cross-

reacting probes are excluded in the bioinformatics protocols, there is evidence that the 

number of sex-specific DMRs is still high. 

Therefore, reviewing our dataset, we can expect a biased distribution of samples 

according to cell types, genders or genome regions effects of methylation. For all of these 

reasons, it is essential to meticulously compare our samples: to remove probes theoretically 

related with these features and to analyse our clusters carefully in order to see tendencies 

that could introduce non-age related biases. 

We should also stress that, the lack of information or the incorrectly insert of information 

by the researchers when submitting their own data was detrimental and clearly impacted 

the timeline of our work. This forced us to perform a manual study for each sample which 

was even harder due to the lack of a userfriendly platform displayed by NCBI. Therefore, in 

the near future it is essential to create an in-house database, to store this data, now that is 

was completely verified, to improve the reuse it in other studies or even to improve the 

pipeline used to explore the NCBI dataset. Through this progress, the sustentability of in 

silico experiments at iBiMED should be highly improved. 
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CHAPTER III     DATA ANALYSIS  

Methylomics of aging using public datasets 

1. INTRODUCTION 

The main goal of this chapter was to use public data to find differential methylated regions 

that could be associated with the healthy aging of individuals. For that purpose we adopted 

an in silico concept using minfi. minfi is a software developed in 2014 for the analysis of 

Illumina Infinium methylation arrays, particularly the Illumina Infinium HumanMethylation 

450 BeadArray(Aryee et al. 2014). This software has already been used in human 

methylomic studies and has been referred as a good choice for the several steps comprised 

in the microarray bioinformatics pipeline(Wright et al. 2016),(Morris & Beck 2015). minfi 

separates the annotation step – genomic location of methylation loci and nearby features – 

from array design interpretation - how probes are matched with relevant color channels to 

produce Meth or Unmeth signals(Aryee et al. 2014). With this particular feature, the 

annotation process can be updated using, for example, later human genome builts(Aryee 

et al. 2014). 

The software is organized in several computer classes for the several steps of the 

microarray pipeline (Aryee et al. 2014). The process starts with .idat files that are read into 

an RGChannelSet, a class that contains the raw intensities as two matrices, with the red 

and the green channel, the intensities of the internal control probes and a manifest object 

with the probe design information of the array(Fortin & Hansen 2016). Once these data are 

processed into methylation measurements, they can be stored in four additional classes 

Figure 35 – Organization of minfi in several computer classes as used in the several steps of the pipeline.  The 

.idat files are the starting point of the analysis and are followed by the usage of several functions. (1) 
read.450k.exp(); (2) preprocessRaw(), preprocessSWAN() or preprocessIllumina(); (3) ratioConvert(); (4) 
mapToGenome(); (5) mapToGenome (); (6) ratioConvert(); (7) preprocessQuantile() or preprocessFunnorm(). 
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representing several stages of preprocessed data: MethylSet, GenomicMethylSet, RatioSet 

and GenomicRatioSet (Figure 35)(Aryee et al. 2014). 

MethylSet is the result of the preprocessing step and contains normalized data and a 

matrice with the methylated and unmethylated signals.(Hansen 2018) Using the accessors 

getMeth and getUnmeth, both methylated and unmethylated matrices can be 

obtained(Hansen 2018). On the other hand, RatioSet is a class designed to store β-values 

and/or M-values, concepts defined in chapter 1 section 4, and is irreversible, which means 

it is not possible to retrieve the methylated and unmethylated signals from a 

RatioSet(Fortin & Hansen 2016). The RatioSet is obtained from MethylSet using the 

ratioConvert function(Aryee et al. 2014). In both cases, the genomic prefix in the class 

name indicates that methylation loci have been associated with a genomic location which 

is a nonreversible transformation, as it entails choosing a reference genome and discarding 

unmapped probes(Aryee et al. 2014). This operation is made using the function 

mapToGenome, which allows the user to choose a human genome build(Aryee et al. 2014). 

To start data processing, minfi provides several plots for quality control check of the data, 

such as density plots or control probe plots(Hansen & Aryee 2012). The simplest quality 

control plot uses the log median intensity in both methylated and unmethylated intensities 

and when plotting the two medians against each other, good samples will cluster together 

while failed ones will tend to separate and have lower median intensities(Fortin & Hansen 

2016). This data can be explored in order to look at the β-value densities of the samples 

and even to compare all plots at the same time in an interactive manner. On the other hand, 

the control probes plot allows plotting individual control probe types. There are at least 9 

types of control probes (such as: staining, hybridization, extension, target removals, bisulfite 

conversion, specificity, non-polymorphic and norm probes) integrated in 450k array. 

Through the control probes plot, the researcher can evaluate and quality control the several 

steps in sample preparation microarray process. (Fortin & Hansen 2016),(Hansen & Aryee 

2012). 

Then, a preprocessing or normalization step is carried out according to the chosen 

method(Fortin & Hansen 2016). The preprocessRaw option does not perform any 

normalization, i.e. it uses RGChannelSet as input and MethylSet as output(Fortin & 

Hansen 2016). The preprocessIllumina implements the preprocessing choices as 

available in Genome Studio, making a background substraction, a control normalization and 

using RGChannelSet as input and MethylSet as output(Fortin & Hansen 2016). On the 

other hand, the preprocessSWAN performs subset-quantile within array normalization 
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(SWAN) that corrects the differences between the Type I and Type II probes by applying a 

within-array quantile normalization separately for different subsets of probes(Fortin & 

Hansen 2016). The input used in SWAN is RGChannelSet or MethylSet and the output is 

MethylSet(Fortin & Hansen 2016). The preprocessQuantile, with RGChannelSet as 

input and GenomicRatioSet as output, implements the stratified quantile normalization 

preprocessing explained before, but it is not recommended for datasets where global 

changes are expected(Fortin & Hansen 2016). Another option is preprocessNoob, with 

RGChannelSet as input and MethySet as output, which implements the noob background 

subtraction method with dye-bias normalization(Fortin & Hansen 2016). The background 

noise is estimated from the out-of-band probes and removed for each sample while the dye-

bias normalization uses a subset of control probes to estimate the dye bias(Fortin & Hansen 

2016). Lastly, the already described preprocessFunnorm that has as input RGChannelSet 

and as output GenomicRatioSet and that is particularly useful for studies that compare 

conditions with known large-scale differences, like between-tissue studies(Fortin & Hansen 

2016). The function applies the preprocessNoob function as a first step for background 

subtraction and then uses the first two principal components of the control probes to explore 

any unwanted variation(Fortin & Hansen 2016). After the normalization process, minfi still 

offers a way to correct batch effects correction SVA, removing probes with known SNPs 

associated with the same CpG site and cell- estimation in case of complex samples. 

Searching DMPs and DMRs is the next step(Fortin & Hansen 2016). The identification 

of DMPs by dmpFinder function reveals differentially methylated positions between two or 

more sample groups using an F-test(Hansen & Aryee 2012). Then, to find DMRs the 

bumphunter function is used, samples are firstly clustered of probes. To make clusters, 

candidate regions need to be tested for significance and for that the algorithm uses 

permutations(Fortin & Hansen 2016). However, since bump hunting focuses on methylation 

changes around gene promoters, it is necessary to use a block finding step to find long-

range alterations(Aryee et al. 2014). The function blockFinder groups the average 

methylation values in open-sea probe cluster into larger regions and the bump hunting 

process can then be applied with a large smoothing window(Aryee et al. 2014). 

Finally, after data processing using minfi, the creation of interactive visualizations for 

genomic scale data is essential. This can be offered by several visualizers that have an 

integration with minfi through R like ggplot2, Gviz and epiviz or even by importation of data 

into UCSC Genome Browser or IGV (Morris & Beck 2015). 
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2. METHODOLOGIES ADOPTED 

Dataset B.2 was analysed with minfi Bioconductor package version 1.26.0 (Aryee et al. 

2014) in RStudio 64 bits version 3.4.3. The relevant functions used in our pipeline that were 

not included in minfi package are described on Table 10. The pipeline followed was adapted 

from (Hansen 2018; Fortin & Hansen 2016),(Maksimovic & Phipson 2015) and was divided 

into two steps: (1) an analysis of each individual experiment of the dataset; and (2) a global 

analysis joining all experiments. 

Table 10 – List of used functions, its description and respective packages, excluding the minfi or R incorporated 

functions. 

Library Useful functions Function description References 

fastcluster hclust Hierarchical agglomerative clustering (Müllner 2013) 

DMRcate 

rmSNPandCH Filters a matrix of M/-values by distance to SNP 

(Peters et al. 
2015) 

cpg.annotate 
Annotates a matrix of M-values with probe weights and 
chromosomal position 

extractRanges 
Takes a dmrcate.output object and produces the 
corresponding GRanges object 

DMR.plot Plots an individual DMR as found by dmrcate 

qqman manhattan Creates a manhattan plot from PLINK assoc output (Turner 2014) 

 
After obtaining data from GEOquery library, as described in Chapter II, the idat files 

needed to be decompressed since minfi does not support reading compressed idat files. 

The idat files were then read, using the function read.metharray.exp, into the class 

RGChannelSet that will be used in the future when we want to refer to the raw data, and the 

data is accessed from a data sheet experiment using the command pData. Since the 

phenotype data comprises much information, we needed to simplify and reduce it by 

focusing on the most relevant information for our analysis. For this, the table was filtered 

and only the data was integrated into the methylation data. The RGChannelSet also stores 

a manifest object that contains the probe design information of the array, obtained through 

the function getManifest. (Box 4) 

Box 4 – Script of the manipulation of input data of Dataset B.2 starting with the import of all the libraries used 

in the entire script 

library(minfi) 
library(fastcluster) 
library(IlluminaHumanMethylation450kmanifest) 
library(IlluminaHumanMethylation450kanno.ilmn12.hg19) 
library(RColorBrewer) 
library(limma) 
library (qqman) 
ann450k = getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19) 
 
 
#Input data and manipulation 
idatFiles <- list.files("GSE105123/idat", pattern = "idat.gz$", full = TRUE) 
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sapply(idatFiles, gunzip, overwrite = TRUE) 
rgSet <- read.metharray.exp("GSE105123/idat") 
source("geo_data.R") 
geoMat <- getGEO("GSE105123") 
pD.all <- pData(geoMat[[1]]) 
pD <- pD.all[, c("title", "geo_accession", "characteristics_ch1", 
"characteristics_ch1.1", "characteristics_ch1.2", "characteristics_ch1.3")] 
head(pD) 
names(pD)[c(3,4)] <- c("sex", "age") 
pD$sex <- sub("gender: ", "", pD$sex) 
pD$age <- sub("age: ", "", pD$age) 
sampleNames(rgSet) <-  sub("(GSM\\d+)_.*", "\\1", sampleNames(rgSet)) 
pD <- pD[sampleNames(rgSet),] 
pD<-as(pD,"DataFrame") 
pData(rgSet) <- pD 
phenodata<-pData(rgSet) #info 
manifest <- getManifest(rgSet) #info 
head(getProbeInfo(manifest)) #info 
 
#save the manipulation data into R object  
saveRDS(rgSet, file = "rgSet_GSE105123.rds") 
saveRDS(phenodata, file = "pheno_GSE105123.rds") 

 

2.1. Quality control 

In the quality control step (Box 5) we performed by a clustering using hclust function 

that worked through the calculation of raw data β-values (getBeta function). The P-value 

was calculated using the function detectionP and the mean of p-values inside the same 

sample was represented in a boxplot. Then, we carried out a quality control report that 

plotted the most common analysis available at minfi studying samples by age and gender 

and building a control probes plot. Finally, we checked the global quality of our samples 

making a QC plot using the functions getQC and plotQC and a boxplot of the difference 

between unmethylated and methylated channels. 

Box 5 – Script of the quality control step in Dataset B.2 including a clustering, calculation of mean p-values 

and quality control reports with a wide variety of integrated plots. 

#calculate the beta values with raw data and clustering the samples 
beta <- getBeta(rgSet, type="Illumina") 
d <- dist(t(beta),method="euclidean") 
fit <- hclust(d, method="complete") 
pdf("clustering.pdf", onefile=T, paper="a4r") 
plot(fit, cex = 0.8) 
dev.off() 
 
#calculate the mean P-values across all samples to identify any failed samples 
pal = colorRampPalette(c('cadetblue3'))(50) 
detP = detectionP(rgSet) 
head(detP) 
pdf("p_values.pdf") 
barplot(colMeans(detP),col=pal[factor(phenodata$geo_accession)],las=2,cex.names=0.8
, main="Mean detection p-values", ylim=c(0,0.0009)) 
dev.off() 
 
 
#qc_report by group before filtering and normalization 
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qcReport(rgSet,sampNames=phenodata$geo_accession,sampGroups=phenodata$age,pdf="qcRe
port_Age.pdf") 
qcReport(rgSet,sampNames=phenodata$geo_accession,sampGroups=phenodata$sex,pdf="qcRe
port_Gender.pdf") 
raw <- preprocessRaw(rgSet) 
meth <- minfi::getMeth(raw) 
dim(meth) 
qc <- getQC(raw) 
pdf("raw.pdf") 
plotQC(qc) 
dev.off() 
 

 

2.2. Preprocessing and normalization 

The preprocessing and normalization step (Box 6) started with a comparison of the four 

methods available in minfi using the preprocessRaw, preprocessSWAN, 

preprocessQuantile and preprocessFunnorm functions and consequent density plotting 

with variations of age or gender. Due to the origin of our samples, the data is also evaluated 

using a normalization by cell type. After the comparison of all methods and selection of the 

Quantile normalization method, the data was compared before and after normalization in 

the β-value variations using density plots. 

Box 6 – Script of the normalization step starting by a comparison of all available normalization methods, 

followed by a comparison of the data before and after normalization. 

#make different normalization and see the differences between them 
mSetRaw = preprocessRaw(rgSet) #raw method 
mSetSw = preprocessSWAN(rgSet = rgSet, mSet = mSetRaw, verbose=TRUE) #swan method 
mSetSq = preprocessQuantile(rgSet) #quantile method 
funSq = preprocessFunnorm(rgSet, bgCorr = TRUE, dyeCorr = TRUE) #funnorm method 
cells<-estimateCellCount(rgSet, compositionCells="Blood", returnAll=TRUE) 
 
#differences between normal quantile and quantile with type cells normalization 
corr.test(getBeta(mSetSq), getBeta(cells$normalized)) 
plot(getBeta(mSetSq), getBeta(cells$normalized)) 
 
#plotting the differences of normalization method - gender variable 
pdf("densityplots_sex.pdf") 
par(mfrow=c(1,3)) 
densityPlot(rgSet, sampGroups = phenodata$Gender, main="Raw") 
densityPlot(getBeta(mSetSw), sampGroups = phenodata$sex,main="SWAN") 
densityPlot(getBeta(mSetSq), sampGroups = phenodata$sex,main="Quantile") 
densityPlot(getBeta(funSq), sampGroups = phenodata$sex,main="FunNorm") 
dev.off() 
 
#plotting the differences of normalization method - age variable 
pdf("densityplots_age.pdf") 
par(mfrow=c(1,3)) 
densityPlot(rgSet, sampGroups = phenodata$age, main="Raw", legend=FALSE) 
densityPlot(getBeta(mSetSw), sampGroups = phenodata$age,main="SWAN", legend=FALSE) 
densityPlot(getBeta(mSetSq), sampGroups = phenodata$age,main="Quantile", 
legend=FALSE) 
densityPlot(getBeta(funSq), sampGroups = phenodata$age,main="FunNorm", 
legend=FALSE) 
dev.off() 
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#visualize what the data looks like before and after normalization - age variable 
pdf("densityplots_before_after_norm_rawvsquantile.pdf") 
par(mfrow=c(1,2)) 
densityPlot(rgSet, sampGroups=phenodata$age,main="Raw", legend=FALSE) 
densityPlot(getBeta(mSetSq), sampGroups = phenodata$age,main="Quantile", 
legend=FALSE) 
dev.off() 
 

 

2.3. Filtering 

Before the beginning of the filtering step, a multidimensional scaling plot was made to 

look at the level of similarity of individual samples across the dataset and to identify the 

main sources of variation inside our dataset across gender and age. (Box 7) Then, probes 

with P-value above 0.01, probes from the X or Y chromosomes and the ones with common 

SNPs at CpG sites were removed. Finally the probes that were shown to be mapped to 

multiple places in the genome were also removed. The filters used were based on those 

recommended in literature.(Pidsley et al. 2016) After the filtering steps, the dendograms 

and MDS plots were repeated and also the clustering of samples in order to reanalyze the 

main sources of variation inside our dataset and proceed to the next step. 

Box 7 – Script of the filtering step starting and ending with a MDS plot in order to evaluate the major sources 

of variation in our dataset. 

#MDS plots to look at largets sources of variation - age 
pdf("MDSplot_quantile.pdf") 
par(mfrow=c(1,2)) 
colfunc <- colorRampPalette(c("royalblue", "white")) 
colorgrad<-colfunc(length(sort(unique(pData(mSetSq)$age)))) 
zzz<-as.factor(pData(mSetSq)$age) 
plotMDS(getM(mSetSq), top=1000, gene.selection = "common", col=colorgrad[zzz], 
pch=16) 
 
#MDS plots to look at largets sources of variation - gender 
pal = colorRampPalette(c('darksalmon', "cadetblue3"))(2) 
plotMDS(getM(mSetSq), top=1000, gene.selection = "common", col = 
pal[factor(phenodata$sex)], pch = 16) 
dev.off() 
 
#Filtering step 
#remove any probes that have failed in one or more samples 
detP = detP[match(featureNames(mSetSq),rownames(detP)),] #ensure probes are in the 
same order in the mSetSq and detP objects 
keep = rowSums(detP < 0.01) == ncol(mSetSq) #By default detection P-values with a 
value >0.01 are set to NA 
table(keep) 
mSetSqFlt = mSetSq[keep,] 
mSetSqFlt 
 
#if your data includes males and females, remove the sex chromosomes 
ann450k = getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19) 
keep = !(featureNames(mSetSqFlt) %in% ann450k$Name[ann450k$chr %in% 
c("chrX","chrY")]) 
table(keep) 
mSetSqFlt = mSetSqFlt[keep,] 
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#remove probes with SNPs at CpG site 
mSetSqFlt = dropLociWithSnps(mSetSqFlt) 
 
#exclude cross reactive probes 
xReactiveProbes = read.csv(file="48639-non-specific-probes-Illumina450k.csv", 
stringsAsFactors=FALSE) 
keep = !(featureNames(mSetSqFlt) %in% xReactiveProbes$TargetID) 
table(keep) 
mSetSqFlt = mSetSqFlt[keep,] 
 
#dendogram after normalization and filter 
beta <- getBeta(mSetSqFlt) 
d <- dist(t(beta),method="euclidean") 
fit<- hclust(d, method="complete") 
pdf("clustering_afternormalization_filtering.pdf", onefile=T, paper="a4r") 
plot(fit, cex = 0.8) 
dev.off() 
 
#MSD plots after filtering and normalization 
pdf("MDSplots_afterfiltering_quantile.pdf") 
par(mfrow=c(1,2)) 
colfunc <- colorRampPalette(c("royalblue", "white")) 
colorgrad<-colfunc(length(sort(unique(pData(mSetSqFlt)$age)))) 
zzz<-as.factor(pData(mSetSqFlt)$age) 
plotMDS(getM(mSetSqFlt), top=1000, gene.selection = "common", col=colorgrad[zzz], 
pch=16) 
pal = colorRampPalette(c('darksalmon', "cadetblue3"))(2) 
plotMDS(getM(mSetSqFlt), top=1000, gene.selection = "common", col = 
pal[factor(phenodata$sex)], pch=16) 
dev.off() 
 
#save the R object after filtering and normalization 
saveRDS(mSetSqFlt, file = "quantile_filterNorm.rds") 

 

2.4. Joining experiments 

After the individual analysis of experiments, the protocol joins the samples from Dataset 

B.2 using the function combinearrays from minfi that creates a virtual global array (Box 8). 

The experiments were joined in pairs, since the function does not support a global 

simultaneous joining process. After that, a clustering and a MDS plot was made in order to 

see the potential source of bias of our global dataset and exclude the major confounders 

such as cell types. 

Box 8 – Script of merging of all samples from Dataset B.2, in order to obtain Dataset B.3 after normalization 

and filtering followed by clustering and MDS plots. 

#Join GEO datasets already normalized and filtered 
gse104471<-readRDS("GSE104471/quantile_filterNorm.rds") 
gse105123<-readRDS("GSE105123/quantile_filterNorm.rds") 
gse107737<-readRDS("GSE107737/quantile_filterNorm.rds") 
gse87571<-readRDS("GSE87571/quantile_filterNorm.rds") 
gse42861<-readRDS("GSE42861/quantile_filterNorm.rds") 
gse51057<-readRDS("GSE51057/quantile_filterNorm.rds") 
gse71955<-readRDS("GSE71955/quantile_filterNorm.rds") 
gse85506<-readRDS("GSE85506/quantile_filterNorm.rds") 
gse85647<-readRDS("GSE85647/quantile_filterNorm.rds") 
gse87640<-readRDS("GSE87640/quantile_filterNorm.rds") 
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gse98876<-readRDS("GSE98876/quantile_filterNorm.rds") 
gse99755<-readRDS("GSE99755/quantile_filterNorm.rds") 
gse104471_105123<-combineArrays(gse105123, gse104471, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse107737_87571<-combineArrays(gse107737, gse87571, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse42861_51057<-combineArrays(gse42861, gse51057, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse71955_85506<-combineArrays(gse71955, gse85506, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse85647_87640<-combineArrays(gse85647, gse87640, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse98876_99755<-combineArrays(gse98876, gse99755, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse104471_105123__gse107737_87571<-combineArrays(gse104471_105123, gse107737_87571, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse42861_51057__gse71955_85506<-combineArrays(gse42861_51057, gse71955_85506, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse85647_87640__gse98876_99755<-combineArrays(gse85647_87640, gse98876_99755, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
gse104471_105123__gse107737_87571___gse42861_51057__gse71955_85506<-
combineArrays(gse42861_51057__gse71955_85506, gse104471_105123__gse107737_87571, 
outType="IlluminaHumanMethylationEPIC", verbose=TRUE) 
all_geo<-
combineArrays(gse104471_105123__gse107737_87571___gse42861_51057__gse71955_85506, 
gse85647_87640__gse98876_99755, outType="IlluminaHumanMethylationEPIC", 
verbose=TRUE) 
##all_geo<-all_geo[,-c(1:18)] ###remove the experiment that has samples with age 
below 18 
##remove unnecessary columns 
pData(all_geo)$characteristics_ch1<-NULL 
pData(all_geo)$characteristics_ch1.1<-NULL 
pData(all_geo)$characteristics_ch1.2<-NULL 
pData(all_geo)$characteristics_ch1.4<-NULL 
pData(all_geo)$characteristics_ch1.3<-NULL 
 
#manipulate data to get all uniform 
pData(all_geo)$sex <- sub("Female", "F", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("Male", "M", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("Gender: ", "", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("gender: ", "", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("Sex: ", "", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("female", "F", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("male", "M", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("m", "M", pData(all_geo)$sex) 
pData(all_geo)$sex <- sub("f", "F", pData(all_geo)$sex) 
pData(all_geo)$age <- sub("\\.\\d+", "", pData(all_geo)$age) 
saveRDS(all_geo, file = "all_geo.rds") 
 
#clustering and density plots of all the datasets 
pdf("densityplots_allgeo.pdf") 
par(xpd=NA,oma=c(3,0,0,0)) 
densityPlot(getBeta(all_geo), sampGroups = pData(all_geo)$sex) 
densityPlot(getBeta(all_geo), sampGroups = pData(all_geo)$age, legend=FALSE) 
dev.off() 
beta <- getBeta(all_geo) #[,1:19] number of samples 
d <- dist(t(beta),method="euclidean") 
fit<- hclust(d, method="complete") 
plot(fit) 
clusterCols<-c("lightgreen", "cadetblue3") 
color<-clusterCols[as.factor(pData(all_geo)$sex)] 
as.dendrogram(fit) %>% set("labels_col", color) %>% plot() 
labels<-fit$labels 
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2.5. Statistical analysis 

After the elimination of the biased samples, samples were selected to integrate the “old” 

(above 70 years old) and “young” (between 18 and 33 years old) groups and global 

comparison between methylated states of both groups was made using a density plot (Box 

9). The data goes through a Pearson correlation analysis using the three methylation 

quartiles in order to analyse the global tendency of our dataset. 

Box 9 – Script of the statistical analysis step in which the correlation coefficients were calculated and the global 

density plots were made 

#separate dataset into young and old individuals 
young<-pData(mSetSqFlt)[which(pData(mSetSqFlt)$age>=18 & pData(mSetSqFlt)$age<33),]  
old<-pData(mSetSqFlt)[which(pData(mSetSqFlt)$age>=70),] #mSetSqFlt is refered only 
to GSE87571 
young["years"] <- NA 
young$years <- "y" 
old["years"] <- NA 
old$years <- "o" 
newtable<-rbind(young, old) 
r1<-(pData(mSetSqFlt)$geo_accession %in% young$geo_accession) 
gse_y=mSetSqFlt[, which(r1)] 
beta_y<-getBeta(gse_y) 
r2<-(pData(mSetSqFlt)$geo_geo_accession %in% old$geo_accession) 
gse_o=mSetSqFlt[, which(r2)] 
beta_o<-getBeta(gse_o) 
toremove<-(pData(geo)$geo_accession %in% newtable$geo_accession) 
gse_new=geo[, which(toremove)] 
colData(gse_new)$years<-newtable$years 
beta_new<-getBeta(gse_new) 
 
#correlation between methylation and young/old individuals 
age <- as.numeric(pData(gse_new)$age) 
q1=apply(beta_new,2,function(x){quantile(x,0.25)}) 
q2=apply(beta_new,2,function(x){quantile(x,0.5)}) 
q3=apply(beta_new,2,function(x){quantile(x,0.75)}) 
cor.test(q1, age) 
cor.test(q2, age) 
cor.test(q3, age) 
 
#density plot methylation vs age across chromosomes 
meany<-rowMeans(beta_y) 
meano<-rowMeans(beta_o) 
annotation_o<-merge(meano, ann450k, by="row.names", all.x=TRUE) 
annotation_o$chr <- sub("chr", "", annotation_o$chr) 
annotation_y<-merge(meany, ann450k, by="row.names", all.x=TRUE) 
annotation_y$chr <- sub("chr", "", annotation_y$chr) 
pdf("meth_chrFINAL.pdf") 
plot(c(1,22), c(0,1)) 
axis(1, c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)) 
lines(as.numeric(annotation_y$x), col="blue", type="o", pch=22, lty=2) 
lines(as.numeric(annotation_o$x), type="o", pch=22, lty=2, col="purple") 
dev.off() 
#density plot methylation vs age global 
meany<-rowMeans(beta_y) 
meano<-rowMeans(beta_o) 
a<-density(meany) 
b<-density(meano) 
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pdf("youngvsold(bluevspurple)_FINAL.pdf", onefile=T, paper="a4r") 
plot(a, col="blue") #young 
lines(b, col="purple") #old 
dev.off() 

 

2.6. Finding DMPs 

Finding DMPs was the next step that gave us some insights about methylation across 

aging (Box 10). For DMPs finding, the dmpFinder was used, since it is the recommended 

function of minfi, and starts by the definition of our phenotype of interest – age as a 

continuous phenotype. According to the literature(Kuo 2017), the local significance level of 

a probe cannot be determined as a single event but a multiple testing correction should be 

used. For that reason, the p-value was adjusted using Bonferroni correction method and 

the DMPs with adjusted P-values above 0.05 were considered not significant. A manhattan 

and a volcano plot were made in order to display the annotated DMPs across the 

chromosomes and the variations in Δβ-values and the negative logarithm of its p-value, 

respectively. These plots allow us to determine the most significant probes according to p-

value and differential methylation quantification (the amount of effect). 

Box 10 – Script of the DMP finding step for Dataset B.3 followed by its representation in volcano and manhattan 

plots. 

#find DMPs 
beta <- getBeta(mSetSqFlt) 
age <- pData(mSetSqFlt)$age 
dmp_age <- dmpFinder(beta, pheno = age  , type = "continuous") 
dmp<-dmp[dmp$pval<0.05,] 
young<-rownames(pData(mSetSqFlt))[ pData(mSetSqFlt)$SW_Age >= 18 & 
pData(mSetSqFlt)$SW_Age < 33] 
old<-rownames(pData(mSetSqFlt))[ pData(mSetSqFlt)$SW_Age >= 70] 
dmpCpgs = rownames(dmpfinal_age) 
dmpfinal_age$young = rowMeans(beta[dmpCpgs, young, drop=F]) 
dmpfinal_age$old = rowMeans(beta[dmpCpgs, old, drop=F]) 
dmpfinal_age$deltaBeta = dmpfinal_age$old - dmpfinal_age$young 
p_adjusted<-p.adjust(dmp_age$pval, method="bonferroni") #p value adjusted with 
bonferroni method 
dmpfinal<-cbind(dmp_age, p_adjusted) 
annotation_age<-merge(dmpfinal_age, ann450k, by="row.names", all.x=TRUE) 
annotation_age$log10<-NULL 
annotation_age$log10<--(log10(annotation$pval)) 
annotation_age$chr <- sub("chr", "", annotation$chr) 
annotation_age$chr <- as.numeric(annotation$chr) 
y_o<-annotation_age 
write.table(y_o, file="annotation_dmps_age.txt") 
 
#volcano plot - age 
pdf("volcanoplot_age.pdf") 
with(y_o, plot(y_o$deltaBeta, y_o$log10, pch=20, main="")) 
abline(h = 5.0, col = "blue", lty = 2, lwd = 1) 
abline(v = c(-0.1,0.1), col = "blue", lty = 2, lwd = 1) 
with(subset(y_o, y_o$log10<5.0), points(deltaBeta, log10, pch=20, col="gray")) 
with(subset(y_o, y_o$deltaBeta< -0 & y_o$log10>5.0), points(deltaBeta, log10, 
pch=20, col="red")) 
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with(subset(y_o, y_o$deltaBeta> 0 & y_o$log10>5.0), points(deltaBeta, log10, 
pch=20, col="green")) 
dev.off() 
#manhattan plot-age 
pdf("manhattan-age.pdf") 
manhattan(annotation_age, chr="chr", bp="pos", p="pval", snp="Row.names", 
col=c("grey","skyblue")) ##check the borderline  
dev.off() 
 
#most significative probe linear regression 
theone<-as.numeric(beta[rownames(beta)=="cg16867657", ]) 
pdf("dmp_age_cg16867657.pdf", onefile=T, paper="a4r") 
plot(age, theone, xlim=c(1, 100), ylim=c(0, 0.9)) 
abline(lm(theone ~ age), col="blue") 
dev.off() 
summary(lm(theone ~ age))$r.squared 

 

3. RESULTS 

The manifest object obtained for this chapter included some important information about 

the array, mainly the quantity of probes used and its type – Type I, II, Control, SNP Type I 

and SNP Type II. This manifest was the same for all the samples studied, since they were 

all analysed using 450k technology (Box 11). 

Box 11 – Manifest object general information about Dataset B.2 and B.3 

##IlluminaMethylationManifest object 
##Annotation 

array: IlluminaHumanMethylation450k 
##Number of type I probes: 135476 
##Number of type II probes: 350036 
##Number of control probes: 850 
##Number of SNP type I probes: 25 
##Number of SNP type II probes: 40 

 
Next, the results related to individual experiments (quality control, normalization and 

filtering) will be exemplified using only the 19 samples from experiment GSE105123 of 

Dataset B.2. The data from the rest of datasets is presented in Supplementary Figures 11-

15. 

3.1. Quality control, normalization and filtering 

Once the data was imported into R, the quality control step took place. The p-value was 

determined and represented in a plot (Figure 36). Small p-values are indicative of a reliable 

signal. Usually a significance level lower than 0.01 indicates a good quality signal, we could 

conclude about the general quality of our samples in terms of the overall signal reliability, 

according to the literature (Maksimovic et al. 2016). Additionally, it is known that when 

plotting both the log median intensity of methylated and unmethylated channels against 

each other the good samples will cluster together while the failed samples will tend to 
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separate and have lower median intensities. The control probes were also quality checked 

since they are normally used to assess the overall quality of sample preparation protocol. 

Next, and as a way to deeper our quality control, we decided to do the analysis of the β-

value distributions in the density plots (Figure 37). From this we could conclude that the 

data needed normalization since there were several deviations of the characteristic shape 

of the plot that should have one node close to 0% methylation and a second close to 100%. 

Control probes were also checked (data not shown). In Figure 37 the density plot obtained 

through qcreport for the age variable is presented. In the case of gender, the shape of the 

plot was similar (data not shown). 

Figure 36 – Quality control plot with the mean detection of p-values (y axis) in each sample (x axis) (left) and 

the representation of both the log median intensity of methylated and unmethylated channels against each other 
(right). The left plot reveals a general quality of samples in terms of the overall signal reliability while in the right 
the good samples clustering together. 
 

Figure 37 – Density plot for samples quality control. The plot represents the distribution of β-values across 
several sample groups, with age as phenotype of interest, before the normalization procedure. 



 
 

 
 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 

 

86 Chapter III – Data Analysis 

 
 

The normalization step started with a test to the three normalization methods available 

in minfi – SWAN, Quantile and Funnorm. A direct comparison of these plots was performed 

to the density plot using raw data, in order to choose the best one. Through the analysis of 

Figure 38 we concluded that the Quantile normalization was the best method for our study. 

Although the funnorm method is particularly useful for studies comparing conditions with 

known large-scale differences, it is also known that the quantile function is better to study 

single tissue variations. However, the quantile normalization presented better results in the 

density plots from all variables – age and gender – so we decided to use this method.  

To acess the effect of the normalization process, we compared the several statistical 

analysis made before and after the normalization methods, in order to determine the kind 

of variables that were globally affecting our dataset. Through the clustering of samples on 

a condensed dissimilarity matrix, we concluded that our methylation data was clearly 

influenced by the gender of the samples, turning unfeasible the characterization of other 

features, like age. These findings were confirmed by the MDS plots in which the greatest 

source of variation, captured by dimension one (or principal component 1) of the plot, was 

also gender (Figure 39). This is according to the literature since it is known that gender 

accounts for the larger methylation effects even at autosomal chromosomes (Wright et al. 

2016). 

Figure 38 – Density plots of the three available normalization processes for the age phenotype in Dataset B.2. 

The best normalization was achieved with Quantile normalization which shows a most uniform plot. 
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Therefore, it was essential to carry out a filtering process starting by the removal of 

probes with p-value above 0.01 which means they failed in one or more samples, the 

remotion of sex chromosome probes and the removal of probes with SNPs at CpG sites. 

Finally, the cross-reactive probes were excluded and we obtained as a final product a total 

of 455 400 valid probes. The probe removal for all the experiments of Dataset B.2 was 

summarized in Table 11. In this table we can also detect the filtration of a great amount of 

probes in GSE87648 which made us remove this experiment from our dataset. The MDS 

and the clustering plot were repeated and there was no long a variable affecting our results 

(Figure 40). For these reasons, the protocol proceeded. 

 

Figure 39 – Clustering (A) and MDS plot of age (B) and gender (C) before the normalization and filtration 

procedures A gender tendency is observed, which affects the global methylation in our dataset. 
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Table 11 – Variation of initial and maintained probes after filtering 

GEO Serie Initial probes Final probes 

GSE102177 622399 456041 

GSE104471 622399 456226 

GSE105123 622399 455400 

GSE107737 622399 456077 

GSE42861 622399 451244 

GSE51057 622399 453882 

GSE71955 622399 454341 

GSE85506 622399 455830 

GSE85647 622399 450132 

GSE87571 622399 446785 

GSE87640 622399 456041 

GSE87648 622399 277867 

GSE98876 622399 456256 

GSE99755 622399 455215 

Figure 40 - Clustering (A) and MDS plot of age (B) and gender (C) of Dataset B.2 after the normalization and 

filtration procedures. The gender effect is no longer visible, since samples are mixed, which means that the 
dataset is ready to be proceed with the analysis. 
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After joining all experiments, the clusters and the MDS plots of a virtual global array were 

repeated (Supplementary Figure 16-17) in order to see if there were differences between 

experiments as reported in Chapter II that could introduce biases in our study. Through its 

analysis we concluded that there was a general clustering of samples according to the 

experiment and type of blood category. The different types of blood cells used, different 

laboratory conditions or methodologies adopted or even sample information, which was not 

published by the original owners of the data, can constitute possible reasons for these 

findings. Therefore, further analysis only used the GSE87571 experiment, from now on 

called DataSet B.3, since this was the one with the highest number of samples and ages 

range (Figure 41) and did not include different blood cell types. In this final dataset, 72% of 

probes (446785) passed the quality control step, it included 664 individuals, 356 females 

and 308 males, the age ranged between 18 and 94 years old and the mean of individual 

age was 50 years old. 

However, since the type of sample of this dataset was whole blood, it could be expected 

that our differential methylation analysis become biased if there was cell composition major 

fluctuations. To test this hypothesis, we normalized the samples according to the cell type 

and compared the global patterns of methylation of samples normalized as such and as 

before (Quantile method). We made a Pearson correlation test and obtained a t-test of 

5363300 with 322380000 degrees of freedom, a p-value under 2.2x10-16 and a correlation 

coefficient of 0.9999. A plot was also made in order to validate our expectations (Figure 42), 

from which we can conclude that the normalization using quantile only or taking also cells 

into consideration would not influence the results. From this results we conclude that the 

normalization by cell type would not influence the differential methylation analysis and for 

that reason it was not considered, reason why we only performed a quantile normalization 

method. 
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Figure 41 – Age variation in GSE87571 dataset with a range of ages between 18 and 94 years old. 
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3.2. Differential methylation analysis 

In order to evaluate the global tendency of the methylation values with our phenotype, 

we calculated Pearson correlation in our final dataset. In young individuals, we 

demonstrated an increasing of the first quartile methylation with age (R = 0.2720, p-value = 

0.00110) and a decreasing in second (R = -0.2112, p-value = 0.01195) and third quartile 

methylation (R = -0.1518, p-value = 0.07231). On the other hand, in old individuals we 

demonstrated an increasing of the first quartile methylation with age (R = 0.01159, p-value 

= 0.8911), a decreasing of the median quartile (R=-0.1556, p-value = 0.0645) and an 

increasing in the third quartile (R = 0.1138, p-value = 0.1776). This data was according to 

the expected and already published (Johansson et al. 2013). 

Figure 42 – Comparison of β-values using quantile normalization or using quantile and cell normalization. 

Values are highly correlated and therefore the normalization should not influence the results. 
 

Figure 43 – Global comparison of methylation between young (blue) and old (purple) individuals of Dataset B.3 

(A) Methylation across chromosomes; (B) Density plot. The highest differences are located in chromosomes 1, 
4, 5, 6, 8, 9, 12, 15, 19. 
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In order to make a differential methylation analysis across age, the dataset was 

separated in young and old individuals which resulted in 141 young and 142 old 

individuals.We performed a density plot between old (purple) and young (blue) individuals 

that shows a global variation between the autosomal methylation levels in both phenotypes 

although the methylated and unmethylated sites appeared with a similar density in our 

samples (Figure 43B). The variation of global methylation in both phenotypes was refined 

and analysed according to its distribution across chromosomes. The highest differences 

between both groups were located in chromosomes 1, 4, 5, 6, 8, 9, 12, 15 and 19 (Figure 

43A).  

We identified 95978 significant a-DMPs and represented them according to the negative 

logarithm of detection p-value and chromosome positions (manhattan plot) or variation of 

β-values (volcano plot) (Figure 44). According to the literature(Kuo 2017), the local 

significance level of a probe cannot be determined as a single event but should use a 

multiple testing correction. In this case, we have 450k probes and wanted to consider a 

significant adjusted p-value of 0.05. For that reason, we considered a significant raw p-

value of 1.11x10-7.Of the total of significant probes, 76% with gene associations, 23% 

enhancer associated and 14% DMR associated. In the analysis of the volcano plots we 

identified the positive or negative β-value variations across DMPs in the case of young/old 

individuals. In Table 12 the top-significative DMPs are presented according to its position in 

the genome, associated genes and its functions and also with statistical information about 

DMP finding – Bonferroni adjusted p-value, -log10 (raw p-value), Q-value, Δβ and the slope 

of a linear regression of the methylation rate of the probe across samples and its age. 

Figure 44 –Representation of all DMPs found with age in Dataset B.3 in a (A) manhattan plot with a selected 

threshold of p-value = 1x 10-100; and in a (B) volcano plot using a selected threshold of p-value = 1x10-100 and 
|Δβ|>0.2. 
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Table 12 – Summary of the top-significant DMPs with age phenotype in Dataset B.3. Probes are orders by 

statistical significance – 8 are methylation gains while 4 are losers. 
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In the top-significant DMPs, the most significant DMP was cg16867657 located in 

chromosome 6, with an adjusted p-value of 1.85x10-177 and with an increase of methylation 

across age of about 4%. The representation of the DNA methylation level across all 

individuals from our dataset shows a positive correlation between age and the methylation 

state for this probe (Figure 45). cg16867657 is located in the promoter of ELOVL2 gene, 

particularly 1500 nucleotides distant from the transcription start site (TSS). ELOVL2 is a 

gene associated with the elongase activity of fatty acids. This gene was associated to other 

3 significant probes, all of them located in the promoter, at a distance of 1500 nt 

(nucleotides) from the TSS, and all of them with an increase in methylation across age. The 

second most significant DMP was cg22454769 located in chromosome 2, with an adjusted 

p-value of 5.44x10-123 and with an increase of methylation across age of about 3%. This 

probe was located in the 5’UTR and promoter region, at a distance of 2000 nt from the TSS, 

of the FHL2 gene, a gene associated with protein binding that was also found in another 

two significant probes, all showing an increase of methylation level across age. 

As a way to explore global trends relative to methylation degree in different genomic 

regions, we performed a comparison between the total hypo and hypermethylated sites and 

its relation to island and gene positions (Figure 46). Through this analysis we concluded 

that the global variation of the number of hyper and hypomethylated sites in genomic region 

is minimal (0.1 – 2.8% of variation). The probes inside CGI represent the majority of our 

analysis, with about 41% of total probes and an average of 2.23 markers per island ranging 

from 1 to 36. The open sea positions were also relevant since they constituted about 13% 

and 15% of the hypomethylated and hypermethylated probes in our analysis, respectively. 

On the other hand, in the case of the gene affected part, we observed that about 22% and 

Figure 45 – Representation of the DNA methylation level of cg16867657 across age in Dataset B.3 and 

corresponding regression line. 
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18% of the sites were hypermethylated or hypomethylated and that both are mainly located 

in the body of a gene. This represents about 41% of the hypermethylated sites associated 

with genes and 37% of the hypomethylated sites respectively, associated with genes.  

3.3. Gene ontology analysis 

Since the total of significant DMPs was too high (N = 95978) to use directly on gene 

ontology analysis, we performed a selection according to the procedure suggested by 

(Johansson et al. 2013). The island locations with more than three significant probes were 

separated between hypo and hypermethylated, the top 500 genes for each condition were 

included and only one gene per CGI was included, in order to avoid introducing bias 

downstream. The gene ontology analysis was then performed using PANTHER 

overrepresentation SLIM test either in biological process, molecular function and cellular 

components. 

Table 13 shows gene functions associated with the hyper and hypomethylated 

phenotypes. We observed that the biological processes associated with genes with 

hypermethylated CGIs were overrepresented mainly in functions associated with 

development and differentiation while the molecular functions are associated with 

transcription regulation or cell signalling. In the case of the hypomethylated CGIs, we reveal 

a biggest influence in the regulation of cellular cycle, signal transduction and protein binding. 
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Figure 46 – Distribution of DMPs of Dataset B.3 according to its relation with the genomic CpG region (left) and 

gene part (right). There was a prevalence of DMPs located in CGI and body of genes. 
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Table 13 – Gene Ontology enrichment analysis for biological process, molecular function and cellular 

components in hypo and hypermethylated genes of Dataset B.3. GO terms are ordered by hierarchy and 
statistical significance. 

 Category Function UR/OR FE 
Raw p-
value 

H
y
p

e
rm

e
th

y
la

te
d
 Biological 

process 

muscle organ development (GO:0007517) OR 12.32 2.15E-05 

digestive tract mesoderm development (GO:0007502) OR 12.10 5.75E-04 

segment specification (GO:0007379) OR 10.32 5.37E-10 

heart development (GO:0007507) OR 10.00 1.08E-03 

pattern specification process (GO:0007389) OR 8.81 6.90E-11 

ectoderm development (GO:0007398) OR 8.14 2.12E-17 

embryo development (GO:0009790) OR 7.59 1.85E-08 

anatomical structure morphogenesis (GO:0009653) OR 6.12 7.95E-08 

cyclic nucleotide metabolic process (GO:0009187) OR 5.64 2.28E-05 

mesoderm development (GO:0007498) OR 5.13 2.76E-10 

neuron-neuron synaptic transmission (GO:0007270) OR 4.73 1.02E-03 

behavior (GO:0007610) OR 4.71 5.41E-03 

cell-cell adhesion (GO:0016337) OR 3.26 4.18E-03 

developmental process (GO:0032502) OR 3.22 3.78E-21 

system development (GO:0048731) OR 2.93 8.38E-06 

regulation of transcription from RNA polymerase II 
promoter (GO:0006357) 

OR 2.79 1.38E-06 

cell differentiation (GO:0030154) OR 2.62 2.01E-05 

synaptic transmission (GO:0007268) OR 2.56 5.57E-04 

cell-cell signaling (GO:0007267) OR 2.42 1.27E-04 

nervous system development (GO:0007399) OR 2.38 4.35E-03 

transcription from RNA polymerase II promoter 
(GO:0006366) 

OR 2.15 2.24E-04 

regulation of phosphate metabolic process 
(GO:0019220) 

OR 2.14 2.22E-03 

transcription, DNA-dependent (GO:0006351) OR 1.97 2.02E-04 

single-multicellular organism process (GO:0044707) OR 1.93 3.66E-06 

system process (GO:0003008) OR 1.92 3.62E-04 

multicellular organismal process (GO:0032501) OR 1.91 4.25E-06 

neurological system process (GO:0050877) OR 1.80 2.91E-03 

intracellular signal transduction (GO:0035556) OR 1.72 3.82E-03 

cell communication (GO:0007154) OR 1.43 2.67E-03 

Molecular 
function 

glutamate receptor activity (GO:0008066) OR 7.37 8.93E-04 

adenylate cyclase activity (GO:0004016) OR 5.45 7.45E-05 

sequence-specific DNA binding RNA polymerase II 
transcription factor activity (GO:0000981) 

OR 4.48 3.20E-07 
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 Category Function UR/OR FE 
Raw p-
value 

H
y
p

e
rm

e
th

y
la

te
d
 

Molecular 
function 

sequence-specific DNA binding transcription factor 
activity (GO:0003700) 

OR 3.21 1.78E-11 

G-protein coupled receptor activity (GO:0004930) OR 2.98 1.64E-04 

ion channel activity (GO:0005216) OR 2.57 1.13E-03 

DNA binding (GO:0003677) OR 2.55 8.13E-09 

nucleic acid binding (GO:0003676) OR 1.91 7.46E-06 

binding (GO:0005488) OR 1.44 9.41E-06 

H
y
p

o
m

e
th

y
la

te
d
 

Biological 
process 

regulation of cell cycle (GO:0051726) OR 3.85 4.08E-04 

intracellular signal transduction (GO:0035556) OR 2.07 1.60E-04 

Molecular 
function 

protein binding (GO:0005515) OR 1.66 5.78E-05 

UR - Underrepresentation | OR - Overrepresentation | FE - Fold Enrichment 

 

4. DISCUSSION 

Currently, the influence of DNA methylation as an epigenetic mechanism that is 

significantly changed with aging in human is already widely accepted by the scientific 

community. For that reason, in this chapter we used in-silico experiments in order to validate 

our bioinformatics pipeline and to try to determine new epigenetic markers of age. According 

to our data, both young and old individuals demonstrated to have a positive and negative 

correlation with the lower and median levels of methylation across age, respectively. On the 

other hand, the higher levels of methylation are positive correlated with age in old individuals 

and negative correlated with age in young individuals. 

We should focus into DMPs, since they represent the most important regions to study 

when looking for methylation patterns. According to the literature, several lists of the most 

methylation-influenced genes during aging have already been published. From those, 

ELOVL2, FHL2, CCDC102B, ZNF423, ASPA, PDE4C and C1orf132 should be taken into 

consideration into a methylation analysis. In our study, we identified 12 significant positions 

associated with aging. From these, 8 presented a hypermethylated pattern and 7 were 

located inside CGIs associated with specific genes – ELOVL2, FHL2, CCDC102B and 

MARCH11. The gene associated with the most significative probe, ELOVL2, encodes for a 

transmembrane protein involved in the synthesis of long polyunsaturated fatty acids, 

molecules involved in functions like energy production, modulation of inflammation and 

maintenance of cell membrane integraty, that is mainly expressed in liver but that was also 

determined to be hypermethylated in blood (Garagnani et al. 2012; Bacalini et al. 2017). 
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This gene has been extensively reported as an epigenetic marker of age that variates its 

methylation level across age from 7% to 91%. For this reason can be used to calculate the 

human age or even the number of cell divisions in a cell culture(Garagnani et al. 2012; 

Bacalini et al. 2017). On the other hand, FHL2, the gene identified in the second most 

significative probe, encodes a transcriptional cofactor (called FHL2) that can interact with 

many different proteins and is involved in organ differentiation, development, cell apoptosis 

and carcinogenesis(Wang et al. 2016). This gene was also already reported as an 

epigenetic marker of age, although its hypermethylation degree with age is more restricted 

than ELOVL2, consisting of 12% to 53%(Garagnani et al. 2012; Bacalini et al. 2017). In the 

case of hypomethylation markers, CCDC102B seems to play an important role. This gene 

is a 297-aminoacid protein coding gene but with an unknown function(Park et al. 2016). In 

the case of MARCH11, that codes for a family of membrane-bound E3 ubiquitin ligases 

which add ubiquitin to target lysines in substrate proteins signaling their intracellular 

transport, it has not been yet reported in methylation across age, but according to our results 

it might be promising as a methylation aging marker. In Figure 47 there is made a 

representation of the behavior in Dataset B.3 of the most methylation-influenced genes in 

aging together with the probe of MARCH11. 

Exploring our Gene Ontology analysis, the processes associated with the majority of 

hypermethylated islands are associated with development, differentiation, tissue 

specifications and morphogenesis, all of these processes are known to be highly influenced 

by methylation across age due to the differential gene expression associated with it. The 

presence of processes that affect regulation of transcription was also overrepresented in 

Figure 47 – Comparison of the linear regressions obtained for ASPA (cg02228185), ZNF423 (cg04208403), 

FHL2 (cg 22454769), CCDC102B (cg19283806), PDEC4C (cg17861230), MARCH11 (cg06782035), ELOVL2 
(cg16867657) in Dataset B.3. 
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hypermethylated genes, as it would be expected, since this is the most reported effect of 

hypermethylation across age. However, the number of enrichment events obtained for 

hypomethylated probes was residual although we did the Gene Ontology analysis using an 

equal number of genes in the hyper and hypomethylated conditions. This is also reported 

in literature, since it is expected that the CpG sites hypermethylated during aging are 

enriched to common processes and exhibit shared features, while hypomethylated sites are 

not homogenous and may ocurr sporadically at sites with a less central role. 

Therefore, we can conclude that our results agree with the literature and that the 

performed procedure is promising in the determination of methylation patterns across age 

in the Portuguese population. However, in further explorations of DNA methylation across 

age it is essential to guarantee a larger cohort with homogenous tissue specificities. The 

exploration of other tissues for differentiated methylation pattern discovery mainly brain and 

liver, and its comparison with whole-blood methylomics markers would also be a promising 

goal, in order to improve the usage of blood as an accessible source of information for this 

type of studies. 
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CHAPTER IV    DATA VALIDATION  

Methylome analysis of samples from iBiMED 
 

1. INTRODUCTION 

The main goal of this chapter was to validate the methodology and the results about age-

differential methylation patterns obtained in the previous chapter. For that purpose, the 

project POCI-01-0145-FEDER-016428-PAC-MEDPERSYST, developed between iBiMED 

and Life and Health Sciences Research Institute (ICVS), provided samples from healthy 

individuals evaluated in good and bad cognitive performance to methylome analysis (Serre-

Miranda et al. 2015). 

As refered before, the development of tools for genome wide scale analyses of 

epigenetics influences on transcription is in constant development (Moran et al. 2016). 

Although the importance and impact that the 450k array had in the genomic research, the 

release of the Illumina Infinium MethylationEPIC BeadChip technology enabled the study 

of methylation also in enhancer regions (covered in 333 265 CpG sites) (Moran et al. 2016). 

These regions affect the transcription process through the looping and contact of DNA 

elements interspersed at great genomic distance (Moran et al. 2016). Therefore, given that 

methylation status can affect the binding of cognate transcription factors, it is probable that 

DNA methylation differences in enhancer sequences exert a major role in cell and tissue 

functionality.(Moran et al. 2016) The EPIC array, also known as the 850k array, can cover 

Figure 48 – Differences in the 450k and 850k CpG sites coverage. The 850k technology covers 91% of the 

CpGs included in the 450k array, making a difference between the two techniques of 42 859 CpG sites included 
in 450k and not in 850k and 413 745 CpG sites included in 850k and not in 450k. 
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a total of 853 307 CpG sites, including those present in and the 450k array. In fact, this 

technology interrogated the methylation status of 91% of the CpGs included in the 450k 

array (Figure 48). 

Although the minfi package described before software package designed for the Illumina 

HumanMethylation450 array, it was already described as a useful package for handling 

DNA methylation data from other arrays, like HumanMethylationEPIC. (Fortin et al. 2017) 

This adaptation requires a convertion of EPIC array to a virtual 450k array by joint 

normalization and processing of data from both platforms and an estimation of cell type 

proportions for EPIC samples using external reference data from 450k. (Fortin et al. 2017) 

2. METHODOLOGIES ADOPTED 

The dataset used for validation of this work was constituted by samples from healthy 

individuals with ages between 52 and 77 years old. In the beginning of the analysis, our 

dataset was composed of 48 samples but it was reduced to 41 due to inconsistencies 

between the gender reported and the observed one. The dataset used, from now on called 

Dataset C, is presented in Table 12. Since these samples have been studied in other 

project, donnors have been evaluated to cognitive performance as good (1) or bad (4). 

Table 14 – Dataset C used to validate our data. Samples are from 41 male and female healthy individuals with 

ages between 52 and 77 years old evaluated as good (1) or bad (4) as cognitive performance. 

Sample Code Sample Name Age Gender 
Cognitive 
Performance 

Basename 

B06_M_60_4 sw0033C_A 60 Male 4 202060330094_R02C01 

E06_M_77_1 sw0242C_A 77 Male 1 202060330094_R05C01 

C03_F_64_4 sw0247C_A 64 Female 4 202053820063_R03C01 

B02_F_68_1 sw0269C_A 68 Female 1 202053820039_R02C01 

E02_F_58_1 sw0291C_A 58 Female 1 202053820039_R05C01 

H02_F_68_1 sw0318C_A 68 Female 1 202053820039_R08C01 

D01_F_62_4 sw0397C_A 62 Female 4 202053820031_R04C01 

F05_M_57_4 sw0410C_A 57 Male 4 202060330086_R06C01 

G06_M_68_1 sw0457C_A 68 Male 1 202060330094_R07C01 

H01_F_70_4 sw0544C_A 70 Female 4 202053820031_R08C01 

F06_M_77_1 sw0598C_A 77 Male 1 202060330094_R06C01 

F01_F_61_1 sw0668C_A 61 Female 1 202053820031_R06C01 

A06_M_72_1 sw0753C_A 72 Male 1 202060330094_R01C01 

E01_F_68_4 sw0879C_A 68 Female 4 202053820031_R05C01 

C01_F_70_1 sw0930C_A 70 Female 1 202053820031_R03C01 

E03_F_58_4 sw1055C_A 58 Female 4 202053820063_R05C01 

A03_F_71_4 sw1133C_A 71 Female 4 202053820063_R01C01 
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Sample Code Sample Name Age Gender 
Cognitive 
Performance 

Basename 

B03_F_63_1 sw1536C_A 63 Female 1 202053820063_R02C01 

B01_F_66_4 sw1636C_A 66 Female 4 202053820031_R02C01 

H03_F_69_4 sw1647C_A 69 Female 4 202053820063_R08C01 

G02_F_69_4 sw1717C_A 69 Female 4 202053820039_R07C01 

B04_M_64_1 sw1938C_A 64 Male 1 202053820069_R02C01 

A02_F_69_1 sw2100C_A 69 Female 1 202053820039_R01C01 

D03_F_52_1 sw2154C_A 52 Female 1 202053820063_R04C01 

H06_M_68_1 sw2183C_A 68 Male 1 202060330094_R08C01 

F03_F_57_1 sw2269C_A 57 Female 1 202053820063_R06C01 

E05_M_58_1 sw2416C_A 58 Male 1 202060330086_R05C01 

F02_F_71_1 sw2503C_A 71 Female 1 202053820039_R06C01 

A01_F_60_4 sw2544C_A 60 Female 4 202053820031_R01C01 

G05_M_69_4 sw2581C_A 69 Male 4 202060330086_R07C01 

D05_M_76_4 sw2714C_A 76 Male 4 202060330086_R04C01 

B05_M_58_1 sw2750C_A 58 Male 1 202060330086_R02C01 

D02_F_72_4 sw2850C_A 72 Female 4 202053820039_R04C01 

H05_M_63_4 sw2888C_A 63 Male 4 202060330086_R08C01 

C02_F_68_4 sw2906C_A 68 Female 4 202053820039_R03C01 

C05_M_74_4 sw2915C_A 74 Male 4 202060330086_R03C01 

G01_F_75_1 sw2957C_A 75 Female 1 202053820031_R07C01 

C06_M_74_1 sw3075C_A 74 Male 1 202060330094_R03C01 

A04_M_57_1 sw3231C_A 57 Male 1 202053820069_R01C01 

G03_F_54_4 sw3747C_A 54 Female 4 202053820063_R07C01 

D06_M_52_4 sw3833C_A 52 Male 4 202060330094_R04C01 

 
The microarray technology used with those samples is different from the one described 

in the last chapter. However, it has already been reported that minfi can be used with 850k 

arrays. For that reason, the pipeline used was similar to the one presented in the last 

chapter with only small changes that will be presented bellow. 

Firstly, we decided to use the normalization by cell type since it influenced our results, 

when compared to quantile normalization. However, the strongest difference in the 

methodology adopted was on DMP finding step. In this case, both the cognitive 

performance and the age were taken as phenotypes of interest and were categorized into 

categorical and continuous phenotypes, respectively. In the case of the age as a phenotype 

of interest, the samples were separated in younger (51-70 years old) and older (>70 years 

old) individuals so that we could analyze the impact of age variation in methylation. After 

DMP calling, as usually, it is recommended to ajust the p-value of probes using the 

Bonferroni method. This, however, didn’t allow us to obtain significant DMPs for cognitive 

performance phenotype. For that reason this method was only used for the age phenotype. 
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In the case of cognitive performance phenotype, we only excluded the DMPs with a P-value 

above 0.05 and had the rest of them into consideration in the later analysis as suggestive, 

non-significant ones. We also did manhattan and volcano plots. (Box 12) 

Box 12 - Script for the DMP finding step of Dataset C followed by its representation in volcano and manhattan 

plots. “Clusters” is the term used for designate cognitive performance phenotype 

#find DMPs 
beta <- getBeta(mSetSqFlt) 
age <- pData(mSetSqFlt)$SW_Age 
clusters <- pData(mSetSqFlt)$clusters 
dmp_age <- dmpFinder(beta, pheno = age  , type = "continuous") 
dmp_clusters <- dmpFinder(beta, pheno = clusters  , type = "categorical") 
 
#deltabeta - clusters 
good<-rownames(pData(mSetSqFlt))[ pData(mSetSqFlt)$clusters == 1] 
bad<-rownames(pData(mSetSqFlt))[ pData(mSetSqFlt)$clusters == 4] 
dmpCpgs = rownames(dmpfinal_clusters) 
dmpfinal_clusters$good = rowMeans(beta[dmpCpgs, good, drop=F]) 
dmpfinal_clusters$bad = rowMeans(beta[dmpCpgs, bad, drop=F]) 
dmpfinal_clusters$deltaBeta = dmpfinal_clusters$bad - dmpfinal_clusters$good 
ann850k = getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b2.hg19) 
annotation<-merge(dmpfinal_clusters, ann850k, by="row.names", all.x=TRUE) 
annotation$log10<-NULL 
annotation$log10<--(log10(annotation$pval)) 
annotation$chr <- sub("chr", "", annotation$chr) 
annotation$chr <- as.numeric(annotation$chr) 
bad_good<-annotation 
write.table(bad_good, file="annotation_dmps_cluster.txt") 
 
#volcano plot - clusters 
pdf("volcanoplot_clusters.pdf") 
with(bad_good, plot(bad_good$deltaBeta, bad_good$log10, pch=20, main="")) 
abline(h = 5.0, col = "blue", lty = 2, lwd = 1) 
abline(v = c(-0.1,0.1), col = "blue", lty = 2, lwd = 1) 
with(subset(bad_good, bad_good$log10<5.0), points(deltaBeta, log10, pch=20, 
col="gray")) 
with(subset(bad_good, bad_good$deltaBeta< -0 & bad_good$log10>5.0), 
points(deltaBeta, log10, pch=20, col="red")) 
with(subset(bad_good, bad_good$deltaBeta> 0 & bad_good$log10>5.0), 
points(deltaBeta, log10, pch=20, col="green")) 
dev.off() 
 
#manhattan plot-clusters 
pdf("manhattan-clusters.pdf") 
manhattan(annotation, chr="chr", bp="pos", p="pval", snp="Row.names", 
col=c("grey","skyblue")) ##check the borderline  
dev.off() 
cluster <- as.numeric(pData(mSetSqFlt)$clusters) 
one<-as.numeric(beta[rownames(beta)=="cg09592155", ]) ## the probe with most 
significance in the clusters feature (checked corrected!) 
pdf("dmp_clusters_cg09592155.pdf", onefile=T, paper="a4r") 
boxplot(one~cluster) 
dev.off() 
 
#deltabeta - age 
young<-rownames(pData(mSetSqFlt))[ pData(mSetSqFlt)$SW_Age >= 52 & 
pData(mSetSqFlt)$SW_Age < 70] 
old<-rownames(pData(mSetSqFlt))[ pData(mSetSqFlt)$SW_Age >= 70] 
dmpCpgs = rownames(dmpfinal_age) 
dmpfinal_age$young = rowMeans(beta[dmpCpgs, young, drop=F]) 
dmpfinal_age$old = rowMeans(beta[dmpCpgs, old, drop=F]) 
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dmpfinal_age$deltaBeta = dmpfinal_age$old - dmpfinal_age$young 
p_adjusted<-p.adjust(dmpfinal_age$pval, method="fdr") ##p value adjusted with 
fdrmethod 
dmpfinal_age<-cbind(dmpfinal_age, p_adjusted) 
ann850k = getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b2.hg19) 
annotation_age<-merge(dmpfinal_age, ann850k, by="row.names", all.x=TRUE) 
annotation_age$log10<-NULL 
annotation_age$log10<--(log10(annotation$pval)) 
annotation_age$chr <- sub("chr", "", annotation$chr) 
annotation_age$chr <- as.numeric(annotation$chr) 
y_o<-annotation_age 
write.table(y_o, file="annotation_dmps_age.txt") 
 
#volcano plot - age 
pdf("volcanoplot_age.pdf") 
with(y_o, plot(y_o$deltaBeta, y_o$log10, pch=20, main="")) 
abline(h = 5.0, col = "blue", lty = 2, lwd = 1) 
abline(v = c(-0.1,0.1), col = "blue", lty = 2, lwd = 1) 
with(subset(y_o, y_o$log10<5.0), points(deltaBeta, log10, pch=20, col="gray")) 
with(subset(y_o, y_o$deltaBeta< -0 & y_o$log10>5.0), points(deltaBeta, log10, 
pch=20, col="red")) 
with(subset(y_o, y_o$deltaBeta> 0 & y_o$log10>5.0), points(deltaBeta, log10, 
pch=20, col="green")) 
dev.off() 
 
#manhattan plot-age 
pdf("manhattan-age.pdf") 
manhattan(annotation_age, chr="chr", bp="pos", p="pval", snp="Row.names", 
col=c("grey","skyblue")) ##check the borderline  
dev.off() 
theone<-as.numeric(beta[rownames(beta)=="cg16867657", ]) ##the probe with most 
significance in the age feature (checked corrected!) 
pdf("dmp_age_cg16867657.pdf", onefile=T, paper="a4r") 
plot(age, theone, xlim=c(1, 100), ylim=c(0, 0.9)) 
abline(lm(theone ~ age), col="blue") 
dev.off() 
summary(lm(theone ~ age))$r.squared 

 
In order to proceed to the validation of results, which was the main goal of this chapter, 

we merged Datasets B.3 and C, obtaining Dataset D (Box 13). These datasets were joined 

before quality control, normalization and filtering steps for each of the individual datasets 

and for that reason all the procedure was repeated for Dataset D. Cell-type normalization 

was used and in this case for DMP calling, the correction method of Bonferroni was used in 

order to select the significant probes affected by aging. Additionally, as before probes with 

a p-value > 0.05 were removed. 

Box 13 – Script of merging of Dataset C and B.3 in order to obtain Dataset D, before normalization and filtering 

#Joining Dataset C with Dataset B.3 before normalization and filtering 
minho<-readRDS("minho/rgSet_minho.rds") 
pData(minho)$age<-pData(minho)$SW_Age 
pData(minho)$sex<-pData(minho)$Gender 
pData(minho)$type<-c("MINHO") 
pData(minho)$SW_Age<-NULL 
pData(minho)$Gender<-NULL 
pData(minho)$geo_accession<-pData(minho)$title 
pData(minho)$title<-NULL 
gse87571<-readRDS("GSE87571/rgSet_gse87571.rds") 
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pData(gse87571)$type<-c("GSE") 
gse_minho<-combineArrays(gse87571, minho, outType="IlluminaHumanMethylationEPIC", 
verbose=TRUE) 
 
#remove unnecessary columns 
pData(gse_minho)$characteristics_ch1<-NULL 
pData(gse_minho)$characteristics_ch1.1<-NULL 
pData(gse_minho)$characteristics_ch1.2<-NULL 
pData(gse_minho)$characteristics_ch1.4<-NULL 
pData(gse_minho)$characteristics_ch1.3<-NULL 
 
#manipulate data to get all uniform 
pData(gse_minho)$sex <- sub("Female", "F", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("Male", "M", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("Gender: ", "", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("gender: ", "", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("Sex: ", "", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("female", "F", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("male", "M", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("m", "M", pData(all_geo)$sex) 
pData(gse_minho)$sex <- sub("f", "F", pData(all_geo)$sex) 
pData(gse_minho)$age <- sub("\\.\\d+", "", pData(all_geo)$age) 
saveRDS(gse_minho, file = "rgSet_gseMinho.rds") 
pdf("densityplots_gse87571_minho.pdf") 
par(xpd=NA,oma=c(3,0,0,0)) 
densityPlot(getBeta(gse_minho), sampGroups = pData(gse_minho)$sex) 
densityPlot(getBeta(gse_minho), sampGroups = pData(gse_minho)$age, legend=FALSE) 
dev.off() 

 

3. RESULTS 

In order to analyse this dataset, we obtained the manifest object that included information 

about the array, such as the probes used – Type I, II, Control, SNP Type I and SNP Type 

II. This manifest was the same for all the samples studied, since they were all analysed 

using EPIC technology. 

Box 14 – Manifest object general information about Dataset C 

## IlluminaMethylationManifest object 
##Annotation 

array: IlluminaHumanMethylationEPIC 
##Number of type I probes: 142262 
##Number of type II probes: 724574 
##Number of control probes: 635  
##Number of SNP type I probes: 21 
##Number of SNP type II probes: 38 

 

3.1. Quality control, normalization and filtering 

The results obtained for the dataset quality control were similar to the ones presented 

before. As shown in Figure 49, our dataset revealed a mean reliable signal across samples 

and we see a clustering of the good samples, as expected. As to the preprocessing and 

normalization step, we also started through the comparison of the normalization methods 

availale on minfi in order to choose the best one for the dataset. As said before, the funnorm 
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method is useful for studies with large methylation differences across the phenotypes. 

However, the quantile normalization method demonstrated better results in the density plots 

(Figure 50) and so as before, together with cell-type normalization, from all variables and 

we decided to use this method, we decided to use this method.  

Figure 50 – Density plots of the three available normalization processes for the age phenotype. The best 
normalization was achieved with Quantile normalization which shows a most uniform plot. 

Figure 49 – Quality control plot with mean detection of p-values (y axis) per sample(x axis) (left) and the 

representation of both the log median intensity of methylated and unmethylated channels against each other 
(right). The left plot reveals a general quality of samples in terms of the overall signal reliability. The right plot 
presents the good samples clustering together. 
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Afterwards, we carried out a statistical analysis that evidenced the need of a filtration 

step, as in the last chapter. Next we carried out a filtering step for removal of sex 

chromosomes probes, probes with p-values above 0.01, probes that failed in one or more 

samples, probes with SNPs in CpG sites and cross-reactive probes. This resulted in 21584 

probes remained. The MDS and the clustering plot using the filtered data confirmed that 

gender was no long a variable affecting our results (Figure 51), and so we proceed with the 

protocol. 

3.2. Differential methylation analysis 

The dataset was separated in young (52-70 years old) and old (>70 years old) individuals 

in order to make a differential methylation analysis comparing both phenotypes. This 

Figure 51 – Clustering (A) and MDS plots of age (B) and gender (C) of Dataset C after the normalization and 

filtration procedures. The gender effect is no longer visible, since samples are mixed, which means the dataset 
is ready to proceed with the analysis. 
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resulted in 31 young and 10 old individuals. We compared the variation of global methylation 

in old (purple) and young (blue) phenotypes across chromosomes and infered that the most 

significant variations could be associated with chromosomes 1,5,10, 11 and15 (Figure 52A). 

A density plot across both phenotypes was also performed and that didn’t showed a global 

variation between the autosomal methylation levels in both phenotypes although the 

methylated sites constituted about twice of the unmethylated ones (Figure 52B). 

We identified a total of 21584 a-DMPs without p-value cutoff and represented them 

according to the negative logarithm of detection p-value and chromosome positions 

(manhattan plot) or variation of β-values (volcano plot) (Figure 53). Of the total of probes, 

74% of our probes were gene associated, 21% were enhancer associated and 8% were 

DMR associated. Considering that we have 850k probes in our array and that a significant 

adjusted p-value should be inferior to 0.05, we conclude that our significant probes should 

have a raw p-value inferior to 5.88 x 10-8 and suggestive probes should have a raw p-value 

inferior to 1x10-5, that corresponds to a -log10(raw p-value) of 5. In view of this, we conclude 

that there weren’t identified significant probes in aging, but only suggestive ones. 

In the analysis of the volcano plots we identified the positive or negative β-value 

variations across DMPs in the case of young or old individuals. From these, we selected 6 

suggestive DMPs relative to age, 4 with an increase of methylation and 2 with a decrease 

of methylation. All of these markers had a |Δβ|<10% which corresponds to a reduced overall 

Figure 52 – Global comparison of methylation between young and old individuals (A) Methylation across 

chromosomes; (B) Density plot. The highest differences are located in chromosomes 1, 5, 10, 11 and 15 and 
the methylated sites constitute about twice of the unmethylated ones. 
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effect. The information for all of the suggestive probes is presented in Supplementary Table 

4. In the case of the age phenotype, the most suggestive DMP was cg06639320 located in 

chromosome 2 (adjusted p-value = 0.00418) with an increase of 2.5% in methylation across 

age. It was located in the promoter of FHL2 gene, particularly 200 nucleotides distant from 

the TSS, but also with annotations relating it to the 5’ UTR. cg16867657 (adjusted p-value 

= 0.00747) was the second most suggestive probe of our dataset, located in chromosome 

6, with an increase of 0.9% of methylation rate across age and located in TSS1500 of the 

ELOVL2 gene. 

Figure 53 – Representation of all DMPs found with age in Dataset C in a (A) manhattan plot with a selected 

threshold of p-value = 1x 10-5; and in a (B) volcano plot using a selected threshold of p-value = 1x10-5 and 
|Δβ|>0.2. 
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Figure 54 – Distribution of DMPs of Dataset C according to its relation with genomic CpG location (left) and 
gene part (right). There was a preference for DMPs located in body of genes and open sea. 
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The marker genomic location was analysed (Figure 54) and, similarly to the described in 

the last chapter, the markers for both phenotypes had a similar behavior either if they were 

hypo or hypermethylated. However, in Dataset C the probes in open sea represent the 

majority of the cases, with 35% of markers, followed by the island location, with 30% of 

markers and a mean of 1.23 markers per island. In the case of gene position, the body 

location is still the most preferred localization on 44% of probes, with 46% and 41% 

hypermethylated and hypomethylated. 

3.3. Validation of data 

3.3.1. The effect of blood cell population 

When Datasets B.3 and C were merged, resulting in Dataset D, the respective 

dendogram (Supplementary Figure 18) revealed a strong clustering of samples according 

to its dataset origin. These findings can be justified by different tissue-specificities of 

samples, the different laboratory conditions or procedures used or even different ancestry. 

However, as said before, the cell-specificity in blood was already reported as a major source 

of biases in methylation among individuals and could also be, in our dataset, the major 

source of bias. For that reason, we estimated the cell type composition for all blood samples 

using the function estimatecellcounts of minfi (Table 15 and Supplementary Figure 19) 

and concluded that the Dataset B.3 had a huge percentage of granulocytes followed by 

CD4T lymphocyte, while the Dataset C had mostly CD4T and NK lymphocytes. Since there 

was a dissimilarity between both datasets that influenced our results, another normalization 

step, apart from quantile, was performed, based on cell-type composition. 

Table 15 – Estimation of the average percentage of each type of blood cell for both datasets 

Type of cells Dataset B.3 Dataset C 

CD8 T Lymphocyte 7,66% 9.65% 

CD4 T Lymphocyte 14,05% 36.41% 

NK Lymphocyte 9,47% 27.14% 

B Lymphocyte 5.00% 9.06% 

Leukocyte monocyte 8.10% 17.09% 

Leukocyte granulocyte 56.52% 1.12% 

 
Additionally and since our validation samples had information about cell composition as 

measured by flow cytometry, we estimated the cell composition of this dataset and 

compared the results with the provided results. According to Figure 55, it is visible that the 
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number of cells estimated by us is very well correlated with provided data and therefore 

represents the real cell composition of samples. 

3.3.2. Differential methylation analysis 

After normalization and filtering, the analysis of MDS plots allowed us to infer that 

normalization removed all biases, and so we initiated the differential methylation analysis. 

For this, we started by a Pearson correlation analysis, similarly to before, in which we 

evidenced an increasing of methylation with age in the median quantile (R = 0.4456, p-value 

< 2.2x10-16) representing the most significant difference, followed by a decrease of 

methylation in the third quantile (R = -0.2024, p-value = 5.918x10-08) and an increase of 

methylation in the first one (R = 0.1808, p-value = 1.357x10-06). 

Similarly to the processes adopted before, the dataset was separated in young (18 – 32 

years old) 141 and old (> 70 years old) 152 individuals with which we performed a global 

comparison using density plots and chromosome plots (Figure 56). Here, the number of 

methylated and unmethylated sites was similar but there was a reduction in global 

methylation of old individuals in comparison to young individuals. Additionally, 

chromosomes 1, 3, 4, 7, 8, 11, 14, 15, 18 and 21 evidenced higher differences in global 

methylation across both phenotypes. 

We identified 70422 significant a-DMPs that were represented in manhattan and volcano 

plots (Figure 57). From them, 75% were gene associated, 22% were enhancer associated 

and 13% were DMR associated. Through this analysis we 10 top-significative DMPs, 6 of 

them positive correlated with age (> 10% variance) and 4 negative correlated with age (3 

with > 10% variance and 1 with <10% variance). (Table 16) 

Figure 55 – Comparison of cell counts using minfi and flow cytometry (A) for CD4 and for (B) lymphocytes. 
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Figure 56 – Global comparison of methylation between young (blue) and old (purple) individuals of Dataset D 

(A) Methylation across chromosomes; (B) Density plot. The highest differences were located in chromosomes 
1, 3, 4, 7, 8, 11, 14, 15, 18 and 21 and the number of methylated probes in the old individuals was smaller. 
 

Figure 57 – Representation of all DMPs found with age in Dataset D in a (A) manhattan plot a selected threshold 
of p-value = 1x10-150; and in a (B) volcano plot using a selected threshold of p-value = 1x10-50 and |Δβ|>0.2. 
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Table 16 – Summary of the top-signiticant DMPs with age phenotype in Dataset D. Probes are ordered by 

statistical significance – 6 are methylation gains while 4 are losers. 
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As expected, the most significant probe was the same detected in Dataset B.3, 

cg16867657 (Δβ = 4%, adjusted p-value = 3.1865x10-184), in promoter of ELOVL2, followed 

by cg06639320 (Δβ = 3%, adjusted p-value = 1.2855x10-122) and cg22454769 (Δβ = 3%, 

adjusted p-value = 2.0221x10-120), in promoter of FHL2 gene. The two most significant 

probes were represented in a linear regression confirming its hypermethylation across age, 

although the probe associated with ELOVL2 demonstrates a higher methylation rate than 

FHL2 (Figure 58). Through the analysis of Table 17, that shows a Pearson correlation for 

each of the most relevant probes, we observe that in both probes the first quartile of 

methylation level has a negative correlation with age but the third quantile of methylation 

level reveals a positive correlation with age. 

Table 17 - Pearson correlation to the most significant probes identified in Dataset D 

 cg16867657 cg06639320 

1Q -0.024503 -0.021897 

Median 0.000551 -0.002873 

3Q 0.025945 0.018746 

Max 0.092927 0.207215 

p-value < 2.2e-16 < 2.2e-16 

Figure 58 – Representation of the DNA methylation level of the two most significant probes of Dataset D. (A) 

cg16867857; (B) cg06639320 
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A comparison between hypo and hypermethylated sites and genomic CpG region and 

gene part localization was then made (Figure 59). Differently from the results from previous 

chapter, where no major variance between hypo and hypermethylated sites for the same 

location was detected, in this case we can observe that in CGI and open sea positions the 

difference between hypo and hypermethylated sites is 4% and 8%, respectively. In the case 

of gene part localization, there was a difference between the hypo and hypermethylated 

sites in body of genes of about 10%. However, the top positions remained the same, with a 

prevalence of 42% of the probes identified inside CGI and 38% inside gene bodies. Also, 

34% and 40% of the hyper and hypomethylated probes, respectively, in our study, were 

located in gene body and that there were an average of 1.51 markers per island. 

3.3.3. Gene ontology analysis 

The protocol used for gene ontology analysis was the same used for Dataset B.3 and 

the test used was PANTHER Overrepresentation SLIM test either for biological process, 

molecular function or cellular components. Table 18 shows gene functions associated with 

the hyper and hypomethylated phenotypes and reveals a good similarity with the data from 

Dataset B.3. 
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Figure 59 – Distribution of DMPs of dataset D according to its relation with the genomic CpG region (left) and 

gene part (right). There was a prevalence of DMPs located in CGI antibody of genes.  
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Table 18 – Gene Ontology enrichment analysis for biological process, molecular function and cellular 

components in hypo and hypermethylated genes of Dataset B.3. GO terms are ordered by hierarchy and 
statistical significance. 

 Category Function 
UR / 
OR 

FE 
Raw p-
value 

H
y
p

e
rm

e
th

y
la

ti
o

n
 

Biological 
function 

Digestive tract mesoderm development (GO:0007502) OR 
18.6
4 

3.83E-04 

Segment specification (GO:0007379) OR 9.08 1.98E-05 

Ectoderm development (GO:0007398) OR 8.02 4.10E-12 

Embryo development (GO:0009790) OR 7.35 3.01E-05 

Synaptic vesicle exocytosis (GO:0016079) OR 7.33 3.78E-03 

Pattern specification process (GO:0007389) OR 7.02 3.93E-05 

Anatomical structure morphogenesis (GO:0009653) OR 6.53 1.57E-05 

Mesoderm development (GO:0007498) OR 6.06 1.95E-09 

Neurotransmitter secretion (GO:0007269) OR 4.47 2.83E-02 

Cell-cell adhesion (GO:0016337) OR 4.02 1.30E-02 

Developmental process (GO:0032502) OR 3.49 1.12E-18 

Nervous system development (GO:0007399) OR 3.38 1.11E-03 

System development (GO:0048731) OR 3.13 2.78E-04 

Synaptic transmission (GO:0007268) OR 2.97 2.57E-03 

Regulation of transcription from RNA polymerase II promoter 
(GO:0006357) 

OR 2.84 2.25E-04 

Cell differentiation (GO:0030154) OR 2.71 9.90E-04 

Celular component morphogenesis (GO:0032989) OR 2.68 6.37E-03 

Cell-cell signaling (GO:0007267) OR 2.37 1.05E-02 

Transcription from RNA polymerase II promoter (GO:0006366) OR 2.29 2.42E-03 

Transcription, DNA-dependent (GO:0006351) OR 2.01 7.35E-03 

Neurological system process (GO:0050877) OR 1.99 1.13E-02 

Multicellular organismal process (GO:0032501) OR 1.98 2.36E-04 

Single-multicellular organism process (GO:0044707) OR 1.96 4.01E-04 

System process (GO:0003008) OR 1.88 2.65E-02 

Catabolic process (GO:0009056) UR .36 4.29E-02 

Cellular 
component 

Neuron projection (GO:0043005) OR 5.04 3.39E-06 

Dendrite (GO:0030425) OR 4.77 1.49E-02 

Extracelular matrix (GO:0031012) OR 3.57 4.71E-02 

Cell projection (GO:0042995) OR 3.44 1.72E-04 

Intracellular (GO:0005622) UR .70 3.67E-02 

Macromolecular complex (GO:0032991) UR .46 1.98E-02 

Molecular 
function 

G-protein coupled receptor activity (GO:0004930) OR 3.44 2.57E-03 

Sequence-specific DNA binding transcription factor activity 
(GO:0003700) 

OR 3.08 1.49E-06 

DNA binding (GO:0003677) OR 2.29 5.43E-04 
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 Category Function UR/OR FE 
Raw p-
value 

 
Molecular 
function 

Nucleic acid binding (GO:0003676) OR 1.83 6.85E-03 

Binding (GO:0005488) OR 1.53 2.23E-04 

H
y
p
o

m
e
th

y
la

te
d

 

Cellular 
component 

Early endosome membrane (GO:0031901) OR 6.40 5.32E-03 

Early endosome (GO:0005769) OR 4.14 7.91E-03 

Endosome (GO:0005768) OR 2.39 4.64E-02 

Cytosol (GO:0005829) OR 1.48 4.04E-02 

Nucleus (GO:0005634) OR 1.38 2.78E-02 

Intracelular membrane-bounded organelle (GO:0043231) OR 1.29 7.01E-03 

Cytoplasmic part (GO:0044444) OR 1.29 3.79E-02 

Membrane-bounded organelle (GO:0043227) OR 1.25 5.92E-03 

Intracelular organelle (GO:0043229) OR 1.25 1.15E-02 

Organelle (GO:0043226) OR 1.21 1.03E-02 

Organelle (GO:0044424) OR 1.21 1.08E-02 

Intracellular (GO:0005622) OR 1.19 8.60E-03 

Cell (GO:0005623) OR 1.12 4.14E-02 

Celular_component (GO:0005575) OR 1.08 4.85E-02 

UR – Underrepresentation | OR – Overrepresentation | FE – Fold Enrichment 

 

3.4. Cognitive performance phenotype 

As refered before, the samples from in Dataset C included information about the good 

and bad cognitive performance of individuals. For that reason, that additional information 

was used in our research in order to evaluate the differential methylation in that phenotype. 

The procedure adopted was the same described for aging.  

Figure 60 – Manhattan plot of DMPs found for cognitive performance phenotype in Dataset C. There 
were not significative neither suggestive probes identified. 
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In the DMP finding step, 21584 probes were identified (Figure 60). According to the 

explained before, the significance and suggestive raw p-values for Dataset C needed to be 

lower than 5.88x10-8 and 1x10-5, respectively. In view of this, and since the probe with the 

lower p-value was cg05756320 with a raw p-value of 3.87x10-4, we conclude that there 

weren’t identified suggestive neither significant probes in the cognitive performance 

phenotype and for that reason the cognitive performance phenotype was not used in further 

data exploration. 

4. DISCUSSION 

The usage of an independent dataset, treated with the same experimental protocol is 

essential to validate the methodology as well as the results and to reach effective 

conclusions. For that reason, in this chapter we used a Portuguese cohort with 41 healthy 

individuals with ages between 52 and 77 years that have previously been characterized in 

order to validate the results from last chapter. 

In the case of aging, in Dataset C, since the age range was more reduced, we only 

expected to observe the probes that showed differences even between close ages across 

age and that demonstrated differences between middle-age and elderly people. In 

comparison to Dataset B.3, we also identified cg06639320, associated to the FHL2 gene 

and cg16867657, associated to the ELOVL2. cg12662887, located in S_Shore of 

chr10:105344173-105345039 island affecting NEURL gene, was also identified. NEURL 

gene, also called NEURL1, encodes for neutralized E3 ubiquitin protein ligase 1 that plays 

a role in hippocampal-dependent synaptic plasticity, learning and memory. This gene has 

also been demonstrated in causing apoptosis and downregulating Notch target genes in 

medulloblastoma (Teider et al. 2010) and together with other three genes was shown to 

predict a prognosis of non-metastatic renal cell carcinoma(Van Vlodrop et al. 2017). 

However, it was not reported as a methylation marker yet although it has been identified in 

one study as a cancer-related gene that showed methylation differences between children 

and >10 years old individuals (Numata et al. 2012). cg12662887 was also identified in the 

Dataset B.3 with an adjusted p-value = 2.0714x10-9 as well as NEURL gene isoforms, like 

NEURL1B, NEURL2, NEURL3 and NEURL4. Looking into the most influenced and reported 

genes during aging – ELOVL2, FHL2, CCDC102B, ZNF423, ASPA, PDE4C and C1orf132 

– we observed that Dataset C included all of them except C1orf132, but all with a p-value 

extremely high with the exception of FHL2 and ELOVL2 that remained in the top of the table 
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as refered before. MARCH11, one of the significant genes identified in Dataset B.3, was 

absent from this validation. 

In Dataset D, the significant probes were similar to the ones found in Dataset B.3, which 

was expected due to the merging of both datasets, however cg12662887 (NEURL) and 

cg06782035 (MARCH11) were not found in Dataset D. Through this we concluded that the 

most conservative positions among aging of healthy individuals may be cg16867657 and 

cg06639320 that were both positively correlated with age. The presence of these probes in 

all datasets made us conclude that they seem to be good markers of age since they were 

present in a larger cohort but also in a cohort limited in the range of ages and in the number 

of individuals. Figure 61 makes a comparison of the most important probes of our study and 

its behavior in all datasets were they were identified. Indeed, although with variable slopes, 

it is relevant that all show similar trends. 

About marker genomic locations, the main difference between Dataset C, analysed with 

850k array and Dataset B.3, analysed with 450k array, was the most frequent genomic 

position of markers – open sea for Dataset C and CGI for Dataset B.3. Even though, the 

percentage of probes in body of genes in both datasets was same and the ones CGI and 

gene body were similar. 

Figure 61 – Comparison of the linear regressions obtained for cg16867657 (ELOVL2) (A), cg06639320 (FHL2) 

(B) and cg12662887 (NEURL) (C) in the several datasets. 
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As to Gene Ontology analysis, the majority of hypermethylated islands were associated 

with similar functions that were reported for Dataset B.3. The absence of enrichment for 

hypomethylated regions remain an issue. As mentioned before, these results were 

expected since Dataset B.3 was included on Dataset D. However, in an ideal situation the 

number of individuals in each of the cohorts would be closer and its age distribution and the 

number of identified probes would have the same ranges so that each could be studied 

separately and compared. This would only be possible if the datasets were similar in all the 

categories – ancestry, healthy stage, number of samples, type of tissue, laboratory 

conditions and methodologies used – which was not the case. For all of these reasons, our 

work is according to the described in the literature for methylation in aging. However, in 

order to improve the detection of NEURL and MARCH11 as markers of age it would be 

necessary to repeat the protocol using the conditions refered above. 

Although the selected individuals were healthy, the differences between cognitive 

performance of both groups were expected to show corresponding variations in their 

methylome, which justified the differential methylation analysis, with a big focus on DMP 

finding. Since the statistical power of our test only resulted in adjusted p-values above 0.05, 

there weren’t found significantly neither suggestive DMPs in cognitive performance.  

Altogether, we can conclude that the bioinformatical pipeline allowed us to explore the 

methylome of both datasets with superimposition of results, in spite of the identified 

drawbacks. Therefore, the main goal of the project was accomplished and a new 

methodology for epigenetical studies become available for future research at iBiMED. 
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FINAL REMARKS 

Through the usage of in silico experiments based on microarray data from public 

databases, we were able to take valid conclusions about the variations of methylome across 

the aging process in healthy individuals. The most common and cited markers of age were 

identified in the scope of this thesis and ELOVL2 and FHL2 have still shown its activity even 

in a dataset with a lower range of ages. Additionally, genes like MARCH11 and NEURL 

demonstrated to be differential methylated with age, plus the last one was present in both 

datasets. 

However, the small-size of our validation dataset was the biggest challenge in this 

project. For that reason, the validation of our conclusions was not performed as the 

expected and it wasn’t possible to take conclusions about the cognitive performance of 

individuals. On the other hand, the initial curation process was hampered by the lack of 

information or the incorrect annotations published by researchers or even the non-user 

friendly platform of NCBI. This forced us to perform a manual study for each sample which 

was very time-consuming and in the case of Next-Generation Sequencing with no payback. 

For all of these reasons, if it is pretended to continue the in-silico experiments in iBiMED 

it is essential to create an in-house database to store the data and improve the research of 

interesting samples. On the other hand, the number of needed samples in order to have 

sufficient power to detect a meaningful difference in DNA methylation patterns needs to be 

estimated. For that purpose, there are several available softwares like G*Power and Quanto 

that should be used before the definition of the number of need samples in a test. Through 

this determination, biological samples can be used with microarray technologies and the 

differential methylation patterns will be more conclusive. The study of blood as a most 

accessible tissue and its comparison with other tissues methylome, like brain and liver, is 

also an interesting goal in order to determine their similarities and to improve the usage of 

blood as an accessible source of information for this type of studies. 

Finally, the study of methylome is promising and since it is influenced by the environment 

of individuals, it is essential to explore this topic in the iBiMED. Through this work, the 

institute developed a methylation microarray pipeline that can be used in the near future to 

deepen methylome studies even in healthy or diseased individuals. 
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Supplementary Table 1 – First Mus musculus dataset before the selection of data 

GEO 
Series 

GEO 
Platform 

GEO 
Samples 

Strain Age Tissue 
Acession 
fastq 

Reads 
type 

Genome 
ref 

Technolog
y 

GSE52330 GPL13112 

GSM1263221 

C57Black6 8-10w Dentate gyri SRR1029055 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029056 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029057 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029058 paired mm9 HiSeq2000  

GSM1263222 

C57Black6 8-10w Dentate gyri SRR1029059 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029060 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029061 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029062 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029063 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029064 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029065 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029066 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029067 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029068 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029069 paired mm9 HiSeq2000  

C57Black6 8-10w Dentate gyri SRR1029070 paired mm9 HiSeq2000  

GSE60062 GPL13112 

GSM1464464 

C57Black6 8w Cerebellum SRR1536120 single mm9 HiSeq2000  

C57Black6 8w Cerebellum SRR1536121 single mm9 HiSeq2000  

C57Black6 8w Cerebellum SRR1536122 single mm9 HiSeq2000  

C57Black6 8w Cerebellum SRR1536123 single mm9 HiSeq2000  

GSM1464465 

C57Black6 8w Cortex SRR1536124 single mm9 HiSeq2000  

C57Black6 8w Cortex SRR1536125 single mm9 HiSeq2000  

C57Black6 8w Cortex SRR1536126 single mm9 HiSeq2000  

C57Black6 8w Cortex SRR1536127 single mm9 HiSeq2000  

GSE63137 GPL13112 

GSM1541958 

C57BL6J/12
9 

8-11w Neocortex SRR1647862 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647863 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647864 single mm10 HiSeq2000  

GSM1541959 

C57BL6J/12
9 

8-11w Neocortex SRR1647865 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647866 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647867 single mm10 HiSeq2000  

GSM1541960 
C57BL6J/12
9 

8-11w Neocortex SRR1647868 single mm10 HiSeq2000  
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C57BL6J/12
9 

8-11w Neocortex SRR1647869 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647870 single mm10 HiSeq2000  

GSM1541961 

C57BL6J/12
9 

8-11w Neocortex SRR1647875 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647876 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647877 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647878 single mm10 HiSeq2000  

GSM1541962 

C57BL6J/12
9 

8-11w Neocortex SRR1647871 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647872 single mm10 HiSeq2000  

GSM1541963 

C57BL6J/12
9 

8-11w Neocortex SRR1647873 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647874 single mm10 HiSeq2000  

C57BL6J/12
9 

8-11w Neocortex SRR1647879 single mm10 HiSeq2000  

GSE67292 GPL16417 

GSM1643930 C57BL/6 
10-
11w 

Cerebellum SRR1930024 paired mm9 MiSeq 

GSM1643931 C57BL/6 
10-
11w 

Cerebellum SRR1930025 paired mm9 MiSeq 

GSE68618 GPL13112 

GSM1677165 

C57B|6 
16-
18m 

Pancreatic Beta Cells SRR2034988 paired mm9 HiSeq2000  

C57B|6 
16-
18m 

Pancreatic Beta Cells SRR2034989 paired mm9 HiSeq2000  

C57B|6 
16-
18m 

Pancreatic Beta Cells SRR2034990 paired mm9 HiSeq2000  

GSM1677166 

C57B|6 4-6w Pancreatic Beta Cells SRR2034991 paired mm9 HiSeq2000  

C57B|6 4-6w Pancreatic Beta Cells SRR2034992 paired mm9 HiSeq2000  

C57B|6 4-6w Pancreatic Beta Cells SRR2034993 paired mm9 HiSeq2000  

GSE70317 GPL16417 

GSM1723681 C57BL/6N 7w Brain SRR2079716 paired mm9 MiSeq 

GSM1723682 C57BL/6N 7w Heart SRR2079717 paired mm9 MiSeq 

GSM1723683 C57BL/6N 7w Heart SRR2079718 paired mm9 MiSeq 

GSM1723684 C57BL/6N 7w Heart SRR2079719 paired mm9 MiSeq 

GSM1723685 C57BL/6N 7w Kidney SRR2079720 paired mm9 MiSeq 

GSM1723686 C57BL/6N 7w Spleen SRR2079721 paired mm9 MiSeq 

GSM1723687 C57BL/6N 7w Kidney SRR2079722 paired mm9 MiSeq 

GSM1723688 C57BL/6N 7w Kidney SRR2079723 paired mm9 MiSeq 

GSM1723689 C57BL/6N 7w Brain SRR2079724 paired mm9 MiSeq 

GSM1723690 C57BL/6N 7w Kidney SRR2079725 paired mm9 MiSeq 

GSM1723691 C57BL/6N 7w Liver SRR2079726 paired mm9 MiSeq 

GSM1723692 C57BL/6N 7w Liver SRR2079727 paired mm9 MiSeq 

GSM1723693 C57BL/6N 7w Spleen SRR2079728 paired mm9 MiSeq 

GSM1723694 C57BL/6N 7w Liver SRR2079729 paired mm9 MiSeq 

GSM1723695 C57BL/6N 7w Liver SRR2079730 paired mm9 MiSeq 

GSM1723696 C57BL/6N 7w Spleen SRR2079731 paired mm9 MiSeq 

GSM1723697 C57BL/6N 7w Liver SRR2079732 paired mm9 MiSeq 
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GSM1723698 C57BL/6N 7w Liver SRR2079733 paired mm9 MiSeq 

GSM1723699 C57BL/6N 7w Liver SRR2079734 paired mm9 MiSeq 

GPL13112 

GSM1723710 C57BL/6N 7w Brain SRR2079745 single mm9 HiSeq 2000 

GSM1723711 C57BL/6N 7w Liver SRR2079746 single mm9 HiSeq 2000 

GSM1723712 C57BL/6N 7w Liver SRR2079747 single mm9 HiSeq 2000 

GSM1723713 C57BL/6N 7w Liver SRR2079748 single mm9 HiSeq 2000 

GSM1723714 C57BL/6N 7w Liver SRR2079749 single mm9 HiSeq 2000 

GSE72177 GPL13112 

GSM1857044 

C57/BL6 22 w Liver SRR2173835 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173836 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173837 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173838 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173839 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173840 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173841 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173842 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173843 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173844 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173845 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173846 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173847 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173848 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173849 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173850 paired mm9 HiSeq 2000 

GSM1857045 

C57/BL6 22 w Liver SRR2173851 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173852 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173853 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173854 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173855 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173856 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173857 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173858 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173859 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173860 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173861 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173862 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173863 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173864 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173865 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173866 paired mm9 HiSeq 2000 

GSM1857046 

C57/BL6 22 w Liver SRR2173867 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173868 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173869 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173870 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173871 paired mm9 HiSeq 2000 
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C57/BL6 22 w Liver SRR2173872 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173873 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173874 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173875 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173876 paired mm9 HiSeq 2000 

C57/BL6 22 w Liver SRR2173877 paired mm9 HiSeq 2000 

C57/BL6 22 w liver SRR2173878 paired mm9 HiSeq 2000 

C57/BL6 22 w liver SRR2173879 paired mm9 HiSeq 2000 

C57/BL6 22 w liver SRR2173880 paired mm9 HiSeq 2000 

C57/BL6 22 w liver SRR2173881 paired mm9 HiSeq 2000 

C57/BL6 22 w liver SRR2173882 paired mm9 HiSeq 2000 

GSE78955 GPL17021 GSM2082053 C57BL/6 7w erthroblast SRR3208877 single mm10 HiSeq2500 

GSE92486 GPL17021 

GSM2430564 C3B6F1 5m liver SRR5115679 paired GRCm38 HiSeq2500 

GSM2430565 C3B6F1 5m liver SRR5115680 paired GRCm38 HiSeq2500 

GSM2430566 C3B6F1 5m liver SRR5115681 paired GRCm38 HiSeq2500 

GSM2430570 C3B6F1 26m liver SRR5115685 paired GRCm38 HiSeq2500 

GSM2430571 C3B6F1 26m liver SRR5115686 paired GRCm38 HiSeq2500 

GSM2430572 C3B6F1 26m liver SRR5115687 paired GRCm38 HiSeq2500 

GSE49191 GPL13112 

GSM1206262 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950173 paired mm9 HiSeq2000 

GSM1206263 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950174 paired mm9 HiSeq2000 

GSM1206264 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950175 paired mm9 HiSeq2000 

GSM1206265 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950176 paired mm9 HiSeq2000 

GSM1206266 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950177 paired mm9 HiSeq2000 

GSM1206267 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950178 paired mm9 HiSeq2000 

GSM1206268 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950179 paired mm9 HiSeq2000 

GSM1206268 C57BL/6 12m 
Hematopoietic stem 
cells 

SRR950180 paired mm9 HiSeq2000 

GSE49623 

GPL13112 GSM1202738 C57BL/6 8w Testis SRR948779 paired mm9 HiSeq2000 

GPL13112 GSM1202739 C57BL/6 8w Testis SRR948780 paired mm9 HiSeq2000 

GPL13112 GSM1202740 C57BL/6 8w Testis SRR948781 paired mm9 HiSeq2000 

GPL13112 GSM1202741 C57BL/6 8w Testis SRR948782 paired mm9 HiSeq2000 

GPL13112 GSM1202742 C57BL/6 8w Testis SRR948783 paired mm9 HiSeq2000 

GPL13112 GSM1202743 C57BL/6 8w Testis SRR948784 paired mm9 HiSeq2000 

GPL13112 GSM1202744 C57BL/6 8w Testis SRR948785 paired mm9 HiSeq2000 

GPL13112 GSM1202745 C57BL/6 8w Testis SRR948786 paired mm9 HiSeq2000 

GPL13112 GSM1202746 C57BL/6 8w Testis SRR948787 paired mm9 HiSeq2000 

GPL13112 GSM1202747 C57BL/6 8w Testis SRR948788 paired mm9 HiSeq2000 

GPL13112 GSM1202748 C57BL/6 8w Testis SRR948789 paired mm9 HiSeq2000 

GPL13112 GSM1202749 C57BL/6 8w Testis SRR948790 paired mm9 HiSeq2000 

GPL13112 GSM1202750 C57BL/6 8w Testis SRR948791 paired mm9 HiSeq2000 

GPL13112 GSM1202751 C57BL/6 8w Testis SRR948792 paired mm9 HiSeq2000 
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GPL13112 GSM1202752 C57BL/6 8w Testis SRR948793 paired mm9 HiSeq2000 

GPL13112 GSM1202753 C57BL/6 8w Testis SRR948794 paired mm9 HiSeq2000 

 

Supplementary Table 2 – Filtration step across fastq files from all the samples selected on our dataset in order 

to select the ones with more final reads 

Experiment Initial Reads Final Reads 
Mean final 

reads 
Trim Filter 

Ambiguity 

Filter 

Quality 

Filter 
Reads filtered 

Mean 
filtered 

reads 
(%) 

Mean 
Filtered 
reads 

SRR2034988_1 97036309 85739726 
88939173,5 

4940712 6355774 97 11296583 
8% 8097136 

SRR2034988_2 97036309 92138621 4799395 78671 19622 4897688 

SRR2034989_1 240688878 224346051 
224281154 

16247555 94637 635 16342827 
7% 16407724 

SRR2034989_2 240688878 224216257 16301684 104652 66285 16472621 

SRR2034990_1 219562678 217648567 
215517266,5 

1868356 45685 70 1914111 
2% 4045412 

SRR2034990_2 219562678 213385966 6069893 79521 27298 6176712 

SRR2034991_1 197404164 186038285 
186312251 

11276956 88586 337 11365879 
6% 11091913 

SRR2034991_2 197404164 186586217 10692708 85879 39360 10817947 

SRR2034992_1 185532031 168397286 
168599661,5 

16511233 623321 191 17134745 
9% 16932370 

SRR2034992_2 185532031 168802037 16601601 74645 53748 16729994 

SRR2034993_1 213105508 210488453 
208442800 

2564085 52936 34 2617055 
2,19% 4662708 

SRR2034993_2 213105508 206397147 6646782 48550 13029 6708361 

SRR2079726_1 174390 174374 
174302 

0 16 0 16 
0,05% 88 

SRR2079726_2 174390 174230 1 153 6 160 

SRR2079727_1 199775 199746 
199674,5 

0 29 0 29 
0,05% 100,5 

SRR2079727_2 199775 199603 1 168 3 172 

SRR2079729_1 169085 169072 
168996 

0 13 0 13 
0,05% 89 

SRR2079729_2 169085 168920 3 156 6 165 

SRR2079730_1 164943 164920 
164853,5 

0 23 0 23 
0,05% 89,5 

SRR2079730_2 164943 164787 0 156 0 156 

SRR2079732_1 40269 40267 
40250 

0 2 0 2 
0,05% 19 

SRR2079732_2 40269 40233 0 36 0 36 

SRR2079733_1 45544 45540 
45525 

0 4 0 4 
0,04% 19 

SRR2079733_2 45544 45510 0 34 0 34 

SRR2079734_1 34105 34104 
34089 

0 1 0 1 
0,05% 16 

SRR2079734_2 34105 34074 0 31 0 31 

SRR2173835_1 35307975 35037366 
34875491 

264846 5761 2 270609 
1,22% 432484 

SRR2173835_2 35307975 34713616 589278 4286 795 594359 

SRR2173836_1 34226300 33958775 
33806740 

260168 7354 3 267525 
1,23% 419560 

SRR2173836_2 34226300 33654705 554648 15990 957 571595 

SRR2173837_1 34096758 33827611 
33666545 

264983 4163 1 269147 
1,26% 430213 

SRR2173837_2 34096758 33505479 567819 22443 1017 591279 

SRR2173838_1 34261936 33987515 
33836245,5 

268946 5475 0 274421 
1,24% 425690,5 

SRR2173838_2 34261936 33684976 559493 16513 954 576960 

SRR2173839_1 34596209 34326468 
34171919,5 

264738 5003 0 269741 
1,23% 424289,5 

SRR2173839_2 34596209 34017371 559142 18706 990 578838 
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SRR2173840_1 34780215 34511631 
34346269,5 

263212 5372 0 268584 
1,25% 433945,5 

SRR2173840_2 34780215 34180908 564572 33682 1053 599307 

SRR2173841_1 32462856 32122870 
31964537 

335504 4482 0 339986 
1,54% 498319 

SRR2173841_2 32462856 31806204 645760 9509 1383 656652 

SRR2173842_1 37119474 36771303 
36472536,5 

347540 619 12 348171 
1,74% 646937,5 

SRR2173842_2 37119474 36173770 921621 18663 5420 945704 

SRR2173843_1 35591830 35314410 
35156573,5 

269715 7704 1 277420 
1,22% 435256,5 

SRR2173843_2 35591830 34998737 587536 4825 732 593093 

SRR2173844_1 35048690 34776184 
34618471,5 

265007 7497 2 272506 
1,23% 430218,5 

SRR2173844_2 35048690 34460759 580706 6488 737 587931 

SRR2173845_1 35457350 35177170 
34998089,5 

273504 6675 1 280180 
1,30% 459260,5 

SRR2173845_2 35457350 34819009 630031 7539 771 638341 

SRR2173846_1 35592596 35310589 
35140894 

275366 6639 2 282007 
1,27% 451702 

SRR2173846_2 35592596 34971199 613883 6809 705 621397 

SRR2173847_1 35582221 35313010 
35154531,5 

266467 2744 0 269211 
1,20% 427689,5 

SRR2173847_2 35582221 34996053 582268 3085 815 586168 

SRR2173848_1 35789090 35517598 
35352952,5 

267819 3671 2 271492 
1,22% 436137,5 

SRR2173848_2 35789090 35188307 594646 5320 817 600783 

SRR2173849_1 33757980 33487695 
33333938 

260710 9573 2 270285 
1,26% 424042 

SRR2173849_2 33757980 33180181 559360 17511 928 577799 

SRR2173850_1 34641232 34367159 
34208084 

265153 8918 2 274073 
1,25% 433148 

SRR2173850_2 34641232 34049009 574452 16790 981 592223 

SRR2173851_1 36966380 36700991 
36532522 

259497 5890 2 265389 
1,17% 433858 

SRR2173851_2 36966380 36364053 597282 4387 658 602327 

SRR2173852_1 35868592 35604794 
35446049,5 

256076 7721 1 263798 
1,18% 422542,5 

SRR2173852_2 35868592 35287305 563366 17009 912 581287 

SRR2173853_1 35765567 35500075 
35331625 

261168 4324 0 265492 
1,21% 433942 

SRR2173853_2 35765567 35163175 578112 23344 936 602392 

SRR2173854_1 35925705 35653350 
35495605,5 

266521 5834 0 272355 
1,20% 430099,5 

SRR2173854_2 35925705 35337861 569484 17446 914 587844 

SRR2173855_1 36257920 35990913 
35830241 

261610 5394 3 267007 
1,18% 427679 

SRR2173855_2 36257920 35669569 567663 19776 912 588351 

SRR2173856_1 36441355 36175716 
36003099,5 

259979 5660 0 265639 
1,20% 438255,5 

SRR2173856_2 36441355 35830483 574670 35223 979 610872 

SRR2173857_1 33218255 32897305 
32727701 

316513 4432 5 320950 
1,48% 490554 

SRR2173857_2 33218255 32558097 649341 9633 1184 660158 

SRR2173858_1 34920839 34617352 
34332683,5 

302807 671 9 303487 
1,68% 588155,5 

SRR2173858_2 34920839 34048015 850242 17359 5223 872824 

SRR2173859_1 37290561 37019258 
36853905 

263159 8142 2 271303 
1,17% 436656 

SRR2173859_2 37290561 36688552 596292 5045 672 602009 

SRR2173860_1 36781591 36516259 
36351516 

257711 7617 4 265332 
1,17% 430075 

SRR2173860_2 36781591 36186773 587553 6578 687 594818 

SRR2173861_1 37253651 36978884 
36791357,5 

267821 6945 1 274767 
1,24% 462293,5 

SRR2173861_2 37253651 36603831 641326 7782 712 649820 
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SRR2173862_1 37310731 37035523 
36857103 

268564 6643 1 275208 
1,22% 453628 

SRR2173862_2 37310731 36678683 624441 6913 694 632048 

SRR2173863_1 37309664 37047433 
36882305,5 

259470 2761 0 262231 
1,15% 427358,5 

SRR2173863_2 37309664 36717178 588679 3054 753 592486 

SRR2173864_1 37550718 37286988 
37113853,5 

260253 3477 0 263730 
1,16% 436864,5 

SRR2173864_2 37550718 36940719 603998 5235 766 609999 

SRR2173865_1 35422931 35152553 
34992174 

260325 10052 1 270378 
1,22% 430757 

SRR2173865_2 35422931 34831795 571870 18377 889 591136 

SRR2173866_1 36323676 36051425 
35885291,5 

262829 9422 0 272251 
1,21% 438384,5 

SRR2173866_2 36323676 35719158 586179 17415 924 604518 

SRR2173867_1 35465955 35206703 
35050242,5 

253630 5621 1 259252 
1,17% 415712,5 

SRR2173867_2 35465955 34893782 567320 4227 626 572173 

SRR2173868_1 34577434 34316816 
34168847 

253250 7368 0 260618 
1,18% 408587 

SRR2173868_2 34577434 34020878 539540 16213 803 556556 

SRR2173869_1 34508430 34245514 
34086720 

258720 4195 1 262916 
1,22% 421710 

SRR2173869_2 34508430 33927926 556870 22773 861 580504 

SRR2173870_1 34667367 34398880 
32709573 

262976 5510 1 268487 
1,12% 387439 

SRR2173870_2 31526657 31020266 490393 15269 729 506391 

SRR2173871_1 34954414 34688720 
34539329,5 

260495 5199 0 265694 
1,19% 415084,5 

SRR2173871_2 34954414 34389939 544687 18958 830 564475 

SRR2173872_1 35148316 34885636 
34723328,5 

257231 5448 1 262680 
1,21% 424987,5 

SRR2173872_2 35148316 34561021 551881 34547 867 587295 

SRR2173873_1 31666460 31352437 
31196429 

309704 4317 2 314023 
1,48% 470031 

SRR2173873_2 31666460 31040421 615665 9238 1136 626039 

SRR2173874_1 33672268 33372935 
33107535 

298718 602 13 299333 
1,68% 564733 

SRR2173874_2 33672268 32842135 808226 17002 4905 830133 

SRR2173875_1 35769411 35503458 
35348734,5 

258024 7927 2 265953 
1,18% 420676,5 

SRR2173875_2 35769411 35194011 569798 4980 622 575400 

SRR2173876_1 35144941 34884002 
34730722 

253662 7276 1 260939 
1,18% 414219 

SRR2173876_2 35144941 34577442 560567 6291 641 567499 

SRR2173876_2 35144941 34577442 
34959995,5 

560567 6291 641 567499 
1,19% 418201,5 

SRR2173877_1 35611453 35342549 262063 6841 0 268904 

SRR2173877_2 35611453 34993349 
34993349 

609788 7727 589 618104 
1,74% 618104 

SRR2173877_2 35611453 34993349 609788 7727 589 618104 

SRR2173878_1 35764081 35492816 
35328928,5 

264865 6399 1 271265 
1,22% 435152,5 

SRR2173878_2 35764081 35165041 591829 6558 653 599040 

SRR2173879_1 35746441 35488895 
35334599,5 

254927 2618 1 257546 
1,15% 411841,5 

SRR2173879_2 35746441 35180304 562426 3022 689 566137 

SRR2173880_1 35981657 35722696 
35561990,5 

255562 3398 1 258961 
1,17% 419666,5 

SRR2173880_2 35981657 35401285 574588 5114 670 580372 

SRR2173881_1 34201029 33935058 
33784425,5 

256314 9656 1 265971 
1,22% 416603,5 

SRR2173881_2 34201029 33633793 548788 17631 817 567236 

SRR2173882_1 35020926 34752302 
34596804 

259499 9124 1 268624 
1,21% 424122 

SRR2173882_2 35020926 34441306 561747 16978 895 579620 
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SRR5115679_1 70538476 70247072 
69674394 

219379 71823 202 291404 
1,22% 864082 

SRR5115679_2 70538476 69101716 1414173 4174 18413 1436760 

SRR5115680_1 44615639 44435851 
43925276 

157758 21871 159 179788 
1,55% 690363 

SRR5115680_2 44615639 43414701 1181304 3153 16481 1200938 

SRR5115681_1 49504536 49316335 
48712325,5 

169030 19004 167 188201 
1,60% 792210,5 

SRR5115681_2 49504536 48108316 1373083 3701 19436 1396220 

SRR5115685_1 229564398 229060184 
228706129,5 

500653 1784 1777 504214 
0,37% 858268,5 

SRR5115685_2 229564398 228352075 1090046 114848 7429 1212323 

SRR5115686_1 175947615 175607408 
175263755,5 

337445 2059 703 340207 
0,39% 683859,5 

SRR5115686_2 175947615 174920103 970730 52264 4518 1027512 

SRR5115687_1 163041401 162667009 
162303303 

373656 134 602 374392 
0,45% 738098 

SRR5115687_2 163041401 161939597 1012717 82821 6266 1101804 

 

Supplementary Table 3 – Final dataset of blood samples. Specifications about GEO serie, superserie, PMID, 

number of samples, tissue and cell specificity, array reference and platform used, are presented. 

GEO Serie 
GEO 
Superserie 

PMID Samples Female Male Age Tissue 
Tissue 
specificity 

Cell specificity 
Array 
ref 

Platform 

GSE99755 - 29362489 37 19 18 24-58 Blood Whole blood  450k GPL13534 

GSE98876 - 28747766 5 0 5 31-64 Blood Peripheral blood PBMC (CD3 T cell) 450k GPL13534 

GSE87648 GSE87650 27886173 92 48 44 18-69 Blood Whole Blood  450k GPL13534 

GSE87640 GSE87650 27886173 18 6 12 24-58 Blood Whole blood  450k GPL13534 

GSE87640 GSE87650 27886173 16 7 9 24-58 Blood Peripheral blood PBMC (CD4) 450k GPL13534 

GSE87640 GSE87650 27886173 15 6 9 24-58 Blood Peripheral blood PBMC (CD8) 450k GPL13534 

GSE87640 GSE87650 27886173 16 7 9 24-58 Blood Peripheral blood PBMC (CD14) 450k GPL13534 

GSE87571 - 23826282 664 356 308 18-94 Blood Whole Blood  450k GPL13534 

GSE85647 GSE85649 28549776 6 6 0 23-52 Blood Peripheral Blood PBMC (CD14) 450k GPL13534 

GSE85506 - 28621701 21 21 0 19-80 Blood Peripheral blood  450k GPL13534 

GSE71955 GSE71957 26459776 31 28 3 35-79 Blood Peripheral blood PBMC (CD4) 450k GPL13534 

GSE71955 GSE71957 26459776 31 28 3 35-79 Blood Peripheral blood PBMC (CD8) 450k GPL13534 

GSE51057 - 24278132 177 177 0 34-65 Blood Peripheral blood Leukocytes 450k GPL13534 

GSE42861 - 23334450 76 60 16 24-70 Blood Peripheral blood Leukocytes 450k GPL13534 

GSE107737 - - 12 0 12 18-29 Blood Whole Blood  450k GPL13534 

GSE105123 GSE105124 24658407 19 8 11 19-23 Blood Peripheral Blood PBMC 450k GPL13534 

GSE104471 GSE104472 28294656 12 6 6 24-45 Blood Peripheral Blood PBMC 450k GPL13534 
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 Supplementary Figure 1 – FASTQC reports of Dataset A, per base sequence quality of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 2 - FASTQC reports of Dataset A, per base sequence content of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 3 - FASTQC reports of Dataset A, per base N content of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 4 - FASTQC reports of Dataset A, Kmer content of SRR2034989 (A/B); SRR2034993 

(C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 5 - FASTQC reports of Dataset A, adapter content of SRR2034989 (A/B); SRR2034993 

(C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
 



 
 

 
 

Differential DNA methylation in aging: in silico exploration using high-throughput datasets 

 

N Supplementary Files 

 

 Supplementary Figure 6 - FASTQC reports of Dataset A, per sequence GC content of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 7 - FASTQC reports of Dataset A, per sequence quality scores of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 8 - FASTQC reports of Dataset A, per tile sequence quality of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2173864 (E/F); SRR5115679(G/H); SRR5115685 (I/J) 
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 Supplementary Figure 9 - FASTQC reports of Dataset A, sequence duplication levels of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 10 - FASTQC reports of Dataset A, sequence length distribution of SRR2034989 (A/B); 

SRR2034993 (C/D); SRR2079727 (E/F); SRR2173864 (G/H); SRR5115679(I/J); SRR5115685 (K/L) 
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 Supplementary Figure 11 – Mean detection p-values of (A) GSE42861, (B) GSE51057, (C) GSE71955, (D) 

GSE85506, (E) GSE85647, (D) GSE87571, (E)GSE87640, (F) GSE87648, (G) GSE98876, (H)GSE99766 (I) 
GSE104471, (J) GSE107737 
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Supplementary Figure 12 – Quality control report of  (A) GSE42861, (B) GSE51057, (C) GSE71955, (D) 
GSE85506, (E) GSE85647, (D) GSE87571, (E)GSE87640, (F) GSE87648, (G) GSE98876, (H)GSE99766 (I) 
GSE104471, (J) GSE107737 
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Supplementary Figure 13 – Comparison of data before and after normalization of  (A) GSE42861, (B) 

GSE51057, (C) GSE71955, (D) GSE85506, (E) GSE85647, (D) GSE87571, (E)GSE87640, (F) GSE87648, (G) 
GSE98876, (H)GSE99766 (I) GSE104471, (J) GSE107737 
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Supplementary Figure 14 – Comparison of the three available normalization methods of  (A) GSE42861, (B) 

GSE51057, (C) GSE71955, (D) GSE85506, (E) GSE85647, (D) GSE87571, (E)GSE87640, (F) GSE87648, (G) 
GSE98876, (H)GSE99766 (I) GSE104471, (J) GSE107737 
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 Supplementary Figure 15 – MDS plots after normalization and filtering of  (A) GSE42861, (B) GSE51057, (C) 

GSE71955, (D) GSE85506, (E) GSE85647, (D) GSE87571, (E)GSE87640, (F) GSE87648, (G) GSE98876, 
(H)GSE99766 (I) GSE104471, (J) GSE107737 
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 Supplementary Figure 16 – Clustering of a global virtual array used to test the junction of all datasets of 

Dataset B.2. 
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Supplementary Figure 17 – MDS plot of a global virtual array used to test the junction of all datasets of Dataset 

B.2. 
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Supplementary Table 4 – Summary of the suggestive DMPs with age phenotype in Dataset C. 
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 Supplementary Figure 18 – Clustering of Dataset B.3 (green) and Dataset C (blue), which make us obtain 

Dataset D 
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Supplementary Figure 19 - Heatmap of the cell composition of both datasets presented. 


