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resumo 
 

 

O cancro é uma das principais causas de morte no mundo, sendo o cancro da 
próstata o segundo mais comum nos homens. Por isso, o desenvolvimento de 
estratégias que possam fornecer um diagnóstico precoce é de extrema 
relevância. Uma vez que as alterações bioquímicas precedem as modificações 
morfológicas nas células, o estudo do metaboloma do cancro tem ganhado 
relevância e poderá contribuir para a compreensão da biologia do cancro e 
identificação de biomarcadores de diagnóstico precoce. 
A espectroscopia de infravermelho, em particular por FTIR, é uma técnica de 
metabolómica que, ao contrário de procedimentos histopatológicos, é rápida, 
não destrutiva e não requer o uso de reagentes. Esta técnica é capaz de 
detetar a composição bioquímica das amostras e permite a distinção de 
amostras com perfis metabólicos distintos, possibilitando, assim, a 
discriminação de células tumorais e normais. 
Os principais objetivos deste estudo foram explorar a capacidade do FTIR, 
acoplado a análise multivariada, na: (1) discriminação entre células de tumor 
primário de próstata (22Rv1) e células epiteliais normais (PNT1A e PNT2); e 
(2) discriminação entre células de tumor primário e células provenientes de 
metástases (LNCaP, de nódulo linfático, e PC-3, de osso). 
Através da análise por PCA observou-se uma discriminação entre as 
diferentes linhas celulares, sugerindo que possuem diferentes perfis 
metabólicos. A separação entre as diferentes células pode ser atribuída a 
alterações no metabolismo lipídico (3000-2800 cm-1, 1800-1700 cm-1 and 
1500-1400 cm-1) e à presença de agregados proteicos (1622 cm-1). 
Os nossos resultados sugerem que o estudo do metaboloma do cancro, por 
FTIR, não só permite a compreensão da patogénese tumoral, como também 
poderá contribuir para a identificação de biomarcadores de diagnóstico 
precoce, que são importantes para um bom prognóstico. 
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abstract 

 
Cancer is one of the leading causes of death worldwide, with prostate cancer 
being the second most common neoplasia amongst men. Thus, strategies that 
can provide an early diagnosis of this disease are of great importance. 
Because biochemical alterations precede morphological changes in cells, 
cancer metabolome has gained relevance and may contribute to the 
understanding of tumor biology and to the identification of early diagnostic 
biomarkers. 
Fourier-transform infrared (FTIR) spectroscopy is a metabolomics technique 
that, unlike staining procedures and other histopathologic approaches, is rapid, 
non-destructive and does not require reagents. This technique probes the 
biochemical composition of the analyzed samples and allows the discrimination 
of samples with distinct metabolic profiles, thus discriminating cancerous and 
non-cancerous samples. 
The main goals of this work were to explore the ability of FTIR spectroscopy, 
coupled with multivariate analysis, in the: (1) discrimination between prostate 
cancer cells derived from a primary tumor (22Rv1) and normal epithelial cells 
(PNT1A and PNT2); and (2) discrimination between prostate primary tumor 
cells (22Rv1) from metastatic cells derived from two distinct sites (LNCaP, from 
lymph node, and PC-3, from bone). 
A clear discrimination between the different prostate cell lines was observed, 
indicating that they exhibit different metabolic profiles. This discrimination can 
be attributed to an altered lipid metabolism (3000-2800 cm-1, 1800-1700 cm-1 
and 1500-1400 cm-1) and the presence of protein aggregates (1622 cm-1). 
Our results suggest that studying cancer metabolome with FTIR spectroscopy 
not only allows the understanding of tumor pathogenesis, but also may be a 
valuable tool for the identification of early diagnostic biomarkers, which are 
crucial for a good prognosis. 

 

 

 



 

 
 

List of publications 

• Santos F, Magalhães S, Henriques MC, Fardilha M, Nunes A. Spectroscopic 

features of cancer cells: FTIR spectroscopy as a tool for early diagnosis. Current 

Metabolomics. 2018; 6, 103-111. 

• Santos F, Magalhães S, Henriques MC, Silva B, Valença I, Ribeiro D, Fardilha M 

and Nunes A. Understanding prostate cancer cells metabolome: a spectroscopic 

approach. Submitted to Spectrochimica Acta Part A: Molecular and Biomolecular 

Spectroscopy on July 17th, 2018. 

Poster Communications 

• Santos F, Magalhães S, Henriques MC, Silva B, Valença I, Ribeiro D, Fardilha M 

and Nunes A. Discrimination between tumoral and normal prostate cells by FTIR 

spectroscopy.  Conference: Jornadas do CICECO 2018. June 2018. 

• Santos F, Magalhães S, Henriques MC, Silva B, Valença I, Ribeiro D, Fardilha M 

and Nunes A. Understanding prostate cancer cells metabolome: a spectroscopic 

approach.  Congress: I NoTeS Congress - Novel Therapeutic Strategies for 

Noncommunicable Diseases. June 2018. 

• Santos F, Magalhães S, Henriques MC, Silva B, Valença I, Ribeiro D, Fardilha M 

and Nunes A. Discrimination between prostate cancer and normal prostate cell 

lines by FTIR spectroscopy. Symposium: IV Postgrad Symposium in Biomedicine. 

July 2018. 



 

 
 

This dissertation is organized in parts A, B and C 

 

A. General Introduction and Aims, includes: 

• Published review article 

Santos F, Magalhães S, Henriques MC, Fardilha M, Nunes A. Spectroscopic 

features of cancer cells: FTIR spectroscopy as a tool for early diagnosis. 

Current Metabolomics. 2018; 6, 103-111. 

 

B. Results, includes 

• Submitted research article 

Santos F, Magalhães S, Henriques MC, Silva B, Valença I, Ribeiro D, Fardilha 

M and Nunes A. Understanding prostate cancer cells metabolome: a 

spectroscopic approach. Submitted to Spectrochimica Acta Part A: Molecular 

and Biomolecular Spectroscopy. 

  

C. Concluding remarks, limitations and future perspectives



 

i 

 

Table of contents 

A. General Introduction and Aims ................................................................................. 1 

1. Spectroscopic features of cancer cells: FTIR spectroscopy as a tool for early 

diagnosis .......................................................................................................................... 3 

1.1 Abstract .............................................................................................................. 5 

1.2 Introduction ......................................................................................................... 5 

1.3 FTIR Spectroscopy ............................................................................................. 6 

1.4 Cell lines for in vitro study of cancer ................................................................... 8 

1.5 FTIR spectroscopy applied to cancer cell lines ................................................... 8 

1.5.1 Spectral characteristics of cancer cell lines .................................................. 9 

1.5.2 Potential spectral biomarkers ......................................................................14 

1.5.3 Multivariate analysis applied to FTIR spectra of cancer cell lines ................15 

1.6 Concluding remarks ...........................................................................................16 

1.7 References ........................................................................................................18 

2. Aims .........................................................................................................................25 

B. Results .......................................................................................................................27 

3. Understanding prostate cancer cells metabolome: a spectroscopic approach ..........29 

3.1 Abstract .............................................................................................................30 

3.2 Introduction ........................................................................................................30 

3.3 Material and Methods ........................................................................................32 

3.4 Results ..............................................................................................................34 

3.5 Discussion .........................................................................................................40 

3.6 References ........................................................................................................45 

C. Concluding remarks, limitations and future perspectives .....................................53 

4. Concluding remarks ..................................................................................................55 

5. Limitations and future perspectives ...........................................................................57 



 

ii 

 

Table of Figures 

Figure A.1 ........................................................................................................................ 10 

Figure B.1 ........................................................................................................................ 36 

Figure B.2 ........................................................................................................................ 37 

Figure B.3 ........................................................................................................................ 37 

Figure B.4 ........................................................................................................................ 38 

Figure B.5 ........................................................................................................................ 39 

Figure B.6 ........................................................................................................................ 39 

Figure B.7 ........................................................................................................................ 40 

 

 

 



 

iii 

 

Table of Tables 

Table A.1 ........................................................................................................................... 9 

Table A.2 ......................................................................................................................... 14 

Table B.1 ......................................................................................................................... 33 

 



 

iv 

 

List of Abbreviations 

ATR  Attenuated total reflectance 

BPH  Benign prostatic hyperplasia 

FTIR  Fourier-transform infrared spectroscopy 

IR  Infrared 

NMR  Nuclear magnetic resonance 

PBS  Phosphate-buffered saline 

PC  Principal component 

PCA  Principal component analysis 

PLS-DA Partial least square – discriminant analysis 

PCa  Prostate cancer 

PSA  Prostate-specific antigen 

TIR  Total internal reflection



 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. General Introduction and Aims 



 

 



General Introduction and Aims 

    3 
 

1. Spectroscopic features of cancer cells: FTIR spectroscopy as a tool for 

early diagnosis 

 

Francisco Santosa,b, Sandra Magalhãesa, Magda Carvalho Henriquesb, Margarida 

Fardilhab and Alexandra Nunesa 

 

a iBiMED – Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 

Aveiro, Portugal 

b Signal Transduction Laboratory, iBiMED – Institute of Biomedicine, Department of 

Medical Sciences, University of Aveiro, Aveiro, Portugal 

 

Corresponding author: Alexandra Nunes, iBiMED – Institute of Biomedicine, Department 

of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal. E-

mail: alexandranunes@ua.pt 



 

    
 



General Introduction and Aims 

    5 

 

1.1 Abstract 

Globally, cancer is one of the leading causes of death, so the development of strategies 

for an early diagnosis of cancer is of great importance. Biochemical alterations precede 

morphological changes in cells and tissues, so studying cancer metabolome seems like a 

reasonable approach for early diagnosis, prognosis and to follow treatment progression. 

Fourier-transform infrared (FTIR) spectroscopy is a valuable tool for studying the 

metabolome of biological samples, such as cancer cell lines. Unlike staining procedures 

and other histopathologic approaches, this technique is rapid, non-destructive and does 

not require reagents. The spectral differences that result from probing the biochemical 

composition of cancer and normal cells are indicative of distinct metabolic profiles, which 

allow the discrimination of different cells. Using FTIR spectroscopy and multivariate 

statistical analysis, several alterations concerning the content of lipids, proteins, nucleic 

acids and carbohydrates have been identified in cancer cells, some of which can be 

regarded as potential biomarkers. This review focuses on FTIR spectroscopy as a 

metabolomics tool to study and characterize cancer cell lines. 

1.2 Introduction 

Cancer is the second leading cause of death worldwide. It is estimated that there are 14 

million new cases of the disease every year, causing almost 9 million deaths (1,2). 

Despite the efforts in finding new diagnostic and therapeutic strategies, cancer patients 

exhibit relatively low survival rates. One of the reasons for that is the fact that the disease 

is often detected when it is well established, meaning that it is diagnosed at a late stage, 

only when morphological alterations are observed, in many cases resulting in a poor 

prognosis (3). Furthermore, costs associated with cancer treatment are a huge problem 

for healthcare systems, so it is imperative to discover new strategies to diagnose cancer 

as early as possible (4,5).  

Similar to every other disease, cancer exhibits several cellular and molecular alterations 

(6–8). Because cancer cells display a very distinct and unique metabolic phenotype, 

cancer is basically considered a metabolic disease. Moreover, an altered metabolism has 

been recognized as one of the hallmarks of cancer (9,10). Since it is the endpoint of 

cellular biological processes, metabolism carries an imprint of the cell’s phenotype and, 

therefore, is indicative of its activity. Common alterations present in several types of 

cancer cells include increased glucose uptake, increased rate of glycolysis, decreased 
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mitochondrial activity, low bioenergetic status and abnormal phospholipid metabolism 

(11–13). In addition to these general metabolic alterations, specific metabolites have been 

implicated in particular types of cancer, such as 1-stearoylglycerol, citrate and spermine in 

prostate cancer (14,15) and glycine in breast cancer (16). Thus, measuring metabolites 

themselves appears to be a reasonable approach to study diseased cells (17).  

The study of the metabolome provides rapid, sensitive and reproducible data and has 

been widely used to understand phenotypic and metabolic alterations associated with 

cancer cells (18–20). The main advantage of metabolomics lies on the fact that the 

metabolome can reflect early changes that occur in the cell, allowing the  identification of 

diagnostic biomarkers before morphological changes occur (18,21). Furthermore, 

metabolomics allows to monitor the efficacy of medical interventions and the 

understanding of molecular mechanisms involved in cancer and carcinogenesis (21,22). 

The main metabolomic techniques used for metabolic fingerprinting are nuclear magnetic 

resonance (NMR) spectroscopy, mass spectrometry and vibrational spectroscopy, which 

includes FTIR spectroscopy (17,23). The latter has gained relevance in biomedical 

research because it provides an inexpensive, rapid, high-throughput and non-destructive 

analysis of a wide range of samples, including biological fluids, tissues and cells (24,25). 

FTIR spectroscopy probes the chemical composition and molecular structure of the 

analyzed samples (17,26). Moreover, since biochemical alterations lead to spectral 

differences, it is possible to discriminate samples with distinct metabolic profiles (3,27). In 

this review, we intend to explore the importance of FTIR spectroscopy in cancer 

metabolomics and compile work that has been conducted in the study of cancer cell lines 

using FTIR spectroscopy.  

1.3 FTIR Spectroscopy 

FTIR spectroscopy is a form of vibrational spectroscopy. Therefore, it is based on the 

vibrations of the atoms in a molecule, caused by the interaction of infrared (IR) radiation 

with matter (28–30). However, not every molecule shows IR absorptions: only the 

vibrations that cause a change in the dipole moment of the molecule absorb IR radiation, 

and the larger this change, the more intense the absorption band will be (29). Molecular 

vibrations that are produced (mainly stretching and bending) are specific to the 

composition and structure of analyzed samples (24,26,29). The IR region can be divided 

into three regions: near-IR (13,000 – 4,000 cm-1), mid-IR (4,000 – 400 cm-1) and far-IR (< 

400 cm-1) (29). Nevertheless, many of the studies that have been conducted regarding 
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FTIR spectroscopy and cell lines included only the mid-IR region because, aside from 

being very informative, most of the molecules absorb its radiation (31,32). 

FTIR spectroscopy has shown potential as a tool for analyzing cells. Unlike 

histopathologic techniques, FTIR spectroscopy is rapid, non-invasive, cost-effective, easy 

to operate, reagent-free and requires minimal sample preparation. Furthermore, 

experimental materials can be re-used for further analysis and, as it is a method without 

technician interference, it tends to be less subjective (17,25,30). Despite these great 

advantages, one of the main disadvantages of this technique is the strong absorption that 

water exhibits in the mid-IR region. As biological tissues and cells are mainly composed 

by water, this may constitute a problem in FTIR analysis of biological samples. 

Nevertheless, this drawback can be overcome simply by dehydrating the samples, ridding 

them of the water (17,33–35). 

Since IR spectra reflect the chemical composition of a given sample, alterations that occur 

in key macromolecules, such as proteins, lipids, carbohydrates and nucleic acids, can be 

monitored (36–39). Furthermore, IR spectrum can be considered a molecular fingerprint of 

the sample, meaning that changes that occur in biomolecules, for instance, during 

carcinogenesis, will modify this fingerprint, enabling the discrimination between cancer 

and normal cells (37,40–42). 

To analyze FTIR data, both direct spectra analysis and statistical tools can be used. In 

spite of its importance, direct analysis of IR spectra is difficult and subjective, so 

multivariate statistical tools are widely used instead to study metabolomics data (43,44). 

One of the most commonly used tools is principal component analysis (PCA), which is an 

unsupervised model, so it does not require an initial knowledge about the samples 

(43,45). PCA reduces thousands of variables characteristic of a spectrum to a few 

principal components and is used as an exploratory tool that groups samples according to 

shared similarities (43,46). The results of a PCA can be presented in the form of score 

and loadings plots; score plots present the separation of groups observed in the samples, 

while loadings plots indicate variables that are responsible for the discrimination (44,46). 

After the samples are analyzed with an unsupervised model, other statistical methods can 

be applied, such as partial least square – discriminant analysis (PLS-DA). This is a 

supervised model, meaning that an initial knowledge about the samples is required (e.g. 

cancer cells vs. normal cells) and can be used if the discrimination provided by PCA is 

insufficient (43,44,47). After the use of appropriate multivariate analysis tools, it is possible 
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to create quantitative and qualitative classification models that make analysis of 

spectroscopic data more objective and, in some cases, almost automatic. 

1.4 Cell lines for in vitro study of cancer 

Cells are composed by several macromolecules, such as proteins, lipids, nucleic acids 

and carbohydrates (24). Therefore, the study of cells can provide a great deal of 

information regarding metabolic processes and absence or presence of disease (48). 

Human cancer-derived cell lines are considered an important asset in biomedical research 

among the other tools of studying cancer. Since they offer an almost unlimited source of 

cells, are relatively easy to work with, exhibit a high degree of homogeneity and provide 

consistent and reproducible results, cancer cell lines have become the most used 

experimental model to study cancer. Furthermore, the use of cancer cell lines evades 

ethical issues that are associated with the use of animal and human tissues (49,50). 

Cancer cell lines are widely used to study the biology of cancer and in the development 

and testing of anticancer drugs, and many of the results that are obtained with cell lines 

are extrapolated to human cancers in vivo (51–55). The most commonly used approaches 

for the study of cells rely on staining procedures, which can be expensive, time-

consuming and potentially cause harmful effects on the cells (56). Therefore, new 

approaches to study cell lines, such as FTIR spectroscopy, have emerged in the last 

years, showing promising results (36,41,57). 

1.5 FTIR spectroscopy applied to cancer cell lines 

FTIR spectroscopy has proven to be a valuable tool in cancer metabolomics. When 

analyzing biological samples, such as cells, there are key spectral regions that need to be 

considered. The 3000 – 2800 cm-1 region is mainly associated to lipids. Proteins are 

mostly characterized by two bands in the 1800 – 1300 cm-1 region: amide I, between 1700 

and 1600 cm-1, and amide II, which peaks at ~1540 cm-1, which are sensitive to the 

secondary structure of proteins; however, the amide I band is the most frequently used for 

this type of analysis. Also, in the 1800 – 1300 cm-1 region, the shoulder band at ~1740 cm-

1 is assigned to phospholipids, and the bands between 1480 and 1300 cm-1 have been 

attributed to amino acid side chains and fatty acids. Lastly, the major bands in the 1300 – 

900 cm-1 region arise mainly due to carbohydrates (particularly glycogen) and phosphates 

associated with nucleic acids (17,58). Furthermore, any changes in intensity or shape of 

bands or shifts to lower or higher frequencies, may indicate cellular alterations (58). A 
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more detailed description of the mid-IR bands and their assignments can be consulted in 

table 1. 

 Table A.1: Major vibrational modes and corresponding assignments found in biological samples. 

Wavenumber (cm-1) Vibrational mode 
Assigned biochemical 

component 
Reference 

~3300 N-H stretching Amide A: peptide, protein (28,83) 

~3100 N-H stretching Amide B: peptide, protein (28,83) 

~2960 
CH3 asymmetric 

stretching 

Lipids (24,70,71) ~2925 
CH2 asymmetric 

stretching 

~2870 CH3 symmetric stretching 

~2853 CH2 symmetric stretching 

~1740 C=O stretching Phospholipid esters (24,48,83) 

~1683 C=O stretching, C-N 
stretching, in-plane N-H 

bending 

Amide I: antiparallel β-sheets (24,57) 

~1650 Amide I: α-helices (24,57) 

~1635 Amide I: parallel β-sheets (24,57) 

~1550 – 1520 
N-H stretching, C-N 

stretching, C-C stretching 
Amide II (24,83) 

~1460 – 1400 
CH3 and CH2 
deformation 

Membrane lipids and proteins (67,74,83) 

~1380 CH3 symmetric wagging 
Phospholipid, fatty acid, 

triglyceride 
(83) 

~1310 – 1200 

N-H bending, C-N 
stretching, C=O 
stretching, C-C 
stretching, CH3 

stretching 

Amide III (24,83,84) 

~1240 
PO2

-
  symmetric 

stretching 
Nucleic acids (27,69) 

1170 C-O stretching 
Tyrosine, serine and threonine 

of cell proteins 
(67) 

1155 
C-O stretching, C-O-H 

bending 
Carbohydrates (67) 

1122 – 1120 
Vibration mode of the 

PO2
-
 of the 

phosphodiester groups 
RNA (69,71) 

1086 – 1080 
PO2

- symmetric 
stretching 

DNA, RNA, phospholipid, 
phosphorylated protein 

(67,69) 

1047, 1025 
C–O stretching and 
bending of C–OH 

Glycogen (67) 

972 – 970 
PO3

2- symmetric 
stretching 

Dianionic phosphate 
monoesters of phosphorylated 

proteins and nucleic acids 
(67,70) 

1.5.1 Spectral characteristics of cancer cell lines 

A typical IR spectrum of cancer cells is presented in figure A.1. The spectrum represents 

an average of 8 spectra, which were acquired in a Fourier-transform infrared spectrometer 

(Alpha Platinum ATR, Bruker), controlled by OPUS software (©Bruker). The spectra were 

obtained over the wavenumber range 4000-600 cm-1, with a resolution of 8 cm-1 and 64 
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co-added scans. The cell suspension was air-dried to remove water and, therefore, 

prevent its strong absorption. The spectral assignments for the cells were made according 

to table A.1. 

 
Figure A.1: IR spectrum of prostate cancer cells LNCaP in the 4000-600 cm-1 region with the main 
spectroscopic signals. The spectrum represents the average of 8 spectra. X-axis: wavenumber (cm-1); Y-axis: 
arbitrary units (AU). 

The study of cancer cell lines with FTIR spectroscopy came to light when Rigas and 

colleagues observed that several colon adenocarcinoma cell lines (LoVo, SW1116, HCT-

15, SW403, SW480) had similar spectra to those of colon cancer tissues (59). In a 

subsequent study, Rigas and Wong compared the same cell lines and an additional 

adenocarcinoma lineage (SKC01) to normal and malignant colon tissues. They observed 

that these cells shared many characteristics with malignant colon tissues, such as an 

increased hydrogen-bonding of the phosphodiester groups of nucleic acids (57). In 

addition, they observed that the symmetrical PO2
- stretching causes a band shift from 

1082 cm-1 (in normal tissue) to 1086 cm-1 (in adenocarcinoma cells). In the 1010 – 950 

cm-1 region, two bands were discovered in adenocarcinoma cell lines: one at 972 cm-1, 

assigned to nucleic acids and symmetrical stretching mode of dianionic phosphate 

monoesters of phosphorylated proteins, and the other at 991 cm-1, which varies amongst 

cell lines and wasn’t assigned to any particular biochemical component (57). Previous 

results obtained with HCT-15 cells also indicated that the phosphodiester stretching bands 

are related to nucleic acids (60). Lastly, Rigas and Wond studied the amide I band in the 

1700 – 1600 cm-1 region, assigned to the in-plane C=O stretching vibration weakly 

coupled with C-N stretching and in-plane N-H bending of the amide groups of proteins. 

They observed an increase in the relative amount of β-sheets, in relation to α-helical 

segments, in adenocarcinoma cells and malignant tissue in comparison with normal tissue 

(57). It is already known that β-sheets are highly present in less soluble proteins that are 
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likely to form aggregates (61,62). Similar to neurodegenerative diseases, protein 

aggregation has been found to be present in many types of tumors and cancer cell lines, 

mainly involving aggregates of the tumor suppressor p53 (63–65), which can play an 

important role in carcinogenesis and drug resistance (66). 

In a study comparing the uterine cervical adenocarcinoma cell line SiSo with cervical 

adenocarcinoma tissue and exfoliated malignant and normal cervical cells, Neviliappan 

and colleagues observed that several spectral bands of the malignant tissue and 

exfoliated cells and the SiSo cell line were noticeably different from those of the normal 

exfoliated cells (67). The bands at 1047 and 1025 cm-1 (usually called glycogen bands) 

are associated mostly with C-O stretching and bending of the C-OH groups of 

carbohydrates and were significantly reduced in the malignant tissue and exfoliated cells, 

and in the SiSo cell line (67). Similarly, the band at 1155 cm-1, assigned to the C-OH 

stretching mode of carbohydrates, exhibited a lower peak in the abnormal cases due to 

the decrease of the glycogen levels. A shift in the frequency from 1080 cm-1 (in normal 

cases) to 1085 cm-1 (in abnormal cases) was also observed, indicating a strong 

intermolecular interaction that occurs in nucleic acids, suggesting that DNA packing is 

tighter and higher in malignant tissue and exfoliated cells and in the SiSo cell line. Also, 

an increase of intensity of the band at 970 cm-1 was observed in the abnormal cases. 

Furthermore, a peak at 1170 cm-1 was detected in malignant tissue, exfoliated cells and 

SiSo cell line, which is derived from the C-OH groups of tyrosine, serine and threonine of 

cell proteins, indicating an increase in the phosphorylation of the C-OH groups (67). It has 

been shown that an increase of the phosphorylation of these three amino acids by 

oncoproteins is an important event that occurs during carcinogenesis (68). Another shift 

observed in the spectra of the malignant tissue, exfoliated cells and the SiSo cell line 

occurred in the band at 1400 cm-1: there was an increase of the intensity of this band in 

these samples, which might be related to structural changes in the methylene chains of 

lipids (67). 

Later, in 2004, Fujioka and colleagues applied FTIR spectroscopy to compare three 

gastric cancer cell lines (AGS, SNU-1 and NCI-N87) with normal gastric mucosal epithelial 

cells (69). In this study, they analyzed the spectral region between 1650 and 925 cm-1 and 

were able to find significant differences between cells, mainly an increase of intensity of 

bands at 1240, 1120 and 1080 cm-1 (69). Regarding the band at 1240 cm-1, a shift to a 

higher frequency was observed in cancer cells (peak maximum absorbance at ~1241.5 

cm-1), compared to the peak maximum absorbance at ~1236.9 cm-1 presented by the 



General Introduction and Aims 

    12 

 

normal epithelial cells, suggesting an alteration in the hydrogen bonds in the 

phosphodiester groups of the DNA in cancer cells. As for the band at 1080 cm-1, authors 

observed a shift to a higher frequency in two cancer cells (AGS and SNU-1) in 

comparison to the one detected in normal cells (1085.7 cm-1 and 1081.9 cm-1, 

respectively). This shift can be attributed to the tighter packing of DNA molecules in the 

cancer cells. On the other hand, a shift to a lower frequency was registered in the NCI-

N87 cell line (1081.5 cm-1) (69). Finally, the increased IR absorbance observed in the cell 

lines in the band at 1120 cm-1 was due to an increment of RNA content in these cells. 

Given these results, the authors concluded that the changes observed in the spectra were 

all associated with an increase in the phosphate backbone, corresponding to an increase 

in DNA and RNA content in the cancer cell lines (69). 

A few studies using FTIR spectroscopy have also been carried out in breast cancer cell 

lines. In 2008, Hwang and colleagues studied the 4000-2400 cm-1 region to evaluate lipids 

in cell lines MCF 10A (normal cell line), MCF7 (cancer cell line) and MDA-MB-231 

(invasive cancer cell line) (70). They observed major absorption bands at 3683, 3664 

3641, 3621, 2923, 2873 and 2854 cm-1, with notable differences at 3621 and 2873 cm-1 

that were only observed in the MCF 10A cell line. Their results suggest that cancer cells 

exhibit a stronger bonding structure in the membrane lipids compared to normal cells (70). 

In 2010, Mostaço-Guidolin and colleagues focused on the study of the MCF7 and SKBr3 

cells, which are estrogen receptor positive and negative, respectively (71). Their results 

indicate that the MCF7 cell line shows increased absorbance intensity in the bands at 

1085 (DNA), 1542 (amide II) and 1650 cm-1 (amide I), compared to the SKBr3 cell line. 

Furthermore, differences in the 3000-2800 cm-1 region were detected. Their results 

suggest that SKBr3 cells show an increased IR absorbance in the lipids region, mainly in 

the bands at 2962 and 2924 cm-1 (71). 

In the field of lung cancer, Lee and colleagues conducted a study in which they compared 

two cancer cell lines (NCI-H358 and NCI-H460) to normal human bronchial epithelial 

(NHBE) cells (72). They observed that the bands at 1085 and 970 cm-1 were increased in 

the cancer cells. These bands are assigned to the symmetric stretching of PO3
2- and PO2

-, 

respectively, and the authors attributed this result to an increase of phosphorylation that 

occurs in cancer cells. Apart from this result, they verified that bands at ~1030 and ~1155 

cm-1 were more intense in normal cells, suggesting a decrease of glycogen in cancer 

cells, as was previously reported by Wong and colleagues (72,73). 
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Hematological cancers have also been subject to IR spectroscopic studies. Babrah et al. 

studied five cell lines derived from human leukemias and lymphomas: Karpas 299 (T-cell 

lymphoma cell line), REH (acute lymphoid cell line), RCH-ACV (acute lymphoid cell line), 

HL60 (acute myeloid leukemia cell line) and Meg01 (chronic myeloid cell line) (74). The 

results indicated notable changes in the 1500-900 cm-1 region, mainly an increase of the 

intensity of the amide III and DNA bands. This increase might indicate an increment of 

cellular nuclear content, shedding light on the biochemical differences that exist between 

the cell lines (74). 

In what concerns investigation of drug-resistant cell lines, the band at 1740 cm-1 was 

subject to a couple of studies. Gaigneaux and colleagues were able to determine 

significant differences in the lipid content between sensitive K562 cells derived from 

human chronic myelogenous leukemia (K562/DNS) and its multiresistant variant 

(K562/DNR). A reduction of the intensity of the band in K562/DNR cells suggested a 

decrease of lipid content (75). Zwielly and colleagues focused on the discrimination of two 

melanoma cell lines based on their sensitivity to cisplatin: GA (sensitive parental cell line) 

and GAC (cisplatin-resistant cell line derived from GA). Unlike K562/DNR cells (75), these 

results indicated an increase of the intensity of the band at 1740 cm-1 in the GAC cell line 

(38). These opposite results can be attributed to the number of passages the cells were 

subjected to. Le Moyec et al. verified that after several passages in the absence of the 

anticancer drug, K562 cells partially recovered their lipid content (76). 

A recent investigation, carried out by Minnes et al., determined that FTIR spectroscopy 

could also be useful in distinguishing cancer cells with distinct metastatic potentials (77). It 

has already been proven that metastatic cells exhibit a higher level of fluidity of the cell 

membrane, which can be associated with a higher level of hydration (78,79). Additionally, 

an increase in the level of hydration is followed by an increment in the absorption intensity 

of proteins (80). In this study, two pairs of melanoma cell lines were utilized: murine B16-

F1 and B16-F10, and human WM-115 and WM-266.4. It was concluded that cells with a 

higher metastatic potential (B16-F10 and WM-266.4) exhibited a higher absorption 

intensity of the band at 1540 cm-1 (amide II), in comparison to the cells with a low-

metastatic potential (B16-F1 and WM-115), which can be attributed to the higher level of 

hydration of the cell membrane (77). To sum up all these results, table A.2 presents the 

main spectral characteristics of cancer cell lines. 
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Table A.2: Specific spectral characteristics for cancer cell lines. 

Mid-IR region IR frequency Alterations in the IR spectra 

3000 – 2800 cm-1 

2962 cm-1 
Increased intensity in SKBr3 

2924 cm-1 

2873 cm-1 Increased intensity in MCF 10A 

2852 cm-1 
Increased intensity in GAC 

1800 – 1300 cm-1 

1740 cm-1 
Decreased intensity in K562/DNR 

1700 – 1600 cm-1 
Increased number of β-sheets in LoVo, SW1116, HCT-

15, SW403, SW480 and SKC01 

1650 cm-1 Increased intensity in MCF7 

1542 – 1540 cm-1 Increased intensity in B16-F1, WM-115 and MCF7 

1400 cm-1 Shift in the spectrum of SiSo 

1300 – 900 cm-1 

1242 cm-1 
Increased intensity in Karpas 299, REH, RCH-ACV, 

HL60 and Meg01 

1240 cm-1 Shift in the frequency in AGS, SNU-1 and NCI-N87 

1170 cm-1 Increased intensity in SiSo 

1155 cm-1 Decreased intensity in SiSo 

1120 cm-1 Increased intensity in AGS, SNU-1 and NCI-N87 

~1086 – 1080cm-1 

Shift in the frequency in LoVo, SW1116, HCT-15, 
SW403, SW480, SKC01, SiSo, AGS, SNU-1 and NCI-

N87 
 

Increased intensity in NCI-H358, NCI-H460 and MCF7 

1047 cm-1 and 1030 - 1025 
cm-1 

Decreased intensity in SiSo, NCI-H358 and NCI-H460 

991 cm-1 
Present in LoVo, SW1116, HCT-15, SW403, SW480 

and SKC01 

972 – 970 cm-1 
Increased intensity in LoVo, SW1116, HCT-15, 

SW403, SW480, SKC01, SiSo, NCI-H358 and NCI-
H460 

1.5.2 Potential spectral biomarkers 

Apart from the spectral differences between different cancer cells, ratios between specific 

mid-IR bands have been regarded as potential biomarkers. Gazi et al. explored the peak 

area ratio of 1030 cm-1/1080 cm-1, which corresponds to the glycogen/phosphate ratio, as 

a potential diagnostic biomarker (36). This ratio correlates with the metabolic turnover of 

cells, and lower values are observed in malignant cell lines. However, non-malignant cell 

line PNT2-C2 also exhibits a low ratio, which the authors attributed to the transformation 

process that cells had to undergo in order to become immortal (36). 

In a study comparing two K562 cell lines (75), a decrease of the lipid/protein and nucleic 

acid/protein ratios, in the 3000-2800 cm-1 and 1300-900 cm-1 regions, respectively, was 

detected in the K562/DNR cells. However, a higher 2871 cm-1/2853 cm-1 ratio was 

observed in K562/DNR cells, which can be attributed either to the decrease of lipid 

content in resistant cells or to the modification of the membrane composition (75). 

Characteristic IR absorptions were also found at the bands at 2958 cm-1 (methyl groups of 
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lipids and proteins) and 2852 cm-1 (methylene chains in membrane lipids) in GA and GAC 

cells, and the ratio between these two frequencies was considered a potential biomarker 

to distinguish the two types of cells, with a lower ratio observed in resistant cells (38). 

Furthermore, lipid/protein ratios using the intensities at 1740 and 1400 cm-1 were 

assessed, and a noteworthy increase of the ratio in resistant cells was detected. The 

increase of the intensity of the bands at 2852 and 1740 cm-1 can be used to monitor lipids 

in resistant cells and, therefore, is considered a diagnostic parameter that can be 

associated with drug resistance (38). Also, another potential biomarker was found in the 

1200-1000 cm-1 region, which was associated to the ratio between RNA (1121 cm-1) and 

DNA (1022 cm-1). It was found that, in resistant cells, this ratio was higher compared to 

normal cells (38). 

1.5.3 Multivariate analysis applied to FTIR spectra of cancer cell lines 

Besides direct spectra analysis, multivariate statistical analysis is a powerful tool to 

analyze FTIR spectra and has gained an important role in the discrimination of several cell 

lines (36,41). Wood et al. carried out a study in which they compared HeLa cells (derived 

from cervical cancer) to normal and malignant exfoliated cells (81). Using PCA a clear 

separation was observed between normal and malignant exfoliated cells. Furthermore, 

HeLa cells were grouped with the malignant cells, validating the spectral similarities 

between HeLa and malignant exfoliated cells (81). 

In 2003, Gazi and colleagues were able to discriminate, for the first time, prostate cancer 

cell lines derived from distinct metastatic sites based on their IR spectra (36). Using PCA, 

they discriminated three cell lines used as models for prostate cancer: DU 145 (derived 

from brain metastasis), PC-3 (derived from bone metastasis) and non-malignant PNT2-C2 

(normal prostate epithelial cells transformed with the genome of SV40 virus to express the 

large T antigen) (36). In 2009, Harvey and colleagues carried out a similar study, in which 

they also compared prostate cancer cell lines: PC-3, PNT2-C2 and LNCaP, which is 

derived from lymph node metastasis. Using the spectral region between 1481-800 cm-1, 

they were able to discriminate the cells based on their spectra and discard possible 

factors that could have influenced the discrimination of the prostate cell lines reported by 

Gazi et al. (41). To do so, they studied the effect of the growth media and the 

nucleus/cytoplasm ratio on this discrimination and verified that neither were able to 

explain it. Therefore, they concluded that the intrinsic biochemical differences between the 
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cell lines were the main factor for discrimination, proving also the robustness of PCA 

analysis (41). 

Regarding human melanoma cells studied by Zwielly et al., a distinct discrimination 

between the GA and GAC cells was observed after PCA analysis (38). Also, human 

leukemia and lymphoma cell lines investigated by Babrah et al. were clearly discriminated 

by PCA, unveiling the potential of both FTIR spectroscopy and multivariate analysis for 

the early detection of leukemia and lymphoma (74). 

Despite these promising results, the use of cell lines as cancer models was put in doubt in 

a study carried out by Baker and colleagues on the prostate-derived RWPE family of cell 

lines (RWPE-1, RWPE-2, WPE1-NA22, WPE1-NB14, WPE1-NB11 and WPE1-NB26) 

(47). Non-tumorigenic cell line RWPE-1 is derived from a normal adult prostate epithelial 

cell transformed with a single copy of the human papillomavirus-18 and the tumorigenic 

cell line RWPE-2 is the result of the transformation of RWPE-1 cells with Ki-ras. Also, 

WPE1-NA22, WPE1-NB14, WPE1-NB11 and WPE1-NB26 cell lines were created upon 

the exposure of RWPE-1 to N-methyl-N-nitrosourea and exhibit increasing invasiveness 

(47). Using principal component – discriminant function analysis (PC-DFA), authors 

observed a clear discrimination of the cells. However, these results indicated that 

biochemical changes associated with invasiveness were not responsible for the 

discrimination, but rather the biochemical changes induced by different transformation 

methods (genetic vs. genetic and chemical) (47). Despite this, it is important to point out 

that FTIR spectroscopy is a suitable technique to study cancer cell lines and it is important 

to continue the development of new spectroscopic based applications for studying 

malignant cells, keeping in mind that the appropriate controls must always be used in 

order to be confident of the results (82). Apart from the control sample selection, it is 

important to define and validate all the experimental design, in particular the biological 

replicates and the standardization of spectral acquisition conditions. During spectroscopic 

data analysis, after a meticulous and exploratory direct spectra analysis, the choice of pre-

treatments and the selection of the appropriate spectral region to study are of utmost 

importance and crucial to the success of the experiment. 

1.6 Concluding remarks  

Cancer cells have distinct features that separate them from normal cells. Several 

alterations regarding the content of lipids, proteins, nucleic acids and carbohydrates have 

been identified in cancer cells by FTIR spectroscopy. 
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Membrane lipids seem to have a stronger bonding structure in cancer cells in comparison 

to normal cells. Furthermore, analysis of the band at 1740 cm-1 can give insights on drug 

resistance. As for differences detected in the main protein bands (amide I and amide II), 

the most striking alteration is the increase of the relative amount of β-sheets in some 

cancer cells, which might indicate protein aggregation. Carbohydrates, particularly 

glycogen, are found to be decreased in cancer cells in comparison to normal cells. 

Furthermore, differences regarding DNA and RNA have been detected and are mainly 

associated with an increase of their content and a tighter packing of DNA in cancer cells.  

This review highlighted the potential of FTIR spectroscopy to detect biochemical 

differences between distinct groups of cells. Given the fact that biochemical changes 

precede morphological alterations, it is likely that this technique could allow for an early 

diagnosis of cancer. Nevertheless, other metabolomics techniques, such as NMR and 

mass spectrometry, should be considered to complement results obtained by FTIR 

spectroscopy and discover specific metabolites that could be involved in cancer initiation 

and progression. 
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2. Aims 

This present work aimed at performing a FTIR spectroscopy study of five different 

prostate cell lines:  PNT1A and PNT2 (derived from normal epithelial cells), 22Rv1 

(derived from a primary tumor), LNCaP (derived from a lymph node metastasis) and PC-3 

(derived from a bone metastasis). With this study, we intend to: 

• Use FTIR spectroscopy to identify the different cell lines; 

• Elucidate on biochemical differences between primary tumor and normal cells; 

• Give insight on biochemical alterations that differentiate primary tumor cells from 

metastatic cells. 
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3.1 Abstract 

Prostate cancer (PCa) is the second most common neoplasia in men. Because it is often 

diagnosed at a late stage, early diagnostic biomarkers are needed. Studying cancer 

metabolome, which reflects early changes that occur in cells, has gained relevance and 

may contribute to the identification of early diagnostic biomarkers and understanding 

tumor biology. Fourier-transform infrared (FTIR) spectroscopy is a metabolomics 

technique that probes the biochemical composition of the analyzed samples and allows to 

discriminate samples with distinct metabolic profiles, allowing the discrimination between 

cancerous and non-cancerous samples. In this study, FTIR spectra were acquired from 

PCa and normal prostate cell lines and analyzed by principal component analysis (PCA). 

Our results indicate a clear discrimination between the different cell lines, meaning that 

they exhibit distinct metabolic profiles. This discrimination can be attributed to an altered 

lipid metabolism (3000-2800 cm-1, 1800-1700 cm-1 and 1500-1400 cm-1) and the presence 

of protein aggregates (1622 cm-1). These results suggest that studying cancer 

metabolome with FTIR spectroscopy not only allows the understanding of tumor 

pathogenesis, but also may be a valuable tool for the identification of early diagnostic 

biomarkers, which are crucial for a good prognosis. 

3.2 Introduction 

Worldwide, 1.1 million new cases of PCa were registered in 2012, 307,000 of which 

resulted in death. These figures place PCa as the second most common oncological 

disease in men, ranking just behind lung cancer (1). Many risk factors have been 

associated with PCa, such as race, family history and increasing age, with more than 60% 

of new cases being diagnosed in men aged between 60 and 70 years (1,2).  Additionally, 

sexually transmitted infections and dietary factors are also linked to the disease (2). 

One of the most conventional methods for diagnosing PCa include prostate-specific 

antigen (PSA) testing, which is based on its concentration in blood serum (3). High levels 

of PSA are often attributed to PCa. However, low levels have already been observed in 

PCa patients and high levels are often present in non-cancerous diseases, such as 

benign prostatic hyperplasia (BPH) (3,4). High levels of PSA in blood serum require a 

tissue biopsy, which is classified according to the Gleason grading system (5). Given the 

lack of specificity of the PSA test, many false positives are usually detected, resulting in a 

significant number of unnecessary biopsies (6). Furthermore, the Gleason grading system 

not always provides a consistent correlation between tissue architecture and biochemical 



Results 

31 

 

progression and is subject to a lack of reproducibility that arises from intra and 

interobserver variability (7,8). Given these drawbacks, there is a need for the development 

of molecular-based techniques to grade tissue samples in a reliable and reproducible 

manner (9,10). 

An altered metabolism has been recognized as one the hallmarks of cancer (11). 

Metabolomics has been a valuable tool in the field of oncology, allowing the discovery of 

biochemical profiles and, therefore, of differences between healthy and cancer metabolic 

phenotypes (12). Since the metabolome reflects early changes that occur in the cell, 

metabolomics may allow for an early intervention because metabolic alterations are 

believed to precede any morphological alterations that might occur (13–15). Therefore, 

studying cancer metabolome not only allows the understanding of tumor pathogenesis, 

but also the identification of early diagnostic biomarkers, which are crucial for a good 

prognosis (16,17). 

In recent years, FTIR spectroscopy has emerged as a tool for metabolic profiling. This 

approach is based on the vibrations of the atoms in a molecule caused by the interaction 

of infrared (IR) radiation with matter (18–20). The molecular vibrations that result from this 

interaction are specific to the biochemical composition of the analyzed samples and lead 

to spectral differences between samples, producing a fingerprint of metabolism. FTIR 

spectroscopy is rapid, non-invasive and reagent-free, thus it is a suitable screening 

technique that may allow for the discrimination between healthy and cancer samples (21–

24).  

Biological samples, such as cells, tissues and biofluids, are mainly composed by water. 

Because water has a very strong absorption in the mid-IR region, it masks the absorption 

of other components present in the samples, hindering FTIR analysis. Consequently, 

several of the experiments that have been carried out were performed on dry biological 

samples (25–27). FTIR spectrometers equipped with an attenuated total reflection (ATR) 

element can also be used to overcome the problem concerning water absorption. ATR-

FTIR spectroscopy uses the total internal reflection (TIR) phenomenon. In this technique, 

an IR beam enters the ATR element (which can be a ZnSe, Ge or diamond ATR crystal) 

and undergoes TIR when the angle of incidence is greater than the critical angle. The IR 

beam loses energy when a material that selectively absorbs radiation is in contact with the 

internal reflecting element (IRE). The most important advantages of this technique include 

sample thickness-independent measurements and the ability to analyze live cells in 
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aqueous systems (28). Nonetheless, ATR-FTIR spectroscopy has also been applied to 

air-dried biological samples, such as cell pellets and plasma (25,26). 

Regarding PCa, FTIR spectroscopy has been applied to tissue biopsies and cell lines, 

showing promising results and elucidating on biochemical alterations inherent to the 

disease (16,29–31). Cell lines present certain advantages that validate their use in 

preliminary studies, such as the fact that they exhibit a defined cell state that allows the 

analysis of a target metabolic status. Also, they evade confounding factors characteristic 

of biofluids and tissues (for example, age, diet and gender) (32–34). Nonetheless, cell 

culture suffers for not being able to replicate cell-cell and cell-matrix interactions in the 

tumor microenvironment, which are vital for metabolic alterations that occur with tumor 

progression. Therefore, models that reproduce structure, function and metabolism of in 

vivo tumors should be considered for further validation of in vitro studies (32,35). 

The main objective of this study was to perform a FTIR spectroscopy study of three 

different PCa cell lines (22Rv1, LNCaP and PC-3) and two normal prostate epithelial cell 

lines (PNT1A and PNT2) and identify spectral differences by principal component analysis 

(PCA). To the best of our knowledge, this work is the first to analyze 22Rv1 and PNT1A 

by FTIR spectroscopy. 

3.3 Material and Methods 

Cell culture 

Prostate cancer (22Rv1, LNCaP and PC-3) and normal prostate (PNT1A and PNT2) cell 

lines were cultured in RPMI-1640 culture media, supplemented with 10% FBS and 1% 

penicillin/streptomycin mixture, and maintained in a humidified atmosphere at 37◦C 

containing 5% CO2. All the reagents used in this study were purchased from Thermo 

Fisher Scientific. PNT2 cell line was kindly given by Dr. Ricardo Perez-Tomás (University 

of Barcelona, Spain), and LNCaP and PC-3 were kindly provided by Dr. Rui Medeiros 

(University of Porto, Portugal). 22Rv1 and PNT1A were a kind gift from Dr. Fátima 

Baltazar (University of Minho, Portugal).  A detailed description of each cell line can be 

consulted in table B.1. 
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Table B.1: Main characteristics of the prostate cell lines. 

Cell line Derivation Morphology AR protein Disease Tumorigenic References 

PNT1A 

Normal 

prostate 

epithelial 

cells 

immortalized 

with SV40 

genome 

Epithelial Yes Healthy No (79) 

PNT2 

Normal 

prostate 

epithelial 

cells 

immortalized 

with SV40 

genome 

Epithelial Yes Healthy No (79) 

22Rv1 

Primary 

tumor 

(established 

from 

xenograft 

CWR22R) 

Epithelial Yes Carcinoma Yes (80,81) 

LNCaP 
Lymph node 

metastasis 
Epithelial Yes Adenocarcinoma  Yes (81,82)  

PC-3 
Bone 

metastasis 
Epithelial Yes Adenocarcinoma Yes (81,83,84) 

 

Preparation of cells 

After reaching around 90% of confluency, cells were prepared for FTIR analysis. To 

assess viability, cells were analyzed under the microscope. The culture medium was 

removed from each plate and cells were detached from the plate using a solution of 

trypsin 0,05% and EDTA 1%. To stop the reaction, culture medium was added to the 

plates and the cell suspensions were transferred to separate tubes for centrifugation (3 

minutes, 1000 rpm). Following centrifugation, the supernatant was discarded, and cells 

were resuspended in culture medium. Cells were counted using a TC20™ Automated Cell 

Counter, from BIO-RAD, and a total of 106 cells were used for each replicate (10 

replicates for 22Rv1, 9 for PC-3 and 8 for LNCaP, PNT1A and PNT2). Cells were 

centrifuged for 3 minutes at 1000 rpm to remove the medium and resuspended in 

phosphate-buffered saline (PBS). Washing cells with PBS is essential to remove residual 
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medium and trypsin (36). PBS was removed by centrifugation (3 minutes, 1000 rpm) and 

cell pellets were kept on ice until FTIR analysis. 

FTIR measurements 

FTIR spectra were acquired in ATR mode in a FTIR spectrometer (Alpha Platinum ATR, 

Bruker), and processed using OPUS software (©Bruker). The spectra were obtained over 

the wavenumber range 4000 – 600 cm-1, with a resolution of 8 cm-1 and 64 co-added 

scans. Spectra acquisition was performed in a room with controlled temperature and 

relative humidity (23◦C and 35%, respectively). A background spectrum was acquired with 

the crystal empty before each different cell line and a total of 10 biological replicates for 

22Rv1, 9 for PC-3 and 8 for LNCaP, PNT1A and PNT2 were used. The cell pellet was 

placed on the crystal and spectra were obtained after the samples were completely air-

dried for, approximately, 20 minutes. Between each measurement the crystal was cleaned 

with ethanol 70%, followed by distilled water. 

FTIR data analysis 

An area peak normalization was applied to all the raw spectra, and the normalized spectra 

were derivatized, using the second derivative and Savitzky-Golay method. Spectra were 

processed using The Unscrambler X® software (v.10.4, CAMO, Oslo, Norway). The 

spectral regions 3000-2800 cm-1, 1800-1500 cm-1 and 1500-900 cm-1 were chosen for 

analysis and all spectral assignments were made according to widely cited literature 

references. 

Multivariate analysis 

PCA was applied to the normalized second-derivative spectra of all the cell lines. For 

multivariate analysis, we used the spectral regions between 3000-2800 cm-1, 1800-1500 

cm-1 and 1500-900 cm-1. All the analyses were performed on The Unscrambler X® 

software (v.10.4, CAMO, Oslo, Norway). 

3.4 Results 

Overview of FTIR spectra 

Cell viability was confirmed by observation under the microscope, and each cell pellet 

consisted of mostly viable cells (unviable cells were discarded upon the removal of the 
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culture medium before trypsinization of the cells from the plate). An area peak 

normalization was applied to ensure that the varying cell number between replicates 

would not affect the spectral variances, therefore highlighting differences in biochemical 

structure and not in absorbance intensity (36,37). 

FTIR spectral interpretation 

A complete view of the averaged normalized spectra of each cell line, in the region 

between 4000 and 600 cm-1, can be observed in figure B.1A. A direct spectral analysis of 

LNCaP cells has already been presented by our group (38). Briefly, in the 3000-2800 cm-1 

region (figure B.1B), bands at 2956 and 2871 cm-1 are assigned to the asymmetric and 

symmetric stretching of CH3 chains of lipids, respectively, whereas the bands at 2922 and 

2851 cm-1 are attributed to the asymmetric and symmetric stretching of CH2 chains of 

lipids, respectively (18,23,38,39). In the region between 1800 and 900 cm-1 (figure B.1C), 

the most prominent bands are associated with proteins: amide I (1640 cm-1) and amide II 

(1540 cm-1). The amide I band is attributed to C=O and C-N stretching of proteins, while 

the amide II band is assigned to N-H, C-N and C-C stretching. The amide I band is 

sensitive to the secondary structure of proteins and is frequently used for this type of 

analysis. The amide II band can also be used for studying the secondary structure of 

proteins, although to a lesser extent (38,40–43). Also, in this region, the band at 1740 cm-1 

is assigned to the C=O stretching of phospholipid esters. In the 1500-900 cm-1 region, 

bands between 1480 and 1300 cm-1 are attributed to amino acid side chains and fatty 

acids and the major bands between 1300 and 900 cm-1 arise mainly due to carbohydrates 

(particularly glycogen) and phosphates associated with nucleic acids (18,23,38,39). 
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Figure B.1: Normalized mean spectra of prostate cancer (22Rv1, LNCaP and PC-3) and normal prostate 
(PNT1A and PNT2) cells) in the 4000-600 cm-1 region (A); Amplification of the regions between 3000 and 

2800 cm-1, and 1800 and 900 cm-1. X-axis: wavenumber (cm-1); Y-axis: arbitrary units (AU). 

Principal Component Analysis 

Before PCA analysis, spectra were normalized using an area peak algorithm and a 

second-order derivative using Savitzky–Golay algorithm was performed to resolve 

overlapping peaks and bypass variability between replicates (26,44). PCA allows to 

determine the most important sources of variability between prostate cancer and normal 

prostate cell lines. It provides score plots, which present the separation of groups 

observed in the samples, and loadings plots, which indicate the variables that are 

responsible for the discrimination (40,45). In this study, the spectral regions 3000-2800 

cm-1, 1800-1500 cm-1 and 1500-900 cm-1 were chosen for analysis. 

 Discrimination between primary tumor and normal epithelial cells 

The first approach of this study was to assess whether spectra from cells of localized 

prostate cancer could be discriminated from those of normal prostate epithelial cells. To 

do so, PCA was applied to the spectra of 22Rv1 (cells derived from a primary tumor), and 

PNT1A and PNT2 cells (normal epithelial cells immortalized with SV40 genome).  

PCA results for the 3000-2800 cm-1 range are presented in figure B.2. In the score plot, it 

is possible to observe that these cells are separated by principal component-2 (PC2), and 

that 22Rv1 are in negative PC2, while PNT1A and PNT2 are in positive PC2 (figure B.2A). 

According to the loadings plot, 22Rv1 are mainly characterized by the spectroscopic 
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signals located at 2917, 2874 and 2849 cm-1, while PNT1A and PNT2 are characterized 

by the peaks at 2925 and 2857 cm-1 (figure B.2B).  

 

Figure B.2: PCA score (A) and loadings (B) plots from the normalized second derivative spectra of prostate 
cancer (22Rv1) and normal prostate (PNT1A and PNT2) cell lines on the 3000-2800 cm-1.  

PCA of the spectral region between 1800 and 1500 cm-1 is illustrated in figure B.3. In this 

case, the discrimination between tumor and normal cells is provided by PC3: 22Rv1 are in 

positive PC3, while PNT1A and PNT2 are located in negative PC3 (figure B.3A). The 

loadings plot indicates that the main sources of variability come from the 1700-1600 cm-1 

region.  The main spectral assignments that characterize 22Rv1 are 1679, 1665, 1648, 

1622 cm-1, and PNT1A and PNT2 are characterized by the peaks at 1653 and 1636 cm-1 

(figure B.3B).  

 

Figure B.3: PCA score (A) and loadings (B) plots from the normalized second derivative spectra of prostate 

cancer (22Rv1) and normal prostate (PNT1A and PNT2) cell lines on the 1800-1500 cm-1. 
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In the 1500-900 cm-1 region, 22Rv1 are present in negative PC2, while PNT1A and PNT2 

are located in the positive PC2 (figure B.4A). The main spectral assignments that 

characterize 22Rv1 are 1427, 1384, 1152, 1127, 1073, 1036, 1022 and 982 cm-1. PNT1A 

and PNT2 are characterized by the peaks 1240, 1104, 1084, 1050 and 965 cm-1 (figure 

B.4B). 

 

Figure B.4: PCA score (A) and loadings (B) plots from the normalized second derivative spectra of prostate 
cancer (22Rv1) and normal prostate (PNT1A and PNT2) cell lines on the 1500-900 cm-1. 

 Discrimination between primary tumor and metastatic cells 

To identify and classify the different prostate cancer cell lines, PCA was applied to the 

spectra of 22Rv1, LNCaP (derived from a lymph node metastasis) and PC-3 (derived from 

a bone metastasis). 

PCA results for the 3000-2800 cm-1 region are presented in figure B.5. In the score plot, a 

clear discrimination of the cell lines is observed. 22Rv1 and LNCaP are located in 

negative PC2 and are characterized by the peaks at 2959, 2917 and 2868 cm-1 (figures 

B.5A and B.5B). PC-3 are located in positive PC2 and are characterized by the spectral 

assignment at 2857 cm-1 (figures B.5A and B.5B). 
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Figure B.5. PCA score (A) and loadings (B) plots from the normalized second derivative spectra of prostate 
cancer cell lines (22Rv1, LNCaP and PC-3) 3000-2800 cm-1. 

PCA for the region between 1800 and 1500 cm-1 is illustrated in figure B.6. A separation 

between 22Rv1 (negative PC2) and LNCaP and PC-3 (positive PC2) can be observed 

(figure B.6A). The main spectral assignments that characterize 22Rv1 are 1628, 1622 cm-

1, while the peaks that characterize LNCaP and PC-3 are 1747, 1651, 1636 and 1540 cm-1 

(figure B.6B). 

 

Figure B.6: PCA score (A) and loadings (B) plots from the normalized second derivative spectra of prostate 
cancer cell lines (22Rv1, LNCaP and PC-3) 1800-1500 cm-1. 
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PCA results for the 1500-900 cm-1 region are presented in figure B.7. A distinct separation 

between 22Rv1 (negative PC2) and LNCaP and PC-3 (positive PC2) can be observed in 

the score plot (figure B.7A). The main peaks that characterize these cells are 

predominantly in the range between 1500 and 1400 cm-1 (figure B.7B).  

 

Figure B.7: PCA score (A) and loadings (B) plots from the normalized second derivative spectra of prostate 

cancer cell lines (22Rv1, LNCaP and PC-3) 1500-900 cm-1. 

3.5 Discussion 

Several studies have shown the potential of FTIR spectroscopy in distinguishing the 

metabolic profile of normal and cancer cells. This technique has been applied to cell lines 

derived from numerous types of neoplasms, such as breast (42,43), cervix (44), colon 

(45,46), gastric (47) and lung (48) cancers. 

In this study, we have demonstrated the use of FTIR spectroscopy to differentiate 

between prostate cell lines derived from normal epithelium (PNT1A and PNT2), primary 

tumor (22Rv1), and lymph node and bone metastases (LNCaP and PC-3, respectively). 

PCA clearly discriminated spectra from 22Rv1, and PNT1A and PNT2 in the 3000-2800 

cm-1, 1800-1500 cm-1 and 1500-900 cm-1 regions, indicating that they are biochemically 

different and, therefore, exhibit different metabolic profiles. In the spectral region from 

3000 to 2800 cm-1, the main spectral assignments that allowed the separation of PNT1A 

and PNT2 are 2925 and 2857 cm-1, which arise, respectively, due to the asymmetric and 
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symmetric stretching vibrations of CH2 chains of lipids. Furthermore, the bands at 2917 

and 2849 cm-1, which were responsible for separating 22Rv1 from PNT1A and PNT2, can 

also be attributed to the asymmetric and symmetric stretching vibrations of CH2 chains of 

lipids. Because spectra were acquired with a resolution of 8 cm-1, the aforementioned 

peaks can be assigned to the same biochemical component. A shift to a lower frequency 

might suggest alterations in the lipid composition between normal and tumor cells, and an 

increase in disorder of the CH2 chains of membrane lipids have been associated with 

malignancy (22). Alterations in the membrane lipids have already been reported in 

prostate cancer tissue biopsies (30) and breast cancer-derived cell lines (42). 

Furthermore, alterations regarding lipid saturation have been detected in this spectral 

region. An increment in CH2/CH3 ratio suggests a change in the saturation of lipids, 

namely an increase of unsaturation (26). Because the main contribution to the separation 

observed between 22Rv1, and PNT1A and PNT2 is from CH2 chains, we can associate 

these results to alterations in lipid saturation between PCa and normal cells. 

In the spectral region between 1800 and 1500 cm-1, the main assignments that are 

responsible for segregating 22Rv1 from PNT1A and PNT2 are 1758, 1679, 1665, 1648 

and 1622 cm-1. The peak at 1758 cm-1 can be attributed to the C=O stretching of lipid 

esters (49), suggesting a dysregulated lipid metabolism, which is known to be altered in 

cancer, and an accumulation of cholesterol has been reported in PCa. Also, de novo lipid 

synthesis has been described in PCa, which serves to produce fatty acids. Fatty acid 

synthesis plays an important role in cancer pathogenesis, and it is known that these newly 

synthesized fatty acids support cellular processes to promote cell proliferation and survival 

(50,51). Additionally, de novo lipogenesis has been shown to promote saturation of 

membrane lipids, which has consequences in terms of membrane dynamics and uptake 

and efficacy of chemotherapeutics (52). 

The amide I band (1700-1600 cm-1) arises due to the stretching vibrations of C=O and C-

N, and provides information about the secondary structure of proteins, which has been 

extensively investigated in several studies (40,53,54). The spectral assignments specific 

of this region that characterize 22Rv1 are 1679, 1665, 1648 and 1622 cm-1. The frequency 

at 1679 cm-1 is assigned to antiparallel β-sheets, while 1665 and 1648 cm-1 are related to 

β-turns and unordered structures, respectively (55). Regarding the peak assigned to the 

antiparallel β-sheets, these structures are extremely present in less soluble proteins that 

are likely to form aggregates (53,56). An increase in the relative amount of β-sheets, 

relative to α-helical segments, has already been observed in colon adenocarcinoma cell 
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lines (46). The peak at 1622 cm-1, however, is specifically associated to the presence of 

protein aggregates (53,57). Cancer cells are exposed to factors that induce stress and, 

therefore, disrupt proteostasis, causing protein misfolding and subsequent aggregation 

(58). Several tumors and cancer cell lines have been found to exhibit protein aggregation, 

mainly involving aggregates of tumor suppressor p53 (59–61), which can play an 

important role in carcinogenesis (62). Also, aggregation of p53 has been associated to 

platinum resistance and stem cell phenotype in a subset of ovarian cancer (63), which 

suggests a link between loss of proteostasis and cancer progression. On the other hand, 

the spectral assignments that characterize PNT1A and PNT2 are 1653 and 1636 cm-1, 

which are related to α-helices and parallel β-sheets, respectively. α-helices are usually 

present in more soluble proteins that are less likely to aggregate (56), and despite the 

presence of the assignment at 1636 cm-1 associated with β-sheets, this could be 

explained by the fact that most proteins exhibit a mixture of secondary structure (54).  

A discrimination between tumor and normal cells was also observed in the spectral region 

between 1500 and 900 cm-1. The main assignments in the 1500-1300 cm-1 range that 

characterize 22Rv1 are 1427 and 1384 cm-1, the former being associated with the CH3 

and CH2 deformation vibrations mostly due to lipid contribution, and the latter with the CH3 

symmetric wagging of phospholipids, fatty acids and triglycerides (44,64). These results 

may confirm the lipid alterations that were detected in other regions of the spectrum. The 

bands between 1460 and 1400 cm-1 arise due to lipid contribution, and some have been 

explored in previous studies. For instance, the uterine cervical adenocarcinoma cell line 

SiSo, along with exfoliated cervical cells and cervical adenocarcinoma tissue, exhibit an 

increased intensity and a shift to a lower frequency of the band at 1400 cm-1, which might 

indicate structural changes of the CH2 chains of lipids (44). 

The bands present in the region between 1300 and 900 cm-1 arise mainly due to 

carbohydrates and phosphates associated with nucleic acids. The most important spectral 

assignments characteristic of 22Rv1 are 1152, 1127, 1073, 1036, 1022 cm-1. The bands 

at 1152 and 1022 cm-1 are related to carbohydrates, particularly glycogen (which is 

specifically assigned to the frequency 1022 cm-1). A reduced glycogen content has been 

observed in PCa tissue biopsies (30), and cervical adenocarcinoma tissue and cervical 

adenocarcinoma cells (44). The decrease in glycogen content in malignant cells can be 

attributed to their higher metabolic activity and, thus, an increase in glycolysis 

(16,22,44,65). The remaining bands (1127, 1073 and 1036 cm-1) account for differences 

associated with nucleic acids. This could be linked to the fact that nucleic acids exhibit 
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increased hydrogen-bonding of the phosphodiester groups and a higher level of packing 

in cancer cells, as confirmed by several studies (46). 

The second part of this study consisted in discriminating primary tumor cells from cells 

derived from lymph node and bone metastases. To do so, we applied PCA to the spectra 

of 22Rv1 and to those of LNCaP (derived from lymph node metastasis) and PC-3 (derived 

from bone metastasis). The PCA results indicate that the three cancer cell lines exhibit 

distinct metabolic profiles, as they are clearly separated in the three spectral regions that 

were analyzed. It is already known that metastatic cells exhibit different metabolic profiles 

as they colonize different organs (66). 

In the spectral region between 3000 and 2800 cm-1, the cells appeared to be well 

separated from each other. LNCaP and 22Rv1 are characterized by the same 

assignments (2959, 2917 and 2868 cm-1), suggesting that they are somewhat similar in 

terms of lipid constitution. On the other hand, the peak that characterizes PC-3 cells is 

2857 cm-1. Like the results obtained comparing primary tumor with normal cells, these 

results also suggest that 22Rv1 and LNCaP exhibit differences in the methylene chains of 

lipids in comparison to PC-3. In the 1800-1700 cm-1 region, however, LNCaP and PC-3 

are grouped in the same PC and are characterized by the peak at 1747 cm-1 (associated 

with lipids and fatty acids). Metabolic reprogramming is essential for cancer cells to 

escape from a primary tumor, overcome nutrient and energy deficit, survive and, 

subsequently, form metastases. However, the role of lipid metabolism that confers the 

aggressive properties of malignant cancers is still unknown (67). Nonetheless, exchanges 

of fatty acids between adipocytes and PC-3 cells have been observed by FTIR 

spectroscopy (68), and this process is considered an adaptive metabolic process set up 

by cancer cells to take full advantage of the lipids stored in cells present in the tumor 

microenvironment. Also, certain subclasses of lipids, such as phosphatidylcholines, 

phosphatidylethanolamines and glycerophosphoinositols, have been found to be present 

in higher levels in PCa cells derived from distant metastatic sites, including LNCaP and 

MDAPCa2b (derived from a bone metastasis) (69), indicating active membrane 

remodeling and cellular proliferation (70). 

Some remarkable differences were also detected in the amide I region. The peak 

associated with protein aggregation (1622 cm-1) was partly responsible for segregating 

22Rv1 from LNCaP and PC-3. Furthermore, the spectral assignment at 1628 cm-1 also 

characterized 22Rv1 cells. This peak can be attributed to the presence of β-sheets 

(40,55). However, the peaks that characterize LNCaP and PC-3 (1651 and 1636 cm-1) do 
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not suggest the presence of protein aggregates in these cells but might indicate a change 

in the protein secondary structure. Regarding the amide II band (1600-1500 cm-1), the 

peak at 1540 cm-1 also seems to be partly responsible for discriminating LNCaP and PC-3 

from 22Rv1. It has been reported that cells with higher metastatic potential exhibit a 

higher absorption intensity of the amide II band (28).  The high level of fluidity of the cell 

membrane that metastatic cells exhibit can be associated with an increase in the level of 

hydration, which is followed by an increment in the absorption intensity of proteins (71–

73). Some variability also seems to come from the spectral range between 1500 and 1400 

cm-1, which arises due to lipid contribution, confirming that the lipids play an important role 

in discriminating primary tumor and metastatic cells. 

In this study, FTIR spectroscopy and PCA were successfully applied to three PCa (22Rv1, 

LNCaP and PC-3) and two normal prostate (PNT1A and PNT2) cell lines. Our results 

clearly indicate that this technique, coupled with multivariate analysis, can be used to 

distinguish the different types of prostate cells in several spectral regions. However, in 

order to validate our results, other biological samples should be considered for analysis, 

such as human urine, serum/plasma and prostatic fluid (74). Also, because FTIR 

spectroscopy is uncapable of detecting specific metabolites that are responsible for 

causing changes, other metabolomic techniques should be considered, such as mass 

spectrometry and nuclear magnetic resonance. Prostate cancer metabolome has been 

studied by these techniques, allowing the identification of metabolites implicated in certain 

metabolic pathways (75–78). Nevertheless, our results indicate that primary tumor cells 

can be distinguished from normal cells, and that the former differ from metastatic cells. 

Lipid metabolism obviously plays an important role in tumorigenesis and metastasis, and 

other alterations, such as protein aggregation, can also be an important event in cancer 

progression. Given the fact that the biochemical composition of the prostate cell lines can 

be detected by FTIR, it could be useful in providing an early diagnosis and understanding 

tumor biology. 
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4. Concluding remarks 

The main goal of this dissertation was to apply FTIR spectroscopy to PCa and normal 

prostate cell lines. Principal component analysis allowed us to identify spectral differences 

between the cells, and our results indicate that: 

• 22Rv1 were characterized by spectral assignments associated with CH2 chains of 

lipids (2917 and 2849 cm-1), suggesting that these cells, in comparison with normal 

epithelial cells, exhibit structural alterations in membrane lipids; 

• Lipid metabolism plays an important role in tumorigenesis, which is evidenced by 

the spectral assignments 1758, 1427 and 1384 cm-1; 

• Protein aggregation (1622 cm-1), which may result from loss of proteostasis, may 

be an important event during cancer progression. 

• Metastatic cells (LNCaP and PC-3) are mainly characterized by the spectral 

assignments 1747, 1458 and 1418 cm-1, suggesting that these cells exhibit 

differences in their lipid metabolism in comparison to primary tumor cells. 

Overall, these results indicate that FTIR spectroscopy was able to detect the biochemical 

composition of the studied cell lines, indicating that they exhibit different metabolic 

profiles. Thus, this technique could be useful in providing an early diagnosis and 

understanding tumor biology. 
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5. Limitations and future perspectives 

Despite the promising results and the potentiality of FTIR spectroscopy in studying cancer 

cell lines, a few restrictions of this study should be considered. Although cell culture is the 

most useful in vitro model for studying PCa, it does not account for metabolic alterations 

that result from cell-cell and cell-matrix interactions. Therefore, important alterations might 

not have been detected in this study. However, apart from the work presented in this 

dissertation, FTIR spectroscopy has also been applied to human prostate tissues by our 

group. Nevertheless, further investigation using other biological samples should be carried 

out. Because prostatic fluid reflects prostate physiology, it seems like a suitable candidate 

for future studies involving metabolic profiling with FTIR spectroscopy. 

Additionally, in spite of providing a general view of a cell’s metabolism, FTIR spectroscopy 

is not able to identify specific metabolites that might be involved in important metabolic 

processes. Therefore, other techniques (mass spectrometry and nuclear magnetic 

resonance, for instance) should be considered for a more detailed analysis of PCa 

metabolome. 



 

 

 



 

 

 


