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Abstract

We consider a stochastic single item production-inventory-routing problem with
a single producer, multiple clients and multiple vehicles. At the clients, demand is
allowed to be backlogged incurring a penalty cost. Demands are considered uncer-
tain.

A recourse model is presented and valid inequalities are introduced to enhance
the model.

A new general approach that explores the sample average approximation (SAA)
method is introduced. In the sample average approximation method, several sample
sets are generated and solved independently in order to obtain a set of candidate
solutions. Then the candidate solutions are tested on a larger sample and the best
solution is selected among the candidates. In contrast to this approach, called
static, we propose an adjustable approach that explores the candidate solutions
in order to identify common structures. Using that information, part of the �rst-
stage decision variables are �xed and the resulting restricted problem is solved for
a larger size sample. Several heuristic algorithms based on the mathematical model
are considered within each approach.

Computational tests based on randomly generated instances are conducted to
test several variants of the two approaches. The results show that the new adjustable
SAA heuristic performs better than the static one for most of the instances.

Keywords: Inventory routing; Stochastic programming; Sample average approxima-
tion algorithm; Hybrid heuristic; Demand uncertainty; Iterated local search; Adaptive
heuristic.

1 Introduction

We consider a single item stochastic production-inventory-routing (SPIR) problem
with a single supplier/producer, multiple retailers/clients and multiple vehicles.
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A vendor managed inventory approach is followed where the supplier monitors the
inventory at the retailers and decides on the replenishment policy for each retailer. In-
ventory aspects are considered at both the supplier and the retailers. Demand is allowed
to be backlogged at the retailers and in that case a penalty cost is incurred. Backlog
is not allowed at the supplier. Demands are considered uncertain, following a known
probability distribution. A constant production capacity at the supplier is assumed. For
the distribution plan, multiple vehicles are considered. The decision maker has to decide
the production and the distribution plans for a �nite time horizon. The production plan
consists in de�ning the production periods and the amount to produce in each one of
those periods. The distribution plan de�nes the retailers that should be visited in each
time period, the quantities to deliver to each visited retailer, and the corresponding route
for each used vehicle in each time period. Bounds on the delivered quantities and on
client inventories are considered. The goal is to minimize the production and the routing
cost plus the expected inventory and the penalty costs for backlogged demand.

We assume the production plan and the choice of which clients to visit in each time
period (and consequently the routing) are �rst-stage decisions, that is, decisions that
must be taken before the scenario is revealed. The quantities to deliver to each client in
each time period as well as the inventory levels can be adjusted to the scenario (known
as second-stage decisions). Such assumptions may hold for short planning horizons.

Complex problems combining production, inventory and routing decisions have re-
ceived much attention in recent years [6, 9, 11, 14, 16, 17, 19, 20, 25, 29, 33, 38, 40]. For
a survey on previous publications see [4]. Several such studies have been motivated by
real applications [5, 7, 9, 29]. The advantages of coordination and integration of di�erent
supply chain decisions are reported by several authors. Hein and Almeder [25] study the
bene�ts of integrated planning for a complex supply production network embedded in
a dynamic discrete-type system, and conclude that substantial cost savings are possi-
ble with an integrated planning approach compared to a classical sequential approach.
Darvish et al. [19] observe that making the right lot-sizing decisions becomes even more
signi�cant in interconnected logistic networks and show the bene�ts of an integrated ap-
proach to supply chain decision-making. Integrated approaches for a production-routing
problem are also compared against uncoordinated ones in [37].

Most of the solution approaches for such complex problems use heuristics. Absi
et al. [1] and Chitsaz et al. [17] propose two-phase iterative methods where the origi-
nal inventory-routing problem is split into two subproblems, an inventory problem and
a routing problem. Agra et al. [6] also propose the decomposition of the production-
inventory-routing problem into a production-inventory subproblem and a routing sub-
problem using a new Lagrangian decomposition enhanced with valid inequalities. Chit-
saz et al. [16] formulate the problem as a MIP and propose a three-phase decomposition
matheuristic that relies on the iterative solution of di�erent subproblems. Brahimi and
Aouam [14] propose a hybrid heuristic in which a relax-and-�x strategy is combined with
a local search strategy. Qiu et al. [33] develop a branch-and-price heuristic by incorporat-
ing a column generation formulation based on the Dantzig-Wolfe decomposition. Zhang
et al. [44] present an iterative MILP based heuristic that uses restricted sets of routes
that are dynamically updated. Russell [38] and Solyal� and Süral [40] propose heuristics
where routes are computed in advance and, in a second-stage, the predetermined routes
are used to simplify the MIP models.
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Although, in general, instances from such complex problems are not solved to op-
timality, exact approaches such as a branch-and-cut [2] and branch-and-cut-and-price
algorithms [20, 33] have also been considered. Small benchmark instances can be solved
to optimality, see for instance, Avella et al. [12].

For several related problems, where no backlog is allowed, extended formulations [2,
4, 12, 24, 37] and valid inequalities [11, 37] have been considered.

Uncertainty has also been considered for related problems. Solyal� et al. [39] in-
troduce a robust optimization approach for an inventory routing problem with uncer-
tain demands. Aghezzaf [5] considers a variant of the inventory routing optimization
problem where customer demand rates and travel times are stochastic but stationary.
Stochastic approaches for related inventory routing problems have been also consid-
ered [3, 7, 8, 13, 34]. Rahim et al. [34] propose a deterministic equivalent approximation
model to the original stochastic problem. Then, using Lagrangian relaxation, the de-
terministic model is decomposed into an inventory allocation subproblem and a vehicle
routing subproblem. Bertazzi et al. [13] propose a hybrid roll-out algorithm for an
inventory-routing problem where an order-up-to level policy is followed for each retailer.

A classical approach for handling stochastic problems is the sample average approx-
imation (SAA) method [28, 43]. In this method the expected value of the objective
function is approximated by a sample average estimate obtained from a random sample.
The resulting SAA problem is solved for di�erent samples in order to obtain a set of can-
didate solutions. Then, these candidate solutions are tested on a larger sample and the
best solution for that sample is chosen. Within related inventory-routing problems the
SAA was used in [3, 7, 8]. In a closely related problem, Adulyasak et al. [3] consider two-
stage and multi-stage stochastic production routing problems with demand uncertainty.
A Benders decomposition approach is used to solve each sample of the SAA method to
optimality. However no backlog is allowed in their model. In [7] a practical maritime
inventory routing problem is solved using the SAA method. For each sample the stochas-
tic problem was solved using a commercial solver based on a branch-and-cut algorithm
with a running time limit. This solution procedure is heuristic since the instances are not
solved to optimality. Consequently, the SAA method generates solutions whose objective
function value vary signi�cantly from sample to sample. In order to circumvent this lack
of stability, Agra et al. [8] propose the use of a local branching heuristic to improve an
initial solution for each sample generated within the SAA method. By generating a near
local optimal solution for each sample the stability issues were mitigated.

A common approach to deal with inventory models under uncertainty is to consider
the possibility of satisfying demands with delay and to allow shortfalls. This assumption
aims to use the studied problems to approximate the practical ones faced by companies,
and to ensure that a two-stage recourse problem has complete recourse (for each �rst-
stage solution there is a feasible assignment of the second-stage solutions). However, as
reported in [8], penalizing the backlogged demand makes the instance harder to solve
by exact methods based on mixed integer formulations, since the integrality gaps of the
linear solutions tend to be high. Hence, these SPIR problems tend to be even harder
than the deterministic ones when no backlog is allowed.

When the SAA problems are not solved to optimality for each sample, theoretical
results on convergence fail and the SAA method acts as a heuristic. Based on this
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observation, and on the assumption that one cannot solve e�ciently these complex SPIR
problems even for small size instances, a natural approach is to follow the SAA method
and solve each one of the SAA problems de�ned for small size samples heuristically.
Then, the best solution among the generated solutions is chosen. We call this the static
approach. In contrast with this approach, in which the solution to the problem is one of
the candidate solutions, we propose a new heuristic approach that explores the knowledge
of the several candidate solutions in order to solve the SAA problem for a larger and more
representative set of scenarios. Following this approach, a new heuristic named Adjustable
Sample Average Approximation (ASAA) algorithm is proposed. In this algorithm, a
feasible solution for each sample is generated using a heuristic scheme. Then, these
solutions are explored in order to identify �rst-stage variables that are frequently �xed
to zero or to one, and a partial �xed solution is constructed, since only some of those
variables are �xed. Finally, the restricted model is solved for a larger sample keeping
all the remaining variables free. The proposed adjustable heuristic approach has several
advantages in relation to the classical SAA method: i) it does not require solving each
sample set to optimality; ii) it does not require the use of large sample sets, and iii)
it allows the �nal solution to be adjusted to a larger sample set since many �rst-stage
variables are kept free. Further, the number of variables that are �xed can be easily
controlled.

To the best of our knowledge, the use of the information from several solutions ob-
tained with the SAA method to obtain a partial solution was introduced in a preliminary
version of this work [10]. However, algorithms that use information of previous solutions
to derive partial solutions are not new. Rochet and Taillard [35] introduce the Adaptive
Memory concept to describe a set of good solutions, that are kept in a pool that is
dynamically updated taking into account common features of the solutions. Based on
this concept, a very general metaheuristic focused on the exploitation of strategic mem-
ory components was proposed by Glover [22]. Such a metaheuristic, known as Adaptive
Memory Programming (AMP), has been applied over the years to solve several hard com-
binatorial optimization problems, such as vehicle routing problems [23, 41], stochastic
production distribution network design [15] and supplier selection problems [42]. An-
other closely related concept is the Concentration Set (CS) introduced by Rosing and
ReVelle [36] to solve the deterministic p-median problem heuristically. A large number
of solutions are generated heuristically. Then, the best υ solutions are selected to the CS
and this set is used to set to one (zero) all the variables that take value one (zero) in all
the υ solutions. The remaining variables are kept free. Threshold values were also used
in [26] for a dynamic facility location problem with capacity levels. Using a Lagrangian
relaxation model, some of those levels are eliminated (the corresponding variables are
�xed to zero) according to the information provided by the set of solutions.

In this paper we introduce a general approach that explores the SAA in order to
handle large size instances of the production-inventory-routing problem. We discuss a
mixed integer model and possible enhancements. Based on the enhanced model with valid
inequalities, two main approaches are compared: a static approach and an adjustable
SAA approach. In order to improve solutions, an iterated local search heuristic based
on local branching is presented. The adjustable approach can be easily extended for
other two-stage stochastic problems where the corresponding deterministic problems are
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already di�cult to solve to optimality for realistic size instances.
The rest of this paper is organized as follows. The mathematical model is presented

in Section 2. Model improvements, such as the valid inequalities and an extended for-
mulation, are discussed in Section 3. The SAA method, the static heuristic approaches
based on the SAA method, and the new ASAA heuristic are introduced in Section 4.
Computational tests that compare variants of the static and the adjustable approaches
are presented in Section 5. Final conclusions are drawn in Section 6.

2 Problem speci�cations and mathematical formulation

In this section we introduce the mathematical model for the SPIR problem. We
assume the production plan (production periods and quantities to produce) and the
routing (which clients to visit in each period) are �rst-stage decisions. The quantities
to deliver, the amount backlogged at each time period as well as the inventory levels
are adjusted to the scenario. The goal of the stochastic approach is to �nd the solution
that minimizes the production and the routing cost plus the expected cost of both the
inventory and the penalty costs for backlogged demand. Following the SAA method,
the true expected cost value is replaced by the mean value of a large random sample
Ω = {ξ1, . . . , ξs} of scenarios, obtained by the Monte Carlo method. This larger set of s
scenarios is regarded as a benchmark scenario set representing the true distribution [27].

Consider a graph G = (N,A) where N = {0, 1, . . . , nN} represents the set of nodes
and A represents the set of possible links. Set A is a subset of set N×N . Node 0 denotes
the producer and Nc = {1, . . . , nN} is the set of clients. Set T = {1, . . . , nT } is the set
of periods and K = {1, . . . , nV } is the set of homogeneous vehicles available.

Consider the following parameters: dit(ξ) is the demand of client i ∈ Nc in period
t ∈ T in scenario ξ ∈ Ω, I0/Ii is the initial stock at producer/client i, S0/Si is the
inventory capacity at producer/client i, P is the production capacity at each time period,
Q
it
and Qit are the lower and upper limits to the delivery quantity in period t ∈ T at

client i and L is the vehicle capacity. For the objective function, S is the set up cost
for producing in a period, P is the production cost of a unit of product, V is the �xed
vehicle usage cost, Cij is the travel cost from node i to node j, (i, j) ∈ A, Hit is the
holding cost of the product at node i ∈ N in period t ∈ T , Bit is the backlog cost of the
product at node i ∈ N in period t ∈ T .

Consider the following �rst-stage variables: binary variables yt are the setup variables
that indicate whether there is production in period t ∈ T , variables pt give the production
level in period t ∈ T , binary variables zitk indicate whether there is a visit to node i ∈ Nc

in period t ∈ T, by vehicle k ∈ K, the routing variables xijtk indicate whether vehicle
k ∈ K travels from node i to node j, (i, j) ∈ A, in period t ∈ T, vtk is a binary variable
that is one if vehicle k ∈ K is used in period t ∈ T and zero otherwise; for (i, j) ∈ A,
t ∈ T , k ∈ K, fijtk is the arti�cial �ow of a single commodity variable used to prevent
cycles in the routing problem. Notice that this is not the amount transported from node
i to node j in period t ∈ T by vehicle k since that quantity depends on the scenario.
Such adjustable variables could be used but would imply the use of an unnecessarily
large model.

For each scenario ξ ∈ Ω, we de�ne the second-stage variables qitk(ξ) indicating the
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quantity delivered at node i ∈ Nc in period t ∈ T by vehicle k; sit(ξ) indicating the stock
level of node i ∈ N at the end of period t ∈ T ; and rit(ξ) is the quantity backlogged at
node i ∈ Nc in period t ∈ T.

The SPIR problem is modeled by the following formulation.

min
∑
t∈T

(Syt + Ppt + V
∑
k∈K

vtk +
∑
k∈K

∑
(i,j)∈A

Cijxijtk)

+
1

| Ω |
∑
ξ∈Ω

∑
t∈T

∑
i∈N

(Hitsit(ξ) +Bitrit(ξ)) (1)

s.t. s0,t−1(ξ) + pt =
∑
k∈K

∑
i∈Nc

qitk(ξ) + s0t(ξ), ∀t ∈ T, ξ ∈ Ω (2)

si,t−1(ξ) + rit(ξ) +
∑
k∈K

qitk(ξ) = dit(ξ)+sit(ξ) + ri,t−1(ξ), (3)

∀i ∈ Nc, t ∈ T, ξ ∈ Ω

si0(ξ) = Ii, ∀i ∈ N, ξ ∈ Ω (4)

sit(ξ) ≤ Si, ∀i ∈ N, t ∈ T, ξ ∈ Ω (5)

pt ≤ P yt, ∀t ∈ T (6)

Q
it
zitk ≤ qitk(ξ) ≤ Qit zitk, ∀i ∈ Nc, t ∈ T, k ∈ K, ξ ∈ Ω (7)∑

i∈Nc

qitk(ξ) ≤ Lvtk, ∀t ∈ T, k ∈ K, ξ ∈ Ω (8)

∑
j∈N

xijtk = zitk, ∀i ∈ Nc, t ∈ T, k ∈ K (9)

∑
j∈N

xjitk −
∑
j∈N

xijtk = 0, ∀i ∈ N, t ∈ T, k ∈ K (10)

∑
j∈N

x0jtk = vtk, ∀t ∈ T, k ∈ K (11)

∑
i∈N

fijtk −
∑
i∈Nc

fjitk = zjtk, ∀j ∈ Nc, t ∈ T, k ∈ K (12)

fijtk ≤ n xijtk, ∀i, j ∈ N, t ∈ T, k ∈ K (13)

yt, vtk, zitk, xijtk ∈ {0, 1}, ∀i, j ∈ N, t ∈ T, k ∈ K (14)

pt, fijtk ≥ 0, ∀i, j ∈ N, t ∈ T, k ∈ K (15)

rit(ξ), sit(ξ), qitk(ξ) ≥ 0, ∀i ∈ N, t ∈ T, k ∈ K, ξ ∈ Ω (16)

The objective function (1) minimizes the total cost which includes the production set
up, the production, the vehicle usage, the traveling costs, and the expected holding and
backlog penalty costs. Constraints (2) and (3) are the inventory conservation constraints
at the producer and at the clients, respectively. Constraints (4) establish the initial
inventory level at the producer and at each client. Constraints (5) impose a storage
capacity at the producer and at each client. Constraints (6) impose a maximum capacity
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on the production at each period. Constraints (7) impose limits on the delivery quantity
at each client in each period. The lower bound imposed ensures that for each scenario the
delivered quantity is positive, otherwise there could be second-stage solutions with null
delivery quantity. Constraints (8) establish a capacity on the quantity transported by a
vehicle. Constraints (9) and (10) are the routing constraints. Constraints (11) guarantee
that a vehicle leaves the producer when there are visits to clients. Constraints (12) are
the �ow balance constraints at clients ensuring that visits are satis�ed and constraints
(13) guarantee that there is �ow between two nodes only if a vehicle travels between
these two nodes. Constraints (14), (15) and (16) are the variable domain constraints.

The formulation (1)�(16) is denoted SPIRF.

3 Model tightening

The mixed integer model is weak in the sense that the integrality gap is usually large
[2, 6]. In order to tighten the model, we discuss families of valid inequalities and the use
of an extended formulation.

3.1 Extended formulation

In this subsection we present an extended formulation which results from adapting
ideas from the extended formulations for related problems (see [32] for deterministic
lot-sizing problems and [4, 37] for deterministic production-inventory-routing problems
without backlog) to the production-inventory-routing problem with multiple scenarios.

One weakness of model SPIRF are the linking constraints (7), especially when the
delivered quantities qikt(ξ) can be much smaller than the upper bounds Qit.

By decomposing the amount delivered at each client in a given time period into the
net demand of the time period destination, tighter linking constraints can be developed.

Let ndit(ξ) denote the net demand for client i ∈ Nc at time period t ∈ T when
scenario ξ ∈ Ω occurs. Such net demand represents the minimum amount of product
that must be delivered to client i at period t in order to satisfy the client demand taking
into account the initial stock level, and can be computed as follows:

ndit(ξ) = max{0,
t∑

`=1

di`(ξ)− Ii −
t−1∑
`=1

ndi`(ξ)}.

Consider the new variables uit`(ξ) indicating the fraction of the net demand of client
i ∈ Nc at time period t that is delivered in time period ` when scenario ξ occurs, for
t ∈ T, ` ∈ T ∪ {nN + 1}, ξ ∈ Ω. Notice that when ` = nT + 1, variables uit`(ξ) represent
an amount that is not delivered during the considered time horizon.

In order to tighten model SPIRF, the following set of constraints, that we call EF,
can be added.
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∑
k∈K

qilk(ξ) =
∑
t∈T

ndit(ξ) uit`(ξ) ∀i ∈ Nc, ` ∈ T, ξ ∈ Ω (17)

uit`(ξ) ≤
∑
k∈K

zi`k ∀i ∈ Nc, t, ` ∈ T, ξ ∈ Ω (18)

ri,nT (ξ) =
∑
t∈T

ndit(ξ) ui,t,nT +1(ξ) ∀i ∈ Nc, ξ ∈ Ω (19)∑
`∈T∪{nT +1}

uit`(ξ) = 1 ∀i ∈ Nc, t ∈ T, ξ ∈ Ω : ndit(ξ) > 0 (20)

uit`(ξ) ≥ 0 ∀i ∈ Nc, t ∈ T, l ∈ T ∪ {nT + 1}, ξ ∈ Ω (21)

Constraints (17) relate variables uit`(ξ) to the delivery quantity variables qitk(ξ) and
compute the quantity that is delivered to client i at time period `. Constraints (18)
ensure that if some fraction of net demand for client i is delivered at time period `, then
client i must be visited in that time period. Constraints (19) compute the demand not
satis�ed. Constraints (20) guarantee that demand is satis�ed by production and/or is
unmet during the time horizon (when ui,t,nT +1(ξ) > 0). Constraints (21) de�ne the new
variables as nonnegative.

The linking constraints (18) of this extended formulation are tighter than the linking
constraints (7) of the original model, leading to a tighter model.

Even considering a small number of scenarios, the number of constraints and variables
in (17)�(21) becomes too large, which means that it is computationally impractical to use
such sets of variables and constraints with all scenarios. In Section 5.1 some strategies
are proposed to overcome this problem.

3.2 Valid inequalities

From the underlying �xed-charge network �ow structure of the SPIRF one can derive
several families of valid inequalities [31]. Since the possible set of inequalities is large,
we select several such families of inequalities based on preliminary computational tests
and on the knowledge of its relevance to related problems. Some of these inequalities are
adapted from deterministic lot-sizing problems [32].

The �rst family relates the delivered quantity
∑

k∈K
∑

i∈Nc
qitk(ξ) with the setups. If

there is no set up in time period t, then the delivered amount is bounded by the stock in
the producer at the end of time period t− 1. Otherwise,

∑
k∈K

∑
i∈Nc

qitk(ξ) is bounded
by the total vehicles capacities nV L.∑

k∈K

∑
i∈Nc

qitk(ξ) ≤ nV L yt + s0,t−1(ξ), ∀t ∈ T, ξ ∈ Ω (22)

To the best of our knowledge, inequalities (22) are new, even for the deterministic case
(when only one scenario is considered). These inequalities are useful to cut linear so-
lutions with a fractional value of yt. Their impact is greater when nV L is small, which
happens, for instance, when a single small capacity vehicle is used, see Section 5.1.

The following two families of inequalities link the inventory levels (stock and backlog)
with the binary variables representing either setups or the visits to clients. We notice that
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the structure of these families of inequalities is quite di�erent from the ones discussed in
[4] for a related problem since backlog is not considered there.

The �rst family is useful to cut fractional solutions when the aggregated value of the
binary variables in the RHS of the inequalities is less than 1. This family of inequalities is
derived from the uncapacitated lot-sizing with backlogging feasible set (see [32]) de�ned
by inequalities (3), (4) and (7), for a client i, period t and scenario ξ:

rit(ξ) ≥

(
t∑

`=1

di`(ξ)− Ii

)+

(1−
∑
k∈K

t∑
`=1

zi`k), ∀i ∈ Nc, t ∈ T, ξ ∈ Ω (23)

where (x)+ = max{x, 0}.
These inequalities force the net demand (demand that cannot be satis�ed by the

initial stock) at client i until period t to be satis�ed with backlog in case there is no
delivery until period t, that is, if

∑
k∈K

∑t
`=1 zi`k = 0. Note that these inequalities

are a particular case of the more general family si,h−1(ξ) + rit(ξ) ≥
∑t

`=h di`(ξ)(1 −∑
k∈K

∑t
`=h zi`k) for h, t ∈ T, h ≤ t.

The second family of inequalities is derived from the uncapacitated lot-sizing with
backlogging feasible set obtained by considering the aggregated demands, stocks and
backlogs.

∑
i∈N

si,h−1(ξ) +
∑
i∈N

rit(ξ) ≥
t∑

`=h

di`(ξ)

(
1−

t∑
`=h

y`

)
, ∀h, t ∈ T, h ≤ t, ξ ∈ Ω (24)

Inequalities (24) ensure that the total demand from period h to period t must be
satis�ed either from stock (at the producer or at the clients) or from backlog at the
clients if there is no production in that period.

For the particular case of h = 1, inequalities (24) can be written in the stronger
format ∑

i∈Nc

rit(ξ) ≥ D(t, ξ)

(
1−

t∑
`=1

y`

)
,

where D(t, ξ) =
∑

i∈Nc

∑t
`=1 ndi`(ξ), is the net demand until period t for scenario ξ.

Next, we introduce a family of inequalities that can be derived by Mixed Integer
Rounding (MIR) [30]. Given a simple mixed integer set

X = {(S, Y ) ∈ R+ × Z | S + aY ≥ b},

where a, b ∈ R+ are arbitrary constants, the MIR inequality is given by

S ≥ r
(
db/ae − Y

)
,

where r = b− (db/ae − 1)a.
Constraint P

∑t
`=1 y`+

∑
i∈Nc

rit(ξ) ≥ D(t, ξ) is a relaxation of the feasible solutions
set and imposes that the total production capacity plus the backlogged demand must
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cover the net demand of all clients until period t. Taking S =
∑

i∈Nc
rit(ξ), Y =

∑t
`=1 y`,

a = P , and b = D(t, ξ), the following MIR inequality is obtained

∑
i∈Nc

rit(ξ) ≥ RP (t, ξ)

(⌈
D(t, ξ)

P

⌉
−

t∑
`=1

y`

)
, ∀t ∈ T, ξ ∈ Ω (25)

where RP (t, ξ) = D(t, ξ) − (dD(t,ξ)

P
e − 1)P . Inequalities (25) state that the total setup

capacity plus the backlogged demand cover the net demand of all clients until period t.
From preliminary computational experience, we observed that the number of inequal-

ities cutting o� the linear relaxation solutions is too large. Hence some strategies need
to be taken in order to choose which cuts should be included. Two main strategies,
Option (W) and Option (A), that di�er in the way the scenarios are considered, were
tested.

(W) Worst case scenario. In this option, for each family of inequalities and each
set of time period and/or client indices (accordingly to the family) at most one
inequality is added. The inequality added is the one that, of all the scenarios in Ω,
corresponds to the scenario leading to the largest violated inequality.

(A) Aggregation of scenarios. In this option, for each family of inequalities and each
set of time period and/or client indices (accordingly to the family), the set of in-
equalities is aggregated for all the scenarios in Ω. It adds the inequality aggregating
all the scenarios leading to a violated inequality.

Option (W) tends to add too many cuts since, for a given fractional �rst-stage solution,
the value of the second-stage solution variables, variables sit(ξ) and rit(ξ), tends to be
null. Moreover, inequalities for a given scenario do not necessarily a�ect the solution
variables of the remaining scenarios (unless they force the values of the �rst-stage solu-
tions to change). Option (A) tends to add fewer cuts but these cuts are weaker than
the individual inequalities for each scenario. This option resembles the scenario-group
cuts approach proposed by Adulyasak et al. [4] where groups of scenarios are considered
accordingly to the total demand, and Benders cuts are aggregated for each group. Op-
tion (A) corresponds to the case where only one group is created which, in the general
framework we are proposing, is reasonable since the number of scenarios considered is
small.

In Section 5 we report results derived from the tests conducted to assess the perfor-
mance of these two options.

4 Solution approaches

In this section we discuss several algorithms to solve the SPIR problem. These
algorithms are based on the SPIRF model which is a two-stage stochastic model.

A common approach to solve stochastic problems is the Sample Average Approxima-
tion (SAA) method [28, 43], where the true expected value of the objective function is
approximated by the average value obtained for a very large sample of s scenarios. The
SAA method generates M separate sample sets Ωm,m ∈ {1, . . . ,M}, each one contain-
ing ` � s scenarios. For each one of the scenarios set, Ωm, the resulting SAA problem
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(where Ω is replaced by Ωm in model SPIRF) is solved generating a candidate solution.
Then, for each candidate solution, the �rst-stage solution is �xed, and the value of the
objective function for a very large sample with s scenarios is computed. In the case of the
two-stage model SPIRF, this value is computed by solving a pure linear programming
problem on the second-stage variables.

Solving the SPIR problem to optimality, even for a very small size scenarios sample,
may not be practical, given the di�culty of the problem. Therefore the M subproblems
generated by the SAA method can hardly be solved to optimality. Hence, the candidate
solutions will be feasible solutions obtained with heuristics.

Next, we describe two approaches to solve the SPIR problem. The �rst one follows
the SAA method and uses heuristics to obtain theM candidate solutions. Then the best
one is chosen. This will be named the static approach. The second approach uses the
candidate solutions to �x part of the �rst-stage solution and then solves (heuristically)
the resulting restricted problem for a larger sample. Since the �nal solution can be
adjusted to the larger sample we name it the adjustable approach.

4.1 Static approach

A �rst heuristic consists in solving the SPIRF model by branch-and-bound with a
commercial solver and imposing a running time limit. In fact, as we can observe in the
computational section, this is a natural option that works well on the easiest instances
where the solver can �nd near optimal solutions within reasonable time. For those cases,
imposing a time limit does not have great impact on the quality of the solutions. Since
it is well known, a large amount of running time is used to prove optimality, which is
not a major relevant issue here given that the solution will be evaluated with another
sample.

When the instances are harder to solve, the previous approach can perform quite
badly and the quality of the solutions varies from sample to sample, leading to a large
variability in the solution values. In order to circumvent this fault we used two heuristic
approaches that can be taken separately or combined. One approach is to use an iter-
ative local search method to improve the quality of the candidate solutions. The other
approach is to simplify the model by pre-de�ning a route, making the restricted model
easier to solve.

Iterative Local Search method

The quality of any feasible solution can be improved using a Local Search procedure.
The local search scheme applies a local branching method based on the method proposed
by Fischetti and Lodi [21] for reducing the solution space.

For a given positive integer parameter ∆z, de�ne the neighborhood N (z̄,∆z) of z̄
as the set of feasible solutions of the SPIRF satisfying the additional local branching
constraint: ∑

i∈N,t∈T,k∈K|zitk=0

zitk +
∑

i∈N,t∈T,k∈K|zitk=1

(1− zitk) ≤ ∆z. (26)

Hence, the neighborhood of z̄, N (z̄,∆z), is the set of solutions that di�er by a maxi-
mum of ∆z values from the zitk variables of the current solution z̄. In fact, the linear
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constraint (26) limits to ∆z the total number of binary variables zitk �ipping their value
with respect to the solution z̄, either from 1 to 0 or from 0 to 1.

The Local Branching heuristic amounts to adding constraint (26) to SPIRF and
running the solver for a time limit of α seconds. If a better solution is found, then z
is updated and the Local Branching is run again. The complete heuristic is denoted by
Iterated Local Search (ILS) and is described in Algorithm 1.

Algorithm 1 Iterated Local Search.

1: Solve the SPIRF model, considering a single scenario, for α seconds
2: Save the solution z
3: Add the remaining scenarios to the SPIRF model
4: repeat

5: Add constraint (26) to the SPIRF model
6: Solve the model for β seconds
7: Update the solution z
8: until No improvement in the objective function is observed

Using routing precedences from a de�ned route

The SPIRF includes the TSP as a subproblem. For each time period, the minimum
cost hamiltonian cycle that includes all the visited clients must be determined. The TSP
is a NP-hard problem and is often very time-consuming. Combining the TSP formulation
with production and inventory makes the model SPIRF quite large. In order to simplify
the model, a TSP is initially solved for all clients. The order in which clients are visited on
this route is used to de�ne a precedence relation between the clients. These precedences
are used to eliminate (set to zero) those variables that violate the precedence relation.
Similar heuristic approaches have been used before for deterministic problems [38, 40].
The TSP involving all the clients is solved using the Concorde software [18].

We name this simpli�cation procedure as the Precedence order relation (P) technique.

4.2 Adjustable approach

In this subsection we describe the adjustable sample average approximation (ASAA)
heuristic. Since this heuristic can easily be extended to other two-stage stochastic prob-
lems we introduce it as a general framework procedure.

In contrast with the SAA method, where a set of M candidate solutions are gener-
ated by solving M SAA problems and the corresponding �rst-stage solutions are �xed,
we propose a new approach that uses the M candidate solutions to generate a partial
solution. The idea is to identify within the �rst-stage variables those that have the
same value in all (or almost all) the M generated solutions. Thus, it is likely that this
value coincides with the variable value in the optimal solution. By �xing the value of
those �rst-stage variables the problem is simpli�ed and the solution can be completed
by solving a problem with a new larger sample.

It is important that the M candidate solutions result from di�erent solution struc-
tures, so that the variable �xing corresponds to common structures under di�erent sample
scenarios. Hence, the number of scenarios considered in each sample can be small which
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facilitates the generation of the M candidate solutions. Our experience (not reported in
the computational tests) show that for the SPIR problem working with only one scenario
leads to solutions that are quite di�erent and few �rst-stage variables are �xed. Thus
the number of scenarios should not be too small.

Another important ingredient is to decide which variables to �x. If a binary �rst-
stage variable has the same value in all the candidate solutions it is natural to �x it to
that value. However, we may wish to �x variables that have the same value in at least
a given percentage of solutions or satisfy another criteria. Moreover, we may wish to
assign di�erent weights to each candidate solution either depending on the probability (if
the solution is obtained for a scenario with higher probability its weight could be higher)
or on its objective function value (a solution with a better objective function value than
the others would be given a greater weight).

Hence, we de�ne a function fI : {0, 1}M → [0, 1] that, for particular values ω1, . . . , ωM
of a �rst-stage binary variable ω, assigns a value fI(ω1, . . . , ωM ) between 0 and 1. The
index I represents the vector of instance parameters. Desirably, function fI should satisfy
the following condition:

Condition 1: fI(0
M ) = 0 and fI(1M ) = 1.

Vectors 0M and 1M represent the null vector and the vector with all components
equal to 1 of dimension M, respectively. Condition 1 ensures that if a variable ω is zero
(one) in all the candidate solutions, then the value of the function will be zero (one).

Let Ξ be a subset of binary �rst-stage decision variables that makes the problem
easier to solve when their values are �xed. Thus, this new method can be described in
four steps.

First step: solve M independent problems. GenerateM separate samples Ωm,m ∈
{1, . . . ,M}, of dimension `1. Then, solve the two-stage stochastic model for each
sample set, Ωm, with a time limit of α seconds (either a feasible solution is found
within this time limit or it stops after the �rst feasible solution is found). This
gives M candidate solutions, ϕ1, . . . , ϕM .

Second step: obtain M̂ partial solutions. Use the candidate solutions ϕ1, . . . , ϕM
to obtain partial candidate solutions by �xing the value of some �rst-stage variables
in set Ξ and keeping all the remaining variables free.

Let ϕPm denote the projection of the solution vector ϕm into the space of variables
in Ξ. De�ne two threshold values, γ1 and γ2 and generate a new partial solution
in the following way: denote by (ϕPm)τ the value of a generic �rst-stage decision
variable τ from set Ξ in its partial solution ϕPm, with the value of this variable in
the generated partial solution, ψP , computed as follows

(ψP )τ =

{
0, fI((ϕ

P
1 )τ , . . . , (ϕ

P
M )τ ) < γ1;

1, fI((ϕ
P
1 )τ , . . . , (ϕ

P
M )τ ) ≥ γ2.

Either considering M̂ di�erent functions fI or varying the parameters γ1 and γ2,
M̂ di�erent partial solutions ψP1, . . . , ψPM̂ can be obtained.
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Third step: complete the M̂ partial solutions. For each partial candidate solution
ψP1, . . . , ψPM̂ constructed and having some of the �rst-stage variables �xed, solve
the two-stage stochastic model using a larger sample set with `2 ≥ `1 scenarios. Use
the optimal solution obtained and �x to its optimal value the �rst-stage variables
not �xed yet. Repeating the process for each partial candidate solution yields M̂
candidate solutions with all the �rst-stage variables �xed.

Fourth step: solve M̂ simpli�ed problems. With all the �rst-stage decision vari-
ables �xed, the two-stage stochastic model is solved for a very large sample set
with `3 >> `2 scenarios. The value of the recourse variables (the second-stage
variables) is computed for each scenario and, consequently, the objective function
value of each solution is computed. The solution with the lowest average cost is
chosen.

The second and the third steps correspond to the adjustable part of the procedure.
If we let M = M̂ and remove the second and the third steps, the adjustable approach
ASAA coincides with the SAA method.

In the computational tests we considered the following aspects:

• Only one partial solution is derived, that is, M̂ = 1.

• The binary �rst-stage variables considered in set Ξ are the zijk variables.

• Function fI is de�ned as follows: fI((ϕP1 )τ , . . . , (ϕ
P
M )τ ) =

∑M
m=1wm(ϕPm)τ where

the weight wm of each solution ϕm is computed according to the corresponding
objective function value. Let cm denote the objective function value of solution
ϕm (with �rst-stage variables �xed) computed on a larger sample of dimension
`∗ ≥ `1. Normalize these weights as follows

c̄ = max
k=1,...,M

{ck} d̄ = min
k=1,...,M

{c̄− ck|ck 6= c̄}.

Then, for each solution ϕm, de�ne its weight as

wm =
c̄+ d̄− cm∑M
k=1(c̄+ d̄− ck)

.

Proposition 1: The function fI de�ned above satis�es Condition 1.

Proof: Computing the value of the function fI for the vectors 0M and 1M we have

fI(0, . . . , 0) =

M∑
m=1

wm × 0 = 0

fI(1, . . . , 1) =
M∑
m=1

wm =
M∑
m=1

(
c̄+ d̄− cm∑M
k=1(c̄+ d̄− ck)

)
=

∑M
m=1(c̄+ d̄− cm)∑M
k=1(c̄+ d̄− ck)

= 1

• In the third step, the model for a large sample is solved by relaxing the routing
variables, and all the �rst-stage variables are �xed, except the routing variables.
Then, de�ning the routing variables as binary, a TSP is solved for each vehicle and
each time period.
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5 Computational experiments

This section reports the computational experiments carried out to illustrate the per-
formance of the methods described to solve the SPIR problem. All tests were run using a
computer with an Intel Core i7-4750HQ 2.00GHz processor and 8GB of RAM, and were
conducted using the Xpress-Optimizer 28.01.04 solver with the default options. The
performed experiments are based on the instances introduced in [6] which are generated
as follows.

The coordinates of the n clients are randomly generated in a 100 by 100 square grid,
and the producer is located in the center of the grid. For each value of n a complete
graph G = (N,A) is obtained and symmetric traveling costs are associated to the set of
arcs. The traveling costs Cij are the euclidean distance between nodes i and j in the
grid.

The computational experiments used to test the improvements of both the valid
inequalities and the extended formulation are based on instances with nN = 5, 15 and
25 clients. For the computational experiments conducted to assess the performance of
the ASAA, the number of clients used is nN = 10, 20, 30, 40, 50, 60, 70, 80. In both cases,
nT = 5, 10 time periods are considered.

For each client and each period, the nominal demand value dit is randomly generated
between 40 and 80 units, and the uncertain demands vary in [0.7dit, 1.3dit].

The initial stock I0 at the producer is randomly generated in the interval [0, 30],
and the initial stock Ii at client i is randomly generated between 0 and three times the
average demand of client i. The maximum inventory level Si is 500 for all i ∈ N . The
production capacity P is 80% of the average net demand. The number nV of available
homogeneous vehicles is one and two and their capacity L is set to 80% and to 40%
of the average net demand, respectively. The lower Q

it
and upper Qit delivery limits

are 1 and L (the vehicles capacity), respectively. The production set up cost, the unit
production cost and the �xed vehicle usage cost are given by S = 100, P = 1 and V = 50,
respectively. For all i ∈ N, t ∈ T , the holding cost Hit is 0.2 and the backlog cost Bit is
0.5, except for t = nT where Bi,nT is 5, since this cost penalizes the demand of client i
that is not satis�ed during the planning horizon.

5.1 Model enhancements

In this subsection we report the computational experiments conducted to test the
model enhancements, namely the extended formulation and the valid inequalities. Based
on these results the �nal model is chosen.

Inclusion of the extended formulation

First, we evaluate the improvements observed when the extended formulation EF,
described in Subsection 3.1, is used. Several strategies can be used to deal with the sce-
narios in the extended formulation. On the one hand, when the number of scenarios used
is large the size of the formulation becomes too large. On the other hand, by considering
few scenarios the model becomes weaker. To evaluate advantages and disadvantages of
the use of the extended formulation, four strategies were studied:
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(i) SPIRF, only SPIRF is used;

(ii) SPIRF+EF, SPIRF is used together with EF considering all the scenarios;

(iii) SPIRF+EFl, SPIRF is used together with EF for the scenario with the lowest value
of total net demand, ξl = argminξ∈Ω{

∑
i∈Nc

∑
t∈T ndit(ξ)};

(iv) SPIRF+EFg, SPIRF is used together with EF for the scenario with the greatest
value of total net demand, ξg = argmaxξ∈Ω{

∑
i∈Nc

∑
t∈T ndit(ξ)}.

We consider instances, as described above, with nN = 5, 15 and 25 clients, nT = 5, 10
periods and a single vehicle. For each instance, 10 scenarios were considered and the
time limit was set to 600 seconds.

Table 1 summarizes the computational experience. For each one of the four strategies
and for each instance, identi�ed by the number nT of periods and the number nN of
clients, Table 1 displays the values of the linear programming relaxation (LR), the lower
bound (LB), the upper bound (UB) and two gaps,

Gap1 =
BFS − LB

BFS
× 100 and Gap2 =

UB −BFS
BFS

× 100

where BFS is the value of the best feasible solution obtained among the four strategies
mentioned. The values of LB and UB are obtained at the end of the running time.

SPIRF SPIRF+EF
nT nN LR LB UB Gap1 Gap2 LR LB UB Gap1 Gap2

5 2196 3076 3155 2.5 0.0 2275 3061 3158 3.0 0.1
5 15 5105 5841 6265 6.8 0.0 5183 5682 6420 9.3 2.5

25 8982 9537 11395 12.9 4.1 9085 9464 20972 13.6 91.6
5 5001 6759 6961 2.9 0.0 5026 6546 6965 6.0 0.1

10 15 13719 14884 16821 11.5 0.0 13750 14625 28887 13.1 71.7
25 20724 21332 47110 54.7 0.0 20750 21335 48339 54.7 2.6

SPIRF+EFl SPIRF+EFg

nT nN LR LB UB Gap1 Gap2 LR LB UB Gap1 Gap2
5 2243 3068 3155 2.8 0.0 2243 3068 3155 2.8 0.0
15 5168 5740 6265 8.4 0.0 5168 5740 6340 8.4 1.2

5 25 9062 9649 10948 11.9 0.0 9062 9649 10948 11.9 0.0
5 5022 6729 6961 3.3 0.0 5022 6729 6961 3.3 0.0

10 15 13749 14935 17883 11.2 6.3 13749 14935 17883 11.2 5.9
25 20730 21355 48394 54.7 2.7 20730 21360 48795 54.7 3.6

Table 1: Computational comparison of the four strategies regarding the inclusion of the ex-
tended formulation EF.

As expected, the formulation SPIRF+EF provides the best quality linear relaxation
solutions, however the computational time is higher, and the lower and upper bounds
(and consequently the gaps Gap1 and Gap2), are the worst. The di�erences are very
small between strategies SPIRF, SPIRF+EFl and SPIRF+EFg. Therefore, no clear
conclusions can be drawn. Although SPIRF+EFl provides better results for small size
instances, the results for nN = 25, nT = 10 seem to indicate that for the larger instances
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model SPIRF is better. Also, the gains in terms of the linear relaxation value indicate
that the improvements obtained by including the complete model EF are minor when
the size of the model increases.

Hence, since there is no clear bene�t in the use of any one of the strategies SPIRF +
EF , SPIRF +EFl and SPIRF +EFg, mainly for the largest instances, and since the
number of constraints and variables tend to increase rapidly as the size of the instances
increase, in what follows the extended formulation is not included.

Inclusion of valid inequalities

Now, we assess the improvements observed when SPIRF is tightened with the inclu-
sion of the valid inequalities described in Subsection 3.2.

Since inequalities (22) are new, an independent experiment was conducted on these
inequalities for instances with nT = 5 periods, nN = 10 clients and nV = 1, 2 vehicles.
The linear gap of SPIRF (GapL) and the linear gap of SPIRF tightened with inequalities
(22) (GapT ) were computed for L, the vehicles capacity, which was set to 20%, 40%,
60% and 80% of the average net demand. The average gap reduction obtained by the
inclusion of the inequalities, computed by GapL−GapT

GapT
×100, was 27.5, 20.6, 10.6 and 11.1,

respectively, for one vehicle, and 26.2, 17.8, 1.4 and 0, respectively, for two vehicles. Thus,
the impact of these inequalities is greater for small values of L and for one vehicle.

The valid inequalities (22)�(25) are dynamically added to the SPIRF and three strate-
gies are compared:

(i) SPIRF, only SPIRF is used, no inequalities are included.

(ii) SPIRF-W, corresponds to Option (W) for the inclusion of valid inequalities dis-
cussed in Section 3.2.

(iii) SPIRF-A, this strategy corresponds to Option (A) applied to inequalities (22), (23)
and (24) and Option (W) applied to inequalities (25). Notice that Option (A),
aggregation of the inequalities for all the scenarios, applied to inequalities (25)
leads to very weak inequalities.

Twelve sets of instances were used, six considering one vehicle and six considering
two vehicles. For each set, �ve instances were generated considering di�erent samples
of demand values. A time limit of 600 seconds was imposed. The obtained results are
displayed in Table 2, Figure 1 and Figure 2.

Table 2 displays the results for the three strategies: SPIRF, SPIRF-A, and SPIRF-
W. Each line has the results for an instance set identi�ed by its number nV of vehicles,
its number nT of periods, and its number nN of clients. Columns identi�ed with #vi
display the average number of valid inequalities added to the SPIRF. Columns identi-
�ed with #nodes display the average number of nodes solved within the branch-and-
bound algorithm. Columns named Gap display the average gap, computed according to
UB−LB
LB

×100, where UB and LB denote the average upper bound value and the average
lower bound value, respectively.

Table 2 shows that the average number of inequalities added to the SPIRF in strategy
SPIRF-A is lower than the average number of inequalities added to the SPIRF in strategy
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SPIRF SPIRF-A SPIRF-W
nV nT nN #nodes Gap #vi #nodes Gap #vi #nodes Gap

5 2482 0.0 18 2464 0.0 50 2812 0.0
5 15 44696 2.4 65 19118 1.5 82 38999 1.5

25 6772 5.9 108 4039 4.1 185 5885 4.5
1 5 35385 0.0 28 30656 0.0 125 30909 0.0

10 15 9185 2.1 90 4891 1.9 215 7971 2.2
25 89 11.4 210 2213 7.7 299 591 8.5

5 119675 4.9 23 82384 3.7 55 129334 4.7
5 15 2945 34.8 76 7709 26.6 105 7785 28.2

25 925 40.8 139 1326 31.3 174 724 35.7
2 5 10730 7.0 40 12201 6.4 132 17016 6.6

10 15 44 121.0 110 1792 54.2 215 2147 97.8
25 74 40.3 233 4079 26.6 287 2695 28.9

Table 2: Computational results for the three strategies: SPIRF, SPIRF-A and SPIRF-W.

SPIRF-W. Also the number of nodes solved is lower. Columns Gap show that the average
gap is reduced by the inclusion of valid inequalities and smaller average gaps are always
obtained with strategy SPIRF-A. It is also possible to observe that instances with more
than one vehicle are more di�cult to solve, even for small size instances.

Figure 1 and Figure 2 display the relation between the average linear relaxation,
average lower bound, and average upper bound values for the three strategies, for each
instance set. Since these values can vary considerably from instance to instance, for better
comparison each value was divided by the best (lower) upper bound of the corresponding
instance set.

Figure 1 depicts results for the single-vehicle case, while Figure 2 depicts results
for the case where two vehicles are available. In both �gures, the values obtained by
using approaches SPIRF-A and SPIRF-W are associated with the solid and dashed lines,
respectively. The dotted lines are associated with SPIRF, the case where no inequalities
are added. The circle points (in the �rst/down set of three lines) represent the ratio
between the average linear relaxation and the best upper bound value. Solid points (in
the second/middle set of three lines) represent the ratio between the average lower bound
and the best upper bound value. Square points (in the third/upper set of three lines)
represent the ratio between the average upper bound and the best upper bound value.

Figure 1 and Figure 2 help to explain the gaps computed in Table 2, since the largest
average lower bound and smallest average upper bound values are obtained with strategy
SPIRF-A, except in one case. Note that, for the three approaches, the average lower
bound values are very close.

Since the best results are obtained with strategy SPIRF-A, in what follows, the
SPIRF will be used together with the inclusion of inequalities following strategy SPIRF-
A.
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(a) Results for instances with 5 time periods (b) Results for instances with 10 time periods

Figure 1: Comparison of average linear relaxation, average lower bound, and average upper
bound values for instances using 1 vehicle.

(a) Results for instances with 5 time periods (b) Results for instances with 10 time periods

Figure 2: Comparison of average linear relaxation, average lower bound, and average upper
bound values for instances using 2 vehicles.

19



5.2 Computational comparison of the static and adjustable strategies

Extensive computational experiments to assess the performance of the proposed Ad-
justable Sample Average Approximation method are presented. Three variants of the
ASAA, that di�er from each other in the strategy used to obtain the initial candidate
solutions, are compared. These three variants of the ASAA method are:

(i) ASAAILS , the ILS procedure is used;

(ii) ASAAILS+P , the ILS procedure is used and precedence relations in the routing
are considered;

(iii) ASAAR, the routing variables xijtk are relaxed.

These three variants were tested against the following four static approaches:

(i) SAA, the SAA method;

(ii) SAAILS , the SAA with the ILS procedure;

(iii) SAAILS+P , the SAA with the ILS procedure in which precedence relations in the
routing are considered;

(iv) EVP , the Expected Value Problem (EVP), which corresponds to solving the de-
terministic problem with all the uncertainty parameters replaced by their expected
values.

Whenever the ILS procedure is used, the initial scenario considered is the one that
corresponds to the EVP. However, since we are dealing with di�cult instances, usually
the corresponding EVP problem cannot be solved to optimality within a reasonable
amount of running time. Thus a two-stage heuristic procedure to obtain a feasible
solution is followed. First, the EVP with the routing variables xijtk relaxed is solved
with a time limit of 300 seconds. Then, all the visit variables zitk are �xed and nT pure
TSP problems are solved by using the software Concorde. Even when the number of visit
variables that are allowed to change their value in the local branching constraint (26)
is low, the time used to solve each subproblem is large, since all the routing variables
remain free. Hence, in order to solve such subproblems faster, we used a local branching
constraint similar to (26) for the routing variables xijtk, in which the number of variables
that are allowed to �ip their value is three times the value used in the local branching
constraint associated to the visit variables.

To evaluate the performance of these seven strategies to solve the SPIRF, 32 in-
stances, randomly generated as described before, are used. For each instance and each
strategy, except for strategy named EVP (corresponding to solve the EVP), the number
of candidate solutions used is M = 10 and each candidate solution is obtained by using
a sample of `1 = 10 scenarios and a time limit of 300 seconds. However, when no integer
solution is found within this time limit, the procedure only stops when the �rst integer
solution is obtained. For strategy EVP , only one candidate solution is obtained using
a single scenario, with a time limit of 3600 seconds (one hour). For all strategies, the
dimension of the �nal sample used is `3 = 1000.

For the ASAA variants, a sample of `∗ = 25 scenarios is used to de�ne the weight
of each partial candidate solution in the second step and several strategies for �xing
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variables zitk are used, corresponding to di�erent choices of the parameters γ1 and γ2.
The threshold values 0, 0.05, 0.15 and 0.25 were tested for γ1, while γ2 is set to 1− γ1.
In the third step, when solving the simpli�ed model, a sample of `2 = 50 scenarios is
used.

The obtained results are displayed in Table 3 and Table 4. Each strategy is identi�ed
in the �rst line of the table and each instance is identi�ed by its number nV of vehicles,
its number nT of periods and its number nN of clients in the �rst three columns.

In Table 3, the computational time (in seconds) required by each approach to obtain
the �nal solution is displayed in columns named Time. For the adjustable approaches,
the computational time values displayed correspond to the value obtained for γ1, the
one which required more computational time. In columns VSS an approximation of
the Value of the Stochastic Solution is displayed for each approach considered. Notice
that, as explained before, it is not possible to obtain the exact solution of the Expected
Value Problem, thus all the values are computed according to the heuristic solution
obtained for the EVP . For the adjustable approaches, the approximation for the value
of the optimal solution is computed based on the best solution obtained for the di�erent
threshold values of γ1.

nV nT nN EVP SAA SAAILS ASAAILS SAAILS+P ASAAILS+P ASAAR
Time V SS Time V SS Time V SS Time V SS Time V SS Time V SS Time

10 11 2 525 2 183 2 138 2 173 2 138 -210 86

20 3614 15 3142 20 1213 20 1080 19 963 22 839 -120 1824

30 3630 -208 3300 5 1599 28 1311 -1 1600 32 1319 -308 3020

5 40 3654 -412 3544 -169 1908 33 1392 28 1879 61 1340 -212 891

50 3683 -454 3818 60 2430 102 1628 103 2438 103 1628 -71 1836

60 3716 -19932 4147 195 2722 233 1605 229 2737 225 1611 300 3019

70 3756 -45757 4550 644 3017 989 1519 785 3209 1034 1698 1110 3080

80 3395 -48852 5035 1871 3328 2037 2512 2168 3529 2440 2019 1586 3105

1 10 3610 -18 3095 16 899 16 822 11 1586 17 1379 -64 3013

20 3630 -332 3300 63 1611 160 1334 50 1709 105 1401 -25 3021

30 3666 -15013 3638 1010 1924 1089 1334 1023 1979 1134 1468 794 3163

10 40 3712 -84355 4070 498 1919 509 915 628 2427 786 1323 109 3043

50 3768 -97813 4631 3276 3103 4222 1635 3454 3072 4220 1500 4740 3138

60 3842 -117460 5307 4897 4610 6084 2457 4986 4320 6083 2024 4536 3166

70 3935 -117187 6138 6047 5801 7395 3844 6676 5269 7397 2046 5769 3187

80 3365 -161839 7042 3406 5532 6517 3921 6601 5439 6946 2569 3361 3214

10 424 20 3051 20 481 20 437 22 456 22 407 -52 3005

20 3615 -440 3152 26 2552 33 2422 65 2557 87 2407 -70 3007

30 3632 -294 3303 70 3969 131 3687 228 3764 229 3462 7 3012

5 40 3657 -25691 3505 -218 3972 112 3580 355 3650 362 3164 -197 3024

50 3687 -32493 3765 67 4223 159 3490 649 3332 700 2487 658 3028

60 3721 -40248 4077 532 5212 740 4144 692 3919 864 2722 532 3043

70 3763 -46376 4528 1524 5543 1527 4124 1942 5238 2067 3668 1142 3062

80 4021 -45704 4996 1313 6182 1595 4071 3250 6182 3303 4887 2075 3102

2 10 3611 -131 3104 13 3104 26 3013 14 2807 36 2722 -459 3023

20 3634 -34586 3291 -231 4008 91 3692 77 3934 230 3631 -120 3032

30 3671 -53783 3583 1139 3936 1286 3281 1013 2353 1862 1714 1539 3029

10 40 3718 -79719 3980 1329 3842 1393 2721 1501 4130 1546 3059 160 3043

50 3777 -95142 4501 1914 3723 2401 2198 2165 5338 2782 3650 934 3132

60 3848 -124200 7350 -1757 6923 589 4649 3047 5626 3420 3111 1265 3145

70 3926 -126009 6145 649 7483 6526 4346 1129 7290 6647 3894 5385 3168

80 4753 -6047 9681 145609 8806 157775 4421 156951 6644 157006 2985 158172 3206

Table 3: Computational time and approximation of the Value of the Stochastic Solution for all
the approaches.

The computational times presented in Table 3 for all the approaches are very close
and, in general, the lowest ones correspond to the approaches in which precedence rela-
tions are used. Furthermore, the additional computational time required to improve the
solution in the adjustable approaches is lower than the time required to evaluate all the
10 candidate solutions in the �nal step of the corresponding static approaches.

The cost of the solutions obtained by each one of the strategies is reported in Table 4.
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In each set of four columns associated with each variant of the ASAA, the results for the
di�erent threshold values of γ1 are reported.

The results displayed in Table 4 show that the cost of the solutions obtained by
SAA tend to be excessively high for medium and large size instances. However, for the
smallest instances, the cost of the solutions obtained by strategy ASAAR, where the
structure of the problem changes due to the relaxation of the routing variables, is even
higher than the one obtained by SAA.

The solutions obtained by the static strategies that use the ILS procedure, strate-
gies SAAILS and SAAILS+P , are in general better than the ones obtained by solving
the EVP . Furthermore, such solutions can be improved by using the corresponding ad-
justable strategies, ASAAILS and ASAAILS+P , mainly when the size of the instances
increases. This means that the second and third steps in the adjustable approach im-
prove the quality of the solutions. Notice that these two adjustable approaches iterate
from the solutions obtained by the corresponding static version.

The solutions obtained by SAAILS+P have, in general, a lower cost than the ones
obtained by SAAILS and, in some cases, there is a big di�erence between the cost of
these solutions. The same observation applies when comparing the strategies SAAILS+P

and SAAILS . This means that the use of precedence relations can be very useful for
such instances, mainly for the medium and large size instances, since �xing the routing
variables a priori make the instances easier to solve.

In strategy ASAAR, where the routing variables are relaxed, integer solutions are
found quickly. For small size instances, the solutions obtained by this variant are the ones
with the worst cost. However, when the size of the instances increases, the computational
time required to obtain solutions with the relaxation strategy is kept small and much
better solutions than the ones obtained by SAA and EVP are obtained.

The computational results obtained for the adjustable approaches suggest that dif-
ferent good solutions can be obtained from di�erent threshold values, and in some cases,
di�erent threshold values may result in the same solution. In fact, there is no speci�c
threshold value that always leads to the best solution. For the large size instances,
better results are obtained by considering threshold values di�erent from zero, which
corresponds to �xing more variables than the ones that take the same value in all the
candidate solutions. However, the threshold value γ1 used should not be close to 0.5,
since the quality of the solution can be lost when many variables are �xed a priori.

From a general point of view, the computational results presented in Table 3 and
Table 4 allow us to conclude that in almost all the cases, the solutions obtained by
the static approaches can be improved by the second and third steps of the adjustable
approaches using a short running time. Hence, the proposed adjustable strategies prove
to be e�ective and e�cient, mainly for medium and large instances, since good solutions
can be obtained in a short time. Moreover, among the three adjustable strategies tested,
strategy ASAAILS+P is the one that, in general, leads to the best results, solution and
time.
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Results not reported here show that each subproblem associated to the determination
of each candidate solution is highly in�uenced by the variation of the demand values.
Hence, in order to validate our conclusions, further tests were conducted for the large
size instances in which the demand samples are derived from a normal distribution with
parameters dit (mean) and 0.15dit (standard deviation), and for a gamma distribution
with parameters (1/0.15)2 (shape) and 1/(0.152dit) (rate). For these results we com-
pare the EVP, the best static approach SAAILS+P , and the best adjustable approach
ASAAILS+P using the threshold value 0.15. The results are reported in Tables 5 and 6,
respectively.

EVP SAAILS+P ASAAILS+P

nV nT nN Time Cost Time Cost VSS Time Cost VSS
60 3710 27285 2361 26802 483 1531 26590 695

5 70 3748 31667 2874 30442 1225 1740 30204 1463
80 3789 35110 3207 32962 2148 1745 32729 2381

1 60 4014 84826 6718 67447 17379 3456 67170 17656
10 70 10191 81235 7215 73633 7602 2809 73290 7945

80 3973 96860 6250 85318 11542 3316 84981 11879
60 3708 28017 2534 27388 629 1720 27237 780

5 70 3745 33008 3875 31139 1869 2765 31014 1994
80 3805 37015 3999 33866 3149 2409 33704 3311

2 60 4021 71910 6349 68873 3037 3031 68527 3383
10 70 10291 86527 7821 75803 10724 3415 75558 10969

80 3985 250198 5755 93426 156772 2725 92152 158046

Table 5: Computational results obtained for the case where the demands follow the normal
distribution.

EVP SAAILS+P ASAAILS+P

nV nT nN Time Cost Time Cost VSS Time Cost VSS
60 3722 26495 2982 25958 537 2056 25721 774

5 70 3759 30734 3935 29484 1250 2713 29246 1488
80 3802 34103 4657 31891 2212 3091 31625 2478

1 60 3835 82949 4101 65265 17684 2271 64960 17989
10 70 9933 78959 4527 71249 7710 2185 70858 8101

80 3955 91075 6303 82412 8663 3513 82045 9030
60 3707 27202 3247 26570 632 2441 26414 788

5 70 3747 32083 4333 30193 1890 3207 30023 2060
80 3791 35962 4550 32809 3153 3072 32587 3375

2 60 3829 69788 4772 66794 2994 2990 66350 3438
10 70 10034 84272 6013 73420 10852 3663 73172 11100

80 3990 246986 6014 90394 156592 2944 89429 157557

Table 6: Computational results obtained for the case where the demands follow the gamma
distribution.
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Both tables show that the static and the adjustable approaches lead to gains when
compared to the feasible solution obtained by solving the EVP. Although the running
times are similar (which is expected since the �rst step in both approaches is the same
and corresponds to computing the set of candidate solutions, which is the most time
consuming step), the adjustable approach is always slightly faster. In relation to the
quality of the feasible solution, the adjustable approach is always better than the static
one.

6 Conclusion

A stochastic production-inventory-routing problem with recourse is considered. A
sample average approximation method is applied where the stochastic problem is solved
for several samples and the best solution among the solutions obtained is selected. Since
the stochastic problem is very complex and problem instances can hardly be solved to
optimality within reasonable amount of running time, two di�erent approaches are pro-
posed: a static approach that consists of using heuristics to generate a solution for the
stochastic problem de�ned for each sample; and a new adjustable heuristic procedure
where the generated solutions are used to �x part of the �rst-stage solution (correspond-
ing to those variables which have common values in the most of the candidate solutions).
The partial solution is completed by solving a new restricted problem de�ned for a larger
sample.

Several algorithms were tested for each approach. Computational results have shown
that the static procedure performs well on small size instances using as heuristic the
(time) truncated branch-and-bound algorithm. For medium size instances the static
procedure performs well if an iterated local search heuristic is used to improve the initial
candidate solutions. However, such solutions can be improved by using the adjustable
approach with a short computational time.

Future research would be to extend the adjustable approach introduced here to other
complex two-stage stochastic problems, such as network design problems.
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