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Abstra
t

In this paper we 
onsider a pra
ti
al lot-sizing problem fa
ed by an industrial


ompany. The 
ompany plans the produ
tion for a set of produ
ts following

a Make-To-Order poli
y. When the produ
tive 
apa
ity is not fully used, the

remaining 
apa
ity is devoted to the produ
tion of those produ
ts whose orders

are typi
ally quite below the established minimum produ
tion level. For these

produ
ts the 
ompany follows a Make-To-Sto
k (MTS) poli
y sin
e part of the

produ
tion is to ful�ll future estimated orders. This yields a parti
ular lot-

sizing problem aiming to de
ide whi
h produ
ts should be produ
ed and the


orresponding bat
h sizes. These lot-sizing problems typi
ally fa
e un
ertain

demands, whi
h we address here through the lens of robust optimization.

First we provide a mixed integer formulation assuming the future demands

are deterministi
 and we tighten the model with valid inequalities. Then, in

order to a

ount for un
ertainty of the demands, we propose a robust approa
h

where demands are assumed to belong to given intervals and the number of

deviations to the nominal estimated value is limited. As the number of produ
ts


an be large and some instan
es may not be solved to optimality, we propose two

heuristi
s. Computational tests are 
ondu
ted on a set of instan
es generated

from real data provided by our industrial partner. The heuristi
s proposed are

fast and provide good quality solutions for the tested instan
es. Moreover, sin
e

they are based on the mathemati
al model and use simple strategies to redu
e
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the instan
es size, these heuristi
s 
ould be extended to solve other multi-item

lot-sizing problems where demands are un
ertain.

Keywords: Lot-sizing, Make-To-Sto
k, Robust optimization, Mixed-integer

linear programming

1. Introdu
tion

In this paper we 
onsider a pra
ti
al problem o

urring in an aluminium

extrusion industrial 
ompany. The 
ompany produ
es two main families of

produ
ts: a family of produ
ts representing the main produ
tion a
tivity of

the 
ompany where a Make-To-Order (MTO) poli
y is followed (MTO family),

and a family of produ
ts whose orders are typi
ally quite below the established

minimum produ
tion level. For this family, the 
ompany follows a Make-To-

Sto
k (MTS) poli
y (MTS family). The produ
tion planning pro
edure for the

MTO family is well established. However for the MTS family, as the orders

are below the minimum produ
tion level, the 
ompany must �nd a solution

between the two extreme 
ases: wait for new orders of the same produ
t until

the minimum produ
tion level is attained, or produ
e at least at the minimum

produ
tion level of that item to satisfy the pending orders and store the leftovers

in inventory. Both alternatives have their pros and 
ons. The �rst alternative

has the advantage of avoiding sto
ks. On the other hand, the ba
klogging of

demand orders may lead to intangible losses. Conversely, the se
ond alternative

has the advantage of a ready satisfa
tion of 
ustomer needs but generates high

holding 
osts.

Currently, the 
ompany gives priority to the MTO family by planing its

produ
tion �rst, and when extra produ
tion 
apa
ity is available, then it solves

a lot-sizing problem to de
ide whi
h produ
ts from the MTS family should be

produ
ed and de�ning the 
orresponding lot-sizes. This parti
ular lot-sizing

problem takes into a

ount not only the pending orders of ea
h produ
t but

also future ones, as the ex
ess quantity produ
ed will remain in sto
k until new

orders are re
eived. Therefore, it is ne
essary to estimate those future 
lient

orders. The un
ertainty related to fore
asting su
h future demands represents

a risk for the planners sin
e the inventory 
osts will depend greatly on su
h

unknown demands. For industries where holding 
osts are high (as in the 
ase

of our industrial partner) it is desirable to derive robust solutions that take into

a

ount possible future deviations from the estimated demand values.

Here we address this lot-sizing problem de�ned for the MTS family of prod-

u
ts, using the available produ
tion 
apa
ity. We 
onsider both the determinis-

ti
 and the robust 
ases where demands are assumed to belong to an un
ertainty

set and we look for the produ
tion plan that optimizes the worst-
ase s
enario.

For the produ
tion of the MTS family, we produ
e at most one bat
h of ea
h

produ
t, hen
e, we allow at most one set-up. Therefore this parti
ular lot-sizing

problem is denoted by LS1S (Lot-Sizing with 1 Set-up). The robust problem is

denoted by RLS1S.
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Multi-produ
t lot-sizing problems have been re
eiving a great attention, for

re
ent publi
ations, see e.g. (Cunha et al., 2017; Ma
edo et al., 2016; Sifaleras

and Konstantaras, 2017). Frequently, due to the variety of produ
ts and their

demand patterns, the 
ompanies follow di�erent produ
tion poli
es for the dif-

ferent produ
ts. In some 
ases, di�erent poli
ies 
an even be 
onsidered for the

same produ
t (see (Zhang et al., 2013)) in order to satisfy the di�erent demand

streams. The de
ision between the MTO and the MTS poli
ies was investigated

by Zaerpour et al. (2008) and Altendorfer and Minner (2014). For an overview

on 
omparison of su
h approa
hes see (Olhager and Prajogo, 2012). However,

both MTO and MTS produ
ing pro
esses may share 
ommon resour
es for
ing

the produ
tion planners to 
oordinate the MTO and MTS poli
ies (Ra�ei and

Rabbani, 2012). Examples of problems 
ombining MTO�MTS poli
ies 
an be

found in di�erent industries, su
h as food produ
tion systems (Soman et al.,

2004) and steel plants (Zhang et al., 2015).

Several approa
hes have been proposed, mostly from last de
ade, regarding

the integration of MTS and MTO poli
ies. Beemsterboer et al. (2016) study

the bene�ts of not prioritizing poli
ies within a hybrid planning MTO�MTS

approa
h. In (Beemsterboer et al., 2017a), the authors analyse the bene�ts

of 
onsidering �exible lot sizing poli
ies in a hybrid MTO�MTS approa
h for

a two-produ
t system. In (Beemsterboer et al., 2017b), the authors propose

four methods of integrating make-to-sto
k items in the 
ontrol of a job shop,

whi
h they evaluate using dis
rete event simulation. Kaminsky and Kaya (2009)

propose heuristi
s for a multi-item problem where the manufa
turer and the

supplier have to de
ide whi
h items to produ
e to sto
k and whi
h to produ
e

to order. Kalantari et al. (2011) present a de
ision support system for order

a

eptan
e/reje
tion in a hybrid MTO�MTS produ
tion environment. Perona

et al. (2009) develop a de
ision-making approa
h to support inventory man-

agement de
isions in a MTO�MTS environment for small and medium sized

enterprises. Renna (2016) 
onsiders a multistage manufa
turing serial system,

where a produ
tion 
ontrol strategy is performed to release MTO and MTS

orders. Ra�ei et al. (2013) propose a hierar
hi
al produ
tion planning approa
h

for a hybrid MTO�MTS system that in
ludes both mid-term and short-term

produ
tion planning levels. Ra�ei et al. (2014) propose a geneti
 algorithm for

a multi-site produ
tion planning of a hybrid MTO�MTS manufa
turing system.

The MTS planning 
arries the risk that the fore
asted orders may not mate-

rialize. Su
h risk has been identi�ed before, see (Tang and Musa, 2011). When

it is possible, delaying produ
t di�erentiation 
an be an interesting intermediate

solution (Gupta and Benjaafar, 2004), but that is not possible in most pra
ti-


al 
ases as the one fa
ed by our industrial partner. For those 
ases, handling

with un
ertainty is of main relevan
e on MTS environments. To the best of

our knowledge only Khakdaman et al. (2015) applied a robust multi-obje
tive

approa
h based on a set of s
enarios to a hybrid MTO�MTS problem where

un
ertainty is 
onsidered in suppliers, pro
esses and 
ustomers.

The problem 
onsidered in this paper o

urs as a subproblem of a hybrid

MTO�MTS manufa
ture system where a hierar
hi
 approa
h is followed and

priority is given to MTO. The problem fo
uses on solving the MTS planning
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onsidering the remaining manufa
turing 
apa
ity. From its nature, the MTS

subproblem 
onsiders medium/long-term horizons where demand un
ertainty

plays a 
ru
ial role when de�ning lot-sizings.

A large number of publi
ations has been devoted to the study of robust

lot-sizing problems with demand un
ertainty. One of the �rst papers on the

topi
 is (Bertsimas and Thiele, 2006), whi
h proposes a simple 
onservative

approximation of the robust 
onstraints and studies the stru
ture of the optimal

poli
ies. In parallel to that work, another paper introdu
ed a�ne de
ision rules

(Ben-Tal et al., 2004), having the advantage of better approximating the robust


onstraints. The theoreti
al strength of a�ne de
ision rules has been studied in

subsequent papers, among whi
h (Ian
u et al., 2013). More re
ent works have

sought to solve the robust problem exa
tly, by using de
omposition algorithms

and dynami
ally adding 
onstraints to the problem, see (Agra et al., 2016;

Biensto
k and Özbay, 2008; Gorissen and den Hertog, 2013). Robust lot-sizing

problems and their variants are also addressed in more general papers dealing

with multi-stage robust optimization, see (Delage and Ian
u, 2015) for a survey

on these problems. More generally, we refer to (Peidro et al., 2009) for a survey

on papers dealing with un
ertainty on supply 
hains.

Although motivated by a pra
ti
al problem, we aim to in
orporate the re
ent

robust optimization te
hniques into this parti
ular lot-sizing problem in order to


lose the gap between the robust te
hniques for 
lassi
al lot-sizing problems and

the robust te
hniques for MTS problems within hybrid MTO�MTS manufa
ture

systems.

The 
ontributions of this paper are more spe
i�
ally detailed below. We

introdu
e a mathemati
al model for the deterministi
 
ase where future demands

are assumed to be known. Our model is di�erent from the the 
lassi
al ones

(see for instan
e (Po
het and Wolsey, 2006)) mainly be
ause we suppose that

ea
h produ
t has at most one set-up. A proof that this parti
ular problem is

NP-hard is given. The model is tightened with valid inequalities.

We develop a robust mixed integer model where demands are 
onsidered

un
ertain and belong to intervals. The un
ertainty set is further 
onstrained

by budget 
onstraints that limit the number of possible periods where a de-

mand 
an deviate from its nominal value preventing the solutions to be too


onservative, obtaining the well-known budgeted un
ertainty set introdu
ed in

(Bertsimas and Sim, 2004). We approximate the resulting robust 
onstraints

using the 
onservative approa
h of (Bertsimas and Thiele, 2006), rather than

the 
omputationally demanding a�ne de
ision rules from (Ben-Tal et al., 2004)

or exa
t approa
hes used in (Agra et al., 2016; Biensto
k and Özbay, 2008).

Sin
e the problem is NP-hard, and we aim to develop approa
hes that 
an

be used both with 
ommer
ial and non-
ommer
ial (slower but free) solvers,

we propose two heuristi
s. The �rst heuristi
, 
alled Elite Heuristi
, is based

on a pre-sele
tion of a set of 
andidate produ
ts. The problem is solved for

that restri
ted set of produ
ts using a mixed integer linear programming solver

based on the strengthened formulation. The heuristi
 in
orporates the pra
ti
al

rules used by the 
ompany to 
hoose the produ
ts to produ
e. The se
ond
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heuristi
, denoted as the Tournament Heuristi
, runs in several iterations. At

ea
h iteration, the set of 
andidate produ
ts is partitioned into smaller subsets

and the problem is solved optimally for ea
h subset. Only the sele
ted produ
ts

of ea
h subset are 
onsidered in the next iteration. The pro
ess is repeated until

a �nal subset of produ
ts is solved or a number of iterations is attained.

To test the deterministi
 and robust formulations and the matheuristi
s we

use the non-
ommer
ial solver Cb
 from Coin-OR (2016), whi
h is referred to as

one of the fastest solvers among the non-
ommer
ial ones (Meindl and Templ,

2012). The test set was built from the real data provided by our industrial

partner.

As the proposed heuristi
s use simple strategies to redu
e the number of

items and, 
onsequently, the size of the instan
es, su
h heuristi
s 
an be eas-

ily adapted to other multi-item lot-sizing problems. It su�
es to adapt the

mathemati
al model to the parti
ularities of the other problems. We also show,

that in order to derive solutions that take into a

ount future demands varia-

tions, robust strategies 
ould be embedded into the mathemati
al model, and

therefore into the heuristi
s, but of 
ourse su
h strategies would need further


omputational testing in other 
ases and 
ontexts.

The outline of the paper is as follows. In Se
tion 2 we introdu
e a mixed-

integer formulation to model the pra
ti
al LS1S problem assuming the demands

are deterministi
. The formulation is enhan
ed and a proof of NP-hardness

is given. Then, in Se
tion 3, we derive the robust model for the 
ase where

demands belong to an un
ertainty set. In Se
tion 4 we present the two heuristi
s.

Computational experiments are reported in Se
tion 5. Final 
on
lusions are

given in Se
tion 6.

2. Formulation

In this se
tion we introdu
e a mixed integer formulation for the LS1S prob-

lem. The formulation is presented in a generi
 format in order to establish


onne
tions to related models and existent literature. Let m denote the number

of items 
onsidered and n denote the number of time periods of the planning

horizon, and de�ne the sets M = {1, . . . ,m} and N = {1, . . . , n}. We split the

time horizon into two sub horizons N1 = {1, . . . , n1} and N2 = {n1 + 1, . . . , n}.
The �rst horizon is for produ
tion planning (where the extra produ
tion 
apa
ity

is available) while the se
ond horizon is 
onsidered for the inventory manage-

ment aspe
ts. The demand of item i ∈ M, in time period t ∈ N1, denoted by

deit, is assumed to be known and, in our 
ase, 
orresponds to pending orders.

The demand for item i ∈ M in time period t ∈ N2 is denoted by dpit and is

fore
asted. If item i is produ
ed, then the amount produ
ed must be 
omprised

between Q
i
and Qi. For ea
h item i, parameters pi and qi represent the unit

produ
tion 
ost and the �xed produ
tion 
ost, respe
tively. Su
h parameters

may be negative if we allow them to in
orporate, for instan
e, the selling pri
e.

For ea
h produ
t i ∈ M , and for ea
h time period t ∈ N , parameters hit and git
are assumed to be nonnegative and model the unit inventory 
ost and the unit

ba
klogging 
ost, respe
tively. Finally, S is the maximum inventory 
apa
ity.
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To formulate the problem, we de�ne the following de
ision variables: xit is

the produ
tion of item i in period t; zit indi
ates whether there is produ
tion of
item i in period t; yi is the set-up variable whi
h is 1 if xit > 0 for some t ∈ N1,
and 0 otherwise; sit is the inventory of item i at the end of time period t, and
rit is the ba
klogged demand of item i at the end of period t. The mixed integer
programming formulation for LS1S is des
ribed below.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

∑

t∈N

gitrit +
∑

i∈M

qiyi (1)

s.t. xit + si,t−1 + rit = deit + sit + ri,t−1,∀i ∈ M, t ∈ N1, (2)

si,t−1 + rit = dpit + sit + ri,t−1, ∀i ∈ M, t ∈ N2, (3)

∑

i∈M

sit ≤ S, ∀t ∈ N, (4)

Q
i
zit ≤ xit ≤ Qizit, ∀i ∈ M, t ∈ N1, (5)

yi =
∑

t∈N1

zit, ∀i ∈ M, (6)

zit ∈ {0, 1}, ∀i ∈ M, t ∈ N1, (7)

yi ∈ {0, 1}, ∀i ∈ M, (8)

sit, rit ≥ 0, ∀i ∈ M, t ∈ N, (9)

ri0 = si0 = 0, ∀i ∈ M, (10)

∑

i∈M

xit = Vt, ∀t ∈ N1. (11)

The obje
tive fun
tion (1) aims to minimize the sum of the produ
tion 
osts

(

∑

i∈M

∑

t∈N1
pixit), the inventory 
ost (

∑

i∈M

∑

t∈N hitsit), the ba
klogging


ost (
∑

i∈M

∑

t∈N gitrit), and the �xed produ
tion 
ost (
∑

i∈M qiyi) over the
planning horizon.

Constraints (2) are the inventory balan
ed 
onstraints written for ea
h item

and ea
h produ
tion period t ∈ N1, while 
onstraints (3) are the inventory

balan
ed 
onstraints for time periods t ∈ N2. Constraints (4) impose an upper

bound on the sto
k level. Constraints (5) are the variable lower and upper

bound 
onstraints. They impose a lower and an upper bound on the quantity

produ
ed of ea
h produ
t at ea
h period and link the 
orresponding 
ontinuous

variables to the set-up variables. Equations (6) establish the number of set-

ups for ea
h produ
t. Together with (8) they ensure that at most one set-

up 
an o

ur. Constraints (7) and (8) de�ne the set-up variables as binary.

Constraints (9) ensure non-negativity of the inventory and ba
klog variables.

Constraint (11) represents the additional 
onstraints related to the available

produ
tion 
apa
ity.
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Summing up the equations (2) from 1 to n1, one obtains

∑

t∈N1

xit + si0 − ri0 =
∑

t∈N1

deit + sin1
− rin1

, ∀i ∈ M (12)

Denoting

∑

t∈N1
deit by De

i and using si0 = ri0 = 0, then (12) 
an be written as

∑

t∈N1

xit = De
i + sin1

− rin1
, ∀i ∈ M. (13)

Similarly, summing up equations (3) from n1 + 1 to ℓ ∈ {n1 + 1, . . . , n}, we
obtain

sin1
− rin1

=

ℓ
∑

t=n1+1

dpit + siℓ − riℓ, ∀i ∈ M, ℓ ∈ {n1 + 1, . . . , n}, (14)

Using (13) to eliminate sin1
and rin1

, then

siℓ − riℓ =
∑

t∈N1

xit −De
i −

ℓ
∑

t=n1+1

dpit, ∀i ∈ M, ℓ ∈ {n1 + 1, . . . , n}. (15)

Sin
e siℓ and riℓ are nonnegative, we obtain

sit ≥
∑

t∈N1

xit −De
i −

t
∑

ℓ=n1+1

dpiℓ, ∀i ∈ M, t ∈ N2, (16)

rit ≥ −
∑

t∈N1

xit +De
i +

t
∑

ℓ=n1+1

dpiℓ, ∀i ∈ M, t ∈ N2. (17)

As the holding and ba
klogging 
osts are assumed nonnegative, we may repla
e


onstraints (3) by (16) and (17). The resulting deterministi
 model for LS1S,

de�ned by (1), (2), (4) � (11), (16), (17), will be denoted by DLS1S.

When N2 = ∅, we obtain a 
lassi
al lotsizing model with the additional 
on-

straint that at most one setup is allowed for ea
h item. In a MTS environment

the sto
ks may last for a longer time horizon than the planning one. Under

deterministi
 assumptions the se
ond time horizon 
an be easily dropped sin
e

the holding 
ost in the last time period 
an be easily 
omputed. However, in a

robust setting it is desirable to 
onsider the se
ond time horizon expli
itly sin
e

it allows to in
orporate di�erent seasonal behaviours of demand and allow to

a

ount for di�erent magnitudes of deviation to the estimated demands.

2.1. Strengthening the formulation

It is well known that the in
lusion of valid inequalities 
an improve the model

signi�
antly, see (Po
het and Wolsey, 2006) for details. Constraints (16) 
an be
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strengthened as follows.

sit ≥
∑

t∈N1

xit −De
i yi −

t
∑

ℓ=n1+1

dpiℓyi, ∀i ∈ M, t ∈ N2, (18)

When yi = 1 inequality (18) 
oin
ides with (16) and when yi = 0 the right-hand
side of (18) be
omes negative. Thus (16) is valid for the set of feasible solutions.

Moreover,

De
i yi +

t
∑

ℓ=n1+1

dpiℓyi ≤ dei +

t
∑

ℓ=1

dpiℓ

⇔
∑

t∈N1

xit −De
i yi −

t
∑

ℓ=n1+1

dpiℓyi ≥
∑

t∈N1

xit −De
i −

t
∑

ℓ=1

dpiℓ

whi
h implies that (18) is stronger than (16). In fa
t we 
an repla
e (16) by

(18) in the formulation for LS1S.

A family of valid inequalities for the value of ba
klog variables follows.

rit ≥ De
i (1− yi) +

t
∑

ℓ=n1+1

dpiℓ(1− yi), ∀i ∈ M, t ∈ N2. (19)

If there is no setup for period i, i.e. yi = 0, inequality (19) for
es the demand

De
i +

∑t

ℓ=1 d
p
iℓ to be ba
klogged. Otherwise, if yi = 1, inequality (19) simply

imposes nonnegativity on the ba
klog variables. Contrary to the previous 
ase,

(19) 
annot repla
e inequalities (17).

The strengthened deterministi
 model for LS1S, denoted by SDLS1S is given

by (1), (2), (4) � (11), (17), (18), (19).

In the pra
ti
al 
ase provided to us by our industrial partner we have the fol-

lowing assumptions: (i) only one produ
tion period is 
onsidered (n1 = 1); (ii)
only the ba
klog of the e�e
tive demand is penalized (git = 0, t ∈ N2); and (iii)

the minimum produ
tion quantity is at least the e�e
tive demand (Q
i
≥ dei ).

The three assumptions imply that 
onstraints (17) 
an be eliminated. For 
om-

pleteness we give below the resulting strengthened model, after simpli�
ation,

for the pra
ti
al 
ase.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

gi1ri1 +
∑

i∈M

qiyi (20)
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s.t. sit ≥
∑

t∈N1

xit −De
i yi −

t
∑

ℓ=1

dpiℓyi, ∀i ∈ M, t ∈ N, (21)

ri1 ≥ De
i (1− yi), ∀i ∈ M, (22)

si1 ≤ S, (23)

Q
i
yi ≤

∑

t∈N1

xit ≤ Qiyi, ∀i ∈ M, (24)

∑

i∈M

∑

t∈N1

xit = V1, ∀t ∈ N, (25)

sit, rit ≥ 0, ∀i ∈ M, (26)

yi ∈ {0, 1}, ∀i ∈ M. (27)

Noti
e that 
onstraints (23) are given just for t = 1 sin
e the sto
k level will

de
rease in subsequent periods. We denote model (20)-(27) by PLS1S.

2.2. Complexity analysis

The original problem LS1S is NP-hard as it generalizes the 
lassi
al lot-sizing

problem with varying 
apa
ities (Po
het and Wolsey, 2006). Here we fo
us on

the parti
ular 
ase of the pra
ti
al problem PLS1S. We show it is NP-hard for

the simpli�ed version with two time periods (implying it is NP-hard for the

general 
ase). The proof is done by redu
ing the partition problem to PLS1S.

Proposition 2.1. The problem de�ned by PLS1S is NP-hard for the parti
ular


ase n1 = 1, n = 2.

Proof: The de
ision problem, denoted by D-PLS1S, asso
iated with the opti-

mization problem asks whether there is a solution to (21)-(27) whose obje
tive

fun
tion value given by (20) is greater than L.
Next we redu
e the partition problem to D-PLS1S. Re
all that in the par-

tition problem we are given k positive integers ai, i ∈ K = {1, . . . , k} and

wish to determine whether there exists a partition (S,K \ S) of K su
h that

∑

i∈S

ai =
∑

i∈K\S

ai =
∑

i∈K

ai/2.

For the redu
tion 
onsider k = m, Q
i
= Qi = ai and V1 =

∑

i∈K

ai/2. Further,

for ea
h i ∈ M , we set De
i = min

j∈K
aj , dpi1 = ai − De

i , pi = qi = gi1 = 0,

hit = 0, t ∈ N, L = 0.
As

∑

t∈N1
xit = aiyi, any feasible solution to D-PLS1S must satisfy

∑

i∈M aiyi
=
∑

i∈K

ai/2. Hen
e, there is a one to one 
orresponden
e between a feasible solu-

tion (x∗, y∗) of D-PLS1S, with the spe
i�ed parameters, and a feasible solution

of the partition problem, where S = {j ∈ K|y∗j = 1}. �
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3. Robust model for the demand un
ertainty 
ase

Clearly, it is not possible to know pre
isely the value of dpit for all i and t
sin
e these orders have not been made yet. At best, we 
an rely on histori
al

data to draw a set of plausible values for these demands. A popular approa
h

(see (Bertsimas and Sim, 2003, 2004; Bertsimas and Thiele, 2006)) 
onsiders

the nominal value d
p

it and the deviation d̂pit for ea
h i and t whi
h 
ould, for

instan
e, be the mean value and the varian
e of the available histori
al data.

The approa
h then supposes that the unknown parameter dpit 
an take any

value in the interval [d
p

it − d̂pit, d
p

it + d̂pit] and that, for ea
h item i and ea
h time

period t, the number of demands taking an extreme value is bounded by a given
parameter Γt > 0:

∑

ℓ∈Nt

|dpiℓ − d
p

iℓ|

d̂piℓ
≤ Γt. (28)

where N t = {n1 + 1, . . . , t}. Formally, the un
ertainty sets obtained with this

approa
h 
an be written as

Dit =
{

dpiℓ : d
p
iℓ = d

p

iℓ + δ+iℓ d̂
p
iℓ − δ−iℓ d̂

p
iℓ, ℓ ∈ N t, δ+iℓ , δ

−
iℓ ∈ [0, 1] , ℓ ∈ N t,

∑

ℓ∈Nt

(δ+iℓ + δ−iℓ) ≤ Γt

}

,

for ea
h i ∈ M and t ∈ N , where δ+ and δ− are auxiliary ve
tors that ease

the linearization of 
onstraint (28). Parameter Γt is often denoted as the budget

of un
ertainty. Taking a small value of Γt yields a small un
ertainty set, while

in
reasing Γt yields larger and larger un
ertainty sets. The two extremes are

Γt = 0 for whi
h Dit is redu
ed to the singleton {d
p

i } and Γt = t for whi
h Dit

is equal to the box

∏

ℓ∈Nt

[d
p

iℓ − d̂piℓ, d
p

iℓ + d̂piℓ].

In general, for ea
h t, Γt is 
omprised between 0 and t, and Γt ≤ Γt+1. For

simpli
ity we assume Γt is integer for ea
h t, but all the results derived in this

se
tion 
ould be extended to the 
ase where parameters Γt are fra
tional.

Next we present a robust model for RLS1S. The model is based on the

deterministi
 formulation DLS1S where 
onstraints (16) are repla
ed by (18).

For the remaining models dis
ussed in the previous se
tion (models D-LS1S,

SDLS1S and PLS1S) the robust model 
an be derived in a similar way.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

∑

t∈N

gitrit +
∑

i∈M

qiyi (29)
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s.t. sit ≥
∑

t∈N1

xit −De
i yi −

∑

ℓ∈Nt

dpiℓyi,∀i ∈ M, t ∈ N2, d
p
iℓ ∈ Dit (30)

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

dpiℓ,∀i ∈ M, t ∈ N2, d
p
iℓ ∈ Dit (31)

(2), (4)− (11), (17).

Constraints (30) and (31) are inspired by the approa
h used in (Bertsimas

and Thiele, 2006). Their main advantage is to lead to a fairly simple robust


ounterpart. Namely, we show in the rest of the se
tion that problem (2), (4) �

(11), (29) � (31), 
an be reformulated as a 
ompa
t MILP that is essentially of

the same order of di�
ulty as the deterministi
 version LS1S. In 
ontrast, the

more advan
ed methods used in (Agra et al., 2016; Ben-Tal et al., 2004) provide

more a

urate solutions however at a high 
omputational 
ost.

Formulation RLS1S 
ontains an in�nite number of 
onstraints, yielding a

semi-in�nite MILP. We show next how to reformulate the problem as a 
ompa
t

MILP by using a well-known te
hnique from robust optimization (e.g. (Ben-Tal

and Nemirovski, 1998; Bertsimas and Sim, 2004; Bertsimas and Thiele, 2006)).

First, we realize that for (30), positive deviations of dpiℓ are not in
reasing the


ost of the solution sin
e they would only de
rease the sto
k more rapidly;

hen
e, positive deviations 
an be negle
ted in (30). Similarly, we 
an restri
t

ourselves to negative deviations of dpiℓ in (31) sin
e the positive deviations will

never in
rease the amount of unmet demands. Formally, we 
an introdu
e the

smaller un
ertainty sets

D+
it =

{

dpiℓ : d
p
iℓ = d

p

iℓ + δiℓd̂
p
iℓ, ℓ ∈ N t, δiℓ ∈ [0, 1] , ℓ ∈ N t,

∑

ℓ∈Nt

δiℓ ≤ Γt

}

,

D−
it =

{

dpiℓ : d
p
iℓ = d

p

iℓ − δiℓd̂
p
iℓ, ℓ ∈ N t, δiℓ ∈ [0, 1] , ℓ ∈ N t,

∑

ℓ∈Nt

δiℓ ≤ Γt

}

,

and we repla
e 
onstraints (30) and (31) with the equivalent 
onstraints

sit ≥
∑

t∈N1

xit −De
i yi −

∑

ℓ∈Nt

dpiℓyi, ∀i ∈ M, t ∈ N2, d
p
iℓ ∈ D−

it , (32)

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

dpiℓ, ∀i ∈ M, t ∈ N2, d
p
iℓ ∈ D+

it . (33)

Next we see that the in�nite numbers of 
onstraints (32) and (33) 
an be sub-
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stituted by the following non-linear 
onstraints

sit ≥
∑

t∈N1

xit −De
i yi − min

d
p

iℓ
∈D−

it

(

∑

ℓ∈Nt

dpiℓyi

)

, ∀i ∈ M, t ∈ N2, (34)

rit ≥ −
∑

t∈N1

xit +De
i + max

d
p

iℓ
∈D+

it

(

∑

ℓ∈Nt

dpiℓ

)

, ∀i ∈ M, t ∈ N2. (35)

Next we follow the 
lassi
al dualization approa
h introdu
ed in (Ben-Tal and

Nemirovski, 1998) and used to lot-sizing problems in (Bertsimas and Thiele,

2006). Let i ∈ M and t ∈ N be �xed and let us fo
us on 
onstraint (34).

The inner minimization problem over variables dpiℓ in (34) 
an be repla
ed by a

minimization problem over variables δiℓ. Moving the term yi
∑

ℓ∈Nt d
p

iℓ outside

of the minimization be
ause it does not involve the variable δiℓ, and 
hanging

the minimization problem by a maximization problem, we obtain

yi
∑

ℓ∈Nt

d
p

iℓ − max
∑

ℓ∈Nt

δiℓd̂
p
iℓyi

s.t.
∑

ℓ∈Nt

δiℓ ≤ Γt, (36)

0 ≤ δiℓ ≤ 1, ∀ℓ ∈ N t. (37)

Let us denote the dual variables of 
onstraints (36) and (37) as z−it and uℓ−
it ,

respe
tively. Sin
e 
onstraints (36) and (37) de�ne a bounded and non-empty

polytope, we 
an apply strong linear programming duality to repla
e the maxi-

mization problem by its dual:

yi
∑

ℓ∈Nt

d
p

iℓ − min Γtz
−
it +

∑

ℓ∈Nt

ut−
iℓ

s.t. z−it + ut−
iℓ ≥ d̂piℓyi, ∀ℓ ∈ N t, (38)

z−it , u
t−
iℓ ≥ 0 ∀ℓ ∈ N t. (39)

Plugging the above minimization problem into the original 
onstraint (34) for

the �xed i and t, we obtain

sit ≥
∑

t∈N1

xit−De
i yi−yi

∑

ℓ∈Nt

d
p

iℓ+





min Γtz
−
it +

∑

ℓ∈Nt u
t−
iℓ

s.t. z−it + ut−
iℓ ≥ d̂piℓyi, ∀ℓ ∈ N t

z−it , u
t−
iℓ ≥ 0 ∀ℓ ∈ N t



 .

(40)

Finally, noti
e that (40) is feasible if and only if there exist ve
tors z−it ≥ 0 and
ut−
iℓ ≥ 0 that satisfy the dual 
onstraints (38) and su
h that

sit ≥
∑

t∈N1

xit −De
i yi − yi

∑

ℓ∈Nt

d
p

iℓ + Γtz
−
it +

∑

ℓ∈Nt

ut−
iℓ . (41)
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Therefore, the robust 
onstraint (34) is equivalent to the 
onstraints (38), (39),

and (41).

Introdu
ing dual variables z+it and uℓ+
it to handle with 
onstraints (35), we


an reformulate RLS1S as the following 
ompa
t MILP, denoted by RLS1S.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

∑

t∈N

gitrit +
∑

i∈M

qiyi

s.t. sit ≥
∑

t∈N1

xit −De
i yi − yi

∑

ℓ∈Nt

d
p

iℓ + Γtz
−
it +

∑

ℓ∈Nt

ut−
iℓ ,∀i ∈ M, t ∈ N2

z−it + ut−
iℓ ≥ d̂piℓyi, ∀i ∈ M, t ∈ N2, ℓ ∈ N t

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

d
p

iℓ + Γtz
+
it +

∑

ℓ∈Nt

ut+
iℓ , ∀i ∈ M, t ∈ N2

z+it + ut+
iℓ ≥ d̂piℓ, ∀i ∈ M, t ∈ N2, ℓ ∈ N t

(2), (4)− (11), (17),

z−it , u
t−
iℓ , z

+
it , u

t+
iℓ ≥ 0, ∀i ∈ M, t ∈ N2, ℓ ∈ N t.

The above approa
h is easy to apply be
ause it amounts to solve a unique

problem. Yet, the dimension of the new MILP is larger than the dimension of

the original problem.

An alternative approa
h to the dualization is to 
ompute a priori the min-

imum and maximum o

urring in the right-hand side of inequalities (34) and

(35), respe
tively. As explained above, these optimization problems 
an be 
on-

verted into a maximization problem where the feasible set is de�ned by (36)

-(37). We 
an observe that the extreme solutions of this set satisfy δiℓ ∈ {0, 1}.
Thus, the sets of extreme feasible solutions 
orrespond to uniform matroids.

Consequently, these maximization problems 
an be solved by a greedy algo-

rithm that 
hooses the highest deviations. Hen
e, the following equalities hold.

min
d
p

iℓ
∈D−

it

(

∑

ℓ∈Nt

dpiℓyi

)

=

(

∑

ℓ∈Nt

d
p

iℓ −
Γt
∑

r=1

d̂p
iℓtr

)

yi

max
d
p

iℓ
∈D−

it

(

∑

ℓ∈Nt

dpiℓ

)

=
∑

ℓ∈Nt

d
p

iℓ +

Γt
∑

r=1

d̂p
iℓtr

where d̂p
iℓtr

is the rth largest deviation among the �rst t deviations d̂pi1, . . . , d̂
p
it.

Hen
e, (34) and (35) are repla
ed by
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sit ≥
∑

t∈N1

xit −De
i yi −

(

∑

ℓ∈Nt

d
p

iℓ −
Γt
∑

r=1

d̂p
iℓtr

)

yi, ∀i ∈ M, t ∈ N2, (42)

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

d
p

iℓ +

Γt
∑

r=1

d̂p
iℓtr

, ∀i ∈ M, t ∈ N2. (43)

For the 
omputational results we use this se
ond approa
h sin
e it is more

e�
ient 
omputationally.

4. Heuristi
s

Companies seek for qui
k approa
hes to �nd good solutions to their prob-

lems. While 
ompa
t, formulations SDLS1S and RLS1S 
an take too mu
h

time to be solved to optimality using exa
t algorithms su
h as the Bran
h and

Cut implemented in both 
ommer
ial and open-sour
e optimization software.

The running time is even more relevant in our 
ase sin
e the number of items


onsidered 
an be quite large, up to few hundreds. Hen
e, for a pra
ti
al use,

we present two heuristi
s to solve problems LS1S and RLS1S approximately.

A �rst one, 
alled Elite Heuristi
 extends the 
urrent pra
ti
e of the 
ompany

whi
h is based on the sele
tion of items a

ordingly to some 
riteria. Here we

sele
t a larger number of items a

ordingly to the same 
riteria and solve the

models restri
ted to the sele
ted items. The se
ond heuristi
, 
alled Tourna-

ment Heuristi
, sele
ts iteratively small subsets of items until it rea
hes a �nal

and small subset.

4.1. Elite Heuristi


The �rst heuristi
 is to sele
t a spe
i�
 subset of items and solve the proposed

formulation 
onsidering this subset of items.

The 
hoi
e of the subset is as follows. Choose

• m1 items with the highest known demand values, De
i ;

• m2 items with the highest values of the known demand plus the fore
asted

demand for the �rst time period,

(

De
i + dpi,n1+1

)

;

• m3 items with the highest values of the known demand plus the fore
asted

demand for the �rst two time periods,

(

De
i +

∑n1+2
t=n1+1 d

p
it

)

;

• m4 items with the highest values of the known demand plus the fore
asted

demand for the �rst three time periods,

(

De
i +

∑n1+3
t=n1+1 d

p
it

)

;

Here we 
onsider m1 = m2 = m3 = m4.
After sele
ting and joining these four list of items, the restri
ted model (the

deterministi
 SDLS1S or the robust RLS1S) is solved. As the number of elite
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items is small the resulting model 
an be solved to optimality easily. As example,

if we are given a set with 200 items and take m1 = m2 = m3 = m4 = 5, then
�ve items will be sele
ted from the initial set of 200 items using ea
h one of the

four 
riteria given above. The resulting restri
ted model with the sele
ted items

is solved using a solver.

Noti
e that the sele
tion 
riteria do not take into a

ount the 
osts. If the


osts vary from produ
t to produ
t signi�
antly, whi
h is not the 
ase of the

instan
es we 
onsider, then other 
riteria taking into a

ount the 
ost stru
ture

(produ
tion 
osts, inventory 
osts, ba
klogging 
osts, �xed produ
tion 
ost)

should be used. For instan
e, if the ba
klogging 
osts vary signi�
antly, a �fth


riteria should be 
onsidered whi
h 
onsists in sele
ting the m5 items with the

highest ba
klogging 
ost. Similarly, to the remaining 
ost 
omponents.

4.2. Tournament Heuristi


The se
ond heuristi
 is to de
ompose the original problem into smaller and

easier subproblems whi
h 
an be solved qui
kly. The items sele
ted from these

subproblems are the input to the subproblems of the next step. The pro
ess is

repeated until a �nal and smaller subset of items is obtained. Next we detail

this heuristi
.

The �rst step is to divide the set of m items into r1 subsets with 
ardinalities
m11,m12, . . . ,m1r1 , respe
tively, where m11+m12+ . . .+m1r1 = m. Then solve
the restri
ted problem for ea
h one of the subsets. As the resulting subproblems

are simpler they are solved to optimality. The items that are produ
ed in the

optimal solution of ea
h one of the subproblems are sele
ted to the next iteration.

Let m1 denote the number of items sele
ted in the �rst step. Then split this

set into r2 subsets with 
ardinalities m21,m22, . . . ,m2r2 , respe
tively, where
m21+m22+. . .+m2r2 = m1. Ea
h one of the subproblems is solved to optimality
again in order to identify the new sele
ted (produ
ed) items. The pro
ess is

repeated until a �nal subset with 
ardinality less or equal to a threshold is

obtained or a maximum number of iterations is attained. The �nal solution is

the optimal solution to the problem restri
ted to the �nal set of items. Table 1

outlines Heuristi
 2.

Table 1: S
heme of the Tournemant Heuristi
.

1st Step 2nd Step 3rd Step · · · nth Step

m

m11

m12

m1

m21

.

.

.

m22

m2

m31

.

.

.

m32

.

.

.

· · ·
mn−1 mn1

m3r3

m2r2

m1r1
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In order to exemplify the de
omposition pro
ess, assume we are given a

set with 200 items and 
onsider r1 = 6. Thus, the set of items is split into

six subsets as follows: four subsets with 33 elements (m11 = m12 = m13 =
m14 = 33) and two subsets with 34 elements (m15 = m16 = 34). Then, ea
h
problem 
orresponding to a di�erent subset is solved to optimality and the items

produ
ed in ea
h one of the six problems are sele
ted to the next round.

Noti
e that the solution to ea
h subproblem is feasible to the original prob-

lem. Hen
e, it is expe
ted that the quality of the solutions obtained will improve

in ea
h iteration, 
ulminating in the solution of the �nal iteration.

The quality of the �nal solution may depend on the su

essive partitions of

the set of items. The sele
tion of items for ea
h subset 
an be done randomly

and the pro
ess 
an be repeated several times. Here we will not explore su
h

possible improvement.

5. Numeri
al experiments

In this se
tion we report the 
omputational tests. The obje
tives of these

numeri
al experiments are three-fold. First, we assess the di�
ulty of the de-

terministi
 and robust instan
es, reporting also the gains obtained by using the

strengthened models proposed in Se
tion 2.1. Se
ond, we evaluate the obje
tive

fun
tion values for the robust and deterministi
 models to test the importan
e

of using robust approa
hes. Last, we test the e�
ien
y of the two proposed

heuristi
s.

All tests were 
ondu
ted on a 
omputer Intel(R) Core(TM) i3-3250 CPU,

3.50GHz with 4 
ores, using the open-sour
e solver Cb
 2.9 (Coin-or bran
h and


ut) from Coin-OR (2016). The heuristi
s were implemented in Julia, using the

pa
kage JuMP (Lubin and Dunning, 2015).

Instan
es were generated using data provided by our industrial partner for

the MTS family of produ
ts. Sin
e the number of items 
onsidered depends

on the pending order quantities (as items with few orders are not 
onsidered),

the number of items varies weekly and 
an go up to a few hundred produ
ts

(the 
omplete MTS family). Also, the produ
tion 
apa
ity, V1, varies weekly as
it represents the residual 
apa
ity after the produ
tion of MTO produ
ts have

been 
onsidered. Based on the information provided by our partner, suggesting

to pi
k-up 80 items and to use a residual 
apa
ity around 2000, we generate �f-

teen instan
es for the deterministi
 problem by varying the number of items and

the residual 
apa
ity. In relation to these two parameters (number of produ
ts

and 
apa
ities), the �fteen instan
es aim to simulate realisti
 instan
es fa
ed by

the 
ompany 
urrently and in the future. For the number of items we 
onsider

�ve possible values 80, 100, 150, 200, 300. Noti
e that for testing purposes it is

not interesting to 
onsider small size and, therefore, easy instan
es. For the pro-

du
tion 
apa
ities, V1, three values are 
onsidered: 1000, 2000, 3000 (sin
e both
sides with higher and lower 
apa
ities are relevant). The remaining data is taken

as follows. The known demands De
i are given by real data and the fore
asted

demands dpit are obtained from the histori
al average demand of ea
h item. The

following additional parameters are 
onsidered (established by our industrial
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partner, see (Santos, 2015) for details): T is set to 24, Q
i
= max{250, De

i},

hit = H ∗ (1 + J)t, where H = 3.52, J = 0.001651, pi = 0.991003, qi = 669.11.
A unit penalty 
ost of 1 is assumed for ea
h item (gi1 = 1). For the robust

settings, d
p

iℓ is set to the deterministi
 value d
p
it. For d̂

p
iℓ, two possible values are


onsidered d̂piℓ = 0.2d
p

iℓ and d̂piℓ = 0.4d
p

iℓ. Γ varies in {0, 1, 2, 3}.This gives a total
of 120 instan
es for the robust problem. Noti
e that the deterministi
 instan
es

(Γ = 0) are 
onsidered for both levels of deviations d̂piℓ as the assessment of the
pri
e of robustness is di�erent for both levels.

5.1. Testing formulations and a

essing instan
es di�
ulty

In the �rst experiments the instan
es are solved with a time limit of 1800

se
onds. Table 2 gives the number of instan
es that were not solved within

the given time limit using the model PLS1S with the improvements dis
ussed in

Se
tion 2.1. Column 
apa
ity gives the produ
tion 
apa
ity divided by 1000, the

se
ond 
olumn with Γ = 0 is for the deterministi
 
ase, 
olumns 3-8 
onsider the
robust 
ase where Γt = min{t,Γ}. The �rst three 
olumns assume a maximum
deviation of 20% from the nominal value and the next three 
olumns assume

a maximum deviation of 40% of that value. The last 
olumn gives the total

number of instan
es that were not solved to optimality. Table 3 provides similar

information however for the model PLS1S without the improvements (weak

model).

Table 2: Number of unsolved instan
es using the strong formulation.


apa
ity

Deviation=0.2 Deviation=0.4

Sum

Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 1 Γ = 2 Γ = 3
1 0 0 0 0 0 0 0 0

2 0 2 2 2 2 2 2 12

3 2 1 1 1 0 0 0 5

Sum 2 3 3 3 2 2 2 17

Table 3: Number of unsolved instan
es using the weak formulation.


apa
ity

Deviation=0.2 Deviation=0.4

Sum

Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 1 Γ = 2 Γ = 3
1 0 0 0 0 1 1 1 3

2 1 3 3 3 2 2 2 16

3 3 2 2 2 2 2 2 15

Sum 4 5 5 5 5 5 5 34

We 
an see that the number of unsolved instan
es drops from 34 to 17 by

using the strengthened formulation instead of the weak one. There is no 
lear


orrelation between the di�
ulty of the instan
es and the value of Γ parameter.

In relation to the produ
tion 
apa
ity, we 
an observe that the medium 
apa
ity

instan
es seem to be a bit harder than the other ones.
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Although not reported in the tables, the average of root gap is 60% for the

weak formulation and 5% for the strong formulation. Nevertheless, all unsolved

instan
es have a �nal integrality gap less than or equal to 3%. For the strong
formulation the lower bound for the geometri
 average running time of the solved

instan
es is 2.94 (it is a lower bound be
ause instan
es faster than 1 se
ond are

set to 1 se
ond).

We also solved these instan
es using CPLEX 12.7 rather than Cb
 2.9, keep-

ing the time limit of 1800 se
onds. Unsurprisingly, the former is mu
h faster

than the latter, the weak formulation solving already all but 11 instan
es (vs

34 for Cb
) while the strong formulation leaves only 3 instan
es unsolved (vs

17 for Cb
). Fortunately, we will show below that our heuristi
s, based on Cb


perform very well on our instan
es, solving nearly all of them to optimality.

5.2. Determining the pri
e of robustness

Here we dis
uss the pri
e for 
onsidering robust solutions. As explained in

the introdu
tion, estimating the future demands by the histori
 average values

doesn't immunize the solution for possible deviations in the demand values

that 
an lead to higher 
osts than the estimated ones. For the pra
ti
al 
ase


onsidered here, the 
osts that may be underestimated are the inventory 
osts

whi
h are based on the estimated future demands, sin
e for the ba
klogged

demand only the pendent orders are penalized.

In order to report the 
omputational results we de�ne C(i,j) as the 
ost of

the solution obtained for Γ = i assessed when Γ = j. For instan
e, C(0,2) is the


ost obtained for the optimal deterministi
 solution (obtained for Γ = 0) when
fa
ing an un
ertainty level of Γ = 2, that is, when we allow the demand values

for two time periods to su�er a maximum deviation, either of 20% or 40%, from
the estimated nominal values.

In tables 4 and 5 we report for the two deviation levels the value C(i,j),

whi
h is the average of the per
entage gaps between the parameters C(i,j) and

C(i,i), de�ned formally by

C(i,j) =
C(i,j) − C(i,i)

C(i,i)
.

For example, C(0,2) = 1.76 means that the deterministi
 optimal solutions are,

on average, 1.76% more expensive than the optimal solutions obtained for the

robust model with Γ = 2 when fa
ing an un
ertainty level of Γ = 2.

Table 4: Costs C(i,j) (expressed in %) 
onsidering a deviation 0.2.

0 1 2 3

0 0 1.19 1.76 0

1 1.49 0 0.81 0

2 1.20 0 0 0

3 1.19 0 0 0
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Table 5: Costs C(i,j) (expressed in %) 
onsidering a deviation 0.4.

0 1 2 3

0 0 2.64 3.67 0

1 2.96 0 0.88 0

2 2.99 0.33 0 0

3 2.99 0.33 0 0

We see from these tables the robust solutions are more expensive, on average,

than the deterministi
 solutions in the deterministi
 
ontext. For the 
ase where

the deviation is allowed to be 40% we 
an see that prote
ting a solution for Γ = 3
deviation periods will in
rease the 
ost by 3% in relation to the deterministi


solution. The deterministi
 solution is more expensive when Γ ∈ {1, 2} but not
when Γ = 3. In the worst 
ase (two deviations), not prote
ting the deterministi

solution will imply an in
rease of the 
ost of 3.67%.

We 
an also observe that robust solutions with Γ = 3 are not interesting.

This justi�es why we have not in
luded results for larger values of Γ. Of 
ourse,
the �nal 
hoi
e of whi
h model to use (whi
h value for Γ) depends on the risk-

averseness of the de
ision maker.

5.3. Heuristi
 performan
es

Finally we test the two proposed heuristi
s. As dis
ussed above, running

a MILP solver for a given time limit a
ts as a heuristi
 for those instan
es

that were not solved to optimality. However, from a pra
ti
al viewpoint, it is

more appealing to have a tool whi
h enables the de
ision maker to derive good

solutions very qui
kly in order to allow him/her to test di�erent parameters

before taking a de
ision.

Table 6 summarizes the results obtained with the Elite heuristi
. For ea
h

test we 
onsider m1 = m2 = m3 = m4 = m̂. The �rst line gives the value of

m̂, the se
ond line gives the average of the optimality gaps. The optimality gap
is de�ned as 100 ∗ ((ZH − Z∗)/Z∗), where Z∗

is the optimum value and ZH
is the solution 
ost returned by the heuristi
. The third line gives the average

number of items sele
ted when 
ombining the four lists, and the last line gives

the average running times in se
onds.

Table 6: Average statisti
s for the Elite heuristi
.

Value of m̂ 5 6 7 8 9 10

Optimality gap 5.6 0.2 0.04 0 0 0

Number of items sele
ted 8.6 11 12 13.4 15.4 17

Running time 0.04 0.07 0.09 0.11 0.12 0.13

We 
an observe that when m̂ in
reases the optimality gap de
reases as ex-

pe
ted, being zero for m̂ greater or equal to 8. The running times are very

small indi
ating that this heuristi
 performs very well for su
h values of m̂. This
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means that sele
ting at least 32 items and solving the restri
ted model is fast

and gives good quality solutions.

Table 7 reports the results obtained with the Tournament heuristi
. This

heuristi
 is run until a �nal set of m ≤ 50 items is obtained or until a maximum
of 6 iterations is attained. In ea
h iteration the original set of items is split into

r subsets. The �rst line gives the value of r. The se
ond line gives the average

number of iterations. The third line gives the average optimality gap and the

last line gives the average running time in se
onds.

Table 7: Average statisti
s for the Tournament heuristi
.

Value of r 6 5 4

Number of iterations 2 2.62 3.33

Optimality gap 0.35 0.49 0.12

Running time 0.12 1.81 0.14

Although the heuristi
 is fast and gives solutions that in average have very

small optimality gaps, we 
ould not �nd parameters that lead to optimality in

all the tested 
ases. Overall, the Tournament heuristi
 was better than the Elite

heuristi
 only for the 
ase where the number of elite elements sele
ted was small

(m̂ = 5), otherwise the Elite heuristi
 outperformed the Tournament heuristi
.

6. Con
lusions

We 
onsider a pra
ti
al problem fa
ed by a 
ompany that plans the pro-

du
tion for a set of produ
ts following a Make-To-Order poli
y and uses the

remaining produ
tion 
apa
ity to produ
e items for whi
h the quantities or-

dered are small. The problem is 
on
erned with the use of this extra produ
tion


apa
ity in a given time period. Namely, de
iding whi
h items to produ
e and

the 
orresponding produ
tion level. A penalty is asso
iated with the ba
klogged

demands of the items that are not produ
ed. For the produ
ed items, as the

amount produ
ed is in general greater than the pending orders, a holding 
ost

is in
urred.

We present a general model and establish the relation between this model

and the 
lassi
al lot-sizing models. We propose several enhan
ements for the

formulations. As the holding 
osts depend on the value of the estimated future

demands, we derive a robust model from the enhan
ed model where the future

demands are 
onsidered un
ertain and 
an vary in a given interval 
entered

in the histori
al average values. The un
ertainty set is the 
lassi
al budget

polytope introdu
ed by Bertsimas and Sim (2004).

For pra
ti
al purposes we propose two heuristi
 s
hemes that are based on

the enhan
ed models (deterministi
 and robust). The models and the heuristi
s

are tested using a set of instan
es generated from real data provided by our

industrial partner. The 
omputational experiments show that most instan
es


annot be solved to optimality within reasonable running time limit. In parti
-

ular, they show that the Elite heuristi
, whi
h sele
ts a small subset of items
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(elite items), following the 
ompany 
riteria, is quite fast and in general obtains

the optimal solution.

It is well-known that robust optimization approa
hes 
an generate too 
on-

servative solutions. That is, solutions that are good when the worst 
ase s
enario

o

urs, in our 
ase when the orders for future demands are lower than expe
ted,

but their quality may not be so good when other demand s
enarios are observed.

While this falls beyond the s
ope of the 
urrent work, it 
ould be interesting

to 
ompare our robust approa
h with the optimal solutions of sto
hasti
 pro-

gramming approa
hes where one also takes the probabilities of the s
enarios

into a

ount. Similarly, it would be interesting to test the e�e
t of our model

and the quality of the heuristi
s with di�erent 
ost stru
tures and/or on more


omplex problems where the set of feasible produ
tion plans is restri
ted by

additional 
onstraints (e.g. storage 
apa
ity, in
lusion of set-up times). In par-

ti
ular, the heuristi
s would need to be adapted to these other 
ontexts and

further 
omputational testing would be required.
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