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Abstrat

In this paper we onsider a pratial lot-sizing problem faed by an industrial

ompany. The ompany plans the prodution for a set of produts following

a Make-To-Order poliy. When the produtive apaity is not fully used, the

remaining apaity is devoted to the prodution of those produts whose orders

are typially quite below the established minimum prodution level. For these

produts the ompany follows a Make-To-Stok (MTS) poliy sine part of the

prodution is to ful�ll future estimated orders. This yields a partiular lot-

sizing problem aiming to deide whih produts should be produed and the

orresponding bath sizes. These lot-sizing problems typially fae unertain

demands, whih we address here through the lens of robust optimization.

First we provide a mixed integer formulation assuming the future demands

are deterministi and we tighten the model with valid inequalities. Then, in

order to aount for unertainty of the demands, we propose a robust approah

where demands are assumed to belong to given intervals and the number of

deviations to the nominal estimated value is limited. As the number of produts

an be large and some instanes may not be solved to optimality, we propose two

heuristis. Computational tests are onduted on a set of instanes generated

from real data provided by our industrial partner. The heuristis proposed are

fast and provide good quality solutions for the tested instanes. Moreover, sine

they are based on the mathematial model and use simple strategies to redue
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the instanes size, these heuristis ould be extended to solve other multi-item

lot-sizing problems where demands are unertain.

Keywords: Lot-sizing, Make-To-Stok, Robust optimization, Mixed-integer

linear programming

1. Introdution

In this paper we onsider a pratial problem ourring in an aluminium

extrusion industrial ompany. The ompany produes two main families of

produts: a family of produts representing the main prodution ativity of

the ompany where a Make-To-Order (MTO) poliy is followed (MTO family),

and a family of produts whose orders are typially quite below the established

minimum prodution level. For this family, the ompany follows a Make-To-

Stok (MTS) poliy (MTS family). The prodution planning proedure for the

MTO family is well established. However for the MTS family, as the orders

are below the minimum prodution level, the ompany must �nd a solution

between the two extreme ases: wait for new orders of the same produt until

the minimum prodution level is attained, or produe at least at the minimum

prodution level of that item to satisfy the pending orders and store the leftovers

in inventory. Both alternatives have their pros and ons. The �rst alternative

has the advantage of avoiding stoks. On the other hand, the baklogging of

demand orders may lead to intangible losses. Conversely, the seond alternative

has the advantage of a ready satisfation of ustomer needs but generates high

holding osts.

Currently, the ompany gives priority to the MTO family by planing its

prodution �rst, and when extra prodution apaity is available, then it solves

a lot-sizing problem to deide whih produts from the MTS family should be

produed and de�ning the orresponding lot-sizes. This partiular lot-sizing

problem takes into aount not only the pending orders of eah produt but

also future ones, as the exess quantity produed will remain in stok until new

orders are reeived. Therefore, it is neessary to estimate those future lient

orders. The unertainty related to foreasting suh future demands represents

a risk for the planners sine the inventory osts will depend greatly on suh

unknown demands. For industries where holding osts are high (as in the ase

of our industrial partner) it is desirable to derive robust solutions that take into

aount possible future deviations from the estimated demand values.

Here we address this lot-sizing problem de�ned for the MTS family of prod-

uts, using the available prodution apaity. We onsider both the determinis-

ti and the robust ases where demands are assumed to belong to an unertainty

set and we look for the prodution plan that optimizes the worst-ase senario.

For the prodution of the MTS family, we produe at most one bath of eah

produt, hene, we allow at most one set-up. Therefore this partiular lot-sizing

problem is denoted by LS1S (Lot-Sizing with 1 Set-up). The robust problem is

denoted by RLS1S.
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Multi-produt lot-sizing problems have been reeiving a great attention, for

reent publiations, see e.g. (Cunha et al., 2017; Maedo et al., 2016; Sifaleras

and Konstantaras, 2017). Frequently, due to the variety of produts and their

demand patterns, the ompanies follow di�erent prodution polies for the dif-

ferent produts. In some ases, di�erent poliies an even be onsidered for the

same produt (see (Zhang et al., 2013)) in order to satisfy the di�erent demand

streams. The deision between the MTO and the MTS poliies was investigated

by Zaerpour et al. (2008) and Altendorfer and Minner (2014). For an overview

on omparison of suh approahes see (Olhager and Prajogo, 2012). However,

both MTO and MTS produing proesses may share ommon resoures foring

the prodution planners to oordinate the MTO and MTS poliies (Ra�ei and

Rabbani, 2012). Examples of problems ombining MTO�MTS poliies an be

found in di�erent industries, suh as food prodution systems (Soman et al.,

2004) and steel plants (Zhang et al., 2015).

Several approahes have been proposed, mostly from last deade, regarding

the integration of MTS and MTO poliies. Beemsterboer et al. (2016) study

the bene�ts of not prioritizing poliies within a hybrid planning MTO�MTS

approah. In (Beemsterboer et al., 2017a), the authors analyse the bene�ts

of onsidering �exible lot sizing poliies in a hybrid MTO�MTS approah for

a two-produt system. In (Beemsterboer et al., 2017b), the authors propose

four methods of integrating make-to-stok items in the ontrol of a job shop,

whih they evaluate using disrete event simulation. Kaminsky and Kaya (2009)

propose heuristis for a multi-item problem where the manufaturer and the

supplier have to deide whih items to produe to stok and whih to produe

to order. Kalantari et al. (2011) present a deision support system for order

aeptane/rejetion in a hybrid MTO�MTS prodution environment. Perona

et al. (2009) develop a deision-making approah to support inventory man-

agement deisions in a MTO�MTS environment for small and medium sized

enterprises. Renna (2016) onsiders a multistage manufaturing serial system,

where a prodution ontrol strategy is performed to release MTO and MTS

orders. Ra�ei et al. (2013) propose a hierarhial prodution planning approah

for a hybrid MTO�MTS system that inludes both mid-term and short-term

prodution planning levels. Ra�ei et al. (2014) propose a geneti algorithm for

a multi-site prodution planning of a hybrid MTO�MTS manufaturing system.

The MTS planning arries the risk that the foreasted orders may not mate-

rialize. Suh risk has been identi�ed before, see (Tang and Musa, 2011). When

it is possible, delaying produt di�erentiation an be an interesting intermediate

solution (Gupta and Benjaafar, 2004), but that is not possible in most prati-

al ases as the one faed by our industrial partner. For those ases, handling

with unertainty is of main relevane on MTS environments. To the best of

our knowledge only Khakdaman et al. (2015) applied a robust multi-objetive

approah based on a set of senarios to a hybrid MTO�MTS problem where

unertainty is onsidered in suppliers, proesses and ustomers.

The problem onsidered in this paper ours as a subproblem of a hybrid

MTO�MTS manufature system where a hierarhi approah is followed and

priority is given to MTO. The problem fouses on solving the MTS planning
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onsidering the remaining manufaturing apaity. From its nature, the MTS

subproblem onsiders medium/long-term horizons where demand unertainty

plays a ruial role when de�ning lot-sizings.

A large number of publiations has been devoted to the study of robust

lot-sizing problems with demand unertainty. One of the �rst papers on the

topi is (Bertsimas and Thiele, 2006), whih proposes a simple onservative

approximation of the robust onstraints and studies the struture of the optimal

poliies. In parallel to that work, another paper introdued a�ne deision rules

(Ben-Tal et al., 2004), having the advantage of better approximating the robust

onstraints. The theoretial strength of a�ne deision rules has been studied in

subsequent papers, among whih (Ianu et al., 2013). More reent works have

sought to solve the robust problem exatly, by using deomposition algorithms

and dynamially adding onstraints to the problem, see (Agra et al., 2016;

Bienstok and Özbay, 2008; Gorissen and den Hertog, 2013). Robust lot-sizing

problems and their variants are also addressed in more general papers dealing

with multi-stage robust optimization, see (Delage and Ianu, 2015) for a survey

on these problems. More generally, we refer to (Peidro et al., 2009) for a survey

on papers dealing with unertainty on supply hains.

Although motivated by a pratial problem, we aim to inorporate the reent

robust optimization tehniques into this partiular lot-sizing problem in order to

lose the gap between the robust tehniques for lassial lot-sizing problems and

the robust tehniques for MTS problems within hybrid MTO�MTS manufature

systems.

The ontributions of this paper are more spei�ally detailed below. We

introdue a mathematial model for the deterministi ase where future demands

are assumed to be known. Our model is di�erent from the the lassial ones

(see for instane (Pohet and Wolsey, 2006)) mainly beause we suppose that

eah produt has at most one set-up. A proof that this partiular problem is

NP-hard is given. The model is tightened with valid inequalities.

We develop a robust mixed integer model where demands are onsidered

unertain and belong to intervals. The unertainty set is further onstrained

by budget onstraints that limit the number of possible periods where a de-

mand an deviate from its nominal value preventing the solutions to be too

onservative, obtaining the well-known budgeted unertainty set introdued in

(Bertsimas and Sim, 2004). We approximate the resulting robust onstraints

using the onservative approah of (Bertsimas and Thiele, 2006), rather than

the omputationally demanding a�ne deision rules from (Ben-Tal et al., 2004)

or exat approahes used in (Agra et al., 2016; Bienstok and Özbay, 2008).

Sine the problem is NP-hard, and we aim to develop approahes that an

be used both with ommerial and non-ommerial (slower but free) solvers,

we propose two heuristis. The �rst heuristi, alled Elite Heuristi, is based

on a pre-seletion of a set of andidate produts. The problem is solved for

that restrited set of produts using a mixed integer linear programming solver

based on the strengthened formulation. The heuristi inorporates the pratial

rules used by the ompany to hoose the produts to produe. The seond
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heuristi, denoted as the Tournament Heuristi, runs in several iterations. At

eah iteration, the set of andidate produts is partitioned into smaller subsets

and the problem is solved optimally for eah subset. Only the seleted produts

of eah subset are onsidered in the next iteration. The proess is repeated until

a �nal subset of produts is solved or a number of iterations is attained.

To test the deterministi and robust formulations and the matheuristis we

use the non-ommerial solver Cb from Coin-OR (2016), whih is referred to as

one of the fastest solvers among the non-ommerial ones (Meindl and Templ,

2012). The test set was built from the real data provided by our industrial

partner.

As the proposed heuristis use simple strategies to redue the number of

items and, onsequently, the size of the instanes, suh heuristis an be eas-

ily adapted to other multi-item lot-sizing problems. It su�es to adapt the

mathematial model to the partiularities of the other problems. We also show,

that in order to derive solutions that take into aount future demands varia-

tions, robust strategies ould be embedded into the mathematial model, and

therefore into the heuristis, but of ourse suh strategies would need further

omputational testing in other ases and ontexts.

The outline of the paper is as follows. In Setion 2 we introdue a mixed-

integer formulation to model the pratial LS1S problem assuming the demands

are deterministi. The formulation is enhaned and a proof of NP-hardness

is given. Then, in Setion 3, we derive the robust model for the ase where

demands belong to an unertainty set. In Setion 4 we present the two heuristis.

Computational experiments are reported in Setion 5. Final onlusions are

given in Setion 6.

2. Formulation

In this setion we introdue a mixed integer formulation for the LS1S prob-

lem. The formulation is presented in a generi format in order to establish

onnetions to related models and existent literature. Let m denote the number

of items onsidered and n denote the number of time periods of the planning

horizon, and de�ne the sets M = {1, . . . ,m} and N = {1, . . . , n}. We split the

time horizon into two sub horizons N1 = {1, . . . , n1} and N2 = {n1 + 1, . . . , n}.
The �rst horizon is for prodution planning (where the extra prodution apaity

is available) while the seond horizon is onsidered for the inventory manage-

ment aspets. The demand of item i ∈ M, in time period t ∈ N1, denoted by

deit, is assumed to be known and, in our ase, orresponds to pending orders.

The demand for item i ∈ M in time period t ∈ N2 is denoted by dpit and is

foreasted. If item i is produed, then the amount produed must be omprised

between Q
i
and Qi. For eah item i, parameters pi and qi represent the unit

prodution ost and the �xed prodution ost, respetively. Suh parameters

may be negative if we allow them to inorporate, for instane, the selling prie.

For eah produt i ∈ M , and for eah time period t ∈ N , parameters hit and git
are assumed to be nonnegative and model the unit inventory ost and the unit

baklogging ost, respetively. Finally, S is the maximum inventory apaity.
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To formulate the problem, we de�ne the following deision variables: xit is

the prodution of item i in period t; zit indiates whether there is prodution of
item i in period t; yi is the set-up variable whih is 1 if xit > 0 for some t ∈ N1,
and 0 otherwise; sit is the inventory of item i at the end of time period t, and
rit is the baklogged demand of item i at the end of period t. The mixed integer
programming formulation for LS1S is desribed below.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

∑

t∈N

gitrit +
∑

i∈M

qiyi (1)

s.t. xit + si,t−1 + rit = deit + sit + ri,t−1,∀i ∈ M, t ∈ N1, (2)

si,t−1 + rit = dpit + sit + ri,t−1, ∀i ∈ M, t ∈ N2, (3)

∑

i∈M

sit ≤ S, ∀t ∈ N, (4)

Q
i
zit ≤ xit ≤ Qizit, ∀i ∈ M, t ∈ N1, (5)

yi =
∑

t∈N1

zit, ∀i ∈ M, (6)

zit ∈ {0, 1}, ∀i ∈ M, t ∈ N1, (7)

yi ∈ {0, 1}, ∀i ∈ M, (8)

sit, rit ≥ 0, ∀i ∈ M, t ∈ N, (9)

ri0 = si0 = 0, ∀i ∈ M, (10)

∑

i∈M

xit = Vt, ∀t ∈ N1. (11)

The objetive funtion (1) aims to minimize the sum of the prodution osts

(

∑

i∈M

∑

t∈N1
pixit), the inventory ost (

∑

i∈M

∑

t∈N hitsit), the baklogging

ost (
∑

i∈M

∑

t∈N gitrit), and the �xed prodution ost (
∑

i∈M qiyi) over the
planning horizon.

Constraints (2) are the inventory balaned onstraints written for eah item

and eah prodution period t ∈ N1, while onstraints (3) are the inventory

balaned onstraints for time periods t ∈ N2. Constraints (4) impose an upper

bound on the stok level. Constraints (5) are the variable lower and upper

bound onstraints. They impose a lower and an upper bound on the quantity

produed of eah produt at eah period and link the orresponding ontinuous

variables to the set-up variables. Equations (6) establish the number of set-

ups for eah produt. Together with (8) they ensure that at most one set-

up an our. Constraints (7) and (8) de�ne the set-up variables as binary.

Constraints (9) ensure non-negativity of the inventory and baklog variables.

Constraint (11) represents the additional onstraints related to the available

prodution apaity.

6



Summing up the equations (2) from 1 to n1, one obtains

∑

t∈N1

xit + si0 − ri0 =
∑

t∈N1

deit + sin1
− rin1

, ∀i ∈ M (12)

Denoting

∑

t∈N1
deit by De

i and using si0 = ri0 = 0, then (12) an be written as

∑

t∈N1

xit = De
i + sin1

− rin1
, ∀i ∈ M. (13)

Similarly, summing up equations (3) from n1 + 1 to ℓ ∈ {n1 + 1, . . . , n}, we
obtain

sin1
− rin1

=

ℓ
∑

t=n1+1

dpit + siℓ − riℓ, ∀i ∈ M, ℓ ∈ {n1 + 1, . . . , n}, (14)

Using (13) to eliminate sin1
and rin1

, then

siℓ − riℓ =
∑

t∈N1

xit −De
i −

ℓ
∑

t=n1+1

dpit, ∀i ∈ M, ℓ ∈ {n1 + 1, . . . , n}. (15)

Sine siℓ and riℓ are nonnegative, we obtain

sit ≥
∑

t∈N1

xit −De
i −

t
∑

ℓ=n1+1

dpiℓ, ∀i ∈ M, t ∈ N2, (16)

rit ≥ −
∑

t∈N1

xit +De
i +

t
∑

ℓ=n1+1

dpiℓ, ∀i ∈ M, t ∈ N2. (17)

As the holding and baklogging osts are assumed nonnegative, we may replae

onstraints (3) by (16) and (17). The resulting deterministi model for LS1S,

de�ned by (1), (2), (4) � (11), (16), (17), will be denoted by DLS1S.

When N2 = ∅, we obtain a lassial lotsizing model with the additional on-

straint that at most one setup is allowed for eah item. In a MTS environment

the stoks may last for a longer time horizon than the planning one. Under

deterministi assumptions the seond time horizon an be easily dropped sine

the holding ost in the last time period an be easily omputed. However, in a

robust setting it is desirable to onsider the seond time horizon expliitly sine

it allows to inorporate di�erent seasonal behaviours of demand and allow to

aount for di�erent magnitudes of deviation to the estimated demands.

2.1. Strengthening the formulation

It is well known that the inlusion of valid inequalities an improve the model

signi�antly, see (Pohet and Wolsey, 2006) for details. Constraints (16) an be
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strengthened as follows.

sit ≥
∑

t∈N1

xit −De
i yi −

t
∑

ℓ=n1+1

dpiℓyi, ∀i ∈ M, t ∈ N2, (18)

When yi = 1 inequality (18) oinides with (16) and when yi = 0 the right-hand
side of (18) beomes negative. Thus (16) is valid for the set of feasible solutions.

Moreover,

De
i yi +

t
∑

ℓ=n1+1

dpiℓyi ≤ dei +

t
∑

ℓ=1

dpiℓ

⇔
∑

t∈N1

xit −De
i yi −

t
∑

ℓ=n1+1

dpiℓyi ≥
∑

t∈N1

xit −De
i −

t
∑

ℓ=1

dpiℓ

whih implies that (18) is stronger than (16). In fat we an replae (16) by

(18) in the formulation for LS1S.

A family of valid inequalities for the value of baklog variables follows.

rit ≥ De
i (1− yi) +

t
∑

ℓ=n1+1

dpiℓ(1− yi), ∀i ∈ M, t ∈ N2. (19)

If there is no setup for period i, i.e. yi = 0, inequality (19) fores the demand

De
i +

∑t

ℓ=1 d
p
iℓ to be baklogged. Otherwise, if yi = 1, inequality (19) simply

imposes nonnegativity on the baklog variables. Contrary to the previous ase,

(19) annot replae inequalities (17).

The strengthened deterministi model for LS1S, denoted by SDLS1S is given

by (1), (2), (4) � (11), (17), (18), (19).

In the pratial ase provided to us by our industrial partner we have the fol-

lowing assumptions: (i) only one prodution period is onsidered (n1 = 1); (ii)
only the baklog of the e�etive demand is penalized (git = 0, t ∈ N2); and (iii)

the minimum prodution quantity is at least the e�etive demand (Q
i
≥ dei ).

The three assumptions imply that onstraints (17) an be eliminated. For om-

pleteness we give below the resulting strengthened model, after simpli�ation,

for the pratial ase.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

gi1ri1 +
∑

i∈M

qiyi (20)

8



s.t. sit ≥
∑

t∈N1

xit −De
i yi −

t
∑

ℓ=1

dpiℓyi, ∀i ∈ M, t ∈ N, (21)

ri1 ≥ De
i (1− yi), ∀i ∈ M, (22)

si1 ≤ S, (23)

Q
i
yi ≤

∑

t∈N1

xit ≤ Qiyi, ∀i ∈ M, (24)

∑

i∈M

∑

t∈N1

xit = V1, ∀t ∈ N, (25)

sit, rit ≥ 0, ∀i ∈ M, (26)

yi ∈ {0, 1}, ∀i ∈ M. (27)

Notie that onstraints (23) are given just for t = 1 sine the stok level will

derease in subsequent periods. We denote model (20)-(27) by PLS1S.

2.2. Complexity analysis

The original problem LS1S is NP-hard as it generalizes the lassial lot-sizing

problem with varying apaities (Pohet and Wolsey, 2006). Here we fous on

the partiular ase of the pratial problem PLS1S. We show it is NP-hard for

the simpli�ed version with two time periods (implying it is NP-hard for the

general ase). The proof is done by reduing the partition problem to PLS1S.

Proposition 2.1. The problem de�ned by PLS1S is NP-hard for the partiular

ase n1 = 1, n = 2.

Proof: The deision problem, denoted by D-PLS1S, assoiated with the opti-

mization problem asks whether there is a solution to (21)-(27) whose objetive

funtion value given by (20) is greater than L.
Next we redue the partition problem to D-PLS1S. Reall that in the par-

tition problem we are given k positive integers ai, i ∈ K = {1, . . . , k} and

wish to determine whether there exists a partition (S,K \ S) of K suh that

∑

i∈S

ai =
∑

i∈K\S

ai =
∑

i∈K

ai/2.

For the redution onsider k = m, Q
i
= Qi = ai and V1 =

∑

i∈K

ai/2. Further,

for eah i ∈ M , we set De
i = min

j∈K
aj , dpi1 = ai − De

i , pi = qi = gi1 = 0,

hit = 0, t ∈ N, L = 0.
As

∑

t∈N1
xit = aiyi, any feasible solution to D-PLS1S must satisfy

∑

i∈M aiyi
=
∑

i∈K

ai/2. Hene, there is a one to one orrespondene between a feasible solu-

tion (x∗, y∗) of D-PLS1S, with the spei�ed parameters, and a feasible solution

of the partition problem, where S = {j ∈ K|y∗j = 1}. �
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3. Robust model for the demand unertainty ase

Clearly, it is not possible to know preisely the value of dpit for all i and t
sine these orders have not been made yet. At best, we an rely on historial

data to draw a set of plausible values for these demands. A popular approah

(see (Bertsimas and Sim, 2003, 2004; Bertsimas and Thiele, 2006)) onsiders

the nominal value d
p

it and the deviation d̂pit for eah i and t whih ould, for

instane, be the mean value and the variane of the available historial data.

The approah then supposes that the unknown parameter dpit an take any

value in the interval [d
p

it − d̂pit, d
p

it + d̂pit] and that, for eah item i and eah time

period t, the number of demands taking an extreme value is bounded by a given
parameter Γt > 0:

∑

ℓ∈Nt

|dpiℓ − d
p

iℓ|

d̂piℓ
≤ Γt. (28)

where N t = {n1 + 1, . . . , t}. Formally, the unertainty sets obtained with this

approah an be written as

Dit =
{

dpiℓ : d
p
iℓ = d

p

iℓ + δ+iℓ d̂
p
iℓ − δ−iℓ d̂

p
iℓ, ℓ ∈ N t, δ+iℓ , δ

−
iℓ ∈ [0, 1] , ℓ ∈ N t,

∑

ℓ∈Nt

(δ+iℓ + δ−iℓ) ≤ Γt

}

,

for eah i ∈ M and t ∈ N , where δ+ and δ− are auxiliary vetors that ease

the linearization of onstraint (28). Parameter Γt is often denoted as the budget

of unertainty. Taking a small value of Γt yields a small unertainty set, while

inreasing Γt yields larger and larger unertainty sets. The two extremes are

Γt = 0 for whih Dit is redued to the singleton {d
p

i } and Γt = t for whih Dit

is equal to the box

∏

ℓ∈Nt

[d
p

iℓ − d̂piℓ, d
p

iℓ + d̂piℓ].

In general, for eah t, Γt is omprised between 0 and t, and Γt ≤ Γt+1. For

simpliity we assume Γt is integer for eah t, but all the results derived in this

setion ould be extended to the ase where parameters Γt are frational.

Next we present a robust model for RLS1S. The model is based on the

deterministi formulation DLS1S where onstraints (16) are replaed by (18).

For the remaining models disussed in the previous setion (models D-LS1S,

SDLS1S and PLS1S) the robust model an be derived in a similar way.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

∑

t∈N

gitrit +
∑

i∈M

qiyi (29)
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s.t. sit ≥
∑

t∈N1

xit −De
i yi −

∑

ℓ∈Nt

dpiℓyi,∀i ∈ M, t ∈ N2, d
p
iℓ ∈ Dit (30)

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

dpiℓ,∀i ∈ M, t ∈ N2, d
p
iℓ ∈ Dit (31)

(2), (4)− (11), (17).

Constraints (30) and (31) are inspired by the approah used in (Bertsimas

and Thiele, 2006). Their main advantage is to lead to a fairly simple robust

ounterpart. Namely, we show in the rest of the setion that problem (2), (4) �

(11), (29) � (31), an be reformulated as a ompat MILP that is essentially of

the same order of di�ulty as the deterministi version LS1S. In ontrast, the

more advaned methods used in (Agra et al., 2016; Ben-Tal et al., 2004) provide

more aurate solutions however at a high omputational ost.

Formulation RLS1S ontains an in�nite number of onstraints, yielding a

semi-in�nite MILP. We show next how to reformulate the problem as a ompat

MILP by using a well-known tehnique from robust optimization (e.g. (Ben-Tal

and Nemirovski, 1998; Bertsimas and Sim, 2004; Bertsimas and Thiele, 2006)).

First, we realize that for (30), positive deviations of dpiℓ are not inreasing the

ost of the solution sine they would only derease the stok more rapidly;

hene, positive deviations an be negleted in (30). Similarly, we an restrit

ourselves to negative deviations of dpiℓ in (31) sine the positive deviations will

never inrease the amount of unmet demands. Formally, we an introdue the

smaller unertainty sets

D+
it =

{

dpiℓ : d
p
iℓ = d

p

iℓ + δiℓd̂
p
iℓ, ℓ ∈ N t, δiℓ ∈ [0, 1] , ℓ ∈ N t,

∑

ℓ∈Nt

δiℓ ≤ Γt

}

,

D−
it =

{

dpiℓ : d
p
iℓ = d

p

iℓ − δiℓd̂
p
iℓ, ℓ ∈ N t, δiℓ ∈ [0, 1] , ℓ ∈ N t,

∑

ℓ∈Nt

δiℓ ≤ Γt

}

,

and we replae onstraints (30) and (31) with the equivalent onstraints

sit ≥
∑

t∈N1

xit −De
i yi −

∑

ℓ∈Nt

dpiℓyi, ∀i ∈ M, t ∈ N2, d
p
iℓ ∈ D−

it , (32)

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

dpiℓ, ∀i ∈ M, t ∈ N2, d
p
iℓ ∈ D+

it . (33)

Next we see that the in�nite numbers of onstraints (32) and (33) an be sub-
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stituted by the following non-linear onstraints

sit ≥
∑

t∈N1

xit −De
i yi − min

d
p

iℓ
∈D−

it

(

∑

ℓ∈Nt

dpiℓyi

)

, ∀i ∈ M, t ∈ N2, (34)

rit ≥ −
∑

t∈N1

xit +De
i + max

d
p

iℓ
∈D+

it

(

∑

ℓ∈Nt

dpiℓ

)

, ∀i ∈ M, t ∈ N2. (35)

Next we follow the lassial dualization approah introdued in (Ben-Tal and

Nemirovski, 1998) and used to lot-sizing problems in (Bertsimas and Thiele,

2006). Let i ∈ M and t ∈ N be �xed and let us fous on onstraint (34).

The inner minimization problem over variables dpiℓ in (34) an be replaed by a

minimization problem over variables δiℓ. Moving the term yi
∑

ℓ∈Nt d
p

iℓ outside

of the minimization beause it does not involve the variable δiℓ, and hanging

the minimization problem by a maximization problem, we obtain

yi
∑

ℓ∈Nt

d
p

iℓ − max
∑

ℓ∈Nt

δiℓd̂
p
iℓyi

s.t.
∑

ℓ∈Nt

δiℓ ≤ Γt, (36)

0 ≤ δiℓ ≤ 1, ∀ℓ ∈ N t. (37)

Let us denote the dual variables of onstraints (36) and (37) as z−it and uℓ−
it ,

respetively. Sine onstraints (36) and (37) de�ne a bounded and non-empty

polytope, we an apply strong linear programming duality to replae the maxi-

mization problem by its dual:

yi
∑

ℓ∈Nt

d
p

iℓ − min Γtz
−
it +

∑

ℓ∈Nt

ut−
iℓ

s.t. z−it + ut−
iℓ ≥ d̂piℓyi, ∀ℓ ∈ N t, (38)

z−it , u
t−
iℓ ≥ 0 ∀ℓ ∈ N t. (39)

Plugging the above minimization problem into the original onstraint (34) for

the �xed i and t, we obtain

sit ≥
∑

t∈N1

xit−De
i yi−yi

∑

ℓ∈Nt

d
p

iℓ+





min Γtz
−
it +

∑

ℓ∈Nt u
t−
iℓ

s.t. z−it + ut−
iℓ ≥ d̂piℓyi, ∀ℓ ∈ N t

z−it , u
t−
iℓ ≥ 0 ∀ℓ ∈ N t



 .

(40)

Finally, notie that (40) is feasible if and only if there exist vetors z−it ≥ 0 and
ut−
iℓ ≥ 0 that satisfy the dual onstraints (38) and suh that

sit ≥
∑

t∈N1

xit −De
i yi − yi

∑

ℓ∈Nt

d
p

iℓ + Γtz
−
it +

∑

ℓ∈Nt

ut−
iℓ . (41)
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Therefore, the robust onstraint (34) is equivalent to the onstraints (38), (39),

and (41).

Introduing dual variables z+it and uℓ+
it to handle with onstraints (35), we

an reformulate RLS1S as the following ompat MILP, denoted by RLS1S.

min
∑

i∈M

∑

t∈N1

pixit +
∑

i∈M

∑

t∈N

hitsit +
∑

i∈M

∑

t∈N

gitrit +
∑

i∈M

qiyi

s.t. sit ≥
∑

t∈N1

xit −De
i yi − yi

∑

ℓ∈Nt

d
p

iℓ + Γtz
−
it +

∑

ℓ∈Nt

ut−
iℓ ,∀i ∈ M, t ∈ N2

z−it + ut−
iℓ ≥ d̂piℓyi, ∀i ∈ M, t ∈ N2, ℓ ∈ N t

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

d
p

iℓ + Γtz
+
it +

∑

ℓ∈Nt

ut+
iℓ , ∀i ∈ M, t ∈ N2

z+it + ut+
iℓ ≥ d̂piℓ, ∀i ∈ M, t ∈ N2, ℓ ∈ N t

(2), (4)− (11), (17),

z−it , u
t−
iℓ , z

+
it , u

t+
iℓ ≥ 0, ∀i ∈ M, t ∈ N2, ℓ ∈ N t.

The above approah is easy to apply beause it amounts to solve a unique

problem. Yet, the dimension of the new MILP is larger than the dimension of

the original problem.

An alternative approah to the dualization is to ompute a priori the min-

imum and maximum ourring in the right-hand side of inequalities (34) and

(35), respetively. As explained above, these optimization problems an be on-

verted into a maximization problem where the feasible set is de�ned by (36)

-(37). We an observe that the extreme solutions of this set satisfy δiℓ ∈ {0, 1}.
Thus, the sets of extreme feasible solutions orrespond to uniform matroids.

Consequently, these maximization problems an be solved by a greedy algo-

rithm that hooses the highest deviations. Hene, the following equalities hold.

min
d
p

iℓ
∈D−

it

(

∑

ℓ∈Nt

dpiℓyi

)

=

(

∑

ℓ∈Nt

d
p

iℓ −
Γt
∑

r=1

d̂p
iℓtr

)

yi

max
d
p

iℓ
∈D−

it

(

∑

ℓ∈Nt

dpiℓ

)

=
∑

ℓ∈Nt

d
p

iℓ +

Γt
∑

r=1

d̂p
iℓtr

where d̂p
iℓtr

is the rth largest deviation among the �rst t deviations d̂pi1, . . . , d̂
p
it.

Hene, (34) and (35) are replaed by
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sit ≥
∑

t∈N1

xit −De
i yi −

(

∑

ℓ∈Nt

d
p

iℓ −
Γt
∑

r=1

d̂p
iℓtr

)

yi, ∀i ∈ M, t ∈ N2, (42)

rit ≥ −
∑

t∈N1

xit +De
i +

∑

ℓ∈Nt

d
p

iℓ +

Γt
∑

r=1

d̂p
iℓtr

, ∀i ∈ M, t ∈ N2. (43)

For the omputational results we use this seond approah sine it is more

e�ient omputationally.

4. Heuristis

Companies seek for quik approahes to �nd good solutions to their prob-

lems. While ompat, formulations SDLS1S and RLS1S an take too muh

time to be solved to optimality using exat algorithms suh as the Branh and

Cut implemented in both ommerial and open-soure optimization software.

The running time is even more relevant in our ase sine the number of items

onsidered an be quite large, up to few hundreds. Hene, for a pratial use,

we present two heuristis to solve problems LS1S and RLS1S approximately.

A �rst one, alled Elite Heuristi extends the urrent pratie of the ompany

whih is based on the seletion of items aordingly to some riteria. Here we

selet a larger number of items aordingly to the same riteria and solve the

models restrited to the seleted items. The seond heuristi, alled Tourna-

ment Heuristi, selets iteratively small subsets of items until it reahes a �nal

and small subset.

4.1. Elite Heuristi

The �rst heuristi is to selet a spei� subset of items and solve the proposed

formulation onsidering this subset of items.

The hoie of the subset is as follows. Choose

• m1 items with the highest known demand values, De
i ;

• m2 items with the highest values of the known demand plus the foreasted

demand for the �rst time period,

(

De
i + dpi,n1+1

)

;

• m3 items with the highest values of the known demand plus the foreasted

demand for the �rst two time periods,

(

De
i +

∑n1+2
t=n1+1 d

p
it

)

;

• m4 items with the highest values of the known demand plus the foreasted

demand for the �rst three time periods,

(

De
i +

∑n1+3
t=n1+1 d

p
it

)

;

Here we onsider m1 = m2 = m3 = m4.
After seleting and joining these four list of items, the restrited model (the

deterministi SDLS1S or the robust RLS1S) is solved. As the number of elite
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items is small the resulting model an be solved to optimality easily. As example,

if we are given a set with 200 items and take m1 = m2 = m3 = m4 = 5, then
�ve items will be seleted from the initial set of 200 items using eah one of the

four riteria given above. The resulting restrited model with the seleted items

is solved using a solver.

Notie that the seletion riteria do not take into aount the osts. If the

osts vary from produt to produt signi�antly, whih is not the ase of the

instanes we onsider, then other riteria taking into aount the ost struture

(prodution osts, inventory osts, baklogging osts, �xed prodution ost)

should be used. For instane, if the baklogging osts vary signi�antly, a �fth

riteria should be onsidered whih onsists in seleting the m5 items with the

highest baklogging ost. Similarly, to the remaining ost omponents.

4.2. Tournament Heuristi

The seond heuristi is to deompose the original problem into smaller and

easier subproblems whih an be solved quikly. The items seleted from these

subproblems are the input to the subproblems of the next step. The proess is

repeated until a �nal and smaller subset of items is obtained. Next we detail

this heuristi.

The �rst step is to divide the set of m items into r1 subsets with ardinalities
m11,m12, . . . ,m1r1 , respetively, where m11+m12+ . . .+m1r1 = m. Then solve
the restrited problem for eah one of the subsets. As the resulting subproblems

are simpler they are solved to optimality. The items that are produed in the

optimal solution of eah one of the subproblems are seleted to the next iteration.

Let m1 denote the number of items seleted in the �rst step. Then split this

set into r2 subsets with ardinalities m21,m22, . . . ,m2r2 , respetively, where
m21+m22+. . .+m2r2 = m1. Eah one of the subproblems is solved to optimality
again in order to identify the new seleted (produed) items. The proess is

repeated until a �nal subset with ardinality less or equal to a threshold is

obtained or a maximum number of iterations is attained. The �nal solution is

the optimal solution to the problem restrited to the �nal set of items. Table 1

outlines Heuristi 2.

Table 1: Sheme of the Tournemant Heuristi.

1st Step 2nd Step 3rd Step · · · nth Step

m

m11

m12

m1

m21

.

.

.

m22

m2

m31

.

.

.

m32

.

.

.

· · ·
mn−1 mn1

m3r3

m2r2

m1r1
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In order to exemplify the deomposition proess, assume we are given a

set with 200 items and onsider r1 = 6. Thus, the set of items is split into

six subsets as follows: four subsets with 33 elements (m11 = m12 = m13 =
m14 = 33) and two subsets with 34 elements (m15 = m16 = 34). Then, eah
problem orresponding to a di�erent subset is solved to optimality and the items

produed in eah one of the six problems are seleted to the next round.

Notie that the solution to eah subproblem is feasible to the original prob-

lem. Hene, it is expeted that the quality of the solutions obtained will improve

in eah iteration, ulminating in the solution of the �nal iteration.

The quality of the �nal solution may depend on the suessive partitions of

the set of items. The seletion of items for eah subset an be done randomly

and the proess an be repeated several times. Here we will not explore suh

possible improvement.

5. Numerial experiments

In this setion we report the omputational tests. The objetives of these

numerial experiments are three-fold. First, we assess the di�ulty of the de-

terministi and robust instanes, reporting also the gains obtained by using the

strengthened models proposed in Setion 2.1. Seond, we evaluate the objetive

funtion values for the robust and deterministi models to test the importane

of using robust approahes. Last, we test the e�ieny of the two proposed

heuristis.

All tests were onduted on a omputer Intel(R) Core(TM) i3-3250 CPU,

3.50GHz with 4 ores, using the open-soure solver Cb 2.9 (Coin-or branh and

ut) from Coin-OR (2016). The heuristis were implemented in Julia, using the

pakage JuMP (Lubin and Dunning, 2015).

Instanes were generated using data provided by our industrial partner for

the MTS family of produts. Sine the number of items onsidered depends

on the pending order quantities (as items with few orders are not onsidered),

the number of items varies weekly and an go up to a few hundred produts

(the omplete MTS family). Also, the prodution apaity, V1, varies weekly as
it represents the residual apaity after the prodution of MTO produts have

been onsidered. Based on the information provided by our partner, suggesting

to pik-up 80 items and to use a residual apaity around 2000, we generate �f-

teen instanes for the deterministi problem by varying the number of items and

the residual apaity. In relation to these two parameters (number of produts

and apaities), the �fteen instanes aim to simulate realisti instanes faed by

the ompany urrently and in the future. For the number of items we onsider

�ve possible values 80, 100, 150, 200, 300. Notie that for testing purposes it is

not interesting to onsider small size and, therefore, easy instanes. For the pro-

dution apaities, V1, three values are onsidered: 1000, 2000, 3000 (sine both
sides with higher and lower apaities are relevant). The remaining data is taken

as follows. The known demands De
i are given by real data and the foreasted

demands dpit are obtained from the historial average demand of eah item. The

following additional parameters are onsidered (established by our industrial
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partner, see (Santos, 2015) for details): T is set to 24, Q
i
= max{250, De

i},

hit = H ∗ (1 + J)t, where H = 3.52, J = 0.001651, pi = 0.991003, qi = 669.11.
A unit penalty ost of 1 is assumed for eah item (gi1 = 1). For the robust

settings, d
p

iℓ is set to the deterministi value d
p
it. For d̂

p
iℓ, two possible values are

onsidered d̂piℓ = 0.2d
p

iℓ and d̂piℓ = 0.4d
p

iℓ. Γ varies in {0, 1, 2, 3}.This gives a total
of 120 instanes for the robust problem. Notie that the deterministi instanes

(Γ = 0) are onsidered for both levels of deviations d̂piℓ as the assessment of the
prie of robustness is di�erent for both levels.

5.1. Testing formulations and aessing instanes di�ulty

In the �rst experiments the instanes are solved with a time limit of 1800

seonds. Table 2 gives the number of instanes that were not solved within

the given time limit using the model PLS1S with the improvements disussed in

Setion 2.1. Column apaity gives the prodution apaity divided by 1000, the

seond olumn with Γ = 0 is for the deterministi ase, olumns 3-8 onsider the
robust ase where Γt = min{t,Γ}. The �rst three olumns assume a maximum
deviation of 20% from the nominal value and the next three olumns assume

a maximum deviation of 40% of that value. The last olumn gives the total

number of instanes that were not solved to optimality. Table 3 provides similar

information however for the model PLS1S without the improvements (weak

model).

Table 2: Number of unsolved instanes using the strong formulation.

apaity

Deviation=0.2 Deviation=0.4

Sum

Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 1 Γ = 2 Γ = 3
1 0 0 0 0 0 0 0 0

2 0 2 2 2 2 2 2 12

3 2 1 1 1 0 0 0 5

Sum 2 3 3 3 2 2 2 17

Table 3: Number of unsolved instanes using the weak formulation.

apaity

Deviation=0.2 Deviation=0.4

Sum

Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 1 Γ = 2 Γ = 3
1 0 0 0 0 1 1 1 3

2 1 3 3 3 2 2 2 16

3 3 2 2 2 2 2 2 15

Sum 4 5 5 5 5 5 5 34

We an see that the number of unsolved instanes drops from 34 to 17 by

using the strengthened formulation instead of the weak one. There is no lear

orrelation between the di�ulty of the instanes and the value of Γ parameter.

In relation to the prodution apaity, we an observe that the medium apaity

instanes seem to be a bit harder than the other ones.
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Although not reported in the tables, the average of root gap is 60% for the

weak formulation and 5% for the strong formulation. Nevertheless, all unsolved

instanes have a �nal integrality gap less than or equal to 3%. For the strong
formulation the lower bound for the geometri average running time of the solved

instanes is 2.94 (it is a lower bound beause instanes faster than 1 seond are

set to 1 seond).

We also solved these instanes using CPLEX 12.7 rather than Cb 2.9, keep-

ing the time limit of 1800 seonds. Unsurprisingly, the former is muh faster

than the latter, the weak formulation solving already all but 11 instanes (vs

34 for Cb) while the strong formulation leaves only 3 instanes unsolved (vs

17 for Cb). Fortunately, we will show below that our heuristis, based on Cb

perform very well on our instanes, solving nearly all of them to optimality.

5.2. Determining the prie of robustness

Here we disuss the prie for onsidering robust solutions. As explained in

the introdution, estimating the future demands by the histori average values

doesn't immunize the solution for possible deviations in the demand values

that an lead to higher osts than the estimated ones. For the pratial ase

onsidered here, the osts that may be underestimated are the inventory osts

whih are based on the estimated future demands, sine for the baklogged

demand only the pendent orders are penalized.

In order to report the omputational results we de�ne C(i,j) as the ost of

the solution obtained for Γ = i assessed when Γ = j. For instane, C(0,2) is the

ost obtained for the optimal deterministi solution (obtained for Γ = 0) when
faing an unertainty level of Γ = 2, that is, when we allow the demand values

for two time periods to su�er a maximum deviation, either of 20% or 40%, from
the estimated nominal values.

In tables 4 and 5 we report for the two deviation levels the value C(i,j),

whih is the average of the perentage gaps between the parameters C(i,j) and

C(i,i), de�ned formally by

C(i,j) =
C(i,j) − C(i,i)

C(i,i)
.

For example, C(0,2) = 1.76 means that the deterministi optimal solutions are,

on average, 1.76% more expensive than the optimal solutions obtained for the

robust model with Γ = 2 when faing an unertainty level of Γ = 2.

Table 4: Costs C(i,j) (expressed in %) onsidering a deviation 0.2.

0 1 2 3

0 0 1.19 1.76 0

1 1.49 0 0.81 0

2 1.20 0 0 0

3 1.19 0 0 0
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Table 5: Costs C(i,j) (expressed in %) onsidering a deviation 0.4.

0 1 2 3

0 0 2.64 3.67 0

1 2.96 0 0.88 0

2 2.99 0.33 0 0

3 2.99 0.33 0 0

We see from these tables the robust solutions are more expensive, on average,

than the deterministi solutions in the deterministi ontext. For the ase where

the deviation is allowed to be 40% we an see that proteting a solution for Γ = 3
deviation periods will inrease the ost by 3% in relation to the deterministi

solution. The deterministi solution is more expensive when Γ ∈ {1, 2} but not
when Γ = 3. In the worst ase (two deviations), not proteting the deterministi
solution will imply an inrease of the ost of 3.67%.

We an also observe that robust solutions with Γ = 3 are not interesting.

This justi�es why we have not inluded results for larger values of Γ. Of ourse,
the �nal hoie of whih model to use (whih value for Γ) depends on the risk-

averseness of the deision maker.

5.3. Heuristi performanes

Finally we test the two proposed heuristis. As disussed above, running

a MILP solver for a given time limit ats as a heuristi for those instanes

that were not solved to optimality. However, from a pratial viewpoint, it is

more appealing to have a tool whih enables the deision maker to derive good

solutions very quikly in order to allow him/her to test di�erent parameters

before taking a deision.

Table 6 summarizes the results obtained with the Elite heuristi. For eah

test we onsider m1 = m2 = m3 = m4 = m̂. The �rst line gives the value of

m̂, the seond line gives the average of the optimality gaps. The optimality gap
is de�ned as 100 ∗ ((ZH − Z∗)/Z∗), where Z∗

is the optimum value and ZH
is the solution ost returned by the heuristi. The third line gives the average

number of items seleted when ombining the four lists, and the last line gives

the average running times in seonds.

Table 6: Average statistis for the Elite heuristi.

Value of m̂ 5 6 7 8 9 10

Optimality gap 5.6 0.2 0.04 0 0 0

Number of items seleted 8.6 11 12 13.4 15.4 17

Running time 0.04 0.07 0.09 0.11 0.12 0.13

We an observe that when m̂ inreases the optimality gap dereases as ex-

peted, being zero for m̂ greater or equal to 8. The running times are very

small indiating that this heuristi performs very well for suh values of m̂. This
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means that seleting at least 32 items and solving the restrited model is fast

and gives good quality solutions.

Table 7 reports the results obtained with the Tournament heuristi. This

heuristi is run until a �nal set of m ≤ 50 items is obtained or until a maximum
of 6 iterations is attained. In eah iteration the original set of items is split into

r subsets. The �rst line gives the value of r. The seond line gives the average

number of iterations. The third line gives the average optimality gap and the

last line gives the average running time in seonds.

Table 7: Average statistis for the Tournament heuristi.

Value of r 6 5 4

Number of iterations 2 2.62 3.33

Optimality gap 0.35 0.49 0.12

Running time 0.12 1.81 0.14

Although the heuristi is fast and gives solutions that in average have very

small optimality gaps, we ould not �nd parameters that lead to optimality in

all the tested ases. Overall, the Tournament heuristi was better than the Elite

heuristi only for the ase where the number of elite elements seleted was small

(m̂ = 5), otherwise the Elite heuristi outperformed the Tournament heuristi.

6. Conlusions

We onsider a pratial problem faed by a ompany that plans the pro-

dution for a set of produts following a Make-To-Order poliy and uses the

remaining prodution apaity to produe items for whih the quantities or-

dered are small. The problem is onerned with the use of this extra prodution

apaity in a given time period. Namely, deiding whih items to produe and

the orresponding prodution level. A penalty is assoiated with the baklogged

demands of the items that are not produed. For the produed items, as the

amount produed is in general greater than the pending orders, a holding ost

is inurred.

We present a general model and establish the relation between this model

and the lassial lot-sizing models. We propose several enhanements for the

formulations. As the holding osts depend on the value of the estimated future

demands, we derive a robust model from the enhaned model where the future

demands are onsidered unertain and an vary in a given interval entered

in the historial average values. The unertainty set is the lassial budget

polytope introdued by Bertsimas and Sim (2004).

For pratial purposes we propose two heuristi shemes that are based on

the enhaned models (deterministi and robust). The models and the heuristis

are tested using a set of instanes generated from real data provided by our

industrial partner. The omputational experiments show that most instanes

annot be solved to optimality within reasonable running time limit. In parti-

ular, they show that the Elite heuristi, whih selets a small subset of items
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(elite items), following the ompany riteria, is quite fast and in general obtains

the optimal solution.

It is well-known that robust optimization approahes an generate too on-

servative solutions. That is, solutions that are good when the worst ase senario

ours, in our ase when the orders for future demands are lower than expeted,

but their quality may not be so good when other demand senarios are observed.

While this falls beyond the sope of the urrent work, it ould be interesting

to ompare our robust approah with the optimal solutions of stohasti pro-

gramming approahes where one also takes the probabilities of the senarios

into aount. Similarly, it would be interesting to test the e�et of our model

and the quality of the heuristis with di�erent ost strutures and/or on more

omplex problems where the set of feasible prodution plans is restrited by

additional onstraints (e.g. storage apaity, inlusion of set-up times). In par-

tiular, the heuristis would need to be adapted to these other ontexts and

further omputational testing would be required.
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