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Hairy black holes (BHs) have macroscopic degrees of freedom which are not associated with a Gauss law. 
As such, these degrees of freedom are not manifest as quasi-local quantities computed at the horizon. 
This suggests conceiving hairy BHs as an interacting system with two components: a “bald” horizon 
coupled to a “hairy” environment. Based on this idea we suggest an effective model for hairy BHs – 
typically described by numerical solutions – that allows computing analytically thermodynamic and other 
quantities of the hairy BH in terms of a fiducial bald BH. The effective model is universal in the sense 
that it is only sensitive to the fiducial BH, but not to the details of the hairy BH. Consequently, it is 
only valid in the vicinity of the fiducial BH limit. We discuss, quantitatively, the accuracy of the effective 
model for asymptotically flat BHs with synchronised hair, both in D = 4 (including self-interactions) and 
D = 5 spacetime dimensions. We also discuss the applicability of the model to synchronised BHs in D = 5
asymptotically AdS and static D = 4 coloured BHs, exhibiting its limitations.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The 1970s represent a golden era for the theoretical study of 
black holes (BHs). At the classical level it was understood that 
elctrovacuum BHs are remarkably featureless, being completely 
classified by a small number of macroscopic independent degrees 
of freedom: mass, angular momentum and electric (possibly also 
magnetic) charge – see [1] for a review. At the quantum level, 
on the other hand, the visionary works of Bekenstein [2] and 
Hawking [3] heralded BHs as gateways into the realm of quan-
tum gravity, by showing they are thermodynamical objects, and, 
in particular that they have an entropy, geometrically computed 
as the horizon area. Understanding and counting the microscopic
degrees of freedom associated to this entropy became a primary 
challenge for any quantum gravity candidate theory. Two decades 
later, some remarkable success was obtained within String The-
ory, werein, starting with [4,5], it was possible to identify and 
count the microscopic degrees of freedom that explain the clas-
sical geometric entropy, defined by the BHs macroscopic degrees 
of freedom, albeit only in some particular classes of BHs.

The macroscopic simplicity of electrovacuum BHs suggested the 
“no-hair” conjecture [6]: that the endpoint of gravitational collapse 
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is a stationary BH completely described by a small set of macro-
scopic degrees of freedom, all of which should be associated to 
Gauss laws. In particular, this means such degrees of freedom are 
manifest at the horizon and can be computed therein as quasi-
local quantities (e.g. the Komar integrals [7] associated to the mass 
and angular momentum of stationary axisymmetric BHs and the 
Gauss law associated to the electric charge). This, in turn, ties up 
nicely with the microscopic picture, and the view that the horizon 
contains all relevant BH information.

The discovery of “hairy” BHs in a variety of models (see 
e.g. [8–10] for reviews) has overshadowed this conceptually simple 
picture. These BHs have extra macroscopic degrees of freedom not 
associated to a Gauss law. Therefore they do not seem to be associ-
ated to any quasi-local conserved quantity computable at the hori-
zon level. This raises interesting questions, on how the microscopic 
description of the BH captures these extra macroscopic degrees of 
freedom, but it also suggests an effective model for obtaining an 
(in general) analytic approximation for physical and thermodynam-
ical quantities of the hairy BHs associated to the horizon [11].

The basic idea of the effective model sketched in [11] (and sug-
gested by the numerical evolutions in [12]), therein called quasi-
Kerr horizon model, is that due to the absence of further local 
charges at the horizon, the horizon of the hairy BH is well ap-
proximated by the horizon of a fiducial bald BH but with different 
parameters. In a sense, the hairy BH can be conceived as a cou-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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pled system of a bald horizon with an external “hair” environment. 
Naturally, the system is interacting and the non-linearities of the 
underlying gravity–matter system introduce a non-trivial deforma-
tion of the “bald” horizon. But in the feeble hair regime, when 
only a small percentage of the overall spacetime energy is con-
tained in the matter field, these non-linearities are expected to be 
small, and the horizon should still behave as that of the bald fidu-
cial BH, but with shifted parameters to take into account the mass 
and angular momenta that is no longer inside the horizon but 
rather in the matter environment. One could expect such simple 
model to yield errors in the thermodynamics quantities of the or-
der of the deviation from the fiducial bald BH. The findings in [11], 
however, revealed that this effective model gives an unexpectedly 
good approximation, sometimes with deviations of ∼ O(1%) even 
for fairly large deviations from the bald BH, e.g., when ∼ O(30%)

of the spacetime energy is stored in the matter field.
The purpose of this paper is to investigate the applicability and 

accuracy of the model by considering further examples of hairy 
BHs. Thus, after reviewing the assumptions, basic statement and 
corollaries of the effective model in Section 2, we consider two ap-
plications in Section 3: we apply it to Kerr BHs with synchronised 
hair and self-interactions [13] in Section 3.1 and to five dimen-
sional (D = 5) Myers–Perry BHs with synchronised hair [14] in 
Section 3.2. In both these examples the effective model performs 
well. In the D = 4 case the accuracies are comparable to those de-
scribed at the end of the last paragraph. In the D = 5 case, there 
is a mass gap between the hairy BHs and the fiducial BH. This 
means that the fiducial BH geometry is never approached globally, 
but only locally. In this case we find that, even for very hairy BHs, 
for which ∼O(90%) of the spacetime energy is stored in the mat-
ter field, the model can yield errors of ∼ O(1%) for some physical 
quantities. To exhibit also the limitations of the effective model, we 
consider in Section 4 two further applications: to the D = 5 AdS
Myers–Perry BHs with synchronised hair [15] and to the coloured 
BHs in Einstein–Yang–Mills theory [16]. With these applications, 
we illustrate either difficulties in the formalism, or unimpressive 
accuracies. In Section 5 we present some final remarks, in particu-
lar speculating about the underlying reason for the good accuracy 
of the model in the case of asymptotically flat BHs with synchro-
nised hair.

2. The general framework

2.1. Komar integrals and Smarr relation

We consider a general model in D � 4 spacetime dimensions, 
consisting of Einstein’s gravity minimally coupled to some matter 
fields ψ described by a Lagrangian density Lm

S =
∫

dD x
√−g

[
R

16π
+Lm

]
, (1)

where R is the spacetime Ricci scalar. Here and below we use ge-
ometrised units, setting Newton’s constant and the speed of light 
to unity: G = 1 = c.

In this work we shall be interested in stationary space-times 
with N-azimuthal symmetries, where N = 1, 2, for D = 4, 5. This 
implies the existence of N + 1 commuting Killing vectors, ξ ≡ ∂t , 
and η(k) ≡ ∂ϕk , for k = 1, . . . , N .

Assuming asymptotic flatness, the total (or ADM) mass M and 
total angular momenta J (k) of the configurations are obtained from 
Komar integrals [7] (see also, e.g. [17]), at spatial infinity, associ-
ated with the corresponding Killing vector fields

M = − 1

16π

D − 2

D − 3

∫
D−2

α , J (k) = 1

16π

∫
D−2

β(k) , (2)
S∞ S∞
with

αμ1...μD−2 ≡ εμ1...μD−2ρσ ∇ρξσ ,

β(k)μ1...μD−2 ≡ εμ1...μD−2ρσ ∇ρη(k)σ . (3)

We are mainly interested in BH solutions with a regular event 
horizon geometry (without any restrictions on its topology, which 
for D > 4 can be non-spherical [18–20]). This horizon H has an 
associated (hyper)area of its spatial sections, AH , and a tempera-
ture T H ; there are also N horizon angular velocities 
H(k) associ-
ated with the N-azimuthal symmetries.

Using Komar integrals computed at the event horizon, one also 
defines a horizon mass MH and a set of N horizon angular mo-
menta J (k)

H ,

MH = − 1

16π

D − 2

D − 3

∫
H

α , J (k)
H = 1

16π

∫
H

β(k) . (4)

Then the following Smarr type mass formulae [21] hold: for the 
horizon quantities we have

D − 3

D − 2
MH = 1

4
T H AH +

∑
(k)


H(k) J (k)
H , (5)

whereas for the bulk quantities

M = D − 2

D − 3

[
1

4
T H AH +

∑
(k)


H(k)( J (k) − J (k)
(ψ)

)

]
+ M(ψ) . (6)

In the above relations, M(ψ) , J (k)
(ψ) are the energy and angular 

momenta stored in the matter fields, with

M = MH + M(ψ), J (k) = J (k)
H + J (k)

(ψ) . (7)

Via the Einstein equations, M(ψ) and J (k)
(ψ) can be expressed as 

volume integrals for the appropriate components of the energy–
momentum tensor (see e.g. [17]).

In addition to the above Smarr relations, the configuration 
should satisfy the first law of BH thermodynamics [22],

dM = 1

4G
T HdAH +

∑
(k)


H(k)d J (k) +W, (8)

where W denotes the work term(s) associated with the matter 
fields. In particular, for vacuum solutions, the following relation 
holds

dMH = 1

4
T HdAH +

∑
(k)


H(k)d J (k)
H . (9)

2.2. The effective model

We now turn into the assumptions of the effective model [11], 
its statement and its corollaries.

Assumption 1 (Fiducial “bald” BH). One defines a vacuum fiducial BH 
solution1 which is approached smoothly as M(ψ) → 0, J (k)

(ψ) → 0
(i.e. with the same symmetries and horizon structure as the non-
vacuum solution). Moreover, at least in all cases discussed in this 
work, the horizon quantities of the fiducial BH have known (in 

1 In D = 4 the fiducial solution is obviously Kerr. But in higher dimensions, 
there can be different solutions for the same global charges and the horizon topol-
ogy [18–20], thus requiring the definition of the fiducial solution.
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closed form) expressions in terms of the global charges (macro-
scopic degrees of freedom); schematically these are:

AH = AH (M, J (k)), T H = T H (M, J (k)),



(k)
H = AH (M, J (k)) . (10)

It will be useful to define a set of N + 1 “hairiness” parameters 
h ≡ (p, q(k)), which measure the deviation of the hairy BH from 
the fiducial solution

p ≡ M(ψ)

M
, q(k) ≡ J (k)

(ψ)

J (k)
. (11)

Assumption 2 (“Hair” matter field). We assume that there is no 
work term associated with the matter fields in the 1st law (8). 
This assumption guarantees the matter is adding “hair”, without a 
Gauss law associated, and it will not introduce a different global 
charge (another macroscopic degree of freedom), that can be com-
puted at the horizon, as, for instance, an electromagnetic “matter” 
field would (electric charge). This still allows the “hair” matter field 
to have a conserved Noether charge, see e.g. [26], which is associ-
ated to a global, rather than gauge, symmetry.

Statement of the model The horizon quantities Q = (AH , T H , 
(k)
H )

of the non-vacuum BH are still given by those of the correspond-
ing fiducial BH, relation (10), expressed, however, in term of the 
horizon mass and angular momenta of the non-vacuum solution. 
That is, one considers the substitution

Q(fid)(M, J (k)) −→ Q(HBH)(MH , J (k)
H ). (12)

Corollary 1 (Analytic formulas for horizon quantities). From (7) and (11)

MH = (1 − p)M , J (k)
H = (1 − q(k)) J (k) ; (13)

then, the horizon quantities of the hairy BH (12) can be expressed as

Q(H B H)(M, J (k);h). (14)

If the horizon quantities of the fiducial BH are expressed by analytic for-
mulas Q(fid)(M, J (k)) so will be the horizon quantities of the hairy BH, 
eqs. (14).

Corollary 2 (Analytic relation between “hairiness parameters”). The as-
sumption that the horizon is still described by the vacuum reference BH, 
together with the 1st law (8) (without a work term W) implies that the 
matter fields satisfy the relation, for rotating BHs,2

dM(ψ) =
∑
(k)


H(k)d J (k)
(ψ)

. (15)

Then we formally integrate the above relation treating 
H(k) as a set of 
input parameter (which is justified, since it belong to a different subsys-
tem). This results in

M(ψ) =
∑
(k)


H(k) J (k)
(ψ)

, or M − MH =
∑
(k)


H(k)( J (k) − J (k)
H ) .

(16)

Using M(ψ) = pM, J (k)
(ψ) = q(k) J (k) , (16) becomes

p =
∑
(k)


H(k)q
(k) J (k)

M
. (17)

2 The case of static BHs is simpler and will be illustrated in Section 4.2.
Summary Relations (14) and (17) are the central results of the 
proposed effective model. After considering them together, one can 
eliminate p and arrive at the following set of relations

AH (M, J (k);q(k)), T H (M, J (k);q(k)), 

(k)
H (M, J (k);q(k)).

(18)

The explicit form of these relations is case dependent; the ap-
proach, however, is general. These analytic equations can be com-
pared with the numerical solution of the hairy BH to check the 
domain of validity of the effective model.

As a final remark, we observe that instead of eliminating p, 
eq. (17) can be used to eliminate instead one of the parameters qk , 
which results in an equivalent form of (18). In practise, as usual in 
BH physics, it is natural to work in units set by the BH mass (i.e.
with normalised quantities).

3. Applications of the effective model

In this section we shall consider specific applications of the 
effective model. The simplest such application is found for the fol-
lowing scalar matter content:

Lm = − (∂a�)† (
∂a�

) − U (|�|), (19)

where � is in general a scalar multiplet and U (|�|) is a self-
interactions potential. The Einstein–Klein–Gordon equations pos-
sesses both solitons and hairy BH solutions. When the interac-
tion potential includes a mass term, there are everywhere regular, 
asymptotically flat, stationary solitonic solutions known as boson 
stars [23]. Rotating boson stars [24], in particular, arise as a partic-
ular limit of Kerr BHs with (scalar) synchronised hair [25,26]. Both 
the solitonic rotating boson stars [27] and the hairy BHs [14,28]
can be generalised to D = 5.

In [11] the effective model was already applied to the sim-
plest scalar [25] and vector BHs [29] with synchronised hair. In 
section 3.1 we shall apply the effective model to the D = 4 hairy 
BHs with self-interactions obtained in [13]. In section 3.2 we shall 
apply it to the D = 5 hairy BHs [14].

3.1. D = 4 BHs with synchronised scalar hair

3.1.1. Predictions of the effective model
Consider the D = 4 Kerr BHs with synchronised hair [13,25,26]

the reference solution is the Kerr metric [30], for which N = 1. 
Then the statement of the model, cf. (12), is that the horizon quan-
tities of the hairy BHs obey:


H = MH

2 J H
(1 − χ) , AH = 8π M2

H (1 + χ) ,

T H = χ

4π MH (1 + χ)
, χ ≡

√
1 − J 2

H

M4
H

. (20)

Next, we use (13), which in this case is simply,

MH = (1 − p)M , J H = J (1 − q) , (21)

to obtain the specific form of (17), which reads

pM = 
H Jq . (22)

We now introduce a set of reduced parameters, normalising the 
corresponding physical parameter by the ADM mass,
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j ≡ J

M2
, aH ≡ AH

16π M2
, w H ≡ 
H M, tH ≡ 8π MT H .

(23)

Then (22) takes the compact form

p = w H jq. (24)

Replacing (20) in (23), making use of (21) and choosing, via (24), 
(p, w H ) as independent parameters, one arrives at the following 
expressions

q = p
1 + 4(1 − p)2 w2

H

p + 4(1 − p)2 w2
H

, j = p + 4(1 − p)2 w2
H

w H [p + 4(1 − p)2 w2
H ] , (25)

aH = (1 − p)2

1 + 4(1 − p)2 w2
H

, tH = 1 − 4(1 − p)2 w2
H

1 − p
, (26)

which can be taken as the predictions of the effective model, in 
the spirit of eq. (18). It is also possible to show that

p

q
= 1 − aH

1 − p
, (27)

which implies, according to the effective model, that p < q for a 
hairy BH.

Finally, we observe that it is possible to express all quantities 
solely in terms of the hairiness parameters (p, q):

w H = 1

2(1 − p)

√
p(1 − q)

q − p
, j = 2(1 − p)

p
q√

p
q

1−q
1− p

q

,

aH = (1 − p)

(
1 − p

q

)
, tH = 1 − p

q (2 − q)

(1 − p)
(

1 − p
q

) . (28)

3.1.2. Validating the effective model
For D = 4, we restrict our study here to the simplest case of a 

scalar singlet (single complex field), with

� = φ(r, θ)ei(mϕ−wt) . (29)

We will also focus on the scalar field potential [13]

U (|�|) = μ2 |φ|2 + λ |φ|4 , (30)

where μ is the scalar field mass and the self-coupling is positive, 
λ > 0. This complements the study in [11] which addresses the 
case λ = 0.

In Fig. 1 we exhibit the relative errors |1 −Q(model)/Q(num)| for 
the quantities Q = ( j, q, tH ) in terms of the parameters (p, w H ). 
Observe that the self-interactions only affect Q(num); the effective 
model prediction Q(model) is insensitive to the self-interactions. 
The overall errors in this domain are comparable to those in [11], 
which is somewhat expected because the effect of the self interac-
tions is small (for the numerical solutions) in the region studied, 
which is in the vicinity of the existence line (p = 0 = q), wherein 
the hairy BHs reduce to Kerr BHs. Remarkably, even for fairly large 
values of p, such as p ∼ 0.3, the effective models gives an error of 
only a few percent, for low ωH . For the reduced angular momen-
tum the error is of ∼ 1% within the whole domain p ∈ [0, 0.3], 
ωH ∈ [0, 0.5]!
3.2. D = 5 BHs with synchronised scalar hair

We now consider Myers–Perry BHs with synchronised hair 
[14,28]. D = 5 rotating BHs with scalar hair possess, generically, 
two independent angular momenta and may even have a more 
general topology of the event horizon [31]. Here, we shall focus on 
the case with two equal angular momenta [14]. In D = 5 a quali-
tative difference with respect to the D = 4 case is that there is a 
mass gap between the hairy BHs and the fiducial model, which is 
taken to be the Myers–Perry vacuum solution [32], with two equal 
angular momenta.

3.2.1. Predictions of the effective model
D = 5 BHs with two equal-magnitude angular momenta have

J 1 = J 2 ≡ J , 
H(1) = 
H(2) ≡ 
H . (31)

We also consider only the case with a spherical horizon topology. 
For such solutions the isometry group is enhanced from Rt ×U (1)2

to Rt × U (2), where Rt refers to time translations. This symme-
try enhancement allows to factorise the angular dependence and 
thus leads to ordinary differential equations (not partial differen-
tial equations).

The fiducial solution is, in this case, the double spinning Myers–
Perry BH. Then the statement of the model, cf. (12), is that the 
horizon quantities of the hairy BHs obey:


H = MH

3 J H
(1 − χ̄ ) , AH = 16

3

√
2π

3
M3/2

H (1 + χ̄ ) ,

T H =
√

3

8π MH

χ̄

1 + χ̄
, χ̄ ≡

√
1 − 27π J 2

H

8M3
H

. (32)

Again, it is convenient to define quantities normalised w.r.t. the 
ADM mass of the BHs. The D = 5 usual conventions in the litera-
ture are

j = 3

2

√
3π

2

J

M3/2
, aH = 3

32

√
3

2π

AH

M3/2
, w H =

√
8

3π

H

√
M,

tH = 4

√
2π

3
T H

√
M . (33)

In the absence of hair, i.e. for p = q = 0, corresponding to a Myers–
Perry BH, the following relations hold

j = 2w H

1 + w2
H

, aH = 1

1 + w2
H

, tH = 1 − w2
H , (34)

with 0 � w H � 1; the limits correspond, respectively, to the 
Schwarzschild–Tangherlini [33] and extremal Myers–Perry BHs.

Repeating the procedure described in the previous section, 
choosing again (p, w H ) as the independent parameters, yields the 
following simple expressions

q = 3p
1 + (1 − p)w2

H

3p + (4 − p)(1 − p)w2
H

, j = 3p + (4 − p)(1 − p)w2
H

2w H (1 + (1 − p)w2
H )

,

(35)

aH = (1 − p)3/2

1 + (1 − p)w2
H

, tH = 1 − (1 − p)w2
H√

1 − p
. (36)

Again, these can be regarded as the predictions of the effective 
model, in the spirit of eq. (18).
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Fig. 1. The relative errors are shown in a strip on the (p, w H )-plane for reduced angular momentum j (left panel), hairiness parameter q (center) and reduced temperature 
tH (right panel) for D = 4 BHs with self-interacting scalar hair, with λ = 100. The Kerr limit (p = 0) is the left vertical axis.

Fig. 2. The relative errors are shown in a strip on the (p, w H )-plane for reduced angular momentum j (left panel), hairiness parameter q (center) and reduced temperature 
tH (right panel) for D = 5 BHs with scalar hair.
3.2.2. Validating the effective model
The matter content in this case, consistent with the aforemen-

tioned symmetries is found by taking � a complex doublet scalar 
field [27], with

� = φ(r)e−iωt
(

sin θeiϕ1

cos θeiϕ2

)
, (37)

where θ ∈ [0, π/2], (ϕ1, ϕ2) ∈ [0, 2π ], and t denotes the time coor-
dinate. Concerning the scalar field potential, we restrict our study 
to the simplest case with

U (|�|) = μ2�†� = μ2φ(r)2 (38)

where μ corresponds to the scalar field mass.
The corresponding D = 5 hairy BHs are discussed in [14]. Like-

wise their four dimensional counterparts, the solutions are sup-
ported by rotation and have no static limit. The main difference 
with respect to the D = 4 case if the absence of the existence 
line. That is, in the limit of vanishing Noether charge density, the 
scalar field becomes point-wise arbitrarily small and the geome-
try becomes, locally, arbitrarily close to that of a specific set of 
Myers–Perry BHs. There remains, however, a global difference with 
respect to the latter, manifest in a finite mass gap. Thus the hair of 
these D = 5 hairy BHs is intrinsically non-linear.

We have found that the effective model provides an accurate 
description of the hairy BHs in the vicinity of the “marginally 
bound set”. This is the natural D = 5 counterpart of the D = 4
existence line, wherein the matter field becomes point-wise arbi-
trarily small, even though the global charges do not vanish. This 
line is approached for w → μ.

In Fig. 2 we display the relative errors of the effective model 
for Myers–Perry BHs with synchronised hair. As before, these rel-
ative errors are |1 − Q(model)/Q(num)|, and are exhibited for the 
quantities Q = ( j, q, tH ) in terms of the parameters (p, w H ). Im-
pressively, even for extremely large values of p, such as p ∼ 0.98, 
the effective model gives an error of less than one percent for aH , 
for the ωH range plotted! For j the error reaches ∼O(2%) whereas 
for tH is one order of magnitude larger ∼ O(20%). But even in 
the latter case it is considerably smaller than the naive expecta-
tion that the error should be of order of the deviation from the 
fiducial BH. As already mentioned, these hairy BHs do not contin-
uously connect globally to the fiducial BH – there is always a mass 
gap [14], the minimum value of p for the hairy solutions being 
roughly p ∼ 0.93.

4. Limitations of the effective model

4.1. D = 5 AdS BHs with synchronised scalar hair

The first example of BHs with synchronised hair in the litera-
ture are obtained in D = 5 AdS asymptotics [15]. It is interesting 
to inquire if the effective model may still provide a useful descrip-
tion in that case as well, which is qualitatively different due to the 
AdS asymptotics.

To address this question, we have performed an independent 
investigation of the hairy BHs in [15]. These solutions can be 
studied within the same framework in [14], already mentioned in 
Section 3.2.2. The presence of a mass term, however, is not neces-
sary in this case, since the AdS asymptotics provides the necessary 
confining mechanism. Thus, following [15], we set μ = 0 in what 
follows.

The domain of existence of the solutions is shown in Fig. 3. 
This plot manifests the striking analogy with the D = 4 asymptot-
ically flat case. The domain of hairy BHs is bounded by a solitonic 
limit (red solid line – corresponding to AdS rotating boson stars, 
with equal angular momenta [27]), by the “bald limit”, defining 
the existence line (blue dotted line – corresponding to equal angu-
lar momenta Myers–Perry AdS BHs [34]) and a set of extremal (i.e.
zero temperature, extremal hairy BHs).

Concerning the validity of the effective model, we shall now 
discuss how it holds only partially. Following the procedure in the 
previous sections, we first identify the fiducial BH has the equal 
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Fig. 3. The domain of existence in (w, M)-plane is shown for BHs with synchronised 
hairy with equal angular momenta, in AdS5. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

angular momentum, Myers–Perry–AdS BH [34]. Then, the state-
ment of the model, cf. (12), is that the horizon quantities of the 
hairy BHs obey the thermodynamical relations of the fiducial BH, 
in terms of the macroscopic degrees of freedom measured at the 
horizon. Recall that the horizon quantities (AH , T H , 
H ) of the 
fiducial BH are

AH = 2π2L3x4

U
, T H = 1

2π LU

[
1 + 2x2 − 2a2

L2x2
(1 + x2)2

]
,


H = a

L2

(
1 + 1

x2

)
, (39)

where L is the AdS radius and

U ≡
√

x2

(
1 − a2

L2

)
− a2

L2
. (40)

x and a are the two parameters of the solution which determine 
the horizon mass and angular momentum, according to:

MH = 3π L2

8

x4(1 + 2x2)

U 2
, J H = πaL2

4

x4(1 + x2)

U 2
(41)

Our study reveals that, in a region close to the existence line, 
the hairy BHs are still well described by the effective model. This 
can be confirmed in Fig. 4 (left panel) where we show the rel-
ative errors for the horizon area for several values of the event 
horizon radius rh , comparing the value computed from the effec-
tive model, A(model)

H , with the one computed from the numerical 
solutions A(num)

H . Similar results were found for T H and 
H .
This case, however, makes clear a limitation in the applicability 

of the model. In fact, a crucial ingredient of the formalism is miss-
ing in the AdS case. Although one can formally define the hairiness 
parameters p, q (where Mψ , Jψ are computed as volume inte-
grals), the splitting of the total mass and angular momentum as 
the sum of the horizon charges plus the contribution from the 
matter fields is not possible in the presence of a cosmological con-
stant3

M 
= MH + Mψ, J 
= J H + Jψ. (42)

Thus AH , T H , 
H cannot be further re-expressed in terms of (p, q)

and the effective description holds only locally, at the horizon level.

3 One can easily verify that M 
= MH even for a vacuum Schwarzschild AdS BH.

a

Fig. 4. The relative errors are shown for the event horizon area as a function of the 
hairiness parameter p, for several values of the event horizon radius.

4.2. D = 4 coloured BHs

The first clear counterexamples to the no-hair conjecture was 
found in 1989 in Einstein–Yang–Mills (EYM) theory [16], dubbed 
coloured BHs, in the wake of the discovery, by Bartnik and Mck-
innon, that solitonic horizonless configurations exist in the same 
model [35]. This contrasts with the case of Einstein–Maxwell the-
ory, wherein the absence of solitons is rigorously established [37]. 
Coloured BHs are hairy since they have a non-trivial matter config-
uration outside their regular event horizon, and the solutions are 
no longer completely determined by their global charges. These 
BHs are unstable [38] already in the spherically symmetric case. 
A (rather old) review of these solutions can be found in [39].

The EYM-SU(2) “matter” Lagrangian density is

Lm = −1

2
Tr{Fμν F μν} , (43)

where Fμν is the field strength tensor Fμν = ∂μ Aν − ∂ν Aμ +
ie[Aμ, Aν ], e is the gauge coupling constant, the gauge potential is 
Aμ = τa Aa

μ/2, and τa are the Pauli matrices. Here, μ, ν are space-
time indices running from 1 to 4 and the gauge index a is running 
from 1 to 3.

The static, spherically symmetric EYM hairy BHs possess a 
purely magnetic YM field, with a single gauge potential w(r). The 
magnetic flux at infinity vanishes and, as a result, there is a single 
global charge – the ADM mass M . These BHs consist of a 1-discrete 
parameter family of solutions, labelled by the integer k � 1, which 
denotes the node number of the function w(r). In the following 
discussion we focus on the solutions with k = 1.

The domain of existence of these solutions can be qualitatively 
described as follows. Firstly, no upper bound exists for the horizon 
size. In the large horizon size limit, the Einstein equations decou-
ple from the gauge sector, yielding a Yang–Mills system on a fixed 
Schwarzschild BH background. In this decoupling limit there is a 
known exact solution (in closed form) [36]. As the horizon size 
shrinks to zero, the Bartnik–Mckinnon family of solitons is recov-
ered. Further details can be found in [39].

For applying the effective model, the obvious fiducial metric is 
that of a Schwarzschild BH. Then, applying the formalism in Sec-
tion 2 leads to the following predictions

H = (1 − p)2, tH = 1

1 − p
. (44)

Computing the relative errors, like before, for instance of the tem-
perature one concludes the error is of the order of p – Fig. 5. This 
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Fig. 5. The (reduce) temperature-area diagram for EYM BHs is exhibited together 
with the relative errors for the temperature.

the unremarkable result one expects in general: that the error in 
the effective model is of the order of the deviation from the bald 
BH. Thus, in this case, the effective model is not particularly accu-
rate.

5. Discussion and final remarks

In this paper we have discussed an effective model for comput-
ing, analytically, several quantities for hairy BHs, in terms of the 
corresponding quantities of a fiducial bald BH. This model, already 
considered in [11] for Kerr BHs with synchronised scalar [25] and 
vector [29] hair, was applied to two other examples of BHs with 
synchronised hair: the D = 4 BHs with scalar self-interactions [13]
and to the D = 5 “hairy” Myers–Perry BHs [14] in section 3.2. In 
all these cases one finds that the relative errors in the quantities 
provided by the model can be considerably smaller than those one 
would naively expect, namely that these errors should be of the 
order of deviation from the fiducial solution.

To illustrate the limitations of the model, we have also con-
sidered two other examples in Section 4: the D = 5 AdS Myers–
Perry BHs with synchronised hair [15] and to the coloured BHs 
in Einstein–Yang–Mills theory [16]. The former case shows that 
one step of the model, namely the splitting between horizon and 
ADM quantities may be subtle in non-asymptotically flat space-
times; still one may use the model and find small errors, as in the 
asymptotically flat case. The latter case illustrates that the model 
may give errors of the order of the deviations from the fiducial BH, 
thus unimpressive.

In this set of applications, the example of coloured BHs is the 
exceptional one. All the remaining examples rely on the synchro-
nisation mechanism to endow rotating BHs with hair. So, why is 
this effective model performing better for this sort of “hairy” BHs? 
A possible answer is that, in these cases, there is a separation of 
scales. The hair field has its largest amplitude not at the horizon 
but at some distance thereof (see e.g. [26]) – defining a different 
scale from that of the horizon –, unlike the coloured case, where 
it decreases away from the horizon. This suggests a more efficient 
decoupling between the two sub-systems (the “bald” horizon and 
the matter “hair”) occurs in this case, allowing the horizon to re-
main fiducial BH-like even for larger amplitudes of the matter field. 
It would be interesting to further explore this suggestion.
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