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     Os Filtros ultravioleta (filtros UV) são compostos químicos usados em vários 
produtos de higiene pessoal e materiais (plásticos, tintas, etc.) de modo a 
proteger contra danos causados pela radiação ultravioleta. O uso destes 
compostos tem vindo a aumentar nos últimos anos sendo já considerados 
contaminantes emergentes dos ecossistemas aquáticos. De facto, estes 
compostos têm vindo a ser detetados em lagos e rios, mas até à data pouca 
informação existe sobre os seus efeitos nos ecossistemas aquáticos, sendo 
que os estudos existentes se centram em ensaios laboratoriais e num reduzido 
número de espécies. Contudo, devido às suas propriedades físico-químicas é 
esperado que os filtros UV acumulem nos sedimentos e nos organismos e 
coocorram com outros contaminantes. No entanto, embora o modo de ação 
dos filtros UV não seja totalmente conhecido, estudos prévios têm mostrado 
disrupção endócrina causada pela exposição a estes contaminantes em 
organismos aquáticos. Posto isto, uma avaliação dos efeitos ecotoxicológicos 
dos filtros UV é urgente para uma correta avaliação do risco ambiental. Assim, 
os estudos ecotoxicológicos devem-se focar em organismos bentónicos 
considerando parâmetros e cenários de exposição relevantes, o que nos 
permitirá determinar potenciais efeitos a longo prazo assim como efeitos ao 
nível das comunidades dos ecossistemas. Este trabalho propôs avaliar e 
perceber quais os efeitos dos filtros UV em organismos e comunidades de 
água doce usando uma abordagem baseada em diferentes níveis de 
organização biológica e tendo como intuito gerar dados ecotoxicológicos 
robustos e mais abrangentes. Para tal, foram estabelecidos vários objetivos 
específicos: 1) avaliar os efeitos de diferentes filtros UV (Benzofenona-3 (BP3); 
3-(4-methylbenzylidene)camphor (4-MBC) e Octocrileno (OC)) usando duas 
espécies de invertebrados aquáticos detritívoros, o díptero Chironomus riparius 
(uma espécie modelo amplamente utilizada em ensaios ecotoxicológicos) e o 
tricóptero Sericostoma vittatum (uma espécie endémica da Península Ibérica), 
ambos com grande importância nos ecossistemas lóticos portugueses; 2) 
avaliar os efeitos de misturas de diferentes filtros UV, e de filtros UV 
juntamente com um repelente de insetos (N,N-diethyl-3-methylbenzamide - 
DEET) em parâmetros relacionados com a reprodução de C. riparius; 3) avaliar 
os efeitos multigeracionais decorrentes de exposição a BP3 em C. riparius; 4) 
usando sistemas de rios artificiais avaliar os efeitos do 4-MBC na estrutura e 
funcionamento dos ecossistemas. 
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Os resultados obtidos mostraram que, de facto, os filtros UV selecionados 
causaram efeitos tóxicos em ambas as espécies usadas a concentrações 
ambientalmente relevantes, observando-se reduções ao nível do crescimento 
e das taxas alimentares assim como atrasos no desenvolvimento. Ao nível 
subcelular C. riparius e S. vittatum mostraram diferentes padrões de resposta à 
exposição aos filtros UV e apesar de se observarem custos metabólicos 
relacionados com os processos de destoxificação, não se observaram efeitos 
em termos de stress oxidativo nem neurotoxicidade. Adicionalmente, os 
resultados obtidos na exposição às misturas entre químicos revelaram 
interações sinergísticas para alguns parâmetros reprodutivos de C. riparius 
para as ambas as misturas testadas (BP3 – 4-MBC; BP3 - DEET). Estes 
resultados sugerem que exposições individuais aos filtros UV podem 
subestimar a toxicidade destes contaminantes em condições naturais. Nos 
ensaios multigeracionais observou-se também uma forte redução na fertilidade 
de C. riparius expostos a BP3. Observou-se ainda que a segunda geração foi 
mais afetada que a geração parental mesmo se mantida em condições 
controlo, mas cujos pais tinham sido previamente expostos a BP3. Todos estes 
resultados indicam que a BP3 provoca efeitos latentes na geração parental 
que são posteriormente observados nos descendentes, apontando assim para 
efeitos epigenéticos/transgeracionais. Por último, nos ensaios dos 
mesocosmos, não foram observados efeitos do 4-MBC na estrutura das 
comunidades de macroinvertebrados nem na degradação da matéria orgânica, 
em contraste com o forte efeito observado na produção primária. Estes 
resultados, embora não concordando com os resultados obtidos em ensaios 
laboratoriais sugerem potenciais efeitos indiretos da presença dos filtros UV 
nos sedimentos. Em conclusão, os resultados obtidos nesta tese indicam que 
os filtros UV apresentam risco para os organismos bentónicos e reforçam a 
necessidade de utilizar abordagens integradas com maior relevância ecológica 
para uma melhor avaliação do risco ambiental destes contaminantes 
emergentes.   
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abstract 

 
     Organic UV-filters are chemicals present in several personal care products 
and on other materials (plastics, paints, etc) to protect against ultraviolet 
radiation. The use of these compounds has been increasing throughout the 
years and, consequently, they are now considered global emergent 
contaminants of the aquatic environment. In fact, UV-filters have been 
frequently found in river and lake waters but to date, only scarce information 
exists about their effects and it is mostly based in acute or chronic toxicity data 
for a limited number of species. Due to their physico-chemical properties, UV-
filters accumulate in biota and sediments and are expected to co-occur 
together with other persistent contaminants. Moreover, and despite 
uncertainties about their specific mode of action, research has shown 
endocrine disruption caused by exposure to organic UV-filters in several 
species. Investigation on the ecological effects of organic UV-filters is urgent for 
a correct environmental risk assessment. For that, studies should be focused 
on ecotoxicological data from benthic organisms considering relevant endpoints 
and exposure scenarios including binary mixtures. This will allow to address 
potential long-term as well as community and ecosystem level effects of 
organic UV-filters. Thus, the purpose of this thesis was to evaluate the effects 
of UV-filters using an integrated approach combining sub-organismal, 
organismal, population and community level responses, aiming to produce 
comprehensive and sound ecotoxicological data for freshwaters. With that 
purpose four specific objectives were proposed: i) assess the effects of 
selected UV-filters (Benzophenone-3 (BP3); 3-(4-methylbenzylidene)camphor 
(4-MBC) and Octocrylene (OC)) on two aquatic species, the dipteran 
Chironomus riparius (a model organism widely used in ecotoxicological assays) 
and the trichopteran Sericostoma vittatum (an endemic species of Iberian 
peninsula), both aquatic detritivores with an important role in the streams and 
rivers; ii) assess the effects of binary mixtures of different UV-filters and UV-
filters combined with an insect repellent, DEET (N,N-diethyl-3-
methylbenzamide) in C. riparius reproductive traits ; iii) assess the long-term 
effects of BP3 exposure over two consecutive C. riparius generations and iv) 
assess the effects of 4-MBC in the structure of macroinvertebrates community 
and functioning of ecosystem using a mesocosms approach. Obtained results 
showed that selected UV-filters indeed caused deleterious effects on both 
insect species at environmental relevant concentrations with reductions in the 
growth, feeding and development rates. 



 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

 
 

 

abstract 
(cont.) 
 

At the sub-organismal level, C. riparius and S. vittatum showed different 
patterns of response to UV-filters exposure and, despite evidences of metabolic 
costs related with detoxification, no evidences of oxidative stress or 
neurotoxicity were found. Additionally, results obtained in mixture exposures 
showed synergistic interactions for some C. riparius reproduction related traits 
for binary mixture of BP3 and 4-MBC as well as for mixture containing BP3 and 
DEET. These suggest that individual chemical testing can underestimate 
toxicity of organic UV-filters under natural conditions. Concerning C. riparius 
long-term multigenerational exposure to BP3, our results showed that C. 
riparius fertility is strongly reduced by BP3 exposure being the filial (F1) 
generation more sensitive than the parental (P) generation. Moreover, the F1 
generation exposed under control conditions but whose parents were exposed 
to BP3 showed to be affected. All these results indicate carry-over effects, 
pointing out to possible epigenetic/transgenerational effects. Finally, community 
ecotoxicological experiments using artificial streams (mesocosms) showed no 
effects of 4-MBC on the structure of macroinvertebrate community nor on leaf 
litter decomposition. However, primary production was strongly reduced due to 
4-MBC exposure. These results, although not in agreement with the previous 
laboratory assays performed with detritivore species, suggest potential bottom 
up indirect effects caused by the presence of organic UV-filters in sediments. In 
conclusion, the results obtained in this work suggest that UV-filters present risk 
to freshwater benthic invertebrate communities and reinforce the need of using 
complex and higher tier ecotoxicity studies to a better environmental risk 
assessment of these emergent contaminants. 
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General Introduction 
 

1.1 Personal Care Products: Organic Ultraviolet filters and their presence in aquatic ecosystems  

In the last decades, numerous synthetic organic compounds have been produced for 

agricultural, aquaculture, industrial and domestic use. These products reach the aquatic 

environment due to sewage discharges, inputs from industrial and agricultural activities, runoff 

and leaching. Among these compounds, Personal Care Products (PCPs) that are used every day in 

large quantities have received much attention in the last decades due to their increased detection 

in ecosystems around the world (Brausch and Rand, 2011; Ramos et al., 2015). PCP’s found in 

aquatic lotions, cosmetics, sunscreens, gels, makeup products, deodorants, moisturizers, 

toothpastes, etc., are generally applied externally on the human body (beauty and hygiene). PCPs 

are bioactive and many are persistent in the environment having the potential to bioaccumulate 

and also show endocrine disruptive effects (Brausch and Rand, 2011; Peck, 2006; Pedrouzo et al., 

2011). Taking into account these characteristics, studies aiming at evaluating the toxicity of PCPs 

in freshwaters ecosystems are of extreme importance (Brausch and Rand, 2011; Chisvert and 

Salvador, 2007; Pedrouzo et al., 2011). Different classes of PCP’s are defined, including fragrances, 

preservatives, disinfectants, siloxanes, insect repellents and Ultraviolet filters (UV-filters) 

(Pedrouzo et al., 2011).  

 

1.1.1 Organic Ultraviolet-filters 

Solar radiation reaches to the planet earth through visible radiation (44.3% - 400-760 nm), 

infrared radiation (49.5% - 760 – 1x106 nm) and ultraviolet radiation (6.2 % - 100 – 400 nm). 

Ultraviolet radiation is prejudicial to human health, can cause sunburn, skin inflammation, allergic 

reaction and even cancer (Chisvert and Salvador, 2007). Thus, UV-filters compounds are 

formulated to protect against damage caused by ultraviolet (UV) radiation [UVA (320-400 nm) and 

UVB (290-320)]. According to their mechanism of action, UV-filters can absorb ultraviolet 

radiation by absorbing photons and immediately return to ground state by thermally emitting 

energy (Giokas et al., 2007) and are called organic (or chemical) UV-filters or can reflect and 

scatter the ultraviolet radiation and are called inorganic (or physical) UV-filters (e.g. nanoparticles: 

titanium dioxide and zinc oxide) (Brausch and Rand, 2011; Gago-Ferrero et al., 2012; Ramos et al., 

2015). Organic UV-filters contain one or more aromatic structures in their composition that can 

be conjugated with carbon-carbon double bounds and/or carbonyl moieties (Giokas et al., 2007). 

Organic UV-filters are present in a widely variety of PCPs such as cosmetics, lipsticks, makeup, 
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shampoos, hair sprays, sunscreens but also in other materials such as furniture, sun glasses, food 

packaging, adhesives, paints and textiles (Díaz-Cruz et al., 2008). Nevertheless, little is known 

about their effects in aquatic organisms/aquatic ecosystems. 

Organic UV-filters can be categorized according with their chemical structure in different 

groups such as benzophenones, cinnamates, camphor derivates, triazines, crylenes, among others 

(Gago-Ferrero et al., 2012). In this work, three different UV-filters belonging to three different 

classes in use by industry were selected according with their occurrence in aquatic ecosystems 

(see section below) and their physic-chemical properties. The selected compounds were: 

Benzophenone 3 (BP3); 3-(4-methylbenzylidene) camphor (4-MBC) and Octocrylene (OC).  

BP3 is an UV-filter belonging to the family of benzophenones derivates. BP3 protects the skin 

and materials against UVA and UVB radiation and can be used in PCP according to current 

legislation in Europe, United States and Japan (Chisvert and Salvador, 2007; Wahie et al., 2007). 

BP3 is used in cosmetics and sunbathing but also as a photostabiliser in packaging materials 

(Environment Agency, 2008; Vione et al., 2013). 4-MBC belongs to the camphor family and 

protects only against UV-B, it is used in cosmetics (Chisvert and Salvador, 2007) and as 

photostabiliser of avobenzone. 4-MBC also provides a good combination of photostability and 

high protection efficacy (Environment Agency, 2008) and its use is allowed in Europe and Australia 

(Chisvert and Salvador, 2007). Octocrylene belongs to the crylene family and is a UV-filter that 

protects against UVB radiation and with good protection potential. OC is used in a range of 

cosmetic products and is allowed in Europe, United States and Japan (Chisvert and Salvador, 

2007; Environment Agency, 2008). Table 1 presents the physic-chemical properties of the selected 

organic UV-filters. 
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Table 1 - Physic-chemical properties of BP3, 4-MBC and OC.  

 

Chemical name; INCI Chemical structure  Cas No 
Molecular 

weight (mol/g) 
log Kow log Koc 

Solubility in 

water (g/L) 

2-hydroxy-4-

methoxybenzophenone; 

Benzophenone 3 
 

131-57-7 228.24 3.79 3.10 0.106 

3-(4-methylbenzylidene) 

camphor); 4-

methylbenzylidene 

camphor 

36861-47-9 240.35 4.95 3.89 0.017 

2-ethylhexyl 2-cyano- 

3,3-diphenylacrylate; 

Octocrylene  

6197-30-4 361.49 6.88 - 3.6x10-4 

INCI - international nomenclature for cosmetic ingredients 
Kow - Octanol-water partition coefficient 
Koc - Organic carbon distribution coefficient  
 
 
 

1.1.2 Fate and behaviour of organic UV-filters in aquatic ecosystems 

 As stated above, the daily use of UV-filters by the human population leads to an inevitably 

release of these compounds into the aquatic environment (Pedrouzo et al., 2011; Ramos et al., 

2015). There are two main pathways by which organic UV-filters reach the aquatic environment: 

directly by washing of the skin and clothes during recreational activities or by discharges of 

swimming pool waters (Brausch and Rand, 2011; Rodil et al., 2009) and indirectly due to 

discharges of wastewater treatment plants (WWTPs). In fact, the major source of UV-filters in the 

aquatic ecosystems is the inefficient removal of UV-filters during the WWTPs processes (Ramos et 

al., 2016). The figure below (figure 1) illustrates different sources of UV-filters in the environment. 
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Figure 1 - Main sources of UV-filters in the environment (adapted from Giokas et al., 2007). 

 
 

In Europe, the use of organic UV-filters and their quantities in PCPs and cosmetics is regulated 

by the European Union Cosmetics Directive (Chisvert and Salvador, 2007; Environmentt Agency, 

2008). However, the environmental presence of UV-filters has been detected around the entire 

world in different countries such as Thailand, Spain, Czech Republic, China, Taiwan, Japan, 

Switzerland, Germany, United Kingdom, South Korea, USA, Italy, Greece, Colombia, Lebanon and 

Chile (Ramos et al., 2015). The presence of these compounds has been observed in different 

compartments of the aquatic environment namely river and lake waters, groundwater, seawater 

and even in tap water, generally at ng/L to µg/L levels (Ramos et al., 2015).  

Organic UV-filters have low solubility in water and a high Octanol-water partition (log Kow) and 

organic matter-water partition (log KOM) coefficients. Due to these physic-chemical properties, 

these UV-filters tend to accumulate in sediments and biota. In fact, UV-filters have been shown to 

reach concentrations of up to 2.4 mg/Kg in river sediments (Gago-Ferrero et al., 2011), 0.6 mg/Kg 

in stream sediments (Kameda et al., 2011), 0.09 mg/Kg in lake sediments (Rodil and Moeder, 

2008), 0.079 mg/Kg in costal sediments (Amine et al., 2012) and 27 mg/Kg in sewage sludge 

(Plagellat et al., 2006).  

UV-filters can also be found accumulated in organisms’ tissues and have been detected in 

several fish tissues (Buser et al., 2006; Gago-Ferrero et al., 2015; Langford et al., 2015) and also in 
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clams, mussels, prawn and urchin (Emnet et al., 2015; Langford et al., 2015; Picot Groz et al., 

2014).  

 

1.2 Organic Ultraviolet filters in freshwaters: the need for tiered stepwise ecotoxicological 
approach 

The concern about the presence of UV-filters in the aquatic environment and their potential 

ecological effects is recent in comparison with other stressors like metals and pesticides. Several 

studies assessing the presence of UV-filters and their ecotoxicity in the aquatic environment have 

already been performed. However, significant knowledge gaps concerning the ecotoxicological 

effects of UV-filters are obvious if we consider that: 1) most studies in the literature only address 

organismal level effects of UV-filters in standard model species; 2) the mode(s) of action of UV-

filters is currently unknown and consequently also the target of these chemicals inside organisms; 

3) UV-filters are expected to be persistent in the environment and accumulate in sediments and 

biota. As such, in order to reduce uncertainties and provide data for an improved environmental 

risk assessment of UV-filters in the aquatic environment it is clear that a more integrated 

approach is needed. This approach should be focused on ecotoxicity data from sediment dwelling 

organisms including effects at organismal and sub-organismal levels (Fent et al., 2010; Tsui et al., 

2015; Tsui et al., 2014). Moreover, higher tier ecotoxicity studies are needed to address ecological 

effects of these compounds under relevant exposure scenarios encompassing longer 

multigenerational exposure periods, the effects of these compounds when in mixtures and finally 

with studies aiming to evaluate community and ecosystem level effects (Fent et al., 2010; Tsui et 

al., 2014).  

 

1.2.1 Addressing effects of organic UV-filters towards benthic invertebrates 

The majority of studies addressing effects of UV-filters in the aquatic environment are based 

in standard ecotoxicological tests using sub-lethal endpoints such as growth, reproduction, or 

feeding rates which allow to assess the status of the organisms/ individual performance. Studies 

found in the literature showed that UV-filters have estrogenic activity (Blüthgen et al., 2014; 

Blüthgen et al., 2012; Kim et al., 2014; Wang et al., 2016), alter the expression of genes related 

with ecdysone (Ozáez et al., 2013, Ozáez et al., 2014, Ozáez et al., 2016b), inhibit the growth and 

decrease the reproduction of aquatic organisms (Paredes et al., 2014; Schmitt et al., 2008; 

Sieratowicz et al., 2011). However, although UV-filters are persistent, due to their low 

photodegradation and adsorption, these substances are eliminated from the aquatic phase (Tolls 
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et al., 2009) and tend to accumulate in sediments. Therefore, invertebrates living in close contact 

with sediments are most suitable for evaluation of UV-filters effects. In this work, two species of 

aquatic benthic detritivores were used: the dipteran Chironomus riparius Meigen, 1804 and the 

tricopteran Sericostoma vittatum Rambur, 1842. 

Chironomids (Diptera, Chironomidae) are widely distributed in the northern hemisphere 

where they dominate the benthic communities of lotic and lentic ecosystems both in number and 

in biomass (Merrit and Cummins, 1996). They can adapt to extreme conditions such as higher 

variances of pH, depth, temperature, and salinity and also limited oxygen conditions due to their 

high contents of haemoglobin (Armitage et al. 1995). Chironomids as collectors feed on fine 

particulate organic matter and play an important role in nutrient cycling (Ferrington, 2008). 

Chironomid larvae are benthic and live closely associated to the sediments where UV-filters 

accumulate showing thus to be a good candidate to assess the effects of these contaminants in 

the ecosystems. Moreover, chironomids are prey of many invertebrates and vertebrates.  

The non-biting midge Chironomus riparius Meigen (Diptera: Chironomidae) is a multivoltine 

species with a short life-cycle and includes a most enduring aquatic phase (eggs, four larval stages 

and pupae) and a short non-feeding aerial phase (adult/imago) (figure 2). Moreover, this species 

is easy to maintain in laboratorial conditions, being used as a model organism for standardized 

ecotoxicological assays (OECD, 2004), including multigenerational tests (Lilley et al., 2012; Vogt et 

al., 2007). Endpoints such as larval behaviour, growth, survival, emergence and biochemical 

responses have been evaluated as responses to different stressors (Domingues et al., 2007; Pérez 

et al., 2013; Pestana et al., 2009a; Rodrigues et al., 2015a).    

 

 

 

Figure 2 - Life-cycle of Chironomus riparius. 
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Sericostoma vittatum Rambur (Trichoptera: Sericostomatidae) is a cased caddisfly species that 

plays an important role in the fragmentation of allochthonous leaf litter in streams (Campos et al., 

2014; González and Graça, 2003; Feio and Graça, 2000). S vittatum is endemic from the Iberian 

Peninsula. S vitattum has a relatively long life-cycle (annual) with several aquatic stages (eggs, 

larvae and pupae) and also an aerial phase (adult). These organisms live buried in the sediment, 

feeding on coarse particulate organic matter and are present in streams throughout the year, 

features that make this species a suitable organism to assess the effects of UV-filters. Although 

not a model organism, caddisflies have been previously used in ecotoxicological studies (Berra et 

al., 2006; Pestana et al., 2009a; Schulz and Liess, 2000). Particularly, S. vittatum has been 

previously used in ecotoxicological laboratory bioassays, using feeding behaviour, respiration 

rates and biochemical parameters to assess the effects of different contaminants and natural 

stressors (Campos et al., 2014; Campos et al., 2016; Pestana et al., 2009a; Rodrigues et al., 2017). 

 

 
 

Figure 3 - Life-cycle of Sericostoma sp. 

 

1.2.2 Infra-organismal effects of organic UV-filters 

The use of organismal endpoints usually fails on providing information regarding the 

underlying processes responsible for observed effects of determined substance (Hyne and Maher, 

2003). In the last decades, biomarkers have been extensively used in ecotoxicological assays as a 

complement to the individual endpoints. Biomarkers can be defined as “any biological response to 

an environmental chemical at the below-individual level, measured inside an organism or in its 

products (urine, faeces, hairs, feathers, etc.), indicating a departure from the normal status, that 

cannot be detected from the intact organism” (Van Gestel and Van Brummelen, 1996). So, the use 
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of an infra-organismal approach can constitute a benefit as additional information about the 

mechanisms of action of UV-filters at sub-cellular levels can be gained, which in turn if sensitive 

and robust can be helpful in providing early warning signs of effects at higher levels of biological 

organization. 

To assess the sub-organismal effects of UV-filters a set of biomarkers should be chosen 

considering the uncertainties relatively to the mode of action of UV-filters, although it is known 

that these compounds can induce alterations in antioxidant defences and/or cause oxidative 

damage (Gao et al., 2013; Liu et al., 2015). 

Reactive oxygen species (ROS) are a consequence of aerobic processes and when the 

equilibrium between their production and elimination is disrupted (for example due to exposure 

to chemicals) the accumulation of ROS can occur, leading to oxidative stress, i.e. to damage in the 

cellular constituents (Lushchak, 2011). However, to fight ROS and prevent injuries in cells, 

organisms have enzymatic (i.e.: superoxide dismutase, catalase, glutathione reductase, and 

peroxidase) and non-enzymatic (i.e.: total glutathione, vitamin E and C) detoxification 

mechanisms (Valavanidis et al., 2006). Together with other enzymes, catalase is one of the first 

lines of defence against ROS and is responsible to convert hydrogen peroxide (H2O2), which is 

toxic to cells, into water and oxygen. Non-enzymatic antioxidant defences, such as reduced 

glutathione (GSH) can also play an important role in fighting oxidative stress by interacting 

directly with ROS and also operate as co-factor to several enzymes such as glutathione peroxidase 

(Doyotte et al., 1997; Lushchak, 2012). Glutathione-S-transferase (GST) is also an enzyme acting in 

the phase II of biotransformation catalysing the conjugation of GSH with several compounds to 

facilitate excretion by cells (Enayati et al., 2005). If all these defence mechanisms fail, oxidative 

damage will occur which is easily measured through the lipid peroxidation (LPO) since aquatic 

organisms have in their constitution high contents of lipids with polyunsaturated fatty acid 

residues, a preferential substrate for oxidation (Lushchak, 2011).  

On the other hand, energy-related biomarkers (energy reserves and energy consumption) are 

also an important measurement at the sub-organismal level that has been increasingly used as an 

ecotoxicological parameter (De Coen and Janssen, 2003; Servia et al., 2006; Sokolova et al., 2012). 

Energy reserves (i.e.: carbohydrates, lipids and proteins contents) are dependent of the energy 

input (i.e. feeding) and metabolic expenditure of organisms while energy consumption, measured 

at the cellular level through the electron transport system (ETS) activity, gives an insight into the 

metabolic activity of organisms that can be used to assess energy requirements and expenditure 

arising from the metabolic response to stress conditions (Sokolova et al., 2012). As such, 
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alteration in energetic homeostasis induced by exposure to UV-filters can also be evaluated and 

be used to predict changes in growth, reproduction and survival of organisms under stressful 

conditions which is important when dealing with species with a long life-cycle (Calow and Forbes, 

1998; Rodrigues et al., 2015b; Sokolova et al., 2012; Sokolova, 2013).  

Finally, and despite scarce investigation concerning organic UV-filters, it is important to 

evaluate their neurotoxicity towards aquatic invertebrates. The inhibition of Acetylcholinesterase 

(AChE) activity has been observed in many ecotoxicological studies with different contaminants 

(Campos et al., 2016; Domingues et al., 2010; Mesquita et al., 2011; Pérez et al., 2013; Pestana et 

al., 2014; Siebel et al., 2010; Xuereb et al., 2009) and has been widely used as an indication of 

neurotoxic effects, but to our knowledge evidences of neurotoxicity due to UV-filters exposure 

were only observed to vertebrates (Ruszkiewicz et al., 2017). Moreover, the activity of AChE is 

related with behavioural endpoints such as feeding rates, and locomotion (Mesquita et al., 2011; 

Xuereb et al., 2009). AChE is responsible for hydrolysis of acetylcholine to choline and acetate ion 

in the synaptic cleft. The inhibition of its activity can thus lead to an over-accumulation of the 

acetylcholine in the nerve terminals, prolonging the electrical activity (Grisaru et al., 1999; Purves 

et al., 2008).  

 

1.2.3 Effects of mixtures containing organic UV-filters  

Environmental risk assessment is mostly based on laboratory assays where organisms are 

exposed to gradients of single chemicals tested at optimal conditions. However, these standard 

tests might not be representative of conditions that organisms face in natural ecosystems, since 

natural freshwaters are constantly suffering inputs of diverse contaminants due to anthropogenic 

activities (e.g. industrial and urban activities) and consequently aquatic organisms are frequently 

exposed via water and sediments to a cocktail of contaminants. It is therefore recognized that 

assessment of effects of binary or complex chemical mixtures should be integrated as part of 

environmental risk assessment and in the last years, different strategies and approaches have 

been developed (Backhaus and Faust, 2012; Iwasaki and Brinkman, 2015; Jonker et al., 2005). 

Two conceptual models have been mainly used to assess the combined effects of chemicals: 

the Concentration Addiction (CA) and the Independent Action (IA). These models are based in the 

premise that the chemicals in a mixture do not interact (physically, chemically or biologically) one 

with each other (Cedergreen et al., 2008; Hewlett and Plackett, 1959). The CA model have been 

used mostly when the chemicals of the mixture have similar modes of action (MoA) and “assumes 

that 1 chemical can be replaced totally or in part by an equal fraction of an equi-effective 
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concentration of another, without diminishing the overall combination effect” (Kortenkamp & 

Altenburger, 2010). On the other hand, IA model is used for compounds with different modes of 

action and “assumes that the joint effects of a combination of agents can be calculated from the 

response of individual mixtures components” (Kortenkamp & Altenburger, 2010). Also and since 

the application of these two conceptual models to experimental data is difficult to accomplish, 

other approaches such as Generalized linear models have been used to analyse mixture toxicity 

(Iwasaki and Brinkman, 2015; Morgado et al., 2016; Nieto et al., 2016).  

Independently of the approach used, observed results concerning toxicity of chemical 

mixtures can be categorized as i) additive, when the components of the mixture do not influence 

one each other and no deviations to the reference models (non-interaction) is observed; ii) 

synergistic representing the worst scenario since it occurs when there is a significant deviation 

from the reference model and the toxicity of the mixture is higher than expected and finally iii) 

antagonistic when there is also a deviation from the reference model but effects of the mixture 

are smaller than expected (Kortenkamp & Altenburger, 2010).  

Occurrence of chemical mixtures is especially relevant in the case of organic UV-filters. First, 

UV-filters are only one of the many ingredients that constitute the PCPs, which also may have in 

their constitution more than one UV-filter to guarantee the adequate protection (Ozáez et al., 

2016a). On the other hand, several studies have showed the simultaneous presence of different 

UV-filters in the aquatic environment (Ramos et al., 2015).  

To our knowledge few studies have been performed to assess the effects of mixture of 

different organic UV-filters in aquatic organisms (Kunz and Fent, 2009; Molins-Delgado et al., 

2016; Ozáez et al., 2016b; Park et al., 2017) and in general, the results of aqueous exposures 

indicate a reduction of the toxicity of the mixture. Moreover, it is imperative to understand the 

effects of sediments contaminated with theses mixtures in organisms if we consider the physic-

chemical properties of these compounds. 

 

1.2.4 Relevance of long-term, multigenerational exposures to organic UV-filters  

Natural populations are sometimes exposed to persistent contaminants over several 

generations. However, standard ecotoxicological tests are usually based on exposure of a single 

generation and thus inefficient to detect effects at population levels (Tassou and Schulz, 2011). 

Multigenerational ecotoxicity studies are of extreme importance to understand how continuous 

exposure to contaminants can compromise fitness of populations. Indeed, the toxicity of 

chemicals can be altered over the generations, i. e.: the toxicity might decrease or increase 
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throughout the generations but also can be maintained. Moreover, “the toxicity can also 

“emerge” across the generations” (Barata et al., 2017; Bona et al. 2016, Hochmuth et al. 2015, 

Kafel et al., 2012; Waissi et al., 2017). This is because a previous exposure to a stressor may lead 

to changes in organism response, which may be only triggered after exposure to a different 

stressor/chemical and appear latter or even only in subsequent generations (e.g. carry-over 

effects). For example, exposure of parents to chemicals can lead to alterations in the mechanisms 

of gene expression without changes in the DNA sequence (epigenetic effects) (Curley et al., 2011; 

Feil and Fraga, 2012) and these alterations might also be transferred to the subsequent 

generations. Furthermore, exposure to chemicals can lead not only to epigenetic alterations but 

also to stable genetic alterations (ex: mutations) in the parents that are then transferred (through 

germ cells) during multiple subsequent generations (transgenerational effects) (Anway et al., 

2005). Therefore, transgenerational effects are observed in organisms without direct chemical 

exposure, but due to exposure of parental generations (Bhandari et al., 2015). Moreover, the 

alterations of toxicity across generations might also be due to phenotypic plasticity of organisms 

or even due to parental effects at reproduction level (e.g. decrease investment in eggs; less sperm 

production) which might compromise offspring (Marinković et al., 2012; Tassou and Schulz, 2013). 

 Several multigenerational studies using different aquatic organisms have shown that 

bioassays covering only one generation can mask effects of different classes of contaminants such 

metals, pesticides and pharmaceuticals in real exposure scenarios (Borgmann et al., 2007; 

Coimbra et al., 2015; Heye et al., 2016; Silva et al., 2017; Vogt et al., 2007). Multigenerational 

assays are pivotal to address the ecological effects of organic UV-filters since these compounds 

have high lipophilicity, low degradability, adsorb to organic matter and accumulate in sediments. 

Moreover, although with higher concentrations in the summer months, UV-filters are expected to 

reach aquatic ecosystems throughout the year and consequently organisms might be exposed 

during several generations to these contaminants. Additionally, UV-filters have shown to be 

endocrine disruptors (Wang et al., 2016) which can lead to hormonal disorders and consequently 

to reproductive impairments that need to be evaluated. Exposure to BP3, for instance, has been 

shown to elicit effects on the reproduction of vertebrate and invertebrate species (Blüthgen et al., 

2012; Coronado et al., 2008; Ozáez et al., 2014), alter induction of vitellogenin in fishes and 

decreases the success hatching of the fish Oryzias latipes (Coronado et al., 2008). Moreover, 

exposure to BP3 affects the expression of ecdysone responsive genes and delay hatching of C. 

riparius embryos (Ozáez et al., 2014; Ozáez et al., 2016b).   
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Several multigenerational tests using C. riparius have been previously performed to evaluate 

the effects of different chemical stressors such as metals, organometals, pharmaceuticals and also 

others endocrine disruptors (Heye et al., 2016; Lilley et al., 2012; Marinković et al., 2012; Tassou 

and Schulz, 2009; Vogt et al., 2007). C. riparius is a good model organism for multigenerational 

ecotoxicity testing and to address the long-term effects of organic UV-filters present in sediments 

given its short-life cycle with 10 or more generations during a year in laboratory conditions and its 

sexual mode of reproduction. 

 

1.2.5 High-tier ecotoxicity testing to address Community and ecosystem level effects of 
organic UV- filters  

In the last years, community ecotoxicology testing has increased in an attempt to better 

assess effects of different stressors to freshwaters (Abelho et al., 2016; Cañedo-Argüelles et al., 

2017; Rogers et al., 2016). In fact, the use of such approaches including mesocosms systems 

where natural communities are exposed to a given stressors eases extrapolation of effects to 

natural ecosystems comparatively to single species laboratorial standard tests. This is because 

responses of several species belonging to different trophic guilds are assessed but also because 

they include wider range of habitat conditions and biological interactions that can modify toxicity 

(Pestana et al., 2009b; Relyea and Hoverman, 2006; Stewart et al., 2013; Woodward, 2009). 

Moreover, the aim of community ecotoxicology testing is usually assessing direct and indirect 

effects of contaminants by focusing on community and ecosystem level responses simulating field 

conditions thus providing ecological sensitive reliable and relevant data for environmental risk 

assessment (Lizotte et al., 2013)  

The health of an ecosystem can be evaluated using functional (leaf decomposition and 

primary production) and structural parameters (macroinvertebrates communities structure) 

(Abelho et al., 2016; Cañedo-Argüelles et al., 2017; Hooper et al., 2012; Lizotte et al., 2013; Rogers 

et al., 2016; Woodward et al., 2012). Primary production is a key process to the functioning of the 

ecosystem, contributing to nutrients cycling and influencing carbon storage (Hooper et al., 2012). 

In small and moderate size streams, periphyton is the major responsible for primary production 

and plays an important role as a basis of the food web (Tlili et al., 2017). Periphyton is a matrix 

composed by microorganisms such as algae, bacteria, fungi and protozoa and organic and 

inorganic detritus (Battin et al., 2016; Martyniuk et al., 2016). Moreover, periphyton is an 

important biological indicator to classify water bodies (Battin et al., 2016; Sabater et al., 2007) 

and can be used to assess the effects of stressors in streams (Guasch et al 2016; Elias et al 2017; 
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Sabater et al., 2007). Another key process in freshwaters ecosystems is leaf litter degradation, 

especially in low and medium order streams where detritivore macroinvertebrates are dominant 

in terms of number and biomass and the input of detritus providing from surrounding vegetation 

is the main source of matter and energy to the stream (Abelho, 2001; Atkinson et al. 2017; 

Gessner et al 1999; Graça 2001; Wallace et al., 1997). The transfer of energy and matter through 

organic matter decomposition across trophic levels also contributes to the cycle of nutrients. This 

process is mediated by microorganisms and detritivores shredders (Gessner et al., 1999; Seena et 

al., 2017) and it is influenced by abundance of shredders, temperature and also by the quality of 

litter among other factors (Dangles and Malmqvist, 2004; Friberg et al., 2009; Graça, 2001; Leroy 

and Marks, 2006). This process has been used as indicator of the ecological status of the 

ecosystems (Woodard et al 2012; Young et al., 2008) and anthropogenic pressure showed to 

indirectly affect leaf litter decomposition due to direct effects on organisms that mediate this 

process (Rasmussen et al., 2012). 

Thus, macroinvertebrates play an important role in the ecosystem due to their feeding 

activity, contributing to the nutrients cycle and providing food to the higher trophic levels 

(Schmera et al., 2017) and are used as a proxy for determining the ecological status of aquatic 

ecosystem (Dalu et al., 2017; Vidal et al., 2014). However, an evaluation based only in the 

structure of macroinvertebrates might be insufficient to understand all direct and indirect, density 

and trait mediated effects on key ecological processes of the ecosystems and should be 

complemented with functional parameters (Dalu et al., 2017). It is thus clear that environmental 

risk assessment of organic UV-filters has much to gain from community ecotoxicity testing 

focused on simultaneous evaluation of structural and functional responses of benthic invertebrate 

communities.  

 

1.3 Aim of the study and conceptual framework  

This thesis is focused on the ecotoxicological evaluation of organic UV-filters in freshwater 

ecosystems. In detail, it aimed to answer the following questions:  

- Are environmentally relevant concentrations of different organic UV-filters toxic to 

aquatic insects?  

- Are binary mixtures of these compounds more toxic?  

- Can prolonged exposure to UV-filters induce multigenerational effects? 

- Can relevant environmentally concentrations of UV-filters affect the structure and 

function of freshwater benthic invertebrate communities? 
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In order to answer these questions different approaches were pursued. Firstly, individual 

exposures to different UV-filters (BP3, 4-MBC and OC) were carried out using laboratory toxicity 

tests with the midge C. riparius and the caddisfly S. vittatum. Sub-lethal responses at the organism 

level (feeding rates, growth and emergence) were evaluated. Additionally, biomarkers related 

with oxidative stress (LPO, CAT, GST, tGSH), neurophysiology (AChE), energy reserves (lipids, 

carbohydrates and proteins contents) and energy metabolism (electron transport system activity) 

were used to provide information about the effects of these chemicals at sub-cellular levels 

(chapter 2 and 3). In chapter 4, IA model and Generalized Linear Model (GLM) were used to 

investigate the possible combined effects of simultaneous exposure to BP3 and 4-MBC. Moreover 

and knowing that insect repellents are used together with sunscreens, we have also used the 

same approach to address the combined effects of BP3 and a widely used insect repellent (N,N-

diethyl-3-methylbenzamide (DEET)) (Aronson et al., 2012; Costanzo et al., 2007). C. riparius were 

exposed to these binary mixtures and endpoints like emergence, development time and imagoes 

weight were evaluated. For this, a parallel study was conducted to acquire the necessary 

ecotoxicity data concerning organismal and sub-organismal effects of DEET on C. riparius (Annex 

I) and S. vittatum (Annex II). The chapter 5 reports on the long-term effects of BP3 in C. riparius 

evaluated using a multigenerational assay. For that, C. riparius were exposed during one 

generation to a gradient of BP3 and the second generation was exposed to the same condition 

that parents and also to control conditions. The emergence and the development time of C. 

riparius together with fecundity and fertility as well were assessed. Lastly, in chapter 6 a 

mesocosms study was conducted, where effects of two environmentally relevant concentrations 

of 4-MBC were evaluated in terms of leaf decomposition, primary production and benthic 

invertebrate community structure. Finally, on chapter 7 a summary of the main findings and 

prospective research concerning ecotoxicity of UV-filters is presented.  
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Toxicity of organic UV-filters to the aquatic midge Chironomus riparius. 
 

 

Abstract  

 

Despite the frequent detection of organic ultraviolet filters (UV-filters) in freshwater 

sediments, there is a lack of ecotoxicological data undermining a correct risk assessment for 

these emerging contaminants. The present study assessed the effects of three of the most 

commonly used UV-filters (benzophenone-3 – BP3; 3-(4-methylbenzylidene)camphor – 4-MBC 

and octocrylene – OC) on Chironomus riparius life history and biochemical responses. Standard 

ecotoxicological assays confirmed that all compounds impaired growth of C. riparius larvae and 

induced developmental effects such as delayed emergence and a reduction of imagoes weight. 

Concerning the biochemical responses analysed no evidences of oxidative damage in lipids or 

neurotoxicity (tested assessing acetylcholinesterase activity) were observed for any of the 

tested compounds. However, 4-MBC exposure induced a decrease in catalase activity and an 

increase in glutathione-S-transferase activity at 14.13 mg/Kg while OC exposure caused an 

increase in total glutathione levels at 0.23 and 18.23 mg/Kg. Exposure to all UV-filters tested, 

increased energy consumption on C. riparius with significant differences above 1.00 mg/Kg for 

BP3, 0.09 mg/Kg for 4-MBC and 2.13 mg/Kg for OC. These results suggest that environmental 

relevant concentrations of UV-filters can cause deleterious effects to aquatic benthic species, 

such as C. riparius and call for further research concerning effects of organic UV-filters on 

natural invertebrate communities and ecosystem functioning.  

  

Key-words: personal care products; aquatic macroinvertebrates; sublethal effects; biomarkers 
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1. Introduction 

Organic UV-filters absorb and protect against specific wavelengths of ultraviolet radiation 

(UV-A 320-400 nm; UV-B 280-320 nm) being included in a wide variety of personal care 

products (PCP’s) such as, sunscreens, lipsticks, hair sprays and shampoos, and also in plastic 

products and textiles (Brausch and Rand, 2011; Díaz-Cruz and Barceló, 2009). Given their wide 

application, organic UV-filters are reaching aquatic ecosystems due to washing-off from skin or 

clothes during water recreational activities (direct input) and by discharges of swimming pool 

waters (Brausch and Rand, 2011; Rodil et al., 2009). It has been also reported that the major 

sources of UV-filters release in the aquatic environment are effluents and sewage sludge 

resulting from inefficient removal of UV-filters in wastewater treatment plants (Ramos et al., 

2016). Thus, contamination by UV-filters has been frequently and increasingly detected 

worldwide during the last decades in lakes (Balmer et al., 2005; Kameda et al., 2011), rivers 

(Kameda et al., 2011; Poiger et al., 2004), effluents and influents (Balmer et al., 2005; Golovko 

et al., 2014), and coastal areas (Amine et al., 2012), reaching concentrations of up to 5.79 µg/L 

in rivers (see Ramos et al., 2015). Moreover, due to their physic-chemical properties (Table 1), 

such as high lipophilicity (Díaz-Cruz and Barceló, 2009; Gago-Ferrero et al., 2012), UV-filters 

have been also found in solid matrices in concentrations up to 27.7 mg/Kg dry weight in 

sewage sludge (Plagellat et al., 2006) and up to 2.4 mg/Kg dry weight in river sediments (Gago-

Ferrero et al., 2011). 

Among this class of compounds, benzophenones (e.g. Benzophenone, 3- BP3), camphor 

derivatives (e.g. 3-(4-methylbenzylidene) camphor, 4-MBC) and crylenes (e.g. 2-ethylhexyl 2-

cyano-3,3-diphenylacrylate -  octocrylene, OC), are the most commonly organic UV-filters 

reported as contaminants of aquatic environments (Balmer et al., 2005; Gago-Ferrero et al., 

2012; Kameda et al., 2011; Plagellat et al., 2006; Ramos et al., 2015). Several studies have 

already showed some negative effects of organic UV-filters in aquatic biota. Examples include 

growth impairments as observed in the crustacean Daphnia magna (Sieratowicz et al., 2011), 

altered feeding rates in Sericostoma vittatum (Campos et al., 2017), reductions of the 

reproductive output observed in oligochaete Lumbriculus variegatus (Schmitt et al., 2008), in 

the snails Potamopyrgus antipodarum and Melanoides tuberculata (Kaiser et al., 2012; Schmitt 

et al., 2008) and in fish (Kunz and Fent, 2006). Also, exposure to organic UV-filters has been 

shown to cause bleaching of corals (Danovaro et al., 2008).  

The main mode of action of UV-filters is unknown but effects on genes related with 

development and reproduction of arthropods, as observed to Chironomus riparius (Ozáez et 
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al., 2013; Ozáez et al., 2014) suggest that they might act as endocrine disruptors (Wang et al., 

2016). 

The environmental risk assessment and research on toxicity of UV-filters is a priority 

especially since it has not been focused on benthic species and on sediments where these 

compounds tend to accumulate (Kaiser et al., 2012; Sieratowicz et al., 2011). Also, information 

on sub-lethal effects of these compounds in terms of oxidative stress, antioxidant defences or 

even neurotoxicity is still scarce despite reports of sub-organismal level effects in both 

invertebrates and vertebrates (Gao et al., 2013; Liu et al., 2015). 

In order to tackle these research gaps, the present study main aim was to assess the 

organismal and biochemical effects of different organic UV-filters in a benthic insect, the non-

biting midge Chironomus riparius (Meigen). For that we focused on environmental 

concentrations of BP3, 4-MBC and OC and on their potential sub-lethal effects in terms of C. 

riparius growth and development as organismal endpoints. In addition, effects on commonly 

used biochemical biomarkers associated with important physiological functions such as 

oxidative stress, neurophysiological, antioxidant and phase II biotransformation enzymes, non-

enzymatic antioxidant defences and cellular respiration were also determined to understand 

how and which of these biochemical changes might be associated with organism level toxicity. 

For that we evaluated the effects of short exposures of the different compounds on lipid 

peroxidation (LPO), acetylcholinesterase (AChE), catalase (CAT), and glutathione-S-transferase 

(GST) activities, total glutathione (tGSH) and electron transport system (ETS) activity.  

 

2. Material & methods  

2.1 Chemicals 

The 2-hydroxy-4-methoxybenzophenone (or benzophenone-3) (BP-3; CAS No. 131-57-7; 

purity ≥ 98%), 3-(4-methylbenzylidene) camphor (4-MBC; CAS No. 36861-47-9, purity ≥ 98%) 

and 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (or octocrylene) (OC; CAS No. 6197-30-4, purity 

≥97%) were obtained from Sigma-Aldrich (Portugal). Other relevant properties of these 

compounds are presented in Table 1. Stock solutions and subsequent dilutions of UV-filters 

were prepared in ethanol (96%) for chronic and biomarker exposures due to low water 

solubility of UV- filters. Solvent controls were also prepared with 96% ethanol. 
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Table 1 – Physico-chemical properties of UV-filters.  
 

 
 

Compounds 
 

Formula 
 

Abbreviation 
 

CAS No 
Molecular 

weight 
(g/mol) 

Log 
Kow 

Water 
solubility 

(g/L) 
2-hydroxy-4-

methoxybenzophenone 
(Benzophenone-3) 

C14H12O3 BP3 131-57-7 228.24 3.79 0.10 

3-(4-
methylbenzylidene) 

camphor 

C18H22O 4-MBC 36861-47-9 254.37 4.95 0.017 

2-Ethylhexyl 2-cyano- 
3,3-diphenylacrylate 

(Octocrylene) 

C12H17NO OC 6197-30-4 361.48 6.88 3.6x10-4 

Based on Gago-Ferrero et al. (2012). 
 
 
 

2.2 Test Organisms 

C. riparius were obtained from laboratory cultures established at the University of Aveiro. 

Organisms were maintained in plastic containers with a layer of inorganic fine sediment (<1 

mm, previously burned at 500ºC during 4h) and reconstituted hard water (ASTM) (ASTM, 

1980) at constant temperature (20 ± 1ºC) and with a photoperiod of 16:8h (light: dark). Larvae 

were fed every two days with a suspension of macerated Tetramin® (TetraWerk, Melle, 

Germany) and the medium was changed every week. 

 

2.2.1 Partial life-cycle test 

The chronic 28-days toxicity test was performed according to OECD 218 guideline with 

minor modifications (OECD, 2004). Briefly, organisms were exposed to three concentrations of 

UV-filters in glass vials containing artificial sediment and were fed with Tetramin®.  

Larvae with less than 48h post-hatching (1st instar) were exposed to a gradient of three 

concentrations (2.5, 5 and 10 mg/Kg) of UV-filters and to control and solvent control 

treatments. In these chronic tests 50 g (dry weight) of artificial sediment composed of 75% 

inorganic fine sediment, 20% kaolin, 5% α-cellulose and 0.1 % calcium carbonate (OECD, 2004) 

was used in each replicate. The sediment was spiked with 10 mL of respective UV-filter 

solution and left evaporating for 24h. For the solvent control treatments, 10 mL of 96% 

ethanol were added to the sediment and allowed to evaporate for the same period. Ten mL of 

ASTM were then added to sediments and mixed thoroughly until a homogenous sediment 

paste was formed.  Finally, a volume of 150 mL of ASTM was added in each replicate to attain a 

4:1 water column: sediment and vials were left for 48h to equilibrate. 

To evaluate effects, we used twelve replicates with five larvae each. Organisms were fed 

every other day with a suspension of macerated Tetramin® (0.5 mg per organism per day) and 
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maintained under the same conditions as described for laboratory cultures. Using highly 

nutritive macerated fish food allowed for the measurement of emergence data and imagoes 

weight within 28 days of exposure. After 10 days, organisms of half of the replicates (30 larvae 

per concentration) were removed and kept in 70% ethanol for larval measurements. Total 

length of each larva was measured with a stereo dissecting microscope fitted with a calibrated 

eyepiece micrometer. Larval growth was estimated measuring the final length of larvae (i.e. 

after 10 days of exposure) which was compared to the length of an initial batch of organisms 

(day 0, 1st instar larvae). The remaining replicates in each treatment were used to assess 

emergence rates until the end of the test (28d). The number of adult midges was recorded 

daily to assess cumulative percentage of emergence and the mean time to emergence of 

organisms. Imagoes were collected with the aid of an aspirator, preserved in 70% ethanol and 

then dried 24h at 50ºC and weighted in a microbalance (Mettler UMT2).  

 

2.2.2 Neurophysiological, oxidative stress and energy-related biomarkers 

C riparius larvae (4th instar, 12 days) were exposed during 48h to 0.25, 2.5 and 25 mg/Kg of 

BP3, 4-MBC and OC in 50 g of artificial sediment and 150 mL of ASTM. Control and solvent 

control treatments were also set up. Seven replicates with fifteen larvae each were used for 

each experimental condition. The test was performed using the same conditions of previously 

described for the chronic test. Organisms were not fed during the entire exposure period of 

48h. After exposure, organisms were quickly dried in filter paper, immediately weighted, 

frozen in liquid nitrogen and stored at -80ºC until further use. Each sample was then 

homogenized by sonication in 1600 µL of Milli-Q water. Two aliquots of 300 µL for ETS and 200 

µL for LPO were set aside. The remaining 900 µL homogenate was diluted in 900 µL of 0.2 M K-

phosphate buffer (pH= 7.4), and centrifuged at 10000g for 2 min at 4ºC. The resulting post-

mitochondrial supernatant (PMS) was separated in aliquots for CAT, GST, tGSH, AChE (Pérez et 

al., 2013) and protein quantification.  

ETS activity was determined following the method described by De Coen and Janssen 

(1997). To measure ETS activity, 150 μL of homogenization buffer (0.3 M Tris; 150% (w/v) Poly 

Vinyl Pyrrolidone; 8 mM MgSO4; 0.6% (v/v) Triton X-100) were added to the 300 µL of 

homogenized samples. After centrifugation (1000g, 10 min, 4ºC), the resulting supernatant 

was removed for ETS activity measurement. Fifty µL of each sample was put in a multi-well 

plate in quadruplicated and 150 μL of a buffered solution B [2% (v/v) solution A (6.67M Tris; 

0.27% (v/v) Triton X-100); 1.8 mM NADH; 280 μM NADPH] were added. Reaction at 25ºC was 

started by adding 100 μL of INT solution (p-iodonitrotetrazolium; 8 mM) and the absorbance 
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was immediately measured at 490 nm over a period of 3 min. Results were expressed as 

mJ/mg organism/h. 

Lipid peroxidation was measured on 200 µL of homogenized samples plus 4 µL of 4% 2,6-Di-

tert-butyl-4-methylphenol in methanol using the thiobarbituric acid-reactive substances 

(TBARS) assay (Bird and Draper, 1984; Ohkawa et al., 1979). The absorbance was read at 535 

nm and the results were expressed as nmol TBARS per mg of wet weight.  

Glutathione-S-transferase activity was measured using the method described by Habig et al.  

(1974). The enzymatic activity was measured in 50 µL of PMS following conjugation of reduced 

L-glutathione with 1-chloro-2,4-dinitrobenzene at 340 nm. The enzymatic activity was 

expressed in nmol per min per mg of protein.  

Catalase activity was determined on 10 µL of PMS by measuring the decomposition of the 

substrate hydrogen peroxide (H2O2) at 240 nm (Clairborne, 1985). The results were expressed 

as µmol per min per mg of protein.  

Total glutathione (Tgsh) level was determined in 50 µL PMS using the method described by 

Baker et al. (1990). The absorbance was read at 412 nm during 3 min following the recycling 

reaction of reduced glutathione in the presence of an excess of glutathione reductase. The 

total glutathione levels were expressed as µM per mg of protein, using L-GSH as a standard.  

Finally, AChE activity was determined in 50 µL of PMS following the Ellman’s method 

(Ellman et al., 1961) adapted to microplate (Guilhermino et al., 1996) using acetylthiocholine 

as subtract. The absorbance was read at 414 nm and the enzymatic activity was expressed in 

nmol per min per mg of protein. Protein was quantified in 10 µL of PMS by Bradford method 

(Bradford, 1976) adapted from Biorad’s Bradford micro-assay. The absorbance was read at 590 

nm and γ-globulin was used as a standard. For a more detailed protocol see Campos et al., 

(2016) and Rodrigues et al. (2015). 

 

2.3 Chemical analysis  

2.3.1 Chemicals  

Liquid chromatography–mass spectrometry (LC-MS) grade methanol and acetonitrile (Li 

Chrosolv Hypergrade) were purchased from Merck (Darmstadt, Germany). Formic acid for the 

mobile phases acidification was purchased from Labicom (Olomouc, Czechia). Ultra-pure water 

was produced using an Aqua-MAX-Ultra System (Younglin, Kyounggi-do, Korea). All analytical 

standards used were of high purity (> 98%). All UV-filters and diclofenac were purchased from 

Sigma Aldrich (UK). Diclofenac was used as internal standard. Stock solutions of compounds 

were prepared in methanol at a concentration of 1 mg/mL and stored at -20°C. For each UV-
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filters, a spiking solution was prepared by diluting stock in methanol to a final concentration of 

1 μg/mL and stored at -20°C.  

 

2.3.2 Instrumentation 

A triple stage quadrupole MS/MS TSQ Quantum Ultra mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) coupled with an Accela 1250 LC pump (Thermo Fisher Scientific) 

and an HTS XT-CTC autosampler (CTC Analytics AG, Zwingen, Switzerland) was used for analysis 

of BP3 and 4-MBC in sediment samples.  

Cogent Bidentate C18 column (50 mm × 2.1 mm i.d., 4 µm particle size from MicroSolv 

Technology Corporation Eatontown, NJ, USA) was used as analytical column for 

chromatographic separation of BP3 and 4-MBC. Heated electrospray ionization (HESI) was 

used in order to ionize target compounds.   

A hybrid quadrupole/orbital trap Q-Exactive mass spectrometer (Thermo Fisher Scientific, 

San Jose, CA, USA) coupled with an Accela 1250 LC pump (Thermo Fisher Scientific) and an HTS 

XT-CTC autosampler (CTC Analytics AG, Zwingen, Switzerland) was used for analysis of OC.  

Hypersil GOLD Phenyl column (50 mm × 2.1 mm i.d., 3 µm, Thermo Fisher Scientific) was 

used as an analytical column for chromatographic separation of the OC. An atmospheric 

pressure chemical ionization coupled with atmospheric pressure photoionization (APCI/APPI) 

in negative mode was used to ionize target compounds.  

MS/MS parameters are reported in Table SD1, A and B. LC gradient for the elution of target 

compounds is reported in Table SD2, A and B.   

 

2.3.3 Sample preparation 

An ultrasonic based solvent approach was used to extract the UV-filters from the sediments 

(Golovko et al., 2016). Briefly, around 2 grams of sediment were weighted into 10-mL vials and 

20 ng of IS was added to each sample. Four milliliters of extraction solvent (acetonitrile and 

water (1/1 v/v with 0.1% formic acid)) were added and the samples were sonicated (DT 255, 

Bandelin electronic, Sonorex digitec, Berlin, Germany) for 15 min. The supernatant was filtered 

through a syringe filter (0.45 μm, regenerated cellulose, Labicom, Olomouc, Czech Republic) 

into 10-mL vials. The same step was repeated with 4 mL of acetonitrile, 2-propanol, and water 

(3/3/4 v/v/v with 0.1% formic acid). Two supernatants were mixed after extraction procedure. 

Each sample was prepared and analysed in duplicate. 

 This method was validated in the range of tested concentrations and exhibited good linearity 

in the concentration range between 0.005 and 0.5 mg/kg BP3, 4-MBC and OC; R2 = 0.999 and 
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average recovery of BP3 and 4-MBC was 108 % (±8) and for OC was 97% (±10), respectively. 

Average limit of quantification was 0.09 mg/kg for BP3, 0.07 mg/kg for 4-MBC and 0.006 mg/kg 

for OC. 

Internal standard method was used for quantification of target compounds. The matrix 

effect was assessed for each compound, and corrections for ion suppression or enhancement 

were accomplished using matrix-matched standards for sediment samples. Matrix-matched 

standards were prepared from tested sediment extract by spiking with both IS and target 

compounds at 0.01 mg/kg and 0.1 mg/kg, respectively. 

 

2.4 Statistical analysis  

The effects of UV-filters on C. riparius biochemical and life-history responses were 

evaluated using one-way analysis of variance (ANOVA). Since t-tests did not find significant 

differences between control and solvent control for any of the endpoints analysed, multiple 

comparisons between UV-filters treatments and the solvent control were examined. For all 

statistical tests the significance level was set at p < 0.05. All variables were assessed for 

normality using residual probability plots while Levene’s and Bartlett’s tests verified the 

homoscedascity of data (p > 0.05). C. riparius growth data for the 4-MBC exposure was Log-

transformed to fulfil normality of data. Effects on C. riparius development time data for all 

compounds tested and ETS activity data for the OC exposure were analysed with Kruskal-Wallis 

test followed by Dunn’s post-hoc test while all other responses were analysed by Dunnett’s 

post-hoc tests. All statistical analyses were performed in prism 6.0. (GraphPad Software, La 

Jolla California USA).  

 

3. Results 

3.1 Concentrations of UV-filters in sediments 

Concentrations of the different organic UV-filters were measured in the sediments 5 days 

after spiking (Table 2). In the chronic toxicity test measured concentrations in sediments were 

up to 70, 68 and 79% lower than nominal concentrations of BP3, 4-MBC and OC, respectively.  

Concerning biochemical biomarkers exposure, the measured concentrations were up to 

74%, 64% and 27% lower than nominal concentrations to BP3, 4-MBC and OC respectively.  
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Table 2 – UV-filters concentrations measured in sediments in partial life-cycle and biomarkers bioassays 
(mean ±SD). 

 
 Nominal 

concentration     
(mg/Kg) 

 
BP3 

 
4-MBC 

 
OC 

Chronic exposure  2.5 0.75 ± 0.10 0.80 ± 0.04 0.53 ±0.04  
 5 1.55 ± 0.39 2.05 ± 0.38 1.27 ± 0.10 
 10 3.41 ± 0.16 4.17 ± 0.08 2.33 ± 0.29 

Biochemical exposure 0.25 0.23 ± 0.01 0.09 ± 0.02 0.23 ± 0.05 
 2.5 1.00 ± 0.15 1.12 ± 0.09 2.13 ± 0.45 

 25 6.49 ± 2.99 14.13 ± 0.24 18.23± 1.02 
 

 

3.2 Effects of UV-filters on C. riparius growth and emergence  

The validity criteria of the test was met. The pH ranged between 7.83 and 8.28, the 

dissolved oxygen was above 7.0 and the temperature did not vary more than ± 1ºC in all 

treatments of UV-filters. C. riparius larval growth was significantly reduced after exposure to 

0.75, 2.05 and 2.33 mg/Kg of BP3, 4-MBC and OC, respectively (Figure 1a, b, c; Table 3). The 

emergence in control treatments was above 93% to all tested compounds and no significant 

effects of any compound tested were observed for percentage of emergence (data not 

shown). However, exposure to UV-filters contaminated sediments affected other life cycle 

endpoints, particularly development time (days until emergence) and imagoes’ weight. BP3 

and 4-MBC delayed the development time of C. riparius females exposed to 3.41 mg/Kg and 

2.05 and 4.17 mg/Kg, respectively (Figure 1d, e; Table 3). Nonetheless, no significant effects 

have been observed for weight of female imagoes exposed to BP3 and 4-MBC, when 

compared to the solvent control treatment (Figure 1 g, h; Table 3). In contrast, development 

time of C. riparius males was not affected by exposure to BP3 and 4-MBC (Figure 1d, e; Table 

3), whereas their average weight was significantly reduced after exposure to 3.41 mg BP3/Kg 

and 4.17 mg 4-MBC/Kg (Figure 1g, h; Table 3). OC did not significantly affect development time 

of female nor male’ C. riparius (Figure 1f; Table 3) although a non-significant reduction of 

8.47% and 18.63% in the weight of male and female imagoes, respectively, has been observed 

(Figure 1i; Table 3). 
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Figure 1 – Chronic effects of BP3, 4-MBC and OC on Chironomus riparius growth, development time and adult size. a,b,c: Growth (mm; mean ± SEM) after 10 days of 
exposure. d,e,f: development time (days; mean ± SEM). g,h,i: adult body weight (mg; mean ± SEM). Asterisks (*) denote statistically significant differences compared to 
solvent control (0+) (Dunnet’s post hoc test, p < 0.05 (growth and adult body weight) and Dunn´s post hoc test (development time)).   
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Table 3 – One-way ANOVA results testing for effects on growth and imagoes weight (males and females) 
and Kruskal- Wallis results testing for effects on development time (male and female) with degrees of 
freedom (Df), F/H-values and significance levels (p). 
 

  BP3  4-MBC  OC 

 Df F/H p Df F/H p  Df F/H p 

Growth 3 7.00 0.002 3 3.76 0.027  3 3.24 0.044 

Development time           

male 3 6.51 0.089 3 4.88 0.181  3 1.92 0.590 

female 3 9.39 0.025 3 14.48 0.002  3 1.05 0.789 

Imagoes weight           

Male 3 6.17 0.005 3 3.17 0.048  3 1.33 0.293 

Female 3 1.60 0.224 3 0.77 0.526  3 2.21 0.083 

 
 

3. 3 Biochemical responses of C. riparius exposed to UV-filters  

Electron transport system activity followed a dose-response relationship with significant 

increases on C. riparius larvae exposed to 1.00 and 6.49 mg/kg of BP3 (F(3,24) = 83.60: p 

<0.0001) and in all tested concentrations of 4-MBC (F(3,24) = 117.10: p <0.0001) and OC (H= 

22.21; Df=3; p < 0.0001) (Figure 2). The increase in ETS activity in the highest tested 

concentrations of BP3, 4-MBC and OC was 56.68, 61.85 and 88.53%, respectively. Concerning 

CAT activity, a slightly decrease was observed in the highest concentrations of all tested 

compounds with a reduction of 20.90, 22.84 and 6.95% for BP3, 4-MBC and OC respectively. 

However, significant differences were only observed when larvae were exposed to 14.13 

mg/Kg of 4-MBC (F(3,24) = 3.52; p <0.05; Table 4).  

A clear dose-dependent response in terms of GST activity was observed when C. riparius 

were exposed to 4-MBC but significant differences were only observed for 14.13 mg/Kg 4-MBC 

(F(3,23) = 5.43; p <0.01; Table 4). No significant effects of BP3 and of OC were observed in C. 

riparius’ GST activity (F(3,24) = 0.02; p>0.05 and F(3,24) = 2.47; p>0.05, respectively) (Table 4). 

OC also induced a significant increase of tGSH content on C. riparius exposed to 0.23 and 

18.23 mg/Kg (F(3,24) =7.41: p <0.01; Table 4).  
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Table 4 – Biomarker responses of C. riparius after exposure to different concentrations of BP3, 4-MBC and OC during 48h. GST and AChE activity are expressed in 
nmol/min/mg protein, CAT activity is expressed in µmol/min/mg protein, TG is expressed in µM/mg of protein and LPO is expressed in TBARS nmol/g wet weight. Values 
corresponding to mean ± standard deviation. Asterisks (*) denote statistically significant differences compared to solvent control (0+) (Dunnet’s post hoc test, p < 0.05). 
 
 

  BP3 concentrations (mg/Kg) 4-MBC concentrations (mg/Kg)   OC concentrations (mg/Kg) 
 0+ 0.23 1.00 6.49 0.09 1.12 14.13 0.23 2.13 18.23 

GST 9.93 ±0.91 9.85 ±0.69 9.86 ±0.63 9.90 ±0.71 10.00 ±1.28 11.10 ±1.28 12.04 ±1.05* 10.79 ±1.28 11.38 ±1.26 10.80 ±0.87 
CAT 46.45 ±8.00 42.77 ±5.66 49.50 ±8.45 36.74 ±12.22 43.21 ±9.10 47.91 ±4.57 35.84 ±7.90* 45.10 ±3.41 49.01 ±4.96 43.22 ±9.88 
TG 16.10 ±2.97 17.52 ±3.43 12.07 ±4.80 12.13 ±2.61 13.36 ±2.99 15.48 ±2.31 19.27 ±3.69 21.62 ±3.16* 18.21 ±5.02 24.15 ±2.00* 

LPO 37.07 ±5.41 28.49 ±1.92* 41.07 ±5.85 38.81 ±5.15 37.75 ±4.02 38.10 ±6.91 39.07 ±5.91 40.01 ±6.64 46.11 ±10.77 38.83 ±7.19 
AChE 11.30 ±2.42 11.06 ±1.58 10.48 ±2.27 10.35 ±1.86 9.26 ±0.55* 10.75 ±1.47 12.61 ±0.90 12.13 ±2.20 12.95 ±1.64 13.30 ±1.88 
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None of the UV-filters tested, elicited monotonic or dose dependent responses in terms of 

oxidative damage (LPO) and neurotoxicity (AChE). However, a significant decrease in LPO levels 

was observed in C. riparius larvae exposed to 0.23 mg/Kg of BP3 (F(3,24) = 5.91: p < 0.001) (Table 4). 

C. riparius larvae exposed to 0.09 mg/Kg 4-MBC showed a decrease in AChE activity of (F(3,24) = 

9.02; p < 0.01) (Table 4). 

 

 

Figure 2 - Short-terms effects of BP3, 4-MBC and OC on ETS (mJ/ mg organism/ h; mean ± SE). 
Asterisks (*) denote statistically significant differences compared to solvent control (0+) (Dunnet’s post hoc 
test, p < 0.05 to BP3 and 4-MBC and Dunn´s post hoc test to OC). 
 

4. Discussion   

Given their highly lipophilic nature and their slow degradation in natural ecosystems (Díaz-Cruz 

and Barceló, 2009; Gago-Ferrero et al., 2012), ecotoxicological studies using freshwater benthic 

invertebrate species are critical for a correct evaluation of the potential ecological effects and for 

the risk assessment of organic UV-filters.  

The present study shows that sediments spiked with sub-lethal and environmental relevant 

concentrations of BP3, 4-MBC and OC significantly impaired C. riparius larval growth and 

development. These results are in good agreement with previous studies where decreased 

growth of the larvae of sea urchin Paracentrotus lividus (EC50= 3.28 mg BP3/L and 0.85 mg 4-

MBC/L) (Paredes et al., 2014) and a reduction of the length of the crustacean D. magna at 0.2 mg 

4-MBC/L (Sieratowicz et al., 2011) were observed as a results of exposure to UV-filters. Effects in 

somatic growth was also observed in D. magna exposed to other UV-filters such as 2-ethyl-hexyl-

4-trimethoxycinnamate (EHMC (LOEC= 0.08 mg/L) and 3-benzylidene-camphor (3-BC) (0.2 mg/L) 

(Sieratowicz et al., 2011). Furthermore, reductions in the cell density of Desmodesmus subspicatus 

algae and Isochrysis galbana microalgae have been also shown in response to UV-filters exposure 

(Paredes et al., 2014; Sieratowicz et al., 2011). The effects on growth and development could be 
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related to feeding inhibition as suggested by lower feeding rates of the aquatic caddisfly S. 

vittatum exposed to concentrations of 3.55 mg/Kg BP3 and 2.57 mg/Kg 4-MBC (Campos et al., 

2017). In our current study, reproductive effects of selected UV-filters on C. riparius were not 

directly assessed. Nevertheless, together with the effects on larval growth and development, the 

concomitant effect on weight of adult midges suggests a reproductive impairment caused by UV-

filters exposure. 

BP3 and 4-MBC significantly increased time to emergence of C. riparius female imagoes 

without any significant effect on female imagoes’ weight. In contrast, time to emergence of C. 

riparius males was not significantly affected by BP3 or 4-MBC, but a decrease in weight of male 

imagoes was clear. This decreased body weight of male imagoes induced by BP3 and 4-MBC 

suggests that reproduction of C. riparius might be affected since dipterans male adult body weight 

is related to flying performance and total number of gametes produced, and thus reproductive 

success (Lilley et al., 2012; Ponlawat and Harrington, 2007). Thus, the weight reduction observed 

for male imagoes has been considered as an indication of potential reproductive effects in C. 

riparius and can be used as a sensitive endpoint for a better evaluation of population level effects 

of contaminants (Campos et al., 2016; Rodrigues et al., 2015). Although not significantly, OC also 

decreased the body weight of male imagoes at concentrations lower than BP3 and 4-MBC tested 

in this study. Therefore, effects of OC on development and reproduction might also be expected 

when testing higher concentrations. Moreover, OC also increased time to emergence for males 

and females, although not significantly. This lack of effects of OC has been observed in several 

invertebrates including C. riparius (Kaiser et al., 2012; Ozáez et al., 2013), L. variegatus, M. 

tuberculata or P. antipodarum (Kaiser et al., 2012) and T. thermophila (Gao et al., 2013). However, 

most studies report nominal concentrations only (see for example (Gao et al., 2013; Kaiser et al., 

2012)) and that can be misleading given OC’s high lipophilicity that might reduce its 

bioavailability. Interestingly, we also observed that, BP3, 4-MBC and especially OC induce a 

reduction (albeit not significantly) in the size of female imagoes in the highest concentrations 

tested. Again, weight of female imagoes is related to fecundity and fertility through effects on 

viability and size eggs mass (Ponlawat and Harrington, 2007).  

The observed effects on development induced by BP3 and 4-MBC on C. riparius larvae might 

be related to alterations in the ecdysteroid hormone levels mediated by the ecdysone receptor, 

since this hormone is involved in the regulation of growth, development and reproduction of 

arthropods (Riddiford et al., 2000). In fact previous studies have demonstrated that 4-MBC 

stimulated the transcription of the ecdysone receptor gene and BP3 activated the expression of 
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the ecdysone receptor gene in salivary gland cells of C. riparius larvae (Ozáez et al., 2013; Ozáez et 

al., 2014). In line with our results, 4-MBC has been shown to decrease the reproduction of L. 

variegatus; while increasing the embryo production in P. antipodarum (Schmitt et al., 2008) and 

exposure to BP3 caused a reduction in the number of eggs produced by Oryzias latipes (Coronado 

et al., 2008). Moreover, reproductive toxicity of other UV-filters such as EHMC has been reported 

for the snail species P. antipodarum (400 µg/Kg) and M. tuberculata (10 mg/Kg) (Kaiser et al., 

2012; Schmitt et al., 2008), and also observed in L. variegatus and D. magna exposed to 3-BC 

(Schmitt et al., 2008; Sieratowicz et al., 2011).  

Relatively to the biochemical responses evaluated, our results showed different responses of 

C. riparius under UV-filters exposure. The inhibition of CAT activity suggests 4-MBC might lead to 

oxidative stress as alterations on antioxidant defences occur. However, oxidative damage might 

be prevented by an induction of GST (phase II detoxification enzyme) as previously suggested by 

Enayati et al. (2005), whereas no significant effects were observed for BP3 or OC. On the other 

hand, in the present study, the OC induced responses suggest that oxidative stress was prevented 

by an increased level of total glutathione given its primordial role in maintaining the cellular redox 

status of the cell (Doyotte et al., 1997; Rikans and Hornbrook, 1997) interacting directly with 

reactive oxigen species or as cofactor of other enzymes (Lushchak, 2012). In fact, it has been 

shown that concentrations of up to 1.0 mg/L OC do not alter the activity of enzymes such as CAT 

and GSH in T. thermophila (Gao et al., 2013), demonstrating the controversial results when 

determining those biomarkers on organisms exposed to organic UV-filters. For instance, exposure 

to BP3 and 4-MBC has been shown to increase the activity of CAT on the protozoan T. 

thermophila (Gao et al., 2013), while reductions of CAT activity and increased GST activity have 

been observed in the fish Carassius auratus (Liu et al., 2015). 

Also, the absence of effects in terms of AChE is in accordance with the responses of other 

aquatic organisms, namely dipterans and frogs (Campos et al., 2017; Martins et al., 2017) and 

suggests that UV-filters are not neurotoxic.  

Finally, an increase in the energy consumption of organisms was consistently observed for 

organisms exposed to all compounds tested. This increased ETS activity is usually related to an 

increase of energy requirements for defence mechanisms (Choi et al., 2001; Sokolova et al., 2012) 

and migth compromise the allocation of energy for growth and reproduction (Rodrigues et al., 

2015; Servia et al., 2006; Sokolova et al., 2012). These metabolic costs of the stress response were 

probably responsible, together with other behavioural and physiological responses (e.g. feeding 
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and assimilation), for the reduced growth and development of C. riparius exposed to BP3, 4-MBC 

and OC.  

In summary, the results obtained in this study suggest that sediments contaminated with low 

and environmentally relevant concentrations of UV-filters can impair several life-history traits in 

C. riparius. The results also point to potential reproductive effects that can compromise natural 

population dynamics under UV-filters exposure. Since the endocrine activity of UV-filters has been 

also suggested (Ozáez et al., 2013; Wang et al., 2016), an obvious extension of this work is 

certainly to address the transgenerational effects of such compounds. Chironomids which are 

model organisms for sediment ecotoxicity testing are ideal for those long-term multigenerational 

assays. More so if we consider that they are a preferential prey item for several invertebrate and 

vertebrate species and thus also extremely relevant for studies addressing bioaccumulation and 

transport of UV-filters along natural food webs. 
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Supplementary data  

 
Table SD 1- MS/MS parameters for triple quadrupole detection of targeted compounds: 

 

A)  MS/MS parameters for BP3 and 4-MBC, (TSQ Quantum Ultra mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)) 

 

B) MS/MS parameters for OC, (Q-Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)) 

 

 

 

 

*No confirmation ion. 

NCE - normalized collision energy 

Compound Mode Quantification 

transition 

Confirmation 

transition 

Tube Lens voltage (V) Collision energy Retention time (min) 

BP3 + 229.062→ 150.670 229.062→ 105.200 91 18 9.44 

4-MBC + 255.124→ 104.780 255.124→ 164.810 94 30 10.12 

Diclofenac + 296.000→ 214.010 * 86 33 9.13 

Compound Mode Quantification  

transition 

Confirmation 

transition  

NCE Retention  

time (min) 

Octocrylene - 361.2047→ 204.0815 361.2047→ 203.0739  25 9.80 

Diclofenac - 294.0094→ 250.0185 * 20 8.10 
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Table SD 2- LC gradient for the elution of targeted compounds.  
 

A) LC gradient for the elution of BP3 and 4-MBC, Cogent Bidentate C18 column. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) LC gradient for the elution of OC, Hypersil Gold Phenyl column  
 

 

 

 

 

 
 
 
 
 
 

Time, min Mobile phase composition Flow rate, 

μL/min 
Water  

(0.1 % FA) 

Acetonitrile 
(0.1 % FA) 

0.00 100 0 300 

1.00 100 0 300 

7.00 60 40 350 

9.00 0 100 400 

10.00 0 100 400 

10.01 100 0 300 

13.00 100 0 300 

Time, min Mobile phase composition Flow rate, 

μL/min 
Water  Methanol 

0.00 90 10 300 

1.00 90 10 350 

3.00 60 40 400 

10.00 0 100 400 

12.00 0 100 350 

12.01 90 10 300 

15.00 90 10 300 
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Ecotoxicity of two organic UV-filters to the freshwater caddisfly Sericostoma vittatum 
 

 

 

Abstract  

 

Organic ultraviolet filters (UV-filters) used for protection against radiation in personal care 

products and other materials (e.g. textiles, plastic products) are considered emerging 

contaminants of aquatic ecosystem. Benzophenone-3 (BP3) and 3-(4-

methylbenzylidene)camphor (4-MBC) are the most commonly used organic UV-filters and have 

been reported in freshwater environments due to contamination through discharges from 

wastewater treatment plants and swimming pools or by direct contamination from 

recreational activities. Our aim was to evaluate the ecotoxicological effects of these UV-filters 

using the freshwater caddisfly Sericostoma vittatum’ biochemical biomarkers and energy 

processing related endpoints (feeding behaviour, energy reserves and cellular metabolism). In 

laboratory trials, both compounds induced feeding inhibition of S. vittatum at 3.55 mg/Kg of 

BP3 and at concentrations ≥ 2.57 mg/Kg of 4-MBC, decreased carbohydrates content at 3.55 

and 6.95 mg/Kg of BP3 and 4-MBC respectively, and increased total glutathione levels at 

concentrations ≥ 1.45 and 1.35 mg/Kg of BP3 and 4-MBC respectively. No significant effects 

were observed on endpoints associated with oxidative stress, antioxidant defences, phase II 

biotransformation or neurotoxicity after exposure to the two UV-filters. Our results show that 

environmental relevant concentrations of BP3 and 4-MBC, can negatively impact freshwater 

insects and demonstrate the importance of monitoring the ecological effects of organic UV-

filters using non-model invertebrate species. 

Keywords: BP3; 4-MBC; feeding behaviour; freshwater insects; personal care products; 

sunscreens 



Chapter 3: Ecotoxicity of two organic UV-filters to the freshwater caddisfly Sericostoma vittatum 

 

66 
 

1. Introduction 

Organic ultraviolet filters (UV-filters) absorb ultraviolet radiation (UVA-UVB) and are 

commonly used to protect skin from sun radiation and to protect a variety of materials from 

degradation. They are present in textiles, plastic materials, and in several personal care 

products such as sunscreens, lotions, shampoos and makeup products (Díaz-Cruz et al., 2008; 

Pedrouzo et al., 2011). After being used, these compounds can reach the aquatic ecosystems, 

namely streams and rivers by washing-off from skin and clothes of beachgoers during 

recreational activities, by discharges of swimming pools and sewage or due to insufficient 

removal of wastewater treatment plants (WWTP) (Brausch and Rand, 2011; Díaz-Cruz et al., 

2008; Giokas et al., 2005; Golovko et al., 2014).  

UV-filters have been detected worldwide both in surface and ground waters, as observed 

by several studies in Spain (Rodil et al., 2008; Román et al., 2011), Korea (Jeon et al., 2006), 

Switzerland (Giokas et al., 2005), Australia (Liu et al., 2012), and Japan (Kameda et al., 2011). 

UV-filters concentrations of up to 1040 ng/L were found in river waters (Kameda et al., 2011) 

and 4381 ng/L in lake waters (Rodil et al., 2009). Also, concentrations of up to 6812 ng/L (Tsui 

et al., 2014) and 621 ng/L (Román et al., 2011) were found in seawater and tap water, 

respectively. In solid matrices, UV-filters have been detected in concentrations of up to 0.128 

mg/Kg dry weight (dw) in sediments from coastal areas (Amine et al., 2012), 0.9 mg/Kg (dw) in 

lake sediments (Rodil and Moeder, 2008), 27.7 mg/Kg (dw) in sewage sludge (Plagellat et al., 

2006), 0.635 mg/Kg (dw) and 2.4 mg/Kg (dw) in sediments from lotic ecosystems (Kameda et 

al., 2011, Gago-Ferrero et al., 2011). 

Given its continuous application and consequent ubiquity in the environment, concerns of 

deleterious effects of UV- filters to aquatic biota have been raised and an evaluation of their 

ecotoxicity is vital (Sánchez-Quiles and Tovar-Sánchez, 2015; Tsui et al., 2014). It was 

demonstrated that UV-filters affected reproduction of several invertebrate species. As 

examples, reproduction of the  oligochaete Lumbriculus variegatus was reduced after 28 days 

of exposure to 3-benzylidene-camphor (3-BC) and 3-(4-methylbenzylidene)camphor (4-MBC) 

(Schmitt et al., 2008), in the crustacean Daphnia magna, exposure to 3-BC during 21 days 

caused the reduction of number of neonates per adult (Sieratowicz et al., 2011), in the snail  

Potamopyrgus antipodarum, the number of unshelled embryos per snail increased after 56 

days of exposure to 3-BC and 4-MBC (Schmitt et al., 2008) and in the snail Melanoides 

tuberculata the number of embryos per snail decreased after 28 days of exposure to 

ethylhexyl-methoxycinnamate (EHMC) (Kaiser et al., 2012). Delayed development was also 

observed in the dipteran Chironomus riparius exposed to Benzophenone-3 (BP3) and 4-MBC 
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(Campos et al., 2017) while decreases of  D.magna somatic growth were observed after 21 

days of exposure to 4-MBC, 3-BC and EHMC (Sieratowicz et al., 2011). However, absence of 

effects during exposure to UV-filters were also reported. Exposure to octocrilene and butyl-

methoxydibenzoylmethane (B-MDM) during 28 days did not affect the mean emergence time 

of C. riparius or the number of embryos per snail of M. tuberculata (Kaiser at al., 2012). Also, 

21 days exposure to 4-MBC and BP3 has been shown to cause no effects on the number of 

neonates produced by D. magna (Sieratowicz et al., 2011). 

Nevertheless, due to their physico-chemical properties, namely an elevated Kow and low 

water solubility, organic UV-filters tend to accumulate in biota and sediments (Brausch and 

Rand, 2011; Rodil and Moeder, 2008) especially near fluvial beaches, coastal areas and 

effluents, which calls for an ecotoxicological evaluation of these compounds using non-model 

benthic species. This assessment should comprise responses at different levels of biological 

organization in order to provide clues to organismal and population level effects. 

  Thus, the main objective in this study was to address the potential effects of organic UV-

filters present in sediments, using the freshwater caddisfly Sericostoma vittatum (Rambur) as a 

test species. S. vittatum is widely distributed in streams and rivers across the Iberian Peninsula 

with an important role in the fragmentation of allochthonous organic matter in streams 

(Campos et al., 2014; Feio and Graça, 2000). Additionally, S. vittatum has been used previously 

in ecotoxicity studies (Campos et al., 2014; Campos et al., 2016; Pestana et al., 2009b) and 

given their close contact to sediments and detritivore feeding habits is a potential indicator of 

sediment contamination by lipophilic compounds such as organic UV-filters. This 

ecotoxicological evaluation is focused on feeding rate as an organismal endpoint, and on sub-

cellular endpoints including energy reserves, energy consumption and biochemical parameters 

measured on S. vittatum larvae exposed to a gradient of environmentally relevant 

concentrations of organic UV-filters.  

Feeding inhibition has been recognized as a general stress response to different 

contaminants, used as a early warning indicator and a complement to traditional parameters 

such as growth and reproduction especially important when dealing with organisms with a 

long life-cycle (Maltby et al., 2002; Pestana et al., 2007). Feeding behaviour has thus been used 

as an ecotoxicological relevant endpoint in a variety of aquatic invertebrate detritivores 

organisms including caddisflies (Campos et al., 2016; Pestana et al., 2009b; Rodrigues et al., 

2016) Furthermore, energy parameters can be also used to better understand the long-term 

effects of altered energy intake and expenditure (feeding and respiration/ detoxification). This 

is because detoxification processes, decrease food intake and assimilation and also, metabolic 

changes contribute for altered energy homeostasis in organisms under stressful conditions (De 
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Coen and Janssen, 2003; Moolman et al., 2007; Sokolova et al., 2012; Sokolova, 2013). In this 

sense, we have also assessed effects of UV-filters exposure on energy reserves in terms of 

sugars, lipids and protein contents, as well as, energy consumption by measuring the activity of 

ETS (electron transport system) as a proxy for cellular metabolism. 

Moreover and since it is known that UV-filters can increase the production of Reactive 

Oxygen Species (ROS) and induce alterations in antioxidant defences and/or cause oxidative 

damage (Gao et al., 2013; Liu et al., 2015) biochemical biomarkers chosen as sub-organismal 

endpoints in the present study included lipid peroxidation (LPO); antioxidant enzymes 

(catalase - CAT), phase II biotransformation enzyme (glutathione-S-transferase - GST) and non-

enzymatic antioxidant defences (total glutathione - tGSH).   

Finally, we also assessed the effects of UV-filters exposure on Acetylcholinesterase activity 

(AChE) as indicator of neurotoxicity. Despite no information on effects of UV-filters on AChE, 

this enzyme activity has been linked with behavioural parameters such as feeding and 

locomotion (Mesquita el al., 2011; Xuereb et al., 2009) and effects using AChE activity as 

indicator of neurotoxic have been reported to emergent contaminants (Mesquita et al., 2011), 

namely in caddisflies species (Pestana et al., 2014; Pradhan et al., 2016).  

For this ecotoxicological assessment we selected BP3 and 4-MBC, that correspond to 

different classes of UV-filters (benzophenones and camphor derivatives, respectively) which 

are two of the most frequently detected UV-filters in the aquatic environment (Balmer et al., 

2005; Gago-Ferrero et al., 2011; Kameda et al., 2011; Ramos et al., 2015). 

 

2. Material & methods 

2.1 Caddisflies collection and maintenance 

S. vittatum larvae (size: 18.99 (± 3.87(SD)) mg wet weight) were collected from a low order 

stream in central Portugal (40°06’N, 8°14’W) using a hand net. Organisms were maintained 

under laboratory conditions (20 ± 1ºC and light-dark cycle of 16:8h) during one week, in 

American Society for Testing Materials hard water medium (ASTM) (ASTM, 1980), previously 

burnt (500ºC for 4 hours) inorganic fine sediment (< 1 mm) and alder leaves (Alnus glutinosa) 

as food which were previously conditioned during one week in 1500 mL of local river water 

with aeration and in laboratory conditions (20 ± 1ºC, 16:8 h light: dark photoperiod).  

 

2.2 Chemicals  

2-hydroxy-4-methoxybenzophenone (or benzophenone-3, BP3; CAS No. 131-57-7; purity ≥ 

98%) and 3-(4-methylbenzylidene) camphor (4-MBC; CAS No. 36861-47-9, purity ≥ 98%) were 



Chapter 3: Ecotoxicity of two organic UV-filters to the freshwater caddisfly Sericostoma vittatum 

 

69 
 

obtained from Sigma-Aldrich (Portugal). Physico-chemical properties are presented in table 1. 

Stock solutions and subsequent gradient of UV-filters experimental solutions of both 

compounds were prepared in ethanol (96%) due to low water solubility (table 1).  

 

Table 1 - Physico-chemical properties of UV-filters.  
 

 
Compounds 

 
Formula 

 
Abbreviation 

 
CAS N 

Molecular 
weight 
g/mol 

 
Log Kow 

Water 
solubility 

(g/L) 
2-hydroxy-4-

methoxybenzophenone 
(Benzophenone-3) 

 
C14H12O3 

 
BP3 

 
131-57-7 

 
228.24 

 
3.79 

 
0.10 

3-(4-
methylbenzylidene) 

camphor 

 
C18H22O 

 
4-MBC 

 
36861-47-9 

 
254.37 

 
4.95 

 
0.017 

Based in Gago-Ferrero et al. ( 2012) 
 
 

2.3 Sediment dosing 

Artificial sediment was composed of 75% inorganic fine sediment (<1 mm), 20% kaolin, 5% 

α-cellulose and 0.1 % calcium carbonate. Tests were conducted using 180 mL glass vessels and 

each replicate contained 50 g dw of sediment. Ten mL of UV-filter solutions (prepared in 

ethanol) were used to dose the sediment which were mixed thoroughly and then allowed to 

evaporate during 24h. To prepare the solvent controls 10 mL of 96% ethanol were added to 

each replicate. Afterwards, 10 mL of ASTM hard water medium (ASTM, 1980) were added to 

the sediment in all treatments including controls to form the sediment paste. Immediately 

after, 150 mL of ASTM hard water medium (ASTM, 1980) were added in all treatments and the 

sediment remained stabilizing during 48h before exposing organisms.  

 

2.4 Chemical analysis  

2.4.1 Chemicals 

Liquid chromatography–mass spectrometry (LC-MS) grade methanol and acetonitrile (Li 

Chrosolv Hypergrade) were purchased from Merck (Darmstadt, Germany). Formic acid for the 

mobile phases acidification was purchased from Labicom (Olomouc, Czech Republic).  BP3, 4-

MBC and diclofenac (used as internal standard) were purchased from Sigma Aldrich (UK). A 

spiking solution was prepared for BP3 and 4-MBC by diluting respective stock solutions (1 mg/ 

mL methanol) in methanol to a final concentration of 1 μg/mL and stored at -20°C.  
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2.4.2 Instrumentation 

To analyse UV-filters in sediment samples, a triple stage quadrupole MS/MS TSQ Quantum 

Ultra mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) coupled with an Accela 

1250 LC pump (Thermo Fisher Scientific) and an HTS XT-CTC autosampler (CTC Analytics AG, 

Zwingen, Switzerland) was used.  

The analytical column for chromatographic separation of BP3 and 4-MBC used was Cogent 

Bidentate C18 column (50 mm × 2.1 mm i.d., 4 µm particle size from MicroSolv Technology 

Corporation Eatontown, NJ, USA). Heated electrospray ionization (HESI) was used to ionize 

target compounds.  

MS/MS parameters are reported in Table SD1. LC gradient for the elution of target 

compounds is reported in Table SD 2. 

 

2.4.3 Sample preparation 

An ultrasonic based solvent approach was used to extract the UV-filters from the sediments 

(Golovko et al., 2016). Briefly, around 2 grams of sediment were weighted into 10 mL vials and 

20 ng of IS was added to each sample. Four mL of extraction solvent (acetonitrile and water 

(1/1 v/v with 0.1% formic acid)) were added and the samples were sonicated (DT 255, Bandelin 

electronic, Sonorex digitec, Berlin, Germany) during 15 min. The supernatant was filtered 

through a syringe filter (0.45 μm, regenerated cellulose, Labicom, Olomouc, Czech Republic) 

into 10-mL vials. The same step was repeated with 4 mL of acetonitrile, 2-propanol, and water 

(3/3/4 v/v/v with 0.1% formic acid). Two supernatants were mixed after extraction procedure. 

Each sample was prepared and analysed in duplicate. 

This method was validated in the range of tested concentrations and exhibited good 

linearity in the concentration range between 0.005 and 0.5 mg/kg BP3 and 4-MBC; R2 = 0.999 

and average recovery of BP3 and 4-MBC was 108 % (±8). Average limit of quantification was 

0.09 mg/kg for BP3 and 0.07 mg/kg for 4-MBC. 

Internal standard method was used for quantification of target compounds. The matrix 

effect was assessed for each compound, and corrections for ion suppression or enhancement 

were accomplished using matrix-matched standards for sediment samples. Matrix-matched 

standards were prepared from tested sediment extract by spiking with both IS and target 

compounds at 0.01 mg/kg and 0.1 mg/kg, respectively. 
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2.5 S. vittatum exposure trials 

Alnus glutinosa leaves were collected, air dried and stored in the darkness until use as food 

in bioassays. Leaf discs with app. 12 mm diameter were prepared after soaking leaves in 

distilled water. Leaf discs were then autoclaved and conditioned during one week in 1500 mL 

of local river water with aeration and in laboratory conditions (20 ± 1ºC, 16:8 h light: dark 

photoperiod). After the conditioning period, the leaf discs were dried at 50ºC for four days and 

then weighed. Just before use in the feeding test, leaf discs were soaked in ASTM hard water 

medium (ASTM, 1980) during 96h.  

Feeding bioassays were conducted according to Campos et al. (2016). S. vittatum larvae 

were individually exposed to a gradient of UV-filters concentrations (2.5, 5, 10 mg/Kg) plus 

control (ASTM only) and solvent control treatment in laboratory conditions (20ºC ± 1ºC and 

light-dark cycle of 16:8h), with aeration. Ten replicates were used in each treatment in which 

six alder leaf discs were added as food. After the exposure period of 6 days, organisms were 

collected, removed from their mineral cases, quickly dried on filter paper, immediately 

weighed, frozen in liquid nitrogen and stored at -80ºC for determination of biochemical 

responses. Alder leaves discs were also collected and rinsed in distilled water and dried at 50ºC 

during 96h. The differences in initial and final leaf disc dry mass (mg) together with wet mass 

of organism (mg) allowed us to calculate S. vittatum’ feeding rate (Pestana et al., 2009b). 

Replicate vials with leaf discs and no larvae were used to determine correction factors for leaf 

weight change.  

 

2.6 Determination of biochemical biomarkers  

To evaluate sub-cellular and biochemical effects induced by UV-filters exposure on S. 

vittatum, each organism previously frozen was homogenized in 1600 µL of milli-Q water by 

sonication. After homogenization, 3 aliquots of 300 µL were used to analyse carbohydrates 

and proteins, lipids, and ETS. Another aliquot of 200 µL of homogenized sample containing 4 µl 

of 4% 2,6-Di-tert-butyl-4-methylphenol in methanol was used for lipid peroxidation 

determination. Five hundred µL of K-phosphate buffer (0.2 M; pH = 7.4) was added to the 

remaining volume (500 µL) of homogenized sample, followed by centrifugation at 10000 xg for 

20 min at 4ºC. The resulting post-mitochondrial supernatant (PMS) was separated in aliquots 

for catalase, glutathione-S-transferase, total glutathione, acetylcholinesterase, and protein 

quantification.  

 

 

 



Chapter 3: Ecotoxicity of two organic UV-filters to the freshwater caddisfly Sericostoma vittatum 

 

72 
 

2.6.1 Biomarkers related with oxidative stress and neurotransmission 

LPO was determined in the homogenate by measuring thiobarbituric acid-reactive 

substances (TBARS) at 535 nm using 1.56x105 M-1cm-1 as molar extinction coefficient (Bird and 

Draper, 1984; Ohkawa et al., 1979). The results were expressed as nmol TBARS per g of wet 

weight. CAT activity was assessed with PMS fraction by measuring decomposition of hydrogen 

peroxide at 240 nm using 40 M-1cm-1 as molar extinction coefficient (Clairborne, 1985). Results 

were expressed as µmol per min per mg of protein. Glutathione-S-transferase activity was 

measured with PMS through the conjugation of L-glutathione reduced with 1-chloro-2,4-

dinitrobenzene at 340 nm for 5 min using 9.6 x 103M-1cm-1 as molar extinction coefficient 

(Habig et al., 1974). The enzymatic activity was expressed in nmol per min per mg of protein. 

Total glutathione content was measured with PMS fraction using the recycling reaction of 

reduced glutathione with 5,5′-dithiobis-(2-nitrobenzoic acid) in the presence of an excess of 

glutathione reductase (Baker et al., 1990). The absorbance was read at 412 nm during 3 min. 

Total glutathione levels were expressed as µM per mg of protein, using a standard curve with 

known concentrations of L-GSH. Considering that cholinesterases present in S. vittatum have 

been previously characterized as AChE (Pestana et al., 2014), enzymatic activity was measured, 

in the present study, with PMS fraction using acetylthiocholine as substrate and Ellman’s 

reagent (Ellman et al., 1961), addapted to microplate (Guilhermino et al., 1996). The reaction 

was followed at 414 nm and the enzymatic activity was expressed in nmol per min per mg of 

protein using 13.6x103 M-1cm-1 as molar extinction coefficient. The protein concentration was 

determined with PMS fraction according to Bradford method (Bradford, 1976) adapted from 

BioRad´s Bradford micro-assay, using γ-globuline as a standard. 

 

2.6.2 Energy reserves and energy consumption 

Lipids, carbohydrates and proteins contents and energy consumption (ETS activity) were 

measured according to protocols by De Coen and Janssen (1997) with slight modifications 

(Rodrigues et al., 2015).  

Homogenate for lipids measurement (300 µL) were pre-treated with 500 µL of chloroform 

(119.38 M; ACS spectrophotometric grade, ≥99.8%), 500 µL of methanol (32.04 M; ACS 

reagent, ≥99.8%) and then centrifuged at 1000g during 5 min. After centrifugation 100 µL of 

each sample was transferred to a glass tube, 500 µL of sulfuric acid was added and the samples 

were incubated at 200 ºC during 15 min. After that, the samples were cooled down at room 

temperature and 1500 µL of ultra-pure water was added. The absorbance was read at 375 nm 

using tripalmitine as a standard.  
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For the measurement of carbohydrates and protein content, to 300 µL of homogenate was 

added 100 µL of 15% (w/v) trichloroacetic acid, following an incubation at -20ºC during 10 min. 

After that, the samples were centrifuged and the supernatant was collected to measure the 

carbohydrates contents. The pellet was suspended with 500µL of NaOH, incubated at 60ºC 

during 30 min and lastly 280µL of HCl was added. Total proteins content was measured 

following Bradford's method (Bradford, 1976). The absorbance was read at 592 nm after 30 

min of incubation using γ-globuline as a standard. To measure carbohydrates content, 200 µL 

of supernatant of each sample were transferred to a glass tube and 200 µL of 5% phenol and 

800 µL of sulfuric acid were added. The mixture and standard curve with known 

concentrations of glucose were incubated for 30 min at room temperature. The absorbance 

was read at 492 nm. Energetic values were calculated based on the energy of combustion of 

the different fractions (De Coen and Janssen, 1997). 

ETS activity was measured with 300 µL of homogenate, 150 µL of homogenization buffer 

(0.3 M Tris base; 0.45% (w/v) Poly Vinyl Pyrrolidone; 459 μM MgSO4; 0.6% (v/v) Triton X-100 at 

a pH of 8.5) and centrifuged at 4ºC during 10 min (1000g). To 50 µL of supernatant was added 

150 µL of buffered solution (0.13 M Tris base containing 0.27% (v/v) Triton X-100; 1.7 mM 

NADH; 274 μM NADPH) and 100 µL of INT solution (p-iodonitrotetrazolium; 8 mM). The 

absorbance was read at 490 nm over 3 min. The cellular oxygen consumption rate was 

calculated using the stoichiometric relationship (2 μmol of INT-formazan formed 1 μmol of 

oxygen consumed) and using formula of Lambert–Beer using an ε = 15,900 M-1cm-1 for INT-

formzan. Caloric values were calculated from ETS activity using specific oxyenthalpic 

equivalent for an average lipid, protein and carbohydrate mixture of 480 kJ/mol.  

 

2.7 Statistical analysis 

Effects of UV-filters in S. vittatum on biochemical endpoints and in feeding rate were 

evaluated using analysis of variances (ANOVA) with multiple comparisons examined by 

Dunnett’s post hoc test. Since no significant differences were found between control and 

solvent control (evaluated by t-test) all comparisons were made against solvent control 

treatment. All variables were previously assessed for normality using Shapiro-Wilk test while 

Brown-Forsythe test verified the homoscedasticity of data. Carbohydrates data were log 

transformed and Kruskal-Wallis test followed by Dunn’s post hoc test was used for analysis of 

proteins and ETS data. All data were analysed using Prism 6.0. (GraphPad Software, La Jolla 

California USA) with significance level set at p < 0.05. 
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3. Results   

Nominal and measured concentrations of BP3 and 4-MBC in the sediment are presented in 

Table 2. Since chemical analyses showed that concentrations of BP3 and 4-MBC in sediments 

at the end of the exposure period (6 days) were up to 71% and 48.6 % lower than nominal 

concentrations, measured concentrations are presented in all figures and tables. The 

differences observed between nominal and measured concentrations of UV-filters might 

reflect some microbial degradation, bioaccumulation of UV-filters in organisms and adsorption 

to leaf material although we cannot exclude patchy contamination of sediments.  

 

Table 2 - UV-filters concentrations measured in sediment (mg/Kg) in the end of exposure period (after 6 
days) (mean ±SD). 
 

 Nominal 
concentrations 

(mg/Kg) 

Measured concentrations (mg/Kg) 

BP3 4-MBC 

Six-day exposure 2.5 0.89 (±0.04) 1.35 (±0.21) 
5 1.45 (±0.09) 2.57 (±0.35) 

10 3.55 (±0.59) 6.95 (±1.83) 
 

 

After six days of exposure, BP3 and 4-MBC caused feeding inhibition in S. vittatum larvae. A 

significant decrease of 54% was observed in feeding rates of S. vittatum exposed to 3.55 

mg/Kg of BP3 (figure 1a; F(3,36) = 5.71; p < 0.01) when compared to solvent control. The feeding 

rate upon exposure to 4-MBC followed a clear dose-response relationship with reductions of 

44 and 69% in S. vittatum larvae exposed to 2.57 and 6.95 mg/Kg of 4-MBC, respectively 

(figure 1b; F(3,36) = 12.28; p < 0.001).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Feeding rates of S. vittatum (mg leaf/mg organism/day; mean ± SE) exposed to BP3 (a) and 
4-MBC (b). Asterisks (*) denote statistically significant differences compared to solvent control (0+) 
(Dunnet’s post hoc test, p < 0.05).   
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Concerning biochemical responses, total glutathione level was significantly increased in 

larvae of S. vittatum exposed to UV-filters during 6 days in comparison to larvae under control 

conditions A dose-response relationship was observed on total glutathione levels when S. 

vittatum larvae were exposed to BP3 showing significant effects at concentrations ≥ 1.45 

mg/Kg (figure 2a; F(3,35) = 22.70; p < 0.001). Also, a significant increase on total glutathione 

levels was observed on larvae exposed at concentrations ≥1.35 mg/Kg 4-MBC (figure 2b; F(3,36) 

= 20.86; p < 0.001;). BP3 did not elicited a monotonic or dose-dependent response in terms of 

LPO, despite the significant effects detected by ANOVA (table 3; BP3: F(3,33) = 3.43; p < 0.05) 

with no significant differences found by post-hoc test for any of the concentrations in 

comparison with the solvent control treatment. 4-MBC did not significantly affected LPO levels 

either (table 3; 4-MBC: F(3,34) = 2.67; p > 0.05). Both UV-filters tested did not significantly 

affected the activity of CAT (table 3; BP3: F(3,36) = 0.46; p > 0.05; 4-MBC: F(3,36) = 2.34; p > 0.05)  

nor GST (table 3; BP3:F(3,35) = 0.91; p > 0.05; 4-MBC: F(3,36) = 0.51; p > 0.05) of exposed S. 

vittatum larvae in comparison with the solvent control treatment. Concerning neurotoxic 

effects, AChE activity of S. vittatum was not significantly inhibited by BP3 (F(3,36) = 3.97; p < 

0.05) or 4-MBC (F(3,36) = 0.48;  p> 0.05) compared to solvent control treatment (table 3). 
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Table 3 – Effect of different concentrations of BP3 and 4-MBC on LPO levels, CAT, GST and AChE activity (mean ± SE) in S. vittatum larvae exposed for 6 days. 
 

  BP3 concentrations (mg/Kg) 4-MBC concentrations (mg/Kg) 
0+ 0.89 1.45 3.55 1.35 2.57 6.95 

LPO 
(TBARS nmol/g wet  

weight) 

36.04 (±2.99) 43.92 (±4.01) 46.72 (±3.26) 33.47 (±2.95) 47.61 (±4.32) 48.35 (±4.40) 38.76 (±4.35) 

CAT 
(µmol/min/mg 

protein) 

86.77 (±4.93) 85.02 (±4.98) 83.13 (±7.86) 93.12 (±7.31) 92.41 (±2.63) 97.95 (±3.54) 85.52 (±3.47) 

GST 
(nmol/min/mg 

protein) 

1.81 (±0.25) 2.01 (±0.19) 1.83 (±0.30) 1.82 (±0.24) 1.86 (±0.37) 1.76 (±0.25) 2.23 (±0.29) 

AChE 
(nmol/min/mg 

protein) 

6.67 (±0.51) 5.30 (±0.78) 4.86 (±0.56) 7.62 (±0.66) 7.31 (±0.79) 6.33 (±0.46) 7.32 (±0.94) 
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Figure 2 - Effects of BP3 (a) and 4-MBC (b) exposure on total glutathione contents (µM/mg of protein; 

mean ± SE).  Asterisks (*) denote statistically significant differences compared to solvent control (0+) 
(Dunnett’s post hoc test, p < 0.05). 

 

 

Carbohydrates content was significantly decreased on larvae exposed at 3.55 mg/Kg of BP3 

(figure 3a; F(3,35) = 6.80; p = 0.001) and 6.95 mg/Kg of 4-MBC (figure 3b; F(3,35) = 8.38; p < 0.001). On 

the other hand, no significant effects were observed on lipid (BP3: F(3,36) = 1.21; p > 0.05; 4-MBC: 

F(3,36) = 0.76; p > 0.05) and protein contents (BP3: H= 0.64, Df= 3;  p > 0.05; 4-MBC: H = 4.50, Df= 3; 

p > 0.05) (figure 3a and b) when compared to the solvent control treatment. Concerning cellular 

respiration, ETS activity in S. vittatum larvae was not significantly changed after exposure to BP3 

(H=5.7, Df= 3; p > 0.05) or 4-MBC (H=0.27, Df= 3; p > 0.05) (figure 3c and d respectively). 
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Figure 3 - Energy budget of S. vittatum after 6 days of exposure to BP3 (a,c) and 4-MBC (b,d). a and b 

correspond to fractions of energy reserves (Elipids, Ecarbohydrates and Eproteins; mJ/mg organism; mean ± SE) and c 
and d correspond to energy consumption (ETS activity; mJ/mg organism/h; mean ± SE). Asterisks (*) 
denotes significant differences compared to the solvent control (0+) treatment at p < 0.05 (Dunnett’s post 
hoc test (carbohydrates and lipids) and Dunn´s post hoc test (proteins and ETS)). 

 

 

4. Discussion 

UV-filters are emerging contaminants of many aquatic ecosystems and their effects in the 

environment should be closely monitored. To date only scarce information exists, being mostly 

based in toxicity data for a limited number of model aquatic species.  

In the present study, we have shown that organic UV-filters such as BP3 and 4-MBC can cause 

feeding inhibition in aquatic insects. Exposure to dosed sediments reflecting environmentally 

relevant concentrations of BP3 and 4-MBC induced a 50% inhibition of S. vittatum larvae feeding 

rates, which may lead to deleterious consequences in terms of growth and development of 

organisms, and therefore alter population dynamics, compromise organic matter processing in 

streams and reduce performance of other detritivores species (Campos et al., 2014).  Moreover, 
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there are also evidences that both, BP3 and 4-MBC can directly affect genes related with the 

development of arthropods. The organic UV-filter 4-MBC induced overexpression of the ecdysone 

receptor gene and BP3 activated the expression of a set of ecdysone responsive genes in C. 

riparius (Ozáez et al., 2013, 2014), thus showing the potential for endocrine disruption caused by 

this type of compounds in invertebrates. Furthermore, it was previously shown that UV-filters can 

alter estrogenic and hormonal activity in fish (Kunz and Fent, 2006; Kunz et al., 2006; Wang et al., 

2016).   

These results are also in good agreement with previous studies showing that exposure to UV-

filters, can compromise growth of different species, such as, the dipteran C. riparius (Campos et 

al., 2017), the sea urchin Paracentrotus lividus (Paredes et al., 2014) or the crustacean D. magna 

(Sieratowicz et al., 2011). Chronic effects of UV-filters have also been reported for the algae 

Desmodesmus subspicatus (Sieratowicz et al., 2011), the protozoan Tetrahymena thermophila 

(Gao et al., 2013), and marine microalgae Isochrysis galbana (Paredes et al., 2014).  

Our results also show a reduction of sugars content without any significant changes in lipid and 

protein contents nor ETS activity, reflecting only minor changes in the energy budget of S. 

vittatum larvae exposed to BP3 and 4-MBC. However, although we cannot exclude the possibility 

of a reduction of sugar content due to reduced feeding rates or altered assimilation, 

carbohydrates are most likely being used as easily metabolizable resources to fuel higher energy 

requirements of larvae related with detoxification mechanisms (Arrese and Soulages, 2010; Choi 

et al, 2001; De Coen and Janssen, 2003; Sokolova et al., 2012). In fact, the lack of significant 

effects in terms of LPO and related enzymes, such as, CAT and GST, could indicate that increase in 

tGSH might play an important role for the detoxification of UV-filters preventing oxidative stress. 

The increase of glutathione contributes to maintain the cellular redox status since glutathione 

protects the cell against reactive oxygen species and free radicals (Doyotte et al., 1997; Lushchak, 

2012; Sen, 1997). Synthesis and recycling of tGSH are probably contributing to the decrease of 

energetic reserves suggested by the reduction in carbohydrates observed in larvae exposed to 

UV-filters. In line with our study an increase in glutathione levels was observed in Carassius 

auratus exposed to UV-filters (Liu et al., 2015). Also, no evidences of oxidative stress induced by 

UV-filters exposure could be detected in the aquatic midge C. riparius (Campos et al., 2017) and in 

the fish C. auratus (Liu et al., 2015). Interestingly, no effects were observed in terms of ETS 

activity, which is commonly assumed to reflect the energetic costs of detoxification mechanisms. 

(Choi et al., 2001; Sokolova et al., 2012).  This lack of response was unexpected especially given 

the increase ETS activity observed before for Chironomids exposed to these organic UV-filters 
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(Campos et al., 2017). However, reductions in oxygen consumption and in ETS activity have been 

previously observed in S. vittatum larvae in response to other contaminants namely insecticides 

(Pestana et al., 2009b, Rodrigues et al., 2016). In fact, metabolic depression in cased caddisflies is 

assumed to be a general response to stress (Kuhara et al., 2001) and can lead to reduced activity 

and feeding inhibition as observed in the present study. Because foraging and digestion are also 

energy consuming processes, this reduced activity observed for S. vittatum larvae exposed to 

organic UV-filter for 6 days might have compensate the energetic costs of increased synthesis of 

tGSH. In addition, exposure to these organic UV-filters did not altered AChE activity which is in 

accordance with previous results showing no neurotoxicity of these compounds (Campos et al., 

2017).  

The present study shows that environmental relevant concentrations of BP3 and 4-MBC can 

alter the energetic metabolism of S. vittaum larvae with reductions in feeding activity and 

decrease in carbohydrate levels probably related with detoxification processes (increase in tGSH 

levels). These two compounds showed similar toxicity, which has been previously observed with 

C. riparius (Campos et al., 2017). In fact, several studies have shown that exposure to 

environmental relevant concentrations of UV-filters can cause detrimental effects on feeding, 

growth or reproduction, in different aquatic organisms (Paredes et al., 2014; Schmitt et al., 2008; 

Sieratowicz et al., 2011).  

The characterisation of toxicity of organic UV-filters and their environmental risk assessment 

should continue and also include relevant exposure scenarios of exposure to better predict their 

ecological effects in natural systems. Firstly, the suggested role of organic UV-filters as endocrine 

disruptors in invertebrates, call for research on potential multigenerational effects (Ozaéz et al., 

2013, 2014).  

Also, it is important to address effects of organic UV-filters when in mixtures with other 

chemical and abiotic stressors so as to evaluate the potential for synergistic or antagonistic effects 

(Ozaéz et al.,2016). As an example, it has been demonstrated that UV-filters can generate reactive 

oxygen species in the aqueous solution when exposed to ultraviolet radiation (Hanson et al., 

2006; Inbaraj et al., 2002; Sánchez-Quiles and Tovar-Sánchez, 2014) and this should also be taken 

into account to better understand the ecological effects of UV-filters.  

Furthermore, considering the high lipophilicity and stability of organic UV-filters, their 

bioaccumulation and potential magnification within food webs should also be considered (Kaiser 

et al., 2012). 
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Finally, our results come from laboratory single species assays and should be complemented 

with multispecies assays to encompass biotic interactions in the stress response (Campos et al., 

2014; Pestana et al., 2009a). In this sense mesocosms experiments using invertebrate natural 

communities can be used to elucidate the direct and indirect effects of these emerging 

contaminants on ecosystem functioning (Pestana et al., 2009a).  
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Supplementary data 

 

Table SD 1- MS/MS parameters for triple quadrupole detection of targeted compounds: 

*No confirmation ion. 

 
 
 
 
 
Table SD 2- LC gradient for the elution of targeted compounds, Cogent Bidentate C18 column. 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

Compound Mode Quantification  

transition 

Confirmation 

transition  

Tube Lens 

voltage (V) 

Collision 

energy 

Retention time 

(min) 

BP3 + 229.062→ 150.670 229.062→ 105.200 91 18 9.44 

4-MBC + 255.124→ 104.780 255.124→ 164.810 94 30 10.12 

Diclofenac + 296.000→ 214.010 * 86 33 9.13 

Time, min Mobile phase composition Flow rate, 

μL/min 
Water 

(0.1 % FA) 

Acetonitrile 
(0.1 % FA) 

0.00 100 0 300 

1.00 100 0 300 

7.00 60 40 350 

9.00 0 100 400 

10.00 0 100 400 

10.01 100 0 300 

13.00 100 0 300 
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Toxicity assessment of binary mixtures of BP3 with 4-MBC (UV-filters), and BP3 with 
DEET (insect repellent) using the aquatic midge Chironomus riparius 

 
 
 
 
 
Abstract 
 

To increase protection against ultraviolet radiation, personal care products have diverse 

organic ultraviolet filters (UV-filters) in their composition. Some products also add insect 

repellents to reduce mosquito’s bites. Consequently, these compounds reach freshwaters and the 

aquatic organisms are exposed to a cocktail of contaminants. In this study, the joint effects of two 

UV-filters (Benzophenone – 3 (BP3) and 3-(4-methylbenzylidene) camphor) and of BP3 combined 

with an insect repellent (N, N diethyl- 3-methylbenzamide – DEET) were evaluated using life 

history traits of the aquatic midge Chironomus riparius such as emergence rate, development 

time and imagoes body weight. A synergistic interaction between BP3 and 4-MBC was only found 

for C. riparius emergence rate while no interaction was observed for the other endpoints. 

Concerning the effects of BP3 and DEET mixture our analysis suggests synergism in the case of 

males but antagonism in the case of females’ development time. Our results imply that effects of 

UV-filters present in sediments within chemical mixtures are complex and that the evaluation of 

effects using different life-history traits can yield different patterns of responses. These results 

also indicate that individual chemical testing can underestimate toxicity of organic UV-filters. 

 

Key-words: combined effects; personal care products; generalized linear models; aquatic insects  
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1. Introduction  

Organic ultraviolet filters (UV-filters) are present in several personal care products (PCPs) 

(e.g. sunscreens and cosmetics) and other materials (e.g. plastics and paints) to prevent 

damage/injuries caused by ultraviolet radiation (Díaz-Cruz et al., 2008). These compounds are 

being increasingly detected in different environmental matrices around the world, such as surface 

and marine waters, effluents and influents and also in sediments (Ramos et al., 2015). Their 

presence in these ecosystems is attributed to direct inputs (recreational activities and 

beachgoers) but mainly to the inefficient removal during wastewater treatment plants (Brausch 

and Rand, 2011; Giokas et al., 2005; Golovko et al., 2014).  

Previous studies showed that UV-filters can affect cell growth, feeding, development time 

and reproduction of several aquatic organisms, and also have the potential to bioaccumulate in 

fish tissues (Campos et al., 2017a; Campos et al., 2017b; Langford et al., 2015; Paredes et al., 

2014; Schmitt et al., 2008). Nevertheless, these studies have mainly focused on single chemical 

exposure using standardized testing protocols whereas commercial sunscreens have in their 

composition a combination of different UV-filters to improve adequate protection against UV-

radiation (Ozáez et al., 2016b; Ramos et al., 2015). Besides, other compounds such as insect 

repellents are also used simultaneously with UV-filters and thus a cocktail of PCPs may reach the 

aquatic environment (Kameda et al., 2011; Kasichayanula et al., 2007; Ramos et al., 2016; Tsui et 

al., 2014). As a consequence, macroinvertebrate communities living in aquatic ecosystems 

contaminated by such compounds are simultaneously exposed to different xenobiotics, which 

calls for an assessment of their combined effects to better represent realistic scenarios of 

exposure and better support environmental risk assessment strategies (Backhaus and Faust, 

2012). 

In the present study, we evaluated the combined effects of two organic UV-filters and one 

UV-filter with an insect repellent, on life-history traits of the aquatic midge Chironomus riparius 

(Meigen). BP3 and 4-MBC were chosen as model UV-filters since they are two of the most 

detected UV-filters in aquatic environment. Additionally, previous studies showed that BP3 and 4-

MBC act as endocrine disruptors (Coronado et al., 2008; Ozáez et al., 2013; Wang et al., 2016) and 

research has shown that both compounds impair the growth and the development of C. riparius 

(Campos et al., 2017b). Considering that BP3 and the insect repellent DEET (N, N diethyl- 3-

methylbenzamide) are essential active ingredients used in commercial sunscreens and in 
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mosquito repellent preparations, they might be used simultaneously by humans (Fediuk et al., 

2012; Kasichayanula et al., 2007) and might be present at the same time in many freshwaters. 

Taking into consideration the physic-chemical properties of UV-filters, specially their low water 

solubility and accumulation in sediments, C. riparius was chosen as a test species since they spend 

most part of their short life-cycle in contact with sediment. Moreover, this non-biting midge plays 

an important role in detritus processing of organic matter and serve as food to other 

macroinvertebrates and fishes. Thus, the main objective of this study was to assess the toxicity of 

BP3 - 4-MBC and BP3 - DEET binary mixtures, by measuring three relevant reproductive endpoints 

in C. riparius: emergence rate, development time and imagoes body weight. 

 

2. Material and Methods  

 

2.1 Test Organisms  

For all tests, C. riparius egg ropes were obtained from a culture established in University of 

Aveiro. The organisms were cultured in plastic aquariums in American Society for Testing 

Materials (ASTM) hard water medium (ASTM, 1980), inside plastic aquariums with fine sediment 

(< 1mm) previously burned at 500 ºC during 4h and with aeration. Organisms were maintained at 

20 ± 2 ºC, with a photoperiod of 16:8 h light: dark. Moreover, organisms were fed with a 

suspension of macerated Tetramin® (Germany), three times a week and the medium changed 

every week.  

 

2.2 Chemical compounds and sediment composition 

Benzophenone 3 (BP3; 2-hydroxy-4-methoxybenzophenone; CAS No. 131-57-7; purity ≥ 98%), 

and 3-(4-methylbenzylidene) camphor (4-MBC; CAS No. 36861-47-9, purity ≥ 98%) were obtained 

from Sigma-Aldrich (Portugal) and the insect repellent, N, N diethyl- 3-methylbenzamide (DEET; 

CAS No. 134-62-3, purity ≥ 97%) were obtained from Sigma-Aldrich (Germany). The physic-

chemical properties of each compound are presented in table 1. 

Artificial sediment was composed by <1 mm inorganic fine sediment (previously burned 

during 4h at 500ºC) (75%), kaolin (20%), α-cellulose (5%) and calcium carbonate (0.1%) (OECD, 

2004a).  
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Table 1- Physico-chemical properties of BP3, 4-MBC and DEET.  

 

Compounds Formula Abbreviation CAS No Molecular 
weight 
(g/mol) 

Log Kow Water 
solubility (g/L) 

2-hydroxy-4-
methoxybenzopheno
ne (Benzophenone-3) 

C14H12O3 BP3 131-57-7 228.24 3.79 0.10 

3-(4-
methylbenzylidene) 

camphor 

C18H22O 4-MBC 36861-47-
9 

254.37 4.95 0.017 

N, N diethyl- 3-
methylbenzamide 

C12H17NO DEET 134-62-3 191.27 2.20 >1.0 

Based on Aronson et al.(2012) and Gago-Ferrero et al. (2012) 

 

 

2.3 Chemical dosing and experimental design 

Different dosing procedures were used according to the Log Kow and solubility of each 

compound. Considering that BP3 and 4-MBC have a log Kow > 3 and low water solubility, the 

sediment was dosed. On the other hand, since DEET has a log Kow < 3, the medium (ASTM) was 

dosed. The treatments were selected according to previous experiments and considering 

concentrations reported in the literature for the aquatic environment. A full factorial design was 

used in both binary mixtures (figure 1). 

BP3 and 4-MBC stock and experimental solutions (6, 12, 24 mg/Kg) were prepared in ethanol 

(96%). The artificial sediment (50 g dry weight (dw)) was then contaminated with 10 mL of 

respective UV-filters solution and their mixtures and were left to evaporate during 72h. Also, 10 

mL of 96% ethanol were added to the sediment to perform solvent control. After 72h of 

evaporation, 10 mL of ASTM (to formulate the final composition of sediment) were added in all 

treatments including solvent control (0+) and mixed until a homogeneous sediment paste was 

achieved. Finally, 150 mL of ASTM medium were also added and the sediment was left to 

equilibrate for 48h.  

In the test addressing combined effects of BP3 and DEET, BP3 was spiked into the sediment 

(see above) whereas DEET stock solution was prepared in ASTM. DEET experimental solutions (40, 

200, 1000 µg/L) were prepared by diluting the stock solution in ASTM.  

A full factorial design experiment was performed, consisting of the simultaneous testing of 

three single chemical concentrations, nine mixture ratios and a solvent control (figure 1). The 

exposure was performed according to the OECD guideline (OECD, 2004b). Five replicates with a 

pool of five larvae with less than 24 h post hatching (1st instar) were used in all treatments. The 
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test was conducted at 20 ± 1ºC with a photoperiod of 16:8 light-dark. During 28 days, organisms 

were fed every two days with a suspension of macerated Tetramin® (0.25 mg per organism per 

day provided until day 9 and 0.5 mg henceforth, as older organisms consume more). The 

endpoints assessed were emergence rate, development time of males and females and imagoes 

body weight of males and females. For that, emergence was checked daily (between 14 and 28 

day) and imagoes were collected with an aspirator and kept in 70% ethanol. Imagoes were dried 

for 24h at 50ºC and weighted in a microbalance (RAWAG MYA 2.3Y).  

 

 

 

 

Figure 1 – Full factorial design of the mixture experiments with three concentrations of a) BP3 - 4-MBC 

and b) BP3 - DEET. 

 

 

2.4 Statistical analysis 

A combined approach, including statistical modelling and the reference mixture toxicity model 

of independent action (IA), was followed to evaluate the effects of the tested binary mixtures. 

Whereas statistical modelling was used to detect the significance of chemical interactions, the IA 

model provided a mixture toxicity theoretical framework to infer the direction of the interaction 

between predictors (synergism or antagonism).  

First, a Generalized Linear Model (GLM) with a binomial distribution and logit link function 

was applied on emergence rate of organisms and a GLM with a Gaussian distribution and identity 

link function was applied on development time and imagoes body weight (males and females). 

Model selection followed a backward stepwise approach based on the Akaike´s Information 

a b 
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Criterion (AIC). We started with the full model and then removed the non-significant terms to test 

which factor were necessary in the minimal adequate model. The best model (with lower AIC) was 

calculated by the difference between the AIC (ΔAIC). GLM were previously used to assess the 

combined toxicity of metals and pesticides (Iwasaki and Brinkman, 2015; Morgado et al., 2016). 

Development time of females and imagoes body weight in the BP3 - 4-MBC experiment and 

development time of males in the BP3 - DEET experiment were log transformed since data did not 

follow a normal distribution. These analyses were performed using R studio (version 1.0.136, 

2016).  

Whenever the minimal adequate model chosen included an interaction term, deviations from 

additivity (i.e. synergistic/ antagonistic effects) of mixtures were then evaluated comparing 

observed responses to predicted responses given by IA reference model considering the 

unaffected proportion. The IA mathematical model considers the observed responses of single 

compounds and calculates their predicted effects in mixtures using probability statistics. Since our 

data are continuous variables (emergence rate, development time and imagoes body weight) the 

probability of nonresponse to the chemicals was calculated according to the following equation:  

 

 

where max is the maximum value observed and qi(Ci) is the probability of nonresponse at 

concentration c of the toxicant i (Martin et al., 2009). The deviations to additivity were evaluated 

after calculation of the confidence intervals (α= 0.05).   

 

3. Results  

3.1 Effects of BP3, 4-MBC and of their mixture on C. riparius  

Exposure to organic UV-filters had clear effects on C. riparius reproductive traits. The 

exposure to BP3 and 4-MBC reduced the emergence rate of C. riparius, particularly BP3 whose 

highest concentration tested led to total absence of emerged imagoes (figure 2, table 2). 

Exposure to 4-MBC delayed the development time of both C. riparius male and female, (figure 3, 

table 2). Regarding BP3, sub-lethal endpoints were restricted to two concentrations due to 

absence of emergence, which eventually limited our ability to detect effects. However, a delay in 

development time was still observed for C. riparius female (figure 3b, table 2). The UV-filter 4-

MBC also reduced the weight of C. riparius imagoes at emergence with stronger effects observed 

in the case of females (figure 4, table 2).  
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Concerning the effects of the combined exposure to both UV-filters our results show that 

exposure to sediments contaminated with a mixture of BP3 and 4-MBC can induce stronger 

effects on C. riparius emergence rates than anticipated by considering each chemical 

independently (figure 2; table 2). In fact, the minimal adequate GLM model (i.e. the model with 

the lowest AIC value) for emergence rate included an interaction term (table 1SM), as it proved to 

improve the goodness of the fit. The interaction regression coefficient was negative, suggesting a 

synergistic effect on emergence rate for binary mixtures of BP3 and 4-MBC. This pattern was 

further confirmed by the IA model, whose predictions for C. riparius emergence rates consistently 

exceeded our observed results considerably (figure 2).  

Contrary to the effects on emergence rates, there seems to be no departure from additivity 

for development time and imagoes weight since none of the most adequate models included the 

interaction term (table 1 SM). In fact, male development time and male imagoes weight was best 

explained by 4-MBC alone (figure 3a, 4a; table 2) while the predictors “BP3” and “4-MBC” were 

presented in the most parsimonious model in the case of female imagoes traits (figure 3b, 4b; 

table 2).  
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Table 2 - Summary of the results for Generalized Linear Model for the effect of BP3 and 4-MBC on C. 
riparius emergence rate, development time and imagoes weight. Only best minimal adequate models, i.e. 
model with lowest AIC, are presented.  
 

Emergence rate β  Standard error z value p-value 

BP3 -0.092 0.021 -4.330 1.49x10-5 

4-MBC -0.037 0.016 -2.266 0.023 

BP3:4-MBC -0.004 0.002 -1.698 0.090  

 

Development time 

(males)   

    

4-MBC 0.127 0.030 4.270 0.0001 

 

Development time 

(females)   

    

BP3 0.005 0.003 1.885 0.066 

4-MBC 0.004 0.002 2.411 0.020  

     

Imagoes weight (males)     

4-MBC -0.003 0.003 -1.312 0.197 

 

Imagoes weight (females)     

BP3 -0.008 0.004 -1.85 0.075  

4-MBC -0.013 0.002 -5.35 3.66x10-6  
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Figure 2 - Effects of BP3 (B), 4-MBC (M) and their binary mixture on C. riparius emergence rate. 

Empty symbols denote observed responses (mean ± CI) and filled symbols represent effects predicted by 

independent action reference model. * denotes values predicted by the independent action model that 

were significantly different from the observed values (i. e. were outside the confidence intervals (95%)).     

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Toxicity assessment of binary mixtures of BP3 with 4-MBC (UV-filters), and BP3 with DEET (insect repellent) 
using the aquatic midge Chironomus riparius 

 

98 
 

 

 

 

Figure 3 - Effects of BP3 (B), 4-MBC (M) and their binary mixture on C. riparius development time of a) 
males and b) females, (mean ± CI). 

 



Chapter 4: Toxicity assessment of binary mixtures of BP3 with 4-MBC (UV-filters), and BP3 with DEET (insect repellent) 
using the aquatic midge Chironomus riparius 

 

99 
 

 

Figure 4 - Effects of BP3 (B), 4-MBC (M) and their binary mixture on C. riparius body weight of a) males 
and b) females (mean ± CI). 

 

3.2 Effects of BP3, DEET and of their mixture on C. riparius 

Exposure to the selected DEET concentrations did not elicited any effects in the emergence 

rate of C. riparius (figure 5, table 3). However, delayed emergence was observed for C. riparius 

female imagoes exposed to DEET (figure 6b), as well as a slight reduction of imagoes weight in 

males and females (figure 7a, b).  

Relatively to effects of the combined exposure to BP3 and DEET, our results did not show any 

altered effect of BP3 on emergence rate caused by the presence of DEET (figure 5; table 3). 

However, GLM analysis revealed that, for both genders, the effects of BP3 on development time 
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were altered by DEET since the most parsimonious models for each of them included interaction 

(figure 6; table 3 and table 2SM). In fact, our results showed that DEET influences’ BP3 effects on 

development time in opposite directions for females and males. Regarding males (figure 6a), the 

interaction regression coefficient was positive which indicates that higher-than-additive effects 

occur in development time when BP3 and DEET are combined (table 3; table 2SM). On the other 

hand, the negative interaction regression value found for females (figure 6b) implies that BP3 

effect on female development time is decreased when combined with DEET, leading to lower-

than-additive effects (table 3; table 2SM). These contrasting mixture effects were also supported 

by deviations to the IA model. For male C. riparius, observed development time was higher than 

predicted by the IA model. Regarding females, the IA-predicted development time was higher 

than our experimental observation, which indicates antagonistic effects. GLM analysis revealed 

that both BP3 and DEET reduced the weight of C. riparius imagoes, regardless of the gender, but 

no departure from additivity was identified for the mixture since the minimal adequate models 

for either males and females did not include interaction term (figure 7a and b; table 3 and table 

2SM). 
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Table 3. Summary of the results for Generalized Linear Model for the effect of BP3 and DEET on C. riparius 

emergence rate, development time and imagoes weight. Only best minimal adequate models, i.e. model 

with lowest AIC, are presented. 

 

Emergence rate  β  Standard error z value p-value 

BP3 -0.083 0.012 -7.025 2.15x10-12  

 

Development time 

(males) 

β Standard error z value p-value 

BP3 4.52x10-3   2.32x10-3    1.943   0.057 

DEET 2.25x10-5   3.26x10-5 0.691   0.493 

BP3: DEET 1.17 x10-5   4.31x10-6    2.723   0.009 

 

Development time 

(females) 

β Standard error z value p-value 

BP3 1.20x10-1 3.38x10-2    3.552 0.0008 

DEET 1.66x10-3 6.74x10-4    2.465 0.0167  

BP3: DEET -1.05x10-4 6.90x10-5   -1.517 0.135 

   

Imagoes weight (males) β Standard error z value p-value 

BP3 - 5.05x10-3 1.29x10-3 -3.920  0.0003 

DEET - 5.93x10-5 1.49x10-5 -3.979 0.0002 

 

Imagoes weight 

(females) 

β Standard error z value p-value 

BP3 -7.603x10-3 2.027x10-3    -3.752 0.0004 

DEET -1.216e x10-4 3.559x10-5    -3.412 0.001   
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Figure 5 - Effects of BP3 (B), DEET (D) and their binary mixture on C. riparius emergence rate (mean ± CI). 
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Figure 6 - Effects of BP3 (B), DEET (D) and their binary mixture on C. riparius development time of a) 
males and b) females. Empty symbols denote observed responses (mean ± CI) and filled symbols represent 
effects predicted by independent action reference model. * denotes values predicted by the independent 
action model that were significantly different from the observed values (i. e. were outside the confidence 
intervals (95%)). 
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Figure 7 - Effects of BP3 (B), DEET (D) and their binary mixture on C. riparius body weight of a) males 
and b) females (mean ± CI). 

 

4. Discussion  

Organic UV-filters are emerging and persistent contaminants of freshwaters sediments where 

they co-occur with a variety of different compounds. This study showed evidences of greater than 

additive toxic effects of a binary mixture of two different organic UV-filters towards reproductive 
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traits on the midge C. riparius. Moreover, non-additive effects were also observed in response to 

the binary mixture containing BP3 and the insect repellent DEET. 

Despite only few studies have been directly investigating the toxicity of chemical mixtures 

containing organic UV-filters, it has already been shown that toxicity of organic UV-filters is 

altered when in mixtures (Molins-Delgado et al., 2016; Ozáez et al., 2016b; Park et al., 2017). 

Results obtained by Ozáez et al., (2016b) suggested an antagonistic interaction after 96h of 

exposure to the binary mixture of 4-MBC and BP3 in terms of survival and in the ecdysone 

receptor gene expression in C. riparius. Likewise, exposure to binary and ternary mixtures of 

ethylhexyl methoxycinnamate, avobenzone and octocrylene showed reduced toxicity towards 

Daphnia magna, compared to single exposures (Park et al., 2017). Adding to this, our results 

showed that the toxicity of mixtures containing UV-filters can vary considerably concerning the 

different endpoints analysed. In fact, synergism was found for emergence rate of C. riparius larvae 

exposed to the mixture of BP3 and 4-MBC but the same was not observed for development time 

or imagoes body weight. Contrarily, non-additive effects were found for development time in C. 

riparius exposed to a mixture containing DEET and BP3, but no interaction was found for 

emergence rate or imagoes body weight. These differences illustrate the complexity of the 

physiological processes governing the combined effects of UV-filters in a holometabolous insect, 

whose metamorphosis is an endocrine controlled process. The effects of UV-filters on emergence 

are complex and can be due to multiple carry-over effects of larval exposure (i.e. effects on larvae 

development, feeding, energy requirements for detoxification). These differences in the joint 

toxicity in relation to different endpoints are common as showed in different studies (Ozáez et al., 

2016b; Pavlaki et al., 2011; Silva et al., 2015) and can be associated with the susceptibility of the 

physiological processes affecting each endpoint (Cedergreen and Streibig, 2005). 

The mode of action of UV-filters in invertebrates is not clear and thus explanation for such 

discrepancies in the toxicity of mixtures containing UV-filters are not straightforward. However, 

by acting as endocrine disruptors, UV-filters can affect reproductive traits, through effects in 

hormonal processes controlling pupal stage and the onset of metamorphosis. For instance, it has 

been shown that at the organismal level, BP3 and 4-MBC (single exposures) increase the 

development time of C. riparius females and reduce the imagoes body weigh of males (Campos et 

al., 2017b). Additionally, at the molecular level, 4-MBC induces the transcription of ecdysone 

receptor of C. riparius and increases the expression of the methoprene-tolerant gene (Met). 

Moreover, BP3 can induce activation of ecdysone receptor in C. riparius, by mimicking the 

hormone 20-hydroxyecdysone (Ozáez et al., 2013; Ozáez et al., 2014, Ozáez et al., 2016a). Thus, 
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the synergistic effects observed in our study for emergence rates might be related with endocrine 

disruption, namelly with alterations in the levels of ecdysone and juvenile hormone. Both 

hormones have an important role in the endocrine pathways and the concentrations of these two 

hormones in insects mediate the development transitions, namelly regulate molting, 

metamorphosis and reproduction of insects (Johnson et al., 2014; Planelló et al., 2015; Ozáez et 

al., 2016a). Kunz and Fent (2006) also observed synergism to the exposure of UV-filters in a 

recombinant yeast with the human estrogen receptor alpha (hERα). The authors pointed out that 

this synergism might be related with changes in metabolic pathways, namely by the activation 

and co-activation of the hERα (Kunz and Fent, 2006). 

The toxicity of UV-filters (single exposures) to C. riparius is also related with detoxification 

mechanisms. At similar concentrations, although neurotoxicity has not been observed, the 

exposure of C. riparius to BP3 and 4-MBC led to an increase in the energy consumption (increase 

in electron transport system) (Campos et al., 2017b). Moreover, in C. riparius the increase in the 

expression of Heat shock protein 70 (hsp70) gene and its activation were observed due to 

exposure to 4-MBC (Ozáez et al., 2016b) and to BP3, respectively (Ozáez et al., 2014). Additionally, 

Ozáez et al (2016b) observed that exposure to C. riparius to the binary mixture of BP3 and 4-MBC 

increased the expression of the hsp70 gene comparatively to single exposure to both UV-filters. 

Therefore, the exposure of UV-filters in mixture might cause higher stress in the cell which can be 

another explanation to the observed synergism. The hsp70 are somehow associated with 

hormonal pathways as well, namely playing a role in the signalling of steroid hormone in cells 

(Echeverria and Picard, 2010), which might also contribute to the endocrine disruption.  

At last, another possible explanation to the observed synergism can be related with the 

bioaccumulation of the UV-filters when in mixture. Possibly, UV-filters may bioaccumulate or cling 

to the C. riparius and somehow cause stronger effects. In fact, although in the presence of 

antagonism, Park et al. (2017) observed that UV-filters exhibit different behaviour when in 

mixture. The authors tested three different binary mixtures of UV-filters and observed that UV-

filters could either clung to the body of D. magna, accumulate in the gut or accumulate in thoracic 

appendages. Different toxicity patterns resulting from different binary mixtures with UV-filters 

can therefore be related to the bioavailability, to different uptake and elimination kinetics and to 

different pathways inside the organisms’ body. 

It must be referred, however, that none of the above-mentioned explanations is mutually 

exclusive and a complex combination of factors must be considered to understand the effects of 

mixtures containing UV-filters for a certain organism, under certain conditions, at a certain time 
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point, a considering a certain endpoint. Ozáez et al. (2016b) suggests that the effects of UV-filters 

in mixtures are probably a result of the balance between their actions in different hormonal 

receptors. The same authors also suggested that the effect caused in terms of the endocrine 

system together with the effects on heat shock proteins gene expression could be indicative of 

different modes of action of BP3 and 4-MBC in C. riparius which can increase the toxicity of UV-

filters when in mixture. 

Our results also provide evidences that effects of organic UV-filters can be altered by the 

presence of other chemicals. The combination of BP3 with DEET induced non-additive and 

gender-dependent effects in terms of C. riparius development time, leading to greater-than-

additive effects in males and lower-than-additive effects in females. These results are not in 

accordance with previous studies, where stronger effects on development were identified in 

females after exposure to these compounds, suggesting sex related developmental toxicity with 

males being more tolerant than females (Campos et al., 2017b; Campos et al., 2016b). Indeed, the 

present study corroborates the higher physiological susceptibility of females towards single 

exposures to BP3 and to DEET suggesting also that processes underlying the contrasting 

responses to mixtures can be of a different nature. 

A possible explanation is that the combined action of these compounds has increased effect 

on the energy balance, triggering the adoption of different sex-related strategies as response. 

DEET, although considered as unlikely to cause effects in aquatic organisms at concentrations 

found in aquatic environment (Aronson et al., 2012; Campos et al., 2016a; Campos et al., 2016b; 

Costanzo et al., 2007), act in gustatory and olfactory receptor neurons of insects (Ditzen et al., 

2008; Lee et al., 2010), probably impairing the ability of organisms to detect the presence of 

predators, food and even contaminants. Moreover, DEET caused neurophysiological impairments 

in mammals and insects, namely in C. riparius, by binding to the active site of cholinesterase 

(Campos et al., 2016b; Corbel et al., 2009), which may also alter feeding behaviour. Feeding 

inhibition was previously found to S. vittatum, rats and mice exposed to DEET (Campos et al., 

2016a; Schoenig et al., 1999). Moreover, alterations in the detoxification mechanisms (e.g.: 

enzymatic/ non-enzymatic antioxidant defences) such as a decrease of the catalase and GST 

activities and total glutathione contents of C. riparius have also been observed under DEET 

exposure (Campos et al., 2016b). Because BP3 is known to increase the energy consumption on C. 

riparius (Campos et al., 2017) the combined effects on energy intake and metabolism could have 

contributed to the synergistic delayed development observed in males.  
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Female C. riparius, on the other hand showed less than additive effects in terms of 

development time when exposed to the mixture of both compounds which was not expected 

since a delay of emergence was observed as a response to single exposure to BP3 and DEET in this 

and other studies (Campos et al., 2016b, Campos et al., 2017b). However, and despite no 

significant differences for adults’ body weight, female imagoes were also smaller in the combined 

exposures in comparison to single exposures and this premature metamorphosis is again a 

possible sign of endocrine disruption. The reason why this effect is observed only under the 

combined exposure to DEET and BP3 is unknown. However, this might be related to the already 

mentioned interactions of both compounds on energy intake and metabolism and or to 

differences in BP3 intake caused by DEET exposure that can alter accumulation and effects in 

female chironomids that require higher levels of energetic reserves for egg masses production 

and laying (Goedkoop et al., 2010). Nevertheless, it is important to note that C. riparius is a 

protandric species with males emerging slightly earlier than females (Armitage et al., 1995). Thus, 

synergistic effects of this mixture are plausible to occur on natural populations of C. riparius since 

any alteration of the natural patterns of emergence can lead to deleterious reproductive effects 

which are aggravated with the reduction in the reproductive output of smaller female imagoes 

(Honek, 1993; Ponlawat and Harrington, 2007; Sibley et al., 2001). 

 

5. Conclusion  

The toxicity of chemical mixtures containing organic UV-filters needs to be addressed given 

the ubiquity of these compounds in aquatic environments. Our results suggest that their effects 

are complex and that single exposure of organisms to organic UV-filters can, in some situations, 

underestimate the true risk in real scenarios. Because organic UV-filters have shown to alter 

endocrine activity it is important to address effects using relevant exposure scenarios and 

endpoints. In this sense, focusing on insects that have a complex life-cycle is detrimental to 

evaluate effects of these compounds and of their mixtures on natural populations.     
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Suplementary Material  
 
 

Table 1SM. Candidate models to describe different endpoints of Chironomus riparius after exposure to the 

binary mixture of BP3 vs 4-MBC. AIC is the Akaike information criterion. 

 

 Model AIC value 

Emergence (%) BP3 + 4 MBC + BP3*4-MBC 184.87 

 BP3 + 4 MBC 185.97 

 BP3 205.43 

Male development time BP3 + 4 MBC + BP3*4-MBC 162.46 

 BP3 + 4 MBC 160.46 

 4-MBC 158.60  

Female development time BP3 + 4 MBC + BP3*4-MBC -94.36 

 BP3 + 4 MBC -95.69  

 4-MBC -94.04 

Male body weight BP3 + 4 MBC + BP3*4-MBC -43.75 

 BP3 + 4 MBC -45.21 

 4-MBC -47.21 

Female body weight BP3 + 4 MBC + BP3*4-MBC -55.21 

 BP3 + 4 MBC -56.86 

 4-MBC -55.42 
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Table 2SM. Candidate models to describe different endpoints of Chironomus riparius after exposure to the 

binary mixture of BP3 vs DEET. AIC is the Akaike information criterion. 

 

  AIC: BP3 vs DEET 

Emergence (%) BP3 + DEET + BP3*DEET 222.03 

 BP3 + DEET 220.21 

 BP3 218.84  

Male development time BP3 + DEET + BP3*DEET -141.78 

 BP3 + DEET -136.31 

Female development time BP3 + DEET + BP3*DEET 225.68 

 BP3 + DEET 226.09 

 BP3 228.04  

Male body weight BP3 + DEET + BP3*DEET -179.55 

 BP3 + DEET -180.77 

Female body weight BP3 + DEET + BP3*DEET -87.35 

 BP3 + DEET -89.35 

 BP3 -80.18  
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Two-generational effects of Benzophenone-3 on the aquatic midge Chironomus riparius 
 
 
 
 
 

Abstract 
 
Organic UV-filters are emergent contaminants continuously released into the aquatic 

ecosystems. These compounds are persistent showing potential for bioaccumulation. Partial life-

cycle tests might underestimate the toxicity of UV-filters especially since they have shown to be 

endocrine disruptors. In the present study, a benthic aquatic insect Chironomus riparius was 

exposed to a gradient of Benzophenone-3 (BP3) concentrations over two generations to assess 

effects over a full life cycle from the first-instar larvae in the parental (P) generation (emergence, 

fecundity and fertility) until emergence in the subsequent generation (filial – F1). Our results 

showed that concentrations of up to 8 mg BP3/Kg, elicited no effects in terms of emergence rate 

and development time of C. riparius in the P generation. Our results also showed that C. riparius 

fecundity was not affected by BP3 exposure but a strong dose-response was observed for fertility 

with none of the egg ropes hatching at 8 mg BP3/Kg. Concerning effects in the F1 generation, 

emergence and development time were delayed by continuous exposure to BP3. Moreover, 

reduced emergence and changes in development time were observed in the F1 generation 

maintained under control/clean conditions but whose parents were previously exposed to BP3. 

Results found in this multigenerational test clearly show reproductive effects of BP3 on C. riparius 

that would not be detected using standard tests. Full life cycle and multigenerational assays are 

critical to properly evaluate the population level effects of endocrine disrupting compounds such 

as organic UV-filters. 

 
Key words: multigenerational effects; toxicity; UV-filters; aquatic organisms; Personal care 

products  
 
 
 
 
 
 



Chapter 5: Two-generational effects of Benzophenone-3 on the aquatic midge Chironomus riparius 

 

118 
 

1. Introduction 

The most part of standard ecotoxicological tests focus on evaluation of effects of 

contaminants at organismal level of only a single generation. However, in the environment, 

natural populations are exposed to contaminants over several generations and the responses of 

organism can be different over the time. Indeed, the toxicity of the contaminants can be altered 

(i.e: increase or decrease over the generations) or even appear in later generations (Barata et al., 

2017, Bona et al. 2016, Hochmuth et al. 2015, Kafel et al., 2012; Waissi et al., 2017) due to latent 

or carry over effects (Anway et al., 2006; Bhandari et al., 2015; Burton and Metcalfe, 2014). 

Therefore, multigenerational tests are essential to better assess the effects of contaminants in 

natural populations. This is especially critical concerning persistent and endocrine disruptors 

substances known to impair the development and the reproduction of organisms causing 

epigenetic and transgenerational effects (Anway et al 2005; Oppold et al., 2015).  

Detection of Organic ultraviolet filters (UV-filters) in the aquatic environment has been 

increasing in the last decades. These compounds, are present in personal care products to protect 

skin and also in plastic products and materials to avoid damages caused by ultraviolet radiation 

(Brausch and Rand, 2011; Díaz-Cruz et al., 2008; Sambandan and Ratner, 2011). Previously, 

exposure to UV-filters has been shown to affect the feeding activity, cell viability and growth, as 

well as endpoints related with reproduction in diverse aquatic organisms (Campos et al., 2017a; 

Campos et al., 2017b; Gao et al., 2013; Kaiser et al., 2012; Kunz and Fent, 2006; Schmitt et al., 

2008; Sieratowicz et al., 2011). Moreover, UV-filters also showed to be endocrine disruptors 

(Coronado et al., 2008; Ozáez et al., 2013; Wang et al., 2016). UV-filters are considered persistent, 

have low water solubility, high values of octanol - water partition coefficients (log Kow > 3) and 

organic carbon - water partition coefficient (log Koc) with consequent potential to accumulation in 

biota and sediments (Díaz-Cruz et al., 2008; Brausch and Rand, 2011). Taking into account the 

endocrine activity of UV-filters, their physic-chemicals properties and their continuous release in 

the aquatic environments, it is expected that aquatic organisms are exposed to UV-filters 

throughout their entire life, with possible consequences in the development and reproduction of 

the organisms throughout generations which calls for multigenerational ecotoxicity investigation.  

In the present study, the aquatic non-biting midge Chironomus riparius was chosen to assess 

the effects of UV-filters over two consecutive generations. C. riparius is a benthic aquatic 

organism used as a model species in freshwater ecotoxicology (OECD, 2004a, b). C. riparius traits 

make them a good organism to be used in multigenerational assays since it is a multivoltine 

species, displaying sexual reproduction and a short life cycle in laboratory conditions. 
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Multigenerational studies have been conducted using C. riparius as model species to assess the 

effects of the endocrine disruptors (Tassou and Schulz, 2009; Tassou and Schulz, 2011; Vogt et al., 

2007a; Vogt et al., 2007b; Watts et al., 2001) and a guideline fully covering the first generation 

(i.e.: fertility and fecundity) and part of the second generation has already been proposed for C. 

riparius (OECD, 2010). Moreover, C. riparius spend most part of their life cycle buried in the 

sediment, making them ideal to assess effects of lipophilic persistent contaminants such as 

organic UV-filters.      

The aim of this study was to evaluate the impact of long-term exposure of Benzophenone-3 

(BP3) in C. riparius. In order to do that, C. riparius was exposed over two consecutive generations 

to a gradient of BP3 concentrations using spiked sediments and endpoints such as emergence 

rate, development time, fecundity and fertility were assessed for the parental (P) generation as 

well as the emergence and development time for filial ( F1) generation. BP3 was selected as a 

model organic UV-filter due to its presence in several sunscreens to protect against UVA and UVB 

radiation and because it is allowed by legislation in different regions such as European Union, 

United States and Japan (Ahmed et al., 2008; Wahie et al., 2007) being one of the most widely 

detected UV-filers around the world in aquatic ecosystems. Furthermore developmental, 

reproductive and endocrine disruption caused by exposure to BP3 have been shown in several 

vertebrate and invertebrate species including C. riparius (Campos et al., 2017b; Kim et al., 2014; 

Ozáez et al., 2014; Wang et al., 2016). 

 

2. Materials & methods 

2.1 Model organism and culture conditions 

C. riparius egg ropes were collected from laboratory cultures established at University of 

Aveiro, Portugal. C. riparius cultures were maintained in an acrylic box, with the larvae in plastic 

containers with 1-2 cm inorganic fine sand (burnt at 500 ºC during 4h) and American Society for 

Testing and Materials (ASTM) hard water medium (ASTM, 1980) in the proportions of 1:4. The 

medium was aerated, changed every week and the organisms were fed three times a week with 

macerated Tetramin® (TetraWerk, Melle, Germany). The cultures were maintained at 20 ± 2ºC 

with a photoperiod of 16:8 h light/dark.  

 

2.2 Experimental design  

BP3 (2-hydroxy-4-methoxybenzophenone; CAS No. 131-57-7; purity ≥ 98%) was provided 

from Sigma-Aldrich (Portugal). BP3 has a molecular weight of 228.24 g/mol and a log Kow= 3.79 
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(Gago-Ferrero et al., 2012). Due to low water solubility (0.10 g/L – 25ºC) (Gago-Ferrero et al., 

2012), a stock solution of BP3 and subsequent gradient of concentrations were performed in 

ethanol (96%).  

The experimental design was performed according to the guideline OECD 233 (OECD, 2010) 

with a slight modification: organisms were exposed via sediment to three concentrations of BP3 

(2, 4 and 8 mg/Kg). The artificial sediment was composed by 75% of inorganic fine sediment 

(<1mm), 20% of kaolin, 5% of cellulose and 0.1% of calcium carbonate; 50 g of sediment spiked 

with 10 mL of respective BP3 solution were added to each test vessel according to Campos et al. 

(2017b). The same volume of ethanol (10 mL -96%) was also added to solvent control treatment. 

After contamination, the glass vessels were left to evaporate during 72h in a fume hood. 

Afterwards and to obtain a homogenous sediment paste, 10 mL of ASTM were added in all 

treatments and the sediment thoroughly mixed. Immediately after, 150 mL of ASTM were 

carefully added to the vessel to avoid the resuspension of the sediment. Vessels were then left to 

equilibrate during 48h. 

The experimental design is depicted in figure 1. For the entire test (P and F1 generation) 

larvae with less than 24h were added to fifteen replicates of each treatment. During the test (28 

days) larvae were fed with 0.25mg/org/day of a suspension of macerated fish food (Tetramin®) 

and all experiments were conducted at 20ºC ± 1ºC with a photoperiod of 16:8h light-dark. 

Concerning the parental generation, emergence was checked twice per day to determine the total 

number of emerged imagoes and their development (i.e. time in days until emergence). Within 

each treatment, imagoes were transferred to a breeding cage (53.5 cm x 34.5cm x 29 cm) where 

they could mate and oviposit. The females laid the egg ropes into crystallizing dishes with 200 g of 

artificial sediment previously spiked with respective BP3 solution and 450 mL of ASTM. The 

presence of egg ropes was checked every day, and egg ropes were collected and kept in small 

crystallizing dishes (Ø 4 cm) with 10 mL of the respective experimental solution (water only). The 

structure, the fecundity and the fertility were assessed in each egg rope. The total number of eggs 

of each egg ropes was determined by the ring count method (applicable only for egg ropes that 

have a normal C-shape form) (Benoit et al., 1997). Briefly, the method consists in multiplying the 

number of rings by the mean number of eggs of at least five rings selected along of the egg ropes 

length. When the egg ropes do not present a normal C-shape the total number of eggs was 

counted or larvae were counted after hatching. Fecundity is defined as the total number of egg 

ropes per total number of females added to each breeding cage. Hatchability was checked during 

the 6 days after egg ropes were laid. Egg ropes were considered fertile when at least 1/3 of eggs 
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hatched. Fertility is defined as the total number of fertile egg ropes per total number of females 

added to each breeding cage (OECD, 2010).  

Egg ropes from each treatment were used to start the next generation test (F1) in their 

respective treatment and, simultaneously, in clean conditions (figure 1). Due to inexistence of 

fertile egg ropes it was not possible to start the F1 generation in the highest tested concentration, 

8 mg BP3/Kg. To start the F1 generation a total of 6 egg ropes were used per treatment, except at 

4mg BP3/Kg, where only 4 egg ropes were used (due to low hatching). The emergence rate and 

development time was checked every day in the F1 generation.  

 

 

 

Figure 1 - Experimental design used for C. riparius multigenerational experiment (1st (P) and 2nd (F1) 

generations). 

 

2.3 Statistical analyses 

Effects of BP3 in all C. riparius endpoints were evaluated using analysis of variances (ANOVA) 

with multiple comparisons against the control treatment examined by Dunnett’s post-hoc test. To 

check normality the Shapiro-Wilk were applied on the residuals and homoscedascy were assessed 

by Levene’s test. Emergence (P and F1 generation exposed to control conditions), development 

time of males (F1 exposed to control conditions) and females (P and F1 generation) and the total 

number of eggs per egg ropes were analysed with Kruskal-Wallis test followed by Dunn’s post-hoc 
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test. For all statistical tests, the significance level was set at p < 0.05. All statistical analyses were 

performed using GraphPad Prism 6.0 (GraphPad Software, La Jolla California USA).  

 

3. Results 

3.1 Effects of BP3 on C. riparius P generation 

Emergence rate in the solvent control (P and F1 generation) was above 90% (figure 2). Our 

results showed no effects of BP3 in terms of emergence rate when comparing with the solvent 

control treatment (H= 8.507; Df=3; p = 0.037; figure 2a). Exposure to BP3 did not alter C. riparius 

development time of males (F(3;52)= 2.050; p=0.118; figure 3a) and females  (H= 0.391; Df=2; 

p=0.942; figure 3b) in the P generation. The fecundity (number of laid egg ropes per female) is 

presented in figure 4a. The total number of egg ropes was similar between all experimental 

treatments and no significant effects of BP3 exposure were observed for the number of eggs per 

egg ropes (H= 4.889; Df= 3; p=0.180; figure 4b). Concerning fertility, a strong dose dependent 

decrease in the number of fertile egg ropes was observed. In fact, at 4 mg BP3/Kg, 78% of egg 

ropes were infertile and at 8 mg/Kg BP3 none of the egg ropes laid by C. riparius females hatched 

(figure 4a).   

 

3.2 Effects of BP3 on C. riparius F1 generation  

Concerning the effects in F1 generation exposed to the same treatments as the P generation, 

BP3 exposure caused a significant and dose dependent reduction in emergence rates (F(2;42)= 

9.164; p< 0.001; figure 2b) with reductions of 14.09 and 26.77% compared to solvent control 

treatment, upon exposure to 2 and 4 mg BP3/Kg respectively. However, significant differences 

were only observed at 4 mg BP3/Kg comparatively with solvent control treatment. Regarding F1 

generation maintained under control conditions whose parental generation was previously 

exposed to 4 mg BP3/Kg, a significant decrease in emergence rate of 14.44% was observed in 

comparison with the solvent control treatment (H= 9.389; Df=2; p<0.009; figure 2b).  

Development time of C. riparius males in the F1 generation was significantly affected by BP3 

exposure (F(2;37)= 15.44; p<0.001; figure 3b). The C. riparius males of F1 generation exposed to the 

same treatments as the parents, emerged significantly earlier at 2 mg BP3/Kg and delayed their 

development at 4 mg BP3/Kg when compared with the solvent control treatment. Also, 

development time of females exposed to the same treatments in the F1 generation as their 

parents was significantly affected by BP3 exposure (H= 10.04; Df=2; p=0.007; figure 3d), but the 

effects were only observed at 2 mg BP3/Kg comparatively with solvent control treatment. 
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Moreover, both males and female imagoes whose F1 generation was under control conditions but 

whose parents were previously exposed to 2 and 4 mg BP3/Kg emerged significantly earlier 

comparatively with the solvent control treatment (H= 17.60; Df=2; p<0.001; figure 3b; H= 20.53; 

Df=2; p<0.001; figure 3d).  

 

 

 

 
Figure 2 - Effects of BP3 on C. riparius emergence (%; mean ± SEM) during two consecutive 

generations. a) P generation and b) F1 generation. Open circles represent F1 generation larvae exposed 
under control conditions whose P generation was exposed to BP3. The black squares represent F1 
generation larvae exposed to the same treatments as the P generation. Asterisks denote a significant 
difference compared with solvent control treatment (0+)  
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Figure 3 - Development time of males (a,c) and females (b,d) of P (a,b) and F1 (c,d) generations (days; 

mean ± SE) of C. riparius. Open circles represent F1 generation larvae exposed under control conditions 
whose P generation was exposed to BP3. The black squares represent F1 generation larvae exposed to the 
same conditions as the P generation. Asterisks denote a significant difference compared with solvent 
control treatment (0+). 

 

 Figure 4 - Effects of BP3 on a) total and fertile egg ropes per female of C. riparius and b) number of 
eggs per egg ropes (mean ± SE) produced by C. riparius female. 
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4. Discussion  

In the present study, we investigated the toxicity of BP3 in C. riparius during two consecutive 

generations. Obtained results showed that the toxicity of BP3 increased throughout exposed 

generations and in P generation, although no effects were reported for C. riparius emergence 

rates and development time, their fertility was strongly compromised. Moreover, the data shows 

that emergence rates and developmental time of F1 generation were altered even when they are 

not exposed to BP3 (but whose parents were previously exposed), which clearly imply carry-over 

effects of BP3. These results indicate clear reproductive and developmental toxicity of 

environmentally relevant concentrations of BP3 on C. riparius and call for the importance of full 

life-cycle/multigenerational testing. Although time consuming and somewhat laborious these 

multigenerational assays are critical to better evaluate the long-term ecological consequences of 

persistent compounds that are endocrine disruptors and have high bioaccumulation/ 

bioconcentration potential such as organic UV-filters (Díaz-Cruz et al., 2008).  

Our results show stronger effects of BP3 on fertility than on emergence rate, which might be 

considered a survival trait, in the P generation suggesting that energetic costs related with 

defence mechanisms and detoxification (already observed for C. riparius and other aquatic insect 

larvae exposed to BP3 (Campos et al., 2017a, Campos et al., 2017b)) can lead to detrimental 

effects in terms of embryonic development and hatching likely due to less energy allocated into 

reproduction (Servia et al., 2006; Sokolova et al., 2012). It is however interesting to note that 

effects on fertility occurred without significant changes in terms of developmental time (i.e. time 

to emergence), fecundity (number of egg ropes produced by female) and number of eggs per egg 

ropes. Effects on reproduction (i.e. decrease in hatching) due to BP3 exposure were previously 

reported in the fish Japanese medaka (Oryzias latipes) (Coronado et al., 2008) and zebrafish 

(Danio rerio) (Balázs et al., 2016). The decrease in fertility of C. riparius without previous effects in 

the development time of males and females were also reported to the endocrine disruptor 

tebufenozide at 26.2 µg/L (Tassou and Schulz, 2013). Furthermore, reductions in fertility of C. 

riparius have been reported due to exposure to other contaminants like organometals, metals 

(Vogt et al., 2007a; Vogt et al., 2007b) and pharmaceuticals (Heye et al., 2016). Nevertheless, and 

since the main link between individual and population is reproduction (Barata et al., 2002, Tassou 

and Schulz, 2013), impairments of C. riparius fertility caused by exposure to BP3 show population 

level effects of this organic UV-filter and underline the importance of using this sensitive endpoint 

to complement standard C. riparius partial life cycle tests. 
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Besides the effects at physiological level it is known that UV-filters are endocrine disruptors 

(Kim et al., 2014; Ozáez et al., 2013; Schlumpf et al.,2008; Wang et al., 2016) and as such insect 

endocrine systems may be targeted by exposure to BP3. Hormones like juvenile hormone (JH) and 

Ecdysone, play an important role in the development and reproduction of the insects controlling 

moulting, pupation, and metamorphosis (Riddiford, 2012; Riddiford et al., 2000; Yamanaka et al., 

2013). Alterations in the levels of these hormones may affect the development and the 

reproduction of C. riparius (Planelló et al., 2015) and probably compromise the energetic reserves 

that parents transfer to offspring as well (Johnson et al., 2014). It was shown before that BP3 

causes hormonal effects, namely activating the expression of the ecdysone responsive genes and 

altering the transcript levels of the insulin-like receptor gene in C. riparius larvae; and also altering 

the embryo development of C. riparius (Ozáez et al., 2016; Ozáez et al., 2013).  

Moreover, our results show that C. riparius F1 generation was more affected than P generation 

by exposure to BP3. In fact, reduced emergence rates and significant differences in the 

development time were observed in F1 generation for both C. riparius males and females exposed 

to BP3, while no effects were observed in the P generation. These results provide evidences of 

parental or latent effects of BP3 on C. riparius. In fact, previous studies have reported that C. 

riparius F1 generation, exposed to endocrine disruptors such as pyriproxyfen, teflubenzuron and 

bisphenol A was more affected than the P generation (Tassou and Schulz, 2009; Tassou and 

Schulz, 2011; Watts et al., 2001). This migth be related with the reduced energy allocation of 

exposed midges to their progeny which could have altered their sensitivity to the tested 

compound. Also, and despite no data of imagoes weight is available in the present study, for the 

parental generation previous work has shown that exposure to higher concentrations of BP3 can 

also lead to reduction in imagoes weight with potential effects on progeny (Campos et al., 2017b).  

Concerning effects on development time, earlier emergence was observed in F1 midges 

exposed to lower concentrations of BP3, but no effects or delayed emergence of C. riparius 

females and males, respectively, were also observed in the highest BP3 concentration tested. 

These results are somewhat inconsistent with standard partial life-cycle tests showing that BP3 

exposure causes reductions in larval growth and development rates in C. riparius (Campos et al., 

2017b). In fact, endocrine disruptors are known to show no clear patterns according to the dose 

(Santillo et al., 1998), and sometimes the effects are greatest at lower concentrations (Patlak, 

1996). Nevertheless, increases as well as decreases in development time have been observed 

before in insects exposed to endocrine disruptors (Quesada-Claderón et al., 2016; Tassou and 

Schulz 2011; Watt et al., 2001). Either way, changes in the synchrony of male and female 
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developmental rates can affect mating in C. riparius swarms and thus may have consequences in 

terms of their reproduction and population dynamics. 

Interestingly we also observed reduced emergence and altered development time in F1 

generation reared under control conditions but whose parental generation had been exposed to 

BP3, showing that effects of BP3 parental exposure persisted even after C. riparius were 

transferred to uncontaminated medium. This suggests the possibility of transgenerational 

epigenetic effects of BP3. The observation of epigenetic effects due to exposures to endocrine 

disruptors with consequences in the subsequent generations were previously observed in 

Daphnia magna (Vandegehuchte et al. 2010a, 2010b), in the mosquito Aedes albopictus (Oppold 

et al., 2015) and also in vertebrates (Anway et al., 2006). However, to confirm this hypothesis of 

epigenetic alterations and transgenerational effects induced by organic UV-filters, and considering 

the life cycle of C. riparius, at least 3 consecutive generations should be tested to avoid exposure 

of germ lines of the unexposed generation (Skinner et al., 2011 Vandegehuchte et al., 20010a). 

This study suggests transgenerational or parental effects of BP3 in C. riparius, showed by the 

higher sensitivity of the F1 generation in comparison with the parental generation. However and 

even using only contaminated sediment, it is important to note that these effects might also be a 

consequence of exposure of F1 eggs inside the gelatinous matrix to BP3 present in the overlying 

water. Because in the case of the P generation, organisms were only exposed to contaminated 

sediments as larvae; this might explain not only the stronger effects on F1 generation but also the 

reduced hatchability of egg ropes in BP3 treatments. In fact, Ozáez et al. (2014), observed that 

exposure to BP3 delayed the hatching of C. riparius egg ropes which lengthened the time to 

embryos development. Additionally, Ozáez et al. (2016), observed that embryos seem to be more 

affected than larvae (4th instar) after exposure to BP3 (via water), once the expression of genes 

related with hormonal pathways (i.e.: Hormonal receptor 38, Methoprene-tolerant) was altered 

mainly in embryos. If this is the case, then effects observed in F1 generation not exposed to BP3 

arise by carry-over effect within one generation (exposure of eggs with latent effects observed at 

emergence of larvae) also suggesting ecological effects that might be underestimated using 

standard partial life-cycles assays only. 

  

5. Conclusion 

This study clearly indicates that exposure to low, environmentally relevant concentrations of 

BP3, can compromise reproduction and population dynamics of an aquatic insect species. Since 

BP3 and other organic UV-filters are persistent in sediments and known endocrine disruptors their 
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environmental risk assessment needs to rely on multigenerational tests. By focusing on insects 

with a short life cycle like chironomids, the inclusion of complete life cycles and relevant life 

stages (eggs, larvae, pupae, imagoes) and measurement of effects on endpoints (fertility, 

development, and emergence patterns) which are controlled by hormones, they can complement 

other endocrine and epigenetic responses and thus, be used to better evaluate the long-term 

effects of organic UV-filters in the aquatic environment.  
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Effects of the organic UV-filter 4-MBC on freshwater benthic invertebrate communities 
and ecosystem function 

 
 
 
Abstract 
 

In the last decades, the use of organic Ultraviolet-filters (UV-filters) is increasing worldwide 

and these compounds are now emerging contaminants of many freshwater ecosystems. The aim 

of the present study was to assess the ecological effects of 3-(4-methylbenzylidene) camphor (4-

MBC) on freshwater invertebrate communities. For that artificial streams were used and a natural 

invertebrate benthic community was exposed to sediments contaminated with two 

concentrations of 4-MBC. Effects were evaluated in terms of macroinvertebrate abundance and 

community’s structure, as well as leaf decomposition and primary production. Results showed 

that macroinvertebrates community parameters as well as leaf decomposition rates were not 

affected by exposure to 4-MBC. On the other hand, primary production was strongly reduced in 

the presence of this compound. This study highlights the importance of higher tier ecotoxicity 

experiments for the assessment of effects of low concentrations of organic UV-filters on 

community structure and ecosystem functioning.  

 

Keywords: freshwaters, structure and functioning of the ecosystem, UV-filters effects; primary 
production; mesocosms 
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1. Introduction 

The increase use of personal care products (PCPs) has led to contamination of natural 

aquatic ecosystems, mainly due to inefficient removal during wastewater treatment plants, but 

also due to outdoor recreational activities (Braush and Rand, 2011). In the last decade, organic 

ultraviolet-filters (UV-filters), synthetic compounds mainly used to protect the skin and several 

materials against solar UV radiation (Chisvert and Salvador, 2007), have been frequently detected 

in aquatic environments. Organic UV-filters have low water solubility and are expected to 

accumulate in sediments and biota, being considered persistent in the environment (Díaz-Cruz et 

al., 2008; Gago-Ferrero et al., 2012) with concentrations in sediments reaching 2.4 mg/Kg (Gago-

Ferrero et al., 2011). Thus, freshwater benthic macroinvertebrate communities, especially those 

living in areas with high human pressure, are prone to exposure to these contaminants. 

Standard laboratory toxicity tests already demonstrated that exposure to organic UV-filters 

can alter feeding activity, development and reproduction of some benthic macroinvertebrates 

such as the trichoptera Sericostoma vittatum (Campos et al., 2017a), the midge Chironomus 

riparius (Campos et al., 2017b) and the oligochaete Lumbriculus variegatus (Schmitt et al., 2008). 

However, those traditional single species tests convey uncertainties since they cannot be used 

directly to predict the effects of contaminants in the structure and function of ecosystems 

(Stewart et al., 2013). Thus, information on effects of UV-filters using realistic exposure scenarios 

are necessary for a more accurate ecological risk assessment. Therefore, a higher-tier approach is 

critical to include the diversity of species and habitat conditions found in natural systems (Relyea 

and Hoverman, 2006; Stewart et al., 2013) while integrating functional and structural parameters 

for a better understanding of the effects of these compounds on ecosystem processes (Gessner 

and Tlili, 2016).  

For many years, the structure of macroinvertebrates communities has been used in 

ecosystem monitoring. Alterations in macroinvertebrates communities can be a consequence of 

stress responses (Blijswijk et al., 2004; Vidal et al., 2014), but functional parameters should be 

considered for a more accurate evaluation of ecosystem health and of effects on key ecological 

processes (Young et al., 2008; Dalu et al., 2017). So, in this study, functional effects of 4-MBC were 

assessed using leaf decomposition (by measuring leaf loss weight) and primary production (by 

measuring the chlorophyll a contents of periphyton communities). Leaf decomposition and 

primary production are important functional endpoints since they represent the main energy 

sources in freshwater food webs and those processes have been used as sensitive and reliable 

indicators of ecosystems health (Abelho et al., 2016; Evans et al., 2014; Peter et al., 2013; Piggott 
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et al., 2015; Xu et al., 1999). Density and trait mediated effects of stressors on detritivores and 

grazers can lead to alterations in the leaf decomposition or primary production (Dossena et al., 

2012; Fleeger et al., 2003; Gessner et al., 2016; Hasenbein et al., 2017; Peters et al., 2013; Guasch 

et al., 2016; Graça, 2001) compromising thus, the functioning of the ecosystem. Moreover, direct 

effects of contaminants on producers can also lead to indirect effects in macroinvertebrates 

communities.   

The purpose of this work was to contribute with sound ecotoxicity data concerning effects of 

a selected UV-filter on a natural freshwater community of benthic macroinvertebrates. For that, 

indoor artificial streams were used to assess possible effects of 4-MBC on community structure 

and functional parameters. The UV-filter 3-(4-methylbenzylidene) camphor (4-MBC) was chosen 

due to its frequent detection in European aquatic environments (Ramos et al., 2015). 4-MBC is 

expected to accumulate in sediments and biota due to his low biodegradation rate (Gago-Ferrero 

et al., 2012; Ramos et al., 2015), being considered as a high priority compound (Environment 

Agency, 2008).  

   

 

2. Materials and methods 

2.1 Chemical compound and sediment spiking  

The 3-(4-methylbenzylidene) camphor (4-MBC; CAS No. 36861-47-9, purity _98%) was 

obtained from Sigma-Aldrich (Portugal). The compound has a molecular weight of 254.37 g/mol, 

water solubility of 0.017 g/L and a log Kow of 4.95 (Gago-Ferrero et al., 2012). The stock solutions  

of 4-MBC were prepared in ethanol (96%). The sediment composed of 99 % of sand (< 2 mm, 

previously burn at 500 ºC during 4h) and 1 % of grounded alder leaves (Alnus glutionosa), was 

spiked with 4-MBC stock solutions to obtain two nominal concentrations of 2 and 20 mg 4-

MBC/Kg. Spiked sediments were left in the fume hood during 72h for ethanol evaporation. 

 

2.2 Leaf collection and macroinvertebrate community characterization  

Alder leaves were collected from the riparian vegetation at São Pedro de Alva (40º28’N, 8º 

19’W) during autumn and then air dried and stored in the darkness. Macroinvertebrate 

community was sampled in the Mau river (Sever do Vouga, Portugal), located in an unpolluted 

area (Vidal et al., 2014). A previous surber macroinvertebrate sampling was performed in the 
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same sampling spot to determine the adequate composition and density of the community to be 

introduced in each artificial stream.  

 

2.3 Experimental design  

The experiment was conducted in an indoor mesocosm system (15 ± 1 ºC and photoperiod: 

16h light: 8h dark). A total of nine artificial streams were used (2 m long, 0.200 m width and 0.225 

m depth). Three replicates (3 artificial streams) were used for each treatment (solvent control 

(0+), 2 and 20 mg 4-MBC/Kg). To simulate natural conditions, the average flow in each artificial 

stream was maintained at a constant rate of approx. 4 L/min. Artificial pond water (APW) (Naylor 

et al., 1989) enriched with phosphate and nitrate was used to simulate actual mineral 

concentrations on the Mau river (Vidal et al., 2014).  

Each artificial stream contained approximately 280 L of APW, 7 Kg of sediment, 3 leaf packs 

(10 mm mesh size) and 5 unglazed ceramic tiles (20 cm2) (Figure 1). Each leaf pack contained 

approx. 1 g of Alnus glutinosa leaves which was conditioned during 15 days in Mau river water 

before being placed in artificial streams. Ceramic tiles were placed in the Mau River for 2 weeks 

before the experiment to allow biofilm colonization. At day 0 of the exposure period, 

macroinvertebrates were collected by kick-sampling in gentle riffle habitats in the Mau river. 

Organisms were transported to the laboratory using river water, sorted by taxa and then allocated 

evenly to each artificial stream. In total, 159 organisms representing a total of 15 taxa were 

inoculated in each artificial stream, being the majority, in terms of abundance, collectors 

(Hydropsychidae; Ephemera sp.; Chironomidae; Oligochaeta -  65.41%) followed by grazers 

(Baetidae, Leptophebiidae, Ephemerellidae, Leutridae - 18.24%), shredders (Sericostoma sp, 

Lepidostoma sp. - 12.58%) and lastly predators (Boyeria sp, Onychogomphus sp, Calopteryx sp., 

Athericidae, Sialis sp - 3.77%). Water physico-chemical parameters (pH, temperature, conductivity 

and dissolved oxygen) were measured every three days. After 7 days of exposure, leaf packs were 

carefully removed from the respective treatments and cleaned with soft paintbrushes to remove 

possible attached organisms and sediment particles. Leaves were then dried (50ºC, 4 days) and 

weighed. Ceramic plates of the respective artificial streams were scrubbed with a soft brush and 

rinsed in water. The samples were then filtered with GF/C filters (1.2 µm) and stored at -20ºC in 

the darkness until analyses. Chlorophyll a was extracted with 90% acetone and measured 

spectrophotometrically (Jeffrey and Humphrey, 1975). At the end of the test all the 

macroinvertebrates were picked with the help of soft tip tweezers and by sieving the sediment. 

Any organisms found in leaf packs were combined with these benthic samples from the respective 
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stream replicates. Macroinvertebrates were preserved in 70% ethanol and finally identified with 

the help of a stereomicroscope (MS5, Leica Microsystems, Houston, USA).  

 

 

Figure 1 – Detailed view of a) artificial stream; b) A. glutinosa leaf packs; c) ceramic plates with periphyton 

and d) artificial stream system (overview). 

 

2.4 Statistical analysis 

Effects of 4-MBC exposure on chlorophyll a, total macroinvertebrates abundance (i.e. total 

number of invertebrates recorded), species richness (i.e. number of different macroinvertebrate 

families recorded), % of “EPT family abundance” (i.e. total number of invertebrates belonging to 

Ephemeroptera, Plecoptera and Trichoptera), grazers density and shredders density were 

evaluated using analysis of variances (ANOVA) with multiple comparisons examined by Dunnett's 

post-hoc test. To check normality the Shapiro-Wilk were applied on residuals and homoscedascy 

were assessed by Levene’s test. Chlorophyll a data were log transformed and Kruskal-Wallis test 

was used for analysis of the leaf mass loss. The influence of UV-filters on the structure of the 

benthic macroinvertebrate communities was assessed by using permutational multivariate 

analysis of variance, PERMANOVA (999 permutations; Anderson, 2001).  All data was analysed 

using Prism 6.0. (GraphPad Software, La Jolla California USA) with significance level set at p < 0.05, 

except PERMANOVAs that were performed on R software (version 3.2.0, R Foundation for 

Statistical Computing, Vienna, Austria). 
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3. Results and discussion  

In this study, mesocosms systems were used to investigated effects of organic 4-MBC, an 

organic UV-filter, on freshwater invertebrate communities and ecosystem function. Results 

revealed no effects on invertebrate structural endpoints and no changes were observed in leaf 

litter processing comparing to control streams. Exposure to 4-MBC elicited nevertheless a strong 

reduction in periphyton primary production. These results add ecotoxicological data concerning 

potential ecological effects of UV-filters within freshwaters. In our study the exposure to 4-MBC 

did not affect the species richness (p= 0.600; F(2,6) = 0.5787; figure 2a), the % EPT group 

abundance (p= 0.6542; F(2,6) = 0.4559; figure 2b) neither total macroinvertebrates abundance (p= 

0.6809; F(2,6) = 0.4100; figure 2c). Moreover, no significant effects were found in terms of 

shredders density (p= 0.620; F(2,6) = 0.5181; data not shown) neither for macroinvertebrates 

community structure (PERMANOVA; p = 0.302 F(2,6)= 0.2852). These results partially agree with 

the somewhat low acute toxicity of organic UV-filters and 4-MBC reported before for benthic 

invertebrates (Schmitt et al., 2008). This is also in agreement with our preliminary studies where 

LC50 values higher than 100 mg 4-MBC/Kg for two benthic insects were observed.  

The leaf litter processing was used as a functional endpoint and is generally an important 

indicator of the ecological status of freshwaters specially in the case of benthic communities 

dominated by detritivores such as this one (Gessner and Chauvet, 2002; McKie et al., 2008; 

Pestana et al., 2009; Woodward et al., 2012). In the present study, no significant effects of 4-MBC 

in terms of leaf litter processing were observed in comparison with control artificial streams (p= 

0.829; H=0.622; Df= 2; figure 3a). This is a clear indication that 4-MBC did not elicit density 

mediated effects (no effect on the density of shredders) nor trait mediated effects (e.g. alteration 

of feeding behaviour). Indeed, although effects in macroinvertebrates structure communities 

were not expected since sub-lethal concentrations of 4-MBC were chosen, a decrease in leaf litter 

processing was to be expected given the toxic anorexia reported before for shredders species. In 

fact, and contrary to the present study, Campos et al., (2017a) observed a 50% reduction on S. 

vittatum feeding rates exposed to lower concentrations of 4-MBC within same periods of 

exposure. However, it should be noted that the study of Campos et al. (2017a) was conducted 

under 20ºC, while this mesocosms experiment was conducted at 15ºC. Thus, this disagreement 

can be partially explained by a decreased toxicity of 4-MBC due to lower metabolic rate of 

organisms at 15ºC in comparison with data from laboratory single species tests (Díaz Villanueva et 

al., 2011; Mas-Martí et al., 2015). This temperature dependent toxicity has been observed before 

for a wide range of contaminants and invertebrate species (Camp and Buchwalter 2016; Gomiero 
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and Viarengo, 2014; Nieto et al., 2016; Satpute et al., 2007; Weston et al 2009). Moreover, 

shredders and other benthic invertebrates may have been mostly attached to leaves within leaf 

packs therefore reducing they direct contact with the contaminated sediment and consequently 

direct exposure to the compound. 

 

 

 

 

 

 

 

 

 
Figure 2 – Effects of 4-MBC exposure on a) species richness; b) Ephemeroptera, Plecoptera and 

Trichoptera (EPTs) (%-abundance) and c) macroinvertebrates abundance. All values are presented as mean 
± SE. 
 

 

Figure 3 - Effects of 4-MBC exposure on a) leaf mass loss (g) and b) chlorophyll a concentration 
(mg/cm2). All values are presented as mean ± SE. * denotes significant differences comparing with control 
treatments (0+); p<0.05. 
 

 

In addition to allochthonous matter input, primary production is other source of organic 

matter in streams but few studies have been addressing the adverse effects of the contaminants 

in this fundamental process within freshwater ecosystems (Peters et al., 2013). In the present 

study, a strong effect in the primary production was observed with a higher decrease in the 
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chlorophyll a (p= 0.001; F(2,6) = 28.07; figure 3b) in contaminated artificial streams when compared 

with the control treatment. Generally, and when considering contaminants other than herbicides, 

changes on periphyton biomass and productivity are attributed to indirect effects of 

contaminants, when grazers density is directly affected by the compounds (Abelho et al., 2016; 

Rogers et al., 2016). However, in this study, no effects were observed in grazers density (p= 0.925; 

F(2,6) = 0.079; data not shown) and since we observed a reduction in chlorophyll a within 

periphyton samples , there is a clear suggestion that 4-MBC is directly impairing primary 

production and not indirectly through density effects or feeding inhibition from grazers. These 

results are in contrast to previous studies that revealed low toxicity of 4-MBC to freshwater algae 

(Rodil et al., 2009; Sieratowicz et al., 2011). The drastic effect observed in primary production 

might have been due to the adsorption and accumulation of the 4-MBC by the periphyton 

(Guasch et al., 2010; Writer et al 2011) even if only contaminated sediment was used. It has been 

however reported high sensitivity of some marine algae to 4MBC (EC50 = 171.45 µg/L) (Paredes et 

al., 2014) and significant inhibition of primary production can have profound effects in 

invertebrate communities and nutrient dynamics in streams (Gessner et al 2016; Hasenbein et al., 

2017, Perschbacher and Ludwig 2004, Zou 2016). Effects on periphyton production caused by 

exposure to 4-MBC call for additional research on effects of UV-filters on freshwater ecosystems. 

This research would have to consider longer exposure periods to correctly assess effects on 

primary production and evaluate the long-term consequences of bottom up indirect effects. Also, 

the inclusion of other algae species in the toxicity assessments is desirable. In fact, periphyton 

samples are often dominated by diatoms in small to medium sized streams (Ghosh and Gaur et 

al., 1998) and diatom species composition and abundance are known indicators of ecological 

status of freshwater streams and lakes (Almeida and Feio, 2012; Delgado et al., 2017; Larras et al., 

2017; Lavoie et al., 2014). Based on results presented here is probable that diatom species can be 

even more sensitive than phytoplankton species used in ecotoxicity studies and be putative good 

indicators of effects of organic UV-filters in freshwaters  

To conclude, our results highlight the importance of using an approach that includes 

structural and functional parameters in the ecotoxicological studies to better understand the 

direct and indirect effects of organic-UV-filters in freshwater ecosystems. Moreover, the 

disconnection between laboratory ecotoxicity results pointing to impairment of feeding, growth 

and development of freshwater detritivore invertebrates (Campos et al., 2017a, b) exposed to 

organic UV-filters and the lack of effects on macroinvertebrate structural endpoints and leaf litter 

processing needs further research in terms of the mediating effects that temperature might elicit 
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on toxicity of organic UV-filters. Also, it is essential to monitor the seasonal presence and levels of 

these compounds in hotspots within freshwaters such as fluvial beaches and lakes. Ecological 

effects should also be studied in situ aiming to understand the long-term consequences of their 

presence in freshwater sediments and in important ecosystems functional parameters such as 

primary productivity.  
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General Discussion  

 
The continuous use of organic UV-filters increases every day and consequently, it is expected 

that their concentrations in the environment increase over the time as well. These compounds 

are now considered emerging contaminants at a global scale with both marine and freshwater 

environments and biota as final recipients of such compounds. Organic UV-filters thus present a 

new threat to the ecological status of such ecosystems that urge consideration. Additionally, the 

persistence of organic UV-filters in sediments within complex chemical mixtures together with 

their potential for bioaccumulation and recent evidences of estrogenic activity call for an in-depth 

evaluation of their ecological effects.  

Despite the above mentioned, studies assessing the effects of UV-filters are mainly based in 

standard single species tests. There is a lack of understanding of what concerns possible effects of 

these compounds under different levels of biological organization and realistic exposure 

scenarios. As such, this work was directed at some of these research gaps and focused on 

generating sound ecotoxicological data that can be used for regulation and for a better evaluation 

of ecological effects of organic UV-filters in freshwaters: i) evaluation of organismal and sub-

organismal level effects in benthic aquatic organisms; ii) assessment of effects of binary mixtures 

containing UV-filters; iii) investigation of long-term, multigenerational effects; and iv) evaluation 

of effects towards natural benthic macroinvertebrates communities and on ecosystem 

functioning. Several conclusions can be summarized from all these results as well as future 

avenues for research. 

Firstly, the individual effects of UV-filters on the performance of two benthic insect species 

C. riparius and S. vittatum were evaluated. Results clearly showed that environmental relevant 

concentrations of UV-filters can indeed cause deleterious effects in these freshwater insects. 

The two invertebrate species appear to be sensitive to UV-filters exposure and as such are 

suitable organisms to evaluate the effects of these contaminants on sediments. These results 

demonstrate the importance of monitoring the ecological effects of organic UV-filters using model 

and non-model invertebrate species.  

Considering the above mentioned, and based on data for chironomids, the risk quotient (RQ) 

was determined to characterize the risk that UV-filters might present to sediment dwelling 

organisms. The RQ is calculated as a MEC/PNEC ratio, being the MEC the Measured Effect 

Concentration and the PNEC the Predicted No-Effect Concentration. If RQ > 1 means that the UV-

filters present a risk (EPA, 2017). In this study, to perform the risk characterization the data used 
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to calculate the PNEC was obtained in the present work and the MEC was obtained from the 

literature. As showed in the table 1, BP3 and 4-MBC present high risk to sediment dwelling 

organisms highlighting the importance and the need of studies with benthic species in the 

environmental risk assessments of contaminants with high lipophilicity. 

 

Table 1 - Risk assessment of UV-filters in sediments. NOEC: No observed effect concentration; PNEC: 
Predicted no-effect concentration; MEC: Measured environmental concentration; RQ: Risk quotient.  
 

 NOEC 
(mg/Kg) 

Assessment  
factor 

PNEC  MEC  
(mg/Kg) 

RQ Environmental 
 risk 

BP3 1.55 a 100 b 0.015 0.051c 3.290 Yes 
4-MBC 0.80 a 100 b 0.008 0.049 c 6.125 Yes 

a- NOEC obtained in chapter 2 (endpoint: development time of C. riparius). 
b- Assessment factor for derivation of PNECsediment considering NOEC of one long-term test (ECHA, 2008).  
c- To our knowledge, maximum concentration of BP3 and 4-MBC reported in sediments (Mizukawa et al., 
2017). 

 

 

These results clearly indicate that investigation should continue towards the effects of these 

compounds in order to identify the most sensitive ecological receptor to UV-filters in the aquatic 

environment. For that and given the low solubility of organic UV-filters, efforts should be directed 

at evaluating chronic, sub-lethal responses in an array of species and trophic guilds paving the 

way for other approaches including the estimation of Species Sensitivity Distribution curves. Also 

and to complement laboratory studies, environmental chemical and biological monitoring and “in 

situ” assays with benthic invertebrate species can be instrumental to evaluate the true ecological 

effects of organic UV-filters that are expected to be present in sediments of aquatic systems 

under anthropogenic pressure (e.g downstream of effluents and fluvial beaches). As far as we 

known, there is only one study that assesses and reports the presence of UV-filters in the 

Portuguese coast (Picot Groz et al., 2014), however, no information was reported for Portuguese 

freshwaters. 

The scarcity of studies assessing the effects of UV-filters at sub-organismal level together 

with their unknown specific mode of action in invertebrates, led us to assess the effects of these 

contaminants using a biomarker approach. The results suggest that the C. riparius and S. vittatum 

presented different patterns of responses to UV-filters at sub-organismal level indicating different 

strategies for detoxification of different compounds in these two insect species. However, and 

despite evidences of metabolic costs related with detoxification, UV-filters did not cause 

oxidative stress neither neurotoxicity at the tested concentrations in both organisms. It is 
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plausible that other biochemical endpoints could show higher sensitivity and specificity towards 

exposure to organic UV-filters based on their endocrine activity. Even if not easily translated to 

population level effects, endocrine screening biochemical assays (focusing on hormones, 

vitellogenin, etc.) should be pursued and applied in invertebrates in order to complement 

reproductive endpoints and mechanistically address toxicity of these compounds and differences 

in sensitivity of different larval stages or different species.  

As stated before UV-filters, as most contaminants, are present in natural environments in 

complex mixtures which may lead to additive, synergistic or antagonistic effects. Given the lack of 

research considering effects of complex mixtures containing organic UV-filters, effects of binary 

mixtures of BP3 - 4-MBC and BP3 - DEET (an insect repellent) on C. riparius were evaluated. 

Synergistic interactions in both mixtures (i.e.: UV-filters mixtures and mixtures of UV filters and 

insect repellents) were found for development and emergence rates of exposed organisms. 

Despite variation in response to these mixtures were observed, considering the different life-

history traits analysed, our results indicate thus that individual chemical testing can 

underestimate toxicity of organic UV-filters to freshwater organisms. Given their physical-

chemical properties (e.g. high log Kow), and given that many personal care products contain a 

mixture of different organic UV-filters, these compounds have a great potential to simultaneously 

contaminate and be present on freshwaters. This is also the case with UV filters and insect 

repellents used concomitantly by the human population. As such, and given the toxicity of UV- 

filters, our results suggest that the actual risk for freshwater invertebrates can even be greater 

than expected from standard tests with single chemical exposures. Thus, more studies assessing 

the effects of different combinations of UV-filters and also UV-filters with others personal care 

products are important since the probability of its occurrence together in the environment is high. 

Moreover, UV-filters are also used in several materials such as plastics. Thus, studies assessing the 

combined effects of UV-filters with microplastics (also present in cosmetics (Fendall et al., 2009)) 

might be interesting and extremely relevant, taking also into account that microplastics are a 

recent global concern. In fact, given that microplastics can be vectors of hydrophobic compounds, 

altering their bioavailability to biota (Bakir et al., 2014, Cole et al., 2013; Oliveira et al., 2013, 

Vethaak and Leslie, 2016) and that organic UV-filters are used also to coat plastic materials 

studying the combined effects of these two stressors can be a fruitful area of research.   

Given the persistence of organic UV-filters in sediments it is important to address their long-

term effects to biota. Here a two-generational approach was used to address effects of BP3 on C. 

riparius. Our results also showed a strong dose-response in fertility of exposed organisms. 
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Furthermore, continuous exposure to BP3 concentrations used, delayed emergence and 

development time in the F1 generation in contrast with no effects observed for the parental 

generation. These results clearly show reproductive effects of BP3 on C. riparius that would not 

be detected using standard tests. As such, it is advisable to include reproductive endpoints in the 

evaluation of chronic effects of chemicals with Chironomus including fecundity and fertility as 

measured endpoints in the standard 28-days partial life cycle assays. However, the higher 

sensitivity observed in the F1 generation illustrate the need for multigenerational assays that are 

critical to properly evaluate the population level effects of endocrine disrupting compounds such 

as organic UV-filters. Moreover, our results also illustrate that effects of organic UV-filters might 

not always be dose-dependent which is a common feature between several endocrine disruptors 

with lower concentrations causing more severe effects than higher ones (Coronado et al., 2008; 

Kim et al., 2014 Patlak, 1996; Santillo et al., 1998). Furthermore, carry-over effects of BP3 with 

reduced emergence and changes in development time were observed in C. riparius F1 

generation maintained under control/clean conditions but whose parents were previously 

exposed to BP3. These results thus suggest that BP3 might cause transgenerational effects in C. 

riparius population. Although a standardized protocol for multigenerational exposures with C. 

riparius is available some refinement on the protocol including the exposure of at least two more 

generations to chemicals would certainly improve the sensitivity of the test and allow to 

distinguish true epigenetic and transgenerational effects (Skinner et al., 2011) and also ascertain 

how sensitivity is altered throughout generations.  

 Despite the importance of the above mentioned data from laboratory assays, the evaluation 

of ecological effects of UV-filters in freshwaters cannot be complete without the consideration of 

more ecological relevant scenarios of exposure, namely the inclusion of multispecies assemblages 

and possible trait and density mediated indirect effects. It is also detrimental to assess if and how 

effects observed in individual organisms and laboratory exposures are translated into altered 

ecosystems function. Mesocosms are considered high tier approaches in ecotoxicology and they 

were used to evaluate the effects of 4-MBC on freshwater benthic invertebrate communities and 

ecosystem functions such as primary production and leaf decomposition. Exposure to sediments 

contaminated with 4-MBC did not cause alterations on the structure of the macroinvertebrates 

community nor altered rates of leaf decomposition. These results were somehow surprising 

since they were not related with effects observed in single species toxicity tests using S. vittatum 

and C. riparius, two detritivore species. We previously stated that S. vittatum and C. riparius were 

sensitive organisms to assess the effects of UV-filters in the aquatic ecosystems (according to 
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single standard tests) and the results obtained in mesocosms experiment can lead to different 

conclusions. However, this mismatch between effects observed in laboratory assays with insect 

species and lack of effects at the invertebrate community level may also arise from different 

experimental conditions namely a lower temperature used in mesocosms set-up that could have 

altered the toxicity of 4-MBC (Abdel-Tawwab and Wafeek, 2017; DeLorenzo et al., 2009). Thus, 

the mediating effects of temperature on organic-UV-filters should be investigated in the future. 

Moreover, the fact that only artificial sediment (but not food, i.e. leaf litter) was contaminated in 

the streams used, may also have allowed invertebrates to avoid the contaminant and remain in 

the leaf packs where they were feeding. Consequently, assays using contaminated food will be 

interesting to test this hypothesis. Although the results obtained in mesocosms trials showed no 

clear effects, after 7 days of 4-MBC exposure, on the benthic macroinvertebrates, there was a 

drastic decrease in primary production caused by 4-MBC exposure. This unexpected effect 

clearly calls for more research on the sensitivity of primary producers, namely diatoms, to organic 

UV-filters, as well as on the consequent bottom-up indirect effects caused by reductions in 

primary production. Although laborious, community ecotoxicology approaches using mesocosms 

systems are ideal to test for such effects. Future work should also consider the use of more 

natural sediments to better address the bioavailability of organic UV-filters to natural benthic 

communities. Finally, multispecies assays should also be used to address bioaccumulation and 

transport of organic UV-filters along food webs. 

In conclusion, organic UV-filters are considered global emergent contaminants of aquatic 

ecosystems whose ecological effects urge to address. All findings reported in this thesis 

demonstrate the toxicity and potential deleterious effects of these compounds. At the same time, 

all results illustrate the validity and importance of an integrated ecotoxicological approach using 

aquatic invertebrates and different levels of biological organization and can surely contribute to a 

better environmental risk assessment of organic UV-filters in freshwaters. 

 

References 

Abdel-Tawwab, M., Wafeek, M., 2017. Fluctuations in water temperature affected waterborne cadmium toxicity: 
Hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). 
Aquaculture 477, 106-111. 
 
Bakir, A., Rowland, S. J. and Thompson, R. C. (2014) “Enhanced desorption of persistent organic pollutants from 
microplastics under simulated physiological conditions,” Environmental Pollution: 185, pp. 16–23.  
 
Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by 
zooplankton. Environ. Sci. Technol. 47, 6646-6655. 
 



Chapter 7: General Discussion 

 

154 
 

Coronado, M., De Haro, H., Deng, X., Rempel, M.A., Lavado, R., Schlenk, D., 2008. Estrogenic activity and reproductive 
effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquatic Toxicology 90, 182-187. 
 
DeLorenzo, M.E., Wallace, S.C., Danese, L.E., Baird, T.D., 2009. Temperature and salinity effects on the toxicity of 
common pesticides to the grass shrimp, Palaemonetes pugio. Journal of Environmental Science and Health, Part B 44, 
455-460 
 
ECHA: European Chemicals Agency, 2008. Characterization of dose [concentration]-response for environment. Guidance 
on Information Requirements and Chemical Safety Assessment. 
 
EPA, U.S., 2017.Ecological Risk assessment. U.S. EPA: https://www.epa.gov/risk/conducting-ecological-risk-assessment, 
acedido em 2017. 
 
Fendall, L. S.; Sewell, M. A., 2009. Contributing to marine pollution by washing your face: Microplastics in facial 
cleansers. Mar. Pollut. Bull. 58, 1225−1228. 
 
Kim, S., Jung, D., Kho, Y., Choi, K., 2014. Effects of benzophenone-3 exposure on endocrine disruption and reproduction 
of Japanese medaka (Oryzias latipes)—A two generation exposure study. Aquatic Toxicology 155, 244-252. 
 
Mizukawa, A., Molins-Delgado, D., Azevedo, J.C.R., Fernandes C. V. S., Díaz-Cruz S., Barceló, D., 2017. Sediments as a 
sink for UV filters and benzotriazoles: the case study of Upper Iguaçu watershed, Curitiba (Brazil). Environ Sci Pollut Res 
24, 18284–18294. 
 
Oliveira, M., Ribeiro, A., Hylland, K., Guilhermino, L., 2013.Single and combined effects of microplastics and pyrene on 
juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecological Indicators 34:641–
647. 
 
Patlak, M., 1996. A testing deadline for endocrine disrupters. Environmental Science & Technology 30, 540A-544A. 
 
Picot Groz, M., Martinez Bueno, M.J., Rosain, D., Fenet, H., Casellas, C., Pereira, C., Maria, V., Bebianno, M.J., Gomez, E., 
2014. Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese 
coast by QuEChERS extraction and GC–MS/MS. Science of The Total Environment 493, 162-169. 
 
Santillo, D., Stringer, R.L., Johnston, P.A., Tickner, J., 1998. The precautionary principle: Protecting against failures of 
scientific method and risk assessment. Marine Pollution Bulletin 36, 939-950. 
 
Skinner, M.K., Manikkam, M., Guerrero-Bosagna, C., 2011. Epigenetic transgenerational actions of Endocrine Disruptors 
Reproductive toxicology (Elmsford, N.Y.) 31, 337-343. 
 
Vethaak, A. Dick, and Heather A. Leslie. 2016. “Plastic Debris Is a Human Health Issue.” Environmental Science and 
Technology 50 (13): 6825–26. 
 



  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Annex I 



  

 

 

 



R

D
J
D

a

A
R
R
1
A
A

K
P
F
E
B
N

1

p
p
n
s
r
p
p

a
(
a
r
2
r
2
0
w
U
(
f

h
0

Aquatic Toxicology 172 (2016) 80–85

Contents lists available at ScienceDirect

Aquatic  Toxicology

j o  ur na l  ho me pag e: www.elsev ier .com/ locate /aquatox

esponses  of  the  aquatic  midge  Chironomus  riparius  to  DEET  exposure

iana  Campos,  Carlos  Gravato,  Carla  Quintaneiro,  Amadeu  M.V.M.  Soares,
oão  L.T. Pestana ∗

epartamento de Biologia &  CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

 r  t  i c l  e  i  n f  o

rticle history:
eceived 25 September 2015
eceived in revised form
8 December 2015
ccepted 29 December 2015
vailable online 4 January 2016

eywords:

a  b  s  t  r a  c t

N,N-diethyl-3-methylbenzamide  (DEET)  is the  active ingredient of  many  commercial  insect  repellents.
Despite  being detected  worldwide  in effluents, surface water  and  groundwater,  there is still  limited  infor-
mation on DEET’s  toxicity  toward  non-target  aquatic  invertebrates.  Thus, our main objective was to assess
the effects  of DEET  in  the  life  cycle  of Chironomus riparius and  assess  its  biochemical  effects. Laboratory
assays  showed  that  DEET reduced  developmental  rates  (reduced  larval growth,  delayed  emergence)  of
C. riparius larvae  and also  caused  a  decrease  in the  size  of  adult  midges.  Concerning  the  biochemical
responses,  a short  exposure  to DEET  caused  no effects  in  lipid  peroxidation, despite  the  significant inhi-
ersonal care products
reshwater insects
mergent pollutants
iochemical responses
,N-diethyl-3-methylbenzamide

bition  of catalase and  glutathione-S-transferase  activities  and  of total glutathione contents.  Moreover,
inhibition  of acetylcholinesterase  activity was also observed  showing  neurotoxic effects. Environmental
risk assessment  of insect repellents  is needed.  Our  results  showed  moderate  toxicity of DEET  toward
C. riparius, however,  due to  their  mode  of action,  indirect ecological  effects  of DEET  and  of other  insect
repellents cannot  be  excluded  and  should  be  evaluated.
. Introduction

Personal care products (PCPs), including insect repellents, are
rone to reach the environment through wastewater treatment
lants (Stuart et al., 2012), since this group of emerging contami-
ants can be excreted via urine if it is first absorbed in  the body after
kin wash (Brausch and Rand, 2011; Pedrouzo et al., 2011). Insect
epellents are used for protection against insect bites, whereby they
revent the spread of diseases and play an important role in  the
revention and control of outbreaks (Liu et al., 2013).

Initially, N,N-diethyl-3-methylbenzamide (DEET), the synthetic
ctive ingredient present in most commercial insect repellents
Costanzo et al., 2007), was considered to be a non-bioaccumulative
nd non-persistent compound (USEPA, 1998) and environmental
isk assessment was not considered necessary (Costanzo et al.,
007). However, DEET has been routinely detected in aquatic envi-
onments worldwide and in  different matrices (Costanzo et al.,
007). For example, in  Australia a  maximum concentration of
.14 �g/L, 0.49 �g/L and 1.5 �g/L  was found in effluent, surface
ater and in  influent respectively (Costanzo et al., 2007) and in  the

SA, DEET was also found in effluents (2.1 �g/L) and surface waters

0.64 �g/L) (Glassmeyer et al., 2005). In Europe, DEET is routinely
ound in river water at concentrations reaching 0.16 �g/L (Calza
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et al., 2011)  and in  seawater at concentrations of  0.013 �g/L (Weigel
et al., 2004). In South Korea, Yoon et al. (2010) also detected DEET
in surface water and in effluents (0.09 and 0.19 �g/L, respectively).

DEET’s repellent properties have been studied mostly in
mosquito species which are harmful to human health, as, for exam-
ple, Culex quinquefasciatus,  Aedes aegypti and Anopheles albimanus
(Leal, 2014). The mode of action of DEET still causes controversy
amongst scientists. Initially, it was though that DEET interfered
with the detection of lactic acid on host by insects (Dogan et al.,
1999)  but this hypothesis has already been discarded. DEET has
been shown to cause avoidance behavior by activation of olfac-
tory neurons (Syed and Leal, 2008) in  C. quinquefasciatus (Syed and
Leal, 2008) and A. aegypti (Stanczyk et al., 2010) and in Drosophila
melanogaster the data obtained by Pellegrino et al. (2011) sug-
gested that DEET acts by disturbing the insect odor sense. On the
other hand, Lee et al. (2010) showed that DEET inhibited feeding
behavior in D. melanogaster by direct activation of its gustatory
receptor neurons. Recent studies showed that DEET can act through
direct contact or  by distance (Leal, 2014),  affecting the gustatory
and olfactory receptor neurons of insects (Ditzen et al., 2008; Lee
et al., 2010). Together these studies highlight that DEET has a  neu-
rotoxic effect on insects that can result in behavioral (feeding,
avoidance) impairment with potentially important physiological

consequences.

Due to its presence in many freshwater systems, understand-
ing the ecological effects of DEET is  a  pertinent issue. Chironomus
riparius Meigen (Diptera: Chironomidae) is  a benthic species widely
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sed in  ecotoxicological tests to evaluate the toxicity of different
nvironmental stressors, their mixtures on different organismal
nd biochemical endpoints (Campos et al., 2014; Pestana et al.,
009; Rodrigues et al., 2015a,b). Although chironomids are non-
iting midges, they have a  very important role in  the ecosystem
ecause they serve as food for many other macroinvertebrates and
ertebrates, and also in the detritus processing of organic matter
Pery et al., 2002). It  is plausible that exposure to DEET can elicit
eleterious effects on non-target insects through neurotoxicity
nd/or physiological impairment. Laboratory tests using chirono-
ids and a set of organismal and biochemical endpoints are thus

deal to investigate the effects and mechanisms of action of insect
epellents in  non-target aquatic insects.

The aim of this study was thus to investigate individual and bio-
hemical effects of DEET on the freshwater insect, C.  riparius. Larval
rowth, percentage of emergence, time to emergence and adult
ody size were the individual-level responses selected to assess
he chronic effects of DEET. Acetylcholinesterase activity, oxidative
tress biomarkers and antioxidant defences were selected as end-
oints to  assess the biochemical effects of DEET in  these aquatic

arvae.

. Materials and methods

.1. Test organism

C. riparius used in  all experiments were obtained from a  labo-
atory culture established for more than 15 years in the University
f Aveiro. Organisms in these cultures are maintained at constant
oom temperature (20 ◦C ± 1 ◦C) in plastic containers with pre-
iously burnt (500◦ C for 4 h) inorganic fine sediment (<1 mm),
merican Society for Testing Materials (ASTM) hard water, and a
6:8 h light-dark photoperiod. Larvae are fed ad libitum every two
ays with a  suspension of macerated Tetramin® (Germany) and the
edium is  changed weekly.

.2. Experimental design

.2.1. Chronic 28-days full life cycle test
The chronic toxicity experiments were performed according to

ECD 219 guideline (OECD, 2004)  and first instar (less than 48 h
ost hatching) larvae were used. Larvae were exposed to a gra-
ient of five concentrations (8, 12, 18, 27 and 40.5 mg/L) of DEET
CAS number: 134-62-3; molecular weight: 191.27; Sigma–Aldrich,
ermany) (chosen on the basis of preliminary tests) plus a control

reatment (ASTM hard water only) and in each treatment twelve
eplicates with five larvae each were used. The glass vials contained
50 mL  of medium and 1 cm layer of sediment. During the test,
rganisms were fed every two days with a suspension of macerated
etramin® (0.5 mg per organism per day) and the test conditions
ere the same as described for culturing. After ten days, six repli-

ates of each treatment were sacrificed, larvae were counted and
laced in  70% ethanol for measurement of body length. The total

ength of each larvae was measured with a stereo dissecting micro-
cope fitted with a calibrated eyepiece micrometer. The initial size
f larvae at the beginning of the test (pool of 20 larvae) was  sub-
racted from final larvae length to estimate C.  riparius larval growth
ver this 10-day period. The six remaining replicates were used to
ssess the cumulative percentage of emergence, the male/female
atio and the mean time to  emergence of organisms in all treat-

ents by day 28.  For that, adult midges (imagos) were collected

aily from emergent traps with the aid of an aspirator and pre-
erved in  70% ethanol. Imagos were then dried at 50 ◦C for 24 h and
eighed in  a microbalance (Mettler UMT2).
ology 172 (2016) 80–85 81

2.2.2. Biochemical responses
Fourth instar C. riparius larvae (12 days) were exposed for 48 h to

a gradient of three DEET concentrations (8, 18  and 40.5 mg/L) plus
a control treatment (ASTM hard water only) under the same condi-
tions as in  culturing. Seven replicates with fifteen larvae were used.
Each crystalizing dish contained 200 mL  of medium and 1  cm layer
of sediment. No food was provided during exposure. After 48 h, lar-
vae were quickly dried on filter paper, immediately weighed, frozen
in liquid nitrogen and stored at –80 ◦C until use.

In order to determine lipid peroxidation (LPO), protein and
enzyme activities each frozen pool of larvae was  homogenized
by sonication in 1600 �L  of Milli-Q water. For LPO an aliquot
of 150 �L was  removed and 4 �L of 4%  BHT (2,6-Di-tert-butyl4-
methylphenol) in methanol were added. To the remaining volume
was added a  K-phosphate buffer (pH 7.4, 0.2 M)  following centrifu-
gation at 10,000 × g for 20 min  at 4 ◦C and the post-mitochondrial
supernatant (PMS) was  separated in  aliquots for catalase (CAT),
glutathione-S-transferase (GST), and acetylcholinesterase (AChE)
activity, total glutathione (TG) and protein concentration quantifi-
cation.

2.2.2.1. Lipid peroxidation. LPO was measured by thiobarbituric
acid reactive substances (TBARS) assay (Bird and Draper, 1984;
Ohkawa et al., 1979). The reaction included a mixture of  150 �L
of homogenate separated for LPO, 4 �L 4% BHT, 500 �L of 12%
(w/v) trichloroacetic acid sodium salt, 50 �L of 0.73% (w/v) 2-
thiobarbituric acid and 400 �L of 60 mM Tris–HCl with 0.1 mM
diethylenetriaminepentaacetic acid. The mixture was incubated
for 60 min  at 100 ◦C, centrifuged for 5 min  at 11,500 rpm, kept
away from the light and absorbance was read at 535 nm. The
results were expressed as nmol TBARS per g of weight using a
ε  =  1.56 ×  105 M−1 cm−1.

2.2.2.2. Catalase activity. CAT activity was determined by  mea-
suring decomposition of the substrate hydrogen peroxide (H2O2)
(Clairborne, 1985). The reaction included a mixture of  135 �L of
K-phosphate (pH 7.0; 0.05 M),  150 �L of 30% H2O2 and 15 �L  of
PMS. Absorbance was read at 240 nm during 2  min. The results
were expressed as �mol  per min  per mg of protein using a
ε  =  40 M−1 cm−1.

2.2.2.3. Glutathione-S-transferase activity. GST activity was mea-
sured based on the method describe by Habig et al. (1974).  Two
hundred microliters of reaction solution containing 4950 �L  of
phosphate buffer (0.1 M;  pH 6.5), 150 �L 10 mM 1-chloro-2,4-
dinitrobenzene and 900 �L of 10 mM reduced l-glutathione were
mixed with 100 �L of PMS. The absorbance was  read at 340 nm,  for
5 min. The enzymatic activity was  expressed in  nmol per min per
mg of protein using a  ε =  9.6 ×  103 M−1 cm−1.

2.2.2.4. Acetylcholinesterase activity. The enzymatic activity of
AChE was  measured following Ellman’s method (Ellman et al.,
1961) adapted to microplate (Guilhermino et al., 1996). Fifty micro-
liters of PMS  were mixed with 250 �L  of reaction solution. The
reaction solution was  made with 30 mL  of K-phosphate buffer
(0.1 M; pH 7.2), 200 �L  of 0.075 M acetylthiocholine iodide solu-
tion and 1 mL  of 10 mM 5,5′-dithiobis(2-nitrobenbenzoic acid). The
absorbance was read at 414 nm at 10 and 15 min. The enzymatic
activity was expressed in  nmol per min  per mg  of  protein using a
ε =  13.6 ×  103 M−1 cm−1.

2.2.2.5. Total glutathione content. Total glutathione levels were

measured by addition of 250 �L of reaction solution and 50 �L
of PMS  following the method described by  Baker et al. (1990).
The reaction solution was  made with 18 mL of Na-K phosphate
buffer (0.2 M; pH 8.0), 3 mL  of �-nicotinamide adenine dinucleotide
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ig. 1. Effects of DEET exposure on (a) C. riparius larval growth over 10 days (m
ean;  ± SD) and (d) adult body weight (mg; mean ± SD) * denotes a  significant di

mergence corresponds to  differences in total percentage of emergence.

′-phosphate reduced tetrasodium salt, 6 mL  of 10 mM  5,5′-
ithiobis(2-nitrobenzoic acid) and 1.5 mL  of glutathione reductase
25 �L from stock with 1 U/mL). The absorbance was read at 412 nm
or 3 min  following the recycling reaction of reduced glutathione
n the presence of an excess of glutathione reductase. Total glu-
athione levels, expressed as �mol  per mg  of protein, were then
alculated using a standard curve with L-GSH as a  standard.

.2.2.6. Protein quantification. The protein concentration was
uantified with Bradford method (Bradford, 1976) adapted from
ioRad’s Bradford micro-assay, using �-globulin as a  standard. For
eaction 10 �L of PMS  and 250 �L  of BioRad solution were mixed
nd 15 min  later the absorbance was read at 590 nm.

.3. Chemical analysis

Determinations of DEET in  water samples were performed
y  liquid chromatography-tandem mass spectrometry (LCMS/MS)
sing a water and methanol as a mobile phase and a C18 analytical
olumn. 6460 system with electrospray ionisation in  positive polar-
ty was used for the determination of DEET concentrations in water
amples. The lower detection limit in  water was 10 ng/L. The real
oncentrations of DEET in  water of the life cycle test were mea-
ured ten days after contamination and for each treatment three
omposite replicates were analyzed. For the biomarker exposure,
EET measurements were performed at the end of the exposure
eriod (48 h).
.4. Statistical analysis

Significant effects of DEET exposure on C. riparius biochemical
nd life-history responses were evaluated using analysis of vari-
an ± SD), (b) C. riparius cumulative emergence (%), (c) time to  emergence (days;
ce compared to  control (0) treatment at  p <  0.05 (Dunnett’s test). *  in cumulative

ance (ANOVA) with multiple comparisons examined by  Dunnett’s
post hoc test. For all statistical tests the significance level was  set
at p <  0.05. All variables were assessed for normality using resid-
ual probability plots while Levene’s and Bartlett’s tests verified the
homoscedascity of data (p >  0.05). The emergence time of  males,
LPO and AChE data were Log-transformed to  correct for unequal
variances. All  statistical analyses were performed using GraphPad
Prism version 6.00 for Windows (GraphPad Software, La Jolla Cali-
fornia USA).

3. Results

3.1. DEET concentrations in water

The values of nominal and measured concentrations for the
chronic (10 days) and biochemical exposure (48 h) are presented
in Table 1.  Measured DEET concentrations in  water were up to
27% lower than nominal concentrations after 10 days of  exposure.
The half time of DEET in surface water is estimated to be up to
15 days (Weeks et al., 2012). Besides photodegradation and micro-
bial degradation of DEET in our experimental system we cannot
exclude the adsorption of DEET to  the sediment and/or added food.
Measured concentrations are presented in all results and figures.

3.2. Life cycle endpoints

Larval growth was  affected in  C. riparius exposed to DEET with
a LOEC of 13.92 mg/L (Fig. 1a;  F(5,35) =  55.48; p  <  0.001). In the three

highest concentrations of DEET, C. riparius larval growth was  sig-
nificantly reduced by 16, 23 and 39%, respectively.

At the end of the test (28 days), and in  the two  highest concen-
trations, some larvae, which did not reach the pupal or adult stage,
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Table  1
DEET concentrations measured in overlying water (mg/L) after ten  days in chronic exposure and after 48  h  in biomarkers exposure (mean ± SD).

Nominal concentrations (mg/L) Real concentrations (mg/L)

Chronic exposure (10 days) 8 5.94 (±0.04)
12 8.80 (±0.46)
18 13.92 (±0.44)
27 21.78 (±0.61)
40.5 34.31 (0.55)
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18 

40.5 

ere still recovered from the sediment. The percentage of emer-
ence was 96.67% in  the control treatment. The total percentage of
mergence was significantly affected by  DEET (Fig. 1b; F5,35 = 11.19;

 < 0.001) with significant reductions of 33.34 and 56.67% in  con-
entrations of 21.78 and 34.31 mg/L, respectively, when compared
ith the control treatment. Time to emergence of female and male

. riparius adults decreased significantly in  response to DEET expo-
ure (Fig. 1c) with a  LOEC of 13.92 mg/L for females (F5,29 =  31.60;

 < 0.001) and 21.78 mg/L for males (F5,32 =  10.89; p < 0.001). Also, C.
iparius imagos were smaller than the control ones. Size of female
magos was significantly lower at 34.31 mg/L compared to con-
rol imagos (Fig. 1d; F5,28 =  4.001; p <  0.01), while C. riparius males
magos’ size decreased significantly in response to DEET, when
ompared to control treatment (Fig. 1d; F5,33 =  9.958; p <  0.001,
OEC of 21.78 mg/L).

.3. Biochemical responses

Levels of LPO were not significantly altered in C. riparius larvae
xposed to DEET for 48 h (Fig. 2a; F3,24 =  20.33; p > 0.05). However,
. riparius larvae exposed to  DEET showed a significant decrease
f catalase activity in  all tested concentrations compared to the
ontrol treatment (Fig. 2b; F3,26 =  6.592; p < 0.01). Moreover, GST
ctivity in  larvae of C.  riparius was significantly reduced with a
OEC of 38.94 mg/L (Fig. 2c; F3,25 =  4.105; p  <  0.05) compared to
ontrol. Furthermore, AChE activity was significantly inhibited by
EET in  larvae of C. riparius in a concentration-dependent manner,
ith a LOEC of 6.90 �g/L (Fig. 2e;  F3,24 = 20.33; p < 0.001). Levels of

G were also significantly decreased by exposure to  DEET (Fig. 2d
F3,27 =  3.918; p < 0.05)) compared to control.

. Discussion

Insect repellents such as DEET, are currently found in many
reshwater systems in  increasing concentrations and their ecologi-
al effects need to be  evaluated. Our study shows that DEET is  only
oderately toxic to chironomids. Exposure to high concentrations

f DEET cause significant changes in growth and emergence pat-
erns of C.  riparius. Neurotoxicity, inhibition of antioxidant defences
nd phase II conjugation enzymes (CAT and GST) and reduction of
lutathione levels were also observed in  C. riparius larvae under
hort-term exposures to  sub-lethal concentrations of DEET.

Studies concerning the ecotoxicity of DEET to  aquatic organisms
re scarce and mainly focused on acute toxicity studies (Costanzo
t al., 2007). Deleterious effects of DEET concentrations usually
ound in natural environment, in the �g/L order, are not expected,
ased on DEET’s ecotoxicological data for crustaceans such as Daph-
ia magna with an 48 h-LC50 of 160 mg/L (Seo et al., 2005), and fish,

.e., Gambusia affinis and Oncorhynchus mykiss with an 48 h-LC50

f 235 mg/L and 96 h-LC50 of 71.3 mg/L (Michael and Grant, 1974;
SEPA, 1998), respectively. Acute tests conducted with 2nd instar
. riparius larvae showed that 96 h-LC50 was higher than 70 mg/L
unpublished data).
6.90
16.20
38.94

Life history parameters are key endpoints used to assess detri-
mental effects of contamination to aquatic insects and the effects
of DEET exposure on C. riparius growth and delayed emergence are
indicative of population level effects. DEET concentrations tested in
our study, and eliciting such effects, are, however, much higher than
the ones found in the aquatic environment. Costanzo et al. (2007)
and Aronson et al. (2012) had already stated that it was unlikely
for DEET to cause effects in aquatic ecosystems at environmentally
relevant concentrations. In literature, reports of sub-lethal effects
of DEET and of other insect repellents in aquatic organisms are
scarce and are  focused on potential of repellency and pharmaco-
logical mode of action (Bohbot and Dickens, 2012; Xu et al., 2014).
Nevertheless, DEET exposure has been shown to cause chronic tox-
icity toward D. magna growth and reproduction with NOEC’s of
3.7 mg/L (length) and 14 mg/L (reproduction assessments) respec-
tively (Aronson et al., 2012).

Our results show that, besides altering the emergence pattern
(reduction in developmental rates) of C. riparius, DEET exposure
also caused a  decrease in adult’s body size. Body size  of  imagos have
been scarcely used as an endpoint to evaluate sub-lethal effects of
contaminants, but reproductive output is dependent of  the body
size of aquatic midges since there is evidence that larger females are
more fecund and that male body size is also positively correlated
with the total number of gametes, as well as with reproductive
success (Ponlawat and Harrington, 2007; Lilley et al., 2012). Thus,
the reduction in size of male and female C.  riparius imagos caused
by exposure to DEET is an indication of even stronger reproductive
effects showing that this can be a  sensitive and relevant parameter
for a  better evaluation of population level effects of  contaminants
(Rodrigues et al., 2015b).

Because DEET interferes with the olfactory receptors of
mosquitos which are present in both adults and aquatic larvae
(Syed and Leal, 2008; Xia et al., 2008; Crespo, 2011), the effects in
C. riparius life history traits including body size  of  adults are proba-
bly due to  a  reduction in food consumption by  interference of  DEET
with their olfactory system. Study with Anopheles gambiae larvae
show that larval odor receptor is  sensitive to DEET and DEET also
caused potential repulsive behavior in these larvae (Xia  et al., 2008).
Furthermore, it has been shown that DEET causes feeding inhibi-
tion and reduction in body weight of rats and mice (Schoenig et al.,
1999).

Concerning biochemical responses our  results show that short-
term exposure to DEET did not cause oxidative stress in  C.  riparius
larvae contrary to observations of oxidative damage caused by DEET
in  fish (Slaninova et al., 2014) and rats (Abu-Qare and Abou-Donia,
2000; Abu-Qare et al., 2001). C. riparius larvae exposed to DEET
showed no alteration of LPO levels, i.e. no oxidative stress, and a
concomitant decrease in activity of the biotransformation (GST)
and antioxidant (CAT) enzymes. We  hypothesize that glutathione
(TG) consumption was the main pathway involved in detoxifica-

tion processes in order to cope with DEET itself or reactive by
products formed during its detoxification, thus avoiding oxidative
stress (Rodrigues et al., 2015b). However, it is  also possible that
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Fig. 2. Effects of short-term (48 h)  DEET exposure on (a)  lipid peroxidation (TBARS nmol/g wet  weight; mean ± SD); (b) catalase activity (�mol/min/mg protein; mean ± SD);
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c)  glutathione-S-transferase activity (nmol/min/mg protein; mean ± SD); (d) tota
nmol/min/mg protein; mean ± SD). All endpoints measured in C. riparius 4th insta
Dunnett’s test).

n increase in  ROS, caused by enzymatic inhibition (CAT and GST
ctivities) can lead to an increased consumption of glutathione.
lthough the literature on these indirect biochemical effects of
EET is scarce, Hellestad et al. (2011) showed increased GST activ-

ties caused by DEET exposure in  cell cultures of Aedes albopictus
hile Slaninova et al. (2014) showed no effects in  terms of LPO lev-

ls, and CAT and GST activities in common carp exposed to 1 mg/L
EET.

Regarding possible neurotoxic effects of DEET, we found an inhi-
ition of  AChE in  C. riparius larvae. AChE inhibition caused by DEET
xposure in  neuronal preparations of mammals and insects was
lready shown by Corbel et al. (2009) and in fact symptoms associ-
ted to DEET intoxication in invertebrates, mammals and humans
eflect an apparent action on the central nervous system (Corbel
t al., 2009) and it has been shown that DEET binds to  the active
ite of cholinesterases (Corbel et al., 2009). This inhibition of AChE
ctivity can also explain the behavioral effects observed at the
rganism level in the chronic experiments (reduced food intake),
hich may  in  turn lead to population level effects. Crane et al.

2002) showed that inhibition of AChE activity in C. riparius exposed
o an organophosphate insecticide was related to a  decreased lar-
al weight and adult fecundity. In fact, together with CAT activity,
ChE was the most sensitive parameter, showing that biochemical
ffects can be evident at lower concentrations than the ones used
n our study. Inhibition of AChE activity can also explain why DEET
an increase the toxicity of neurotoxic insecticides such as carba-
ates, a  class of insecticides acting on this enzyme (Corbel et al.,

009).
Although DEET has been shown to be moderately toxic to C.

iparius, our study unravels some of the biochemical changes and
hronic effects induced by DEET in insects. Moreover, long-term
nd multigenerational effects of exposure to  insect repellents like

EET should also be assessed. Because DEET and other insect repel-

ents are also simultaneously used with other compounds, such as
V-filters in  sunscreens and insecticides, the results reported here
athione content (�mol/mg protein; mean ± SD); (e) acetylcholinesterase activity
ae. *  denotes significant differences compared to the control treatment at  p < 0.05

are useful to understand possible synergistic effects occurring on
natural aquatic environments.

Moreover, it should be noted that insect repellents could also
have potential deleterious effects that  were not possible to detect
or measure in  these laboratory-controlled conditions. By inter-
fering with their gustatory and olfactory organs it is likely that
insects, which sense their surrounding environment using chemi-
cal cues, may  lose or reduce the ability to detect food and predators
(Klaschka, 2008; Pestana et al., 2009)  or find suitable sites for ovipo-
sition when exposed to low concentrations of insect repellents
(Prajapati et al., 2005; Yi et al., 2014). This could also lead to impor-
tant effects at the population (mortality, reduced growth) and
community levels. Thus, ecotoxicological experiments designed to
include such realistic scenarios (different types of food, presence of
predators) and the measurement of ecologically meaningful end-
points (e.g., oviposition, avoidance, feeding preferences, etc.,) are
critical to  correctly evaluate the ecological risk of insect repellents
in aquatic ecosystems.
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� Ecotoxicological data on the effects of insect repellents in aquatic systems is needed.
� Effects of DEET were assessed in the caddisfly Sericostoma vittatum.
� Deleterious effects of DEET were only observed at concentrations above environmental levels.
� DEET exposure decreased feeding rate and carbohydrates contents in S. vittatum.
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a b s t r a c t

Stream ecosystems face ever-increasing pressures by the presence of emergent contaminants, such as,
personal care products. N, N-diethyl-3-methylbenzamide (DEET) is a synthetic insect repellent that is
being found in surface waters environments in concentrations up to 33.4 mg/L. Information concerning
DEET's toxicity in the aquatic environment is still limited and focused only on its acute effects on model
species. Our main objective was to assess the effects of DEET exposure to a caddisfly non-target species
using sub-lethal endpoints. For that, we chose Sericostoma vittatum, an important shredder in Portuguese
freshwaters that has been already used in different ecotoxicological assays. Besides acute tests,
S. vittatum were exposed during 6 days to a gradient of DEET concentrations (8, 18 and 40.5 mg/L) to
assess effects on feeding behaviour and biochemical responses, such as, lipid peroxidation levels (LPO),
catalase and acetylcholinesterase (AChE) activities, and also assess effects on energy reserves and con-
sumption. Acute tests revealed a 48 h-LC50 of 80.12 mg/L and DEET exposure caused feeding inhibition
with a LOEC of 36.80 mg/L. Concerning the biochemical responses, DEET caused no effects in LPO nor on
catalase activity. A non-significant decrease in AChE activity was observed. Regarding energetic reserves,
exposure to DEET caused a significant reduction in S. vittatum carbohydrates levels. These results add
important information for the risk assessment of insect repellents in the aquatic environment and
suggest that reported environmental concentrations of DEET are not toxic to non-target freshwater
insects.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Insect repellents are a class of personal care products that are
applied to skin, clothes or other surfaces to prevent arthropod
biting and consequently control dissemination of diseases
(Costanzo et al., 2007). These compounds can be based on synthetic
or natural substances and information about their chronic effects in
aquatic environment is still lacking (Pedrouzo et al., 2011). The
most widely used substance in commercial insect repellents is N,N-
diethyl-3-methylbenzamide (DEET), an active ingredient that was
first synthetized in 1946 by the U. S. Army (Costanzo et al., 2007).
DEET has been detected in different matrices of aquatic environ-
ments, such as wastewater treatment plants influents and effluents
(Costanzo et al., 2007; Glassmeyer et al., 2005), surfacewater (Calza

mailto:jpestana@ua.pt
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et al., 2011; Costanzo et al., 2007; Yoon et al., 2010), seawater
(Weigel et al., 2004) and even drinking water (Stackelberg et al.,
2004). DEET has been detected in different regions of the world,
such as, Europe (Calza et al., 2011), USA (Glassmeyer et al., 2005),
Australia (Costanzo et al., 2007) or South Korea (Yoon et al., 2010) in
concentrations ranging from 0.001 to 33.4 mg/L in surface waters
worldwide (for more detail see Aronson et al. (2012)).

DEET's mode of action has been the subject of investigations
using different insect species, namely Drosophila melanogaster
(Pellegrino et al., 2011), Culex quinquefasciatus, Aedes aegypti and
Anopheles albimanus (Leal, 2014). Recent studies have shown that
DEET modify insect's behaviour by activation or modulation of ol-
factory receptors (Ditzen et al., 2008; Pellegrino et al., 2011) and can
directly activate gustatory receptors neurons mimicking feeding
deterrents (Lee et al., 2010). DEET has also been shown to inhibit the
activity of acetylcholinesterase (AChE) in neuronal preparations of
mammals and insects (Corbel et al., 2009). Collectively these studies
suggest that although not designed to have biocidal properties,
exposure to insect repellents such as DEET can affect non-target
insects through behaviour impairment (feeding, predator and prey
attack-escape performance) and neurotoxicity. Thus, it is important
to evaluate their ecological effects in the aquatic environment.

However, only a few studies were conducted using aquatic or-
ganisms exposed to DEET and the majority of those investigations
are related with its acute toxicity (Aronson et al., 2012). DEET ap-
pears to be slightly toxic, but taking into account the frequency of
detection in surface waters and its persistence more studies are
required to assess the chronic toxicity of DEET for an accurate risk
assessment (Brausch and Rand, 2011; Costanzo et al., 2007).
Moreover, it is also important that this assessment is conducted
with different non-target species.

Caddisflies are used as model species for the assessment of ef-
fects of different contaminants in lotic ecosystems (Campos et al.,
2014; Dam�asio et al., 2011; Pestana et al., 2009). The caddisfly
Sericostoma vittatum Rambur (Trichoptera: Sericostomatidae) is an
endemic species present in streams of the Iberian Peninsula during
all year with an annual life cycle. They are benthic organisms with
an important role in the fragmentation of allochthonous organic
matter in streams being efficient shredders (Feio and Graça, 2000).

Due to constant detection of DEET in freshwaters and also due to
their mode of action is expectable that DEET exposure can cause
effects in non-target aquatic insects through feeding inhibition
and/or neurotoxicity. Although the concentrations tested in our
study (in order of mg/L) are above environmental relevant con-
centration (in order to mg/L), understanding ecological effects of
DEET in aquatic ecosystems, its biochemical effects and tolerance of
non-target organisms is a pertinent issue. So the aim of this study
was to evaluate the ecotoxicological responses of S. vittatum, a
freshwater caddisfly, to DEET exposure at different levels of bio-
logical organization. The endpoints chosen included feeding rate as
organismal endpoint and oxidative stress (lipid peroxidation; LPO),
antioxidant enzymes (catalase; CAT), and neurophysiological ac-
tivity (AChE) as biochemical endpoints. We also wanted to evaluate
the energy available (Ea) (measuring levels of carbohydrates, lipids
and proteins contents) and energy consumption (Ec) (measuring
electron transport system- ETS - activity).

2. Methods

2.1. Animals

S. vittatum were collected from Ribeira de S~ao Jo~ao, Lous~a,
Portugal (40�060N, 8�140W) using an hand net. Organisms were
acclimated to laboratory conditions (20 ± 1 �C, lightedark cycle of
16:8 h) for one week in plastic containers with inorganic fine
sediment (<1mm) previously burnt (500 �C for 4 h), and filled with
American Society for Testing Materials ASTM (1980) hard water.
Following the protocol described in Pestana et al. (2009), organisms
were fed ad libitum with unconditioned alder leaves (Alnus gluti-
nosa), which provide adequate nutrition for maintenance and
reproduction of this species under laboratory conditions.

2.2. S. vittatum acute experiments

S. vittatum were exposed to a range of DEET concentrations
(39.05, 50.77, 66.00, 85.80, 111.54 and 145 mg/L) during 48 h plus
control treatment (ASTM hard water only). The experimental setup
consisted in five replicates with five organisms each, for each
treatment. The organisms were exposed in glass vials with 150 mL
of respective medium at 20 ± 1 �C and 16:8 h light: dark photo-
period. No food or sediment was added during the exposure period.
In the end of 48 h all organisms in control treatment were alive.

2.3. S. vittatum feeding experiments

Based on preliminary experiments S. vittatum, were exposed to a
gradient of three concentrations (8, 18 and 40.5 mg/L) of DEET (CAS
number: 134-62-3; molecular weight: 191.27; SigmaeAldrich, Ger-
many) plus a control treatment (ASTM hard water only). Feeding
trials were based on previous laboratory toxicity assays conducted
with S. vittatum (Campos et al., 2014; Pestana et al., 2009). Briefly, we
used ten replicates with one animal per replicate. In each replicate
S. vittatum were allocated to glass vials containing 1 cm layer of
inorganicfine sediment (<1mm),150mLof respective solution and6
conditioned alder leaf discs as food. Alder leaves used in these assays
were collected from riparian vegetation of Alfusqueiro river near
Destriz (40�380N,8�160W). The leaveswere airdried and stored in the
darkness. Before use in feeding trials, the leaves were soaked in
distilled water and leaf discs (Ø 10 mm) were prepared with a cork
borer. Alder leaf discs were then autoclaved and conditioned during
one week in 1500 mL of local river water, at 20 ± 1 �C, 16:8 h light:
dark photoperiod and with aeration. After conditioning, alder leaf
discs were dried at 50 �C during 96 h and weighed.

Alder leaf discs used in each replicate are soaked in the
respective DEET solutions during 96 h before use. The test were
conducted at 20 ± 1 �C with a photoperiod of 16 h light: 8 h dark.
After 6 days of exposure, S. vittatum were collected, removed from
their case, quickly dried on filter paper, immediately weighted,
frozen in liquid nitrogen and stored at�80 �C. In the end of the test
no mortality was observed in the control treatment. In this control
treatment one of the caddisfly was in the pupal stage and thus this
replicate was removed from the feeding calculations.

Alder leaf discs were also collected and dried at 50 �C during
96 h. Feeding rate was calculated as the difference between the
initial and final leaf disc drymass (mg) and divided by thewet mass
of organism (mg) and elapsed time (days). Three replicates in
control and highest concentration of DEET were performed with
leaves discs in the absence of organisms in order to correct weight
change of leaf discs due to other factors rather than feeding. Since
no difference was found between leaf discs weight loss between
these two treatments, the combined average of loss of weight of
leaf discs of control and highest concentration of DEET was used as
a correction factor in all experimental treatments.

2.4. S. vittatum biochemical experiments

After six days organisms used for feeding experiments were
frozen at �80 �C and were used to assess effects of DEET on
biochemical parameters. Each organism was homogenized in
1600 mL of Milli-Q water by sonication. After homogenization three
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aliquots of 300 mL were removed to measure levels of lipids, pro-
teins and carbohydrates and ETS. Also, one aliquot of 200 mL for LPO
was removed and 4 mL of 4% 2,6-Di-tert-butyl-4-methylphenol in
methanol were added. To the remaining (500 mL) homogenized
samples we added 500 mL K-phosphate buffer (0.2 M; pH ¼ 7.4),
followed by centrifugation at 10,000g for 20 min at 4 �C to isolate
the post-mitochondrial supernatant (PMS) that was separated in
aliquots for CAT, AChE and protein quantification.

2.4.1. Lipid peroxidation
Lipid peroxidation was measured using thiobarbituric acid-

reactive substances (TBARS) assay (Bird and Draper, 1984;
Ohkawa et al., 1979). The reaction included a mixture of 200 mL of
homogenate samples separated for LPO, 100 mL of 100% (w/v) tri-
chloroacetic acid sodium salt, 1000 mL of 0.73% (w/v) 2-
thiobarbituric acid made in 60 mM TriseHCl with 0.1 mM dieth-
ylenetriaminepentaacetic acid. The mixture was incubated during
60 min at 100 �C, centrifuged during 5 min at 11,500 rpm and
absorbance was read at 535 nm. The results were expressed as
nmol TBARS per min per g of weight using 1.56 � 105 M�1 cm�1 as
molar extinction coefficient.

2.4.2. Catalase activity
Catalase activity was determined at 240 nm during 2 min by

measuring consumption of the substrate hydrogen peroxide
(Clairborne, 1985). The reaction included a mixture of 140 mL of K-
phosphate buffer (0.05 M; pH ¼ 7.0), 150 mL of H2O2 and 10 mL of
PMS. Results were expressed as mmol per min per mg of protein
using 40 M�1 cm�1 as molar extinction coefficient.

2.4.3. Acetylcholinesterase activity
Acetylcholinesterase activity was measured using 50 mL of PMS

that was mixed with 250 mL of reaction solution. The reaction so-
lutionwasmadewith 30mL of K-phosphate buffer (0.1M; pH¼ 7.2),
200 mL of 0.075 M acetylthiocholine iodide solution and 1 mL of
10 mM 5,50-dithiobis(2-nitrobenzoic acid) (Ellman et al., 1961;
Guilhermino et al., 1996). The absorbance was read at 414 nm and
the enzymatic activity was expressed in nmol per min per mg of
protein using 13.6 � 103 M�1 cm�1 as molar extinction coefficient.

2.4.4. Protein quantification
The protein quantificationwas performed according to Bradford

method (Bradford, 1976) adapted from BioRad's Bradford micro-
assay, using g-globulin as a standard. For reaction 10 mL of PMS
and 250 mL of BioRad solution were mixed and 15 min later the
absorbance was read at 590 nm.

2.4.5. Energy available and energy consumption
Considering energy parameters, we have determine energy

available (Ea) in terms of (Ea: energetic equivalents of carbohy-
drates, proteins and lipids contents) and also energy consumption
(Ec) bymeasuring Electron Transport Systems (ETS). Protocols were
adapted from De Coen and Janssen (1997) with slight modifications
(Rodrigues et al., 2015).

In short, carbohydrates contentwasmeasuredwith 5% of phenol
and sulfuric acid. The absorbance was read at 492 nm after 30 min
of incubation at room temperature, using glucose as a standard. The
total protein content was measured by following Bradford's
method (Bradford, 1976), using bovine serum albumin as a stan-
dard. The absorbance was measured at 520 nm after 30 min of
incubation. Total lipids was extracted with chloroform (119.38 M;
ACS spectrophotometric grade, �99.8%) and methanol (32.04 M;
ACS reagent, �99.8%). The lipids content was measured using tri-
palmitine as a standard and the absorbance was read at 375 nm.

The energy of combustion (17,500 mJ/g glycogen, 24,000 mJ/g
protein and 39,500mJ/g lipid) was used to calculate energetic values
of the fractions of energy available (De Coen and Janssen, 1997).

Electron transport system activity was measured with homog-
enization buffer (0.3 M Tris base; 0.45% (w/v) Poly Vinyl Pyrroli-
done; 459 mM MgSO4; 0.6% (v/v) Triton X-100 at a pH of 8.5),
buffered solution (0.13 M Tris base containing 0.27% (v/v) Triton X-
100; 1.7 mM NADH; 274 mM NADPH) and INT solution (p-iodoni-
trotetrazolium; 8 mM). The absorbance was read at 490 nm over
3 min. The cellular oxygen consumption rate was calculated using
the stoichiometric relationship (2 mmol of INT-formazan formed
1 mmol of oxygen consumed) and using formula of LamberteBeer:
A ¼ ε � l � c (A ¼ absorbance; ε for INT-formazan ¼ 15,900 M cm;
l ¼ 0.9 cm; c ¼ oxygen consumed). The values of ETS was then
transformed into caloric values using specific oxyenthalpic equiv-
alent for an average lipid, protein and carbohydrate mixture of
480 kJ/mol O2.

The allometric equation Z ¼ Y(M-0.71) was used to correct final
values of carbohydrates, proteins, lipids and ETS to weight of or-
ganisms where Y ¼ energetic values of each measured; M ¼ fresh
weight of the samples; Z ¼ values correct to weight of organisms
(Penttinen and Holopainen, 1995).

The Ea and Ec values were calculate as described by Verslycke
et al. (2003):

Ea ¼ Lipids þ Carbohydrates þ Proteins (mJ/mg org)
Ec ¼ Electron Transport System activity (mJ/mg org/h)

2.5. Chemical analysis

After the 6-day period, three composite replicates were used in
each treatment tomeasure DEETwater concentrations. For the acute
toxicity one composite replicate per concentration were analysed.

Liquid chromatographyemass spectrometry (LC-MS) grade
methanol and acetonitrile (Li Chrosolv Hypergrade) were pur-
chased from Merck (Darmstadt, Germany). Formic acid for the
mobile phase acidification was purchased from Labicom (Olomouc,
Czech Republic). Ultra-pure water was produced using an Aqua-
MAX-Ultra System (Younglin, Kyounggi-do, Korea). All compound
used were analytical standards or of high purity (>98%). DEET was
purchased from SigmaeAldrich. Diclofenac was purchased from
Sigma Aldrich (UK) and it was used as internal standard. Stock
solutions of compounds were prepared in methanol at a concen-
tration of 1 mg/mL and stored at �20 �C. A spiking mixture was
prepared for each compound by diluting stocks in methanol to a
final concentration of 1 mg/mL and stored at �20 �C.

A triple stage quadrupole MS/MS TSQ Quantum Ultra mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) coupled
with an Accela 1250 LC pump (Thermo Fisher Scientific) and an HTS
XT-CTC autosampler (CTC Analytics AG, Zwingen, Switzerland) was
used for analysis of DEET in water samples. Thawed water samples
were filtered through a syringe filter (0.45 mm, regenerated cellu-
lose, Labicom, Olomouc, Czech Republic), after that 10 ng of internal
standard was added to 1 mL of sample.

Cogent Bidentate C18 column (50 mm � 2.1 mm i.d., 4 mm
particle size from MicroSolv Technology Corporation Eatontown,
NJ, USA) was used as an analytical column for chromatographic
separation of the target compounds. A heated electrospray ioni-
zation (HESI-II) was used in order to ionize the target compounds.
Method parameters are reported in Table S1.

The limit of quantification (LOQ) for simultaneous analysis of
DEET was determined by measuring aqueous standard solutions in
a concentration range from 1mg/L to 100 mg/L. LOQwas calculated
as one quarter of the lowest calibration point in the calibration
curve where relative standard deviation of average response factor
was <30%. Peak area corresponding to this concentration was used
to calculate LOQ for DEET in each sample. Recovery of DEET from
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Fig. 1. Effects of DEET exposure on feeding rates of S. vittatum (mg leaf/mg organism/
day; mean ± SE). *denotes a significant difference compared to control (0) treatment at
p < 0.05 (Dunnett's test).
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aquaria water was evaluated by spiking water samples with the
target compound. MS/MS andmethod performance parameters are
depicted in Table S2.

Matrix-matched standard response was used as factors for
correcting the response derived from the calibration curve. Matrix-
matched standard was prepared from testedwater blank by spiking
with both internal standard and native compound at 10 mg/L and
100 mg/L, respectively.

The values of DEET concentrations at the end of 6 days are 9.00
(±0.37), 15.92 (±0.70) and 36.80 (±2.01) mg/L and the degradation
of DEET in chronic toxicity tests did not exceeded 12%. In the acute
assay the degradation of DEET did not exceeded 21%.

2.6. Statistical analysis

Significant effects of DEET exposure on S. vittatum feeding rate
and biochemical data were analysed by analysis of variance
(ANOVA) with multiple comparisons examined by Dunnett's post
hoc test. For all statistical tests the significance level was set at
p < 0.05. All variables were assessed for normality using residual
probability plots while Levene's and Bartlett's tests verified the
homoscedasticity of data (p > 0.05). The lipids and protein data
were Log-transformed to correct for unequal variances. All statis-
tical analysis were performed using GraphPad Prism version 6.00
for Windows (GraphPad Software, La Jolla California USA).

The 48 LC50 for DEET was calculated by the probit method using
Minitab software (Minitab Inc., State College, PA, USA).

3. Results and discussion

DEET is synthetized to be used against adult and biting insects
but as it reaches surface waters it can also affect non-target aquatic
species and especially insects. Knowledge on the effects of this
contaminant and its mechanisms of toxicity is scarce.

Results of this study suggest that DEET is moderately toxic in the
aquatic environment, since estimated values of 48 h LC50 (95% CI)
for S. vittatumwere 80.12 mg/L (53.53e106.71). S. vittatum showed
to be a more sensitive species when compared to the crustacean
Daphnia magna (48 h LC50 ¼ 160 mg/L DEET) (Seo et al., 2005) and
to fish species such as Gambusia affinis (48 h LC50 ¼ 235 mg/L)
(Michael and Grant, 1974) and Oncorhynchus mykiss (96 h
LC50 ¼ 71.3 mg/L) (USEPA, 1998).

Since DEET affects gustatory and olfactory receptors of insects,
our results seems to confirm that DEET can act as a feeding deter-
rent since S. vittatum larvae exposed to DEET showed feeding in-
hibition (Fig. 1; F(3,32) ¼ 3.65; p < 0.05). Similar effects in terms of
reduced feeding had already been reported for other organisms.
Schoenig et al. (1999) showed a decrease in food consumption for
mice and female rats when DEET was used in their diets. Lee et al.
(2010) showed that DEET, in D. melanogaster, is highly effective
antifeedant and Sanford et al. (2013) showed that DEET and others
insect repellents act as feeding deterrents for A. aegypti. All these
studies showed that DEET acts on gustatory receptor neurons
causing significant alterations of feeding behaviour (Lee et al., 2010;
Sanford et al., 2013). DEET also interferes with olfactory receptors
but in Trichoptera there is evidences that food choice is only related
with gustatory cues and, in general, the antennae of Trichoptera are
not so well developed (Crespo, 2011) compared to other aquatic
insects. Sp€anhoff et al. (2005) showed that for Melampophylax
mucoreus the detection of food was not related with antenna but
with sensilla in maxillary palps and galea. Motyka et al. (1985)
showed that in Pycnopsy guttifer the preference of food can be
initiated by gustatory cues since the organisms chose colonized
leaves after being in contact with them. For D. melanogaster Lee
et al. (2010) showed that the strong ability of DEET to prevent
feeding is only dependent of gustatory receptor neurons and do not
involve olfactory receptors neurons. Nonetheless, other insect or-
ders such as Ephemeroptera, Plecoptera and Diptera are expected
to be more sensitive to DEET exposure than Trichoptera since they
have antenna with a variety of types of sensilla (Crespo, 2011).
Nevertheless, our investigations have shown that high concentra-
tions of DEET can alter life history traits of aquatic insects by
reducing feeding with possible consequences for growth and
development which were also observed in the dipteran Chironomus
riparius (this study, Campos et al., 2016). Moreover, because insect
detritivores and shredders are common in benthic communities it
is also possible that DEET can affect organic matter processing in
streams through effects on other detritivore insect species with
potential indirect effects (Campos et al., 2014).

Concerning biochemical effects, DEET has been shown to cause
oxidative stress in rats, (Abu-Qare andAbou-Donia, 2000) and in fish
(Slaninova et al., 2014). However, we did not observe any effects of
DEET exposure on S. vittatum' LPO (Fig. 2a; F(3,33) ¼ 0.82; p > 0.05)
and also no effects were observed in CAT activity (Fig. 2b;
F(3,33) ¼ 1.07; p > 0.05). This lack of effects in terms of oxidative
damage has been previously observed for other aquatic insect,
C. riparius (Campos et al., 2016). Regarding neurotoxicity effects, our
results showed a reduction (although not significant) in terms of
AChE activity in organisms exposed to DEET (Fig. 2c; F(3,32) ¼ 1.31;
p > 0.05). In this study no distinction was made between different
forms of ChE. However S. vittatum contains mainly AChE activity
(Pestana et al., 2014) and the enzymatic activity measured in or-
ganism was considered to represent AChE activity. AChE activity
inhibition, which has also been observed for C. riparius exposed to
DEET can also lead to behavioural effects (locomotion, feeding) and
consequently effects at the population level (Campos et al., 2016).
DEET has been previously shown to affect AChE activity in neuronal
preparations of mammals and insects since DEET binds to the active
site of cholinesterase, inhibiting the hydrolysis of acetylthiocholine
by AChE (Corbel et al., 2009). In fact, it is suggested that DEET might
have important synergistic effects when combined with neurotoxic
insecticides, but further studies should be performed. For example,
the toxicity of carbamates increases in the presence of DEET which
targets AChE especially when in mixtures with carbamates (Corbel
et al., 2009). This calls for more ecotoxicity studies on the possible
synergistic effects of mixtures of DEET with insecticides or other
compounds such as UV-filters which are sometimes simultaneously
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Fig. 2. Effects of DEET exposure on a) lipid peroxidation (TBARS nmol/g wet weight; mean ± SE); b) catalase activity (mmol/min/mg protein; mean ± SE); and c) acetylcholinesterase
activity (nmol/min/mg protein; mean ± SE).
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present in commercial sunscreens and insect repellents.
In this study we also addressed effects of DEET exposure on en-

ergetic reserves and energy consumption. Organisms use energy for
growth, reproduction and basal metabolism. However, when
exposed to stressful conditions (as e.g. contaminant exposure), and
to maintain physiological or biochemical homeostasis, organisms
can initiate compensatory adjustments in the energy metabolism
(Choi et al., 2001; De Coen and Janssen, 2003). As a consequence, the
consumption of sugars, lipids and proteins may increase to over-
come the energetic requirements for detoxification processes with
consequent effects in terms of energy available for growth and
development (Choi et al., 2001). Thus effects at cellular levels can be
indicative of less energy available to growth, reproduction and
development processes (Smolders et al., 2004). In the present study,
exposure to DEET resulted in a decrease of carbohydrates content
(Fig. 3a; F(3;33) ¼ 3.01; p < 0.05), but no effects were observed for
lipid (Fig. 3a; F(3,33) ¼ 0.57; p > 0.05) and protein contents (Fig. 3a;
F(3,33) ¼ 1.88; p > 0.05). Consequently no effects were reported for
energy available as a whole (F(3,33) ¼ 1.091; p > 0.05). Decrease
observed in glycogen contentswere not specific of chemical stressor,
but can be due to processes involved in the reaction to stress by
chemical exposure (Choi et al., 2001). De Coen and Janssen (2003)
suggested that the reduction in energy reserves may be a result of
decreased consumption of food or an increased metabolic activity.
Since no effects were observed in neither energy consumption
(Fig. 3b; F(3,33) ¼ 0.175; p > 0.05), nor biochemical parameters (LPO,
CAT and AChE) probably the decrease in carbohydrates levels
observed can be the result of a reduction in food consumptionwhich
can negatively affect growth and reproduction of organisms.

According with our study, DEET is slightly toxic to S. vittatum
since effects were only observed for concentrations much higher
than the ones reported in the environment. However, and taking
into account that the occurrence of DEET in surface water increases
during summer months (Aronson et al., 2012), further studies
should monitor DEET's occurrence over seasons and possible hot-
spots in the aquatic environment. Also, indirect effects of exposure
to insect repellents are possible in natural environments and future
studies should focus on realistic exposure scenarios. Since DEET
acts on gustatory and olfactory receptors, it is plausible that or-
ganisms exposed to DEET are affected in terms of chemical recog-
nition of their surrounding environment (such as the ability to
detect food and the presence of predators). Moreover, since DEET
affects olfactory receptors of adult insects and have a repellent
action, it can also locally reduce or alter insect's oviposition pat-
terns (Prajapati et al., 2005; Yi et al., 2014).
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