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Abstract

In this paper we deal with circulant and partitioned into n-by-n circu-
lant blocks matrices and introduce spectral results concerning this class of
matrices. The problem of finding lists of complex numbers corresponding to
a set of eigenvalues of a nonnegative block matrix with circulant blocks is
treated. Along the paper we call realizable list if its elements are the eigen-
values of a nonnegative matrix. The Guo’s index λ0 of a realizable list is the
minimum spectral radius such that the list (up to the initial spectral radius)
together with λ0 is realizable. The Guo’s index of block circulant matrices
with circulant blocks is obtained, and in consequence, necessary and sufficient
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conditions concerning the NIEP, Nonnegative Inverse Eigenvalue Problem,
for the realizability of some spectra are given.

Inverse eigenvalue problem; Structured inverse eigenvalue
problem; Nonnegative matrix; Circulant matrix; Block circulant matrix;
Guo index

15A18, 15A29, 15B99.

1. A brief review and some to ols

In this section we present a brief resume related to nonnegative inverse
eigenvalue problem (NIEP). Recall that a square matrix A = (a ) is non-

negative (A 0) if and only if a 0, for each i, j = 1, . . . , n.  For more
background material on nonnegative matrices see for example [3]. The NIEP
is the problem of determining necessary and sufficient conditions for a list
of complex numbers to be the spectrum of an n-by-n nonnegative matrix A.

If a list σ is the spectrum of a nonnegative matrix A, then σ is 
and the matrix A σ (or, that is a realizing matrix for the list). This
is a hard problem and it is considered by many authors since more than 50
years ago. This problem was firstly considered by Sulĕımanova [37] in 1949.

Many partial results were found but the problem is still unsolved for n 5.
For n = 3 it was solved in [22] and for matrices of order n = 4 the prob-
lem was solved in [26] and [25]. In its general form it has been studied in
e.g. [5, 11, 14, 19, 20, 22, 35, 36]. There are some variants of this problem
namely for instance, the one called symmetric nonnegative inverse eigenvalue
problem, SNIEP, (when the nonnegative realizing matrix is required to be
symmetric). This is also an open problem and some work on this can be seen
in [9, 15, 23, 34]. Another variants of the original problem is the question
for which lists of n real numbers can occur as eigenvalues of an n-by-n non-
negative matrix and it is called real nonnegative inverse eigenvalue problem
(RNIEP). Some results can be seen in e.g. [4, 8, 28, 30, 33]. The structured
NIEP is an analogous problem to NIEP where the realizing matrix must
be structured, for instance, the matrix can be symmetric, Toeplitz, Hankel,
circulant, normal, etc. see in [9, 24, 27] and the reference therein.

To not be so extensive on the description of this problem the reader must
refer to some surveys on NIEP, for instance in [13] and in the references
therein.
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Throughout the text, and σ A( ) denote the set of complex k-tuples
and of the eigenvalues of a square matrix A, respectively. Also ρ A( ) denotes
the spectral radius of A. Here, the identity matrix of order n is denoted by
I and if the order of the identity matrix can be easily deduced then it is just
denoted by I .

Since a nonnegative matrix is real, its characteristic polynomial must have

real coefficients and then λ0, . . . , λ −1 = = = σ σ λ0, . . . , λ −1 , λwhere 
stands for the complex conjugate of λ .

Therefore consider the following definition:

Definition 1. n (λ 0, . . . , λ −1 ) 

λ0, . . . , λ −1 = λ0, . . . , λ −1 ,

The following fundamental theorem was proven in [11] and in its state-
ment it is introduced formally the notion of Guo’s index.

Theorem 2. (λ 1, . . . , λ −1) 

(n 1) λ 0

max
1 1≤ ≤ − λ λ 0.

(λ, λ 1, . . . , λ −1 ) n n 

A λ λ 0 λ 0 2n max 1 1≤ ≤ − λ

The following definition generalizes the concept of circulant matrix.

Definition 3. n n 2 

This concept was introduced in [27]. The spectra of a class of permutative
matrices was studied in [24]. In particular, spectral results for matrices par-
titioned into 2-by-2 symmetric blocks were presented and, using these results
sufficient conditions on a given list to be the list of eigenvalues of a nonneg-
ative permutative matrix were obtained and the corresponding permutative
matrices were constructed. Here, in [24], it was introduced the concept of
permutatively equivalent matrix.
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Definition 4. Let τ = (τ1, . . . , τ ) be an n-tuple whose elements are
permutations in the symmetric group S , with τ1 = id. Let a =(a1, . . . , a ) 

. Define the row-vector,

τ (a) = a (1), . . . , a ( )

and consider the matrix

τ (a) =

τ1 ( )a

τ2 ( )a
...

τ −1 ( )a

τ ( )a

. (1)

An n-by-n matrix A is called τ if A τ = (a) for some n-tuple a.

Definition 5. A B τ τ =
(τ1, . . . , τ ) 

The paper is organized as follows: In Section 2 we introduce some con-
cepts and results related with circulant matrices and block circulant matri-
ces. In particular, we give a new necessary and sufficient condition for the
list σ = (λ1, a a + bi, bi, . . . , a + bi, a bi) with a > 0, b  >  0 to be
the spectrum of a nonnegative circulant matrix. This result improves the
one proved in [31, Proposition 4]. We also refer the importance of circulant
matrices and block circulant matrices in some applied areas. In Section 3
we present spectral results for matrices partitioned into blocks where each
block is a square circulant matrix of order n then, the spectral results are
applied to structured NIEP and SNIEP. In Section 4 some properties of a
matrix partitioned into blocks with a certain structure are found using some
already known structure on matrices of smaller size. Finally at Section 5
it is established the Guo’s index for block circulant matrices with circulant
blocks. Throughout the paper some illustrative examples are presented.

2. Circulant matrices and blo ck circulant matrices

The class of circulant matrices and their properties are introduced in
[7]. In [18] it was presented a spectral decomposition of four types of real
circulant matrices. Among others, right circulants (whose elements topple
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from right to left) as well as skew right circulants (whose elements change
their sign when toppling) were analyzed. The inherent periodicity of circulant
matrices means that they are closely related to Fourier analysis and group
theory.

Let a = (a0, a1, . . . , a −1 ) be given.

Definition 6. real right circulant matrix circulant
matrix

A a( ) =

a0 a1 . . .  . . .  a −1

a −1 a0 a1 . . .  a −2

a −2

a0 a1
a1 . . .  a −2 a −1 a0

The matrix A a( ) is clearly determined by its first row. Therefore, the
above circulant matrix is also sometimes denoted by circ(a0, a1, . . . , a −1 ) or,
in a more simple way by (a0, a1, . . . , a −1). The next concepts can be seen
in [18]. The entries of the unitary discrete Fourier transform (DFT) matrix
F = (f ) are given by

f :=
1

n
ω , p = 0, 1, . . . , n 1, q = 0, , 1, . . . ,m 1 (2)

where

ω = cos
2π

m
+ i sin

2π

m
. (3)

The following results characterize the circulant spectra.

Theorem 7. a = (a 0, . . . , a −1 ) ( (A a) = circ a 0, . . . , a −1 ).

A a F ( ) = Λ (a F) ∗,

Λ (a λ) = diag ( 0 ( ) a , λ1 ( ) a , . . . , λ −1 (a))

λ (a) =
−1

=0

a ω k = 0, . 1, . . . ,m 1 (4)
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Corollary 8. a 

v v a:= ( ) = (λ0 ( ) a , λ1 ( ) a , . . . , λ −1 (a)) .

a =
1

m

−1

=0

λ ω−
k = 0, . 1, . . . ,m 1 (5)

Remark 9. a = (a 0, . . . , a −1 )

a =
1

m
F ∗

v a v a( ) ( ) = mF a.

The next proposition obtains the Guo’s index of some spectra and it
is a generalization of the result obtained by O. Rojo and R. Soto in [31,
Proposition 4].

Prop osition 10. n 

σ = (λ1, a a + bi, bi, . . . , a + bi, a bi)

a > 0 0 , b  >  λ 1 a2 + b2 σ n n

A 

λ1 (n 1)a n + max 0,
b

n a . (6)

Pro of. Let s 0 and consider σ

= ( + ) ( + ( +n 1)(a s , a s) + bi, a 

s) bi, . . . , ( + a s)+ bi, ( + ) a s bi . We claim that there exists an s 0
such that a companion matrix

B =

0 1  0 . . .  0 0
0 0  1 . . .  0 0
...

...
. . . . . .

...
...

0 0  0 . . .  0 1
b b −1 b −2 . . .  b2 0

realizes σ . In fact, for the characteristic polynomial of B we have

p x x( ) = b 2( )σ x −2

b ( )σ ,
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and from the Newton identities, [13],

b2(σ) =
1

2[(n 1)
2( + )a s 2

+ (n a s1)( + )
2

(n 1)b
2].

As B must be nonnegative, from [21, Lemma 5] it is required that b 2( ) 0σ

or, in a equivalent way, that a s + 
b

n
. Thus

s max 0,
b

n a . (7)

Therefore, σ is realizable by the matrix A B = + sI 0 if and only if
λ1 (n 1)a + ns, which shows the result.

Remark 11. 

C 

C =

c0 c1 . . .  . . .  c

c c0 c1 . . .  c −1

c −1 c c0 . . .

c1 c2 c3 . . .  c0

,

c0
c1

c

=
1

n

1 1  . . .  . . .  1
1 ω ω2 . . .  ω −1

1 ω2 ω4 . . .  ω2( 1)−

1 ω −1 ω2( 1)− . . .  ω( −1)

λ1

a ib+ 
a ib

a ib

.

Definition 12. 

A0 A1 . . .  A −1

A −1 A0 . . .  A −2

A1 A2 . . .  A0

, (8)

A n n 
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The partitioned into blocks matrices have particular importance in many
areas. We refer here for instance Engineering, see [16] where the authors
study forced vibration of symmetric structures. They present a method to
calculate the eigenvectors of these matrices and then from the discrete struc-
ture they establish relationships for continuum structures. After discussing
the dynamics aspects of the structures they consider subjects from earth-
quake engineering and spectral analysis from such structures. Moreover,
block circulant matrices are used in coding theory. For instance, in [17] the
author used the canonical form based in circulant matrices to found many
good codes: quadratic residue codes and high quality group codes. Some
LDPC codes can also be defined by a matrix partitioned into blocks where
each block are circulant matrices [1]. See more applications in coding the-
ory in [10], and the references therein. More on circulant block matrices
with the circulant or factor circulant structure was considered for instance
in [2, 6, 32, 38].

3. Eigenpairs for square matrices partitioned into circulant blo cks

In this section we present spectral results for matrices partitioned into
blocks where each block is a circulant matrix of order n. The next theorem
is valid in an algebraically closed field K of characteristic 0. For instance,
when K = . We recall that it is a particular case of [39, Theorem 1] when
A , , = circ(0 1 0, . . . , 0) however, its statement establishes the notation of this
work. Therefore, we include it here.

Theorem 13. K 0 
A = (A i, j( )) mn mn n 2

m m 1 i, j n,

A = (A i, j , A i, j a i, j , ( )) ( ) = circ( ( )) (9)

a i, j( ) = (a0( )i, j , a1( )i, j , . . . , a −1 (i, j)),

a ( ) 1 i, j K, i, j n k = 0, . k 1, . . . ,m  1 =
0 1 1, , . . . ,m , 

e = 1, ω , ω2 , . . . , ω( −1) , (10)
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ω 

σ A( ) =
−1

=0

σ S( ) , (11)

S = (s (i, j))
1≤ ≤ , s (i, j) = e a i, j( ) , (12)

k = 0, i, j 1, . . . ,m 1 1 n.

The next result is a direct consequence of (5).

Corollary 14.  = 0, 1, . . . ,m 1 S
a(u, v) := (a 0 ( )u, v , . . . , a −1 (u, v)) A a(u, v) = circ( (u, v))

a (1, 1) a (1, 2) . . .  a (1, n)

a (n, 1) a (n, 2) . . .  a ( )n, n

=
1

m

−1

=0

S ω− ,

k = 0, .1, . . . ,m 1

Remark 15. A 

k = 0, , 1, . . . ,m 1

L :=
1

m

−1

=0

S ω− (13)

S 0

−1

=0

L =
1

m

−1

=0

−1

=0

S ω−

=
1

m

−1

=0

S

−1

=0

ω−

=
1

m
S0 +

1

m

−1

=1

−1

=0

S ω− .
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S 0

−1

=0

L 0 

−1

=1

−1

=0

ω− =
−1

=1

1 ω−

1 ω
− = 0.

Remark 16. q1, q2, . . . , q k =

0 1 1 1 , . . .m , u, v n ρ (u, v) = q S q

a (u, v) =

−1

=0

1

m
ρ ( )u, v ω− . (14)

The next result will be important in order to present a constructive cri-
terion.

Theorem 17. k = 0, L1, . . . ,m 1
A(u, v) ( ) u, v th A

1 u, v n. 

A(u, v) = circ(L0 , L −1 , L −2 , . . . , L1 ) q q
= (circ q L0 q , q L1 q , . . . , q L −1 q )

Pro of. From equation (14) in Remark 16, it is obtained the equality:

a (u, v) = q L q .

Then,

A a(u, v) = circ( 0( )u, v , a1( )u, v , . . . , a −1 (u, v))

= circ( L0 q , L1 q , . . . , L −1 q ) q

= circ(L0 q , L1 q , . . . , L −1 q ) q

= circ(L0 , L −1 , . . . , L1 ) q q .

Therefore the statement is verified.
From Theorem 13 and Theorem 17 the proof of the following result is

clear.
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Corollary 18. S
−1

=0
m n n 

A

σ A =

−1

=0

σ S , (15)

Pro of. For k = 0, L1, . . . ,m 1 let us consider the matrix defined as in
(13) by using S instead of S . Define the block matrix A as in (9) with the
circulant blocks defined as in Theorem 17 by using L instead of L . From
Theorem 13 the spectrum of A is given by the union in (11). Moreover, from
Theorem 17 the ( )-th circulant block u, v A (u, v) of A is obtained. Since, this
last circulant block and the original circulant block in the ( )-th positionu, v

coincide, the union referred in (11) and in (15) coincide. Thus the matrix A
has spectrum equal to the set in (15).

The following example shows that for a given list, there exists a better
splitting of this list such that there exists a matrix A that realizes it.

Example 19. 1, ω1, ω2

ω 1  = ω ω 2  = ω2
, ω m = 3. 

4 3, ,
1
2
+ i, 1

2 i,
1
2
+ i, 1

2 i

4, 3
1

2
+ i,

1

2 i
1

2
+ i,

1

2 i .

S0 =
1
2

7
2

7
2

1
2

, , ,4 3

S1 =
1
2 1
1 1

2

, 
1
2 + i, 1

2 i,

S2 =
1
2 1
1 1

2

, 
1
2
+ i, 1

2 i.

ω 1 = −1+
√
3

2 ω2 = −1−
√
3

2 , 
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3L0 = S0 + S1 + S2 =
3
2

3
2

11
2

3
2

,

3L1 = S0 + ω2S1 + ω1S2 =
0 9

2
5
2

0
,

3L2 = S0 + ω1S1 + ω2S2 =
0 9

2
5
2

0
.

A , (1 1) = circ
1

2
, , 0 0 , A(1, 2) = circ

1

2
,
3

2
,
3

2
,

A , (2 2) = circ
1

2
, , 0 0 , A(2, 1) = circ

11

6
,
5

6
,
5

6
.

A =

1
2 00 1

2
3
2

3
2

0 1
2

0 3
2

1
2

3
2

0 0 1
2

3
2

3
2

1
2

11
6

5
6

5
6

1
2 00

5
6

11
6

5
6

0 1
2

0
5
6

5
6

11
6

0 0 1
2

4 3, ,
1
2 + i, 12 i,

1
2 + i, 1

2 i . 

4,
1

2
+ i,

1

2 i 3,
1

2
+ i,

1

2 i ,

S1 =
1

3

2 3 
7
2 3 

7
2

3 
7
2 2 3 

7
2

3 
7
2 3 

7
2 2

=

2
3

√
3
3

7
6

√
3
3

7
6√

3
3

7
6

2
3

√
3
3

7
6√

3
3

7
6

√
3

3
7
6

2
3

1
2
+ i, 1

2 i, 3, 

S0 =
1

3

5 3 + 7
2

3 + 7
2

3 + 7
2 5 3 + 7

2

3 + 7
2 3 + 7

2 5

=

5
3

√
3
3 + 7

6
7
6

√
3
3

7
6

√
3
3

5
3

√
3
3 + 7

6√
3
3 + 7

6
7
6

√
3
3

5
3
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1
2 + i, 1

2 i, . 4

S0 + S1 =

1 2
√
3

3
2
√
3

3
2
√
3

3
1 2

√
3

3
2
√
3

3
2
√
3

3
1

4. On structured matrices partitioned into circulant blo cks matri-

ces

In this section we search conditions to obtain a given structure on a
partitioned into blocks matrix with circulant blocks as in (9) using theA 

structure of the matrices S in (12). Here, a matrix partitioned into blocks

is called when all its row blocks ( up to the first
one) are permutations of precisely its first row block.

Theorem 20. A 

S k = 1, . 2, . . . ,m 1
1. S k = 0, 1, . . . ,m 1 A 

2. A 

S k = 0, .1, . . . ,m 1
3. A 

S k = 0, 1, . . . ,m
1.

4. A 

S k =

0 1 1, , . . . ,m .

Pro of. Suppose that for all  = 0, S1, . . . ,m  1 the matrices are di-
agonal. We will prove that A = (A (u, v)) is a diagonal block matrix with

circulant blocks. It is clear that for u v q= , S q = 0 therefore, for all

k = 0, 1, . . . .m 1

q L q = 1
−1

=0

ω− q S q = 0.
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Then, for u = v, by Theorem 17, A (u, v) = 0. A Thus is a diagonal block
matrix with circulant blocks.

Suppose that is a block circulant matrix with circulant blocks, since theA 

entries of S follow the distribution of the blocks of A the matrices S are

circulant. Conversely, assume that for all k = 0, 1, . . . ,m 1, S is circulant,
then for k = 1, L2, . . . ,m  the matrix defined in (13) is also circulant. Let
us suppose that

L = circ 0 , 1 , . . . , ( −1) ,

then

q L q =
( )− 1 u v n,
( + )− 1 v < u n;

since

A q(u, v) = circ( L0q , q L1q , . . . , q L −1q )

=
circ ( − )0, ( − )1 , . . . , ( − )( −1) 1 u v n,
circ ( +− )0 , ( +− )1 , . . . , ( +− )( −1) 1 v < u n.

Thus the matrix A = (A(u, v)) partitioned into blocks is block circulant.
Let us suppose now that A is a block permutative matrix. Then there

exists a permutation vector

ν = (ν0, ν1, . . . , ν −1 ) (16)

with ν0 = id, such that

A =

A , A , (1 1) (1 2) . . .  A (1, n)
A (1, ν1 (1)) (1A , ν1 (2)) (1. . .  A , ν1 (n))

...
...

. . .
...

A (1, ν −1 (1)) (1. . .  . . .  A , ν −1 (n))

.

Thus

S = (s (i, j)) =

s (1, 1) s (1, 2) . . .  s (1, n)
s (1, ν1 (1)) s (1, ν1 (2)) . . .  s (1, ν1 (n))

...
...

. . .
...

s (1, ν −1 (1)) . . .  . . .  s (1, ν −1 (n))

this means that the set of matrices S are permutatively equivalent. Con-
versely, if S are permutatively equivalent matrices for all k = 0, 1, . . . ,m 1,

14



then the matrix L defined in (13) is also permutative. Let us suppose that
there exist a vector b = (b1 , b2 , . . . , b ) and a permutation vector as in (16)
such that

L =

b1 b2 . . .  b

b (1), b (2), . . .  b ( ) ,
...

...
. . .

...
b (1), b (2), . . .  b ( ) ,

.

Then
q L q = b ( ), ,

since

A q(u, v) = circ( L0q , q L1q , . . . , q L −1q )

= circ b ( ),0 , b ( ),1 , . . . , b ( ) , −1 .

From now on, in order to simplify the notation and unless we say the con-
trary, it is written (a0, a1, . . . , a −1 ) instead of circ (a0, a1, . . . , a −1 ) . Thus,
A can be constructed as follows:

Therefore, A is a block permutative matrix with circulant blocks.
In order to prove Item 4., suppose that A is symmetric partitioned into
circulant block matrices. Since the entries of S follow the distribution of
the blocks of A then S is symmetric, for all k = 0, . 1, . . . ,m 1 Conversely,
assume that for all k = 0, 1, . . . ,m  1, S is a symmetric real matrix.

Since for all k = 0, 1, . . . ,m 1, s (u, v) is an eigenvalue of A (u, v), then
the circulant matrices ) have only real eigenvalues, so they should beA (u, v

symmetric (see in [29]). Moreover, for all k = 0, L1, . . . ,m 1, the is the
matrix defined in (13) and is symmetric. Suppose that

L =

 (1, 1)  (1, 2) . . .   (1, n)
 (1, 2)  (2, 2) . . .   (2, n)

...
...

...
...

 (1, n) . . .  . . .   ( )n, n

15



then

A (v, u) = circ(q L0q , q L1q , . . . , q L −1 q )

= (circ 0 (v, u) , 1 (v, u) , . . . ,  −1 (v, u))

= (circ 0 ( ) u, v , 1 ( ) u, v , . . . ,  −1 (u, v))

= ( ) A u, v .

Therefore,

A = (A (u, v)) = A (v, u) = (A (v, u)) = A.

Thus, the matrix A is symmetric.

5. An inverse problem related to blo ck circulant matrices with cir-

culant blo cks

In this section we study the Guo index for some structured matrices.
Namely, we dedicate our attention to block circulant matrices with circulant
blocks, which are a type of permutative matrices. To this purpose we rise to
the following inverse problem.

Problem 21. q 1, q2, . . . , q E = (ε ) n

m E E 
ε 11

E

E S 0

 = 1, . . . , 2

Eq +1= Eq − +1 (17)

(m  + 1) E 
( + 1) E  = 1, . . . , 2 . 

m = 2h Eq +1 E

A 

E

In order to give a response to this question one needs to introduce the fol-
lowing DFT matrix

16



G =
1

n

1 1  1  . . .  1 1
1 τ τ 2 . . .  τ −2 τ −1

1 τ 2 τ4 . . .
...

...
...

...
...

. . .
...

...

1 τ −1 τ2( 1)− . . .  . . .  τ ( −1)

.

where

τ = cos
2π

n
+ i sin

2π

n
. (18)

Moreover, it is necessary to define .

Definition 22. Λ = (λ 0, λ1, λ2, . . . , λ −1 ) Λ 

1. λ0 = ρ = max λ : j = 1, 2, . . . , n
2. λ − = λ k = 1, .2, . . . , n 1

The following result gives the Guo’s Index for circulant matrices.

Theorem 23. Λ = (λ 0, λ1, . . . , λ −1 ) 

= α : α (0) = 0 and α n k n α k( ) = ( ) , k  1 2 1, , . . . , n .

Λ 

λ0 min∈P
max

0 2≤ ≤

2
=1

Reλ (j) cos
2kj
2m+1

2
=1

Imλ (j) sin
2kj
2m+1

(19)

n = 2m 1

λ0 min∈P
max

0 2≤ ≤ +1

2

−1

=1

Reλ (j) cos
2kj
m+1 ( 1)

k
λm

2

−1

=1

Imλ (j) sin
2kj
m+1

(20)

n = 2m 2

17



When the matrix is block circulant with circulant blocks we have the
following result.

Theorem 24. E = (ε ) n m 

S 0 . 

E E 
ε11

E  = 1, . . . , 2

Eq +1= Eq − +1. (21)

ε11 Φ (22)

Φ =  max
∈{0 }

−1

=1

ε( +1)1τ
− +

−1

=1

ω− ε1( +1)+
−1

=1

−1

=1

ε( +1)( +1)ω
− τ−

k = 0, , E1, . . . ,m 1
A 

Pro of. By the conditions of the statement there exists a nonnegative cir-
culant matrix

S0 := circ s00, s10, . . . , s( −1)0

whose spectrum is Eq1 (the se  f the entries in t o Eq1). The condition in
(21) implies that for  = 1, . . . ,

2
the circulant matrices S +1 and S −

whose spectrum are Eq( +1) and Eq( − +1) , respectively, are related by
S∗

+1= S − +1. For  = 1, . . . ,m 1, suppose that

S = ( ( (circ s )) , with s ) = s0 , s1 , . . . , s( −1) ,

where

s ( ) =
1

n
G∗Eq . (23)

The entries of the nonnegative circulant matrices can be obtained,n-by-n 
using equation (5) and the entries of the sums

L =
1

m
S0 +

1

m

−1

=1

S ω− , (24)
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k = 0, 1, . . . ,m 1. Recalling that the linear combination of circulant matrices
are circulant, [24], then the matrices L in (24) are circulant. Suppose that

L = (circ a0( )k , . . . , a −1 (k)) .

From (24), for j = 0, 1, . . . , n 1 the following holds:

a (k) =
1

m
s 0 +

−1

=1

ω− s .

Using (23), we have

s =
1

n
[ε1( +1)+

−1

=1

ε( +1)( +1)τ
− ],

for j = 0, .1, . . . , n 1
On the other hand, from the expression of a (k) and its nonnegativity

condition we can write:

0 ( ) =
1

0 +
−1

=1

−

=
1 1

[ 11 +
−1

=1

( +1)1
− ] +

−1

=1

− [ 1( +1) +
−1

=1

( +1)( +1)
− ]

=
1

11 +
−1

=1

( +1)1
− +

−1

=1

−
1( +1) +

−1

=1

−1

=1

( +1)( +1)
− −

f o r a l l = 0 1 1 Therefore, the last condi tion implies t he inequal i ty in
(22).

Now, one can formulate the following question. Under which conditions

the multiset E formed with the entries of an -by-n m matrix E = (ε ) as
in Problem 21 is the spectrum of a nonnegative block matrix with circulant
blocks. Let us consider the set

= : f E E : f is bijective

Definition 25. f E
E E f( ) = (f ε( )) 

19



E f ε( 11) 
f ε( ) , E f ( ) 

(m  + 1)
E f( ) ( + 1) E f ( )

E f q( ) ( − +1) = ( )E f q( +1),

 = 1, . . . , 2 .

For instance:

1. The identity function of -NNSS.E into E is clearly E

2. f E: E defined by

f ε( ) =
ε j j = 2  and = m,
ε j = 2,
ε 2 j m= ;

is E-NNSS.

3. f E: E defined by

f ε( ) = ε for all i, j

is E-NNSS.

4. f E: E defined by

f ε( ) =
ε if j = 1,
ε if j = 1;

is E-NNSS.

We denote by ∗ the subset of formed by all -NNSS bijections of E E.

Note that if f P
∗ then f ε( 11) = ε11.

Theorem 26. E = (ε ) n m 

S 0, 

E E 
ε11

E  = 1, . . . , 2

Eq +1= Eq − +1. (25)
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E A

ε11 min∈
max

∈{0 }
Θ, (26)

Θ =
−1

=1

f ε( ( +1)1)τ
− +

−1

=1

ω− f ε( 1( +1)) +
−1

=1

−1

=1

f ε( ( +1)( +1))ω
− τ−

Pro of. Following the same steps of the above proof this time replacing ε
by f ε( ) we arrive at the inequality in (22). After taking the minimum when
the function f vary into ∗, the inequality (26) is obtained.

Example 27. 

E4 = 4 1 1 + i i

1 i i

S0 =
1.5 2.5
2.5 1.5

S1 = 0.5 + i 0 5.
0 5 . 0.5 + i

S2 = 0 5 . i 0 5.
0 5 . 0 5 . i

L0 =
0 5.1667 0.
0.5 0.1667

L1 =
1.2440 1

1 1.2440

L2 =
0.0893 1

1 0.0893
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E3 = 3 1 1 + i i

1 i i

S0 =
1 2
2 1

S1 = 0 5 . 0.5 + i

0.5 + i 0 5.

S2 = 0 5 . 0 5 . i

0 5 . i 0 5.

L0 =
0 0.3333

0.3333 0

L1 =
0.5 1.4107

1 5.4107 0.

L2 =
0.5 0.2560

0 5.2560 0.

E 3, 3 
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[21] T. Laffey, H. Šmigoc, Nonnegative realization of spectra having nega-
tive real parts, Linear Algebra Appl., 384 (2004): 199–206.

[22] R. Loewy, D. London, A note on an inverse problem for nonnegative
matrices, Lin. and Multilin. Algebra 6, 1 (1978/79): 83-90.

[23] R. Loewy, J. J. Mc Donald, The symmetric nonnegative inverse eigen-

value problem for 5 5 matrices, Linear Algebra Appl. 393 (2004):
275-298.

[24] C. Manzaneda, E. Andrade, M. Robbiano, Realizable lists via the spec-
tra of structured matrices, Lin. Algebra Appl. 534 (2017): 51-72.

[25] J. Mayo Torre, M. R. Abril, E. Alarcia Estévez, C. Marijuán, M.
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