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Abstract—In this paper we study the realization of periodically
time-varying behavioral systems by means of periodic state-space
models. In particular, we focus on the case of period two and
investigate under which conditions a given behavior with periodic
representation obtained by alternating two time-invariant image
representations can be realized by a periodic state-space system.
We first show that, in general, one cannot expect to obtain
a periodic state-space realization by means of the individual
realizations of each associated time-invariant behaviors. However,
we give conditions for such procedure to hold. The presented
results are illustrated by examples.

Index Terms—Behavioral systems, Periodically time-varying
systems, State-space representations.

I. INTRODUCTION

Traditionally, mathematicians and engineers are used to
develop modelling and control of physical systems within the
framework of input/output thinking. Such a framework is,
of course, often perfectly suitable to describe the interaction
between a system and its environment. It is indeed appealing
since one can interpret it as establishing cause and effect,
i.e., each variable is either causing the evolution (and hence
this variable is an input) or producing an effect (due to the
input, and hence this variable is called output). However, it
can also not be denied that the input/output approach and the
state-space paradigms have many important shortcomings.
As an example, consider the usual procedure in modelling: a
system is viewed as an interconnection of subsystems, and
modelling consists of describing the individual subsystems
and their interconnections laws. The result of such a modelling
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procedure will be a model containing high order differential
equations which involves manifest variables (the variables we
try to model) and latent variables (the variables describing
the subsystems and their interconnections). Consequently, in
order to obtain first order or transfer function models, some
manipulation has to be performed or physical insight into the
structure of the system must be used. Such manipulations can
become very awkward for complicated systems.

In [1], J.C. Willems proposed a paradigm for the description
of systems that covers the input-output and the state-space
one, and overcomes their inadequacies. This framework
relies on the idea that control systems are described by
equations, but their properties of interest are most naturally
expressed in terms of the set of all solutions to the equations.
This is formalized by the relatively new notion of system
behavior yielding the so-called behavioral approach to
systems theory. This approach, and in particular kernel and
image representations, supplies an effective framework for
modelling, where latent variables come up naturally. Examples
and a thorough introduction to these ideas can be found in [2].

Recently, interesting results have been obtained in the theory
of periodic behaviors, [3], [4], in particular concerning the
state-space realization of periodic kernel behaviors, i.e., of
behaviors described as solution sets of linear difference
equations with periodically time-varying coefficients.
Indeed, it was shown how to obtain periodic state space
representations for periodic kernel behavioral systems using
a lifting technique which allows to associate a time-invariant
behavior to a periodic one.

Here we continue this line of work and address the realization
problem of periodic linear systems using the behavioral
framework. In particular, we concentrate on a problem that
has not been previously encountered, namely, the state-space



realization of periodic image behaviors. Such behaviors are
described as the image of polynomial shift operators with
periodically time-varying coefficients. They constitute an
interesting class of behaviors due, among others, to their
connection with convolutional codes [5]. Our approach differs
from the classical one, see for instance [6] and references
therein, since we do not start from a transfer function
description but rather from linear difference equations with
periodically time-varying coefficients.

We first observe, and illustrate by means of an example, that
the periodic state-space model resulting from separately real-
izing each of the time-invariant image behaviors obtained by
“freezing” the time-varying coefficients does not necessarily
yield the same behavior. However, we show that if the “frozen”
time-invariant image representations possess the same column
degrees, then the former periodic realization does produce the
original periodic behavior. Moreover, in the case of different
columns degrees, we still provide a method to obtain a periodic
state-space realization for a given periodic image behavior.

II. PRELIMINARIES

A. Behavioral systems

Definition 1. A dynamical system Σ is defined [7], [8] as a
triple of sets

Σ = (T,W,B),

where T is called the time axis, W is the signal space, and
B is a subset of WT = {f : T → W} called the system
behavior. The elements of B are called (system) trajectories.

We define the backwards-shift operator by (σ−1w)(t) =
w(t− 1), for t ∈ Z.

In this paper T = Z and W = Rq , for some q ∈ N, i.e.,
we consider discrete-time systems. We focus our attention on
behaviors consisting of trajectories with finite support and that,
moreover, can be defined in terms of image representations as
follows.

Definition 2. A system Σ = (Z,Rq,B) and the corresponding
behavior B are said to have an image representation if B can
be written as

B =
{
w ∈ Kq : ∃v ∈ K` s.t. w(k) =

(
M
(
σ−1

)
v
)
(k)
}

where, for r ∈ N, Kr denotes the set of finite support
sequences taking values in Rr, and M

(
z−1
)
∈ Rq×`[z−1]

is a polynomial matrix in the indeterminate z−1. In this case
M is called an image representation matrix of B, and B is
said to be an image behavior.

A matrix M
(
z−1
)

is said to be column reduced if the sum
of its column degrees has the minimum value among all the
matrices with the same image. The degree of a column is
defined as the maximum of the degrees of its entries. Note
that such degrees are considered for the indeterminate z−1.
Therefore, for instance, z−2 has degree 2.

B. Periodically time-varying behaviors

In this paper we consider behaviors B with P -periodic image
representations (P -periodic image behaviors), i.e.:

B =
{
w ∈ Kq : ∃v ∈ K` s.t. (1) is satisfied

}
w(Pk+ t) =

(
M t

(
σ−1

)
v
)
(Pk+ t); t = 0, . . . , P − 1, (1)

where each M t(z−1) can be regarded as a q × ` time-
invariant image representation. Such behaviors will be called
P-periodic, and the sequence of matrices (M0, . . . ,MP−1)
will be called a P -periodic image representation of B.

Inspired by the ideas developed in [4] and [3] for the case of
behaviors, considering the linear map

Lp : Kq → KPq

such that

(Lpw)(k) =


w(Pk)

w(Pk + 1)
...

w(Pk + P − 1)

 , P ∈ N

we associate with B a time-invariant behavior BL, the lifted
version of B, defined as

BL =
{
w̃ ∈ KPq : w̃ = Lpw, w ∈ B

}
.

Note that, since(
M t

(
σ−1

)
v
)
(Pk + t) =

( (
σtM t

(
σ−1

))
v
)
(Pk),

the equation in (1) can also be written as(
ΩP,q (σ)w

)
(Pk) =

(
M
(
σ, σ−1

)
v
)
(Pk), k ∈ Z,

where for r ∈ N

ΩP,r (σ) =


Ir
σIr

...
σP−1Ir


is a polynomial matrix operator in the shift σ and

M
(
σ, σ−1

)
=


M0

(
σ−1

)
σM1

(
σ−1

)
...

σP−1MP−1
(
σ−1

)


is a polynomial matrix operator in the shifts σ and σ−1.

Moreover, it is possible to show that the matrix M
(
z, z−1

)
can be decomposed as

M
(
z, z−1

)
= ML

(
z−P

)
ΩP,` (z)

where

ML
(
z−1
)

=
[
ML0

(
z−1
)
| ML1

(
z−1
)
|· · ·| MLP−1

(
z−1
)]



and the blocks MLj
(
σ−1

)
have size Pq×`, j = 0, . . . , P−1.

Thus, the lifted behavior can be represented as

BL =
{
w̃ : w̃(k) = (ML

(
σ−1

)
ũ)(`), ` ∈ N0

}
,

where w̃ = LPw and ṽ = LP v.

In the following example we illustrate how to construct the
matrix ML

(
z−1
)

for the 2-periodic case, given the matrices
M0

(
z−1
)

and M1
(
z−1
)
.

Example 3. Let

M0
(
z−1
)

=

z−2 − z−1 1
z−3 z−1

z−1 + 1 z−2


and

M1
(
z−1
)

=

 1− z−1 z−3 − z−1

z−2 z−1 − z−2

z−4 + z−1 1

 .
Applying the previous procedure we have that

[
M0

(
z−1
)

zM1
(
z−1
)] =


z−2 − z−1 1

z−3 z−1

z−1 + 1 z−2

z − 1 z−2 − 1
z−1 1− z−1

z−3 + 1 z



=


z−2 1
0 0
1 z−2

−1 z−2 − 1
0 1
1 0

+


−z−2 0
z−4 z−2

z−2 0
1 0
z−2 −z−2

z−4 1

 z

and so

ML
(
z−1
)

=


z−1 1 −z−1 0
0 0 z−2 z−1

1 z−1 z−1 0
−1 z−1 − 1 1 0
0 1 z−1 −z−1

1 0 z−2 1

 .

C. State-space realizations

A state-space system{
x(k + 1) = Ax(k) +Bv(k)

w(k) = Cx(k) +Dv(k)
, k ∈ N0,

denoted by (A,B,C,D), where A ∈ Rn×n, B ∈ Rn×`, C ∈
Rq×n and D ∈ Rq×`, is said to be a state-space realization of
the time-invariant behavior B if B is the set of finite support
sequences w corresponding to finite support input sequences
v and zero initial conditions, i.e., x(0) = 0.

This definition implicitly assumes that (A,B,C,D) is a
minimal realization of B, i.e., that A has the minimal possible

dimension [9].

State-space realizations of image behaviors can be obtained
as minimal state-space realizations of column reduced image
representation matrices. If M

(
z−1
)
∈ Rq×`

[
z−1
]

is an image
representation of B, (A,B,C,D) is a state-space realization
of M

(
z−1
)

if

M
(
z−1
)

= C(zI −A)−1B +D.

If M
(
z−1
)

=
∑
i∈NMiz

−i, with Mi ∈ Rq×`, then

M0 = D, Mi = CAi−1B, i ≥ 1. (2)

In our case, M
(
z−1
)

is a polynomial matrix in z−1 and
hence Mi = CAi−1B = 0 for i ≥ j, for some positive
integer j. In particular, if the realization (A,B,C,D) is
minimal, the matrix A is nilpotent.

Note that M
(
z−1
)

admits many realizations. It is well-known
that a state-space realization (A,B,C,D) of M

(
z−1
)

has
minimal dimension among all the realizations of M

(
z−1
)

if (A,B) is controllable and (A,C) is observable, i.e., the

polynomial matrices
[
zI −A | B

]
and

[
zI −A
C

]
have,

respectively, right and left polynomial inverses (in z). The
minimal dimension of a state-space realization of M

(
z−1
)

is called the McMillan degree [10] of M
(
z−1
)

and it is
represented as µ(M).

The next proposition, adapted from [11], [12], provides a state-
space realization for a given (not necessarily column reduced)
encoder.

Proposition 4. Let M
(
z−1
)
∈ Rq×`

[
z−1
]

be a polynomial
matrix with rank ` and column degrees ν1, . . . , ν`. Consider
n̄ =

∑`
i=1 νi. Let M

(
z−1
)

have columns mi

(
z−1
)

=∑νi
k=0mk,iz

−k, i = 1, . . . , ` where mk,i ∈ Rq . For i =
1, . . . , ` define the matrices

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Rνi×νi , Bi =


1
0
...
0

 ∈ Rνi ,

Ci =
[
m1,i · · · mνi,i

]
∈ Rq×νi .

Then a state-space realization of G is given by the matrix
quadruple (A,B,C,D) ∈ Rn̄×n̄×Rn̄×`×Rq×n̄×Rq×` where

A =

A1

. . .
A`

 , B =

B1

. . .
B`

 ,

C =
[
C1 · · · C`

]
, D =

[
m0,1 · · · m0,`

]
= G(0).

In the case where νi = 0 the ith block is missing and in B a
zero column occurs.



In this realization (A,B) is controllable and if M
(
z−1
)

is a column reduced image representation matrix, (A,C) is
observable. Thus, the McMillan degree of a column reduced
image representation matrix is equal to the sum of its column
degrees.

III. STATE-SPACE REALIZATIONS OF PERIODIC IMAGE
BEHAVIORS

As previously mentioned, here we concentrate on the 2-
periodic case.

Definition 5. Let Σi = (Ai, Bi, Ci, Di), i = 0, 1, be two
state-space systems with the same dimension. We define a
2-periodic state-space system Σp as{

x(k + 1) = A(k)x(k) +B(k)u(k)

w(k) = C(k)x(k) +D(k)v(k)
, k ∈ N0 (3)

where A(·), B(·), C(·), D(·) are periodic functions with period
2, such that, for each j ∈ N0,(

A(2j), B(2j), C(2j), D(2j)
)

= (A0, B0, C0, D0)

and(
A(2j+1), B(2j+1), C(2j+1), D(2j+1)

)
=(A1, B1, C1, D1)

The dimension of Σp is defined as the dimension of the state
vector x. In this case we say that Σp is obtained from Σ0 and
Σ1.

Moreover, Σp is a realization of a 2-periodic image
representation

(
M0,M1

)
and of the associated 2-periodic

image behavior, if the output of Σp that corresponds to an
input v equals the trajectory w corresponding to v according
to (1).

Let Σ0 and Σ1 be two state-space realizations (of the
same dimension) of two time-invariant image representations
M0

(
z−1
)

and M1
(
z−1
)
. In the following example we show

that the 2-periodic system Σp obtained from Σ0 and Σ1 is not,
in general, a state-space realization of the associated 2-periodic
image behavior (see also [13]).

Example 6. Consider the two time-invariant image behaviors
with image representations

M0
(
z−1
)

= M0
0 +M0

1 z
−1 +M0

2 z
−2

=


1 + z−2 1 0
z−2 1 + z−1 1

1 + z−1 1 1
1 1 1 + z−1


and

M1
(
z−1
)

= M1
0 +M1

1 z
−1 +M1

2 z
−2

=


1 + z−1 1 0
1 + z−2 1 + z−1 1

1 1 + z−2 1
0 1 1

 .

Realizing M0
(
z−1
)

as in Proposition 4 we obtain the state-
space realization Σ0 = (A(0), B(0), C(0), D(0)) with

A(0) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 B(0) =


1 0 0
0 0 0
0 1 0
0 0 1



C(0) =


0 1 0 0
0 1 1 0
1 0 0 0
0 0 0 1

 D(0) =


1 1 0
0 1 1
1 1 1
1 1 1

 .
Proceeding the same way, we obtain a state-space realization
of M1

(
z−1
)
, Σ1 = (A(1), B(1), C(1), D(1)), with

A(1) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 B(1) =


1 0 0
0 0 0
0 1 0
0 0 0



C(1) =


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

 D(1) =


1 1 0
1 1 1
1 1 1
0 1 1

 .
Let us consider v such that v(0) = v0, v(1) = v1, v(k) = 0,

k ≥ 2, with v0 =

0
0
1

 and v1 =

0
0
0

. From (1) it follows

that

w1 = M1
0 v1+M1

1 v0 =


1 1 0
1 1 1
1 1 1
0 1 1

 v1+


1 0 0
0 1 0
0 0 0
0 0 0

 v0 =


0
0
0
0


while from (3)

w1 = D(1)v1 + C(1)B(0)v0

=


1 1 0
1 1 1
1 1 1
0 1 1

 v1 +


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0




1 0 0
0 0 0
0 1 0
0 0 1

 v0 =


0
0
1
0

 ,
i.e., the output w of the periodic state-space system Σp
obtained from Σ0 and Σ1 corresponding to v is different from
the trajectory w corresponding to v according to (1).

A possible method to overcome this problem is to: (i) obtain
the lifted time-invariant image behavior BL associated with
the 2-periodic image behavior B, as shown in Section II-B;
(ii) construct a time-invariant state-space realization
ΣL =

(
AL, BL, CL, DL

)
for BL; (iii) try to obtain a 2-

periodic state-space realization Σp = (A(·), B(·), C(·), D(·))
for B using a similar method as proposed in [3].

This method consists in the suitable factorization of the
matrices AL, BL, CL and DL so as to obtain A(0), A(1),



B(0), B(1), C(0), C(1), D(0) and D(1). In fact, it can be
shown that if

AL = A(1)A(0) BL =
[
A(1)B(0) B(1)

]
CL =

[
C(0)

C(1)A(0)

]
DL =

[
D(0) 0

C(1)B(0) D(1)

]
then Σp = (A(·), B(·), C(·), D(·)) with A(i) = Ai,
B(i) = Bi, C(i) = Ci, D(i) = Di, i = 0, 1 is a 2-periodic
state-space realization of B [3]. Clearly, this factorization is
not always easy to perform.

As an alternative, one can also investigate under which con-
ditions the procedure proposed in Example 6 does yield a
2-periodic state-space realization of a 2-periodic behavior B.
In the next theorem we provide a sufficient condition for this
to hold.

Theorem 7. Consider two image representations M0
(
z−1
)
∈

Rq×`
[
z−1
]

and M1
(
z−1
)
∈ Rq×`

[
z−1
]

with the same col-
umn degrees and let Σi be the realizations of M i

(
z−1
)
, i =

0, 1 obtained by Proposition 4. Then, the periodic state-
space system Σp obtained from Σ0 and Σ1 is a realization
of the periodic image representation

(
M0,M1

)
(and of the

corresponding 2-periodic image behavior).

Proof: Let us denote by Σ0 = (A0, B0, C0, D0) and
by Σ1 = (A1, B1, C1, D1) the state-space realizations of
M0

(
z−1
)

and M1
(
z−1
)

as in Proposition 4. Since the
structure of the matrices A0, A1, B0 and B1 depends only
of the column degrees of M0

(
z−1
)

and M1
(
z−1
)
, we have

that A0 = A1 and B0 = B1. Then the 2-periodic state-space
system obtained from Σ0 and Σ1 has updating equations{

x(k + 1) = Ax(k) +Bv(k)

w(k) = Ck−2b k2 c
x(k) +Dk−2b k2 c

v(k)
, k ∈ N0,

where A = A0 = A1 and B = B0 = B1. Therefore, it follows
from (2) that for any v ∈ K`,

w(k) = D0v(k) +

k∑
i=1

C0A
i−1Bv(k − i)

= (M0
(
σ−1

)
v)(k), for k = 2t

and

w(k) = D1v(k) +

k∑
i=1

C1A
i−1Bv(k − i)

= (M1
(
σ−1

)
v)(k), for k = 2t+ 1

for t ∈ N0, i.e., Σp is a 2-periodic realization of the periodic
image representation

(
M0,M1

)
.

In case M0
(
z−1
)

and M1
(
z−1
)

have different column de-
grees the following procedure can be applied in order to obtain
a 2-periodic state-space realization of the periodic the periodic
image representation

(
M0,M1

)
from state-space realizations

of M0
(
z−1
)

and M1
(
z−1
)
:

1) Let νi be the maximum degree of the i-th columns of
M0

(
z−1
)

and M1
(
z−1
)
, i = 1, . . . , `;

2) Realize M0
(
z−1
)

and M1
(
z−1
)

as in Proposition 4
considering the columns of M j

(
z−1
)

as mj
i

(
z−1
)

=∑νi
k=0m

j
k,iz
−k, i = 1, . . . , `, where some of the coeffi-

cients of higher degree may be zero.
Using this and the same line of arguments as in the proof of
Theorem 7 the following theorem is immediate.

Theorem 8. Let M0
(
z−1
)
,M1

(
z−1
)
∈ Rq×`

[
z−1
]

be two
image representations with state-space realizations Σ0 and Σ1,
respectively, obtained from the procedure above. Then the 2-
periodic system obtained from Σ0 and Σ1 is a state-space
realization of the periodic image representation

(
M0,M1

)
.

Example 9. Consider again the image representations of Ex-
ample 6

M0
(
z−1
)

= M0
0 +M0

1 z
−1 +M0

2 z
−2

=


1 + z−2 1 0
z−2 1 + z−1 1

1 + z−1 1 1
1 1 1 + z−1


and

M1
(
z−1
)

= M1
0 +M1

1 z
−1 +M1

2 z
−2

=


1 + z−1 1 0
1 + z−2 1 + z−1 1

1 1 + z−2 1
0 1 1

 .
Let ν1 = 2, ν2 = 2, ν3 = 1 be the maximum de-
grees of the first, second and third columns, respectively,
of M0

(
z−1
)

and M1
(
z−1
)
. The state-space realizations

Σ0 = (A,B,C(0), D(0)) and Σ1 = (A,B,C(1), D(1)) of
M0

(
z−1
)

and M1
(
z−1
)
, respectively, obtained from the

procedure above, are such that

A =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 B =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



C(0) =


0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
0 0 0 0 1

 D(0) =


1 1 0
0 1 1
1 1 1
1 1 1



C(1) =


1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0

 D(1) =


1 1 0
1 1 1
1 1 1
0 1 1

 .
The 2-periodic system obtained from Σ0 and Σ1 is a
state-space realization of the periodic image representation(
M0,M1

)
.



IV. CONCLUSIONS

In this paper we have studied the realization of periodic
image behaviors by periodic state-space models for the par-
ticular case of period 2. We showed that this issue is not
as straightforward as it seems. In fact, separate state-space
realizations of each of the associated time-invariant image
behaviors does not necessarily yield a periodic state-space
realization of the corresponding periodic image behavior.
However, we presented a direct method to obtain a periodic
state-space realization provided certain conditions are satisfied.
The analysis of minimality issues is an interesting question and
is currently being studied.
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