Accepted Manuscript

Title: Pilates in noncommunicable diseases: a systematic review of its effects

Authors: Sara Miranda, Alda Marques

PII: S0965-2299(18)30259-0
DOI: https://doi.org/10.1016/j.ctim.2018.05.018
Reference: YCTIM 1859

To appear in: Complementary Therapies in Medicine

Received date: 23-3-2018
Revised date: 31-5-2018
Accepted date: 31-5-2018

Please cite this article as: Miranda S, Marques A, Pilates in noncommunicable diseases: a systematic review of its effects, Complementary Therapies in Medicine (2018), https://doi.org/10.1016/j.ctim.2018.05.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Pilates in noncommunicable diseases: a systematic review of its effects

(SM)Sara Miranda, PT1,2 (AM)Alda Marques, PhD1,2

1Lab 3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
2iBiMED – Institute for Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal

Sara Miranda
sara.souto@ua.pt; +351 234 247 019; School of Health Sciences (ESSUA), University of Aveiro, 30, Agras do Crasto – Campus Universitário de Santiago, 3810-193, Aveiro, Portugal

Alda Marques, PT, MSc, PhD, Senior Lecturer (corresponding author)
Lab 3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA) and Institute of Biomedicine (iBiMED), University of Aveiro, Agras do Crasto - Campus Universitário de Santiago, Edifício 30, 3810-193 Aveiro, Portugal.
amarques@ua.pt; Telephone: +351234372462

Word count: 3500

Highlights of the systematic review:
- Due to the strong evidence presented, Pilates should be considered for improving exercise tolerance in people with NCDs;
- Practice of Pilates as a complementary therapy for people with NCDs might produce additional benefits on symptoms, muscle strength and health-related quality of life.
- Additional studies with robust methodologies are needed to enhance our knowledge on Pilates effectiveness in several health domains.

Abstract
Objectives: Chronic cardiovascular diseases, cancer, chronic respiratory diseases and diabetes are the four major groups of non-communicable diseases (NCDs) and the main cause of mortality worldwide. Pilates has been described as an effective intervention to promote
healthy behaviors and physical activity in people with chronic diseases. However, the evidence of its effects in NCDs have not been systematized. We investigated the effects of Pilates in the four major groups of NCDs. **Design:** A systematic review was performed. Searches were conducted on Cochrane Library, EBSCO, PubMed, Science Direct, Scopus and Web of Science databases. Studies were rated with the quality assessment tool for quantitative studies. As a meta-analysis was not possible to conduct, a best-evidence synthesis was used. **Results:** Twelve studies, mostly of moderate quality, were included with 491 participants (78.6% females; age range 13.7-70 years old) with breast cancer (n=3), diabetes (n=3), chronic stroke (2 years post stroke) (n=2), chronic obstructive pulmonary disease (n=1), cystic fibrosis (n=1), heart failure (n=1) and arterial hypertension (n=1). The best-evidence synthesis revealed strong evidence for improving exercise tolerance; moderate evidence for improving symptoms, muscle strength and health-related quality of life and limited or conflicting evidence on vital signs, metabolic parameters, body composition, respiratory function, functional status, balance, flexibility and social support. **Conclusions:** Pilates should be considered for patients with NCDs, as it improves exercise tolerance. Future studies with robust methodologies are still needed to clarify its effectiveness on outcomes with moderate, limited or conflicting evidence and to establish the most suitable intervention protocol. **Keywords:** Pilates; exercise training; complementary medicine; noncommunicable diseases

1. **Introduction**

Noncommunicable diseases (NCDs) are the main cause of mortality worldwide and derive in substantial socioeconomic burden, entailing thousands of years lived with disability. Chronic cardiovascular diseases, cancer, chronic respiratory diseases and diabetes are the four major groups of NCDs, accounting for 82% of all NCDs’ deaths. These diseases are associated with modifiable risk factors, such as cigarette smoking, hypertension, dyslipidaemia, obesity, physical inactivity and poor nutrition, and could be prevented or controlled by adopting a healthy lifestyle. Pilates has been described as an effective intervention to improve physical
activity levels and healthy behaviours, emerging as a novel intervention for the treatment of chronic diseases.

Pilates was created by Joseph Pilates in the 1920s and its philosophy relies on the tenet “balance of body and mind”. It is a versatile exercise that covers six principles: centring, concentration, control, precision, flow and breathing. Pilates has gained popularity through the years for its benefits on muscle endurance, flexibility and dynamic balance in healthy people, and its ability to improve pain, function and kinesiophobia in people with disability (e.g., patients with chronic low back pain). Moreover, recent studies suggest that this intervention has potential to maximize the physical and mental health of people living with NCDs. However, the evidence of Pilates in these conditions has never been systematized. Therefore, this review aimed to investigate the effects of Pilates in the four major groups of NCDs – chronic cardiovascular diseases, cancer, chronic respiratory diseases and diabetes.

2. Material and Methods

2.1 Study Design

This systematic review was followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The protocol was registered in the international prospective register of systematic reviews (PROSPERO) (ID: CRD42016050050).

2.2 Search strategy

Preliminary searches were first conducted in the Cochrane Library and PROSPERO to exclude the existence of a similar review. A comprehensive systematic search was then conducted in the following electronic databases: Cochrane Library (1999-2017), EBSCO (1974-2017), PubMed (1996-2017), Science Direct (1997-2017), Scopus (1960-2017) and Web of Science.
(1900-2017) on the 15th of November 2016. Additional searches were performed in weekly automatic updates retrieved from the databases until November 2017. The detailed search can be found on appendix 1. The references of the included studies and key reviews were hand searched for potentially eligible studies.

2.3 Eligibility Criteria

Studies were considered eligible if (1) included participants with the most common NCDs, i.e., chronic respiratory diseases, chronic cardiovascular diseases, cancer or diabetes; (2) described any Pilates intervention and (3) reported at least one clinical or patient-reported outcome. Searches were restricted to studies published in English, Spanish, French and Portuguese. Studies were excluded if they referred only proxy versions of the outcome measures. Guidelines, systematic reviews, qualitative studies, news, research protocols, theses, dissertations, abstracts, letters to the editor and unpublished work were also excluded, although their references were searched for relevant articles.

2.4 Selection of studies

One author screened each article for type of publication and relevance for the scope of the review, according to their title, abstract and keywords. If this information suggested that the study could fit the inclusion criteria of the systematic review, the full article was further assessed. The full-text of each potentially relevant study was screened for its content and in cases of uncertainty, the decision to include/exclude the study was debated between two reviewers until reaching consensus.

2.5 Data extraction
One reviewer extracted the data to two pre-developed and structured tables (i.e., clinical and patient-reported outcomes). Data extracted were: author’s name, year and country of publication, study design, participants’ characteristics (i.e., health condition, percentage of males, age) type of intervention(s) or comparator(s), measures and outcomes used and quantitative findings. Two reviewers checked the extracted data for accuracy and completeness. Reviewers resolved disagreements by consensus. Authors of the included studies were contacted for missing data.

2.6 Quality Assessment

The methodological quality of the included studies was assessed by two independent reviewers using the quality assessment tool for quantitative studies22. This tool, developed by the effective public health practice project (EPHPP), is composed of eight sections: 1) selection bias; 2) study design; 3) confounders; 4) blinding; 5) data collection methods; 6) withdrawals and dropouts; 7) intervention integrity and 8) analysis. The overall methodology of studies is rated as strong (no weak ratings in all sections), moderate (one weak rating) or weak (two or more weak ratings)22. Agreement was reached by consensus between the two independent reviewers.

2.7 Data analysis

Inter-rater agreement of the quality assessment was explored using Cohen’s kappa. The value of Cohen’s kappa was interpreted as i) <0: poor agreement; ii) 0.00-0.20: slight agreement; iii) 0.21-0.40: fair agreement; iv) 0.41-0.60: moderate agreement; 0.61-0.80: substantial agreement; vi) 0.81-1.00: almost perfect agreement23.
Due to the diversity of the outcome measures used in the selected studies, a meta-analysis was not possible to conduct. Instead, a summary of the results was performed using a best-evidence synthesis\(^{24}\) (Table 4). This analysis considered the number, methodological quality and consistency of outcomes of the studies, using 5 levels of evidence: (1) strong evidence, provided by consistent findings among multiple (≥2) high quality randomized controlled trials (RCTs); (2) moderate evidence, provided by consistent findings among multiple low quality RCTs and/or non-randomized controlled clinical trials (CCTs) and/or one high quality RCT; (3) limited evidence, provided by only one low quality RCT and/or CCT; (4) conflicting evidence, provided by inconsistent findings among multiple trials (RCTs and/or CCTs) and (5) no evidence, when no RCTs or CCTs are found\(^{25}\).

Effect sizes (ES) for each outcome measure were calculated using comprehensive meta-analysis (CMA) software (Biostat, Englewood, New Jersey)\(^{26}\) and interpreted as small (0.2≤d<0.5), medium (0.5≤d<0.8) and large (d≥0.8)\(^{27}\).

3. Results

3.1 Study selection

The databases search identified 676 studies and 11 additional studies were found through key reviews. After duplicates removal, 482 studies were screened for potential content. During the title, abstract and keyword screening, 423 articles were excluded. The full-text of 59 potentially relevant articles was assessed and 47 articles were excluded due to the following reasons: i) full-text was not available\(^{28}\); ii) population included diseases other than chronic cardiovascular, chronic respiratory, cancer and diabetes\(^{29-36}\); iii) type of intervention was not Pilates\(^{37-58}\); iv) type of study was a qualitative study, news, research protocol or letters to the editor\(^{7, 10, 59-64, 65}\) and v) study was not written in English, Spanish, French or Portuguese.
languages66-69. Twelve studies were included. A detailed flow diagram of the review process is presented in figure 1.

3.2 Quality Assessment

From the articles included in this review, eight scored moderate70-77, three scored strong78-80 and one scored weak81 quality (Table 1). The agreement between the two reviewers was almost perfect (k=0.84; 95%CI [0.38–1]).

3.3 Study characteristics

Studies varied in their design. Nine were RCTs70-72, 74, 77-81 and three were pre-post design73, 75, 76. A total of 491 participants (78.6% females; age range 13.7-70 years old) were recruited among studies conducted in breast cancer70, 71, 79, diabetes74, 75, 81, chronic stroke (2 years post stroke)77, 80, chronic obstructive pulmonary disease (COPD)72, cystic fibrosis73, heart failure78 and arterial hypertension76.

Generally, the interventions ranged from 8 to 16 weeks, with a frequency of 1 to 3 times per week and each session lasted between 40 and 90 minutes. Five studies had additional exercises (i.e., walking and swimming) included in their intervention70, 77-80 and one study delivered an educational session70. Some of the studies reporting usual care as a comparator, did not provide a clear description of the possible undergoing treatments76, 81. Study characteristics are presented in Table 2 and Table 3.

3. 4 Synthesis of the results

3.4.1 Symptoms
Physical symptoms were assessed using the visual analogue scale (VAS) for pain71, 74, 79 and fatigue74, brief fatigue inventory for fatigue70, social appearance anxiety scale (SAA) for anxiety79, the hospital anxiety and depression scale (HADS)74 for anxiety and depression, Beck’s depression inventory (BDI) for depression70, and the 36-item short form survey (SF-36)74 and the 28-item general health questionnaire (GHQ-28) for physical symptoms globally75. Significant improvements were reported for pain (p=0.001-0.01, ES=-12.70--0.27)74, 75, fatigue (p=0.001, ES=-0.25)74, anxiety (p=0.04-0.023, ES=0.0-1.52) and depression symptoms (p=0.019-0.01, ES= 0.0--1.38)74, 75 and general mental health (p=0.001, ES=0.0)74 in patients with type 2 diabetes. Significant improvements were also observed for pain (p=0.004-0.01, ES=0.0-0.4)71, 79 and anxiety (p<0.01 ES=-0.4)79 and depression (p=0.01, ES=-0.09)70 in patients with breast cancer however, no differences between groups were reported. In the best-evidence synthesis analysis, moderate evidence was found (Table 4).

3.4.2 Vital signs

A variety of vital signs using different equipment have been assessed in Pilates interventions, namely peripheral oxygen saturation (SpO\textsubscript{2}) with oximetry72; heart rate at rest with electrocardiogram during cardiopulmonary exercise testing (CPET)78, 80 or an oscillometric device76; respiratory rate with plethysmography72 and blood pressure with the auscultation method during CPET [14] and an oscillometric device76, 78.

Peripheral oxygen saturation increased significantly (p<0.05, ES=0.16) with Pilates breathing when compared to natural breathing, although diaphragmatic breathing was found to be even of more benefit72. Respiratory rate increased significantly (p<0.05, ES=0.12) with Pilates breathing in patients with COPD when compared to diaphragmatic breathing. Results also improved significantly for diastolic blood pressure (DBP) of patients with heart failure (p=0.02,
ES=-0.24)^{78} and for both DBP (p<0.05, ES= -0.35) and systolic blood pressure (SBP) (p<0.05, ES=-0.59) in patients with arterial hypertension^{76}; though no differences were found in patients with COPD when compared to controls^{72}. Conflicting results were however found for heart rate, as no differences were reported in patients with heart failure (p>0.05, ES=-0.05)^{78} and arterial hypertension (p>0.05, ES=-0.26)^{76} while significant improvements (i.e., reduced heart rate) were observed in patients with chronic stroke (p<0.05, ES=-0.49)^{80}. The overall analysis of best-evidence synthesis on vital signs showed conflicting evidence (Table 4).

3.4.3 Metabolic parameters
Glycated hemoglobin (Hba1c), daily insulin doses (DID), high density lipoprotein (HDL), high density lipoprotein (LDL), total cholesterol (T col) and triglyceride (TG) were assessed through metabolic analysis of patients with type 1 diabetes^{81}. No significant improvements were reported for the experimental group (EG) (p>0.05) whereas in the control group (CG) a significant improvement was reported in HDL (p=0.046, ES=-0.14)^{81}. As only one study assessed this outcome, limited evidence on the best-evidence synthesis analysis was found (Table 4).

3.4.4 Body composition
Body mass (BM), body mass index (BMI), waist and hip circumferences were assessed using calculations and an anthropometric tape in patients with arterial hypertension^{76}. Significant improvements were only found in waist (p<0.05, ES=-0.27) and hip circumferences (p<0.05, ES=-0.31)^{76}. Similarly, to metabolic parameters, the evidence presented in the best-evidence synthesis was also limited (Table 4).
3.4.5 Muscle strength

Upper71, 76, 79, lower limb81 and respiratory73 muscle strength was assessed. The lower limb was assessed with the vertical jump test and the modified Wingate test for anaerobic capacity81, the upper limb with the hand-held dynamometer71 and the handgrip dynamometer71, 76, 79 and respiratory muscle strength with a pressure manometer in patients with breast cancer71, 79, arterial hypertension76, type 1 diabetes81 and cystic fibrosis73.

Shoulder strength was found to improve significantly during flexion (p=0.019, ES=0.14), abduction (p=0.001, ES=0.10), internal (p=0.015, ES=0.10) and external rotation, (p=0.017, ES=0.10) in patients with breast cancer without differences between groups71. Significant improvements in handgrip strength (p=0.01-0.49, ES=0.14-0.63) in both patients with breast cancer71, 79 and arterial hypertension were also reported76.

In patients with type 1 diabetes, significant improvements in lower limb strength were reported, particularly in jump height (p=0.003, ES=0.15), mean power (p<0.001, ES=0.10) and peak power (p=0.02, ES=0.20)81.

Regarding respiratory muscle strength, significant improvements in maximum inspiratory pressure (MIP) in both male (p=0.017, ES=0.11) and female (p=0.005, ES=1.19) patients were reported, while maximum expiratory pressure (MEP) only improved in female patients (p=0.007, ES=0.87)73. Moderate evidence in the best-evidence synthesis analysis was found (Table 4).

3.4.6 Respiratory function

Respiratory pattern was assessed using inductive plethysmography in patients with COPD and healthy people72 and lung volumes were assessed using spirometry in patients with cystic fibrosis73.
Significant differences in favor of diaphragmatic breathing, rather than Pilates in inspiratory (p<0.05, ES=0.87), expiratory volumes (p<0.05, ES=1.20) and phase angle (p<0.05, ES=0.86) were reported72. No significant changes were found in forced expiratory volume in one second (FEV\textsubscript{1}) or forced vital capacity (FVC), both in male (p=0.598, ES=0.10; p=0.555, ES=0.09) and female patients (p=0.463, ES=0.08; p=0.964, ES=0.05)73. The best-evidence analysis presented limited evidence (Table 4).

3.4.7 Functional status

This outcome was assessed using the constant-Murley score71 and the disabilities of the arm, shoulder, and hand scale (DASH)79 in patients with breast cancer, and the timed up and go test (TUG) in chronic stroke patients80. Significant improvements were reported in patients with breast cancer (p<0.01, ES=0.21-0.24)71,79 and in chronic stroke patients (p<0.05, ES=-0.82)80, though in one of the studies on patients with breast cancer no differences between groups were found79. The best-evidence synthesis presented conflicting evidence for functional status (Table 4).

3.4.8 Exercise tolerance

Exercise tolerance was assessed using the 6-minute walk test in patients with breast cancer70 and CPET in patients with heart failure and chronic stroke78,80.

Significant improvements were reported in 6-minute walking distance (6MWD) (p<0.01, ES=1.28)70, peak oxygen consumption (peak VO\textsubscript{2}) (p=0.02, ES=0.46-0.53)78,80, pulse O\textsubscript{2} (p=0.003, ES=0.35) and time achieved during CPET (p<0.001, ES=0.55)78. No significant changes regarding respiratory exchange ratio (RER) and minute ventilation (VE/VCO\textsubscript{2}) were
reported \(p>0.05\)^78. Strong evidence was found in the best-evidence synthesis analysis (Table 4).

3.4.9 Balance

This outcome was assessed using an instrumented treadmill with force plates in patients with chronic stroke^77. Significant improvements were reported for static balance, specifically in medial-lateral \(p<0.05, ES=-1.36\) and anterior-posterior \(p<0.05, ES=-0.67\) center of pressure (COP) and medial-lateral \(p<0.05, ES=-0.41\) and anterior-posterior \(p<0.001, ES=-0.42\) velocity. Dynamic balance of both paretic and non-paretic sides also showed significant improvements in medial-lateral \(p<0.05, ES=-1.28\) to \(-1.71\) and anterior-posterior \(p<0.001, ES=-1.27\) to \(-1.71\) COP and medial-lateral \(p<0.001, ES=-0.3\) to \(-0.43\) and anterior-posterior \(p<0.01, ES=-0.46\) to \(-0.53\) velocities^77. The analysis of best-evidence synthesis presented limited evidence as only one study assessed this outcome (Table 4).

3.4.10 Flexibility

Flexibility was assessed with the sit-and-reach test in patients with breast cancer and diabetes^70, 81, the bank of wells test in patients with arterial hypertension^76 and range of motion (ROM) of the shoulder using a goniometer in patients with breast cancer^71, 79.

Significant improvements were reported in patients with diabetes \(p<0.001, ES=0.94\)^81 and arterial hypertension \(p<0.05, ES=0.52\), though in patients with breast cancer, one study found no significant changes^70 while others found a significant improvement in shoulder flexion \(p=0.001-0.01;\ ES=0.16-0.51\) and abduction \(p=0.002-0.01;\ ES=0.11-0.38\)^71, 79. Regarding external rotation of the shoulder, conflicting results were found, as one of the studies found a significant improvement \(p=0.007, ES=0.21\)^71 while the other reported no
significant changes (p=0.15)79. In the analysis of best-evidence synthesis, conflicting evidence was found (Table 4).

3.4.11 Quality of life

Health-related quality of life (HRQoL) was assessed using the European Organization for the Research and Treatment of Cancer quality of life questionnaire (EORTC QLQ-C30)70, the European Organization for the Research and Treatment of Cancer quality of life questionnaire breast cancer module 23 (EORTC QLQ-BR23) in patients with breast cancer70, 79 and 36-item short form survey (SF-36) in patients with diabetes74.

Significant improvements were reported for HRQoL (p=0.03-0.04, ES=0.01-0.53) in patients with breast cancer (with no differences between groups) (p=0.94)70, 79 and for mental health HRQoL (p=0.001, ES=0.0) in patients with diabetes74. The best-evidence synthesis presented moderate evidence for the effects of Pilates on HRQoL (Table 4).

3.4.12 Social support

Only one study assessed social support using GHQ-28 in patients with type 2 diabetes and a significant improvement was found (p=0.001, ES=-1.73)75.

The best-evidence synthesis presented limited evidence for social support (Table 4).

4. Discussion

To the authors’ best knowledge this was the first study to systematically review Pilates effects across multiple NCDs.

The best-evidence synthesis showed strong evidence for exercise tolerance; moderate evidence for symptoms, muscle strength and HRQoL; limited evidence for metabolic
parameters, body composition, respiratory function, balance and social support and conflicting evidence for vital signs, functional status and flexibility; when using Pilates in NCDs. Overall Pilates had larger effects on diabetes, followed by chronic respiratory and cardiovascular diseases and cancer. High levels of comorbidities have been reported in patients with chronic respiratory and cardiovascular diseases and cancer which will affect their functional capacity, health status and quality of life82-85. Therefore, more comprehensive Pilates interventions, with longer duration, intensity and adjusted exercises (such as aerobic training) might be required for people with these NCD. Indeed, the most appropriate Pilates protocol for each NCD is still to ascertain. Based on the findings of this systematic review, longer (>8 weeks) interventions with additional components (educational sessions or home exercises), at least three times a week, seem to be more effective.

Although exercise tolerance was assessed with different outcome measures, its improvement with Pilates was unequivocal. As improving exercise tolerance is fundamental to manage these lifestyle-related diseases86, Pilates seems to be an important intervention to be encouraged, as it is effective and is perceived as a soft and enjoyable approach for patients87, 88. Nevertheless, the effects of Pilates on exercise tolerance were limited to patients with breast cancer and cardiovascular diseases and therefore, its effects on other conditions are still unknown.

The moderate evidence found for symptoms, muscle strength and HRQoL might be due to the heterogeneity of the outcome measures used, the wide age range of participants, the different approaches to Pilates, and/or poor methodologies used by the studies. Nevertheless, positive effects of Pilates on symptoms, muscle strength and HRQoL were reported in all studies assessing these outcomes. Given the negative multi-systemic effects (e.g., skeletal muscle impairment, mood disturbance, hormonal imbalance and immunological
incompetence) inherent to NCDs89-91 and the positive effects of Pilates found in all studies, research with more robust methodologies is urgently needed.

The limited evidence found on five of the twelve outcomes (metabolic parameters, body composition, respiratory function, balance and social support) was due to the scarce number of studies, hampering the assessment of Pilates overall effectiveness. However, few studies suggested that Pilates was effective in improving body composition, respiratory function, balance and social support. This is of special importance, since these parameters, are modifiable factors that can contribute to falls, considered a major public health issue worldwide92. Moreover, social support has been found to be associated with better health outcomes, being a protective factor for mental and physical health93. Although previous studies have shown improvements on these outcomes with Pilates, they were conducted in healthy adults and elderly women94-96, with much less known about them in people with NCDs. Given the social, economic and health burden of NCDs worldwide1, further research using Pilates on these outcomes seem a priority.

Whilst there was conflicting evidence of the effects of Pilates on vital signs, for some parameters (i.e., SpO\textsubscript{2}, DBP and respiratory rate), global positive effects were found in all studies. Similarly, most studies reported a positive effect on functional status and flexibility, although there were still few studies reporting no effects with the intervention. Since poor functional status is a predictor of mortality, a risk factor for developing emotional disorders and hospital readmissions97-99, and flexibility might be a predictor of arterial stiffening and musculotendinous disorders100, the need for additional studies is imperative.

Finally, physical activity and self-efficacy are also fundamental aspects to consider when treating people with NCDs, as they are strong predictors of HRQoL in these patients101. Although Pilates is an effective tool for enhancing physical activity in other populations12, this
has not been explored in people with NCDs. Moreover, fundamental everyday behaviours such as daily-living activities are not being assessed in Pilates interventions. Therefore, new studies are needed to explore its effects on these outcomes in patients with NCDs.

This systematic review has some limitations. Primarily, the different study designs and measures used in both patient-reported and clinical outcomes hampered the results’ synthesis and the conduction of meta-analysis. Nevertheless, the best-evidence synthesis provided a thorough and unbiased means of synthesizing the research developed, and provided clear conclusions. Another limitation was the lack of a clear description of usual care on control groups, which might have led to a poor estimation of the treatment effect inhibiting its comparison with other interventions. Lastly, samples were mainly composed of female participants, being inappropriate to generalize the results to both genders. Thus, future studies should integrate male patients to determine if similar results are found in the whole spectrum of these populations.

5. Conclusion

Findings from this show that Pilates improves exercise tolerance and could play an important role on symptoms, muscle strength and HRQoL of people with NCDs.

Due to limited or conflicting evidence on other outcomes, future studies with homogeneous outcome measures across the four major NCDs are needed.

Although the best Pilates protocol for each NCD is yet to ascertain, more comprehensive interventions, superior to 8 weeks, seem to be more effective. Though additional research is still needed, Pilates should be taken into account as an adjunct intervention for the treatment of these patients, as it is an appealing and effective form of exercise.

Declarations of interest: none.
Funding: this work was not funded.

Conflict of Interest: none

Acknowledgements

The authors thank the members of Lab 3R – Respiratory Research and Rehabilitation Laboratory for their helpful comments in the preparation of this article.

References

10. Lores A. *Pilates as an intervention for cardiac rehabilitation programs*. Florida Gulf Coast University, 2015.

23. Landis JR and Koch GG. The measurement of observer agreement for categorical data. *Biometrics* 1977; 33: 159-174. 1977/03/01.

72. Cancelliero-Gaiad Karina M, Ike D, Pantoni Camila BF, et al. Respiratory pattern of diaphragmatic breathing and pilates breathing in COPD subjects. *Revista Brasileira de Fisioterapia (Sao Carlos (Sao Paulo, Brazil))* 18(4)

74. Yucel H and Uysal O. Pilates-based mat exercises and parameters of quality of life in women with type 2 diabetes. *Iranian Red Crescent Medical Journal* 18(3)

Figure 1 - Flow diagram for study selection according to the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines
Table 1 - Quality assessment based on the quality assessment tool for quantitative studies' criteria

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Selection bias</th>
<th>Study design</th>
<th>Confounders</th>
<th>Blinding</th>
<th>Data collection method</th>
<th>Withdrawals and dropouts</th>
<th>Global rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunar et al. (2012)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Eygor et al. (2010)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zengin et al. (2016)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sener et al. (2017)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cancelliero-Gaiad et al. (2014)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Franco et al. (2014)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Guimarães et al. (2012)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Martins-Meneses et al. (2014)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sung et al. (2016)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lim et al. (2017)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Torabian et al. (2013)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Yucel and Uysal (2015)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2 - Effects of Pilates in noncommunicable diseases: clinical outcomes (non-patient reported) and outcome measures

<table>
<thead>
<tr>
<th>Author</th>
<th>Year/Country</th>
<th>Study Design</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Outcome Measures</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunar et al.</td>
<td>2012/Turkey</td>
<td>RCT</td>
<td>Type 1 Diabetes: n=31</td>
<td>Duration: 12 weeks</td>
<td>Flexibility</td>
<td>Sit-and-reach (cm)</td>
<td>EG: Pre 0.4±5.2; Post 8.4±5.2, p<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>Frequency: 40 min. supervised 3 days/wk</td>
<td>Lower limb strength</td>
<td>Vertical jump test</td>
<td>EG: Pre 35.7±10.2; Post 39.2±10, p=0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>Components EG:</td>
<td>Height (cm)</td>
<td>Height (cm)</td>
<td>EG: Pre 42.1±8; Post 43.9±7.4, p>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>• warm-up and cool down - 5 min.</td>
<td>Modified Wingate test</td>
<td>Mean power (W)</td>
<td>EG: Pre 362.2±177.8; Post 386.5±180.7, p<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>• Pilates exercises</td>
<td>Peak power (W)</td>
<td>Peak power (W)</td>
<td>EG: Pre 491.2±236.5; Post 509.6±226.8, p=0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>8 exercises, 3 sets of 6 to 10 repetitions with 30 s active rest for each exercise</td>
<td>Metabolic parameters</td>
<td>Metabolic analysis</td>
<td>EG: Pre 8.9±1.6; Post 8.8±1.5, p>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>CG: Usual Care</td>
<td>HbA1c (%)</td>
<td>HbA1c (%)</td>
<td>EG: Pre 9.2±2.1; Post 8.7±1.8, p>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=17; 35% male; 14.2±2.2yrs</td>
<td>CG: Usual Care</td>
<td>DID (u/kg)</td>
<td>DID (u/kg)</td>
<td>EG: Pre 1.1±0.3; Post 1±0.2, p>0.05</td>
</tr>
</tbody>
</table>
Eygor et al RCT (2010)/Turkey
Breast Cancer: n=41
Intervention: n=27; 0% male; 48.5±7.6yrs
Control: n=15; 0% male; 49.7±8.7yrs
Duration: 8 weeks Frequency: 60 min. supervised and 20-30 min. unsupervised 3 days/wk,
Components EG:
 - warm-up and cool down
 - breathing and stretching exercises
 - Pilates exercises
 - 2 sets of 10 repetitions
 - education session - 30 min.
Exercise tolerance 6MWD (m)
EG: Pre 496.3±47.1; Post 522.6±42.0, p=0.00
CG: Pre 506.7±44.5; Post 466.0±32.9, p=0.02
EG vs CG p<0.01
ES=1.28

HDL (mg/dl)
EG: Pre 53.9±11.5; Post 56.9±9.6, p>0.05
CG: Pre 58±12.8; Post 64±17.1, p=0.046
ES=-0.14

LDL (mg/dl)
EG: Pre 87.4±18.1; Post 85.3±14.6, p>0.05
CG: Pre 94.8±25.9; Post 99.1±32.8, p>0.05
ES=-0.22

T Col (mg/l/dl)
EG: Pre 167.4±23.4; Post 167.5±25.8, p>0.05
CG: Pre 195.6±62.3; Post 196.1±62.1, p>0.05
ES=-0.01

TG (mg/dl)
EG: Pre 85.9±40.2; Post 89.9±46.8, p>0.05
CG: Pre 104.1±80.2; Post 95.1±57.5, p>0.05
ES=-0.19
<table>
<thead>
<tr>
<th>Zengin et al RCT (2016)/Turkey</th>
<th>Breast Cancer: n=56</th>
<th>Duration: 8 weeks</th>
<th>Flexibility</th>
<th>Modified sit-and-reach test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components PG:</td>
<td></td>
<td>Frequency: 45 min. supervised 3 days/wk</td>
<td></td>
<td>EG: Pre 8.0±10.2; Post 8.9±7.3, p=0.25</td>
</tr>
<tr>
<td>PG: n=18; 0% male;</td>
<td>Teaching of key elements of Pilates</td>
<td></td>
<td>CG: Pre 5.0±4.4; Post 5.0±4.8, p=0.86</td>
<td></td>
</tr>
<tr>
<td>46.2 ± 11.2 yrs</td>
<td>Pilates-based mat exercises</td>
<td></td>
<td>EG vs CG p=0.21</td>
<td></td>
</tr>
<tr>
<td>CEG: n=18; 0% male;</td>
<td>Stretching</td>
<td>Shoulder flexion</td>
<td>ES=0.09</td>
<td></td>
</tr>
<tr>
<td>51.9 ± 8.0 yrs</td>
<td>ROM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEG: n=19; 0% male;</td>
<td>Shoulder strengthening exercises</td>
<td>Shoulder abduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.5 ± 13.8 yrs</td>
<td>Breathing exercises</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 8 weeks</td>
<td>Frequency: 3 days/wk unsupervised</td>
<td>Shoulder internal rotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components HEG:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flexibility

- Goniometer (º)
- Shoulder flexion
- Shoulder abduction
- Shoulder internal rotation

Data from:
- PEG: Pre 150.8±12.3; Post 160.5±12.9, p=0.001
- CEG: Pre 149.2±9.6; Post 166.2±7.8, p<0.001
- HEG: Pre 147.3±22.6; Post 157.9±13.5, p=0.019

ES=0.16

PEG vs CEG vs HEG p=0.012

ES=0.11

PEG vs CEG vs HEG p>0.05

ES=0.11

PEG vs CEG vs HEG p=0.00

ES=0.09
- Individual exercise program taught by a physiotherapist.
- Stretching
- ROM
- Shoulder strengthening exercises
- Breathing exercises

| Shoulder external rotation | PEG: Pre 74.5±10.1; Post 80.8±10.0, p=0.007
| | CEG: Pre 61.8±12.2; Post 75.9±9.5, p<0.001
| | HEG: Pre 67.8±17.7; Post 74.6±13.3, p=0.055
| | PEG vs CEG vs HEG p=0.002
| | ES=0.21

| Shoulder strength | Hand-held dynamometer (kgf)
| Flexion | PEG: Pre 4.9±1.2; Post 6.2±1.5, p=0.001
| | CEG: Pre 5.1±1.4; Post 6.2±1.4, p=0.016
| | HEG: Pre 4.2±1.1; Post 4.9±1.6, p=0.041
| | PEG vs CEG vs HEG p=0.019
| | ES=0.14
| Abduction | PEG: Pre 4.5±1.3; Post 5.7±1.6, p=0.001
| | CEG: Pre 4.5±1.1; Post 5.5±1.5, p=0.010
| | HEG: Pre 3.9±1.1; Post 4.4±1.3, p=0.036
| | PEG vs CEG vs HEG p > 0.05
| | ES=0.10
| Internal rotation | PEG: Pre 6.5±1.8; Post 7.6±1.1, p=0.015
| | CEG: Pre 5.8±2.2 Post 7.0±2.0, p=0.036
| | HEG: Pre 5.7±1.7; Post 6.0±2.0, p=0.319
| | PEG vs CEG vs HEG p > 0.05
| | ES=0.10
| External rotation | PEG: Pre 6.1±1.7; Post 7.2±2.0, p=0.017
| | CEG: Pre 6.0±1.9; Post 7.1±1.7, p=0.026

<table>
<thead>
<tr>
<th>Component</th>
<th>Hand strength</th>
<th>Hand-held dynamometer (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grip</td>
<td>PEG: Pre 21.0±6.8; Post, NR p= 0.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEG: Pre 19.3±5.3; Post, NR p= 0.031</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEG: Pre 20.1±3.9; Post, NR p=0.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEG vs CEG vs HEG p>0.05</td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td>PEG: Pre 3.9±2.2; Post, NR p= 0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEG: Pre 3.5±1.7; Post, NR p= 0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEG: Pre 3.6±1.9; Post, NR p=0.692</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEG vs CEG vs HEG p>0.05</td>
<td></td>
</tr>
<tr>
<td>Palmar</td>
<td>PEG: Pre 2.6±1.7; Post, NR p=0.016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEG: Pre 2.5±1.5; Post, NR p=0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEG: Pre 1.9±1.5; Post, NR p=0.239</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEG vs CEG vs HEG p>0.05</td>
<td></td>
</tr>
<tr>
<td>Tip</td>
<td>PEG: Pre 1.9±1.4; Post, NR p=0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEG: Pre 1.2±0.8; Post, NR p=0.074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEG: Pre 1.5±1.2; Post, NR p=0.521</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEG vs CEG vs HEG p>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Functional status

<table>
<thead>
<tr>
<th>Constant–Murley score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG: Pre 56.5±10.7; Post 72.2±6.7, p<0.001</td>
</tr>
<tr>
<td>CEG: Pre 54.8±9.6; Post 69.7±11.7, p<0.001</td>
</tr>
<tr>
<td>HEG: Pre 57.2±13.9; Post 60.1±12.0, p=0.157</td>
</tr>
<tr>
<td>PEG vs CEG vs HEG p<0.001</td>
</tr>
<tr>
<td>ES=0.24</td>
</tr>
</tbody>
</table>

Sener et al RCT (2017)/Turkey

- **Breast Cancer**
- **n=60**
- **Duration:** 8 weeks
- **Frequency:** 3 days/wk

Components EG:

<table>
<thead>
<tr>
<th>Handgrip strength</th>
<th>Handgrip dynamometer (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: Pre 17.5±6.7; Post 19.8±6.2, p=0.01</td>
<td></td>
</tr>
<tr>
<td>CG: Pre 20.7±6.6; Post 21.9±5.4, p=0.08</td>
<td></td>
</tr>
<tr>
<td>EG vs CG p=0.05</td>
<td></td>
</tr>
</tbody>
</table>
Intervention:
- Pilates exercises
- Home program – every day
- 53.2 ± 7.7 yrs
Control:
- manual lymphatic drainage training, wall extension, and Wand exercises
- Components CG:
 - Core stabilization exercises
 - Home program – every day
 - Daily living activities with core protection
 - manual lymphatic drainage
 - shoulder exercises
 - skin care

Components EG:
- Core stabilization exercises
- Home program – every day
- Daily living activities with core protection
- manual lymphatic drainage
- shoulder exercises
- skin care

<table>
<thead>
<tr>
<th>Flexibility</th>
<th>Goniometer (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder flexion</td>
<td></td>
</tr>
<tr>
<td>Shoulder abduction</td>
<td></td>
</tr>
<tr>
<td>Shoulder external rotation</td>
<td></td>
</tr>
</tbody>
</table>

Cancelliero-Gaiad et al (2014)/Brazil
RCT
COPD:
n=15
Healthy:
n=15
Intervention:
n=15; 53% male; 65.3 ± 7.3 yrs
Control:

Respiratory pattern
Inductive plethysmography

<table>
<thead>
<tr>
<th>Inspiratory tidal volume (mL)</th>
<th>Expiratory tidal volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: NB 397.9 ± 125.3, DB 880.5 ± 421.4 (p<0.05); PB 591.4 ± 377.5 (p<0.05)</td>
<td>EG: NB 400.9 ± 128.7; DB 881.7 ± 426.4 (p<0.05); PB 533.5 ± 291.3 (p<0.05)</td>
</tr>
<tr>
<td>CG: NB 361.9 ± 145.4; DB 1347.8 ± 524.3 (p<0.05); PB 948.6 ± 439.3 (p<0.05)</td>
<td>CG: NB 368.3 ± 145.2; DB 1420.5 ± 584.3 (p<0.05); PB 993.0 ± 457.9 (p<0.05)</td>
</tr>
</tbody>
</table>

ES=0.14

Duration: 7 repetitions
Frequency: 1
Intervention for all participants:
- breathing exercises – 7 repetitions
 - natural breathing
- diaphragmatic breathing
- Pilates breathing

ES=0.14

Respiratory pattern
Inductive plethysmography

<table>
<thead>
<tr>
<th>Inspiratory tidal volume (mL)</th>
<th>Expiratory tidal volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: NB 397.9 ± 125.3, DB 880.5 ± 421.4 (p<0.05); PB 591.4 ± 377.5 (p<0.05)</td>
<td>EG: NB 400.9 ± 128.7; DB 881.7 ± 426.4 (p<0.05); PB 533.5 ± 291.3 (p<0.05)</td>
</tr>
<tr>
<td>CG: NB 361.9 ± 145.4; DB 1347.8 ± 524.3 (p<0.05); PB 948.6 ± 439.3 (p<0.05)</td>
<td>CG: NB 368.3 ± 145.2; DB 1420.5 ± 584.3 (p<0.05); PB 993.0 ± 457.9 (p<0.05)</td>
</tr>
</tbody>
</table>

ES=0.51

Shoulder flexion
| EG: Pre 165.3 ± 21.5; Post 179.2 ± 2.7, p=0.01 |
| CG: Pre 172.7 ± 14.1; Post 177.5 ± 6.4, p=0.08 |
| EG vs CG p=0.19 |

Shoulder abduction
| EG: Pre 155.5 ± 35.7; Post 177.2 ± 7.4, p=0.01 |
| CG: Pre 163.7 ± 25.9; Post 173.5 ± 16.6, p=0.01 |
| EG vs CG p=0.27 |

Shoulder external rotation
| EG: Pre 77.2 ± 22.7; Post 88.67 ± 3.5, p=0.05 |
| CG: Pre 81.8 ± 15.0; Post 85.7 ± 10.7, p=0.22 |
| EG vs CG p=0.15 |

ES=0.38

Shoulder flexion
| EG: Pre 165.3 ± 21.5; Post 179.2 ± 2.7, p=0.01 |
| CG: Pre 172.7 ± 14.1; Post 177.5 ± 6.4, p=0.08 |
| EG vs CG p=0.19 |

Shoulder abduction
| EG: Pre 155.5 ± 35.7; Post 177.2 ± 7.4, p=0.01 |
| CG: Pre 163.7 ± 25.9; Post 173.5 ± 16.6, p=0.01 |
| EG vs CG p=0.27 |

Shoulder external rotation
| EG: Pre 77.2 ± 22.7; Post 88.67 ± 3.5, p=0.05 |
| CG: Pre 81.8 ± 15.0; Post 85.7 ± 10.7, p=0.22 |
| EG vs CG p=0.15 |

ES=0.39

Shoulder flexion
| EG: Pre 165.3 ± 21.5; Post 179.2 ± 2.7, p=0.01 |
| CG: Pre 172.7 ± 14.1; Post 177.5 ± 6.4, p=0.08 |
| EG vs CG p=0.19 |

Shoulder abduction
| EG: Pre 155.5 ± 35.7; Post 177.2 ± 7.4, p=0.01 |
| CG: Pre 163.7 ± 25.9; Post 173.5 ± 16.6, p=0.01 |
| EG vs CG p=0.27 |

Shoulder external rotation
| EG: Pre 77.2 ± 22.7; Post 88.67 ± 3.5, p=0.05 |
| CG: Pre 81.8 ± 15.0; Post 85.7 ± 10.7, p=0.22 |
| EG vs CG p=0.15 |

ES=0.39

Shoulder flexion
| EG: Pre 165.3 ± 21.5; Post 179.2 ± 2.7, p=0.01 |
| CG: Pre 172.7 ± 14.1; Post 177.5 ± 6.4, p=0.08 |
| EG vs CG p=0.19 |

Shoulder abduction
| EG: Pre 155.5 ± 35.7; Post 177.2 ± 7.4, p=0.01 |
| CG: Pre 163.7 ± 25.9; Post 173.5 ± 16.6, p=0.01 |
| EG vs CG p=0.27 |

Shoulder external rotation
| EG: Pre 77.2 ± 22.7; Post 88.67 ± 3.5, p=0.05 |
| CG: Pre 81.8 ± 15.0; Post 85.7 ± 10.7, p=0.22 |
| EG vs CG p=0.15 |

ES=0.39

Shoulder flexion
| EG: Pre 165.3 ± 21.5; Post 179.2 ± 2.7, p=0.01 |
| CG: Pre 172.7 ± 14.1; Post 177.5 ± 6.4, p=0.08 |
| EG vs CG p=0.19 |

Shoulder abduction
| EG: Pre 155.5 ± 35.7; Post 177.2 ± 7.4, p=0.01 |
| CG: Pre 163.7 ± 25.9; Post 173.5 ± 16.6, p=0.01 |
| EG vs CG p=0.27 |

Shoulder external rotation
| EG: Pre 77.2 ± 22.7; Post 88.67 ± 3.5, p=0.05 |
| CG: Pre 81.8 ± 15.0; Post 85.7 ± 10.7, p=0.22 |
| EG vs CG p=0.15 |

ES=0.39
<table>
<thead>
<tr>
<th>Parameter</th>
<th>EG (Mean ± SD)</th>
<th>CG (Mean ± SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minute ventilation (L/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>6.0 ± 2.4</td>
<td>5.6 ± 1.8</td>
<td>>0.05</td>
</tr>
<tr>
<td>DB</td>
<td>9.8 ± 2.5</td>
<td>13.6 ± 5.6</td>
<td><0.05</td>
</tr>
<tr>
<td>PB</td>
<td>8.9 ± 4.3</td>
<td>14.4 ± 4.7</td>
<td>>0.05</td>
</tr>
<tr>
<td>Respiratory rate (cpm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>16.7 ± 3.8</td>
<td>16.4 ± 3.7</td>
<td><0.05</td>
</tr>
<tr>
<td>DB</td>
<td>11.0 ± 3.5</td>
<td>11.8 ± 4.8</td>
<td><0.05</td>
</tr>
<tr>
<td>PB</td>
<td>16.9 ± 7.4</td>
<td>16.2 ± 3.4</td>
<td><0.05</td>
</tr>
<tr>
<td>Inspiratory time (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>1.3 ± 0.3</td>
<td>1.4 ± 0.4</td>
<td><0.05</td>
</tr>
<tr>
<td>DB</td>
<td>1.9 ± 0.4</td>
<td>2.9 ± 0.9</td>
<td><0.05</td>
</tr>
<tr>
<td>PB</td>
<td>1.4 ± 0.3</td>
<td>1.8 ± 0.4</td>
<td><0.05</td>
</tr>
<tr>
<td>Expiratory time (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>2.9 ± 1.3</td>
<td>2.3 ± 0.5</td>
<td><0.05</td>
</tr>
<tr>
<td>DB</td>
<td>4.5 ± 2.0</td>
<td>5.2 ± 1.8</td>
<td><0.05</td>
</tr>
<tr>
<td>PB</td>
<td>2.7 ± 0.9</td>
<td>2.5 ± 0.6</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>EG: NB 4.2±1.5; DB 6.4±2.1 (p<0.05); PB 4.1±1.1 (p<0.05)</td>
<td>CG: NB 3.7±0.8; DB 8.1±2.5 (p<0.05); PB 4.2±0.9 (p<0.05)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Total breath time (s)</td>
<td>EG vs CG p>0.05</td>
<td>ES NB=0.42; ES DB=0.74; ES PB=0.10</td>
<td></td>
</tr>
<tr>
<td>%RCi</td>
<td>EG: NB 54.5±28.1; DB 50.6±48.4; PB 61.1±28.2 (p>0.05)</td>
<td>CG: NB 63.3±16.3; DB 66.7±15.5; PB 80.9±18.3 (p<0.05)</td>
<td></td>
</tr>
<tr>
<td>Labored breathing index</td>
<td>EG vs CG p>0.05</td>
<td>ES NB=0.38; ES DB=0.45; ES PB=0.83</td>
<td></td>
</tr>
<tr>
<td>Phase relation during inspiration</td>
<td>EG: NB 1.1±0.3; DB 1.2±0.3; PB 1.0±0.0, p>0.05</td>
<td>CG: NB 1.0±0.0; DB 1.1±0.1; PB 1.1±0.1, p>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EG vs CG p>0.05</td>
<td>ES NB=0.47; ES DB=0.45; ES PB=1.41</td>
<td></td>
</tr>
</tbody>
</table>

EG vs CG p<0.05 in favor of NB
ES NB=0.83; ES DB=0.50; ES PB=0.38
<table>
<thead>
<tr>
<th></th>
<th>EG: NB 13.9±8.0; DB 37.1±19.0 (p<0.05); PB 21.7±9.8 (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CG: NB 5.8±2.7; DB 30.7±14.2 (p<0.05); PB 28.0±10.1 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>EG vs CG p<0.05 in favor of NB</td>
</tr>
<tr>
<td></td>
<td>ES NB=1.36; ES DB=0.38; ES PB=0.63</td>
</tr>
<tr>
<td>Phase relation during expiration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EG: NB 13.4±8.0; DB 37.2±19.6 (p<0.05); PB 22.1±9.5 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>CG: NB 5.7±2.5; DB 26.8±12.7 (p<0.05); PB 26.2±10.4 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>EG vs CG p<0.05 in favor of NB</td>
</tr>
<tr>
<td></td>
<td>ES NB=1.30; ES DB=0.63; ES PB=0.41</td>
</tr>
<tr>
<td>Phase relation of the entire breath</td>
<td></td>
</tr>
<tr>
<td>Phase angle (º)</td>
<td>EG: NB 24.1±22.1; DB 67.0±47.7 (p<0.05); PB 30.6±12.3 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>CG: NB 9.1±4.2; DB 39.1±19.1 (p<0.05); PB 21.1±9.5 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>EG vs CG p<0.05</td>
</tr>
<tr>
<td></td>
<td>ES NB=0.94; ES DB=0.77; ES PB=0.86</td>
</tr>
<tr>
<td>SpO₂ (%) Oximetry</td>
<td>EG: NB 95.4±3.4; DB 99.4±1.4 (p<0.05); PB 99.3±1.6 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>CG: NB 97.4±1.6; DB 99.7±0.7 (p<0.05); PB 99.5±0.8 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td>EG vs CG p>0.05</td>
</tr>
<tr>
<td></td>
<td>ES NB=0.75; ES DB=0.27; ES PB=0.16</td>
</tr>
</tbody>
</table>

Cystic Fibrosis: Duration: 16 weeks

MIP
Respiratory pressures (cmH₂O)
M: Pre 77.9±19.5; Post 101.4±22.7, p=0.017
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Group</th>
<th>Frequency</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franco et al (2014)</td>
<td>1 group</td>
<td>n=19</td>
<td>60 min.</td>
<td>Individual session once per week. Components:</td>
</tr>
<tr>
<td></td>
<td>design</td>
<td></td>
<td></td>
<td>Respiratory, postural, and abdominal exercises.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strength exercises for the trunk, upper limbs, and lower limbs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lung volumes and Spirometry (%)</td>
</tr>
<tr>
<td>Guimarães et al (2012)</td>
<td>RCT</td>
<td>n=16</td>
<td>16 weeks</td>
<td>Duration: 16 weeks. Frequency: 60 min. group session 2 days/week. Components:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Warm-up and cool down -10 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aerobic exercise – 30 min. Walking on treadmill.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pilates mat exercises – 20 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strengthening, stretching, ROM, and balance exercises.</td>
</tr>
</tbody>
</table>

Results:

- **Franco et al (2014):**
 - MEP: Pre 70.8±19.2; Post 92.5±17.3, p=0.005
 - ES (M)=0.11, ES (F)=1.19

- **Guimarães et al (2012):**
 - Vital signs:
 - HR rest (bpm): Pre EG 78±17, Post 76±13, p>0.05
 - HR max (bpm): Pre EG 135±27, Post 144±24, p>0.05
 - SBP rest (mmHg): Pre EG 106±16, Post 101±24, p>0.05
 - SBP max (mmHg): Pre EG 125±17, Post 143±21, p>0.05
 - DBP rest (mmHg): Pre EG 73±14, Post 67±17, p=0.02
 - CG: Pre 72±18; Post 71±18, p>0.05
 - ES = -0.05
 - CPET:
 - EG: Pre 78±17; Post 76±13, p>0.05
 - CG: Pre 72±18; Post 71±18, p>0.05
 - ES = -0.05
Exercise Tolerance

<table>
<thead>
<tr>
<th>Measure</th>
<th>EG: Pre</th>
<th>Post</th>
<th>p-value</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP max (mmHg)</td>
<td>68±19</td>
<td>69±13</td>
<td>>0.05</td>
<td>-0.24</td>
</tr>
<tr>
<td>Pulse O2 (mlO2/bpm)</td>
<td>11.9±3</td>
<td>13.8±3</td>
<td><0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>RER</td>
<td>1.1±0.1</td>
<td>1.1±0.1</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>VE/VCO2</td>
<td>29±5</td>
<td>29±4</td>
<td>>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>Time (minutes)</td>
<td>12.8±2.5</td>
<td>17.8±4</td>
<td><0.001</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Handgrip Strength

<table>
<thead>
<tr>
<th>Measure</th>
<th>EG: Pre</th>
<th>Post</th>
<th>p-value</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handgrip dynamometer (kg)</td>
<td>25.7±8.4</td>
<td>30.0±7.4</td>
<td><0.05</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Intervention: CCT Hypertension

Martins-Meneses et al. (2014)/Brazil

- **n**: 44
- **Duration**: 16 weeks
- **Frequency**: 60 min group session 2 days/wk
- **Components**:
 - warm-up and cool down – 20 min.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Control</th>
<th>Experimental Group (EG)</th>
<th>EG: Pre 27.3±5.6; Post 30.4±4.6, p<0.05</th>
<th>CG: Pre 27.6±6.0; Post 27.2±5.8, p>0.05</th>
<th>ES=0.52, p<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components CG: Usual Care</td>
<td>Right hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip circumference (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vital signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sung et al. RCT (2016)/Republic of Korea

MBP (mmHg)

EG: Pre 94.0±15.3; Post 89.4±9.4, p<0.05
CG: Pre 91.8±8.9; Post 93.6±10.7, p>0.05
ES=-0.45, p<0.05

HR (bpm)

EG: Pre 73.5±8.6; Post 75.7±9.1, p>0.05
CG: Pre 78.9±10.6; Post 78.0±10.1, p>0.05
ES=-0.26, p>0.05

DP (bpm x mmHg)

EG: Pre 9263.3±1939.4; Post 8983.6±1376.4, p>0.05
CG: Pre 9646.8±1592.6; Post 9775.6±1643.0, p>0.05
ES=-0.2, p>0.05

Sung et al RCT

Duration: 8 weeks

Intervention: Frequency: 60 min. supervised 3 days/wk, Components EG:
- warm-up and cool down
- breathing exercises
- Pilates exercises
- 1 set of 8 repetitions
- mobility and strengthening exercises
- other exercises
- Charlie Chaplin exercises, swimming, heel squeeze and prone bridge

Control: 56% male; n=9

Static balance Treadmill

Medial-lateral COP (mm)

Anterior-posterior COP (mm)

Medial-lateral velocity (mm/s)

Anterior-posterior velocity (mm/s)

Dynamic balance (Paretic Side)

Medial-lateral COP (mm)

ACCEPTED MANUSCRIPT
<table>
<thead>
<tr>
<th>Lim et al RCT (2017)/Republic of Korea</th>
<th>Stroke: n=20</th>
<th>Duration: 8 weeks</th>
<th>Intervention: n=10</th>
<th>Components EG:</th>
<th>Functional status</th>
<th>TUG (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: Pre 27.0±3.2; Post 22.4±2.7, p<0.001</td>
<td>CG: Pre 26.2±3.7; Post 26.5±2.9, p>0.05</td>
<td>ES= -1.28, p<0.05</td>
<td>Anterior-posterior COP (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG: Pre 88.6±33.5; Post 76.5±25.6, p<0.05</td>
<td>CG: Pre 91.8±39.8; Post 92.6±38.8, p>0.05</td>
<td>ES= -1.27, p<0.001</td>
<td>Medial-lateral velocity (mm/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG: Pre 114.8±31.2; Post 98.3±25.2, p<0.01</td>
<td>CG: Pre 117.0±30.6; Post 117.1±29.1, p>0.05</td>
<td>ES= -1.43, p<0.001</td>
<td>Dynamic balance (non-paretic Side) Medial-lateral COP (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG: Pre 12.7±1.2; Post 10.4±0.8, p<0.001</td>
<td>CG: Pre 13.7±2.2; Post 14.2±1.9, p>0.05</td>
<td>ES= -1.43, p<0.001</td>
<td>Anterior-posterior COP (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG: Pre 23.2±2.4; Post 18.2±1.2, p<0.001</td>
<td>CG: Pre 22.1±3.6; Post 22.9±3.3, p>0.05</td>
<td>ES= -1.71, p<0.001</td>
<td>Medial-lateral velocity (mm/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG: Pre 79.0±28.3; Post 66.5±21.2, p<0.05</td>
<td>CG: Pre 86.0±27.2; Post 87.2±26.3, p>0.05</td>
<td>ES= -0.43, p<0.001</td>
<td>Anterior-posterior velocity (mm/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG: Pre 89.7±28.8; Post 73.2±17.9, p<0.05</td>
<td>CG: Pre 96.9±27.5; Post 97.0±25.1, p>0.05</td>
<td>ES= -0.53, p<0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60% male; 63.2±7.9yrs</td>
<td>Frequency: 60 min. supervised 3 days/wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>breathing exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilates exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control: n=10</td>
<td>Vital signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HR rest (bpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% male; 62.1±6.7yrs</td>
<td>spine mobility exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>upper limb exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lower limb strengthening exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG and CG:</td>
<td>conventional stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rehabilitation program 30 min 5 days/wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise tolerance CPET

<table>
<thead>
<tr>
<th></th>
<th>VO₂ max (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: Pre 84.1±16.6; Post 76.5±14.5, p<0.05</td>
<td></td>
</tr>
<tr>
<td>CG: Pre 83.3±17.3, Post 85.4±16.6, p<0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>VO₂ max per kg (ml/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: Pre 12.1±2.9; Post 14.3±2.5, p<0.05</td>
<td></td>
</tr>
<tr>
<td>CG: Pre 14.7±4.7, Post 14.4±4.7, p<0.05</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as mean±standard deviation;

NCDs: Noncommunicable diseases; RCT: Randomized control trial; EG: Experimental group; CG: Control group; ES: Effect size; HbA1c: Glycated haemoglobin; DID: Daily insulin doses; HDL: High density lipoprotein; LDL: Low density lipoprotein; TC: Total cholesterol; TG: Triglyceride; 6MWT: 6-minute walk test; 6MWD: 6-minute walk distance; PG: Pilates group; CEG: Combined exercise group; HEG: Home exercise group; NR: not reported. Authors were contacted and did not reply; ROM: Range of motion; NB: Natural breathing; DB: Diaphragmatic breathing; PB: Pilates breathing; %RCi: Percent rib cage inspiratory contribution to tidal volume ratio; SpO₂: Peripheral oxygen saturation; M: Male; F: Female; MIP: Maximum Inspiratory Pressure; MEP: Maximum Expiratory Pressure; FEV₁: Forced expiratory volume in 1 second; FVC: Forced vital capacity; CPET: Cardiopulmonary exercise test; HR: Heart rate; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; VO₂: oxygen consumption; RER: Respiratory exchange ratio; VE/VCO₂: Minute ventilation – carbon dioxide production relationship; CCT: Non randomized controlled clinical trial; BM: Body mass; BMI: Body mass index; MBP: Mean blood pressure; DP: Double product; COP: centre of pressure.

* Constant Murley score is a mixed measure but it was allocated to clinical outcomes as they account for 65 points out of 100 points of the measure.
<table>
<thead>
<tr>
<th>Author (Year)/Country</th>
<th>Study Design</th>
<th>Participants</th>
<th>Intervention</th>
<th>Measures</th>
<th>Outcome Measures</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torabian et al (2013)/Iran</td>
<td>2 groups pre-post design</td>
<td>Type 2</td>
<td>70 Type 2 Diabetes: n=70</td>
<td>Duration: 8 weeks Frequency: 60 min. supervised 2d/wk Components EG: • warm-up and cool down - 5 min. • stretching exercises o Pilates exercises - 50 min. o 10 to 80 repetitions Control: n=35; 0% male [30-70] yrs</td>
<td>Symptoms GHQ-28 Physical symptoms EG: Pre 43.1±2.1; Post 4.3±1.8, p=0.001 CG: Pre 12.2±3.1; Post 11.9±2.7, p=0.23 EG vs. CG p=0.01 ES= -12.70 Anxiety EG: Pre 11.0 ±2.0; Post 5.9±2.2, p=0.04 CG: Pre 10.6±3.3; Post 0.7±2.6, p=0.11 EG vs. CG p= 0.003 ES=-1.52 Depression EG: Pre 11.1±2.6; Post 6.4±2.0, p=0.01 CG: Pre 11.5±2.9; Post 11.3±3.0, p=0.47 EG vs. CG p=0.04 ES=-1.38 Social dysfunction GHQ-28 EG: Pre 13.0±2.3; Post 6.2±2.2, p=0.02 CG: Pre 12.4±3.5; Post 11.5±2.9, p=0.50 EG vs. CG p=0.001 ES= -1.73 Total score EG: Pre 47.2±9.1; Post 22.8±8.2, p=0.002 CG: Pre 46.6±12.9; Post 45.5±11.0, p=0.24 EG vs CG p= 0.003 ES= -1.82</td>
<td></td>
</tr>
<tr>
<td>Yucel and Uysal (2015)/Turkey</td>
<td>RCT</td>
<td>Type 2</td>
<td>45 Type 2 diabetes: n=45</td>
<td>Duration: 12 weeks Frequency: 45 to 70 min. supervised 3 days/wk</td>
<td>Symptoms VAS</td>
<td></td>
</tr>
</tbody>
</table>
Intervention:

n=24; 0% male;

58.5±7yrs

- warm-up and cool down
 - stretching exercises;
 - basic aerobic pilates

Control:

n=21; 0% male;

53.5±9yrs

Components EG:

- warm-up and cool down
- stretching exercises;
- basic aerobic pilates

Components CG: Usual Care

Pain

EG: Pre 3.0±4.0; Post 2.0±2.0, p=0.001

CG: Pre 3.0±3.0; Post 3.0±2.0, p=0.308

ES= -0.27

Fatigue

EG: Pre 5.0±2.0; Post 4.0±1.0, p=0.001

CG: Pre 4.5±1.0; Post 4.0±2.0, p=0.42

ES= -0.25

Symptoms

SF-36

Mental Health

EG: Pre 29.0±5.0; Post 35.0±3.0, p=0.001

CG: Pre 29.0±11.0; Post 35.0±1.0, p=0.132

ES= 0.00

Physical Health

EG: Pre 40.0±3.0; Post 41.0±4.0, p=0.120

CG: Pre 40.0±0.0; Post 41.0±4.0, p=0.42

ES= 0.00

HADS

Anxiety

EG: Pre 8.0±3.0; Post 7.0±3.0, p=0.023

CG: Pre 8.0±1.0; Post 7.0±1.0, p=0.162

ES= 0.00

Depression

EG: Pre 9.0±2.0; Post 8.0±2.0, p=0.019

CG: Pre 9.0±2.0; Post 8.0±1.0, p=0.08

ES= 0.00

Eygor et al RCT (2010)/Turkey

Breast Cancer:

n=41

Duration: 8 weeks

Frequency: 60 min. supervised and 20-30 min. unsupervised 3 days/wk,

Intervention:

n=27; 0% male;

48.5±7.6yrs

- warm-up and cool down
 - breathing and stretching exercises
 - pilates exercises
 - 2 sets of 10 repetitions
 - education session - 30 min.

Components EG:

- pilates exercises

Components CG: Usual Care

Symptoms

Fatigue

BFI

EG: Pre 6.6±4.1; Post 5.6±4.7, p= 0.14

CG: Pre 7.7±5.7; Post 6.5±4.4, p=0.82

EG vs CG p= 0.66

ES= -0.03

Depression

BDI

EG: Pre 7.4±5.8; Post 5.6±6.4, p= 0.01

CG: Pre 9.5±12.1; Post 6.8±9.5, p=0.25

EG vs CG p=0.47

ES= -0.09
Quality of life

EORTC QLQ-C30

EG: Pre 77.1±15.0; Post 83.3±14.7, p=0.03
CG: Pre 76.7±21.7; Post 78.0±20.5, p=0.53
EG vs CG p=0.33
ES=0.23

Symptoms QoL

EG: Pre 19.0±12.2; Post 20.9±21.5, p=0.43
CG: Pre 23.2±23.9; Post 13.2±10.0, p=0.21
EG vs CG p=0.48
ES=0.53

Global QoL

EG: Pre 70.2±20.6; Post 77.0±21.8, p=0.19
CG: Pre 62.6±29.3; Post 63.8±23.8, p=0.91
EG vs CG p=0.79
ES=0.20

Quality of life

EORTC QLQ-BR23

EG: Pre 77.8±16.6; Post 84.4±10.5, p=0.04
CG: Pre 73.27±20.1; Post 75.8±10.6, p=0.85
EG vs CG p=0.26
ES=0.22

Symptoms QoL

EG: Pre 21.1±15.3; Post 17.4±18.2, p=0.20
CG: Pre 23.0±20.2; Post 19.0±10.6, p=0.18
EG vs CG p=0.31
ES=0.01

Zergin et al (2016)/Turkey

RCT

Breast Cancer: n=56

PEG: n=18; 0% male;
Duration: 8 weeks
46.2 ± 11.2 yrs

Components PG:
• teaching of key elements of Pilates
• Pilates-based mat exercises
• Pilates-based theraband exercises

Frequency: 45 min. supervised 3 days/wk

Symptoms

VAS

Pain in motion

PEG: Pre 5.0±2.0; Post 1.7±1.6, p <0.001
CEG: Pre 4.6±1.6; Post 1.3±1.7, p=0.001
HEG: Pre 4.3±2.2; Post 2.1±2.3, p<0.001
PEG vs CEG vs HEG p=0.109
ES=0.08
<table>
<thead>
<tr>
<th>Group</th>
<th>Participants</th>
<th>Components</th>
<th>Pain at rest</th>
<th>Duration</th>
<th>Frequency</th>
<th>Components</th>
<th>Symptoms</th>
<th>Quality of life</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEG</td>
<td>18; 0% male;</td>
<td>Stretching</td>
<td>0%</td>
<td>8 weeks</td>
<td>3 days/wk</td>
<td>ROM, Shoulder strengthening exercises</td>
<td>VAS</td>
<td>EORTC QLQ-BR23</td>
</tr>
<tr>
<td>HEG</td>
<td>19; 0% male;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>breathing exercises</td>
<td>SAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.9 ± 8.0yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DASH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.5 ± 13.8yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PEG:
- Pre 2.6 ± 2.5; Post 0.5 ± 1.0, *p* = 0.004
- CEG: Pre 1.6 ± 1.8; Post 0.2 ± 0.6, *p* = 0.002
- HEG: Pre 2.0 ± 2.3; Post 0.2 ± 0.7, *p* = 0.005

PEG vs CEG vs HEG: *p* = 0.897; ES = 0.0

Sener et al. RCT (2017)/Turkey
- Breast Cancer: n = 60
- Duration: 8 weeks
- Frequency: 3 days/wk

Intervention:
- EG: 30; 0% male; 53.2 ± 7.7 years
- CG: 30; 0% male; 54.0 ± 12.6 years

Components EG:
- Pilates exercises
- Home program – every day
 - manual lymphatic drainage training, wall extension, and Wand exercises

Components CG:
- Core stabilization exercises
- Home program – every day
 - Daily living activities with core protection
 - Manual lymphatic drainage

Symptoms
- Pain VAS
- Anxiety SAA

Quality of life
- EORTC QLQ-BR23

EG vs CG
- Pain VAS: Pre 3.5 ± 3.2; Post 0.7 ± 0.8, *p* < 0.01
- Anxiety SAA: Pre 24.8 ± 8.0; Post 19.7 ± 3.7, *p* < 0.01

ES
- Pain VAS: -0.44
- Anxiety SAA: -0.40

Quality of life
- EORTC QLQ-BR23
- EG vs CG: *p* < 0.01

ES
- EORTC QLQ-BR23: -0.16

Note: The ES values indicate the effect size, where -0.44 to -0.40 suggest a moderate effect, and -0.16 suggests a small effect.
- shoulder exercises
- skin care

<table>
<thead>
<tr>
<th>Functional status</th>
<th>DASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG: Pre 44.2±15.3; Post 38.0±15.0, p <0.01</td>
<td></td>
</tr>
<tr>
<td>CG: Pre 34.8±12.0; Post 32.2±12.1, p <0.01</td>
<td></td>
</tr>
<tr>
<td>EG vs CG p=0.39</td>
<td></td>
</tr>
<tr>
<td>ES=-0.21</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as mean±standard deviation

EG: Experimental group; CG: Control group; ES: Effect size; GHQ-28: General health questionnaire – 28; VAS: Visual analogue scale; SF-36: 36-item short-form health survey; HADS: Hospital anxiety depression scale; BFI: Brief fatigue inventory; BDI: Beck depression index; EORTC QLQ-C30: European organization for the research and treatment of cancer quality of life questionnaire; QoL: quality of life; EORTC QLQ-BR23: European organization for the research and treatment of cancer quality of life questionnaire breast cancer module 23; DASH: Disabilities of the arm, shoulder, and hand scale; PEG: Pilates exercise group; CEG: combined exercise group; HEG: home exercise group; SAA: Social appearance anxiety (SAA) Scale
Table 4 - Best-evidence synthesis of the effects of Pilates in noncommunicable diseases

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Studies</th>
<th>Level of evidence</th>
<th>Direction of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>70, 73, 74, 75, 79</td>
<td>2</td>
<td>Pilates equal to other interventions</td>
</tr>
<tr>
<td>Vital signs</td>
<td>72, 76, 78, 80</td>
<td>4</td>
<td>conflicting evidence</td>
</tr>
<tr>
<td>Metabolic parameters</td>
<td>81</td>
<td>3</td>
<td>Pilates equal to usual care</td>
</tr>
<tr>
<td>Body composition</td>
<td>76</td>
<td>3</td>
<td>favours Pilates</td>
</tr>
<tr>
<td>Muscle strength</td>
<td>71, 73, 76, 79, 81</td>
<td>2</td>
<td>Pilates equal to other interventions but favours Pilates over usual care</td>
</tr>
<tr>
<td>Respiratory function</td>
<td>72, 73</td>
<td>3</td>
<td>Pilates equal to other interventions</td>
</tr>
<tr>
<td>Functional Status</td>
<td>71, 79, 80</td>
<td>4</td>
<td>conflicting evidence</td>
</tr>
<tr>
<td>Exercise tolerance</td>
<td>70, 78, 80</td>
<td>1</td>
<td>favours Pilates</td>
</tr>
<tr>
<td>Balance</td>
<td>77</td>
<td>3</td>
<td>favours Pilates</td>
</tr>
<tr>
<td>Flexibility</td>
<td>70, 73, 76, 79, 81</td>
<td>4</td>
<td>conflicting evidence</td>
</tr>
<tr>
<td>HRQoL</td>
<td>70, 79</td>
<td>2</td>
<td>Pilates equal to other interventions</td>
</tr>
<tr>
<td>Social support</td>
<td>75</td>
<td>3</td>
<td>favours Pilates</td>
</tr>
</tbody>
</table>

HRQoL: Health-related quality of life

Level of evidence: 1 – strong; 2 – moderate; 3 – limited; 4 – conflicting; 5 – no evidence.
Appendix 1

The following electronic databases were searched for potential studies: Cochrane Library (1999-2017), EBSCO (1974-2017), PubMed (1996-2017), Science Direct (1997-2017), Scopus (1960-2017) and Web of Science (1900-2017) on the 15th of November 2016. Additional searches were performed in weekly automatic updates retrieved from the databases until November 2017. The search terms used were organized using the PICOT (Population, Intervention, Comparison, Outcome and Time) framework:

P: Chronic respiratory diseases (COPD, asthma, cystic fibrosis, bronchiectasis); Chronic cardiovascular diseases (hypertension, heart failure, coronary artery disease, vascular disease, cardiac arrhythmias, stroke); diabetes; cancer.

I: pilates; mat pilates; pilates method; pilates-based rehabilitation

C: respiratory physiotherapy; respiratory physical therapy; physiotherapy; physical therapy; exercise; exercise training; pulmonary rehabilitation; respiratory rehabilitation; cardiac rehabilitation; breathing exercises; airway clearance techniques; strength; stretch; flexibility; balance; diaphragmatic breathing; physical activity; aerobic exercise; yoga; yogasana; tai-chi; walking; running; hiking; dancing; nordic-walking; hydrotherapy; swimming; meditation; psychoeducation; education and psychosocial support

O: breathing pattern; lung volumes; respiratory rate; chest expansion; symptoms; dyspnea; fatigue; pain; depression; anxiety; neuromotor; function*; exercise tolerance; force; strength; functional capacity; balance; flexibility; body composition; health; quality of life; well-being

T: not applicable

Typical Search

[“chronic respiratory disease” OR “chronic lung disease” OR “COPD” OR “chronic obstructive pulmonary disease” OR “asthma” OR “cystic fibrosis” OR “chronic cardiovascular disease” OR “heart failure” OR “hypertension” OR “atherosclerosis” OR “coronary artery disease” OR “valvular disease” OR “cardiac arrhythmias” OR “stroke” OR “diabetes” OR “cancer”) AND (“breathing pattern” OR “respiratory pattern” OR “lung volume” OR “respiratory volume” OR “lung capacity” OR “respiratory rate” OR “chest expansion” OR “thoracic expansion” OR “chest extension” OR “symptoms” OR “metabolic” OR “dyspnea” OR “dyspnoea” OR “fatigue” OR “health” OR “quality of life”) AND “Pilates” OR “mat pilates” OR “pilates method” OR “pilates-based rehabilitation”].
“pain” OR “depression” OR “anxiety” OR “neuromotor” OR “function*” OR “functional capacity” OR “capacity” OR “exercise tolerance” OR “exercise capacity” OR “aerobic capacity” OR “aerobic tolerance” OR “resistance” OR “force” OR “strength” OR “balance” OR “flexibility” OR “stretch” OR “body composition” OR “BMI” OR “body mass index” OR “fat mass” OR “health” OR “quality of life” OR “life quality” OR “well-being” OR “questionnaire*” OR “interview*”) AND (“pilates” OR “pilates-based rehabilitation”).