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palavras-chave

resumo

Redes de sensores, internet das coisas, protocolos de comunicacdo
wireless, monitorizagao animal

A remocdo de ervas e outras espécies vegetais em propriedades agricolas
é um trabalho 4rduo que precisa de ser repetido periodicamente.
Recorre-se habitualmente a maquinas agricolas e herbicidas para o
efeito, o que ndo sé é dispendioso como também levanta preocupacgdes
de cariz ambiental. A utilizacdo de gado na remocdo das espécies
vegetais indesejadas é um método ja testado e que permite ndo sé a
diminuicdo do uso de herbicidas como também dos fertilizantes
artificiais. No entanto, pelo facto dos animais tendencialmente também
se alimentarem de algumas espécies cultivadas, impossibilita a sua
utilizacdo durante todo o ano de cultivo. O projeto SheeplT pretende
criar uma solugdo para este problema através de um sistema de
monitorizagdo animal que, de forma auténoma, corrige
comportamentos indesejados, tais como, quando os animais se
alimentam das espécies de cultivo. Aliado ao facto de permitir a recolha
de dados acerca do comportamento dos animais e da sua localizacdo, o
sistema é também uma ferramenta de gestdao do gado e do seu bem-
estar.

Neste trabalho é apresentada uma rede de sensores (WSN) com vista a
monitorizacdo de um rebanho de ovelhas. O protdtipo desenvolvido
permite a obtencdo de dados em tempo real provenientes dos sensores
alojados em coleiras para uso em ovelhas domésticas. Sao utilizadas
tecnologias radio que operam na banda dos 433 MHz. O sistema de
comunicacbes é baseado num protocolo proprietdrio desenvolvido
especificamente no ambito deste projeto e cuja arquitetura é
apresentada nesta dissertacao.






keywords

abstract

Wireless sensor networks, internet of things, wireless communication
protocols, animal monitoring

Weed control in agriculture is a toilsome job that needs to be periodically
repeated. Agricultural machinery and herbicides are frequently
employed in this task, but these methods are expensive and raise
environmental concerns. Livestock can take this job by feeding on with
the undesirable species and reduces the usage of herbicides and artificial
fertilizers. However, because these animals can also feed on some crops,
grazing livestock is not a feasible alternative method for weed control
because it can’t be used through the entire year. The SheeplT project
aims to solve this problem, by providing an autonomous system for
animal monitoring that corrects undesirable behaviors, such as when
animals are feeding on crops. The system should also enable data
gathering about the animals’ behavior and their localization, which turns
out to be a livestock management and welfare control tool.

This dissertation presents a wireless sensor network (WSN) to monitor a
flock of domestic sheep. The implemented prototype enables data
gathering in real time from sheep-borne collars. Wireless
communications use a radio link in the 433 MHz band. A proprietary
protocol was specifically developed for this project and its architecture is
presented.
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Chapter 1

INTRODUCTION

This dissertation was conducted under the SheepIT project [1], [2], which seeks an
innovative solution for weeding vegetable species based on an IoT architecture while being
environmentally friendly and cost effective. The system relies on grazing sheep to overcome
the weed species problem in vineyards, which implies monitoring of the flock to prevent

them from feeding from fruits and branches.

1.1 Motivation

The presence of weeds in vineyards constitute a threat to plantations because they
compete for soil nutrients and water with the vines. Land owners are therefore enforced to
invest in methods to remove the undesirable weeds. Weeding methods based on herbicides
and machinery equipment are still common [3], but environmental concerns have arisen due
to the regular usage of chemicals. Moreover, the need to repeat the application of these
methods several times over the year, renders them expensive [4].

Figure 1.1 — Grazing sheep in a Portuguese vineyard [5]

Ecological and less expensive approaches have been tried with livestock [6]. These
animals naturally feed on with the undesirable weeds and can fertilize the soil. However,
they can also feed on grapes and on the lower branches of the vines (Figure 1.1), impacting



on the productions. This problem limits the usage of the method to the period before the
first production grapes start to emerge. The presence of shepherds to monitor the behavior
of several hundreds of sheep is also not feasible.

To overcome the aforementioned problem, the SheeplT Project proposes to develop an
autonomous system capable of monitoring and correct the sheep posture [7] while they are
weeding the vineyards. By also enabling virtual fencing techniques, animals shall be kept in
desirable locations without the need of expensive electrical fences.

1.2 Objectives

The objective of this dissertation was to develop and deploy the foundations of a
wireless sensor network (WSN) to be integrated in the SheepIT Project. Concerns about the
energy efficiency were taken to make the system a viable solution. The desire of monitoring
several hundreds of sheep through the usage of wirelessly connected sensor nodes imposed
communication issues that were addressed. These objectives can be summarized as follows:

e Study currently available solutions for animal tracking and monitoring systems;

o Study WSN protocols that could fit the proposal SheeplT solution;

e Design and deploy a WSN that meets the requirements of the project.

1.3 Structure

The remainder part of this document is organized as follows:

e Chapter 2: presents the State of the Art regarding WSN protocols and animal
monitoring systems;

e Chapter 3: presents the overall SheeplT architecture, with focus on the WSN’s
MAC layer;

e Chapter 4: presents the implemented node’s state-machines to accomplish the MAC
layer architecture;

e Chapter 5: presents some experimental results as well as some theoretical
computations about the MAC layer;

e Chapter 6: final remarks are taken about the whole dissertation and future work is
proposed.



Chapter 2

STATE OF THE ART

This chapter presents the State of the Art regarding wireless sensor networks (WSN)
and animal monitoring systems. Firstly, the WSN term is introduced and some relevant
protocols in this field are presented. Following this, projects related with remote animal
monitoring systems found on literature are discussed.

2.1 WSN protocols and architectures

Wireless Sensor Networks (WSN) have a wide variety of definitions. They can be
considered as a set of individual nodes with environment sensing and control capabilities
that through wireless communications cooperate to fulfill a common task [8]. The
applications of these networks can range from medicine and healthcare products to wildfire
detection systems or household surveillance, just to name a few. Despite this diversity, it is
possible to classify WSNs according to the type of sensing [8]:

e Event detection: in this type of WSN, nodes report the occurrence of an event,
like the presence of smoke in a room;

e Periodic sensing: in this kind of WSN, nodes periodically measure and report
environment parameters, like the temperature of a room.

Whatever is the type of sensing, nodes are always addressed to report, at some time,
information to a so called sink — a node targeted to receive the sensor nodes data [9]. The
design of a WSN architecture has, therefore, to deal with these communications through a
common link, which can be thought as a resource that has to be shared by the nodes. These
issues are addressed in the Medium Access Control (MAC) layer of the network.

The challenges imposed in the design of a MAC layer are dependent on its application
type. Some may be more targeted into energy efficiency [10] if the nodes are required to run
on small batteries. For other applications this problem was minimized by managing to power
the nodes by other means, like wireless charging, enabling more complex communications
criteria to be addressed [11]. These different challenges led to the development of many

MAC protocols, some very specifically targeted to unique applications while others had a



more generic utilization goal. Nevertheless, all implement mechanisms to enable the nodes
access to the communication channel in order to cope with minimize or even eliminate packet
collisions — when two or more protocol messages (packets) are transmitted at the same time
in a shared medium causing their degradation.

Based on the medium access mechanisms, MAC protocols can be classified in the
following two categories [8]:

e Contention-based protocols: in these protocols, nodes compete for the medium
without prior knowledge about their neighbor’s access times, which can have a
random nature. To reduce the probability of packet collisions, techniques based on
Carrier Sense Multiple Access (CSMA) [12] are used.

e Schedule-based protocols: as opposed to contention-based, schedule-based
protocols require the nodes to schedule their transmission times. This demands some
type of synchronization to perform a Time Division Multiple Access (TDMA) [13]

scheme.

The former type is usually designated to event detection networks, due to the random
nature of the communications. The last type is more suitable for the periodic sensing
networks or when the traffic is so dense that CSMA techniques are not able to handle the
rise of packet collisions. It suffers however from increased latency due to the schedule nature
of the communications. Nevertheless, scheduled-based protocols may still require a setup-
phase in which data is exchanged in a contention-based manner, before a proper access time
schedule can be created. Other protocols still continue to support both types of traffic after
the setup-phase, giving rise to more flexible traffic management that some literature calls
hybrid protocols [14]. In these protocols, the non-scheduled traffic is exchanged in a
dedicated time frame named contention window. Some authors also classify the protocols as
synchronous or asynchronous [9] depending on the existence or absence of a synchronization

scheme to govern the nodes communications.

2.1.1 Energy efficiency in WSN

As mentioned before, some WSN applications don’t require the nodes to run on
batteries, minimizing the impact of the network’s architecture energy efficiency.
Notwithstanding, this dissertation proposes a solution based on portable nodes, thus, this
parameter is an important requirement that should be studied.

A key component of a WSN node is its transceiver, enabling the transmission and
reception of radio packets. This component is usually responsible for most of the energy
consumption in a typical WSN node as shown in Figure 2.1, accounting for around 40 % of
the overall energy consumption.
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Figure 2.1 — Current consumption in a typical WSN node [15]

To minimize the energy consumption, manufacturers enable less energy demanding
states, usually referenced as idle or sleep.

The main goal in a MAC layer design related with the energy efficiency is to take
advantage of these low power consumption states without compromising the overall
communications performance. Authors call these protocols, which take the approach of
cycling through different power states, duty-cycled protocols [16]. Moreover, the
prominent use of the low power consumption states over the others gave rise to the term
low duty-cycle protocols. However, some issues can still degrade the energy efficiency if not
properly addressed [8]: packet collisions, overhearing, idle listening and overhead.

Packet Collisions

Packet collisions lead to energy waste since the transmitted data becomes corrupted.
Upon that, packet re-transmissions are frequently asked to be performed when collisions are
detected.

This problem is minimized through the usage of either CSMA or TDMA techniques. In
some contexts, when CSMA is opted, control packets may also be required. This is especially
true in multi-hop networks where the hidden terminal problem is well documented [17].

Overhearing

The term owverhearing relates with the reception of packets by nodes that are not
intended to do so. An unwanted packet reception is obviously a waste of energy and avoiding
it might not be a simple solution in a wireless medium. Packets with recipient fields do not
minimize overhearing because nodes are still required to decode that field, thus, required to
receive the packet even if it is not addressed to them.

A solution to minimize this problem is a scheduled based communication scheme in the
sense that nodes should be aware when the traffic of their interest is scheduled to be

exchanged. This enables nodes to keep in lower power consumption states for the rest of the
time.



Idle listening

Idle listening differs from overhearing in the sense that the former one relates with the
transceiver being ready to receive a packet even though it was not necessary, while
overhearing refers to receive a packet not intended to. Although receiving a packet requires
more energy than being able to receive one (being “awake”), idle listening still incurs in

energy waste that can be minimized using scheduled transmissions.

Protocol overhead

Greater protocol headers or trailers incur in longer packets, thus more energy is required
to transmit and receive them. Moreover, some architectures rely in handshake mechanisms
to ensure that transmitted data reaches the recipient. These handshakes require the
exchange of control packets, like the RTS / CTS [18], also increasing the protocol overhead.

In the following section, a survey of MAC protocols targeted to WSN that took different
approaches to deal with some of the aforementioned problems is presented.

2.1.2 WSN protocols survey

A set of representative protocols found in literature, targeted to WSN applications, is
surveyed in this section. They are organized in contention-based, scheduled-based (or
hybrid) categories according to its MAC layer policies. Much more protocols besides the
ones that are presented could be found on literature. The criterion used in the selection of
the protocols being presented relates with the novelty they have introduced regarding the
medium access, which in some cases forms the basis of the MAC layer of other protocols.

Contention-based protocols

= (CSMA-PS — Preamble-based protocol

Most of the wireless contention-based protocols take advantage of a technique called
preamble-sampling to avoid packet collisions. It consists in sending a preamble prior to the
data transmission. By detecting the preamble, neighbor nodes recognize that the medium is
busy, abort their transmissions (if there were any to be performed) and prepare to receive
the packet.

This technique was combined with the old ALOHA protocol [19] by El-Hoyidi giving
rise to the CSMA-Preamble Sampling (CSMA-PS) protocol [20]. Receiver nodes periodically
wake-up from low power states and set their transceivers to sense the medium. If a preamble
is detected they stay in RX mode, otherwise go back to sleep. A drawback of this technique
is that the duration of the preamble must be longer than the wake-up periods to guarantee
that recipient nodes are listening to the preamble. Moreover, this incurs in overhearing
because nodes are required to listen to the end of the preamble even if the data packet is



not addressed to them. Figure 2.2 shows an example of a medium access based on CSMA-

PS with acknowledgement.
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Figure 2.2 - CSMA-PS with acknowledgement [21]

= X-MAC — Short-preambles

The overhearing problem of CSMA-PS is reduced by sending shortened preambles and
using them to address the data packets’ recipients. By doing it, receivers are only required
to decode one of those short preambles, but idle listening still occurs between preamble
receptions. This MAC scheme was introduced by Michael Buettner et al. in the X-MAC
protocol [22], exemplified in Figure 2.3

X-MAC Packet

arrival Receive early Ack :
Short preambles/ :
PR E
Sender _|P] [P] [P] [Ack] SendData] .
. [ Tsave :
Receiver ! | | Ack| Recv Data fe—
'Time
R wakes up Listen for additional data

Figure 2.3 - X-MAC medium access example [21]

Additionally to decreasing the overhearing, X-MAC also minimizes the medium access
delay by enabling the sender node to start the data packet transmission as soon as the
recipient acknowledges one preamble. Moreover, the receiver is asked to stay in RX after
the data packet reception to be able to quickly respond to another sender’s preamble without
delaying this action by its turn-around time (delay caused by switching from RX to TX and

vice-versa).



= BP-MAC — Preamble sensing with additional random backoff

The ability of protocols that only rely in medium sensing to avoid packet collisions is
directly affected by the network’s traffic load and by the transceivers Clear Channel
Assessment (CCA) delay and turn-around time (TT). The CCA delay states how much
time the transceiver takes to detect a busy medium while the TT is the required time to
switch between RX and TX modes. A node will not be able to detect a preamble if its
transmission starts within an interval shorter than CCA and TT [21]. This limitation
increases the probability of packet collisions as the traffic raises.

A. Von Bodisco et al. faced this issue with his proposal Backoff Preamble MAC protocol
(BP-MAC) [23]. Following the example of Figure 2.4, an explanation of the MAC policy is
given.
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Figure 2.4 — BP-MAC medium access example [23]

The BP-MAC protocol divides the medium access period in time slots equal or larger
than the CCA delay or TT (the largest of them). When a node wants to send data, first
listens to the medium for a duration of three slots. If it founds the medium is free, it switches
the transceiver to TX (one additional slot) and proceeds to send a preamble (backoff
preamble) with a duration equal to a random number of time slots. After transmitting the
preamble, the node switches back to RX (one more slot) and listens again to the channel.
The node can only continue to the data packet transmission if the medium is still idle (one
more slot to toggle back to TX), otherwise the medium access procedure shall be restarted.
To conserve some energy, when an ongoing transmission is acknowledged the node may
switch off its transceiver and re-attempt the medium access procedure after a number of
slots greater than one. In the above figure’s example, because all nodes took different
preamble durations and were required to re-sense the medium after their preamble
transmissions, a packet collision was avoided even though they both have sensed a free
medium in first place almost at the same time (a difference shorter than one CCA or TT).

BP-MAC reduces the collision probability in a contention-based architecture, but
collisions still can occur if nodes choose the same preamble duration and start their
transmissions at the same time. Moreover, the backoff preambles incur in protocol overhead.



Scheduled-based (or hybrid) protocols

= S-MAC — contention-based with synchronized duty-cycle

Sensor-MAC (S-MAC) is a hybrid protocol that implements a periodic wake-up
strategy to conserve energy [24] and it still is one of the most cited protocols for WSN. The
transceivers’ duty-cycle is divided in a “listen” and a “sleep” period whose lengths are the
same for every node (Figure 2.5). The former one is also used to transmit packets and is
divided in three sub-frames: SYNC, RTS and CTS.

Wake-up period

Listen Sleep Listen Sleep Listen
— - —>
- T~ time
- ~.
For SYNC For RTS For CTS

Figure 2.5 — Medium access frame division for an S-MAC node (adapted from [8], [25])

S-MAC attempts to synchronize the wake-up periods of neighbor nodes forming a
virtual cluster. For that matter, nodes periodically send synchronization packets in their
own SYNC sub-frames to inform other nodes about their own schedule, that is, when are
they going to sleep and wake-up again.

A node that doesn’t have a schedule yet, listens for a complete synchronization period
in order to receive at least one SYNC packet from one of its neighbors. This period can be
longer than the wake-up period because nodes are not required to send SYNC packets in
every listen phase. If a SYNC packet is received, the node becomes a follower of the
announced schedule, otherwise it randomly picks a schedule for itself, broadcasts it and
becomes a synchronizer. The protocol takes no provisions against nodes who learn more
than one schedule. This can happen when a node is in the border of two clusters. The
existence of border nodes can be, at some point, desirable to enable the broadcasting of
packets from one cluster to another. However, if they are required to follow more than one
schedule their sleeping times will be downsized.

The SYNC packets are exchanged in a contention-based manner with additional
backoff. During the RTS frame, nodes listen for RTS packets (Request to Send) from their
neighbors and respond to them in the CTS frame (Clear to Send) also using a contention-
based scheme. Nodes that have successfully exchanged RTS/CTS packets in the previous
frames, proceed to the data packets exchange during the sleep frame, only falling into their
sleep schedules after the complete data exchange. The data traffic uses a CSMA scheme
with ACK.

Packet collisions, idle listening and overhearing are reduced using NAV (Network



Allocation Vector). Each packet contains a duration field, so when a node receives a packet
that is not addressed to it, it records its duration time in a variable named NAV. Therefore,
it knows for how long the medium continues to be busy and so it can avoid listen to the
medium to perform carrier sense during that time. The major drawback of S-MAC is its
difficulty to adapt to load changes, since the frames have fixed size, plus, the issues related
with multiple clusters are not well defined. The use of RTS, CTS and ACK control packets
incurs in protocol overhead.

= 7Z-MAC — dynamic switching between CSMA and TDMA

The difficulties in adapt S-MAC to varying load conditions are suppressed with the
Zebra-MAC (Z-MAC), an hybrid protocol that tries to take advantage of CSMA under low
contention and TDMA when the traffic load increases [26]. The energy consumption
efficiency is also addressed using a low duty-cycle approach with a sleep and an active period
that need to be synchronized amongst neighbor nodes.

The goal of this protocol is to give nodes, who were assigned a TDMA slot, the ability
to contend for other nodes’ slots. Under favourable conditions (low traffic density), the
latency is expected to be drastically reduced, in contrast to a pure TDMA scheme. On the
other hand, when traffic becomes denser, nodes will not be able to successfully contend for
other nodes’ slots and will use the slot that they were given to. This means that the protocol
can dynamically adapt between a contention-based and a schedule-based scheme according
to the load conditions.

The medium access, following the Z-MAC architecture goes as follows:

1. All nodes are assigned with a TDMA slot that it is granted to be unique under a
two-hop distance (so the same slot can be re-used by nodes who aren’t in the same
radio interference zone). The node who gets the TDMA slot is called the owner
while the others are the nonowners of that slot.

2. The time frame is synchronized, so the first slot of the active period (slot 0) starts
at the same time in every node. Moreover, the mazimum slot number (MS) is known

to everyone.

3. Nodes work under a low contention level mode (LCL) by default, meaning that they
can compete for each other’s slots to transmit their data packets. A node operates
in a high contention level mode (HCL) only when it receives an explicit contention
notification (ECN) from a neighbor. This message informs that nodes must only
use their own slots or contend for slots that are free within their radio interference

zone.

4. Under a LCL operation, when nodes want to transmit data they compete for a slot
using CSMA with backoff. The owner of the current slot has priority over it. This
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is achieved by forcing the nonowners to backoff a random time superior to the slot’s

owner when contending for it.

5. Nodes measure the noise level to seek for high contention levels. When the noise is
higher than a threshold, the HCL mode is triggered and the node sends an ECN
message to its neighbors.

The Z-MAC requires a complex setup phase in which nodes discover their neighbors
and TDMA slots are assigned using DRAND, a distributed algorithm for TDMA scheduling
[27]. When a node joins a network, on the run, DRAND is locally performed on that node
but the outcome may change the maximum slot number and this needs to be propagated
across all the network. Moreover, the reduction of latency by recycling TDMA slots, makes
it difficult to adapt the protocol to applications in which the nodes don’t have a fixed
position through time.

= JEEE 802.15.4 — a standard for WSN

The IEEE 802.15.4 is a communication standard for low data rate wireless personal
area networks (WPAN), provided by the Institute of Electrical and Electronics Engineers
(IEEE) [28]. The protocol was unleashed in 2003 [29] and continues to receive amendments
(30].

The standard covers both the PHY (physical) and MAC layer. It supports a total of 16
channels when operating with a 250-kbps data rate in the 2.4 GHz ISM band (2.4 — 2.485
GHz, with 5 MHz of spacing between carriers). Other configurations are also permitted: 20
kbps with 1 channel (868 — 868.6 MHz) and 40 kbps with 10 channels (905 — 928 MHz).
The channel usage is limited to 1 channel at a time.

Respecting the MAC layer, the protocol uses both contention-based and schedule-based
schemes. It can also be classified as asymmetric in the sense that different types of nodes
are subject to different roles [§].

Two types of nodes are distinguished by the MAC layer: reduced function devices
(RFD) and full function devices (FFD). The former ones are usually more constrained,
either in terms of energy consumption or computational power, and thus are not required
to perform all the tasks that can be assigned to the later ones. While the RFED’s only operate
as devices (namely, simple nodes), FFD’s can play the role of coordinators and PAN
coordinators (Personal Area Network manager). A device can only communicate via a
coordinator. The protocol either supports a star topology (with devices connected to a single
PAN coordinator) or a peer-to-peer topology (with some coordinators forwarding packets as
routers) [31].

The medium access can either be performed in beaconed mode (also referred as slotted
CSMA) or in non-beaconed mode (unslotted CSMA). The decision over which mode the
network should operate is also one of the PAN coordinators task. The two MAC operation
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modes are described next.

802.15.4 in beaconed mode

The coordinator manages its devices channel access based on a super-frame (Figure
2.6). It follows the duty-cycle approach, with active and inactive periods to allow devices
(and the coordinator itself) to turn-on and off their transceivers. These periods are
synchronized with a beacon frame — a periodic coordinator message sent in the beginning of

each super-frame.
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Figure 2.6 — IEEE 802.15.4 super-frame structure [32]

The active period is in turn divided in a total of 16 time slots, being the beacon frame
the first. The remaining slots are grouped in two windows — the contention access period
(CAP) and the contention free period (CFP). In the first group, slots are disputed with
random backoff amongst devices that have data to send, whereas in the last group slots can
be granted (granted time slots - GTS) to devices upon previous request to the coordinator.
The CSMA algorithm executed in CAP, requires the nodes to detect an idle channel during
a certain number of consecutive times (namely, backoff periods) prior to assume that they
have won the contention.

The coordinator must be active during the entire active period. Devices must wake-up
prior to the beacon-frame and only stay active during CAP if they have data to upload to
the coordinator or if the coordinator has addressed them (in the beacon-frame) to prepare
to receive a packet. During CFP only devices that have been assigned a GTS wake-up in
their slot (either to receive or transmit).

802.15.4 in non-beaconed mode (contention-based)

In a non-beaconed mode, there is no super-frame governing the devices communications.
The latency can be downsized at the expense of forcing coordinators to stay active during
all time. On the other hand, since there is no synchronization, devices are free to choose
their own sleep schedules. The medium’s access is provided with a simpler CSMA
mechanism in which a single CCA (clear channel assessment) is performed when the medium
is found idle.
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Researchers have found that the non-beaconed mode has better performance respecting
throughput [33]. Yet, the 802.15.4 standard does not take provisions against the hidden
terminal problem when contention takes place [34], [35].

Some protocols were built on top of the 802.15.4 standard, namely, Zigbee® [36],
WirelessHART [37], 6LoOWPAN [38], [39] and Queue-MAC [14], [40], just to name a few.

2.2 Animal monitoring and tracking systems

This section introduces some techniques found on literature regarding animal
monitoring and tracking systems. We’ll emphasize on livestock monitoring and data uplink

solutions based on SheeplT’s needs.

Tracking Systems

= VHF telemetry

Animal tracking systems have gained interest amongst wildlife researchers since a long
ago [41]. One of the first known technologies to be employed consists in the usage of a VHF
transmitter carried by the animal (usually placed in a collar) and a receiver tuned at the
same transmitter’s frequency with a directional antenna. By rotating the receiver’s antenna
until the strongest signal is found, a human operator can estimate in which direction the
transmitter is, relative to the receiver. The operator can then follow the RF signal towards
the animal carrying the transmitter. This tracking method is not suitable for daily coverage,

so other techniques have started to be used for this purpose.

(2) (b)

Figure 2.7 — An elephant carrying a VHF collar (a) [42] and an operator tracking a signal (b)
[43]
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* Geolocation (satellite based)

Satellite based systems are being employed in animal tracking providing geolocation.
There are mainly two systems currently being used for this purpose:

e Argos System: this is a satellite system developed for wildlife and environmental
research [44]. It provides geolocation as well as a data uplink.

o GPS: the Global Positioning System provides geolocation but an uplink is absent.

Despite the usage of Argos as an animal tracking system, its mention serves only as an
historical and contextual perspective, like we did with the VHF telemetry. Its narrow focus
on the nature research community precludes its usability outside of this field.

The use of GPS to monitor animal locations and their welfare are the most documented
solutions in literature. It is particularly interesting to this dissertation the literature
referencing the employment of tracking systems in livestock monitoring, due to SheeplT’s
project objectives regarding this topic.

Rutter et al. studied the grazing areas of domestic sheep using their own developed
animal behavior and tracking device based on GPS [45]. The sheep-borne system was
compound of a GPS receiver, a microprocessor and some behavior sensors (to determine
when sheep were grazing), being the GPS receiver the component with the highest power
consumption (1.3 W). A large lithium battery pack (30 Ah) was used to power the device,
accounting for an overall weight that exceed 1 kg that was carried on the backs of the
animals (Figure 2.8).
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Figure 2.8 — Rutter et al. GPS based tracking system for domestic sheep [45]
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In the aforementioned study, three GPS power management schedules were tested:

e Schedule 1: GPS continuously powered with a new position fix request every 60

seconds (s);

e Schedule 2: GPS turned on for 150 s and off for 150 s with a new position fix

request every 300 s;

e Schedule 3: GPS turned on for 90 s and off for 90 s with a new position fix request
every 180 s.

Three tracking devices were deployed in different animals, each one with a different

power management schedule. The most relevant results to our interest are shown in Table
2.1.

Power Management Battery life GPS fix success

Schedule (30 Ah) rate
Schedule 1 4 days, 5 h 98 %
Schedule 2 6 days, 18 h 100 %
Schedule 3 7 days, 19h 97.5 %

Table 2.1 — Battery life of Rutter et al. sheep tracking system (adapted from [45])

The authors of this studied concluded that the use of a 50 % duty-cycle did not affect
the ability of the GPS receiver to successfully respond to new position fixes, increasing the
battery life up to more than 60 %. However, the same study enlightens us about the GPS
receivers high power consumption. An optimal duty-cycle for the GPS receiver was not
concluded in this study, but authors stated that because these animals were found to be
lying down during 40 % of the time, the battery life could be increased if GPS receivers
were turned off when no animal activity was found.

The integration of accelerometers in these sort of systems is also prominent in literature,
complementing the GPS receiver [46]. Regarding livestock tracking, e-Pasto [47] is a
platform to monitor the localization and welfare of cattle in mountain pastures that makes
use of GPS receivers with accelerometers. Geolocation measurements are only requested
when the sensors detect a valid animal movement, minimizing the power consumption [48].
This project is targeted to farmers, by proposing itself to be a pasture resource management
tool. The collected geolocation data allows farmers to keep track of the grazing areas and

enables the triggering of alarms when animals cross undesired boundaries. The practical
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implementation of this system resulted in a battery autonomy up to 7 months with GPS
position captures at a fix rate of one per hour. The motion sensor algorithm was only
validated respecting the localization accuracy relative to a continuously powered GPS
receiver of a smartphone. At the present time, no further tests have been documented so
it’s hard to predict the impact of this solution in the battery life of the system due to the
animals’ behavior dependency. The system architecture and a collar device is shown in
Figure 2.9.

* Animal
=2 Geolocation/Health

A Device

Figure 2.9 — The architecture of e-Pasto platform (a) and their developed geolocation device

positioned on an animal’s collar (b) [47]

Still in respect of GPS technology drawbacks, another documented limitation is the loss
of satellites connection [49] which imposes more difficulties in finding the correct balance
between the duty-cycle level and the localization performance.

= Low-cost alternatives

The high energy consumption of satellite based systems gave rise to the research of
alternative localization methods based on a radio link, namely, angle of arrival (AoA) [50],
time difference of arrival (TDOA) [51] and received signal strength indicator (RSSI).

The use of RSSI to estimate the relative localization of a given node became an
interesting research topic due its very low-cost implementation. Once a network based on a
radio link is set-up to gather data from several nodes, the same link can also be used as a
relative localization method since most of the radio transceivers already incorporate the
RSSI parameter. This minimizes the hardware requirements and power consumption since
no additional hardware is needed apart from the nodes’ CPU and radio transceivers to
establish a wireless link.

The background theory behind RSSI localization is that the received power (in dBm)
is inversely proportional to the square of distance between the receiver and the radio signal
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source when in line of sight [52]. This, in theory, enables a fairly good estimation of the
distance between a transmitter and a receiver node. However, experimentation results
emphasize that RSSI is not an accurate method for outdoor localization [52], [53].

Notwithstanding some pessimistic results, RSSI has already been tested in proposal
cattle monitoring systems [49], [54] with self-claimed acceptable results [55]. Therefore, the
inclusion of radio transceivers with RSSI support should be considered if a network based
on radio technology is planned to be deployed, giving support for further investigation in
algorithms to improve the RSSI relative localization.

Data uplink solutions

Not every localization technology provides an uplink on its own. This usually leads to
the inclusion of a dedicated communication data uplink in addition to the geolocation
system. The most documented data uplink solutions being employed for this purpose can

be summarized as follows:
e Satellite communication;

e Cellular networks;

e Low-power wide area networks (LPWAN);

e Wireless Sensor Networks.

Satellite communications are more suitable for remote areas but its cost along with
limited data upload frequency can be a drawback [56].

The usage of cellular networks, through the inclusion of GSM modems in the animal-
borne systems, is found in e-Shepherd project [57], but it presented some communication
problems.

The e-Pasto platform [47] takes advantage of SIGFOX [58], a LPWAN. These networks
provide wide coverage with minimum power consumption on a subscription basis, but the
low data rates (up to 600 bits per second) must be taken into account when opting for them.

Wireless sensor networks can be deployed to collect data from the geolocation equipped
devices. The use of Zigbee protocol for this purpose is common, being examples of its usage
in cattle monitoring the proposal solutions [50] and [56]. The main drawbacks of WSNs for
this purpose are related with the difficutlties and cost to support wide areas coverage.

2.3 Summary

In this chapter, we've introduced the concept of a WSN. Regarding the MAC layer,
different strategies are proposed whose decision over which best fits a project scenario
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usually assumes some trade-off between communication performance and energy efficiency.
These strategies are commonly grouped as contention-based and scheduled-based.

Being one of SheeplT’s project concerns the energy efficiency of the system, we’ve opted
to identify the issues in the MAC layer and protocol stack that lead to energy waste: packet
collisions, overhearing, idle listening and protocol overhead. Contention-based and
scheduled-based MAC policies treat these issues differently, so, to make some sense out of
the concepts, some WSN protocols were surveyed and grouped in these two categories.

Contention-based protocols are best suited for scenarios in which communications
happen at non-predictable instants. They are characterized for having low latency, but
packet collision is reduced at the expense of overhearing and idle listening (preamble-
sampling). When traffic raises, packet collisions become more frequent. Thence, schedule-
based protocols become a valid alternative by eliminating this issue, but they increase the
communications latency. Moreover, they require synchronization between peer nodes which
increases the protocol’s complexity and its overhead (synchronization packets).

Related work about existing technologies for animal tracking systems was also
presented. The most prominent technology employed in outdoor localization is GPS, but its
high power consumption and loss of satellite connection is emphasized in some literature.
As an alternative to satellite geolocation, development of localization algorithms that rely
on radio signal received strength (RSSI) has been documented. Respecting the accuracy for
outdoor localization, the results found in literature are not fully satisfactory, howbeit, due
to its inexpensive implementation, this localization approach is still an interesting research
topic.
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Chapter 3

SYSTEM ARCHITECTURE

This chapter presents the SheeplT architecture. Based on the project’s motivation, the
requirements are firstly introduced while an overview of the proposal system is discussed to
address those requirements. The remaining parts of the chapter will focus on the MAC layer
of the WSN.

3.1 Project scenario constraints and requirements

The project requires a system capable of monitoring the behavior and the localization
of several hundred sheep in an autonomous and energy efficient way.

A portable device will be tied up to the sheep’s neck — collar device. It will include
sensors to monitor the head position and actuators to apply a stimulus to correct its behavior
and position. A human operator should be able to visualize remotely the collected data from
the sensors and the localization of each sheep in a herd. A wireless communication
infrastructure must then be designed to accommodate the communications of each sheep
device in an entire flock. The scalability of the network is important to provide support for
different flock sizes and terrain topologies. A relative localization system based on RSSI
techniques alongside with a set of stimulus encompassed on collars, enables the
implementation of a virtual fence mechanism using the same link provided for data
communications.

The requirements for the SheepIT Project can be summarized as follows [2]:

e Size, weight and autonomy: provided that collars will be carried by sheep, it is
important to make these devices comfortable to wear and with an autonomy up to
4 months [57].

e Posture control: Sheep will be weeding close to grapes, so it is important to address
methods for controlling their behavior, namely, control their head’s position and
correct them via stimulus application to prevent them from feeding on the lower

branches of the vines and from the grapes [7].

e Virtual fence: A virtual fence shall be implemented to enable the confinement of
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sheep to certain areas. It is desirable to localize single animals with a resolution close
to the average error of GPS but with less energy consumption.

e Local processing: The application or absence of stimulus is a decision that should
be take locally, on the collars

3.2 Network overview

The proposed network incorporates a Wireless Sensor Network (WSN) layer, a cloud
computing layer and an application layer.

The WSN layer is composed of mobile and fixed nodes. The mobile nodes (collars) are
carried by the sheep, collect data from sensors about the animal’s posture and upload that
information to the network via a radio link. Besides the sensors, the collars also include
actuators to apply stimulus to correct the sheep behavior. The reported data from each
collar is gathered by the beacons, fixed nodes strategically placed on the field. These, relay
the received packets between them until they are delivered to a gateway, a beacon connected
to a computer based system with internet access, where the WSN layer meets the cloud. By
measuring the RSSI of the communications between the beacons and the collars, the
localization of each collar relative to a certain beacon can be estimated. A more precise
localization of the collars can be managed if the areas covered by individual beacons overlap
and if the location of each beacon is well-known, by providing a GPS device on each one.

Respecting the MAC layer of the prosed WSN protocol, SheeplT takes advantage of
the hybrid approach. Communications are governed by a periodic time frame in which every
node is assigned with a unique TDMA slot for their packet transmissions. A contention
based window is also present in the protocol to allow the exchange of unscheduled traffic to
dynamically support the admission of nodes that are asking to pair with the network.

Summarizing, the SheeplT network is architected in order to converge data from several
collars to a cloud. To allow covering arbitrarily large areas, the information is relayed by
beacons until it reaches a gateway connected to the Internet. The processed information on
the cloud can then be delivered to the user through a web application.
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Figure 3.1 - SheeplT’s proposed network
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3.3 Network nodes

This section focuses on the various types of network nodes and their hardware
requirements to successfully fulfil their purposes regarding only the WSN layer. The
“lifecycles” of these nodes are also briefly explained.

Beacon

The purpose of the beacons is to collect the data sent by the collars and relay it to their
neighbors until it reaches the end point of the WSN layer. Moreover, they are responsible
for the communications’ frame synchronization through periodic synchronization messages.

Covered areas of neighbor beacons should overlap. This will let them maintain a radio
link to properly exchange data and also enables the address of triangulation techniques to
carry out the collars’ localization based on the periodic synchronization messages RSSI.

Regarding the hardware requirements, we highlight that memory usage might be an
issue, because in the worst-case scenario an entire flock data must need to be buffered prior
to be relayed. These devices will be powered by batteries, but since they are not meant be
portable a large pack can be used to fit the power consumption and autonomy needs. A
radio transceiver has to be present.

The lifecycle of a beacon is depicted in Figure 3.2. After being booted-up, the beacon
tries to synchronize the communication frame by listening to the gateway or neighbor
beacons synchronization packets. Once the frame is synchronized, the beacon will wait for
the contention-based window to ask for an admission in the network (pairing stage). After
being admitted in the network, a unique ID is granted to the beacon and its traffic is

Wait for sync
frame

Sync frame detected

scheduled according to it.

Wait for contention
window

Pairing Request / Pair with the network

Send Packets / hi Receive Packets /
(Upload data + Sync. Packets) State-Machine (Collect data + Sync. frame)

Q Q

Figure 3.2 — Beacon’s lifecycle
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After the pairing phase, the infinite state-machine loop starts to be executed. It consists
in listening to the exchanged traffic, upload internal tables and transmit packets. The traffic
listening serves both for data collecting, either from collars or from relayed data by other
beacons, and to synchronize the communications’ frame. Two packet types can be
transmitted by a beacon: a frame synchronization packet and a message to upload the
collected data.

Gateway

Gateways are the final nodes of the WSN layer. These nodes encompass a beacon wired
to a computer based system with Internet access, interconnecting the SheepIT WSN with
the cloud. Collars’ data is dumped to the gateway, after being relayed by beacons. Gateways
also answer to nodes’ pairing requests, by assigning them a unique network ID.

By taking advantage of the bigger processing power of the PC, more complex data
(network management algorithms) processing should be delegated to the gateway, keeping
the rest of the nodes’ firmware as light as possible.

Collar

This is the only mobile node on the network. It is the device that every sheep on the
mob will carry on their neck, monitoring the animal’s posture and location and it is powered
by a rechargeable battery. Due to this, severe device dimension, weight and energy
consumption requirements are imposed.

A
Wait for sync
frame
I

Sync frame detected

Wait for pairing
window

Pairing Request / Pair with the network

Send packets /
Upload its status

State-Machine ) Receive Packets /

Loop Sync. frame
u |
. Connection lost /
Control sheep’s behavior Re-pair

and localization

Figure 3.3 — Collar’s lifecycle
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Besides the hardware for posture control [7], the collar needs to include a transceiver
to enable communication via a wireless link. The same link should enable relative
localization via RSSI techniques, providing that the radio modules support this parameter.

The lifecycle of a collar is depicted in Figure 3.3. Once a collar is booted-up, before it
can be mounted on the sheep’s neck a human-aided registration process takes place, in which
the collar is associated with a sheep.

After the registration, the collar initiates the pairing-request procedure (admission in
the network).

As soon as the device gets registered and paired with the network, the state-machine’s
infinite loop begins execution. It comprises the execution of the posture control and
localization algorithms and the upload of relevant data about the collar / sheep status.
When a collar detects it has lost the connection with every beacon (possibly due to an out
of fence condition) it is suggested that it restarts the pairing algorithm. By listening to the
beacons’ synchronization packets the collar is able to synchronize the communications’
frame allowing it to duty-cycle its activity (enter “sleep” modes) for power consumption
reduction.

3.4 Medium Access Control (MAC)

As described in Section 3.3, SheeplT’s network is composed of distinct equipment that
need to maintain a reliable communication with each other using the same link. This leads
to several problems, namely, collisions, packet losses and inefficient bandwidth usage that
need to be addressed. In this section, the proposed solution to handle the medium access
issues is presented.

We'll begin with the definition of two key concepts — the micro-cycle and the macro-

cycle.

3.4.1 Micro-cycle (nC) and Macro-cycle (MC) definitions

Due to the large number of collars that are expected to be part of a SheeplT network
and because it is desirable to periodically collect data from each one of them, the WSN type
that best fits this purpose is a schedule-based network. Nevertheless, to support the
admission of new collars in a deployed network without the need to repeat a complete set-
up phase, requires the existence of contention based windows to allow new nodes to ask for
admission permissions (using CSMA). Moreover, collar’s traffic and beacon relay traffic will
also be scheduled to be exchanged in different periods. To accommodate different types of
traffic, it is proposed that they are exchanged in a periodic pattern [59].

For each traffic type, a time-frame is devoted. These were given the name of micro-
cycles (nC). A periodic sequence of micro-cycles is called a macro-cycle (MC), which
will also periodically repeat over time. Figure 3.4 illustrates these two concepts.

23



MC n MC (n+1)
(Macro-cycle) (Macro-cycle)

Type A | TypeB | TypeC | TypeD | Type A | TypeB | Type C | Type D
traffic traffic traffic traffic traffic traffic traffic traffic

S time
pcC

(micro-cycle)
Figure 3.4 — Micro-cycle (uC) and Macro-cycle (MC) illustrative example.

Traffic Types A, B, C and D are not meant to represent four different types of traffic. They are only intended to represent

a sequence of four micro-cycles, as an example, (devoted to any kind of traffic type) that is repeated in a periodic manner.

Micro-cycle (pC) internal structure

The micro-cycles are themselves divided in smaller frames, named windows. A total
of three windows make up one nC: Synchronization Window (SW), Turn-around Window
(TAW) and a Variable Traffic-type Window (VI'W).

These smaller frames are arranged always in the same order and the sequence is depicted
in Figure 3.5. Hereby, after the VI'W of one nC comes the SW of the following pC.

Micro-cycle (LC)

Sync. Window | Turn-around Window | Var. Traffic Type Window

(SwW) (TAW) (VTW)
[ v J [N v J [N v J time
Idle
TDMA . TDMA / CSMA
processing

Figure 3.5 — Internal structure of a micro-cycle (nC)

The SW is devoted to the nC frame synchronization. The TAW is reserved for most of
the processing. Lastly, the VI'W’s purpose is to allow the exchange of the last mentioned
different types of traffic. Moreover, we will categorize the 1Cs by the type of traffic that
can be exchanged during their VI'W.

* Synchronization Window (SW)

During the SW, all devices synchronize the pC frame and the type of traffic that should
be exchanged on the VI'W is announced.

Every node is asked to be awake at this stage. The beacons are responsible to send the
synchronization packets (one per beacon) and they are addressed to every node (broadcast).
These packets were given the name of Beacon Synchro (BS). They provide an input to the
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node’s synchronization algorithm and announce what data type should be exchanged during

the VI'W. The BS packets are scheduled by granting a unique time slot to each beacon
(Figure 3.6)

Synchronization Window

TAW

Beacon 1
Beacon 2
Beacon 3
Beacon 4
Beacon 5
Beacon 6
Beacon N

SLOT: s

o
=
w
ol

(N-1)
Figure 3.6 — Synchronization Window split in multiple beacon time slots

The beacon time slots are conceptually contiguous. However, this picture does not represent the needed separation between
packet transmissions.

Besides announcing the VI'W traffic, the packet sender 1D is also announced in the
synchronization packet. By relating the announced beacon ID with the corresponding time
slot, nodes that receive a BS packet can compute the time stamp of that packet. This
enables the receiver node to synchronize with the transmitter. Section 3.4.5 is devoted to
this synchronization algorithm.

* Turn-around Window (TAW)

Different activities will be addressed to beacons and collars during this frame.
Nevertheless, the TAW duration is the same for every node and during the full time it takes
no radio communications happen.

We saw that synchronization packets are sent by beacons during the previous window.
In addition to providing an input to the synchronization algorithm, those messages let
beacons know about the existence of their neighbors. This information needs to be relayed,
so beacons without a direct link can still know each other. Furthermore, any collar data
collected by a beacon also needs to be relayed. The need for packet relay, or at least of some
of their contents, enforces the received messages to be buffered.

It’s during the TAW that buffered packets received during the previous windows can
be processed (Figure 3.7).

The beacon’s TAW operations consist mainly in identifying the next nuC type (based
on a known sequence), updating internal tables (beacons’ and collar’s status) and creating
new packets.

While beacons are doing their tasks, collars read their sensors, perform posture and
localization control algorithms and decode the current nC type based on the buffered BS
packets. If the current nC’s VI'W is dedicated to the collars traffic, then a packet should
be created to upload its current status (sensor values, battery level, etc.).
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The TAW length must be dimensioned for the worst-case scenario, that is, the sequence

of most time-consuming tasks must fit within this frame duration.

uC (n-1) puCn
i A
i
TAW VTW sSw TAW VTW
L ) time
A
@ Received packets
buffered @
Packets processed
one by one

Rx-Buffer flush
Figure 3.7 — Buffering of received packets prior to be processed during the TAW (beacons)

Collars also buffer the received synchronization packets but not VI'W traffic

* Variable Traffic-type Window (VITW)

Along this window, data corresponding to the traffic type announced on the previous
SW is exchanged.

While TDMA is always used in the SW, different MAC policies schemes are used in
the VI'W, depending on the traffic type (scheduled or contention-based). We’ll talk about
this in the next section, as we categorize the micro-cycles by their VI'W’s traffic type.

3.4.2 pC Types

Depending on the data exchanged on the VI'W, pC’s can be classified in three types
(Table 3.1).

Nodes that have already been paired with the network own a unique ID. This enables
the schedule of their communications using a TDMA scheme by transposing their ID to an
exclusive time slot. These TDMA scheduled communications happen in every SW and in
VTWs of type 2 and 3.

For type 2 nC’s, the VI'W is devoted to collar traffic. The packets sent during this
VTW were given the name of Collar-to-Beacon (C2B). As the name suggests, the messages
contain collar data intended to be collected by the nearest beacons. A single time slot is
granted to each paired collar to transmit its C2B packet and they are assigned in ascending
order of collar ID’s (slot 0 for the collar with lowest ID, etc.).

Type 3 pC’s VI'Ws are dedicated to inter-beacon relay messages exchange. These
messages were given the name of Beacon-to-Beacon (B2B). Time slots are assigned using
the beacon ID’s the same way it is perpetrated in the SW.
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For unpaired nodes, it is impossible to predictably schedule their communications
because they haven’t announced themselves to the network yet. To ask for an ID, unpaired
beacons and collars should wait for a type 1 pC VI'W to send their pairing requests in a
contention-based manner. Beacons that listen to pairing requests of their peers or collars,
relay them in B2B packets in the subsequent type 3 1C’s VI'W. The relayed pairing requests
are intended to reach the gateway which is responsible to address them in a form of pairing
replies that are also relayed in B2B packets. A beacon with pairing replies buffered in
memory, transmits them in a contention-based manner during the subsequent type 1 VI'W.
Summing up, a VI'W of a type 1 nC serves as a contention window for both pairing requests
and pairing replies to pending requests.

nC Type Purpose MAC Policy
(VIW) (VI'W)
1 Node Pairing CSMA / TDMA
2 Collar Communication TDMA
3 Inter-beacon Relay TDMA

Table 3.1 - Micro-cycle types

3.4.3 pC sequence design (MC)

As seen in Section 3.4.1, a macro-cycle (MC) is defined as a periodic sequence of micro-
cycles (nC). Now that the three pC types are presented we can discuss the concept in more
detail.

The sequence of pC types that form the MC is not strictly defined by the architecture.
This can be adjusted to suit the specific needs that the vineyard size and terrain topology
imply. As the property size increases, certainly more beacons will be demanded to increase
the covered area, thus, more type 3 nC’s need to exist to enable the data relay.

Some remarks can still be made about the pC sequence when defining one:

1. A type 1 pC needs to exist to enable the pairing of new nodes during runtime.

2. A type 2 nC needs to exist to collect the collars’ data.

3. The minimum number of type 3 n1C’s needed is the number of hops that separate
the gateway from the furthest beacon.
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3.4.3.1 Sequence convergence

The sequence of micro-cycles (nC) that form the periodic macro-cycle (MC) is known
to every beacon, but its progression needs to be synchronized to prevent beacons from
announcing different types for the same nC.

By taking advantage of a centralized scheme for network nodes’ admission, this
sequence can be initiated by the gateway’s beacon and followed by the others. If the MC
has one nC whose type is unique in the entire MC (let’s say there is only one nC of type 1),
then waiting for the announcement of this unique pC would have been enough to synchronize
the entire sequence. However, because the dynamic network node pairing wasn’t tested yet
and different approaches may be considered in future, such as a decentralized scheme, it
might be reasonable to adopt a more robust method of synchronizing the sequence. For that
purpose, the synchronization packets additionally to announce the pC type also announce
the order of the current pC within the MC frame (as shown in Figure 3.8).

BS Packet announing

uC Type: 3 | i |
uC Order: 4 uc
D))) wowe (1123 [a]a1]1]
uC order: O 1 2 3 4 5 0 1 tim'e
Beacon A Beacon B |:| Current uC (announced by A)

Figure 3.8 — Example of a beacon announcing the nC type and its order within the MC frame

3.4.4 Time constraints

This section addresses the MAC layer time constraints, namely, the time slot definitions

and pC’s length.

3.4.4.1 Time slot definition

During earlier experiments, it was concluded that the time a receiver node takes to
process the packet header and buffer the message isn’t negligible. This affects the minimum
required waiting time between successive packet transmissions. We will call this duration
TTrx (time-to-receive). Moreover, the time spent to transmit a packet will also be
considered to define a slot duration — T'Trx (time-to-transmit).

The time slot length needs to comprise both the TTgx and TTrx. These parameters
are dependent on the size of the packets, so different time slot lengths will be defined for
different types of traffic (with different sizes). Hardware specifications, namely the clock
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frequency and tx data rate, also influence these lengths.

Synchronized clocks may continue to drift between the synchronization instants.
Moreover, time uncertainties due to the timers’ resolutions and different data processing
loads, can lead to the shortening of the interval between two packet transmissions to less
than TTgy. If this interval is not respected it is not guaranteed that receiver nodes are ready
to receive when a given packet transmission starts, resulting in packet losses. To deal with
these imprecisions, a guarding window (GW) is added between consecutive slots to allow
the packet transmission instants (t@im.) to swing back and forth without overlapping the
TTrx. Figure 3.9 portrays a set of contiguous time slots separated by one GW. The
computations of TTrx, TTry and GW lengths were carried out in Section 5.1.2 for the
specific SoC data rate and timers’ accuracy /resolution in which the SheeplT protocol was
tested.

| Slot(n-1) [ew>{  Sbtn feows| Shot (n+1)

| GW I TTex ITTixl GW 1 TTrx | TTxi

i i ,
| ! ! time
(n-1) tXime N Xiime (N+1) tXtime

Figure 3.9 — A set of contiguous time slots separated by a guarding window (GW)

3.4.4.2 pC length

To simplify the architecture, it was opted to address each micro-cycle with the same
length. The minimum length that fits each nC type needs to encompass the minimum length
required for each window. Only the VI'W minimum length is dependent on the pC type
because it needs to address different number of slots for a type 2 (one slot per collar on the
network) and for a type 3 (one slot per beacon on the network). It is assumed that the
minimum VTW length that fits both type 2 and 3 TDMA traffic will be enough to serve as
contention window for the CSMA traffic of type 1 nC’s. Using the complete representation
of the pC structure (with schedule-based VIW) portrayed in Figure 3.10, the minimum
length of each communication window will be deduced.
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Figure 3.10 — Example of a complete type 2 / type 3 nC

Respecting the SW length, note that the last SW time slot is followed by a single T7Txx
(plus one GW). That is the time-to-receive of the previous time slot packet. The length of
this window can be computed as in (1), in which BSrp. and BSyr.. are the time-to-receive
and the time-to-transmit of a Beacon Synchro packet, respectively, and Npe is the total
number of beacons. GW is the length of one guarding window.

SWiengtn = Npeac X(BSt1hy + BStrpy + GW) + (BS7rpy + GW) 1)

The VTW length for type 2 nC’s is computed as in (2), in which N, is the total number
of collars and the CZ2Brr and C2Brr times are the Collar-to-Beacon packets’ time-to-

recefve and time-to-transmit.
VTWngth = NeorX(C2Brrpy + C2Brpy, + GW) — GW )
For type 3 uC’s, the VIW length is computed as in (3), in which Ng.. is the total

number of beacons and the B2Byr. and B2Br, times are the Beacon-to-Beacon traffic

packets’ time-to-receive and time-to-transmit.
VTWngth = Npeac X(B2Brrgy + B2Brry, + GW) — GW 3)
Therefore, the length of a type 2 and a type 3 pC can be computed as in (4) and (5),

respectively, in which TA Wi, is the length of the turn-around window.

”Clzength = SWlength + TAVVlength + VTWl%ngth (4)
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uCl:),ength = SWlength + TAVVlength + VTWlsf;ngth (5)

The minimum pC length that fits both types is the maximum of the two previous

computed lengths:

quin length = max(p-clzength' uClaength) (6)

3.4.5 Synchronization algorithm and drift compensation

The synchronization procedure takes place inside the SW in which two events are
synchronized: the synchronization packets transmission instants (BStz..) and the TAW
start of execution (T'A Wi.).

To simplify the following expressions, BSy, will stand for one Beacon Synchro packet

slot, encompassing both TTrxy and TTrx.

BSSIOC = BSTTRX + BSTTTX (7)

Using this notation, the expected spanned time between “k” BS time slots from the
beginning of the SW and separated by one GW is therefore

At = k X(BSgp; + GW) (8)

expecty sy siots
If BS slots are attributed to beacons by ascending order of beacon ID’s, the last
expression can be generalized as

At gxpect (bID;, bID;) = (bID; — bID;)X(BSg10¢ + GW), 9)
bID; € NN [1, MAX_BEACONS],
bID; € NN [1,i[

where bID; and bID; represent two beacon ID’s whose slots are separated by a time
duration of Afeyeq(bID;, bID;).

Finally, the drift between BS slots is defined as the difference between the elapsed time

and the expected time.
Atgrir(bID;, bID;) = Ateiapsea (bID;, bID;) — Atoxpect (bID;, bID;) (10)

The previous notations will be used to explain how beacons synchronize their BS
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transmission instants (BStwin.) and the TAW’s start of execution (TA Wim.). Collars only
synchronize the TA Wine.

Synchronization of BS transmission instants (BStxiime)

A beacon synchronizes its BStzun.. with the received BS packets from previous time
slots. The beacon that is synchronizing computes its BStzn. as a function of its ID (thisID)
and the sender’s ID announced in the received packet (rzID), as in (11).

BStXiime (thisID,rxID) (12)
= (thisID — rxID)X(BSrrg, + GW) + (thisID — rxID — 1) XBSyr,,

It’s easier to make some sense out of equation (11) using an example. Let’s say that
beacon 3 has just received a packet from beacon 1. Prior to do any buffering, beacon 3
computes its BStxy,. by substituting thisID by 3 and rzID by 1 in expression (11). The
result is:

BStXtime(3,1) = 2 BSyr,, +2 GW + 1BSrr,,

We can see that this makes sense if in Figure 3.9 (page 29) we let the slot (n-1) be the
beacon’s 1 slot and the slot (n+1) be the beacon’s 3 slot. It’s clear that the separation
between the end of 1’s transmission and the start of 3’s transmission (t%im.) is the last
computed value.

Synchronization of the TAW’s start of execution instant (TAW ime)

Nodes synchronize this event as a function of rzID (the synchronization packet sender’s
ID). It consists in subtracting the elapsed time since the beginning of the SW to the length
of the SW (SVVlngl}z)-

TAW,ime (rxID) = SVVlength — [rxID X(§Wso¢ + GW) ] (12)

Clock drift compensation

Nodes compute the spanned time between two transmissions by doing a time stamp
when a new packet is received (prior to do any buffering). This value is compared with the
expected time between the two events and the drift is computed as in (10).

The drift is then added to the two computed synchronized instants (11) and (12) as
the expressions (13) and (14) show. The BStzim. needs to be truncated to a minimum value
equal to the BS packet time-to-receive (TTrx), so the minimum separation between two
packet transmission instants is always enough to receive and buffer both packets.
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BStXtime (thisID,rxID) = BStX;ime (thisID,rxID) + Atgyife (23)

BStXtime (thisID, rxID) € [BSyrp,, [

TAW;ime (rXID) = TAWyime (rxID) + Atgpis, (14)

The next time a synchronization packet is received, the expected elapsed time takes in
consideration the previous computed drift, meaning that the result of (9) is updated to (15).
Atexpect(b[DivbIDj) = Atexpect(bIDi'b[Dj) + Atdrift (15)

previous

Figure 3.11 portrays an example in which the beacon of slot (n-1) has advanced its
BStxime by ¥ GW. Beacon of slot n computes the drift after receiving beacon’s (n-1) packet
and adds this value to its BStxun. also computed after receiving the packet. The result is an
extra delay in its BStzum,. equal to the drift of beacon (n-1). The beacon of the following
slot, (n+1), has also computed this drift and so it is expecting (At.ye) that n™ packet is
delayed by % G (to compensate the previous drift), so the next drift should be 0 if this is

what happens.
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Figure 3.11 — Representation of a compensated clock drift

The beacon of slot (n-1) has advanced its BStxume in % GW. The beacon of slot n senses this drift by computing the
clapsed time between the last two transmissions and comparing it with the expected time. The difference is added to the
waiting time for its BStxume, thus, compensating the drift. The slot sequence a) is the optimal synchronized slot sequence
while b) is the direct representation of the sequence of packet transmissions viewed as consecutive time slots. Note that

due to the clock drift compensation, slot n should start at its predetermined time, not affected by the drift of its predecessor.
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If the opposed had happen (a delay of (n-1)" packet transmission by % GW), the
compensation algorithm would have shortened the time separation between (n-1) and n™
packet transmissions to 2 GW.

3.5 Energy efficiency awareness

The SheeplT protocol addresses the energy efficiency of collars with the classical duty-
cycle approach.

A collar is only required to enter the transceiver’s RX state during synchronization
windows (SW). The node’s microcontroller stays active in the turn-around window (TAW)
and it will only keep in this mode after TAW’s ending if a stimulus is applied. If a stimulus
wasn’t applied and the nC’s VI'W is not devoted to collar’s traffic, a collar can sleep during
the entire time the VI'W takes, only waking-up in the next SW. On the other hand, for
VTW's that are addressed to collar communications, it’s the schedule-based architecture of
this window that still enables nodes to use energy wisely. With a unique slot assigned to
each node, a collar can still be able to enter low power consumption states while it is waiting
for their transmission slot and during the remaining time for the next SW. Figure 3.12
depicts the collar’s duty-cycle during a type 2 pC whether Figure 3.13 depicts it for non-
type 2 nC’s.

th
n" pcC (n+1)" pC
......................... pe2)
!
I
VTW : sw
b L o e ,
Wait in a Waitin a
TAW LOW POWER state LOW POWER state | BaCK1ORX
time

Turn-around Window |:| Collar packet transmission

Figure 3.12 - Collar’s duty-cycle (type 2 nC)
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Figure 3.13 - Collar’s duty-cycle (non-type 2 nC). Legend in Figure 3.12

The duty-cycle for type 2 pC’s can be computed as follows:

SWlength + TAWlength + CZBTTTX (16)
uClength

D Ctype 2=

For non-type 2 pC’s, the DC is given by:

SWlength + TAWlength (17)

p-Clength

DCnon—type 2=

The overall duty-cycle is dependent on the number of type 2 pC’s’ within the MC. It
can be computed as in (18) in which NuC? is the number of type 2 pC’s within a MC and
NpC is the number of nC’ that form one MC.

NucC? (NuC — Nuc?) (18)
DC = NuC XDCtypeZ +N—LlC XDCnon—typeZ

Note that stimulus application was not considered in DC computation. This is
dependent on the animal’s behavior, but since it is expected to be sporadically we find these
equations still meaningful.

3.6 Protocol Messages

The presentation of the system’s architecture, regarding the WSN layer, is completed
with the definition of its protocol messages. The seven protocol messages have already been
revealed in previous sections, nevertheless we find important to discuss some of their
contents in more detail.

Beacon Synchro (BS)

These are the synchronization packets. They serve the purposes of frame
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synchronization, routing exchange and provide support for the collar’s RSSI based

localization.

Beacon Synchro Packet (BS)

Field Size (Bytes)
Beacon ID (sender) 1
Sequence Number (BS-SN)
Property ID
Route to Gateway (next hop Beacon ID)

e S N T

nC type | nC_order

Table 3.2 — Beacon Synchro (BS) packet

The use of 1 Byte ID’s should be more than enough to univocally identify each beacon
in a deployed SheeplIT network. The inclusion of an incremental sequence number allows
the receiving node to detect packet losses by keeping track of the received packet sequence.
A property ID is meant to identify the property (a vineyard for instance) that the packet
sender belongs to. This helps to filter packets of neighbor properties’ nodes, by rejecting
them if they happen to be received. The use of 2 Bytes for this field should be enough to
uniquely identify a reasonable number of client properties. The route to gateway field is
reserved for the announcement of the beacon’s next hop ID towards the gateway. No routing
mechanisms have been discussed yet, but the inclusion of this field is meant to endow this
protocol version with relevant features for future work solutions. The last byte is divided in
a nC_type (4 bits) and nC_order (4 bits) field. The former one is reserved for the current
nC type (1, 2 or 3) announcement. The last is intended to announce the order of the current

pC within the macro-cycle frame.

Collar-to-Beacon (C2B)

These are the packets that collars send to report their status. A 2 Byte ID number
identifies the collar and consequently the sheep. The currently reported status are the
number of steps that the sheep has taken (1 Byte), the number of times it has been out of
the virtual fence (1 Byte), the battery status (1 Byte), the ID of the property who owns the
collar, an array with RSSI values carried out for each last received BS packet (1 Byte per
RSSI value), an accelerometer sensor read value (1 Byte) and a sequence number (1 Byte).
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Collar-to-Beacon Packet (C2B)

Field Size (Bytes)
Sender ID (Collar) 2
# of steps 1
Number of fence infracts 1
Number of posture infracts 1
Battery status 1
Property 1D 2
Received RSSI Array MAX BEACONS x 1
Accelerometer value 3
Sequence Number 1

Table 3.3 — Collar-to-Beacon (C2B) packet

Collar Pairing Request (CPREQ)

After the human aided operation of associating a collar with a sheep, a collar sends a
CPREQ to the network in order to ask for an ID. A 4 Byte serial number identifies the
requester collar. A 2 Byte ID tag identifies the sheep that is carrying the collar. A CPREQ
may also be sent by previously paired collars when they have been out of beacons’ coverage
for too long, since the network may have “recycled” the ID and assigned it to another collar.

Collar Pairing Request Packet

(CPREQ)
Field | Size (Bytes)
Collar Serial Number ‘ 4
Sheep ID tag ‘ 2

Table 3.4 — Collar Pairing Request (CPREQ) packet

Collar Pairing Reply (CPREP)

A CRREP is a response to a CPREQ. It is generated by the gateway and encapsulated
inside an inter-beacon relay packet. A collar serial number field (4 Bytes) identifies the
collar whose last CPREQ is answered by this CPREP. A 2 Byte ID field announces the
assigned ID to that collar. The property ID (2 Byte) is also retrieved by the property’s
gateway.
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Collar Pairing Reply Packet

(CPREP)
Field Size (Bytes)
Collar Serial Number 4

Collar ID (assigned)
Property ID (assigned)

Table 3.5 — Collar Pairing Reply (CPREP) packet

Beacon Pairing Request (BPREQ)

This is the beacon counterpart of a collar pairing request. In this message, only the
beacon transceiver serial number (4 Byte) is sent as a mean to identify the beacon.

Beacon Pairing Request
(BPREQ)

Field Size (Bytes)

Beacon Serial Number ‘ 4

Table 3.6 — Beacon Pairing Request (BPREQ) packet

Beacon Pairing Reply (BPREP)

This is the reply to a BPREQ generated by the gateway. These messages are also
encapsulated inside an inter-beacon relay packet, as the CPREP messages. It contains the
beacon serial number (4 Byte) whose BPREQ is addressed by this reply. The assigned
beacon ID is announced (1 Byte) as well as the property ID (2 Byte).
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Beacon Pairing Reply Packet
(BPREP)

Field Size (Bytes)

Beacon Serial Number 4
Beacon ID (assigned)

Property ID (assigned) 2

Table 3.7 — Beacon Pairing Reply (BPREP) packet

Beacon to Beacon (B2B)

These are the inter-relay beacon messages. They are compound of an header of fixed
size plus a trailer with relayed data (variable size). The header identifies the packet sender
(1 Byte), the property ID of the beacon (2 Bytes), an incremental sequence number (1
Byte), the battery level of the beacon (1 Byte), its GPS coordinates (8 Bytes) and an array
with its neighbor ID’s. Additionally, the number of relayed data is announced. After the
header, relayed data is sent always in the same order: collar notifications (special data
structure to encapsulate collars’ status), CPREQ packets, CPREP packets, BPREQ packets
and BPREP packets.

A collar notification is a data structure formed by one C2B packet appended to the
beacon ID that has received the C2B packet.

Collar Notification

Structure
Field Size (Bytes)
Listener Beacon 1D 1

Collar-to-Beacon (C2B packet) | sizeof (C2B)

Table 3.8 — Collar Notification (relayed collar data structure)
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Beacon to Beacon Packet (B2B)

Field

Relayed Beacon Pair. Requests
Relayed Beacon Pair. Replies

Size (Bytes)

Sender ID (Beacon) 1
— | Property ID 2

Qm: § Sequence Number 1

Sq S | Battery 1

E % GPS Coordinates 8
Neighbor ID’s MAX BEACONS x 1
N_CNOT 1
N_CPREQ | N_CPREP 1
N_BPREQ | N BPREP 1
Relayed Collar Notifications N_CNOT x sizeof (Collar Notification)
Relayed Collar Pair. Requests N_CPREQ x sizeof (CPREQ)
Relayed Collar Pair. Replies N_CPREP x sizeof (CPREP

( )
N_BPREQ x sizeof (BPREQ)
N BPREP x sizeof (BPREP)

Table 3.9 — Beacon-to-Beacon (B2B) packet

3.7 Summary

SheeplT’s WSN layer aims to collect sensor and localization data from each collar
carried by sheep and sink it to a gateway using a common radio link. To expand the covered
area, beacons are distributed throughout the field keeping a wireless link between them and
their closest neighbors. Collars periodically broadcast their sensor and localization data
which is listened by the nearest beacons. The collected data is relayed between beacons
whose radio link coverage overlaps, which ultimately will end up in the beacon’s gateway.

The MAC layer is designed to accommodate the collars’ data gathering from collars’
traffic and the retransmission of this data through the beacons’ relay traffic. An architecture
based on TDMA is proposed with a periodicity for each data type of traffic to be exchanged.
Moreover, CSMA is also supported to enable nodes to dynamically join the network through
a process of pairing requests and pairing replies, which are exchanged in a contention-based
manner.

The different types of traffic are scheduled according to a periodic pattern. A time-
frame devoted to a certain type of traffic is called a micro-cycle (nC) and the periodic
sequence of nC’s was given the name of macro-cycle (MC). The architecture defines three
types of 1C’s based on the traffic exchange that they are devoted to: type 1 for pairing
requests and replies, type 2 for collars’ traffic and type 3 for beacons’ relay packets.

A pC frame is in turn divided in three windows. The first one is called the
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synchronization window (SW) and serves the purpose of frame synchronization between all
network nodes through the exchange of beacon synchronization packets. The second window
is the turn-around window (TAW) in which no communications happen, packet processing
and creation is performed and sensor reading plus control algorithms’ execution takes place
in collars. The last window is the variable traffic type window (VIW) and is devoted to the
exchange of pairing requests/replies, collars’ traffic or beacons’ relay traffic according to the
1nC’s type.

When a packet is received, a few consistency checks are made to accept that packet,
such as decoding the message type (BS, B2B or C2B) and sender ID. The packet gets
buffered, so other fields can be analyzed in more detail later. The initial consistency checks
required to accept a packet and its buffering may take non-negligible amounts of time.
Because this procedure is repeated for every packet that is received, TDMA time slots were
defined in order to accommodate both the packet transmission and these consistency checks
and buffering times. The former is called the time-to-transmit (77rx) and the later the
time-to-receive (TTgx). A time slot is composed of both a TTry and a TTyx. To deal with
clock drift and other imprecisions, a guarding window (GW) separates consecutive time
slots, which can be thought as an extra time added up to TThkx.
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Chapter 4

SYSTEM IMPLEMENTATION

This chapter presents the implemented system architecture. It focusses on the nodes’
state-machines and how the synchronous communications were addressed. Due to the size
and complexity of the overall system’s architecture, the issues that could be addressed in
the scope of this dissertation are firstly disclosed.

4.1 Prove of concept requirements

The SheeplT architecture is a collaborative work whose field tests are dependent on a
reliable system of communications. Fort that reason and due to the limited effort that could
be devoted to a project on the scope of a MSc dissertation, only the more critical
functionalities that enable data gathering from field tests have been implemented.

Protocol Messages

The implemented protocol is able to process the following messages with some

restrictions:

e Beacon Synchro (BS): These messages were implemented with the Route to
Gateway parameter being a dummy value, since no routing scheme was addressed.

e Collar-to-Beacon (C2B): These were fully implemented with real collar’s data.
¢ Beacon-to-Beacon (B2B): These messages are currently relaying only collar data.

The message header fields Beacon ID, Sequence Number and N_CNOT are the only

ones with meaningful values.

Pairing phase

Nodes are statically assigned with an ID, so the registration and pairing processes were
not addressed.
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Listening phase

Because the implemented prototype does not address the centralized scheme of network
nodes admission, type 1 pC’s were not implemented. Moreover, every beacon is free to start
the sequence of micro-cycles by sending its BS packets once it boots-up. However, to avoid
a desynchronized progression of 11C types, once a beacon boots up it first experiences a
listening phase in order to sense if there’s already a neighbor beacon sending synchronization
packets. If BS packets are received within this listening time, the beacon stores the
announced pC order and follows the nC sequence from there. If no BS packets are received,
the beacon assumes it is the first to have booted up and sends a BS packet announcing the
first pC of the macro-cycle frame.

Nevertheless, two beacons may start to send BS packets prior to acknowledge the
existence of each other. This potentially leads to a desynchronized macro-cycle frame if they
keep their progression once they acknowledge the presence of its peer. To prevent this from
happening, when a beacon receives BS packets announcing different 1C orders or when its
current nC order status is different from the announced by their peers, a beacon opts to
follow the nC order announced by the beacon with the lowest ID (it could be the beacon
itself).

Synchronization

Every node performs the synchronization algorithm as it is stated in the system’s
architecture chapter (Section 3.4.5).

4.2 SoC main peripherals

The chosen radio transceiver was the Texas Instruments CC1110 [60]. This SoC
comprehends an 8051 CPU with a radio module operating on the 433 MHz ISM band.

The key features that were considered to pick this transceiver were:

- low power consumption in active modes (RX and TX)';

- the ability to operate under a low power consumption mode (sleep)?;

- RSSI support;

- the microcontroller unit, with a large number of general purpose 1/O pins available
as well as useful peripherals like USART, 12S interface and ADC (important features

for the collar’s posture control hardware design [7]).

On the following subsections, the modules of the CC1110 that were used to implement

! Maximum ratings (clock speed at 26 MHz, 433 MHz, 250 kBaud, 10 dBm output) [60]:
RX - 20.5 mA; TX — 33.5 mA
2 Three low power consumption modes, ranging from 4.3 mA to 0.3 pA of current consumption [60]
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the SheepIT’s protocol on beacons, collars and gateways are presented.

Radio Module

It either works as a digital radio receiver and a transmitter operating on the 433 MHz
band. Moreover, the RSSI support is also used to estimate a relative localization.
The use of variable size packets forces the inclusion of a length field in the packet.

Figure 4.1 depicts the packet format.

&———Optional data whitening——— >
ptionally FEC enceded/decoded Legend:

& Optional CRC-16 calculation——> Il Inserted automatically in TX,
d and removed in RX.

Optional user-provided fields processed in TX,

Preamble bits processed but not removed in RX.

(1010...1010) Data field

CRC-16

l:‘ Unprocessed user data (apart from FEC
and/or whitening)

Sync word
Length field
co | Address field

@

&8 x n bits——>€ 16/32 bits %

X

8 x n bits 16 bits —>

=4
@
=4
@

Figure 4.1 — Packet format on the TT CC1110 [60]

=  Packet transmission

A buffered packet is transferred byte-by-byte to the RF Data 1-Byte Register (RFD).

= Packet reception

Every time a new payload byte is received, 1 Byte is transferred from the RFD register

to a buffer in memory.

= Radio Errors

If a new byte arrives to the RFD register before the previous one was read, the radio
will enter the RX-OVERFLOW state.

On the other hand, if the number of bytes transferred to the RFD register is less than
what the radio expects, it will enter th TX-UNDERFLOW state.

Timers

Table 4.1 shows the list of available timers on the SoC CC1110.

On collars, timers T3 and T4 are reserved for other purposes related with the sensors
and actuators, and for this reason their usage for protocol implementation is limited.

Timer T2 is an 8-bit timer associated with a counter. It is aimed to count multiple
integers of a time slot once its execution starts.

TSLEEP is a timer that can interrupt a low power consumption state, thus, waking-up
the SoC [60]. While the SoC is in a sleep state, TSLEEP uses a Low Power RC Oscillator,
less accurate than the default HS Crystal Oscillator.
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Available Timers

Beacons Collars
T1 (16-bit Timer) v v

T2 (MAC Timer, 8-bit) v v
T3, T4 (8-bit Timers) v v /%
v v

TSLEEP (sleep Timer)

Table 4.1 — List of available timers in the CC1110 SoC, regarding the protocol implementation

DMA controller

DMA will be used to handle data transfers from memory to the RF Data Register and

vice-versa, triggering an interrupt every time a transfer is complete.

4.3 Beacon’s firmware

In the following sections, the beacon’s state machine is introduced. An overview lies in
Section 4.3.1. Since the state transitions are closely related with the synchronization aspects
of the network, to help a better understanding of the state machine itself, the
synchronization procedure is presented in section 4.3.2. A deeper view of each state may be

found in section 4.3.3.

4.3.1 State-machine

The state machine (SM) is illustrated in Figure 4.2.

X
TIMEOUT

¢ — TAW
TIMEOUT TIME
BOOT
up
PACKET

RXTIME TRANSMITTED

Figure 4.2 — Beacon’s state-machine
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The SM is based on three main states: RX (receiving) when the beacon wants to listen
to the network; TX (transmitting) when it wants to send data; IDLE for data processing
when communications are not expected to happen. The term “idle” is, in this context,
related with the transceiver’s status (switched off / idled) at this state. The CPU continues
to be in full operational mode.

When the beacon turns on, the initial state (Boot-Up) is entered. At this state, radio
module, peripherals and I/O ports are configured. A static ID is programmatically assigned
to the node. Constant values related with state transitioning events are also computed.
These permit the beacon to operate autonomously when no other beacon is nearby to
synchronize with. A BS packet is created to announce the first nC, for the case the beacon
senses no other node awake.

After booting up, the beacon assumes it may be in the presence of other beacons and
so it enters RX state to listen to the network (Listening Phase). It sets the listening phase
timeout and waits for BS packets. If no BS packets are received during this time, TX-
TIMEOUT is triggered (Listening Phase time expired) and the BS created in the initial
state is sent after switching to TX. However, if a BS packet is received, the beacon
acknowledges the presence of a neighbor. This aborts the transmission of the initial BS
packet and the TAW,,. is synchronized with the received packet sender to trigger the
TAW-TIMEOUT. The reasoning behind this procedure is that nodes only create new
packets (updated with the current network status) on the subsequent TAW (see Figure 3.7
to recap the buffering actions).

When in IDLE State due to the triggering of a TAW-TIMEOUT, the TAW’s
operations are executed. At the end of the TAW’s execution, the beacon switches back to
RX or to TX if it possesses the first B2B slot and the nC is of type 3.

After a packet transmission, the beacon returns always to the IDLE State to evaluate
when the next timeout (TAW-TIMEOUT or TX-TIMEOUT) should be triggered and sets
the timers accordingly before switching to RX. This “pause” in the IDLE State, in between
the transition from TX back to RX, should not affect the performance of the beacon in
terms of packet reception because it occurs while the other nodes are still receiving and
buffering the last sent packet and so no communications should happen.

The synchronization procedure will be clarified in the next section.

4.3.2 Synchronization procedure

Before explaining how the synchronization was implemented, there are some
considerations about the timers’ usage that Table 4.2 clarifies.

Since timer T1 is the only 16-bit timer available, it was chosen to be used as a “master”
timer because it allows to count time in the order of a pC duration with a sufficient amount
of resolution®. It will be used to synchronize the events of T'A Wiy, and BS-txm. (Beacon

Synchro transmission time).

3 T1’s resolution = 0.079 ms
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Timer T4 will be used to implement the proposed clock drift compensation algorithm
(Section 3.4.5), working alongside with T1 during the synchronization window. For the sake
of simplicity, it’s assumed in the following timing diagrams that T1’s synchronization implies
drift compensation using T4 to perform the time stamps (as in Figure 3.11), even though it
is not explicit in the figures.

Timers’ usage in synchronization

and state transitioning events

TlT TMAC T4

TAW TIMEOUT (TAWine) o - -
TX TIMEOUT
- BS'tXtime b - -

- B2B_txrim<‘ - C -

Timestamp / Drift Comp.

Table 4.2 — Timers’ usage in synchronization and state transitioning events (Beacons)

An example of how the synchronization works in a type 3 nC is depicted in Figure 4.3.
When a BS packet coming from a beacon whose time slot precedes the receiver’s slot, T1 is
used to synchronize the BS-tz., overriding whatever is the current T1’s final counter value
(at t; in Figure 4.3).

After sending a BS, T1 is set with its default TA Wi, value relative to its own BS time
slot (equation (14), substituting rzID by the beacon’s ID) and waits for in RX State (t»). If
another BS packet is then received, the beacon will use T1 to synchronize the T'A Wi, and
overrides the current T1’s final counter value (at t;in Figure 4.3).

When the TAW’s execution is finished (at tsin Figure 4.3), TMAC is set to count the
number of B2B slots that precede the beacon’s slot, generating a TX-TIMEOUT (B2B-
tTiime) when done.

The remaining time from the B2B packet transmission to the next TX-TIMEOUT (BS-
tTime) is again configured as a T1 timeout (t;) and the beacon will wait for it in RX State.

From the TAW’s ending (ts) to the instant a new BS packet is received (ts) no
synchronization happens.
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Figure 4.3 — Beacon’s synchronization procedure during a type 3 nC.

The procedure during a non-type 3 11C is slightly easier because during the VI'W beacon
stays all the time in the RX state. An example is shown in Figure 4.4.

th
n" uC th
n+1 C
(non-type 3) ( ) H
ST S S T S "_ 44444444444444444
!!Sync Tl SyncT1l !!Sync Tl SyncT1l
l— — l— —>
N
TAW % ()
:"\\ »
= ! ! g
RN SN N time
T1 set T1 set (..)
(TAW TIMEOUT) (TX TIMEOUT)
[TAWime] [BS-tXgime]

Figure 4.4 - Beacon’s synchronization procedure during a non-type 3 nC. Legend in Figure 4.3.

After the TAW’s ending, T1 is set with the next BS-tzim.. The procedure during the
first window is the same as for a type 3 nC.
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4.3.3 Beacon’s states — Flowcharts

In this section, we’ll take a look into each individual state. We’ll start with the RX
State where we’ll meet the process of receiving / accepting a packet. About the TX State
we’ll justify the importance of having more than one tx-buffer. Finally, in the last subsection,
the most complex state (IDLE) is presented where we’ll pay special attention to the TAW’s

operations.

4.3.3.1 RX and TX States

RX State

The RX State workflow is typified in Figure 4.6 (a), page 51. The RX buffer needs to
be cleared first. The radio will wait for a packet before moving to the next stage where the
message type is decoded. Based on that, a Get Packet function is called, or the packet is
simply ignored if the message type is unknown. These Get Packet functions do a series of
consistency check (packet size, CRC, ID’s, etc.). Moreover, the Get Packet — BS includes
the synchronization algorithm.

While the radio is waiting for a packet to be received, an RX-OVERFLOW error
may occur. This error is due to the use of variable size packets which force the radio module
to interpret the first data field byte as a packet length field. In the presence of noise, this
byte may be misinterpreted causing the DMA controller to stop transferring bytes before
the noisy packet is fully “received”, leading to an overflow if more noisy bytes are sensed
later.

The RX State’s loop can only be broken by a timer interrupt. Once it does, the
respective timer ISR function is executed and the next state is called from there.

* T1’s Synchronization (executed inside Get Packet-BS)

A code snippet of T1’s synchronization is presented in Figure 4.5.

/* Sync BS */
( (rxID < thisID) && bs_updated) {

tx_time = timeTo_My_BS_Slot(rxID, thislD); // remaining time to my slot
nextSMstate_after_T1Timeout (STATE_TX); // Go to TX after T1’s ISR
T1_count( tx_time ); // Update T1’s counter

}

/% Sync TAW %/
{
taw_time = timeTo_TAW (rxID, thisID, MAX_BEACONS); // remaining time to TAW
nextSMstate_after_T 1Timeout (STATE_IDLE); // Go to IDLE after T1's ISR
T1_count( taw_time ); // Update T1’s counter

Figure 4.5 — Code snippet for T1’s synchronization (Beacons)
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The variable rzID refers to the ID field of the received BS packet (the sender’s ID)
while thisID is the receiver beacon’s ID. The flag bs updated only gets to be true inside the
first TAW whose start of execution was synchronized with another beacon. This prevents
the beacon from sending a BS packet created prior to the reception of the first Beacon
Synchro (as explained in the introductory Section 4.3.1). The constant MAX BEACONS
refers to the maximum number of beacons allowed in the network, which will affect the
SWiengn (equation (1)) and consequently the amount of time needed to wait for T'A Wine.
The drift compensations are implied in the timeTo() functions.

TX State

A packet stored in a tx-buffer is sent via the radio link while in TX State, Figure 4.6

(b).
Beacon’s RX State Beacon’s TX State

4 ’ )

( prev_state = STATE_RX )

h 4

Clear RX Buffer

Packet Received [

[prev_state = STATE_TXJ

RX Overflow

No Packet
Received

( Decode Message Type )
]

A 4

Reset T1/ TMAC
Status Flag

A 4

radio_TX
(selected_TX_buff)

YES

YES
Get Packet Get Packet Get Packet
BS c2B B2B

e —

\ J

Packet
Transmitted
N

T1 TMAC A
Interrupts Interrupts
IDLE

(a) (b)

Figure 4.6 — Beacon’s RX (a) and TX (b) State flowcharts

Because beacons may need to send two packets (BS and B2B) in the two subsequent
windows after their creation in the TAW, two tx-buffers are needed to temporarily store
them before they can be transmitted. The selection of the buffer to be used as the DMA
controller’s data source (selected TX buff) to feed the RFD Register is done in the IDLE
State (Section 4.3.3.2).
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4.3.3.2 IDLE State

When the IDLE State (Figure 4.7) is preceded by the RX State, a TAW-TIMEOUT
was triggered to initiate the TAW’s operations.

Beacon’s IDLE State

O~

prev_state == STATE_RX prev_state == STATE_TX

Turn-around Window (TAW)

(Buffered Packet Processingj
v

Update Tables
Update next uC status
Is the last

created BS pkt.
in-paired with a \Create BS packet

(Check last sent message type)

neighbor ?
Drift Set T1 timeout
bs_updated = [ Compensation (B S-tXtime)
(# received BS pkts. since Boot-Up) l l
Set T1 timeout Select BS tx-buffer
(TAW!ime) (bS_tX_bUff)

! !

[Tl‘s ISR toggles to:J T1's ISR toggles to

y

Select B2B tx-buffer Select BS tx-buffer
(b2b_tx_buff) (bs_tx_buff)

IDLE State TX State

Set TMAC timeout T1's ISR toggles to:
(B2B-tXtime) TX State

TMAC’s ISR

toggles to:
TX State Wait for TMAC in RX...

L g g g g g g g - 4

Figure 4.7 — Beacon’s IDLE State flowchart

The TAW starts with the processing of the last buffered packets followed by the update
of the beacon’s internal tables and the update of the next nC type based on the current
known order. A BS packet is then created. If at least one Beacon Synchro was received since
Boot-Up, it means that the BS packet created during this TAW was conceived after
acknowledging the current network status (pC order decision was already made after

listening to the neighbors’ announcements). Hence, permission is granted to synchronize the
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BS transmission time during the next SW (bs__updated gets to be true).

If the current nC is of type 3, a B2B packet is created, consisting in the filling of this
message header and the attachment of the collar’s notifications table to be relayed. The
buffer in which this packet is stored is selected to be the DMA’s data source. The beacon
that owns the first VI'W slot only needs to wait for TAW’s ending to switch to TX. If a
different slot was assigned, TMAC is configured with the beacon’s B2B-txy. prior to switch
to RX State to receive the B2B packets of preceding slots. If the current pC is of another
type, the buffer holding the last created BS packet is selected instead. Timer T1 is configured
with the next beacon’s BS-tx,. and the node waits for it in RX State.

If IDLE State was preceded by TX, the last transmitted packet type is checked. If it
was a BS, the upcoming TAW-TIMEOUT ( T'A Wi.) is prepared. A time stamp is also done
and clock drifts are evaluated and compensated before updating T1 (equation (14),
substituting rz/D by the ID of this beacon as if it has received a packet from itself). If the
last transmitted packet was a B2B, then the next timeout will be a BS-txy... Hence, T1 is
configured with the BS-tz.. relative to the beacon’s B2B slot, and the tx-buffer holding the
BS packet created in the previous TAW is chosen to be the DMA’s data source.

4.4 Collar’s firmware

Following the same presentation strategy of Section 4.3 - Beacon’s firmware, we’ll start
with a brief description of the collar’s state-machine (Section 4.4.1). Because of its
complexity, the state’s transitions are better explained with some timing diagrams examples
shown in Section 4.4.2. Lastly, it will be the moment to dive into each individual state and
reveal their innards in Section 4.4.3.

4.4.1 State-machine

The collar’s state-machine is depicted in Figure 4.8. It is composed of seven major states
plus the initial state (Boot-Up). Most of the action will take place on the three middle states
of Figure 4.8. They will serve the same purposes of their beacons’ counterpart: RX for
listening to the network, TX to send data and IDLE to do some processing when no
communications are happening.

The initial hardware and peripheral configurations are done in the Boot-Up state. A
unique ID is also statically assigned to each collar.

The remaining four states are a result of some hardware constraints and the necessity
of lowering the power consumption without compromising the other two biggest concerns:
keep the synchronization stable and being able to monitor / react to the sheep’s behavior.
We'll introduce them as some pitfalls will naturally arise when describing the state-machine
from a simplistic perspective directly inferred from the system’s architecture.

After Boot-Up, the collar switches to RX State. It will be stuck in this state as long as
no BS packets are received. Once it happens, the TA Wi, is synchronized and when the
TAW-TIMEOUT is triggered the collar swaps to the IDLE State to begin the execution
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of the TAW’s operations.

N

WAIT WHILE ACTUATORS
BOOT ARE (STILL) BEING APPLIED
UP
STOP-ACTIVE TX TIMEOUT
TIMEOUT
PACKET
l TAWTIMEOUT TRANSMITTED
\ \ WAIT

RXTIMEOUT [NO ACTUATORS] T

TX TIMEOUT

WAIT (WHEN POSSIBLI
[NO ACTUATORS]

WAKE-UP RX TIMEOUT
TIMEOUT
(RX TIMEOUT)

Figure 4.8 — Collar’s state-machine

—>

In an optimistic approach, the sheep’s behavior would always be perfectly fine and no
actuators would be needed to apply. Thus, after the TAW’s ending, only two options could
be considered: wait for the C2B time slot to send its data (during a type 2 puC) or wait for
the next SW (during a non-type 2 nC). These situations were already addressed in the
energy efficiency awareness section of Chapter 3 (Figure 3.12 and Figure 3.13).

The Texas Instruments’ CC1110 offers a low power consumption mode that can be
programmed to switch back to the fully operational mode after a certain amount of time.
At a first glance, this seems the perfect choice to set up our collar when dealing with those
low power waiting times. Yet, the first pitfall appears. This C1110’s low power consumption
mode requires the waking timer to use the Low Power RC Oscillator* whose accuracy isn’t
suitable with our TDMA scheme’. However, this SoC offers a second power consumption
mode whose waking timer can be any of the system’s timers clocked by the preferable High-

4 The CC1110 SoC also permits the usage of a second crystal oscillator for this purpose, but its start-
up time is around 400 ms [60], thus it was not considered as an option to clock the waking timer
(Sleep Timer).

> CC1110’s datasheet states an accuracy of + 1% [60]. Experimentation tests revealed a maximum
drift of around 65 ms for sleeping periods of around 6 seconds.
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Speed Oscillator®. Even though it is not as good as the first option in terms of power
consumption, this “semi” low power mode can be set up to reduce the energy consumption
while waiting for the C2B time slot without jeopardizing its timing accuracy. Figure 4.9
depicts the collar’s duty-cycle in type 2 nC’s with the introduction of the semi low power

consumption mode.

th
n" pC (n+1)" uC
........................... pe2y
!
I
VTW : sw
PP 4. PP S TR ST !
i |
Wait in a semi Waitin a
WAL LOW POWER state LOW POWER state | B2k 10 RX
time

Tum-around Window |:| Collar packet transmission

Figure 4.9 — Remake of Figure 3.12 with the introduction of the “semi” Low Power mode

Meanwhile, the “true” Low Power (LP) mode can still be used while waiting for the
next SW because we can compensate the low accuracy of the waking timer by shortening
the sleeping time, ensuring that the collar will switch back to the RX State a little before
the SW starts.

Table 4.3 compares the power consumption of CC1110’s power modes that SheeplT’s

protocol makes use of.

Power Consumption modes
addressed by SheeplT

Consumption
Active power mode (with low CPU activity) 5.0 mA
Low Power (LP) mode (as PM2 in datasheet) 0.5 pA
“Semi” LP mode (as PMO in datashect) 4.3 mA

Table 4.3 — Power consumption modes [60]

A reduction of at least 14 % of energy consumption is achievable with the introduction

6 The High-Speed Crystal Oscillator has an accuracy of + 40 ppm [60].
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of the “semi” LP without compromising the TDMA schedule.

As the reader is probably be guessing by now, these two power-saving sates are the
SLEEP (“true” LP mode) and SNOOZE (“semi” LP mode), depicted in the state-machine
of Figure 4.8 (page 54). Because the SLEEP State uses a different clock source than the rest
of the states, we need to re-configure the default High-Speed Oscillator just as soon as the
waking timer is triggered. This is done under the WAKING-UP State that automatically
transits to RX after restoring the clock source.

Another hardware limitation can restrict even more the usage of the SLEEP State. The
waking timer has a minimum timeout value (11.72 ms) [60] that unfortunately is in the
order of a few C2B time slots. This means that the collars who own a time slot near the
edge between the VI'W and SW windows will not have enough time to SLEEP after their
time slots. In situations like these, a collar will never enter the SLEEP State during a type
2 nC and the waiting time between their slot and the beginning of the next SW will also be
elapsed in SNOOZE. Hence, besides preceding the transition to TX, the SNOOZE State can
also toggle to RX to address this exceptional case.

In a more realistic approach the state-machine must be prepared to deal with the
application of actuators that will preclude or limit the usage of the power saving modes.
The actuators application decision is made right after the sensors reading (during TAW)
and they can last beyond the TAW’s ending. Because it might be reasonable to have full
control of the actuators while they are being applied, the collar is prevented from entering
a low power mode until the actuators application is finished. Therefore, the ACTIVE State
was implemented. It simply halts the program’s execution after TAW’s ending in an infinite
loop for a desired time duration with the SoC running in active power mode. Withal, the
loop can be broken earlier if a TX TIMEOUT occurs in the meantime. When it happens,
after the packet transmission, the IDLE State returns the execution back to ACTIVE so
the collar keeps fully awake during the remaining time for the STOP-ACTIVE
TIMEOUT. After this timeout, the collar can rest in SLEEP / SNOOZE depending on
how much time it remains for the next SW.

If some state transitions still look confusing, we hope to clarify them in the following
section with some more detailed timing diagrams as the synchronization procedure is also

disclosed.

4.4.2 State transitions

This section focuses on the state transition events and the implementation of the
synchronization algorithm.
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4.4.2.1 Synchronization procedure

The chosen timers to execute the state transitions are laid in Table 4.4. As in the
beacon’s firmware implementation, T1 was also used as a “master” timer due to its 16-bit
operation mode. It is used to synchronize the TA Wiy, to program the transitions from
SNOOZE to RX (when the waiting time is not enough to SLEEP) and from ACTIVE to
IDLE. TMAC is used to count multiples of time slots, in this case C2B slots, and trigger an
interrupt for TX TIMEOUT (C2B-t%im.). TSLEEP (timer T2) is the only timer able to
wake-up the system from the LP consumption mode and thus it is only used for that
purpose. Despite the potential usage of T4 for other purposes related with the posture
control algorithm (as mentioned in Table 4.1, page 46), during the SW no other task besides
the synchronization should be executed and so T4 is available to perform the required time
stamps to apply the drift compensation algorithm.

Timers’ usage in synchronization

and state transitioning events

Tl TMAC TSLEEP T4

TAW TIMEOUT (TAW,..) | ® . ; _

TX TIMEOUT: C2B-txXtime - ¢ = -
RX TIMEOUT
- Wake-Up = - o -
- After Snooze ¢ - - _
Stop Active C - - -

Timestamp / Drift Comp. - - -

Table 4.4 — Timer’s usage in synchronization and state transitioning events (Collars)

By examining the state machine, we can see that both TAW TIMEOUT and STOP-
ACTIVE TIMEOUT redirect the program’s execution to the IDLE State and they use the
same timer to trigger the transition. To keep things clear, a variable is used (T1__used__as)
to identify the T1’s timer purpose while in the IDLE State to make a decision according to
it. This variable should be set to one of the values laid down in Table 4.5.
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T1 usage discrimination
(when switching to IDLE)

T1’s timeout purpose T1_used_ as
(tag)

TAW TIMEOUT TAW_TIMEOUT

STOP-ACTIVE STOP_ACTIVE

Table 4.5 — Definition of T1_used_ as possible values when switching to IDLE state

Now that the timers' usage is introduced, we’ll look to the synchronization procedure

and the related state transitions in the following section.

4.4.2.2 State transition examples — timing diagrams

To avoid a tedious section describing every transition for every example, only some of
them will be analyzed. The rest may already be intuitive enough, after the introductory
state-machine description. The following examples use a color scheme to identify the collar’s
state through time. The state’s colors scheme can be found in Figure 4.10.

IDLE ACTIVE
. SLEEP WAKING-UP
. X RX
SNOOZE

Figure 4.10 — Collar’s states color scheme
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Type 2 micro-cycles

= Example 1: Collar sleeps after the C2B slot
th
n" uC th
(type 2) (n+1)" pC
O U e
I:
b il tls jt7 T
| I
TAW el TAW
| | L »
| ! | g
: N . time
» dle—p! 3l
TMAC set TSLEEP set T1 Synced
(C2B-tXime) (Wake-Up) (TAWiime)
TAW Tum-around Window A BS packet is received and
N T1 gets Synced
|:| c2B K . A new timer timeout is set to
packet transmission [ a default value

Figure 4.11 — Example 1: Collar sleeps after the C2B slot (type 2 nC)

At t; the packet is finished being sent and IDLE State is entered where TSLEEP is
configured. At t; the collar awakes and switches to RX at t¢. Note that the collar awakes A
units of time” earlier than the SW starts (t7) to accommodate clock drifts due to TSLEEP’s
accuracy and low resolution®.

= Example 2: Not enough time to sleep — Collar snoozes

The figure’s example is in the next page. This time, after returning to IDLE (t;) the
collar goes to SNOOZE (t4). The waking time (t;) can be much more close to the SW
beginning time (ts) because T1’s accuracy is much higher”.

"A=2XMAX_OBSERVEDyg pgp arife © 4 =130 ms
(MAX _OBSERVEDTsLErp aripe also addresses the execution time of the WAKING-UP State)

® As it was configured, TSLEEP has a resolution of » 0.92 ms (a lot worse than T1’s resolution »
0.079 ms)

9 T1 will only be used for this purpose when the sleeping time is below 11.72 ms (minimum TSLEEP
timeout value). With an accuracy of + 40 ppm, the maximum drift for a rounded snooze time of 12
ms will be 0.00048 ms. Nevertheless, T1’s resolution is less than that: 0.079 ms.

Therefore, a conservative value for A was used when waking from Snooze: A = 1 ms
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nth HC

th
(type 2) (n+1)" uC
e mimim i
I:
t1 b t3ty ts i!te t7
| -
B!
TAW ! 'I TAW
K | >
| I | g
: A : time
N SN SN
TMAC set T1 set T1 Synced
(C2B-tXiime) (After Snooze) (TAWime)

Figure 4.12 - Example 2: Not enough time to sleep — Collar snoozes (type 2 pC)

= Example 3:

nth U.C

Actuators applied before the C2B slot

th
+
(type 2) (n+1)7uC
S RS e
I
t Lz U Gl trtg |I to tio
| | 1
TAW i reok TAW
! R >
i | P! | .
[ I LA : time
— e
TMAC set | TSLEEP set T1 Synced
(C2B-tXime) ! (Wake-Up) (TAWiime)
I
i
N

T1 set
(Stop Active)

Figure 4.13 — Example 3: Actuators applied before the C2B slot (type 2 nC)

Because the actuators have started to be applied inside the TAW, after its ending the
CPU continues in active mode as it switches to the ACTIVE State. Before this transition,
at ti, timer T1 is configured with the duration of the actuators application while TMAC is
configured with the TX TIMEOUT as usual. Since the actuators cease to be applied at t»
there’s a transition to IDLE. As there were no signs of a TMAC interrupt, the IDLE State
sends the execution to SNOOZE (t3) so the collar can enter the “semi” LP mode as it waits

for TMAC’s ISR to switch to TX (t4).
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= Example 4: Actuators application ceases while in TX

th
n-uc th
n+1 C
(type 2) (n+1)7 W
P P
I
ty tots tals oty s b
| | 1
TAW i vl TAW
i g 5
I I I I g
N pie Ly > e
TMAC set | TSLEEP set T1 Synced
(C2B-tXime) ! (Wake-Up) (TAWiime)
|
i
S
T1 set

(Stop Active)

Figure 4.14 — Example 4: Stimulus application ceases while in TX (type 2 nC)

T1 is set to switch to IDLE at t3; to stop the actuators application. However, at this
time, the collar is in the middle of a packet transmission. To avoid a packet transmission
abortion T1’s interrupts must be disabled inside the TX State, so it can not break this
state’s normal functioning. Consequently, the IDLE State must check T1’s timeout-flag each
time the program’s execution comes from TX. By doing it at ts, it knows the actuators
application should already be ceased and so the SLEEP state can now be called (t).

= Example 5: TX interrupts the ACTIVE state
th
n"uc th
(type 2) (n+1)" pC
L mpm s
|
tl t2 t3L1 15 :tG t7 tg |tg tlg
STATES .
! I
TAW : N TAW
. | I R
| ! R | g
: i Soa . time
— i >le—>! »!
TMAC set | TSLEEP set T1 Synced
(C2B-tXiime) i (Wake-Up) (TAWime)
N
T1 set
(Stop Active)

Figure 4.15 — Example 5: TX interrupts the ACTIVE state (type 2 nC)
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At ts, (Figure 4.15) the IDLE State knows T1’s timeout-flag is still reset, meaning that
not enough time has elapsed to cease the actuators application. So, ACTIVE State is called
as the CPU continues to be in full active mode until the timeout to cease the actuators
application is triggered (at ts).

= Example 6: Collar owns the first C2B slot
th
n"ucC th
(type 2) (n+1)"uc
s S SO PP PR
!i
4ot tyts toty i'ts to
STATES | ] | |
i I
TAW ! ok TAW
| P | g
: N . time
;I »le—»! —>|
T1 set TSLEEP set T1 Synced
(Stop Active) (Wake-Up) (TAWiime)

Figure 4.16 — Example 6: Collar owns the first C2B slot (type 2 nC)

After the TAW’s execution, the IDLE State switches directly to TX.

In this example the collar has started to apply an actuator during the TAW and so,
before the transition to TX, T1 is configured with the STOP ACTIVE TIMEOUT value.

After the packet transmission (t»), the IDLE State knows that the collar should not
SLEEP because STOP ACTIVE TIMEOUT wasn’t triggered yet, and so it toggles to
ACTIVE State to keep the CPU in full active mode.

If no actuators were applied, at t, the collar would have switched to SLEEP state
instead.
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Non-type 2 micro-cycles

= Example 7: Collar sleeps after TAW’s ending
th
n uC th
(non type 2) (n+1)"pC
L L mm— i
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t t; :ts i:t4 t:5
Ty
TAW o TAW
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P! | g
NS : time
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TSLEEP set T1 Synced
(Wake-Up)) (TAWiime)

Figure 4.17 — Example 7: Collar sleeps after TAW’s ending (non- type 2 nC)

Example 8: Collar sleeps after the actuators application

(non type 2)

STATES
i I
TAW ! B TAW
I ! I I >
| P! | g
. SN - . time
3l ple—p L3l
T1 set TSLEEP set T1 Synced
(Stop Active) (Wake-Up) (TAWiime)

Figure 4.18 — Example 8: Collar sleeps after the stimulus application
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4.4.3 Collar’s states — Flowcharts

Because the Boot-Up, RX and TX states share a lot with their beacon’s counterparts,
we will skip most of its analysis, referencing the beacon’s chapter anytime it’s applicable.
The SNOOZE, SLEEP and ACTIVE states are primarily time-consuming states, so their
description is also brief. The WAKING-UP State barely does anything more besides just re-
establishing the clock source, which, again, saves us some reading time. Thereupon, this
chapter will be dedicated for the most part to the analysis of the IDLE State and in
particular to the TAW’s operations.

4.4.3.1 RX and TX states

RX State

Figure 4.20 (a) displays the flowchart of RX State. As opposed to the beacon’s
counterpart, the collar’s version of this state only accepts BS packets. Another difference is
that once it enters the state there is no timeout pre-configured to switch to another state.
It must receive a Beacon Synchro to unlock the loop.

= T1’s Synchronization (executed inside Get Packet-BS)

The collars’ synchronization algorithm only synchronizes the beginning of the TAW’s
operations (TA Wimn.). A code snippet can be found in Figure 4.19.

The variable rzlD refers to the announced beacon ID in the received BS packet whereas
thisID is the collar’s ID. The constant MAX BEACONS is the total number of beacons
that can be deployed which affects the SW size (equation (1)).

The drift compensation is implicitly present in the timeTo_ TAW/() function where T4
is used to perform the time stamps to compute the spanned times between BS transmissions.

// mmm e e

/% Sync TAW */

taw_time = timeTo_TAW (rxID, thisID, MAX_BEACONS); // remaining time to TAW

nextSMstate_after_T 1Timeout (STATE_IDLE ); // Go to IDLE after T1’s ISR

T1_used_as = TAW_TIMEOUT; // Timeout purpose when in IDLE
// next time [TABLE 4.5]

T1_count( taw_time ); // Update T1’s counter

Figure 4.19 — Code snippet for T1’s synchronization (Collar)
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TX State

Since collars can only send one message per 1C, one single tx-buffer is enough to hold
the packet ready to be transmitted.

In Figure 4.20 (b), we highlight the T1’s interrupts disablement as we don’t want the
packet transmission to be interrupted by a possible STOP ACTIVE TIMEOUT (example
4, Figure 4.14 of page 61).

Collar’s RX State Collar’s TX State
? \ 4 )
( prev_state = STATE_RX ) T

( prev_state = STATE_TX J

-

A 4

Clear RX Buffer

A

( Disable T1's Interrupts J

RX Overflow

No Pal_cket radio RX
Received —
-
v Packet Received
[Decode Message Type] Packet transmitted

( Re-enable T1's Interrupts J

Get Packet BS

T1 Synced
‘ ‘ IDLE

T1 Interupts
T1's ISR

(a) (b)
Figure 4.20 — Collar’s RX State (a) and TX State (b) flowchart

4.4.3.2 SNOOZE, SLEEP, WAKING-UP and ACTIVE States

Snooze State

When snoozing, Figure 4.21 (a) of next page, the collar enters the CC1110’s Power
Mode 0 (as stated in its datasheet [60]). Even though the CPU is actually “frozen”, we can
view this power mode state as an infinite loop broken by one of the timers’ interrupts: T1
(RX TIMEOUT) or TMAC (TX TIMEOUT).

65



Sleep State

SLEEP State, Figure 4.21 (b), starts with the set-up of the Low Power RC Oscillator
(shuts off the default High Speed Osc.). Prior to configure the TSLEEP timer, other
interrupts are disabled, as recommended by SoC’s datasheet. The timeout configuration
uses a global variable (wait_time) to state the sleep-time duration. Once the CPU enters
the Power Mode 2 (datasheet nomenclature), TSLEEP timer is activated. This state halts
the CPU and it can be viewed as an infinite loop that can only be broken by a TSLEEP
interrupt. Once it does, TLEEP’s ISR will call the WAKING-UP State.

Collar’s SNOOZE State Collar’s SLEEP State

r ) 4 N

’ ?

(prev_state = STATE_SLEEP)
(prev_stare = STATE_SNOOZE)

Enable Low Power
Enter RC Oscillator
Power Mode 0

Configure TSLEEP
timeout (wait_time)
Enter
Power Mode 2

)

Enable TSLEEP’s
Interrupts
Wait for a timer
Interrupt

While

Interrupts

[ Disable every other ]
(

Wait for
TSLEEP Interrupt

O

T1/TMAC keeps only TSLEEP Interrupts) f
running While
TSLEEP TSLEEP
\ ) \ Interrupts running
T1 TMAC
Interrupts Interrupts

v
Tl's TMAC’s TSLEEP’s ISR
ISR ISR

(a) (b)

Figure 4.21 - Collar’s SNOOZE State (a) and SLEEP State (b)

Waking-Up State

The WAKING-UP State, Figure 4.22 (a) of next page, restores the default High Speed
Oscillator. The interrupts disabled during the SLEEP State can now be re-enabled. The
Frequency Synthesizer (FS) also needs to be calibrated. At the end, RX State is called by
default.

Active State

This state, Figure 4.22 (b), consists in an infinite loop with the CPU running in active

mode. Some actuators control code can be put inside this loop to monitor its functioning.
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Two timers can interrupt the loop: T1 (to stop the execution of this state and return to
IDLE) and TMAC (to switch to TX).

Collars’ WAKING-UP State Collars’ ACTIVE State

4 N 4 N\
Disable TSLEEP’s ?
Interrupts
prev_state =
STATE_ACTIVE
prev_state = Restore other While
STATE_WAKING_UP Interrupts T1/TMAC
¢ Y running

¢ Wait for a timer ¥
[ Restore High ] [ Calibrate ] Interrupt

Speed Oscillator Frequency Synth.

TMAC
Interrupts

\ _J

Figure 4.22 - Collars’” WAKING-UP State (a) and ACTIVE State (b)

4.4.3.3 IDLE State

The IDLE State flowchart is portrayed in Figure 4.23, in the next page. It starts to
verify the event that has triggered its execution: coming from TX State (after a C2B packet
transmission) or a T1 timeout.

If it was called by T1’s ISR (an interrupt occurred while executing other state),
T1 used_as value is checked to determine which of the two possible transitions has
occurred (Table 4.5, page 58).

If a TAW-TIMEOUT is acknowledged, the TAW is executed. It begins with a set of
procedures that are independent of the nC type. A flag announcing the transmission of a
C2B packet is reset (c2bsent) to keep track of a possible transition to the TX State in the
subsequent window. The received BS packets are processed in order to determine the current
pC type. After that, sensor reading takes place and the control algorithms are performed
which include the posture control [7] and virtual fencing. These algorithms may, or not,
initiate an actuator application. When it happens, stimulus is set to 1, otherwise it is 0. If
a stimulus has started to be applied, T1 is configured with a timeout value as being the
maximum time the collar should remain in the ACTIVE State after TAW’s ending.

When the current pnC is of type 2, a C2B packet is created to announce the collar’s
status. If the collar does not possess the first VIW slot, TMAC is configured with the C2B-
txume timeout, otherwise the collar can switch directly to TX State after TAW’s ending.
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Figure 4.23 — Collar’s IDLE State flowchart
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Either when the pnC is not of type 2 either when it is and the collar has to wait for its
slot after TAW’s ending, the stimulus application is again verified because the next state
transition is depending on it. If a stimulus has started to be applied, the collar will switch
to ACTIVE State at the end of the TAW. If no stimulus were applied and the collar has to
wait for its C2B slot, it will do it in SNOOZE State. If no stimulus were applied and the
1C is not of type 2, the subsequent VI'W frame will be elapsed in a low power mode as the
collar waits for the next Synchronization Window ( Wait for next SW block). Ideally, the
collar waits in the SLEEP State, unless the waiting time (wait_time) is less than what
TSLEEP timer allows (11.72 ms), which is unlikely to happen when the waiting time is the
complete VI'W frame.

If the IDLE State has started its execution due to a STOP ACTIVE TIMEOUT, the
code block associated with this action is executed. The flag signaling the application of an
actuator (stimulus) is reset. For non-type 2 pC’s, the Wait for next SW block (depicted
inside the TAW) is executed in order to determine which low power mode the collar can
enter to wait for the beginning of the next SW (wait_time). On the other hand, if the nC
is of type 2 and the actuators ceased to be applied prior to the C2B packet transmission,
the collar is forced to switch to SNOOZE State as it waits for TMAC to trigger a TX
TIMEOUT. Notwithstanding, if the packet was already transmitted the collar may switch
to SLEEP State if the wait_time for the next SW allows it to do.

When IDLE State is called after a packet transmission, c2bsent flag is raised. If an
actuator was being applied when TMAC interrupted the ACTIVE State (stimulus is still
set), the collar is forced to switch back to ACTIVE State. Otherwise, it will wait for the
next SW (wait_time) in a low power state ( Wait for next SW block determines which state).

One single transition is left. When T1 has interrupted the previous state and
T1 used_as variable was not assigned with one of the two expected constants (Table 4.5
of page 58), the collar goes to RX State as an attempt of trying to re-establish its state-

machine normal functioning.

Virtual Fence Algorithm

A simple Virtual Fence Algorithm was implemented during this dissertation project,
being executed inside the “Control Algorithms” block of the TAW. It consists in computing
the maximum of all RSSI values retrieved for the received BS packets of the previous Sync
Window and comparing it with a threshold (RSSI THRESHOLD). This threshold is the
RSSI value of the maximum distance a collar is allowed to be away from the closest beacon
and it was experimentally measured. This Virtual Fence Algorithm is portrayed in Figure
4.24 and it serves only as prototype for more advanced RSSI based location algorithms that
should be addressed as future work.
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/K HHABBAHABRAHHRAH VIRTUAL FENCE ALGORITHM HHEHHHBHHHHAHFRRR */

rssi_aray = getLastComputedRSSI(); // RSSI values are all negative - (dBm)
maxRSSI = findMaximum (rssi_array ) ; // Compute the maximum (the least negative element)

/% The collar is too far away from the closest beacon (OUT OF FENCE DETECTION) */
( maxRSSI < RSSI_THRESHOLD ) {
vflnfractCounter++; // Number of Virtual Fence infracts. in a single row

// >> Activate an actuator (buzzer, electric stimulus) with a predefined timeout <<

}

/% The collar is inside the fence */
{
vflinfractCounter = O;

Figure 4.24 - Simple virtual fence algorithm (pseudocode)

4.5 Summary

The implemented prototype for SheeplT’s WSN addresses the synchronous
communications between nodes during pC’s of type 2 and 3, as presented in Chapter 3.
Dynamic node registration and pairing were not addressed in this implementation, so the
inclusion of type 1 nC’s is left as future work.

Real collar data can be gathered from collar devices and relayed by beacons. For that
matter, two state-machines were designed: a beacon and a collar.

Beacons can process BS, B2B and C2B packets. The state-machine is based on three
states that are directly related with the transceiver mode: RX (receiving), TX (transmitting)
and IDLE. While in RX, received packets get buffered and synchronization algorithm is
applied, in case a BS packet is received. The TAW’s operations are executed in IDLE State,
which includes the received packet processing and packet creation. The beacon switches to
TX when it’s time to send a packet.

Collars only decode BS packets and create C2B packets using the last read values from
their sensors. The state-machine includes the same states present in the beacon’s
counterpart plus two power saving states (SLEEP and SNOOZE), an ACTIVE State for
stimulus application monitoring and a WAKING-UP State. The collar enters in SLEEP
when it is not required to perform any other actions besides just waiting. Exceptions to this
happen while waiting for its time slot to send a C2B packet and when the waiting time is
not sufficient to enter SLEEP (minimum amount of time is required). In both exceptions
SNOOZE is entered instead. In the former case, SLEEP is not suitable because this state
requires the usage of a different oscillator whose accuracy is too low to feed a timer to trigger
a packet transmission instant. The WAKING-UP State restores the default oscillator, an
operation required after SLEEP State. The ACTIVE State halts the collar’s CPU in a full
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active power state and it is executed when a stimulus is being applied. Additional code can
be added to this state in order to monitor the stimulus application. In respect to the other
three states, the main difference between them and their beacons’ counterpart lies in the
TAW executed in IDLE State. In the collar’s version, sensors are read and posture control
and localization algorithms are executed, which include the triggering of a stimulus when

needed.
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Chapter 5

EXPERIMENTAL RESULTS AND VERIFICATIONS

The performance of the implemented system was evaluated through a series of
experiments that test the key elements of this architecture.

Section 5.1 is dedicated to the measurement of the slot lengths as well as the packet
processing time. Some data relaying experiments were carried out as a method of validating
the implementation of the B2B packets. These experiments are detailed in Section 5.2. The
performance of the synchronization algorithm is evaluated in Section 5.3. In Section 5.4, the
experimental result for the packet loss rate is mentioned. Finally, the RSSI values as a
function of distance between two nodes can be seen in Section 5.5.

Unless stated otherwise, the results presented in this chapter were obtained with the
radio module parameters configured as shown in Table 5.1 and with the timers configured
with a resolution and accuracy as mentioned in Table 5.2.

Radio Parameters Configuration

Parameter Configured value

TX Power (Pou) 10 (dBm)

# Preamble Bytes / Min detected threshold 4 / 2 (Bytes)

# SYNC Word Bytes / Min detected threshold 4 / 2 (Bytes)
Data Rate 250 (kBaud)
Base frequency 433 (MHz)
Modulation GFSK
Frequency Deviation (GFSK) 127 (kHz)

RX Filter BW 541.7 (kHz)

Table 5.1 — Configured radio parameters
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Timers’ accuracy and resolution

‘ Accuracy Resolution
T1,T4 | 40ppm  0.0788 (ms)
| 40ppm  0.0006 (ms)

TSLEEP +1% 0.0289 (ms)

Table 5.2 — Timer’s resolution and accuracy

5.1 Time measurements

In this section, the TAW’s length based on packet processing times was estimated. The
slot durations and guarding window size were computed in order to accommodate the
schedule based traffic.

5.1.1 TAW’s length based on packet processing time

An estimation of the time it takes to process the buffered packets was carried out. A
tryout for each packet type was taken with different buffered packet loads. Because the
processing time of B2B packets is dependent on the number of collars’ data relayed, only

its header processing time was measured. The results are shown in Figure 5.1.

A linearization for the BS, C2B and B2B-header processing times, in ms units, is
respectively given by the equations (19), (20) and (21), in which Ngspr, Neospr and Npzpp
are the number of BS, C2B and B2B packets required to be processed.

pTimeps (Npspre) = 0.1438 XNpgpp, + 0.0078 (ms) (19)
pTimecap (Neagpre) = 0.3965 XNeyppr: + 0.1008 (ms) (20)
pTimep2p (Nazppit) = 0.9978 XNpappie + 0.2063 (mns) (21)

The biggest increase in the B2B packet header processing time when comparing with
the BS counterpart, can be explained due to a memory allocation of 254 bytes (the maximum
length of a B2B payload) executed in the processing function. The optimization of this

function is left as future work.
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Figure 5.1 — Processing time of BS (a) and C2B packets (b) and B2B packet headers (c)

To quicken the experimental validation of the system, it was assumed that the impact
of the relayed C2B data (Table 3.8, page 39) in the processing time of B2B packets is closely
related with the processing time of each C2B packet encapsulated in the relayed collar
notifications. Therefore, equation (21) can be rewritten to accommodate the relayed data
processing as in (22), in which Ney is the number of relayed collar notifications per packet.

pTimegzs (Nsaspie: Non) = Npzspre X(0.9978 + pTimec,5(Ney)) + 0.2063 (ms) (22)

To compute the TA Wi, for the worst-case scenario, it was considered that a beacon
has to process either all BS packets and all C2B packets, or, has to process all BS packets
and all B2B packets sent in the previous two windows. A reasonable number of nodes was
considered as being 20 beacons and 1000 collars [2]. The number of collar notifications
relayed was considered to be 6, which is the maximum that fits in a packet with 254 bytes
of payload in which 36 bytes are reserved for an header (B2B header for MAX_ BEACONS
equal to 20). The length of the TAW only due to this packet load processing is:
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TAWlengchO Beacons,1000 Collars
= max(pTimegs(20) + pTime,5(1000), pTimegs(20) + pTimeg,5(20,6))

And TAWlengthzo Beacons,1000 Collars i max(400, 73) =400 (ms)

This value is very conservative, even without considering the processing time of the
control algorithms, since it is very unlikely to happen that a beacon has to process each and
every packet sent during a pC frame.

5.1.2 Time Slot and GW lengths
Time Slot lengths

The time-to-transmit (77Try) and time-to-receive (T'Trx) parameters were measured
with a logic analyzer as Figure 5.2 suggests. A digital port was set to ‘1’ while the
transmitter node was transmitting a packet. On the receiver side, a digital port was to set
to ‘1’ while its transceiver was in RX mode (receiving or being able to receive a packet) and
set to ‘0’ while decoding and buffering a packet. The TTrx parameter is the time it took the
transmitter to send a packet since its timer ISR was triggered. The TThy is the time since
the instant the packet is fully transmitted until the instant the receiver is again ready to
receive another packet. It encompasses both the packet decoding and buffering, due to
SheeplT’s protocol implementation, and a delay caused by the hardware (transceiver’s and
DMA delay to acknowledge a packet reception) and by the propagation time of the radio
signal.

TTrx
Transmitter node:
‘1’ while transmitting a packet — |
*
ISR
triggeried TTRX

A
\ 4

Receiver node: L
‘1’ while receiving or being ready to
receive a packet

»nd. »
delay Packet decoding +
buffering

Figure 5.2 — Slot measurement procedure

The CC1110 SoC datasheet states that the Frequency Synthesizer must be calibrated
regularly. This can either be done automatically or manually. The automatic calibration
can be programmed to occur every time a packet is received. A manual calibration can be
issued, for instance, at the end of the TAW (prior to the next state transition) through a
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command strobe. The time it takes to perform a FS calibration is especially important when
it is done automatically, since it must be considered as part of the time slot duration. The
beacon’s and collar’s firmware was written in such a way that FS calibration can be easily

switched between auto and manual mode, so the impact of both calibration modes on the
RSSI values may be later analyzed.

Hence, the TTkrx and TTrx parameters were measured for both manual and auto
calibration. A total of 10 tryouts were performed for every packet type and every FS
calibration mode, with the transceivers used in the experience swapping between transmitter
and receiver actions after 5 tryouts. For B2B packets, a maximum payload was used (255
Bytes). The measured results are shown in Table 5.3 and Table 5.4.

No Frequency Synthesizer calibration

TTrx (ms) TTrx (ms)
Packet TTRX A Packet TTTX A
BS 1.34 0.03 BS 0.67 0.01
C2B 1.09 0.07 C2B 1.09 0.02
B2B [255 Bytes] | 2.02 0.16 B2B [255 Bytes] | 8.61 0.04
(a) (b)

Table 5.3 — Measured T'Tgy (a) and TTrx parameters without FS calibration

With Frequency Synthesizer calibration

TTrx (ms) TTrx (ms)
Packet TTrx A Packet TT.x A
BS 2.19 001 BS 0.67 0.03
C2B 1.89 0.09 C2B 1.10 0.05
B2B [255 Bytes] | 2.79  0.17 B2B [255 Bytes] | 8.61  0.04

(a) (b)

Table 5.4 — Measured TTgx (a) and T7Trx parameters with F'S calibration
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Guarding Window length

With an oscillator accuracy of 40 ppm, the maximum time drift between two nodes as
a function of the time since the last synchronization (At), only due to timer’s T1 or TMAC
accuracy, can be computed as in (23).
(23)

Maxdrift(At) =2X (At X W)

The GW length was computed in order to accommodate the drift due to the timers’
accuracy for the maximum time between a synchronization instant (first SW slot) and a
transmission instant (last VI'W slot). For that purpose, a reasonable value for the nC length

was firstly computed.

= pC length estimation

An estimation of the nC length was carried out for the same number of nodes used in
TAW'’s length estimation. In equations (1), (2) and (4), the variables BSrrix, BSrrux,
C2Brmx and C2Brrix were substituted by the respective values from Table 5.4 (worst-case).
With a TA Wign of 400 ms, Npe.. equal to 20, Ne» equal to 1000 and ignoring the guarding
window size for now, the nC length is estimated to be:

WCiengtn =~ 3571 (ms)

Returning to the GW length estimation, the maximum drift for the previously

computed pC length is

Maxgrif:(3571) = 0.2857 ~ 0.3(ms)

Other factors may also introduce jitter, such as different CPU activity loads and timers’
resolution. To also address these issues, a conservative value for the guarding window was

chosen, being that 1 ms.

GWlength =1ms
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5.2 Data relaying

To test the ability of a beacon to collect data from a collar outside of its covered area,
an experiment was carried out to emulate a situation like the one depicted in Figure 5.3. A
macro-cycle of alternating nC types 2 and 3 was implemented.

E((Z[a)r)))i?
SN
Y —— Y
%28
\ Beacon 2
)

Figure 5.3 — Data relaying experiment

To emulate the absence of a direct link between a given collar and a beacon, beacon 1
was forced to ignore collar 17 C2B packets and beacon 2 was forced to ignore collar 16 C2B
packets.

Figure 5.4 shows the table status of beacons 1 and 2 prior to the update with the
relayed data. For demonstration purposes, only the collar sequence number and its last RSSI
values are shown as part of the received C2B packet information.

Figure 5.5 displays the table status of beacons 1 and 2 after the update with the first
data received through relay. At this time, the two collars are known to every beacon as
expected.
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Beacon 1

Booting up...
LL.2.2.2 C.z2.z2
TABLE INFO

Booting up... Done.
1 1.1.1.¢€ 1.1.
TABLE INFC

[Beacon 2

Beacon ID: 1 Beacon ID: 2

uC Counter: 3 uC Counter: 3

uC Type: 3 uC Type: 3

RX Packets 1 Sequence Numbers RX Packets 1 Sequence Numbers
Rcvd Pkts: & I BS: 5 Rovd Pkts: 7 1 BS: 5
Lost Pkts: o I B2B: 2 Lost Pkts: o I B2B: 2

Beacons Table Beacons Table

BEACON ID BS5S SEQ NUMB B2B SEQ NUMB BEACON ID ES SEQ NUMB EB2E SEQ NUME

2 4 1 tIndex: 1 1 4

1 tIndex: 0

Collars Table Collars Table

COLLAR SEQ DATA RECEIVED RSSIs [Beacon 1] [B2] (...)

- o hencoy - COLLAR SEQ DATA RECEIVED RSSTs [Beaconm 11 [B2] (...)
HOME tdBm) o) NUME  EY BEACON (dBm)
Te 1 BEACON 1 -40 -38 0 $tIndex: 0 F N sEncon 2 Setndex: 1

|I
(a) (b)

Figure 5.4 — Beacons’ 1 (a) and 2 (b) table status prior to the update with the received B2B

data

.2 Cc.z.2 1.¢€ 1.1.

TABLE INFO TABLE INFO

Beacon ID: 1 Beacon ID: 2

uC Counter: 5 uC Counter: 5

uC Type: 3 uC Type: 3

RX Packets I Sequence Numbers RX Packets I Sequence Numbers
Rcvd Pkts: 10 1 BS: 7 Rcvd Pkts: 11 1 BS: 7
Lost Pkta: [1] | B2B: 3 Lost Pkts: [1] | B2B: 3

[Beacons Table Beacons Table

[BEACON ID BS SEQ NUMB B2B SEQ NUMB BEACON ID BS SEQ NUMB B2B SEQ NUMB

2 & 2

tindex: 1

1 & 2 tIndex: 0

Collars Table Collars Table

COLLAR SEQ DATA RECEIVED RSSIs [Beacon 1] [B2] (...)

COLLAR SEQ DATA RECEIVED RSSIs [Beacon 1] [B2] (...)

o HOME - BY BERCON (asm) ™ NUMB  BY BEACON (¢Bm)

16 2 BEACON 1 -33 -47 0 StIndex: 0 - A encon 2 s w10 Sttnden: 1

17 1 BEACON 2 $tIndex: 1 — naex
16 1 BEACON 1 StIndex: 0

(a) (b)

Figure 5.5 — Beacons’ 1 (a) and 2 (b) table status after being updated with the previously
received B2B relayed data

5.3 Synchronization

In this section, the synchronization algorithm is evaluated in terms of clock drifts when

it comes to packet transmission instants.
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5.3.1 Packet transmission time drifts

To measure the beacons’ transmission time drifts, a 3-node network was deployed with
3 beacons exchanging data over type 3 nC’s. A forth CC1110 device was programmed as a
packet sniffer, time-stamping the instants at which it received each packet. The 3 beacons
were all running the same synchronization algorithm with the clock drift compensation. The
packet sniffer measured the elapsed times between packet transmissions and computed their
drifts. The VI'W'’s traffic drift was computed against the nominal transmission time values,
which in turn are relative to the beginning of the TAW (the last synchronized event).

The experiment took about 15 minutes per trial. Four trials were executed and the
beacons re-programmed with different ID’s in order to toggle their time slots. The final
results for the measured BS and B2B packet transmission drifts are plotted in a histogram

in Figure 5.6 (a) and (c), respectively.

BS packet transmission drifts C2B packet transmission drifts
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Figure 5.6 — Packet transmission drifts: BS (a), C2B (b) and B2B (¢)
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The collars’ transmission time drifts were measured in a similar fashion using the same
packet sniffer. This time, a network with a single beacon and two collars was deployed. As
in the previous experiment, four trials of 15 minutes each were taken and the nodes swapped
time slots between the trials. A histogram with the final results is plotted in Figure 5.6 (b).

The obtained results serve only as an estimation of the drifts. The packet sniffer also
suffers from clock drift issues and so these results are also affected by its error. As a matter
of validating the synchronization with a more accurate method, the packet transmission
times were measured using a logic analyzer. Figure 5.7 shows the elapsed time between 4
BS packet transmissions and the maximum difference between the TAW’s start of execution.

. _“+'|I:Im$__
¥ Lo e
_| 9091k ———
411ms_[J —
S B X
e | —
e 243
f.05ms_ |
P46.914H=
First Beacon to Last Beacon
to enter TAW to enter TAW
(a) (b)

Figure 5.7 — Elapsed time between 4 BS packet transmissions (a) and maximum time difference

in TAW’s start of execution instant between 4 beacons (b). FS autocalibration was used in (a).

BS slot length using F'S autocalibration is 2.9 ms long. Adding a guarding window of 1
ms, consecutive packet transmissions should be separated by 3.9 ms when perfectly
synchronized with no drift. In the last figure, one can see that the separation is much larger
(from 4.05 to 4.11 ms). This happened because the delay between the packet reception
instant and the moment the synchronization algorithm is executed is being neglected. So,
when a single TTgrx plus 1 GW should be elapsed (separating the end of one packet
transmission from the beginning of the next), a TTxrx plus 1 GW plus the aforementioned
delay is the resulting separation. This also resulted in larger values for the drift
measurements in the last histograms. However, it is clear that because all devices suffer
from the same issue, the synchronization performance is not affected as the TAW’s start of
execution event is synchronized with a difference of 110 ps, as seen in Figure 5.7 (b). The
optimization of the clock drift compensation function by accounting this delay was left as
future work.
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5.3.2 Clock drift through time after losing synchronization

In a real scenario, one beacon may temporarily lose connectivity with all its neighbors.
The absence of synchronization during this time can lead to packet collisions if the
transmission instants drift too much.

The following experiment was conducted to evaluate how two packet transmissions
drift from each other when the synchronization is suspended. Two beacons start to exchange
BS packets (synchronously) when the second beacon stops using the synchronization
algorithm (refuses to accept the other beacon’s packets). A packet sniffer computed the drift
between the two beacons. The time drift between the two nodes is plotted in Figure 5.8.

BS packet transmission drift after losing synchronization
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Figure 5.8 — Packet transmission drift through time after losing synchronization

Slots should be separated by 1 GW, when normally synchronized. When the drift
exceeds 2 x GW, the time slots begin to overlap. To avoid packet collisions, a timeout
should be triggered in the beacon that has lost the synchronization with its neighbors after
the amount of time at which its transmission instant is expected to be drifted in (2 x GW)
units of time from its assigned BStzm. instant. For a guarding window of 1 ms, the results
displayed in Figure 5.8 show that this timeout should be triggered at about 200 seconds
after losing synchronization, preventing the desynchronized beacon from sending more
packets until it is able to re-synchronize with a neighbor.

5.4 Packet loss rate

An experiment was carried out with one beacon and one collar exchanging packets over
type 2 pC’s. The slots were configured with the auto FS calibration TTry and TTgx
parameters from Table 5.4, page 77.
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A total of 3085 packets were exchanged. The packet loss during this lab experiment
was 9.5 %.

5.5 RSSI measurements

During this dissertation it was not possible to address a proper virtual fence algorithm.
The oversimplified version (pseudocode in Figure 4.24, page 70) is known to be insufficient.
Nevertheless, the relationship between the RSSI and the distance between a collar and a
beacon was experimentally carried out as a reference for future work. Two pairs of radios
with equal parameters were tested during this experiment.

Figure 5.9 shows how the experiment was conducted. Two beacons placed at 55 meters
from each other send periodic BS messages to a collar that moves between them. The collar
computes the RSSI of the two received packets and sends this information back to the
beacons in a C2B message. One of the beacons is connected to a computer through a serial
port to where the collar data is dumped. The collar moves in a straight line between the
two beacons in steps of 5 meters. A total of 10 RSSI samples per beacon-collar pair were
collected for each distance in every trial.

Beacon 1
(gateway)

Beacon 2

o/

[ ] L] [ J [ ]
«—>

5m
O
¥ Gateway
ﬁ\f/ PC
Figure 5.9 — RSSI measurement experiment

To observe if the FS calibration method impacts on the RSSI, one trial was performed
with the FS auto calibration enabled and another trial with manual calibration issued at
the end of the TAW.

This experiment was conducted during the same day in two different places. It was
firstly tested in a smaller field with some trees and houses surrounding the area. The second
test was done in a wider field with no nearby obstacles. The test results are shown in Figure
5.10 (smaller field) and Figure 5.11 (wider field). The RSSI average values are connected by
the blue (FS autocalibration) and red (manual calibration) lines.
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Figure 5.10 — RSSI vs distance test results in a field surrounded by trees using two pairs of
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Figure 5.11 — RSSI vs distance test results in a wide-open field using two pairs of radios

From this experiment, it was not clear how the FS calibration method impacts the
received signal strength on the collar. However, it shows the difficulty of predicting the
distance from one collar to a beacon based only on the received strength. Therefore, a
refinement of localization based on RSSI needs to be addressed in future work prior to
simply rely on a single RSSI threshold.

The plots show that supposedly equal radios programmed with the same radio
configuration parameters can produce different RSSI values for the same distance.

The experiment was performed in two different places as a form of validating the results,
in particular the RSSI threshold for 50 m (considered a reasonable radius for a beacon
covered area [2]). It is verified that the differences between the two pairs of radio were
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manifested in the two scenarios, being the RSSI values for the pair named “B” consistently
lower for 50 m. This enforces that in future work more experiments should be performed
with different pairs of radios to estimate an error for the RSSI due to differences in radio
modules.

As a reference for future experiments, the antenna posts heights used in the previous
experiments are laid in Table 5.5.

Antenna posts heights

Node h (m)
Beacon 1, 2 ‘ 1.8
Collar ‘ 0.5

Table 5.5 — Antenna posts heights

5.6 Summary

A very conservative value for the TAW’s length was estimated solely based on packet
processing times. It was assumed that during one TAW a total of 20 BS, 1000 C2B and 20
B2B packets relaying 6 CN each had to be processed, which required 470 ms. Time slots
lengths were defined by experimentally measuring the 777x and TTgkx of each packet. The
GW length was also conservatively estimated for the maximum theoretical drift in
transmission instants due to oscillator’s accuracy.

The synchronization algorithm was evaluated by time stamping the instants of packet
transmissions. The results show a drift higher than it was initially expected. However, this
has to do with an overhead that was wrongly neglected. When synchronization takes place,
the node is not considering the delay between the packet reception and the start of execution
of this algorithm. Because the T'Trx lengths were measured from the packet reception instant
and not from the beginning of execution of the synchronization algorithm, nodes will always
wait a bit more than they are actually required to do. This resulted in a wrongly measured
drift, because this delay was not taken into account. The optimization of this algorithm
implementation is left as future work.

A 9.5 % of packet loss was obtained during a lab experimentation. Results under real
conditions (vineyards) are still required to be performed. Further improvements in RSSI
values filtering need to be made to address a proper localization system for SheeplT.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, an alternative solution for the weeding process in vineyards was
presented. It’s based on an eco-friendly solution in which sheep take the job of grazing the
properties. To monitor their behavior and localization, a Wireless Sensor Network (WSN)
was designed and a prototype deployed. It is composed of collars carried by sheep that
monitor their activity and location. This data is transmitted to beacons, strategically
distributed throughout the vineyard. The collected data is relayed by neighbor beacons until
it reaches a gateway, in which all collar data should be dumped. All communications in the
WSN use a common radio link, which imposed the design of a MAC layer in order to
efficiently accommodate the traffic exchange.

In the State of the Art chapter, we’ve managed to classify the MAC layer policies as
contention-based and scheduled-based, according to the literature. Some protocols targeted
to WSN applications were surveyed as their advantages and drawbacks were also disclosed.
None of the protocols found in literature is fully adapted to SheeplT’s project constraints.
Animal monitoring systems were also investigated in this chapter. Satellite based systems,
particularly the GPS, are commonly used for this purpose, however, due to the high power
consumption that these technologies demand, alternative solutions are being considered.
Localization based on radio signals stands out due to its inexpensive implementation in
WSN’s that already incorporate a radio link for data exchange.

SheeplT’s WSN was designed to be energy efficient. We took the duty-cycle approach
to minimize the energy consumption of sheep-borne collars by letting them periodically enter
low power states. The MAC layer can accommodate both schedule based and contention
based traffic, but the last one is reserved for dynamic node register and pairing. The traffic
is exchanged in a periodic pattern. For each type of traffic, a micro-cycle is devoted (pC)
and the periodic sequence of 1C’s form the macro-cycle structure (MC). Based on the traffic
exchanged during a pC, they were classified in three types: type 1 (node pairing using
CSMA), type 2 (collar traffic using TDMA) and type 3 (inter-beacon relay using TDMA).

Two state-machines were implemented — a collar and a beacon. These state-machines
obey the protocol presented in the System Architecture chapter with the exception that
node register and pairing are not dynamically performed. That being said, nodes are
statically assigned an ID, so pC’s of type 1 are not addressed in this prototype. Moreover,

87



despite the reservation of packet fields for that purpose, no routing schemes were
implemented, so every message is being broadcasted.

The schedule based traffic enforced the introduction of a synchronization algorithm
with well-known packet transmission and reception times. Regarding this topic, a difference
of 110 s was observed between the first and the last node to acknowledge a given time
instant that had to be synchronized between all nodes. A testbed consisted of 4 nodes was
used for that matter.

In a laboratory experiment, a packet loss rate of 9.5 % was observed with a total of
3085 packets exchanged between two nodes. However, several parameters still need to be
evaluated in a real environment, such as the influence of baud rate in packet loss as well as
how the radio signal is degraded when obstacles are in between a transmitter and receiver
node. Tests were performed outside of the laboratory to observe the variation of RSSI values
as a function of distance between a transmitter and a receiver. The results may be used as
future reference when evaluating different radio parameters and how they affect the covered
area radius.

This WSN prototype was integrated with the hardware (Figure 6.1) and posture control
algorithm developed under the SheepIT project. In the current development status, beacons
are able to collect real data from collars and relay it between their neighbors. All
communications between collars and beacons and beacons with their peers are synchronous
and operate in a single channel of the 433 MHz ISM band.

(a) (b)

Figure 6.1 — A collar device (a) and a beacon (b) of SheepIT’s project
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6.2 Future Work

The work presented in this dissertation is the first prototype of a WSN to be integrated
in SheeplT project. Thence, several points of this work can still be improved in future
developments.

The following topics summarize what this dissertation has left as future work.

e Dynamic node register and pairing: the existence of type 1 pC’s for dynamic
node register and pairing is planned in the system’s architecture. Its implementation
was not addressed in this dissertation.

¢ Routing: all messages are currently being broadcast. Routing mechanisms will help
to minimize memory usage in beacons, since not every received inter-beacon relay
packet would have to be buffered.

o Packet segmentation: the current version of this protocol takes no provisions
against messages that exceed the maximum amount of data that hardware imposes.
Packet segmentation should be addressed in future since B2B packets will surely
exceed the maximum packet size when more data starts to be relayed besides the
Collar Notifications.

¢ Field experiments with different radio parameters: the impact of a different
configuration of the radio module was not tested. Field experiments with different
baud rates or different RF equipment should be conducted to determine the right

configuration for the project scenario requirements.

e Autonomy test: the system architecture was designed to be energy efficient.
However, no experiments were conducted to evaluate the system regarding this issue.

e Localization algorithm and virtual fence: the hardware used in this prototype

provides RSSI support. The development of a more sophisticated algorithm besides
a single threshold value is still planned as future work.

e Code optimization: several parts of the code can be optimized. Memory allocation
performed in the TAW is one example.
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