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Sumário 
 
 

O presente trabalho, tem com objetivo promover a descrição da parte 
experimental da síntese de grafeno e de estruturas bidimensionais (2D). Foram 
usadas as técnicas já existentes, que aplicam deposição química na fase de 
vapor (CVD), para a síntese de grafeno e estruturas bidimensionais com 
aplicações multidisciplinares, como indústrias de nano-eletrónicos e de semi-
condutores. Todos os problemas, sugestões e questões importantes 
relacionados com o crescimento e parametrização da condição ótima para 
formação de estritamente monocamadas a pequenas camadas foram 
brevemente discutidas. 

Isto pode trazer benefícios duplos como a produção de dispositivos eletrónicos 
2D com altas motilidades de transporte e o entendimento do comportamento dos 
materiais 2D sujeitos a intercalação iónica. 

Os grafenos sintetizados no substrato cobre (Cu) apresentaram um espectro 
ideal de Raman com uma concentração de defeitos menor. A presença de 
pequenos picos D confirmou a elevada qualidade dos cristais de grafeno com 
estritamente monocamadas a pequenas cadeias. 

Além disso, a espectroscopia de Raios-X de alta resolução (HR-XPS) mostrou o 
grafeno de elevada qualidade com C 1s em configuração sp2 (com energia de 
ligação a ~284.8 eV). A ausência de outros componentes reforça a pureza e a 
qualidade do grafeno sintetizado. As imagens de mapping Raman demonstraram 
a cobertura total do grafeno de elevada área no substrato cobre. Adicionalmente, 
os resultados de microscopia de transmissão eletrónica de alta resolução 
(HRTEM) confirmaram a elevada natureza cristalina com dois tipos de planos 
rotacionais que podem ser atribuídos à presença de rugas durante a 
transferência de folhas de grafeno nas grelhas de TEM.  

Esta tese dedica-se também à dopagem heteroatómica do grafeno com o 
objetivo de alterar as suas propriedades eletrónicas. A amónia (NH3) foi usada 
como fonte de azoto (N) como átomo externo para a dopagem do grafeno puro. 
Mais uma vez, foram feitos esforços para discutir todos os problemas, sugestões 
e outras questões importantes relacionadas com o crescimento e 
parametrização das condições ótimas para a dopagem in-situ de amónia do 
grafeno no cobre. O papel do substrato (espessura do filme) na criação de 
defeitos foi também discutida. Os resultados de Raman mostram o aumento dos 
picos D e D’, o que confirma a dopagem do grafeno por NH3. 

Os dados de HRXPS mostraram o pico C 1s centrado a uma energia de ligação 
(BE) de 284.5 eV, atribuído ao C sp2 que pode ser correlacionado com a boa 
qualidade do C. Então, de acordo com o XPS, o grafeno que cresceu no 
substrato Cu 20 µm apresentou uma melhor intercalação do azoto nas folhas de 
grafeno sob as mesmas condições de crescimento. As duas componentes 
(substitucional a BE de 401.7 eV e piridínica de 398.5 eV) foram claramente 
distinguidas no respetivo pico N 1s. 



  

 

 

 

 

 

 

 

 

 

 

A dopagem com o tipo de configuração substitucional envolve três eletrões de 
valência do nitrogénio formando três ligações σ, um eletrão a preencher os 
estados π e o quinto eletrão no estado π* da banda de condução que conduzem, 
no total, a um forte efeito de doping.  

O presente trabalho também reporta um método in-situ para a caraterização 
quantitativa das propriedades eletrostáticas na escala nano das folhas de grafeno 
multicamada (MLG) crescidas no níquel (Ni)  por combinação de dados de 
microscopia de força atómica (AFM)  e microscopia de força atómica Kelvin 
(KPFM).  Folhas MLG de larga área epitaxial cresceram no Ni usando a técnica 
CVD. A elevada natureza cristalina das folhas MLG no níquel foi confirmada por 
espectroscopia Raman com valor de FWHM tão baixo como ~20 cm-1 para o pico 
G. Foi feita a injeção de carga (e subsequente difusão de carga com o tempo) no 
recém sintetizado grafeno no Ni. Os resultados revelaram que : (i) a superfície 
MLG pode ser carregada quer positivamente quer negativamente pelo processo 
de injeção usando sondas de Si revestidas de Pt; (ii) as cargas podem ser 
acumuladas e eventualmente atingir concentrações de saturação de                   
(+4.45±0.1) μC/m2 e (−1.3±0.1) μC/m2, respetivamente; e                                   
(iii) os coeficientes de difusão de carga na superfície medidos foram de           
(1.50±0.05) × 10−16 m2/s e (0.64±0.05) × 10−16 m2/s para as cargas positivas e 
negativas, respetivamente. 

As experiências relacionadas com a descoberta de injeção de carga no MLG 
podem conduzir a uma maneira de desenhar uma nova classe de dispositivos de 
recolha de energia. Além disso, este estudo também demonstra uma técnica 
para nano-modelação/litografia de carga das superfícies de carga por 
eletrificação do contacto, que pode vir a ser uma aplicação promissora para criar 
nanoestruturas carregadas para a próxima geração de dispositivos nano-
eletrónicos baseados em grafeno. 

Uma breve descrição da qualidade dos substratos transferidos foi também 
explorada. Foram usados vários substratos, como SiO2/Si e Au. Uma 
comparação qualitativa da qualidade entre a transferência do grafeno antes e 
depois foi criticamente descrita. Os resultados de HRXPS mostram a interação 
da camada de ferro com o grafeno. 

Por fim, esta pesquisa também mostrou as principais etapas de parametrização e 
síntese, e o fluxo de trabalho para materiais de elevada qualidade TMDs (como 
MoS2), por modificação do actual aparelho de CVD. Uma revisão completa das 
propriedades fundamentais, assim como do método de síntese, propriedades e 
problemas relacionados com o crescimento de materiais 2D foram também 
salientados. O efeito da pressão e outras condições para o crescimento de 
elevada qualidade foram completamente descritos. Este estudo indica que a 
pressão ótima para o crescimento de uma larga área MoS2 com uma bandgap 
direta de 1.6 eV é de 50 mbar. Os resultados de micro-Raman mostram 
claramente a distinção de picos E1

2g e A1
g picos e os dados de HR-XPS 

reconfirmam a sua elevada qualidade através de diferentes picos de nível interno 
de Mo and S. 
Além disso, através do uso da técnica microscopia eletrónica de varrimento 
(SEM) com feixe de iões focalizados (FIB), foram preparados elétrodos de platina 
necessários para medidas elétricas. O resultado mostrou: (i) o comportamento 
óhmico e semi-condutor dos cristais; (ii) a importância das monocamadas de 
elevada qualidade (SL) MoS2 nas indústrias de semi-condutores e (iii) o potencial 
das SL MoS2 de elevada qualidade para substituir o grafeno num futuro próximo. 
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Abstract 

 
 
 

The present work is aimed to provide description of experimental part of graphene 
and two-dimensional structures. State-of-the-art techniques employing chemical 
vapor deposition (CVD) were used to deposit graphene and two-dimensional 
structures for their multidisciplinary applications including nano-electronics and 
semi-conducting industries. All the problems, suggestions and other important 
issues related to the growth and parameterizing the optimum condition for strictly 
monolayer to few layers have been briefly discussed. This may give double 
benefits such as realizing 2D electronic devices with high carrier motilities and 
understanding the behaviour of these 2D materials upon small ion intercalation. 
The as synthesized graphene grown on copper (Cu) substrate showed the ideal 
Raman spectrum with least defect concentration. The presence of very small D 
peaks confirmed the high quality of graphene crystals with strictly monolayer to 
few layers.  Moreover, High Resolution X-rays Spectroscopy (HR-XPS) analysis 
showed the high quality graphene with C 1s in sp2 configuration (with binding 
energy at ~284.8 eV). The absence of other components resembled the purity of 
graphene and again reconfirmed the good quality of synthesized graphene. The 
Raman image mapping, demonstrated the full coverage of large area graphene on 
copper substrate. Additionally, the High Resolution Transmission Electron 
Microscopy (HRTEM) results reconfirmed that the high crystalline nature with two-
type of rotational planes, which may attributed to the presence of wrinkles formed 
during the transfer of graphene sheet on TEM grids. 
 
This thesis is also devoted to the heteroatom doping in order to tune the electronic 
properties of graphene. Ammonia (NH3) was used herein to provide nitrogen (N) 
as a source for foreign atom for the doping of pure graphene. Here again, efforts 
were made to discuss all the problems, suggestions and other important issues 
related to growth and parameterizing the optimum conditions for in-situ ammonia 
doping of graphene on Cu. The substrate (thickness of films) playing role in the 
defect creations was also discussed. Raman results showed the enhanced D and 
D’ peaks, which confirmed the doping of graphene by NH3. HRXPS showed the C 
1s core level centred at a BE of 284.5 eV, ascribed to C sp2 can be co-related with 
the good quality of C. Thus, in context with the XPS, the graphene grown on 20 
µm Cu substrate showed the better nitrogen intercalation in the graphene sheets 
under the same growing conditions. Two components (substitutional at BE of 
401.7 eV and pyridinic at BE of 398.5 eV) were clearly distinguished in the 
respective N 1s core level. The doping with substitutional type of configuration, 
involves three nitrogen valence electron forming three σ– bonds, one electron 
filling the π–states, and the fifth electron entering the π*–states of the conduction 
band, and altogether provide a strong doping effect. 

  



  
 

 The presented work also reported a study demonstrating an in-situ method for the 
quantitative characterization of nanoscale electrostatic properties of as-grown 
multilayer-graphene (MLG) sheets on nickel (Ni) by combining atomic force 
microscopy (AFM) and Kelvin probe force microscopy (KPFM). Large area 
epitaxial MLG sheets were grown on Ni by using CVD technique. The high 
crystalline nature of MLG sheets on Ni was confirmed by Raman spectroscopy with 
the FWHM value as low as ~20 cm-1 for G peak. We performed the charge 
injection (and subsequent charge diffusion over time) on the as synthesized 
graphene on Ni. The results unveiled that: (i) MLG surface can be either positively 
or negatively charged through injection process using Pt coated Si-based AFM 
probes; (ii) the charges can be accumulated and eventually reached to saturated 
concentrations of (+4.45±0.1) μC/m2 and (−1.3±0.1) μC/m2, respectively; and (iii) 
the charge diffusion coefficients on graphene surface were measured to be      
(1.50±0.05) × 10−16 m2/s and (0.64±0.05) × 10−16 m2/s for the positive and the 
negative charges, respectively. The concerned experiment related to the discovery 
of charge injection in MLG may pave the way for designing a new class of energy 
harvesting devices. In addition to this, study also demonstrated a technique for 
nano-patterning/charge lithography of surface charges by contact electrification, 
which could be a promising application to create charged nanostructures for next 
generation graphene based nano-electronic devices. 

A brief description on the quality of transferred substrate has also been noted. 
Various substrates such as SiO2/Si and Au substrate have been used. A relative 
quality comparison between before and after transfer of graphene has been 
critically described. Results from HRXPS show the iron monolayer interaction with 
graphene. 

Lastly, this research also showed the major parameterizing and synthesizing steps, 
and the work flow for the high quality TMDs materials (such as MoS2) by modifying 
the current CVD equipment. A thorough review of the fundamental properties as 
well as methods of synthesis, properties and problems related to the growth of 2D 
materials was also highlighted. The effect of pressure and other conditions for the 
growth of high quality were fully described. This study found 50mbar as an 
optimum pressure for the growth of large area MoS2 having a direct bandgap of 
1.6eV. Micro-Raman results clearly showed distinguish E1

2g and A1
g peaks and 

HRXPS re-confirmed its high quality by the different Mo and S core-level peaks. 
Additionally, employing Focused ion beam equipped with SEM (scanning electron 
microscopy) technique (FIB), the present study prepared platinum (Pt) electrodes 
required for the electrical measurements. The result showed: (i) the ohmic and 
semi-conducting behavior of the crystals; (ii) the importance of high-quality single-
layer (SL) MoS2 in the semi-conducting industries; and (iii) the potential of high 
quality SL MoS2 for replacing graphene in near future. 
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Thesis outline 

The present thesis comprises eight chapters dedicated to the specific objectives including the 

introduction, six experimental chapters and conclusions. Chapter 1 presents the scientific 

motivation and rationale, which states the author’s interest and dedication, and also shows the 

encouragement and enthusiasm for the PhD work. The major focus of the Chapter 2 is to critically 

review the literature available on graphene and other two-dimensional materials and to 

summarize the state-of-the-art on the topic. This chapter also highlights the basic electronic 

properties and importance of graphene, as well as defects in graphene (and their intentional 

introduction). Efforts were also made to overview the state-of-the-art literature on molybdenum 

disulfide (MoS2) and its importance. Chapter 3 reveals the fundamentals of the advanced methods 

applied for the characterization of samples, graphene, nitrogen-doped graphene and MoS2. 

Chapter 4 mainly deals with the experimental growth methods, where a brief summary of 

experimental conditions used for the deposition of pure graphene on copper substrates and its 

characterization using Raman, High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS) and 

High-Resolution Transmission Electron Microscopy (HR-TEM) are presented. In Chapter 5, the 

experimental growth conditions are detailed for the deposition of in situ ammonia doped 

graphene on copper substrates and its characterization using Raman, HR-XPS and HR-TEM. A brief 

summary of the substrate thickness dependence and calculations of created defects (upon doping 

by nitrogen atoms) is also noted.  

Details of the experimental conditions required for the growth of pure graphene on nickel 

substrates and its characterization using Raman and HR-XPS are discussed in Chapter 6. This 

chapter also studies the charge injection phenomena in multi-layer graphene (MLG) on nickel via 

Kelvin Probe Force Microscopy. Chapter 7 is focused on the transfer of pure and nitrogen doped 

graphene samples on the arbitrary substrate. Additionally, in this chapter, the major details are 

also summarized on the wet transfer techniques employed to transfer graphene on silicon dioxide 

(SiO2/Si) and auric. Experimental details on the upgrade of Chemical Vapor Deposition (CVD) 

equipment for the growth of MoS2 are discussed in Chapter 8. This chapter also presents the 

results obtained through the advanced characterization of MoS2. Final Chapter 9 summarizes the 

major outcomes of the present PhD thesis work and also enlightens mastering of the synthesis 

and understanding of the properties of graphene and other 2D materials. Additionally, it describes 

the prospects for the graphene and 2D materials in the field of electronic and optical applications. 
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spheres present Mo and yellow spheres show sulfur (S). The distance between Mo-Mo and S-S is 

3.18 Å and 3.16 Å, respectively. 

Figure 3-1: Schematic representation of the energy transfer model in Rayleigh scattering, Stokes 

Raman and Anti-Stokes Raman scattering, Adapted from [164]. 

Figure 3-2: Confocal Microscope WITec alpha300 RAS+ for Raman-AFM-SNOM, Adapted from 

[170]. 

Figure 3-3: Schematic representation of the photoelectric effect. Sketch shows the working 

principles of XPS. A photon excites a core-level electron above the vacuum level. The kinetic 

energy of the outgoing electron is recorded and the binding energy can be calculated. 

Figure 3-4: XPS spectra deconvolution of graphene. The black dots are the experimental results, 

blue dots are fits performed with the help of CasaXPS and the red line is the overall fitting result. 

The peak centered at 284.8eV corresponds to C in sp2 configuration. 

Figure 3-5: Representative images of the XPS equipment and major components. (a) High-

Resolution PHOIBOS 150 1D-DLD, (b) Laser pointer fixed on top of Phoibos for better mark during 

measurement, (c) Laser pointer on the standard sample placed on master stage, (d) 5-axes 

motorized manipulator (for X, Y, Z, azimuthal and Polar angle), (e) Liquid nitrogen used to low 

temperature measurements. 

Figure 3-6: 5-axes motorized manipulator and the direction of movement when using it. 

Figure 3-7: (a) Load-lock chamber with feed-through, (b) different parking positions for additional 

samples, (c) Annealing performed at master stage with as the red-glowing platelet is the sample 

holder irradiating visible light. The temperature is about 1100K. 

Figure 3-8: Using liquid nitrogen for the measurements in temperature range. 

Figure 3-9: Base pressure (Ultra High Vacuum) achieved by using different pumps used. (b) Dry (oil 

free) rotary pumps, (c) Ion pump and titanium sublimation pump (TSP). 

Figure 3-10: Layout of a Transmission Electron Microscope. Adapter from [175] 

Figure 3-11: Structural layout of the (a) diffraction and image modes, and the (b) bright field and 

dark field modes. Adapted from [176]. 

Figure 3-12: (a) Showing the HR-TEM equipment used for the characterization of the samples, (b) 

Position for inserting the sample holder, inset showing the sample holder inside the holder, (c) 

double tilt sample holder for better view, inset showing the fixed TEM grid with screws for 

measurements. 
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Figure 3-13: Schematics representation of the Scanning Electron Microscope and its important 

parts. Adapted from [178]. 

Figure 3-14: Graphene on copper grid in (a) Secondary Electron imaging mode, and (b) 

Transmitted Electron imaging mode. 

Figure 3-15:  Representative images of graphene from: (a) upper, and (b) lower secondary 

electrons detectors, and (c) mix contribution of both detector. 

Figure 3-16: Schemes illustrating the topography acquired from: (a) high aspect ratio and (b) low 

aspect ratio tip. A high aspect ratio tip is the ideal probe (tip) to acquire best resolution; whereas, 

low aspect ratio results in the convolution. This does not often influence the height of a feature 

but the lateral resolution. Adapted from [181]. 

Figure 3-17: (a) Schematic representation of the PFM setup to simultaneously acquire the 

topography and the in- and out-of-plane component of the polarization. A function generator is 

used to apply an alternating voltage V𝝎 between the tip and the bottom electrode of the 

material. (b) Schematic illustration explaining how PFM signals are acquired by the deformation 

under the applied field; the voltage induced cantilever deflection is detected by a reflected laser 

beam on a four-sector photodiode. (c) Scheme highlighting a hysteresis loop acquired by 

switching spectroscopy (SS-PFM). Adapted from [183]. 

Figure 3-18: X-ray diffraction from the Bragg plane of cubic crystal with path difference equal to 

2d sinθ, diffraction pattern is shown on the bottom right of the figure. Adapted from [187]. 

Figure 3-19: Assembled chemical vapor deposition (CVD) setup with different components. (1) Gas 

outlets, (2) Gas inlets for inserting different gases, (3) Flowmeters, (4) Pressure controller, (5) 

Temperature controller of CVD, (6) Reaction chamber, (7) Rotary pump. 

Figure 3-20: Gas regulator for gas pipeline connections. Pressure gauge indicates the gas pressure 

before it is supplied to pipeline. Adapted from [199]. 

Figure 3-21: (a) Gas inlets for different gases. It also shows the different flanges, leak valve, and 

Pirani, (b) Schematic diagram for the connections. 

Figure 3-22: Pressure controller (VD9) for controlling the CVD reaction chamber’s pressure. 

Adapted from [200]. 

Figure 3-23: PID (Proportional integral derivative) from EUROTHERM. Adapted from [201]. 

Figure 3-24: (a) Rotary pump system, with electronic bye-pass pressure controller connected for 

reducing the high pressure, and maintaining the suitable pressure 

Figure 4-1: Growth process diagram for the large area pure graphene on metal substrates by 

modified thermal Chemical Vapor Deposition setup. 
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Figure 4-2: Full Raman spectra of pure graphene on copper substrate. The spectra show major 

peaks associated with graphene namely D, G and 2D. The inset shows the optical image taken 

using 100x objective lens in Confocal – Raman equipment. 

Figure 4-3: G and 2D peaks of pure graphene on copper (Cu). The blue and red (dotted) spectra 

are respectively the experimental and fitted data obtained by Lorentzian mathematical function. 

Figure 4-4: (a) Full Raman spectra with highlighted D Peak, and (b) Magnified D peak (with the 

range of 1280 – 1400 cm-1) along with fitted data using Lorentzian mathematical function. 

Figure 4-5: Bright-field HR-TEM images of graphene deposited on copper (Cu) substrate, taken on 

a Cu grid of 400 Mesh (Agar Scientific, G6210). 

Figure 4-6: HR-TEM picture of bright field image, where inset (red box) shows the set of planes. 

Figure 4-7: HR-TEM image of the large area indicated with a red box in (a) Bright field image. (b) 

Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) Masked applied 

FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) Inverse FFT image of 

the (d) with line profile. (f) Line profile showing the distribution. 

Figure 4-8: (a) Electron Diffraction showing six hexagonal spots with different planes (b) with (1 -2 

0) and (c) with (1 -1 0) family of planes. 

Figure 4-9: (a) Electron Diffraction showing six hexagonal spots of (1 -2 0) and (1 -1 0) family of 

planes, (b) The two set of planes with green and red dotted line (hexagonal shape) in reciprocal 

space. 

Figure 4-10: (a) Bright field image and (b) dark field image of contaminations. The inset showing 

CuO or FeCl3 nanoparticles. 

Figure 4-11: (a, b) Extra carbon depositions (in forms of rings) formed due to high energy electron 

beam during transmission electron microsocopy studies. 

Figure 4-12: Overview of the XPS spectrum of graphene on copper (Cu) substrate along with major 

elements indicated. 

Figure 4-13: High Resolution XPS showing C 1s core levels peak. The as–grown graphene can be 

fitted by a single C sp2 component. 

Figure 4-14: Raman mapping integrated intensities of the (a) G, (b) D and (c) 2D using 532 nm 

laser source of graphene grown on Cu substrates. (d) and (e) shows the calculation of integrated 

intensities of ID/IG and I2D/IG respectively. The vertical bars show the color profile in the Raman 

mapping, with scale in CCD counts. 

Figure 5-1: Growth process diagram for the large area in-situ ammonia doping of graphene on 

metal substrates by modified thermal chemical vapor deposition setup. 
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Figure 5-2: Full Raman spectra of in-situ ammonia doped graphene on copper substrate. The 

spectra shows major peaks associated with graphene namely D, G, D’ and 2D. The inset showing 

the optical image taken using 100x objective lens in Confocal – Raman equipment. 

Figure 5-3: Experimental (blue line) and fitted data using Lorentzian mathematical function 

(dotted lines).  (a) D, (b) G and D’, (c) 2D peaks associated with the in-situ ammonia doped 

graphene on Cu. 

Figure 5-4: Normalized overview of XPS spectra of the in-situ ammonia doped graphene grown on 

copper substrate. The main core levels related to substrates (Cu, Si and O) are indicated together 

with C 1s. 

Figure 5-5: Showing the C 1s core levels obtained by high resolution XPS of the as grown in-situ 

ammonia doped graphene. The peak can be fitted by a single C sp2 component. 

Figure 5-6: High resolution XPS spectrum showing the core level of N 1s of in-situ grown ammonia 

doped graphene on Cu substrate. 

Figure 5-7: The images of in-situ ammonia doped graphene from (a) upper (b) lower secondary 

electrons detectors in Transmission mode. 

Figure 5-8: TEM image showing the crumbled like structure of in-situ ammonia doped graphene 

on TEM grid. 

Figure 5-9: HR-TEM bright field image. Inset (red box) shows the set of planes located at various 

places marked as labels. 

Figure 5-10: HR-TEM image of the large area location (L1) indicated with a red box, (a) Bright field 

image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) 

Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) 

Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

Figure 5-11: HR-TEM image of the large area location (L2) indicated with a red box, (a) Bright field 

image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) 

Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) 

Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

Figure 5-12: HR-TEM image of the large area location (L3) indicated with a red box, (a) Bright field 

image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) 

Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) 

Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

Figure 5-13: HR-TEM image of the large area location (L4) indicated with a red box, (a) Bright field 

image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) 

Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) 

Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 
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Figure 5-14: HR-TEM image of the large area location (L5) indicated with a red box, (a) Bright field 

image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) 

Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) 

Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

Figure 5-15: (a) Electron Diffraction showing 6 hexagonal spots with different planes (b) with (110) 

and (c) with (032) family of planes. 

Figure 5-16: (a) (a) Electron Diffraction showing 6 hexagonal spots of (0,3,2) and (1,1,0) family of 

planes, (b) The two sets of planes with green and red dotted line (hexagonal shape) in reciprocal 

space. 

Figure 5-17: Extra carbon depositions (in forms of rings) formed due to high energy electron beam 

during Transmission Electron Microscopy measurements. 

Figure 5-18: Energy dispersive X-ray spectroscopy (EDS) spectrum of the in-situ ammonia doped 

graphene on TEM grid. 

Figure 5-19: Raman mapping integrated intensities of the (a) G, (b) D and (c) 2D band using 532 

nm laser source of in-situ ammonia doped graphene grown on Cu substrates.  (d) and (e) show the 

calculation of integrated intensities of ID/IG and I2D/IG, respectively. The vertical bars show the 

color profile in the Raman mapping with scale in CCD counts. 

Figure 5-20: XRD patterns with corresponding peaks of Cu substrate (before deposition) and after 

deposition of nitrogen doped graphene. 

Figure 5-21: Raman spectra of graphene grown on (a) 10, (b) 20 and (c) 25μm Cu substrate 

showing the distinct peaks D, G and 2D respectively. (d) Spectra showing the defect density with 

respect to time of acquisition for the graphene grown on 10, 20 and 25μm Cu substrates. 

Figure 5-22: Raman mapping of the G, D and 2D band intensity of the graphene grown on 10, 20 

and 25μm thick Cu substrates, respectively. The values in the scale are in CCD counts. 

Figure 5-23: HR-XPS comparison of nitrogen (N) – doped graphene grown on copper (Cu) 

substrate of 10 (brown), 20 (black spectra) and 25 (red) μm in thickness. (a) Shows the overview 

spectra of n-doped graphene. (b) C 1s and (c) N 1s core levels. The best fits are also included in 

green. In the case of the N 1s spectra of graphene grown on 25μm Cu substrate sample (bottom 

spectra) the blue line is a guide for the eyes. 

Figure 5-24: (a) Schematic diagram of the experiment showing the 10, 20 and 25µm copper (Cu) 

substrates placed in alumina boat in CVD furnace, (b) Possible nitrogen (N) incorporation in 

graphene structure showing (1) substitutional or graphitic N, (2) pyridine-like N, (3) single N 

pyridinic vacancy, (4) triple N pyridinic vacancy, (c–e) Atomic Force Microscopy (AFM) image for 

average RMS surface of virgin Cu substrates of 10, 20 and 25µm respectively (inset showing the 

optical image captured during AFM). 
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Figure 6-1: Growth process diagram for the large area pure graphene on Ni substrate by modified 

chemical vapor deposition setup. 

Figure 6-2: Full Raman spectra graphene on Ni substrate. Inset shows the optical image with the 

mark where the spectrum was taken. The spectra show major peaks associated with graphene, 

namely D, G and 2D. 

Figure 6-3: Experimental (blue line) and fitted data of Raman spectra using Lorentzian 

mathematical function (dotted line).  (a) G and D’, (b) D, (c) 2D peaks associated with the as 

synthesized graphene on Ni substrate. 

Figure 6-4: X-ray Photoelectron Spectroscopy result showing the overview scan of as-synthesized 

graphene on Ni substrate. 

Figure 6-5: High-resolution XPS scan for the C 1s core level peak of graphene on Ni. The main core 

levels peaks can be deconvoluted in three components. In the spectra dots are the experimental 

data points, black line is the overall fitting performed with the CasaXPS . 

Figure 6-6: High-resolution XPS scan for the O 1s core level peak of the graphene grown on Ni. 

Figure 6-7: (a) Optical image, Raman mapping of integrated intensities of (b) D, (c) G and (d) 2D 

band of the graphene grown on Ni.  (e) and (f) show the calculation of integrated intensities of 

ID/IG and I2D/IG, respectively. The vertical bars show the color profile in the Raman mapping (scale 

in CCD counts). 

Figure 6-8: (a) Scanning electron microscopy (SEM) image of CVD-grown large-area MLG on nickel 

foil (inset shows the ripple), (b) Raman spectra of as-grown MLG on nickel, clearly showing the 

strong G peak (⁓1580 cm-1) Inset is the zoom of the G and 2D peaks, (c) X-ray photoelectron 

spectroscopy of as-synthesized MLG on nickel, inset shows high-resolution XPS of C 1s core level 

of MLG on nickel. 

Figure 6-9: Charge injection experiments on MLG/nickel surface based on AFM. (a) Schematic 

illustration of KPFM and contact mode for charge injection process. (b) 3D example of charge 

injection schematic presentation. The topography is mapped onto the third dimension (z-axis) and 

the recorded surface potential is color coded. 

Figure 6-10: Charge injection experiments on MLG/nickel. AFM topography image before (a) and 

after (b) charge injection, performed with the conducting tip (Vinj=−5 V, Vinj=+5 V; and injection 

time tinj=10 s).  Surface potential image before (c) and after (d) injection. (e) represents the 

difference between images (c) and (d) for more clarity. (e & f) Profile of the surface potential 

signal across red dotted lines. 

Figure 6-11: Surface stability of MLG films under higher voltage injection through the AFM tip. (a) 

Surface topography of as-grown MLG film before and (b) after injection. (c) Surface potential 

image before injection and (d) Surface potential images of the electric-field-induced contrast on 

MLG films obtained after the application of Vinj=+2.5, +5.0, +7.5, +10.0, and +12.5 V to the tip 
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(dark lines from left to right). (e) profile along the red dotted line showed in (d). (f) SP intensity vs 

applied voltage obtained from (e). 

Figure 6-12: Topography with KPFM image over-imposed (colored coded) before (a), immediately 

after (b) poling, +5 V, 10 s, and (c) after prolonged aging 3h (c). (d) Charge relaxation starting 

before injection till 180 min after injection, with the intervals of 20 min.(e) Profile of the images 

taken before, immediately after poling, and after 2-3 hrs. (f and g) SP intensity vs. time obtained 

from (e) and (g) D*t vs time. 

Figure 7-1: Schematic diagram highlighting the major procedure for the transfer of graphene using 

poly(methyl methacrylate)) (PMMA). Adapted from [294]. 

Figure 7-2: Schematic diagram and comparison between the standard, e.g., PMMA-based and 

direct transfer of layer-area graphene to hole of an a-C TEM grid. Adapted from [295]. 

Figure 7-3: Schematic diagram of the synthesis, etching and transfer processes for the large scale 

and patterned graphene films. (a) Synthesis of patterned graphene films on thin nickel layers, (b) 

Etching using FeCl3 and transfer of graphene films using a PDMS stamp, (c) Etching using BOE or 

hydrogen fluoride (HF) solution and transfer of graphene films. Adapted from [3]. 

Figure 7-4: Major transfer processes for the large-scale graphene films: Large-scale graphene film 

grown on copper (Cu) substrate, floating graphene film after etching the copper layers in (1M) 

FeCl3 aqueous solution. After the removal of the copper layers, the floating graphene film can be 

transferred directly on Si/SiO2 (300 nm) substrate. 

Figure 7-5: (a) Optical image of pure graphene deposited on SiO2/Si taken using 10x objective for 

large area, (b) Raman spectrum of the graphene taken at point L1 (marked on optical image), (c) 

Raman spectrum of the graphene taken at point L2 (marked on optical image). 

Figure 7-6: Raman mapping of (a) G, (b) D and (c) 2D band intensities of the pure graphene 

transferred SiO2/Si. Maps of relative intensities ID/IG (d) and I2D/IG (e) are also shown. 

Figure 7-7: Optical image and Raman spectra of pure graphene transferred on SiO2/Si using 

standard procedure without polymer such as PMMA. (a) Optical image taken using 10x objective 

to see large area, (b) Raman spectrum of the graphene taken at point L1 (marked on optical 

image), (c) Raman spectrum of the graphene taken at point L2 (marked on optical image), (d) 

Raman spectrum of the graphene taken at point L3 (marked on optical image). 

Figure 7-8: Raman mapping of the (a) G, (b) D and (c) 2D band intensities of nitrogen doped 

graphene transferred SiO2/Si substrates, respectively. It also shows the maps of the peak intensity 

ratios, ID/IG (d) and I2D/IG (e), respectively. 

Figure 7-9: Normalized overview XPS spectra of pure and in-situ ammonia doped graphene before 

and after their transfer to SiO2/Si. The main core levels related to substrate (Cu, Si and O) are 

indicated together with C 1s peak for carbon. Furthermore, a small quantity of iron atoms is 

detected on the transferred sample that were incorporated into the graphene sheets during the 

transfer process. 
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Figure 7-10: Comparison of the C 1s core levels obtained by high resolution XPS in pure and n-

doped graphene. The as grown graphene can be fitted by a single C sp2 component (black and 

green spectra). After transferring the samples, two new components appear that can be related 

to C sp2 and C-O bonds (red and blue spectra). 

Figure 7-11: Comparison between the N 1s high-resolution XPS spectra of (n-doped) graphene on 

Cu foil (green) and that transferred onto a SiO2 substrate (blue). 

Figure 7-12: (a) Low-voltage spherical aberration-corrected transmission electron microscopy 

(LVACTEM) images of graphene perforations. (b) BCC and (c) HCP Fe nanocrystals, with atomic 

structure and image simulation shown as insets [239]. 

Figure 7-13: (A) LVACTEM image of monoatomic Fe layer. Inset shows the interatomic spacing of 

the square unit cell. (B) Smoothed image of (A). (C) Image simulation of a monoatomic Fe layer. 

(D) Fast Fourier transform of the structure in (A). (E) Normalized intensity profiles from the image 

simulation (black line) and experimental image (red line). (F) Atomic structure of a suspended 

monoatomic Fe layer in a graphene pore. All scale bars 0.6 nm. Adapted from [239]. 

Figure 7-14: Fe 2p core levels obtained by XPS of a transferred graphene sample as a function of 

temperature. The inset shows Fe 2p3/2 level. 

Figure 7-15: Optical image and Raman spectra of pure graphene transferred on Au/Si using 

standard procedure without using polymer such as PMMA. (a) Optical image using 10x objective 

to see large area, (b) Raman spectrum of the graphene taken at various location namely L1, L2, L3 

and L4 (marked on optical image).  

Figure 7-16: Optical image and Raman spectra of n-doped graphene transferred on Au/Si using 

standard procedure without using polymer such as PMMA. (a) Optical image using 10x objective 

to see large area, (b) Raman spectrum of the graphene taken at various location namely L1, L2, L3 

and L4 (marked on optical image). (c) Raman mapping of G, D and 2D band intensities of the n-

doped graphene transferred Au/Si. Maps of relative intensities ID/IG and I2D/IG are also shown. (d) 

Burnt sample area marked in rectangle. 

Figure 7-17: Normalized overview XPS spectra of pure (black line) and n-doped (green line) 

graphene on copper substrate and after their transfer to Au/Si substrates. The main core levels 

related with the substrates (Cu, Au and O) are indicated together with C 1s. Furthermore, a small 

quantity of iron atoms is detected on the transferred samples that were incorporated to the 

graphene sheets during the transfer process. 

Figure 7-18: Comparison between the C 1s core levels obtained by high resolution XPS. The C 1s 

peak of pure graphene can be fitted by four components (bottom) whereas in the case of n-doped 

graphene it was fitted by only 3 components (top figure). 

Figure 7-19: Fe 2p core levels obtained by XPS of pure (black line) and n-doped (green line) 

graphene on Au/Si. 
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Figure 8-1: (a) Schematic diagram of modified CVD equipment for the growth of MoS2. (b) The 

temperature diagram for the growth process of large area MoS2 by modified CVD. 

Figure 8-2: Optical image of as synthesized MoS2 on SiO2/Si (300 nm). (a) Synthesized at ⁓10mbar 

having ⁓5-7µm samples of MoO(3-x) with rhombohedral structure, (b) Synthesized at ⁓50 and (c) 

⁓100 mbar with average size of 22 and 50 µm, respectively. 

Figure 8-3: Typical four distinct Raman-active modes present in MoS2 vibrational due in-plane and 

out-of-plane vibrations. 

Figure 8-4: Raman spectra of the sample grown at (a) 10mbar, (b) 50mbar, and (c) 100mbar. The 

spectra clearly shows the distinct peaks E1
2g, A1

g and Si in sample synthesized at 50 and 100mbar 

pressure respectively. The inset (b and c) showing the E1
2g and A1

g peaks. 

Figure 8-5: Combined Raman imaging using the distinct Raman spectra (left) and respective 

Raman spectra used for the combined Raman image (right) of the sample grown at 50 and 100 

mbar. The blue spectra (b, d) correspond to the blue region (a, c) and the red spectra (b, d) 

correspond to the red region (a, c) in Raman imaging respectively. The differences (Δ) between 

(E1
2g - A1g) were found to be 25.7 and 28.55 cm-1 for the sample synthesized at 50 and 100 mbar 

respectively. 

Figure 8-6: X-Ray photoelectron spectroscopy spectra of (a) Mo and (b) S respectively. The black 

dots are experimental data; red line is resultant fitting; green, blue, cyan and yellow are different 

components used for fitting. 

Figure 8-7: Schematic diagram of the Ultraviolet Photoelectron Spectroscopy associated with 

MoS2 

Figure 8-8: The figure shows the full UPS spectrum of MoS2 on SiO2/Si (red) and pristine SiO2/Si 

(black) acquired with He I. The inset shows the broad scale to focus the shift, in order to have 

linear fitting (black dotted line). The obtained work function is 4.67 eV. 

Figure 8-9: Shows the UV-visible diffuse reflectance spectrum of MoS2 synthesized on SiO2/Si 

substrate. Inset showing the (𝜶𝒉𝒗)𝟐 𝒗𝒔 𝑬 plot for calculating the direct bandgap. 

Figure 8-10: Electrical characterization of CVD synthesized MoS2. (a) Showing Focused Ion Beam 

Scanning Electron Microscopes used for electroding of the sample. (b and C) Showing the SEM 

image acquired after electroding the single grain and double triangular grain. Inset showing the 

captured image while the electroding process. 

Figure 8-11: Shows the corresponding electrical measurement conducted horizontally with 

operating voltage in the range -40 V to +40 V which show (a and c) semiconducting and (b and d) 

Ohmic nature of single grain and double triangular grain, respectively. 
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1. Scientific motivation and rationale 
 

It is more than a decade since the Nobel Prize winners Andre Geim and Konstantin Novoselov 

published the first series of their seminal papers, which triggered a sharp enhancement of the 

graphene research worldwide. Graphene has been the subject of many studies in the field of 

surface science due to its atomically flat carbon atoms with honeycomb lattice holding a wide 

range of promising applications. This is also due to its unique band structure and excellent 

electronic, optical, mechanical and thermal properties. For this research, the ultimate goal is to 

achieve the highest quality of graphene at the large scale with low cost having a precise control of 

layer thickness, stacking order and crystallinity. In order to achieve this goal, it is quite necessary 

to understand and to effectively control the growth procedure and other conditions required 

during the processing. Also, the cost-effective fabrication of graphene with high quality is 

undoubtedly crucial. It was reported in 2008, four years after its re-discovery, that the price of a 

microsized piece of graphene exceeds that of the same size of silicon wafer (Si wafer). The list of 

methods for the cost-effective production of graphene includes the graphitization of silicon 

carbide, chemical reduction of graphite oxide, liquid exfoliation etc. However, all these methods 

are not capable to solve the critical issues for graphene synthesis with controlled thickness, grain 

size, defects and doping. In fact, a synthesis route using Chemical Vapor Deposition (CVD) can 

provide a solution of this complex problem. Using CVD-based method it can be possible to 

synthesize graphene with controlled thickness, grain size, defects and doping. A typical CVD 

process mainly consists of four elementary steps, namely: (i) adsorption and catalytic 

decomposition of precursor gas, (ii) diffusion and dissolution of decomposed carbon species into 

the bulk, (iii) segregation of dissolved carbon atoms onto the metal surface, and, finally, (iv) 

surface nucleation and growth of graphene. 

Back to the late 1960s, it was a breakthrough revealing that certain metals if treated at 

high temperature with hydrocarbon could produce ultrathin graphitic films on the surface. The list 

of various metals which can be used as catalysts in CVD for graphene growth includes nickel (Ni) 

[1-4], cobalt  (Co) [4-6], copper (Cu) [7-10], ruthenium (Ru) [11, 12], iridium (Ir) [13], and 

palladium (Pd) [14]. Hitherto, the use of Ni and Co as catalytic substrates did not yield uniform 

monolayer graphene mainly due to the variation in their thickness (ranging from single to 

multilayers) and the difficulty in the control of carbon dissolved in Ni and Co films. The latter is 

due to high solubility of carbon and enhanced precipitation at the grain boundaries (0.6 wt% for 
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Ni and 0.9 wt% for Co at ⁓1300oC) [1-3]. On the contrary, Cu is an excellent candidate, which 

enabled researchers to grow single-layer high quality graphene with uniform thickness (95%), 

because of the low carbon solubility (0.001 - 0.008 wt% at 1080oC) [7-10].  

Taking the above concept in mind, the present thesis aims at obtaining high quality 

graphene at large scale and low cost using Cu and Ni as catalytic substrates. We study the growth 

process using alumina based Hot Thermal CVD (HTCVD) and controlling the flow of precursor 

gases such as methane (CH4) and hydrogen (H2) in the tubular furnace at adequate vacuum. This 

method is expected to yield single-layer defect free graphene that may be subsequently used for 

various industrial applications. 

It is quite important to tune the electronic properties of the pristine graphene, so that to 

use it in semiconductor applications, especially for the field effect transistors (FET). This tuning 

can be done in CVD process by molecular doping without degrading the transparency and 

electrical properties of graphene. The tuning leads to the alteration of graphene’s Fermi level, 

which is important factor for the successful operation of the electronic devices such as diodes, 

field effect transistors, light emitting diodes, solar cells etc. From the experimental point of view, 

doping of graphene with nitrogen (n-doped graphene) can be made possible by controlling the 

adequate flow of precursor gases including ammonia (NH3) during the deposition of graphene in 

alumina based HTCVD [15].  

Although graphene demonstrates outstanding electrical properties, there are still limits in its 

direct application for low-power electronic devices such as transistors. To overcome this problem 

the research started refocusing on other graphene-like 2D materials, aiming to conquer the 

shortages of graphene and to broaden its range of applications. The desired materials should 

stand on the expectation of the researchers such as higher melting temperature (⁓1000 oC) and 

they should be both chemically inert and stable at room temperature. Graphite, hBN (hexagonal 

boron nitride) and molybdenum disulfide (MoS2) are the best candidates in this competition. Due 

to its wide availability in nature as molybdenite, MoS2 has been one of the most studied layered 

transition metal dichalcogenides (TMDCs). Monolayer MoS2 is a semiconductor with a direct 

electronic  bandgap of ⁓1.8 eV [16]. This outstanding property of MoS2 is inspiring, probably 

overcoming the weakness of gapless graphene and thus making it possible to use 2D materials for 

the next generation of switching and optoelectronic devices.  
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For the synthesis of MoS2 two vapor methods are currently used, namely, physical vapor 

deposition (PVD) and chemical method (CVD). Different versions of PVD, namely, thermal 

evaporation, molecular beam epitaxy (MBE), Van der Waals epitaxy (VDWE), pulsed laser 

deposition (PLD), electron beam evaporation (EBE), radio frequency sputtering (RFS) and direct 

current sputtering (DCS) are currently used for the growth of MoS2. However, these techniques 

are relatively expensive, hence restricting their use. Also, it has been reported that by using PLD, 

EBE and RFS one can easily get other morphological structures (such as nano particles, nano rods, 

and nano tubes etc.) instead of desired layered structure [62-65]. In fact, CVD-based method has 

been the most common and desired technique for the synthesis of MoS2, because herein 

regulating the temperature and the carrier gas flow can control the deposition parameters. 

Given the above, this PhD work is focused on the MoS2 growth in the quartz tube furnace, 

by using sulfur and MoO3 powders as precursors in the upstream position relative to the gas flow 

direction under the pressure of 50 mbar. Notably, the stabilization of the furnace temperature 

and the flow rate of Ar gas can help in obtaining highly crystalline MoS2 films. Thus, we show the 

CVD grown MoS2 can be a promising material in the field of micro- and optoelectronics. In 

particular, applications of MoS2 films are foreseen in such diverse areas as transistors [17], 

photodetectors [18], solar cells [19], etc.  

The aim of this PhD work was to assemble, to parameterize and to use the CVD method 

for the synthesis and characterization of graphene and other 2D materials (MoS2). This may help 

in realizing 2D electronic devices with high carrier mobilities and also to understand the behavior 

of these 2D materials upon small ion intercalation. In order to tune the electronic properties of 

graphene, this work was focused on assembling the CVD setup for the growth of high quality 

graphene and on in-situ heteroatom doping by ammonia (NH3). In addition to this, the effect of 

the substrate thickness on defect creation was investigated. Furthermore, this research aimed at 

the synthesis of high quality TMDs materials (MoS2) by modifying the current CVD equipment and 

parameterizing the growth conditions. By using Ultraviolet Photoemission Spectroscopy, we 

determined the structure of the valence band and work function (4.67 eV) of MoS2 on SiO2/Si 

substrates. In-situ electrical measurements confirmed the expected semiconducting behavior. A 

thorough review of the fundamental properties as well as the synthesis methods of 2D materials 

was one of the objectives of this PhD work.  

Overall, the scientific results obtained in this work are supposed to contribute significantly 

to the mastering of the synthesis process and to understanding of the properties of graphene and 
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other 2D materials. This work may be also useful for the future applications of graphene in 

electronic and optical devices thus creating new perspectives for their further development. 
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Abstract  

The purpose of this chapter is to provide the background of the PhD work. This chapter presents a 

thorough review on the state-of-the-art of graphene and other two-dimensional materials, 

especially molybdenum disulfide. It starts from the description of the electronic properties of 

graphene and its importance for both fundamental science and 

industrialization/commercialization. It also overviews major technical approaches employed for 

achieving graphene and overall qualities comparisons.  Furthermore, this chapter also enlightens 

the role of defects (and problems associated with them), as well as intentional doping of 

graphene, including the methods of thereof. It also briefly introduces the two-dimensional 

materials other than graphene. Additionally, a short review on the state-of-the-art of 

molybdenum disulfide is given and its properties are compared with graphene in view of the 

increasing demands of such materials in nano-electronic world.  
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2. Introduction – fundamentals and state-of-the-art* 

2.1. Why graphene and its benefits 

Carbon is one the most important building block elements in the universe. It is an element that 

holds the fundamental role in the life on our planet. It is also the primitive block of virtually all 

organic chemistry having the highest sublimation temperatures among all elements ⁓ 3500 oC. A 

number of extraordinary properties makes it suitable material for a wide range of technological 

applications [20-23]. Therefore, the field of research on graphene as a single atomic layer of 

graphitic carbon, and on other two-dimensional materials has been enjoying extraordinary growth 

during the past decade. Carbon has four valence electrons, which can hybridize in many ways. 

This hybridization may be sp, sp2 or sp3 allowing carbon to form linear chains, planar sheets and 

tetrahedral structures (Figure 2-1). As a result, carbon has intrigued and inspired physicists, 

chemists, biologists and, recently, medical scientists in their research. Its excellent charge-carrier 

mobility quickly grabbed the attention of the scientific community bringing a hope that one day it 

will compete with silicon to be a material of choice for the next generations for certain 

applications in the electronic industries. Furthermore, many extraordinary properties, such as its 

2.3% optical absorption of the white light spectrum, high surface area, high Young’s modulus, and 

excellent thermal conductivity, have all been reported. Because of these remarkable properties, 

applications using graphene in a wide range of areas, including high-speed electronic and optical 

devices, energy generation and storage, hybrid materials, chemical sensors, and even DNA 

sequencing, have all been explored. Beyond this, very recently, graphene based field-effect 

transistors (GFETs) were implemented showing exciting and bright prospects for sensing 

applications due to their much higher sensitivity and stronger selectivity [24-26]. GFETs play a role 

for the preparation of ultra-sensitive nanoelectronic biosensors because of their perfect 

characteristics, including high carrier mobility, strong and flexible structure, and so on. Seon Joo 

Park and co- workers [27] have been  able to make an ultrasensitive and flexible FET olfactory 

system named “Bioelectronic nose”. There are numerous examples in which graphene was used 

for biological applications, for example, as detectors of living cells and bacteria [28],  as GFETs 

functionalized with Escherichia coli antibodies [29], and as FETs for the detection of malaria-

infected red blood cells [30].  

                                                           
* The part of introduction has been submitted as Chapter in “Chemical Vapor Deposition (CVD): Technology 
and Applications”, Editor – Kwang-Leong Choy, Publisher - CRC Press & Taylor & Francis Inc. 
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Figure 2-1: Examples: Possible carbon-carbon hybridization. The top shows the sp3 hybridization 
with its atomic structure (diamond); the middle one presents the sp2 hybridization and its 
atomic structures (C60, graphite, and carbon nanotube; the bottom one describes the sp 
hybridization and its atomic structure (acetylene-C2H2), respectively. Adapted from [31]. 

A variety of proof-of-concept devices has also been demonstrated. Materials science had a major 

scientific breakthrough in 2004, when Konstantin Novoselov and Andre Geim isolated the first 

single layer of two-dimensional (2D) material, graphene, through the Scotch tape exfoliation of 

graphite [32], and received Nobel Prize in 2010. However, the obtained samples were suitable 

only for the fundamental studies. Moreover, pristine graphene itself is unlikely to be used for the 

fabrication of logical circuits operated at room temperature with low standby power dissipation 

because graphene has no band gap. This results in a small current on/off ratio in graphene field-

effect transistors. The prerequisite for such applications is the mass production of graphene in a 

controlled manner because the number of graphene layers as well as the defects in these 

significantly influence the resulting transport properties. In this direction, some other 2D 

materials like transition metal dichalcogenides (TMDCs) have also been tried to overcome these 

problems. Very recently such 2D lattices, such as silicene, and germanene (sp2-hybridized 

equivalent of graphene) offered better compatibility with silicon processing and may provide 

solutions for some of the problems of graphene associated with the lack of an energy gap. 

Methods such as mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, and 
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molecular beam epitaxy have been developed in order to fabricate single- and few layers of 2D 

lattices. Despite these efforts, the fine control of the number and structure of graphene and other 

2D lattices over entire substrate remains a major challenge. More realistic samples from an 

industry point of view were obtained by CVD and related techniques on metallic substrates.  

The story of graphene is quite old, in fact we were using it from long time when Petroski in 1564 

invented pencil using graphite (which comprises stacked graphene) but we were not aware that 

we are making graphene in a simple way (by pressing pencil against a sheet of paper) [33]. 

Moreover, theoretically graphene has been studied sixty years ago, and was widely used for 

describing properties of various carbon-based nanostructured materials.  After forty years, it was 

accidently re-discovered by Andre Geim and his colleague Konstantin Novoselov from HOPG 

(Highly Oriented Pyrolytic Graphite) with simple Scotch tape method by mechanical exfoliation 

[32]. For this achievement, the group was awarded with the Noble Prize in 2010. Up to now, the 

best quality graphene, in terms of structural integrity, has been obtained by this method, 

consequently only small graphene sheets (several micrometers in size) can be produced, and the 

number of exfoliated layers is not easily controlled. However, large area high-quality graphene 

with low number of structural defects is needed for the practical applications such as 

microelectronics (field effect transistors), optoelectronics (solar cells, touch screens, liquid crystal 

displays), biosensors, nanofluidics, graphene based batteries, super-capacitors, for various energy 

applications, etc. In this context, “bottom-up” synthesis route using chemical vapor deposition 

(CVD) holds promise for the large area graphene deposition. 

 

2.2. Electronic structure of single layer graphene 

Graphene is made out of carbon atoms arranged in hexagonal structure, as represented in Figure 

2-2. The structure can be viewed as a triangular lattice with a basis of two atoms per unit cell. The 

lattice vectors can be written as 

𝒂𝟏 =  
𝒂

𝟐
 (𝟑, √𝟑), 𝒂𝟐 =  

𝒂

𝟐
 (𝟑, −√𝟑),     (Eq. 2-1) 

where a ≈ 1.42 Å is the carbon-carbon distance. The reciprocal-lattice vectors are given by:  

𝐛𝟏 =  
𝟐𝛑

𝟑𝐚
 (𝟏, √𝟑), 𝐛𝟐 =  

𝟐𝛑

𝟑𝐚
 (𝟏, −√𝟑)     (Eq. 2-2) 
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In the physics of graphene, the two points K and K´ at the corners of the graphene Brillouin zone 

(BZ) represented as Dirac points. Their positions in momentum space are given below: 

𝐊 = ( 
𝟐𝛑

𝟑𝐚
,

𝟐𝛑

𝟑√𝟑𝐚
) , 𝐊′ =  ( 

𝟐𝛑

𝟑𝐚
, −

𝟐𝛑

𝟑√𝟑𝐚
).     (Eq.  2-3) 

The three nearest-neighbor vectors in real space are given by 

𝜹𝟏 =  
𝒂

𝟐
 (𝟏, √𝟑) 𝜹𝟐 =  

𝒂

𝟐
 (𝟏, −√𝟑) 𝜹𝟑 =  −𝒂 (𝟏, 0) ,   (Eq. 2-4) 

while the six second-nearest neighbors are located at δ’1 =  ± 𝑎1, δ′2 =   ± 𝑎2,  δ′3 =   ±(𝑎2 −

𝑎1). 

The tight-binding Hamiltonian for electrons in graphene considering that electrons can hop to 

both nearest and next nearest neighbor atom, has the form (we use units such that ħ = 1) 

𝑯 =  −𝒕 ∑ (𝒂𝝈,𝒊
† 𝒃𝝈,𝒋 + 𝐇. 𝒄)(𝒊,𝒋),𝝈 − 𝒕′  ∑ (𝒂𝝈,𝒊

† 𝒂𝝈,𝒋 + 𝒃𝝈,𝒊
† 𝒃𝝈,𝒋 + 𝐇. 𝒄. ),≪𝒊,𝒋≫,𝝈   (Eq.  2-5) 

where 𝑎𝑖,𝜎(𝑎𝑖,𝜎
† ) annihilates (creates) an electron with spin 𝜎 (𝜎 = ↑, ↓) on site R𝑖 on sublattice A 

(an equivalent definition is used for sublattice B), 𝑡(≈ 2.8eV) is the nearest-neighbor hopping 

energy difference between different sub lattices), and t' is the next nearest-neighbor hopping 

energy (hopping in the same lattice). The energy bands derived from this Hamiltonian have the 

form [34].  

𝑬±(𝐤) =  ±𝒕√𝟑 + 𝒇(𝐤) − 𝒕′𝒇(𝐤),         

𝒇(𝒌) = 𝟐 𝒄𝒐𝒔(√𝟑 𝒌𝒚𝒂) + 𝟒 𝒄𝒐𝒔 (
√𝟑

𝟐
𝒌𝒚𝒂) 𝒄𝒐𝒔 (

𝟑

𝟐
𝒌𝒙𝒂),   (Eq.  2-6) 

where the plus sign applies to the upper (𝜋∗) and the minus sign - to the lower (𝜋) band. It is 

clear from Eq. 2-6 that the spectrum is symmetric around zero energy if 𝑡′ = 0. For finite values of 

𝑡′, the electron-hole symmetry is broken and the 𝜋 and 𝜋∗ band become asymmetric.  
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Figure 2-2: (a) Lattice structure of graphene honeycomb lattice, (b) its Brillouin zone, electronic 
dispersion in the honeycomb lattice, (c) energy spectrum (in units of t) for finite values of t and 
t’ for t = 2.7 eV and t’= −0.2t with zoomed energy bands close to one of the Dirac points. 
Modified from [34] 

Figure 2-2 shows the full band structure of graphene with both 𝑡 and 𝑡′.  This figure (b) also shows 

the zoom in of the band structure close to one of the Dirac points (at the 𝐾 or 𝐾′ point in the BZ) 

(Figure 2-2). This dispersion can be obtained by expanding the full band structure (Eq. 2-6) close 

to the K (or 𝐾′) vector, Eq.  2-3 as k = K+q, with |q| ≪ |K| [34]. 

𝑬±(𝐪) ≈  𝒗𝑭|𝐪| + 𝑶[(𝒒/𝑲)𝟐],      (Eq. 2-7) 

where q is the momentum measured relatively to the Dirac points and 𝑣𝐹 is the Fermi velocity, 

given by 𝑣𝐹 = 3𝑡𝑎/2, with a value  𝑣𝐹 ≅ 1 × 106 m/s. This result was first obtained by P.R. 

Wallace [34]. 
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2.3. Graphene synthesis and properties  

Graphene exhibits remarkable electronic, mechanical, optical, and thermal properties as 

compared to those obtained in any other material justifying its nickname of a “miracle material”. 

Many graphene characteristics measured in experiments have reached theoretically predicted 

limits such as: i) room-temperature electron mobility of 2.5 x 105 cm2V-1 s-1 [35] (theoretical limit  

⁓2 x 105 cm2V-1s-1) [36]; Young’s modulus of 1 TPa and intrinsic strength of 130 GPa [37] (very 

close to that predicted by theory [38]); very high thermal conductivity (above 3,000 W mK-1; [39]); 

optical absorption of exactly 𝜋𝛼 ≈  < 2.3% (in the infrared limit, where 𝛼 is the fine structure 

constant) [40]; complete impermeability to any gases [41], ability to sustain extremely high 

densities of electric current (a million times higher than the copper) [42]. In addition, graphene 

can be readily chemically functionalized by various heteroatoms, and functional molecules for 

many “exotic” applications in the field of nanotechnology [43]. 

The above described superior properties have been achieved only with the highest quality 

samples (mechanically exfoliated graphene [44]) and for graphene deposited on special substrates 

like hexagonal boron nitride substrates. However, equivalent characteristics have not been yet 

achieved on graphene prepared by other techniques. There is a lot of research undergoing to 

master the conditions for the high-quality mass production of graphene for real state-of-the-art 

device applications at the industry level.  

Currently, there are many methods used and developed to prepare graphene of various 

dimensions, shapes, and qualities. The list of those methods includes:  

(i) Liquid phase exfoliation, 

(ii) Synthesis on SiC, 

(iii) Chemical vapor deposition 

The above-mentioned production methods can be used for scalable production. However, 

graphene can also be grown under UHV conditions [45]. Literature also reveals the synthesis of 

graphene on different metallic single crystals like Pt(111), Ir(111) or Ru(0001).  

Figure 2-3 shows Scanning Tunneling Microscopy (STM) images (a and b) and a LEED pattern 

(Figure 2-3 (c)) obtained after growing single layer graphene on Pt(111) under Ultra High Vacuum 

(UHV) conditions. STM reveals a rich variety of Moiré-like superstructures covering the whole 

surface while characteristic LEED pattern shows bright spots (red arrow in Figure 2-3 (b)) related 
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to the Pt(111) surface together with a low intensity ring that can be related to the graphene 

sheet. High resolution STM image of one of these Moiré like superstructures (Figure 2-3 (b)) 

shows the honey-comb pattern of the carbon atoms in the background while the aspect of the 

STM image is modulated by the Moiré. The red arrows indicate the vectors of the unit cell, which 

in the example presented here, are around 1.5 nm in length.  

 

Figure 2-3: STM images (a, b) and LEED (c) pattern obtained after growing single layer graphene 
on Pt(111) under UHV conditions. 

The analysis of the STM images combined with the one obtained by LEED indicates that the 

graphene sheet on Pt(111) is formed by small domains that follow different angular orientations 

with respect to the main crystallographic directions of the metallic surface. Thus, when the 

molecular precursors are introduced in the experimental facility, graphene starts growing in 

several points that are spatially separated. Then, as the coverage increases, the islands slowly 

grow covering the surface until the borders of neighbor domains get in contact. Interestingly, the 

intensity of the graphene ring detected by LEED is modulated as a function of the angle (see 

yellow arrows in Figure 2-3 (c)) rather than uniform. This modulated intensity indicates that the 

structural angular orientation of the graphene domains follows specifics angles with respect to 

the Pt(111) main crystallographic directions. A phenomenological model based on the strain of 

the graphene domains following different on-surface angular orientation, predicts up to 22 

different possibilities [46]. 
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Similar Moiré-like superstructures have been observed on other metallic substrates like Ru(0001) 

[47], Rh(111) [48] and Ir(111) [49]. Interestingly, the observed Moiré patterns depend strongly (in 

particular their orientation, corrugation and periodicity) on the particular substrate underneath. 

That indicates a non-negligible correlation between the metallic atoms of the last layer of the 

substrate and the graphene sheet. The XPS characterization of graphene shows that both the 

shapes of the carbon spectra and their binding energies strongly depend on the particular metallic 

substrate. The reference sample, HOPG, presents a sharp peak that can be fitted by only one peak 

centered at a binding energy of 284.23 eV and 0.35 of FWHM. Also, the spectra corresponding to 

graphene on Pt(111) and Ir(111) are very sharp and can be fitted by only one component. The BE 

and FWHM obtained for the first case are 283.97 eV and 0.34, while for the second case they are 

284.16 eV and 0.4, respectively. On the other hand, the Rh(111) and Ru(0001) cases present 

several differences. The XPS spectra show that at least two components are necessary for fitting 

the peaks. The BEs obtained for Rh(111) case are 284.94 eV and 284.41 eV, while their respective 

FWHM are 0.56 and 0.46. In the Ru(0001) case values of 285.12 and 284.52 eV are obtained for 

the BEs and 0.61 and 0.48 for the FWHM, respectively. This splitting of the C 1s core level peak 

with respect to the HOPG sample indicates that the carbon atoms of the graphene sheets are 

under different chemical environments. Thus, in the last two cases, the modulation of the Moiré 

structures observed in the topographic STM images have a counterpart in the XPS, indicating an 

alternating sequence of high and low interaction between carbon atoms and the metallic 

substrate.  

 

2.3.1. Graphene by liquid phase exfoliation 

 

In order to develop the commercial applications from laboratory, it is quite necessary to have 

industrially scalable methods for the large area production of graphene. In this respect, liquid 

exfoliation technique is a promising method [50]. The basic principle is to make colloidal 

dispersions of graphite or graphite oxide powder in different solvents followed by sonication. 

There can be various categories depending upon the starting precursor and process involved such 

as the liquid-phase exfoliation from graphite oxide, pristine graphite and expanded graphite 

(EG), and sonication-free liquid-phase exfoliation.  
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2.3.1.1. Graphene from liquid-phase exfoliation from graphite oxide via Hummers 

method 

 

Using graphite as a precursor, graphene oxide (GO) can be easily grown by exfoliation method 

with the help of sonication. This method is known as the Hummers method [51]. The GO contains 

carbon having sp2 bonded structured with hydroxyl or carboxyl groups. These hydroxyl and 

carboxyl groups can make significant advantages for GO [52-54]. But, due to the oxidation 

process, GO gets defects which degrade its anticipated properties.  In 2007 Stankovich et al.  [53] 

used hydrazine as reducing agent at 100 oC for 24 h to obtain GO. Later, a few more reducing 

agents were introduced such as hydroquinone [55] and sodium borohydride (NaBH4) [56]. It was 

Wang et al. who used hydrazine along with N, N-dimethlyformamide (DMF) at 180 oC as a 

reducing agent. This was quite effective as they were using solvothermal reduction process [57].  

Later, it was reported that Fe (iron) can also be used as reducing agent for the formation of 

graphene oxide [58]. There can be numerous methods for obtaining graphene from graphite 

oxide but none of these can yield perfectly structured graphene. Also the oxygen-containing 

groups in GO are highly sustainable and it is very difficult to remove them [58]. 

 

2.3.1.2. Graphene from liquid-phase exfoliation from pristine graphite oxide via 

sonication 

 

It was well known about the demerits of presence of oxides in graphene prepared from graphene 

oxide. So keeping this in mind in 2008 Hernandez et al. used a gentle method to produce high-

quality graphene through dispersion and exfoliation of pristine graphite in certain organic solvents 

such as N-methyl-pyrrolidone (NMP), DMF, γ – butyrolactone (GBL), 1,3 – dimethyl-2-

imidazolidinone followed by sonication for 30 min and centrifugation (500 rpm, 90 min) [59]. This 

result can yield the concentration of graphene dispersion in the solution for up to 0.01 mg mL-1, 

and a few monolayers were also found. Among all the organic solvents NMP provides the best 

thermodynamic stabilization due to best matching of surface energy to that of graphite. This 

energy balance is expressed as the enthalpy of mixing per unit volume and is given by 

∆𝑯𝒎𝒊𝒙

𝑽𝒎𝒊𝒙
=

𝟐

𝑻𝒇𝒍𝒂𝒌𝒆
 (𝜹𝑮 − 𝜹𝒔𝒐𝒍)

𝟐𝝓   ,     (Eq. 2-8) 
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where 𝛿 is the square root of the surface energy of graphite or solvents (the surface energy of 

graphite is defined as the energy per unit area minimum required to overcome the Van der Waals 

forces when peeling two sheets apart). 𝑇𝑓𝑙𝑎𝑘𝑒𝑠 is the thickness of a graphene flake and 𝜙 is the 

volume fraction of the graphene. This matching is quite important criterion for successful 

exfoliation. The closer the graphene and solvent surface energies are, the smaller the enthalpy of 

mixing is, and the higher degree of exfoliation will be. Later Lotya et al. [60] used water and 

sodium dodecyl benzene sulfonate to exfoliate graphite with the help of sonication process. It is 

quite important to mention that the experiment resulted in more than 40% of the flakes thinner 

than 5 layers. The results from HR-TEM and Raman spectra confirm that 3% of flakes have defect 

free monolayer.  

2.3.1.3. Graphene from liquid-phase exfoliation from expanded graphite 

 

In this method, high temperature or microwave treatments have been employed to expand 

graphite for better liquid-phase exfoliation [61-63]. The heat treatment at high temperature 

followed by sonication makes liquid phase exfoliation easier with solutions.  

 

Figure 2-4: HR-TEM images of a freely suspended graphene membrane. (a) Bright-field TEM 
image of a suspended graphene membrane. (b) Magnified view of the region denoted by a 
green box in (a); the inset shows 2D FFT performed in the region indicated with a white box. (c) 
HR-TEM image of single-layer graphene acquired from the region indicated with a red dotted 
arrow in (b). (d) Reconstructed image after filtering in the frequency domain to remove 
unwanted noise, for clarity. The inset shows the hexagonal graphene network. Adapted from 
[64]. 
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Using these technique Singh et al. [64] reported fabrication of single or FLG (few layer graphene, 

2-6 layers) dispersed in DMF solution. Although the percentage of single-layer graphene was 

lower as compared to FLG, they were able to explain the rotational stacking faults with various 

rotation angles in 2, 3 and 6 layer graphene sheets (Figure 2-4).  

In another work, Qian et al. [61] used expanded graphite as starting material and were able to 

achieve monolayer and bilayer graphene nanosheets (GNS) around 10 wt%. They produced them 

by a solvothermal-assisted exfoliation process in acetonitrile (ACN) (Figure 2-5).  

 

Figure 2-5: Schematic diagram of the solvothermal-assisted exfoliation and dispersion of 
graphene sheets in acetonitrile (ACN): (a) pristine expandable graphite; (b) Expanded Graphite 
(EG); (c) insertion of ACN molecules into the interlayers of EG; (d) exfoliated graphene sheets 
dispersed in ACN; (e) Optical images of samples obtained. Adapted from [61].  

The authors made homogenous colloidal suspension of single or FLG sheets up to 0.15 mg mL-1 in 

N,N-dimethylformamide (DMF) solution. Their method included high temperature heat treatment 

(⁓2000 oC) of commercially available pyrolytic graphite powders in a vacuum (1.3 x 10-5 mbar) for 

3h followed by probe-tip sonication for 2h of as obtained heat-treated graphite in DMF solution. 

The pyrolytic graphite has weakly bonded graphene layers by interlayer interaction forces along 

the c-axis, which can easily slide against each other and can also be peeled off. They gave quite 

informative knowledge about the introduction of Moiré pattern along with rotation stacking 

faults in AB Bernal stacked graphene bilayers, which changes the dispersion relationship close to 

the k-point from parabolic (AB) to linear band behavior (rotation disorder) and leads to some 

monolayer graphene properties being observed in two-layer and FLG films. 



Fundamentals, Literature review and the State-of-the-art 

22 

 

Another factor affecting the liquid-phase exfoliation is insolubility of graphite. To overcome this 

problem, chemical modification of graphite has been explored for facilitating their solubility and 

subsequent exfoliation. Keeping this in the mind, in 2010 Sun et al. [65] used in-situ diazonium 

reactions to bond 4-bromom-phenyl onto the surface of expanded graphite and followed by mild 

sonication in DMF. The method used higher solubility of exfoliated graphene as compared to 

pristine graphene, and also increased the chance of obtaining more than 70% of the soluble flakes 

with less than five layers. 

 

2.3.1.4. Graphene from sonication-free liquid-phase exfoliation 

 

In this technique of exfoliation, the powdered pure graphite is immersed in the atmosphere of 

super-critical CO2 (carbon dioxide) for about 30 min and is immediately depressurized the 

supercritical fluid to expand and exfoliate graphite. Avoiding restacking, the graphene sheets 

were collected by discharging the expanding CO2 gas directly into a solution with sodium dodecyl 

sulfate (SDS). This technique (see Figure 2-6) was demonstrated by Nen-Wen et al. in 2009 [66].  

The authors used commercially powdered natural graphite (particle size of ⁓ 70 μm) with a purity 

of 99.99995% and a density of 2.25 g/cm3.  

 

Figure 2-6: Schematic diagram of the supercritical CO2 processing system used for exfoliation of 
powdered graphite. Adapted from [66]. 

Approximately, 1.0 g of graphite was placed in a high-pressure vessel with a heater and a 

temperature controller. CO2 was then added into the vessel until the pressure reached 7.5 x 104 
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Torr. After that, heat was applied to the vessel so that the temperature of the vessel should 

maintain at 45 °C. The graphite was then immersed in the solution of sodium dodecyl sulfate 

(SDS) for 30 min. During the 30-min immersion in the supercritical fluid (SDS), the supercritical 

CO2 diffused in between the layers of graphite due to its low viscosity, high diffusivity, and small 

molecule size. The described above technique was suitable for large-quantity production of 

graphene and the purity of the produced graphene was much better because this technique did 

not involve any steps that convert graphene into graphite oxide or introduce any functional 

groups, impurities, or coating agents. The yield of pure graphene sheets in this technique is as 

high as ⁓ 30 to 40 wt.% [66].  

Graphene can also be self-exfoliated by induced strong repulsions between its interlayers. To this 

end, Behabtu et al. observed that graphite could be spontaneously exfoliated in single layer 

graphene if treated in chlorosulfonic acid and dissolved at isotropic concentrations (2.0 mg mL-1) 

[67].  

Although the liquid exfoliation can yield the mass production graphene using various techniques 

but, due to poor electrical properties (Table 2-1), it could not get more attention for industrial 

applications. The graphene oxide (GO) is mainly synthesized by the Brodie, Staudenmaier, or 

Hummers methods or by modification of these methods. Major steps in the methods are to be 

performed very carefully. This is because reactions such as potassium chlorate (KClO3) with nitric 

acid (HNO3) are quite dangerous. Notably, the methods used by Brodie and Staudenmaier, also 

the Hummer method, the treatment of potassium permanganate (KMnO4) and sulfuric acids 

(H2SO4) is risky and health hazardous.  
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Table 2-1: Comparison of sheet resistances and optical transmittance between graphene and 
graphene oxide. 

Graphene obtained Resistance/Conductance Transmittance  
Wavelength 

Reference 

Spin coating of reduced 
graphene oxide –SiO2 

composite 

0.45 Ω/cm−2 (28nm thick) 95% (550 nm) [68] 

Spin coating of reduced 
graphene oxide 

102 – 103 Ω/cm−2 80% (550 nm) [69] 

Dip-coating of graphene oxide 
followed by reduction 

550 Ω/cm−2 (10nm thick) 70.7% (1000 nm) [70] 

Spray coating of chemically 
modified graphene oxide 
suspension at pH 10 

2 × 107 Ω/cm−2 96% (600–1000 
nm) 

[71] 

Vacuum filtration of graphene 
platelets made by sonication of 
graphite in 
n-methyl-2-pyrrolidone (NMP) 

3 × 103 Ω/cm−2 75% (550 nm) [72] 

Spray deposition of graphene 
platelets made by sonicating 
graphite in 
dimethylformammide (DMF) 

5 × 103 Ω/cm−2 90% [73] 

Spin assisted self-assembly of 
reduced graphene oxide 

1.1 × 104 Ω/cm−2 87% (550 nm) [74] 

Liquid-liquid assembly of 
graphene platelets 

100 Ω/cm−2 70% (500 nm) [75] 

 

 

2.3.2. Graphene by synthesis on silicon carbide (SiC) 

 

Silicon carbide (SiC) is a semiconductor, which has high thermal conductivity and chemical 

stability, and is also able to operate at high temperature and in a high radiation environment. It is 

composed of silicon and carbon in an equal stoichiometric ratio, which has a wide bandgap (2.3-

3.3 eV). Naturally developed SiC is very rarely found, either in some inclusions in minerals and 

diamond or in meteorites. SiC is very interesting material, which has wide spread applications, 

especially in high power devices, high temperature controllers and sensors, high voltage 

switching, and microwave components.  

In 1975 Bommel et al. using UHV conditions (<10-10 Torr) sublimed silicon atoms from silicon 

carbide (SiC (0001)) to form thin sheets of graphene [76]. This process allows to have low-defect 
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density graphene films deposited directly on the semi-conducting substrates [77-83].  In the year 

1970, the basic principles of a modified seeded sublimation growth process, which was required 

for the growth of 6H-SiC were established by Tairov and Tzvetkov [84, 85]. This was the 

breakthrough in the growth of SiC and it was also known as Lely process. Later, using LEED and 

Auger electron spectroscopy, van Bommel et al. [86] were able to obtain monolayer flakes of 

carbon consistent with the structure of graphene. In fact, the first SiC was synthesized in 1824 by 

the Swedish scientist Jöns Jocab Berzelius. However, the process of SiC powder production was 

introduced in 1892 by E.G. Acheson [87] and the first SiC production on an industrial scale was 

started by Acheson in 1893 [88] which included the electrochemical reaction of sand and carbon 

at high temperatures (up to 2550 oC). SiC is a semiconductor material of group IV-IV with mainly 

covalent Si-C bonds (88% covalent and 12% ionic). The distance between the two neighboring 

silicon or carbon atoms is about 3.08 Å, while very strong sp3 bond between carbon and silicon 

atoms is because of the very short distance between them, approximately 1.89 Å [89].  

The growth of graphene (graphitization process) on SiC surfaces can be made in different growth 

arrangements such as vertical RF-heated furnace consisting of a quartz tube, porous graphite 

insulation and graphite crucible shown in Figure 2-7 (a).  In a standard procedure for obtaining 

high quality graphene on SiC substrate, the samples need to be heated at ⁓1680 oC in a controlled 

atmosphere [83]. The preparation method includes a first step of H-etching of the surface 

followed by an annealing at ⁓1680 oC in an atmosphere of 900 mbar of argon. The samples 

prepared by following this method normally exhibit very high quality single layer graphene 

terraces.  
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Figure 2-7: (a) Typical vertical RF-heated furnace in cross-section for graphitization of SiC [89], 
(b) LEED pattern at 74 eV having diffraction spots due to SiC(0001) substrate and graphene 
lattice, (c) XPS peak of C1s core-level spectrum measured at a photon energy of 700 eV (d) 
ARPES  image of π bands in the vicinity of the K-point of the hexagonal Brillouin zone measured 
along the Γ K-direction, and (e) comparison of Raman spectra of Ar-grown (red) and UHV-grown 
(blue) epitaxial graphene on 6H–SiC(0001). Adapted from [83]. 

Figure 2-7 (b) shows a diffraction pattern performed by low-energy electron diffraction (LEED) 

technique. The diffraction patterns consisting of sharp spots show a high level of order in the 

graphene samples and also their orientation (blue arrows) with respect to the substrate main 
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crystallographic direction (red arrows). Thus, the basal plane unit vectors of graphene are rotated 

at 30° with respect to the SiC(0001) surface. In Figure 2-7 (d) the C 1s core level peak obtained by 

XPS shows a rich variety of components related to carbon atoms under different chemical 

environments. At lower binding energies, there is a component related to the carbon atoms of the 

SiC substrate (indicated as SiC in the Figure 2-7). Then, a main sharp peak dominates the spectrum 

and is related to the carbon atoms of the graphene sheet (indicated as G). And, finally, two 

components, indicated as S1 and S2 coming from the (6√3×6√3) R30° interface layer (buffer layer) 

of the sample. Interestingly, the electronic properties of the graphene sheet can be probed by 

angle resolved photoelectron spectra near the K point (Figure 2-7 (c)). It shows the characteristic 

band structure that corresponds to high quality single layer graphene sample [90]. The position of 

the Dirac energy (red arrow in Figure 2-7 (c)) at 0.45eV below the Fermi level indicates an 

electronic doping of the graphene sheet from the substrate. Finally, Raman spectra presented in 

Figure 2-7 (e) compare the quality of the graphene samples obtained by this methodology (red 

spectra) with respect to other techniques (blue). The characteristic G and 2D lines are clearly 

observed. The narrowest width of the 2D line of the red spectra together with the low intensity of 

the D peak indicate that the quality of the sample obtained by the above preparation procedure is 

better than that for other techniques. Importantly, the blue-shift (38 cm-1) detected in the 2D 

peak with respect to exfoliated graphene [91] is due to a compressive strain of graphene 

produced by the substrate underneath. 

 

2.3.3. Graphene by chemical vapor deposition 

 

The first report on CVD synthesis of graphene was published in 2006 by Somani et al. [92]. The 

growth and development of high quality and large area graphene on the catalytic metal 

substrates have been undertaken in the following years [11, 13, 93].  

Produced so far large-scale graphene films were polycrystalline, and the research efforts were 

more focused to control the domain size, the number of graphene layers, the density of grain 

boundaries, the defects etc. Using CVD technique, one can easily produce graphene on 

polycrystalline metals with up to micrometer- to millimeter-size size domains. However, the 

graphene films grown on Ni foils do not yield uniform monolayer graphene; in most cases, it 

resembles a mixture of monolayer and a few layer graphene (polygraphene). On the other hand, 

it was experimentally proved that Cu is an excellent candidate for making large-area of single-
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layer graphene with uniform thickness (95%). This could be due to the low solubility of C in the 

Cu. Previous results showed that graphene growth on Cu is somehow surface-mediated and self-

limiting [7]. It is worth mentioning here that Cu-catalyzed CVD graphene growth, and the 

hexagonal lattice of Cu(111) favored the high quality of the as-grown graphene.  Furthermore, 

during growth by CVD on Cu(111), the orientation of graphene nuclei became well controlled by 

the domain boundaries of Cu.  

The Hummers’ method – based production of graphene by graphite oxide (the most popular wet 

chemical method) involves the exfoliation mechanism of the oxidative intercalation and 

production of oxygen-containing functional groups on the graphene layers which disperse and 

stabilize GO sheet in the water [94]. The story of Hummers’ method started in the 1859, when 

Brodie oxidized graphite in the presence of potassium chlorate and fuming nitric acid and beyond 

that it slowly evolved to the widely used Hummers’ method that involves the combination of 

sodium nitrate, potassium permanganate and sulfuric acid [95]. Since then, efforts have been 

made to improve further the Hummers method by eliminating the use of sodium nitrate (which 

produces toxic nitrous gas) [96]. The production of GO is lagging behind due to GO’s chemical 

inhomogeneity, batch-to-batch irreproducibility and inevitable creation of irreparable hole 

defects on the graphene sheets during the oxidation, which effects the conductivity of GO. 

However, Eigler et al. recently showed the production of GO with larger region of pristine network 

at low temperature oxidation [97].  

The use of SiC and involvement of thermal decompositions can make the large-scale production of 

graphene possible. When SiC substrates are annealed at high temperatures, Si atoms selectively 

desorb from the surface and C atoms left behind naturally form FLG. Because SiC is a wide-band-

gap semiconductor, FLG on SiC can serve as a graphene substrate for electronics applications. 

However, two fundamental problems must be solved before the thermal decomposition method 

can be used at a wide scale. Firstly, the FLG obtained does not meet the uniform thickness 

requirement, because the electronic properties of FLG strongly depend on its thickness. Secondly, 

the mechanism behind the factors affecting the physical properties of FLG’s are not fully 

understood.  

Notably, the industrialization of graphene production mainly depends on a number of factors 

including the production cost, scalability, reproducibility, processability and the performance of 

the graphene products. No doubts, available promising methods of production using CVD, GO, 

and SiC, each have their own advantages and limitations. In the case of GO (using Hummers’ 
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method), graphene (or GO) can be obtained with the advantage of high yield and high 

dispersibility. However, this method has a major drawback of using potentially explosive process 

and structural inhomogeneity. The SiC method could be a good candidate for commercialization 

at wide scale for future applications; however, it may lose its importance due to the problem 

discussed above. Finally, graphene grown by CVD technique is acquiring the potential interest of 

the research community and significant R&D efforts are focusing on this field due to the low-cost 

production and easy processability in this method. Additionally, the CVD graphene performance is 

very good and the technique can be easily scaled up by semiconductor industry. 

 

2.4. Defects in graphene  

Doping of graphene-related systems has attracted a lot of research activity during the past few 

years. In fact, the concept of the doping of carbon materials is not new. The first reported doping 

of carbon-based materials was done in carbon nanotubes using poly(ethyleneimine) (PEI) – an 

electron-donating polymer. Similar concept was adopted to dope graphene, which results in n-

type behavior [98, 99]. It was observed that the concentration of holes and electrons was 

imbalanced, which enhanced the electron conduction and the reduced the hole conduction. 

Similar phenomena were observed when graphene is used as electrode beneath the metal 

electrodes like the diazonium salts.  

Doping of graphene can be done in two distinct ways: (i) electrically, by changing gate voltage 

(known as surface transfer doping) and (ii) chemically, by introducing the dopants (known as 

substitutional doping) in a honeycomb structure, which shift the Dirac point relative to the Fermi 

level. The involvement of foreign atoms such as nitrogen, boron etc. would disturb the sp2 

hybridization of carbon atoms, and can, in turn, cause both n- or p-type doping.  

P-type doping drives the Dirac points of graphene above the Fermi level, and n-type doping drives 

the Dirac points below the Fermi level. By adding atoms with fewer valence electrons than carbon 

like boron etc. one can achieve p-type doping while n-type doping is generally obtained by adding 

atoms with more valence electrons than carbon, e.g. nitrogen. Normally, the Dirac point of the 

pristine undoped graphene is at the zero; whereas, it becomes n type if the same shifts up. 

However, if it goes down, it is converted to p type. As a result, if the band gap opens, graphene-

based transistors will have higher on/off ratio [100]. 
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There are various methods that can be successfully applied to dope graphene in both n and p 

types. Literature shows that ammonia is the most suitable for incorporating free electrons, which 

turns graphene into the n type [101, 102]; whereas, boron is responsible for p type doping [103].  

Given above, researchers are more interested to dope graphene for n type behavior as compared 

to p type. 

 

Figure 2-8: (a) Possible nitrogen (N) configuration in n-doped graphene. (b) CVD precursors with 
different functional groups as used in by Ito et al. (namely methane, methylamine, ethylamine, 
ethanol amine, nitromethane, nitroethane, acetonitrile, pyridine, aniline, nitrobenzene, (c) 
Schematic formation of nitrogen-containing graphene by CVD, Adapted from [104]. 

It is interesting to mention that Arun et al. used p-toluenesulfonic acid (PTSA) for converting 

pristine graphene into n type graphene [65]. These authors first deposited CVD manufactured 

graphene on Si/SiO2 using PMMA coating for reducing the breakage and creation of defects. 

Afterwards they soaked the as transferred graphene into PTSA solution (0.1 M) for the certain 

period of time. Upon drying, the graphene changed its behavior and they were successfully able 

to convert it into n type. In another work, Ito et al. [104] explained the role of precursors and the 

gas phase in carbon films, especially in graphene. Using numerous precursors, namely, methane, 
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methylamine, nitro-methane, ethylamine, ethanolamine, nitro-ethane, acetonitrile, benzene, 

pyride, aniline and nitrobenzene, the authors studied the effect of doping and observed 

interesting results by Raman spectroscopy (D, G, D’, 2D, ID/IG, ID’/IG and I2D/ID’).  

Figure 2-8 shows the schematic overview of the possible nitrogen functional present in n doped 

graphene. It also shows the study of different aliphatic nitrogen compounds, namely, 

methylamine, ethylamine, ethanol amine, nitromethane, nitroethane, acetonitrile, pyridine, 

aniline, nitrobenzene, and benzene [104]. 

As mentioned also above, graphene is a two-dimensional material with large surface area and 

ultra-high conductivity, which changes rapidly when external molecules (gas/other chemicals) 

adsorb on the surface. Hence,  graphene has become an excellent candidate for sensors with high 

sensitivity that can detect even individual molecules [105]. Literature shows that, , graphene as a 

sensor can be used to detect bacteria [28],  glucose [106], pH and proteins [107, 108]. 

Furthermore, GO can be also be used for the detection for DNA [109, 110] and for DNA 

sequencing [111-116].   
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2.5.  Beyond graphene, other two-dimensional (2D) materials 

During recent years researchers started looking for other materials, which can show unusual 

physical phenomena that occur when charge and heat transport is confined to a plane. Many 

novel materials that were initially only considered to exist theoretically are now being 

synthesized. Extensive research is now focused on elements from the groups IV and II-VI of 

periodic table. Semiconductor analogues of graphene/graphane (the sp2/H-terminated sp3 

derivatives) such as silicone [117-120] and germanane [121] are now attracting researchers. These 

materials are quite similar to graphene and, hence, typically show different properties as single 

layer as compared to the bulk. Besides this, there are over 30 different layered metal 

chalcogenides (LMDCs), which are now being investigated for their interesting properties [122-

124]. Other than this, some Van der Waals solids that have been exfoliated into single layers are 

intensively studied. These include hexagonal boron nitride [125], vanadium oxide derivatives, and 

other chalcogenides such as Bi2Te3, Sb2Te3, and β-FeSe [126, 127]. 

The transition metal chalcogenides have become the subject of extensive studies over the years. 

For example, in the late fifties McTaggart et al. conducted a thorough review on the synthesis, 

structure and properties of the group IV chalcogenides [128-130]; whereas, Wilson et al. have 

investigated dichalcogenides across the d-block metals [131, 132]. Intensive research done in the 

sixties and seventies covered much of the initial structural aspects [133, 134]. In fact, the 

outcomes of these works helped to lay the set of the foundations for many future investigations. 

Structurally, the transition metal dichalcogenides can be divided into two categories, namely:  

1. Layered type structures and, 

2. Non-layered type structures 

 

Layered type structures: Layered type structures are exemplified by the dichalcogenides of the 

early transition metals (typically groups IV-VI) and consist of covalently bonded (X-MX) sheets. 

These sheets propagate along the c-axis and are weakly bound to each other by Van der Waals 

interactions. The metals can have either trigonal prismatic or octahedral coordination depending 

on the system, i.e. MoS2 or NbS2 contain T-S trigonal prisms, whereas HfS2 and ZrS2 contain 

octahedral species.  
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Non-layered structures: Examples of non-layered MX2 compounds emerge from the group VII and 

onwards. They can be categorized into four different sub-groups: pyrites, marcasites, IrSe2, and 

PdS2 type structures [131]. Their structures differ from the layered structures, since they are 

essentially 3D in nature (with no Van der Waals gaps) and contain complex anions which show 

strong chalcogen to chalcogen bonds (X2
2- pairs) [135]. Non-layered structures crystallize in a 

similar fashion as fcc lattice of NaCl rock salt, the structure where the positions of Na+ and Cl- are 

substituted by the transition metal and X2
2- pairs (Figure 2-9) [136]. These non-layered type 

structured materials are of particular interest for their range of semiconducting and metallic 

behavior coupled with a variety of magnetic properties [137]. For example, iron disulfide, which 

has a narrow band gap of 0.95 eV, is extensively used in photochemical and photovoltaic solar 

cells and as a cathode material for lithium batteries [138]. Another example is cobalt disulfide, 

which has a higher electronic conductivity and thermal stability when compared to other metal 

sulfides (such as FeS2) and has been investigated for its application in secondary lithium-ion 

batteries [139].  

 

 

Figure 2-9: Face centered structure showing cubic pyrite structure; example of rock salt showing 
the metal atoms in a distorted octahedral coordination to X2

2-, share common corners. In figure, 
iron atoms are shown in grey spheres, sulfur in orange spheres. Sulfur to sulfur bonds are 
represented in gold and iron to sulfur bonds in blue, Adapted from [140].  

For the purposes of this research only layered structured especially MoS2 will be discussed in the 

following section. 
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2.5.1. MoS2: an introduction 

 

As mentioned also earlier, transition metal dichalcogenides (MX2, M = transition metal, X = 

chalcogenide) can be characterized by two basic structural categories, namely: layered and non-

layered. Numerous possible atomic arrangements can be possible as a result of the covalent 

character of the M-X bond and the polarizability of the anionic chalcogen. In standard single layer 

of MoS2, Mo (+4) and S (-2) are arranged as a sandwich by covalent bonds in the sequence of S-Mo-

S, in such a way that Mo and S occupy alternate positions in the hexagonal corners to give a honey 

comb-like structure (Figure 2-10). Six neighboring S atoms surround each Mo in trigonal prismatic 

arrangement. Each S atom forms a pyramidal center since it has three neighboring Mo atoms. 

Additionally, the bulk MoS2 unit cell consist of two MoS2 layers, which are displaced in such an 

arrangement that each Mo atom in one layer is on the top of the S atom from the two adjacent 

layers. 

 

Figure 2-10: Honeycomb like lattice structure of MoS2 showing the top and side view. The blue 
spheres present Mo and yellow spheres show sulfur (S). The distance between Mo-Mo and S-S 
is 3.18 Å and 3.16 Å, respectively. 

The electronic structure of Mo and S atoms are [Kr]4d5, 5s1 and [Ne]3s2, 3p4, respectively; with d 

state mainly responsible for its unique properties. It is worthy to mention here that Density 
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Function Theory (DFT) calculations show that the band structure tends to change with a decrease 

in the number of MoS2 layers [141] because of the hybridization between p states of s and d 

states of Mo along with quantum confinement. For better comparison, the properties of MoS2 

compound are listed below in Table 2-2. 

 

Table 2-2: Major critical and fundamental properties of MoS2. 

Physical Properties  References 

Lattice constants (Å) 

a = ⁓ 3.160 

[142] c = ⁓ 6.147 

c/a = ⁓ 1.945 

Interlayer height (Å) M – S = ⁓ 4 3.19  

van der Waals gaps (Å) S – S = ⁓ 3.47  

Band gap energy (eV) 
Bulk = ⁓ 1.29 

[143] 
Monolayer = ⁓ 1.89 

Raman active modes 

A1g = ⁓ 409 cm-1 

[142, 144] E1
2g = ⁓ 383 cm-1 

E1g = ⁓ 287 cm-1 

Monolayer relaxed ion piezoelectric coefficient (pmV-1) d11 = ⁓ 3.73  

Thermal conductivity (Wm-1K-1) k = ⁓ 18.06  

 

MoS2 has become an emerging and exciting material system for future nanoelectronics due to its 

unique electronic properties and atomically thin configuration [17, 122, 145-150]. In the past, 

graphene was explored for ultrahigh-speed transistors with the intrinsic cut-off frequency 

exceeding 400 GHz [151]. However, it was not successful because of its insufficient current on–off 

ratio and little voltage gain due to its zero-band gap. On the other hand, MoS2 is attracting more 

interest and attention, since these disadvantages of graphene can be overcome by MoS2 and it 
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has been possible to fabricate atomically thin transistors with high on–off ratio and intrinsic 

voltage gain [152-159]. It also possesses high mechanical flexibility and partial optical 

transparency [17, 145]. Moreover, as applied for 2D electronics based on single- or few-layer 

materials, MoS2 represents the ultimate limit of thickness for pushing the limits of the Moore’s 

law. Since it has a larger band gap comparable to silicon and being atomically flat, MoS2 is also 

advantageous for suppressing the source-to-drain tunneling current in ultrashort transistors at 

the scaling limit and offers superior immunity to short-channel effects [160].  

The most common methods applied for obtaining single- and few-layer-thick 2D materials are 

mechanical exfoliation of large crystals using “Scotch tape” and chemical exfoliation by dispersing 

in a solvent of appropriate surface tension and molecule/atom intercalation in order to exfoliate 

these layers. Since 1960s, these mechanical and chemical exfoliation processes were used to 

prepare and study the properties of a few layer Van der Waals materials, such as MoS2 and NbSe2 

[161-163].  Because of their less destructive than the other methods nature the technique has 

been successfully used to create large (up to 10 μm single-layer flakes) on a variety of substrates. 

Peeling out of individual and a few layers using mechanical exfoliation remains the most powerful 

approach for studying their properties. However, in order to have much larger samples, chemical 

vapor deposition techniques are preferred and are now being implemented worldwide. 
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Abstract  

This chapter describes the experimental strategy followed to fulfil the defined objectives of this 

thesis. A brief introduction of all the techniques followed by the characterization of the samples is 

given. The description on the Raman spectroscopy, and HR-XPS is followed by the details on HR-

TEM, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Piezo Force 

Microscope (PFM) and X-Ray diffraction.  Additionally, this chapter includes the description of the 

synthesis equipment (Chemical Vapor Deposition, CVD), used for the growth of graphene and 

molybdenum disulfide in this study. Major components and layout diagrams for the assembling 

and parameterizing of CVD are detailed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experimental Section 
 

40 

 

  



Experimental Section 

41 

 

3. Experimental details 
 

3.1. Characterization techniques used 

3.1.1. Raman spectroscopy and micro Raman mapping 

 

Raman spectroscopy was discovered by Indian scientist C.V Raman who was awarded the Nobel 

Prize in physics in 1930. Raman spectroscopy, known also as vibrational spectroscopy, is used to 

study various modes such as vibration, rotation etc. in the system by means of inelastic light 

scattering. Laser light is used as a source for Raman spectroscopy in visible, infrared and near 

ultraviolet ranges. Laser light interacts with the phonons from the sample and results in the shift 

of energy. These shifts in energy give the useful information about the electronic environment of 

the molecules [164]. 

The working principle of Raman spectroscopy is based on the inelastic scattering of light when it 

interacts with the molecules. When a monochromatic light from the source interacts with the 

molecules or bonds inside the sample it gives rise to different scattering phenomena, namely 

Rayleigh, Stokes Raman and anti-Stokes Raman scattering. During this interaction, the photon 

excites the molecules from the ground state to the virtual energy states (Figure 3-1), where they 

stay for some time and return to the ground state in different or same vibration levels after 

emitting the photon. The molecule, if excited from first vibrational level, returns back to the same 

vibrational level then it is known as Rayleigh scattering or elastic scattering (no change in 

frequency of photons) (Figure 3-6). If the molecule returns to different vibrational level, the 

difference between the original state and the new state leads to a shift in the emitted photon's 

frequency, away from the excitation wavelength. When the photon frequency is shifted towards 

lower wavelength then it is known as Stokes scattering, otherwise it is known as anti-Stokes 

scattering. Energy of scattered phonons is discrete for every bounding and electronic 

environment; therefore, it shows typical frequency for all Raman active molecules [165]. 

Raman spectroscopy gives very valuable information, which is useful for chemical identification, 

characterization of molecular structures, effects of bonding, environment and stress on a sample. 

Due to the highlighted features, Raman spectroscopy is widely used for carbon-based materials, 

polymers, oxide films, ceramics, semiconductors, etc.  
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Figure 3-1: Schematic representation of the energy transfer model in Rayleigh scattering, Stokes 
Raman and Anti-Stokes Raman scattering, Adapted from [164]. 

Raman spectroscopy is the most important and best fingerprint technique extensively used for 

the property analysis  of carbon related materials including graphene [166]. This technique allows 

distinguishing among single layer, a few layers graphene and graphite. It is also sensitive to 

defects, excess charge, strain and atomic arrangement of the edges. The spectra consist of 2 main 

peaks, namely G and 2D, at around 1580 and 2680 cm-1, respectively, when taken at an excitation 

energy of 2.4 eV (514 nm) [91]. G and 2D peaks always satisfy the Raman selection rule and this 

makes Raman spectroscopy one the most important tools for probing the structural defects. G 

peak relates to E2g phonon at the Brillouin zone center (Γ point) [166]. On the other hand 2D peak 

is an overtone peak which is associated with the breathing modes of the six-atom rings [91]. Also 

it comes from the TO phonons in the vicinity of the K point and it is activated by a resonant 

intervalley scattering process [167, 168].  Besides these two peaks, we are able to find two more 

peaks at around 1350 and 1620 cm-1 named as D and D’ and they are due to single phonon 
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intervalley and intravalley scattering events, respectively. Sometimes, D peak is also known as a 

defect peak and provides the missing momentum in order to satisfy the momentum conservation 

rule during Raman scattering process [167-169]. However, in some spectra we are able to find 

small defect-activated (weak) peak at around 3000 cm-1 which corresponds to the combination 

mode of the D and D’ peaks, and is sometime referred as D+D’ peak.  

Raman mapping or Raman spectral mapping is a method for generating detailed chemical images 

based on a sample’s Raman spectrum. A complete spectrum is acquired at each and every pixel of 

the image, and then interrogated to generate false color images based on material composition 

and structure. In this method, the laser is point – focused, and the sample is translated relative to 

the laser focus, or the focus is raster scanned across the object. Motor-driven x–y stages (by 

piezoelectric translators) are the most commonly used devices for translating the object. Stages 

available for Raman microscopes can be positioned with an accuracy better than ±1 μm and can 

be stepped in 0.1μm increments. Therefore, Raman spectral imaging is an invaluable technique 

for scientists in various fields, since it allows chemical distribution to be viewed which is invisible 

by standard optical microscopy. 

Raman spectroscopy measurements were performed with a combined Raman-AFM-SNOM 

confocal microscope WITec alpha300 RAS+. A He:Ne laser operating at 633 nm and a Nd:YAG laser 

operating at 532 nm were used as excitation sources. The objective used was from 10x to 100x for 

better laser spot area ⁓ 350 nm. The power of laser was changed variably from 0.5 to 5 mW so 

that not to damage/heat the sample. The spectral resolution was ≃ 3 nm-1 along with the 

piezoelectric stage that allowed Raman mapping of the area ⁓ 200 x 200 µm2. Raman imaging 

experiments involved raster-scanning the laser beam over the samples and accumulating the full 

Raman spectra at each pixel. Raman images were constructed by integrating over specific Raman 

bands using WITec software for data evaluation and processing. Figure 3-2 shows the confocal 

microscope WITec alpha300 RAS+ used for Raman-AFM-SNOM [170]. 
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Figure 3-2: Confocal Microscope WITec alpha300 RAS+ for Raman-AFM-SNOM, Adapted from 
[170]. 

 

3.1.2. X-Ray Photoemission Spectroscopy 

 

The photoemission spectroscopy is based on the photoelectric effect in which a free electron is 

extracted from an atom after absorbing a photon. Heinrich Hertz first observed this effect in the 

year 1887. Later, Albert Einstein provided full details on the photoelectric effect in 1905, and was 

awarded the Nobel Prize in Physics [171]. 

The effect can be described as follows: one bound electron absorbs a high – energy photon, 

normally X-ray or ultraviolet, turning into a free electron of kinetic energy (𝐸𝐾) (Figure 3-3). The 

binding energy (𝐸𝐵), the photon energy (ℎ𝑣) and the work function (∅) obey the relation: 

𝑬𝑲 = 𝒉𝒗 − 𝑬𝑩 −  ∅ .      (Eq. 3-1) 

Knowing the energy of the impinging photon and measuring the kinetic energy of the resulting 

free electron, we can extract the energy of the former bound electron. For measuring the kinetic 

energy of the free electrons, we normally use an experimental set up consisting of a cylindrical 

electron analyzer for energy filtering and an electron multiplier like a channeltron or a 
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channelplate as a collector. The laboratory standard X-Ray guns normally have a double anode of 

Mg (𝐾𝛼 , ℎ𝑣 = 1253.6 𝑒𝑉) and Al (𝐾𝛼, ℎ𝑣 = 1486.6 𝑒𝑉) and the usual UV illumination is a He 

lamp whose principal lines and He I ℎ𝑣 = 21.2 𝑒𝑉 and He II ℎ𝑣 = 40.8 𝑒𝑉. Synchrotron radiation 

can also be used as an illumination source; its main advantages are higher photon flux and better 

monochromacy, which both increase the energy resolution up to a tenth of meV for XPS and a few 

meV for UPS. Another big advantage is that we can tune the energy of the arriving photons in a 

continuous range and thus set photon energy that maximizes the photoexcited electrons of the 

element under analysis. 

Depending on the energy of the illuminating photon, we can excite different bound electrons 

giving rise to different photoemission spectroscopies. Thus, if we use X-rays, the electrons that are 

mainly excited due to the core level electrons (XPS) while if we use ultraviolet electrons we will 

excite the valence band electrons (UPS) [172]. 

 

Figure 3-3: Schematic representation of the photoelectric effect. Sketch shows the working 
principles of XPS. A photon excites a core-level electron above the vacuum level. The kinetic 
energy of the outgoing electron is recorded and the binding energy can be calculated. 
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XPS is a powerful technique for the characterization of the chemical species present on a surface. 

The characteristic energy values of the levels in every chemical element has been tabulated since 

the technique was developed, and complete inventories of the resonances appearing under 

standard X-Ray illumination are present in many handbooks [172] or web applications. XPS is not 

only sensitive to the chemical element but it is also sensitive to the electronic and chemical 

environment of the particular element. Small energy shifts (surface core level shifts or SCLS) from 

the nominal value of a particular state are normally attributed to different chemical bonding 

configurations and thus to the electronic environments of this elements (Figure 3-4). If we have, 

for example, a carbon (C) atom bonded in sp2 configuration with C atoms the C1s peak will have 

its maximum at energy around 284.8 eV [173]. Whereas, if we have C bonded to Si in the form of 

carbide (SiC), the C1s peak will appear shifted to lower energies, around 283 eV. The XPS spectra 

were analyzed using the Casa XPS program developed by Casa Software Ltd. This program allows a 

fit of the peaks by convoluting Lorentzian and Gaussian contribution to the width of a specific core 

level.  

UPS spectrum is a measure of the valence band of a particular material. If this substance is 

conductive we will find electron-populating levels around the Fermi level. Because of the Fermi-

Dirac distribution we will find a small quantity of electrons above it, as the thermal excitation 

makes these electron to spill over the Fermi level. On the other hand, if the material is insulating, 

we will find that no electrons are populating the Fermi level and we can very easily calculate the 

band gap as the energy difference between the last occupied electronic band and the Fermi level. 

However, one must take care of charge effects that might occur and make the band gap distorted.  
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Figure 3-4: XPS spectra deconvolution of graphene. The black dots are the experimental results, 
blue dots are fits performed with the help of CasaXPS and the red line is the overall fitting 
result. The peak centered at 284.8eV corresponds to C in sp2 configuration. 

High-resolution X-ray Photoelectron Spectroscopy was performed with an Ultra High Vacuum 

(UHV) system using a base pressure of 2x10-10 mbar. The system was equipped with a hemi-

spherical electron energy analyzer (SPECS Phoibos 150), a delay-line detector and a 

monochromatic AlKα (1486.74 eV) X-ray source. High-resolution spectra were recorded at normal 

emission take-off angle and with a pass-energy of 20 eV, which provides an overall instrumental 

peak broadening of about 0.5 eV. 

The XPS experiment as discussed above was carried out in ultra-high vacuum (UHV) pressure. UHV 

chambers are necessary in order to prevent the sample from getting contaminated from the 

residual gases present in the atmosphere within seconds. In order to ensure the cleanliness of the 

sample for periods in the order of 1 hour, an estimation of the minimal time we will need for 

performing our experiments, we will need to lower down the pressure to the range of 10-10 mbar. 

According to kinetic theory of gas, the number of particles striking a surface per square cm per 

second can be given by: 

𝒏𝒔 =  𝑵𝒈 √
𝑹𝑻

𝟐𝝅𝑴
≈ 𝟐. 𝟕 ×  𝟏𝟎𝟐𝟐  

𝒑

√𝑴𝑻
 (𝒄𝒎−𝟐 𝒔−𝟏) ,   (Eq. 3-2) 
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where 𝑝 is the pressure in mbar, M is the molecular weight of the dominant species of the 

residual gas, and T is the temperature in K (Kelvin). Assuming M = 28 and T = 300, we have 

𝑛𝑠 ≈ 106 𝑝, so we need at least a pressure lower than 10-6 mbar in order to keep the surface clean 

for a second.  However, there is some other important factor that needs to be taken into account 

when calculating the deposition rates - sticking factor of the adsorbate. In the following sections, 

XPS components are discussed in order to have better understanding on the instrument 

performance.  

 

Figure 3-5: Representative images of the XPS equipment and major components. (a) High-
Resolution PHOIBOS 150 1D-DLD, (b) Laser pointer fixed on top of Phoibos for better mark 
during measurement, (c) Laser pointer on the standard sample placed on master stage, (d) 5-
axes motorized manipulator (for X, Y, Z, azimuthal and Polar angle), (e) Liquid nitrogen used to 
low temperature measurements.  

Figure 3-5 shows the XPS equipment with the major component installed, (a) indicating PHOIBOS 

150 with 1D-DLD detectors installed at the end of the Phoibos. Due to the energy dispersion of 

photoelectrons traversing the hemispherical analyzer, a spectrum can be acquired using the 

energy channels of the DLD without scanning the input lens or analyzer. The result is a spectrum 

acquired within seconds. The hemispherical electron energy analyzer – which is a fully 

electrostatic instrument (no magnetic fields) and the dual-anode (Mg and Al) x-ray source. (b) 

Showing the laser pointer installed at the top of the semi-hemispherical Phoibos for indicating the 
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area on the sample for better understanding while performing the measurements. (c) Shows the 

laser point at the sample kept on the master stage. The laser spot is actually focused/set to meet 

the center of the analyzer acceptance area (centrically position related Iris aperture and aperture 

6 of the wheel). (d) Shows the 5-axes motorized manipulator for controlling the sample 

movements very precisely (for more details see Figure 3-6). (f) Shows the liquid nitrogen test for 

low temperature measurements.  

 

 

Figure 3-6: 5-axes motorized manipulator and the direction of movement when using it.  

Figure 3-6 shows the advanced 5-axes motorized manipulator used for the movements of the 

sample kept at master stage. The master can be moved in X, Y, Z directions including polar (+ and -

) and azimuthal (angle movements along right-left). This manipulator can be moved in X-Y: ±12.5 

mm stroke, Z: appropriate size, Azimuthal: ± 180 degree and Polar: -10 degree to +90 degree. 

Figure 3-7 (below) (a) shows the load-lock chamber, which is manufactured from the 316 non-

magnetic stainless steel with all flanges (except the gate for inserting the sample) sealed with CF 

copper gaskets. This is place where the samples are inserted and initially the vacuum is achieved 

by using fast turbo molecular pump. This is the fast-entry vacuum load-lock, which pump out till 

10-9 mbar, upon which the gate valve of main chamber is open for letting the sample into main 

chamber. The load lock is pumped by a turbo pump, which is backed by an oil-lubed forvacuum 
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pump. The load lock is separated from the turbo by a pneumatic angle valve and separated from 

the main chamber by a manual gate valve. There is a cold-cathode vacuum gauge (MKS 

instruments), which reads the load-lock vacuum as well as the pressure of the foreline using a 

Pirani gauge. 

 

Figure 3-7: (a) Load-lock chamber with feed-through, (b) different parking positions for 
additional samples, (c) Annealing performed at master stage with as the red-glowing platelet is 
the sample holder irradiating visible light. The temperature is about 1100K. 

Figure 3-7 (b) shows different parking positions when feed-through is at the main chamber. There 

are total 5 parking lots including one main stage. (c) Shows the master stage with the annealing at 

about 1100 K. This annealing is needed in order to obtain a clean surface well suitable for XPS 

measurements. Also, this will help to remove water and other contaminations present (if any) on 

the surface before performing the XPS measurements. In addition, in order to have XPS at low 

temperature, liquid nitrogen can be used (see Figure 3-8). Using liquid nitrogen provides us low 

temperature, which is especially required for biological samples.  
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Figure 3-8: Using liquid nitrogen for the measurements in temperature range.  

Figure 3-9: shows different pumps used in XPS for achieving ultra-high vacuum condition, which is 

the primary requirement for running the equipment. These pumps are connected to both load-

lock chamber and main chamber. A turbo molecular pump backed by an oil-free rotary pump is 

attached to load-lock chamber. The main analysis chamber is pumped by a means of a getter (ion) 

pump equipped with an additional titanium sublimation pump (TSP). The ion pump is fitted with a 

cryobaffle, which may be filled with liquid nitrogen to increase the efficiency of the pump. A wide 

range cold cathode gauge also measures the pressure in the main chamber. The load lock is 

isolated from the main chamber by an electrically operated flap valve allowing the load lock to be 

vented by dry gas in order to introduce sample bars to the vacuum system. 
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Figure 3-9: Base pressure (Ultra High Vacuum) achieved by using different pumps used. (b) Dry 
(oil free) rotary pumps, (c) Ion pump and titanium sublimation pump (TSP). 
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3.1.3. Transmission Electron Microscopy 

 

The Transmission Electron Microscope (TEM) operates on the same basic principles as light 

microscope but instead of light it uses electrons. The use of electrons as the light source is related 

to its lower wavelength, which gives high resolution, thousands of times better than the light 

microscope. TEM works under high vacuum created by different pumps such as ionic, diffusion 

and rotary pumps. 

TEM is divided into three main parts: the first one is the electron source, the second one is the 

column consisting of electromagnetic lenses, sample holder and aperture and the third one is the 

detector, where one will have the final image (fluorescent screen) which is now replaced by CCD 

camera (Figure 3-10).  

The electrons are generated by three known mechanisms, field emission, thermoionic emission 

and Schottky emission. To guide these electrons through the column the electromagnetic lenses 

are used that focuse the electrons into a very narrow beam. The electron beam then travels 

through the specimen to the detector, where it gives the final image [174].  

 

Figure 3-10: Layout of a Transmission Electron Microscope. Adapter from [175] 



Experimental Section 
 

54 

 

There are different image modes in which the TEM can work. The most common mode is bright 

field and in which TEM generally starts. In this mode, contrast is formed directly by the blockage 

and absorption of electrons in the sample. Thicker regions of the sample or regions with a higher 

atomic number appear dark, whereas regions with no sample in the beam path appear bright, 

hence the term bright field. 

 

Figure 3-11: Structural layout of the (a) diffraction and image modes, and the (b) bright field and 
dark field modes. Adapted from [176]. 
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In dark field mode, the objective aperture (a metallic plate with different sizes of holes) is placed 

in back focal plane that blocks the direct beam from the interacted electrons and allow only 

scattered electrons to produce an image, due to which the image appears to be dark. In this 

mode, it is possible to identify if the particles are crystalline or amorphous. The crystalline 

particles appear dark in this mode.  

The diffraction mode, also known as selected area electron diffraction (SAED), is obtained by 

adjusting the magnetic lenses such that the image comes from back focal plane of the lens rather 

than the image plane. Here, the spots are observed for single crystal and rings in case of 

polycrystalline material.  

The major application of TEM is to study the morphology of materials, and to obtain 

crystallographic and compositional information, if so equipped. TEM can also give information 

about structural aspects, phases, impurities, elemental analyses and dislocations. SAED is also 

required to calculate the lattice parameter and to observe the crystallinity of the composites. 

The resolution of the TEM is limited primarily by the spherical aberration. By the reduction of the 

spherical aberration (by aberration correctors), an increase of the mechanical stability and the use 

of high voltages has led to the development of HR-TEM which allows the production of images 

with sufficient resolution to show carbon atoms in diamond separated by only 0.89 Å and atoms 

in silicon at 0.78 Å [177]. The ability to determine the positions of atoms within materials has 

made HR-TEM an important tool for nanotechnology and materials development. 

In this work, the microstructures were analyzed by HR-TEM with Jeol 2200FS Field Emission 

Electron Microscope, with the resolution of 0.19 nm (Ultrahigh), 0.23 nm (High), 0.25 nm (High 

Specimen Tilt). The electron gun was made up of ZrO/W (100) with Schottky emitter. The base 

pressure was 7.5x10-8 Torr. During measurements, we used accelerating voltage in the range 160-

200 kV. The condenser lens used were at 3-stage (1st Cl, 2nd CL, condenser minilens CM). The 

sample was inserted using specimen stage of side-entry eucentric with Z-axis fine control and 

common specimen holder.  

 

 

 



Experimental Section 
 

56 

 

 

Figure 3-12: (a) Showing the HR-TEM equipment used for the characterization of the samples, 
(b) Position for inserting the sample holder, inset showing the sample holder inside the holder, 
(c) double tilt sample holder for better view, inset showing the fixed TEM grid with screws for 
measurements.  

HR-TEM sample preparation involved the deposition of graphene on Cu foil (Good Fellow, 

thickness ⁓ 0.10 mm). The copper foil was then etched away by strong etchant iron chloride, 

which led to Graphene floating on the surface, and finally, it was collected and deposited on a 

copper grid of 400 mesh (Agar Scientific, G6210). 
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3.1.4. Scanning Electron Microscope 

 

Most of the electronic systems of Scanning Electron Microscope (SEM) are similar to the ones of 

TEM. However, herein, the sample image is formed from the secondary electrons, which reflect 

from the sample rather than transmitted and detected by the detector (Figure 3-13). 

 

Figure 3-13: Schematics representation of the Scanning Electron Microscope and its important 
parts. Adapted from [178]. 

SEM (in transmission mode detection) was performed before analyzing graphene by TEM. SEM 

was performed using a Hitachi Su-70 instrument on graphene on copper grids. Figure 3-14 shows 

the deposition of graphene at x30 in secondary electron and transmitted electron image mode. 
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The figure also shows the uneven distribution of graphene and we can observe that it was not 

covering the whole grid.  

 

Figure 3-14: Graphene on copper grid in (a) Secondary Electron imaging mode, and (b) 
Transmitted Electron imaging mode. 

To be sure regarding the graphene on upper or lower part of grid, we acquired SEM images from 

the detector placed on upper and a lower secondary electrons detector, also a mix detection 

using both, which confirm that the graphene was on the upper part of grid. Figure 3-15 shows the 

images of graphene from upper, lower and mix contribution of the secondary electron detector at 

x300. 
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Figure 3-15:  Representative images of graphene from: (a) upper, and (b) lower secondary 
electrons detectors, and (c) mix contribution of both detector. 
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3.1.5. Atomic Force and Piezoresponse Force Microscopies 

 

After the invention of the Scanning Tunneling Microscope (STM), it quickly became obvious that 

other physical processes could be used to map surfaces, not just a tunneling current. Indeed, 

physical forces (Van der Waals forces, electrostatic forces and so on) between the sample and the 

tip were proven to be used for imaging surfaces, and this technique was termed Atomic Force 

Microscopy (AFM) [179]. 

AFM works in two basic modes: contact mode and non-contact mode. In contact mode AFM, the 

tip (scanning probe) mounted on the cantilever is brought in contact with the sample and scanned 

using piezoelectric actuators. The deflection of the cantilever is accurately monitored by laser spot 

reflected from the cantilever to the mirror and photo diode (Figure 3-17 (a)). These signals are 

passed to the feedback system, which allows mapping of the sample surface [180]. During the 

interaction between the tip and the sample surface, the tip experiences rapidly changing forces. 

As the function of the magnitude of these interaction forces the deflection of the cantilever 

changes and used as a feedback to get topography profile of the samples. 

The other mode of AFM operation is non-contact or tapping mode (TAFM). In this mode, the 

cantilever is placed at some particular Z distance from the sample (knows as set point), where the 

tip oscillates close to its resonance frequency (with free amplitude). When the tip comes in 

contact with the sample, the amplitude of the tip vibration reduces or increases. This change in 

amplitude is monitored by the photo diode similar to contact mode to acquire the topography of 

the sample. The major advantages of the tapping over the contact one is better resolution due to 

the negligible lateral forces and less wear of the tip. 

AFM images are not a true representation of the sample topography due to the complex dynamics 

of the vibration of tip and surface system. Therefore, there are limitations in achieving atomic 

resolution. This limitation can be overcome using tips with very small (1-2 nm) tip diameter and 

having high aspect ratio. However, the standard tips used for AFM imaging are not ideally sharp 

and have low aspect ratio as shown in Figure 3-16 (a and b). Therefore, an AFM image does not 

reflect the true sample topography, but rather represents the interaction of the probe with the 

sample surface. This is called tip convolution. Nevertheless, the tip convolution does not affect the 

height of the feature only affects the lateral resolution.  
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Figure 3-16: Schemes illustrating the topography acquired from: (a) high aspect ratio and (b) low 
aspect ratio tip. A high aspect ratio tip is the ideal probe (tip) to acquire best resolution; 
whereas, low aspect ratio results in the convolution. This does not often influence the height of 
a feature but the lateral resolution. Adapted from [181]. 

In the present work, AFM was used to study the RMS roughness in a semicontact mode using 

Ntegra Prima, NT-MDT in tapping mode with the cantilevers of resonance frequency of 50 kHz.and 

force constant 3 Nm-1  

 

3.1.5.1. Piezoresponse Force Microscopy (PFM)  

 

Piezoresponse Force Microscopy (PFM) is used to study the local piezoelectric properties of 

different ferroelectric substrates (PMN-PT of different compositions).  Schematic of experimental 

setup for PFM is shown in Figure 3-17 (a) [179, 182]. In general, PFM is carried out in contact 

mode using a conductive tip, used as a moveable nanoelectrode. The PFM response image is 

created from the deformation of piezoelectric surface due to the applied external field. This 

deformation can be in the form of contraction, elongation or shear depending upon the 

polarization vector and direction of the applied field. The PFM works based on the converse 

piezoelectric effect, where electric field-induce strain (S) is expressed as follows:  

𝐒𝐣 =  𝐝𝐢𝐣𝐄𝐢 ,        (Eq. 3-3)  

where 𝐄𝐢 is the applied field and 𝐝𝐢𝐣 is the piezoelectric tensor. For a single-domain ferroelectric 

the piezoelectric coefficient is related to the spontaneous polarization Ps via the following 

expression:  
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𝐝𝐢𝐣 =  𝛆𝐢𝐦𝐐𝐣𝐦𝐤𝐏𝐬,       (Eq. 3-4) 

where εim is the dielectric constant, Qjmk is the electrostriction coefficient and 𝐝𝐢𝐣 is the 

piezoelectric tensor.  

The above equation states a linear coupling between piezoelectric and polarization parameters 

and can be used to determine the domain polarity from the sign of field induced strain. The 

electric field along the polarization direction results in the elongation of the domain. The 

contraction of the domains is observed, when the direction of the polarization is opposite to the 

applied field direction. The relation between induced strain (S) and changes in thickness (∆Z) is 

given by following equation: 

𝐒 =  
∆𝐙

𝐙
=  ± 𝒅𝟑𝟑𝐄 ,       (Eq. 3-5) 

where, ∆Z is the sample deformation, Z is the thickness of the sample, d33 is the effective 

piezoelectric constant. The above equation can be further rewritten as follows: 

∆𝐙 =  ±𝒅𝟑𝟑𝐕 ,        (Eq.  3-6) 

where V is the applied voltage. The contribution related to the electrostriction is typically much 

smaller than the piezoelectric response in a polarized state and vanishes if no DC field is applied to 

the sample. In the dynamic piezoelectric imaging method, an AC voltage is applied and the surface 

displacement is measured by the change in the vertical vibration of the cantilever, this response is 

known as vertical piezoresponse (VPFM), and amplitude is given by Equation 3-6. 

When domain polarization direction is parallel to the surface, the imaging of that domain is 

represented by detecting the torsional vibration of the cantilever Figure 3-17 (b) known as lateral 

PFM (LPFM). This surface vibration translates via friction forces to the torsional movement of the 

cantilever. The amplitude of the in-plane oscillation is given by: 

∆𝐗𝐨 =  𝐝𝟏𝟓𝐕𝐨  ,       (Eq.  3-7) 

where ∆Xo is the change in the deflection along the X-axis and Vo is the applied voltage and d15 is 

the shear piezoelectric coefficient. The local ferroelectric hysteresis of the materials can be 
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measured at the single point by the method known as switching spectroscopy (SS) PFM. In this 

method, the switching response of the domain is measured as the function of applied dc bias from 

positive to negative cycle. The typical local PFM hysteresis from the ferroelectric material is 

shown in Figure 3-17 (c). 

 

Figure 3-17: (a) Schematic representation of the PFM setup to simultaneously acquire the 
topography and the in- and out-of-plane component of the polarization. A function generator is 
used to apply an alternating voltage V𝝎 between the tip and the bottom electrode of the 
material. (b) Schematic illustration explaining how PFM signals are acquired by the deformation 
under the applied field; the voltage induced cantilever deflection is detected by a reflected laser 
beam on a four-sector photodiode. (c) Scheme highlighting a hysteresis loop acquired by 
switching spectroscopy (SS-PFM). Adapted from [183]. 
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3.1.5.2. Kelvin Probe Force Microscopy 

 

Kelvin Probe Force Microscope (KPFM) or Kelvin Force Microscope (KFM) is a based on the contact 

potential measurement method introduced by Lord Kelvin in 1898 [184] and further improved by 

Zisman in 1932 [185]. Therein, the determination of the work function is based on the 

measurement of the electrostatic forces between the small AFM tip and the sample. With KPFM 

the work function of surfaces can be observed at atomic or molecular scales. In this experiment, 

two conductive plates are arranged in parallel forming small capacitor. When a vibrating 

cantilever (with frequency 𝜔) is brought near the surface of the plates (which behaves as the 

capacitance) it shows the changes due to the electrostatic differences. This results in the current, 

which could be measured directly. However, the charges might be influenced by some other 

factors also and with an adjustable dc voltage source V and a null-current detector are inserted in 

series in the circuit. The current in the circuit can be given as: 

𝒊(𝒕) = (𝑽 −  𝑽𝒄𝒑𝒅) 
𝒅𝑪

𝒅𝒕
  ,      (Eq.  3-8) 

where 
𝑑𝐶

𝑑𝑡
  is the change of the capacitance in the interval of time dt. The voltage V is changed until 

the sensitive current amplifier detects null-current condition. This compensating voltage is 

recorded as the contact potential difference between the two plates of the capacitor. It is known 

that different surface potentials generate different electrostatic force between the surfaces [186]. 

Hence, the electrostatic force between the tip and the sample is given by:  

𝑭𝒆𝒔 =  
𝟏

𝟐
 
𝒅𝑪

𝒅𝒛
 (𝑽𝒄𝒑𝒅)

𝟐
 ,      (Eq.  3-9) 

where, C is the capacitance between the tip and the sample surface and z is the distance between 

the tip and the sample. 

In the KPFM method, direct detection of the amplitude of the vibration of the tip, which was 

assumed to be proportional to the force acting on the tip, depends on several ill controlled 

factors, in particular 
𝒅𝑪

𝒅𝒛
 . Keeping this in mind so called null force method was used where an 

external voltage (modulated ac voltage - 𝑉𝑎𝑐𝑠𝑖𝑛𝜔𝑡 and dc voltage - 𝜙𝑑𝑐) is applied between the 

tip and the sample. This results the total potential written as: 
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𝑽 =  𝑽𝒅𝒄 − 𝑽𝒂𝒄 𝐬𝐢𝐧 𝝎𝒕 ,      (Eq.  3-10) 

where 𝑉𝑑𝑐 is the total dc voltage (𝑉𝑑𝑐 =  𝑉𝑐𝑝𝑑 −  𝜙𝑑𝑐; 𝑉𝑐𝑝𝑑  is the surface potential, 𝜙𝑑𝑐 is the 

feedback voltage supplied to the sample surface). Hence the electrostatic force can be written as:  

𝑭𝒆𝒔 =  
𝟏

𝟐
 (

𝒅𝑪

𝒅𝒛
) ((𝑽𝒅𝒄

𝟐 +  
𝑽𝒂𝒄

𝟐

𝟐
) − 𝟐𝑽𝒅𝒄𝑽𝒂𝒄𝒔𝒊𝒏𝝎𝒕 − 

𝑽𝒂𝒄
𝟐

𝟐
𝒄𝒐𝒔𝝎𝒕)    (Eq.  3-11) 

In order to measure the surface potential, the dc voltage is changed until there is no detectable 

oscillation. If the voltage can be maintained at 𝑽𝒄𝒑𝒅 =  𝝓𝒅𝒄 , the surface potential 𝑽𝒄𝒑𝒅 can be 

obtained directly by measuring the external voltage 𝝓𝒅𝒄 . 

In the present work, we did KPFM by using the two-pass technique for imaging of the contact 

potential difference between the sample and the AFM tip. During the first pass, a topographic 

image is acquired in tapping mode. In the second pass, the tip follows the topographic profile at a 

preset lift height. During the second pass, the cantilever is electrically excited by the sum of a 

variable dc voltage Vtip dc, and an ac voltage, Vtip ac, with a frequency close to the cantilever 

resonance. Vtip dc is adjusted to nullify the force component at the frequency of Vtip ac. The value 

of Vtip dc is then equal to the surface potential. The tip was lifted by just a few nanometers in 

order to ensure that the tip–sample capacitance was dominant over the cantilever – sample 

capacitance. In our setup, we grounded the nickel substrate and applied a bias voltage to the tip.  

 

3.1.6. X-Ray Diffraction 

 

X-Ray Diffraction (XRD) technique is not only quite relevant to the analysis of graphene but also 

can be used for visualizing/characterizing the graphene planes on Cu (substrate). It was also 

important to check the impurities present (if any) available on Cu besides graphene (carbon). X-

ray Diffraction is one of the most important and used characterization tools to study the 

crystalline structure of materials. 

The working principle of XRD is based on the diffraction of X-rays from Bragg plane. When a beam 

of X-ray interacts with the atom and electrons in the crystal, they will oscillate under the X-ray 

impact and emit a large number of electromagnetic waves in particular directions. The direction 
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of the emissions will be in phase in certain directions, which depends on the incident X-ray (Figure 

3-18), on the wavelength and on the spacing between atoms in the crystals. The relation between 

all of these parameters is given by Bragg relation: 

𝒏𝝀 = 𝟐𝒅. 𝒔𝒊𝒏𝜽 ,       (Eq.  3-12) 

where, 𝑛 is an integer and 𝜆 is the wavelength of the x-ray used, 𝑑 is the inter planar spacing, and 

𝜃 is the angle made by the incident ray with the crystal plane. 

 

Figure 3-18: X-ray diffraction from the Bragg plane of cubic crystal with path difference equal to 
2d sinθ, diffraction pattern is shown on the bottom right of the figure. Adapted from [187]. 

Diffracted rays are detected by a diffractometer and the obtained diffraction patterns are then 

compared with the reference standards for identification. Each solid has its unique 

crystallographic characteristics and X-ray powder patterns can be used as a "fingerprint" for 

crystal identification. Once the material has been identified, XRD may be used to determine its 

crystalline or microcrystalline structure, i.e. the relative orientation of atoms in the crystal or 

crystallite and interatomic distances. Furthermore, it is possible to determine the size of the 

crystallites using the Scherrer equation [188].  
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In the present work, we used room temperature Rigaku diffractometer with Cu-Kα (=1.5418 Å) 

radiation. The diffraction patterns were acquired at a wide range of Bragg angles 2ϴ (5º < 2ϴ < 

80º) with a step length of 0.04º. 

 

3.1.7. UV- Visible Absorption Spectroscopy  

 

Energy absorbed in the UV or visible region causes a change in the electronic excitation of the 

molecule, and hence results in corresponding change in its ability to absorb light in the UV-visible 

region of the electromagnetic radiation. This leads to color transition. The relationship between 

energy absorbed in an electronic transition and the frequency (υ), wavelength (λ) and wave 

number (ṽ) of radiation producing the transition is given as: 

∆𝑬 = 𝒉𝝂 = 𝒉
𝒄

𝝀
= 𝒉ṽ𝒄 ,       (Eq.  3-13) 

where ℎ is the Planck’s constant, 𝑐 is the velocity of light and ∆𝐸 is the Energy absorbed in an 

electronic transition in a molecule from ground state (lower energy) to excited state (higher 

state). 

In the present work, we used at room temperature spectrophotometer (UV–vis/near IR, Perkin 

Elmer, Lambda 950). For the reference, virgin SiO2/Si was used in case of MoS2 measurement. 

 

 

3.2. Sample preparation  

3.2.1. Chemical Vapor Deposition: assembling and parameterizing 

 

Restriction to have a large area uniform layer of graphene does not allow using exfoliation 

method. Therefore, CVD method emerged as a potential pathway for graphene commercialization 

[1, 7]. CVD is a complex process in which chemical components react in the vapor phase close to 

or on a hot substrate that is usually heated by external heating, radiation or plasma. This 

deposition consists of either homogenous gas phase reactions or heterogeneous chemical 

reactions, which occur on/near the hot surface of substrate. One can get materials with different 

properties by changing the substrate temperature, composition of the gas mixture, total pressure, 
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gases flow and experimental conditions, etc. [189, 190]. These reactive processes distinguishes 

CVD from Physical Vapor Deposition (PVD) processes such as physical evaporation, sputtering and 

sublimation methods [191].  

Typical CVD process includes volatilization of a solid or liquid precursors that produce gaseous 

compound which is deposited on the substrate. Carrier gases (usually argon (Ar) or nitrogen (N2)) 

are used to transport gaseous materials to a hot substrate (in a chamber). Hydrogen (H2) is used 

as reducing agent in chemical reduction and also to clean the substrates (for another use) and 

reaction chambers. It must be kept in mind that all parts (chamber) of the system are at least as 

hot as the vapor supply otherwise condensation of vapors will occur on their contact with any 

comparatively cold surface. The reactive part (the place where reaction should be expected) of 

the system is usually much hotter than the vapor. However, the temperature should be kept less 

than melting point of the deposit. Importantly, the mentioned below two main points should be 

considered despite of volatility: 

(i) For proper elimination of the unnecessary materials from the deposition system, they 

must be in gaseous form, and  

(ii) The deposit must have vapor pressure low enough to prevent its own volatilization.  

The deposition reaction occurs either via thermal decomposition or via chemical reduction. CVD is 

valuable for the production of a very thin deposit. One of the most important applications of CVD 

is the preparation of coatings and the manufacturing of materials to finished size for those 

substances, which are not conveniently fabricated via more conventional ways. Such materials 

cannot be suitably fabricated either by PVD or by electrodeposition. High melting elements such 

as tantalum or tungsten cannot be deposited by PVD. Similarly, electrodeposition techniques 

cannot be used for some commercially significant elements such as silicon and tungsten [192]. 

CVD has an additional benefit of depositing many alloys and some other compounds like carbides, 

oxides and nitrides.  

 In a CVD process, the deposition depends upon the thermal energy of the substrate. 

However, sometimes it is desirable to minimize the temperature of the substrate in order to 

protect the materials that have already been formed. A number of methods have been developed 

to perform CVD at lower temperature, allowing the coatings to be grown at thermally sensitive 

substrates and, therefore, improving the quality and purity of these coatings. These include the 

use of plasmas, ion beams, reactive carrier gases, lasers, synchrotron radiation, etc. Plasma 
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Enhanced Chemical Vapor Deposition (PECVD) is employed to accomplish high quality coatings at 

a reduced temperature. In this process, electron energy (plasma) is used as an excitation method 

in order to perform coating at a low temperature and at a moderate rate. In PECVD, a radio 

frequency field activates the injected gases. This results in the generation of a plasma zone 

containing free electrons, ionized gas molecules, free radicals and normal neutral gas molecules. 

In PECVD, additional energy is provided, which then causes thin films to be produced at a lower 

temperature. However, this process involves additional cost related to purchasing plasma 

producing equipment. Furthermore, PECVD is carried out in vacuum, therefore, more 

sophisticated reactor needs to be purchased. Similarly, the use of high ion energy plasma (more 

than 20 eV) could cause serious damage to a few fragile substrates [193-195]. Due to the above 

drawbacks of the PECVD, the use of catalysts is preferred to deposit thin films on thermally 

sensitive substrate.  

In certain CVD processes, catalytically active metals deposited first act as autocatalysts. Seeding a 

surface with such active metals can lead to selective CVD on the seeded zones especially if a 

reactive carrier gas like oxygen or hydrogen is used, too. It is believed that the adsorption and 

dissociation of the CVD precursor occur at the surface of the catalytically active metals since they 

act as reactive sites for these precursors. In the presence of a reactive carrier gas such as 

hydrogen or oxygen, a catalytically active metal serves for the elimination of the ligand fragments 

from the surface by catalytic oxidation or reduction, respectively. Consequently, a clean surface is 

reproduced for additional precursor adsorption and decomposition. Therefore, it can be 

concluded that co-deposition of catalytically active material causes catalysis of the CVD of a non-

catalytic material. Such a phenomenon can be termed as Catalyst-Enhanced Chemical Vapor 

Deposition (CECVD). In this process, small quantity of a catalyst precursor is introduced in the 

reactor along with the major CVD precursor [196]. Catalytic Chemical Vapor Deposition (CCVD) or 

Hot Filament Chemical Vapor Deposition (HFCVD) is another simple and economic process, which 

uses a hot filament for the chemical decomposition of the precursor at the surface of already 

prepared catalyst particles precursor supported on a surface. CCVD or HFCVD are performed at 

comparatively low temperature (500-1500 oC) and ambient pressure (low vacuum). Therefore, 

CCVD or HFCVD are particularly useful for the synthesis of carbon-based materials such as carbon 

nanotubes (CNTs) and graphene. The process can be performed using various carbon sources in 

any physical state. Furthermore, it allows using different substrates and ensures carbon synthesis 

in a variety of forms like films and powders [197, 198].  
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 During this PhD work, assembling and parameterizing the Catalytic Chemical Vapor 

Deposition (CCVD) or HFCVD were done for the growth of graphene and molybdenum disulfide. A 

more detailed description of the CCVD (HFTCVD) follows. In this type of CVD, an appropriate 

precursor species are fed into a reaction chamber. The reactions take place and lead to the 

production of solid materials on the substrate kept at high temperatures. In case of graphene 

growth, a hydrocarbon gas such as methane (CH4) was used as a precursor to yield graphitic 

material on a suitable catalytic material.  

The main steps of the CVD assisted growth of graphene include:  

(i) The decomposition of hydrocarbon into carbon, and  

(ii) The formation of the graphitic structure, i.e., graphene on the catalytic surface.  

Therefore, the most important roles of a catalyst in graphene growth are to lower the energy 

barrier of reactions involving hydrocarbon pyrolysis and effective formation of graphene layers. 

This condition is mostly satisfied by the transition metals like Ni, Cu, Pt, Pd, Rh, Fe, and Co. The 

catalytic activity of these metal is argued to arise from partially filled d orbitals [10]. Figure 3-19 

shows the assembled CVD for graphene growth.  
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Figure 3-19: Assembled chemical vapor deposition (CVD) setup with different components. (1) 
Gas outlets, (2) Gas inlets for inserting different gases, (3) Flowmeters, (4) Pressure controller, 
(5) Temperature controller of CVD, (6) Reaction chamber, (7) Rotary pump. 

The main components shown in the figure are: 

(i) Gas outlets, 

(ii) Gas inlets for inserting different gases, 

(iii) Flowmeters, 

(iv) Pressure controller, 

(v) Temperature controller of CVD 

(vi) Reaction chamber, 

(vii) Rotary pump. 

These components are the basic elements for CVD to be functional. Forthcoming section provides 

brief description of the major CVD components. 

(i) Gas outlets: These are outlets extension for gas, which is being used during CVD 

depositions. The typical gases outlets consist of gas regulators with pressure gauge 

indicates and shut-off valve (Figure 3-20). Shut-off valves are required to maintain the 

right pressure, which is provided in gas lines. It may contain another shut-off valves, 

which are applied to over the high pressures (accidently created) by bye-passing it.  

  

 

Figure 3-20: Gas regulator for gas pipeline connections. Pressure gauge indicates the gas 
pressure before it is supplied to pipeline. Adapted from [199]. 
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(ii) Gas inlets: These are the starting point for inserting the gases in CVD. Figure 3-21 (a), 

shows the gas inlets, leak valve, and Pirani, which is further connected with pressure 

controller. The connection of flange (KF16), leak valve and pipeline is shown in 

schematic diagram in Figure 3-21 (b). The schematic diagram presents additional 

connection of test-tube with butterfly valve, which is useful for other type of reaction 

like hBN and other volatile chemical reactions.  

 

 

Figure 3-21: (a) Gas inlets for different gases. It also shows the different flanges, leak valve, and 
Pirani, (b) Schematic diagram for the connections. 

(iii) Flow meter: The flow meters are used to monitor and control the gas flow inside the 

chamber. In our experiments, argon (Ar), hydrogen (H2), methane (CH4) and ammonia 

(NH3) were used. The flow meters were purchased from Swagelok, and 1 flowmeter 

indicator (q/l) equaled to 17 sccm. These flowmeter were well calibrated from the 

company and were specific for different gases.  

(iv) Pressure controller:  It is used to monitor and control the pressure of CVD reaction 

chamber. This pressure controller has two electronic components (Pirani and 

Piezoelectric transducer connector), which are further connected with chamber to 

monitor CVD pressure. Notably, one electronic component (bye-pass) is connected to 

rotary pump to reduce/cut the high pressure, if occurred.  VD9, obtained from 

THYRACONT GmbH was used in all the experiments performed in the present work 

(Figure 3-22).  
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Figure 3-22: Pressure controller (VD9) for controlling the CVD reaction chamber’s pressure. 
Adapted from [200]. 

(v) Temperature controller of CVD: As the name suggests, it was used to control the CVD 

reaction temperature. These PID (proportional integral derivative) temperature 

controllers are program based which store different programs. In our CVD, the PID 

controller was from EUROTHERM 3216 with 8 step heating programs see Figure 3-23.  

 

Figure 3-23: PID (Proportional integral derivative) from EUROTHERM. Adapted from [201].  

The program steps used were as follow: 

 TSP 1 (Target Set Point): 1050oC 
  RMP 1 (Ramp): 7.0  
  DWEL 1 (DWELL): 1:00 

 TSP 2 (Target Set Point): 1080oC 
 RMP 2 (Ramp): 0.5 
 DWEL 1 (DWELL): 0:10 
 TSP 3 (Target Set Point): 300oC 

  RMP 3 (Ramp): OFF 
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  DWEL 3 (DWELL): OFF  
 

The above codes were used for the deposition of pure graphene on Cu substrate at 

1080oC. The heating rate used was 7oC/min till 1050oC before annealing. After 

annealing Cu substrate at 1050 oC (1h), the temperature increases slowly with the 

rate of 0.5o C until it reached 1080 oC and then it dwells for 10 mins. Afterwards it 

goes cooling slowly until 300 oC. Point to be noted here is that for cooling, no rate was 

used as during this period, the furnace was shut down because no cooling fans were 

used for a rapid cooling.  

(vi) Reaction chamber: The most important part of CVD is the reaction chamber, which is 

typically of alumina or quartz. Normally, for a high temperature CVD, alumina is 

preferred. Though quartz can also sustain high temperature it is always recommended 

to use alumina based used for high temperature. The system in the study was based 

on alumina with 55 mm inner diameter and 65 mm outer diameter. Alumina was 

surrounded by heating coils/rods (nichrome or supercanthol), which were used to 

heat the chamber.  

 

(vii) Rotary pump: To maintain the vacuum and selective pressure, rotary or other types of 

pumps were used. Generally, in CVD rotary pumps are used because the vacuum is 

not high (Figure 3-24 (a)). These pumps are connected with electronic pressure 

controllers as shown in the layout diagram (Figure 3-24 (b)). The electronic pressure 

controller is further connected with pressure controller (VD9) in order to maintain the 

suitable pressure. 
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Figure 3-24: (a) Rotary pump system, with electronic bye-pass pressure controller connected for 
reducing the high pressure, and maintaining the suitable pressure. 
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Chapter 4:  

Synthesis of pure graphene on copper 
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Abstract  

This chapter describes the experimental strategy used in the present thesis work for the growth of 

pure graphene on copper (Cu) substrates adopting a methane-based CVD method. Different trial 

and error methods were screened for parameterizing the growth conditions. After numerous 

attempts, 35 torr pressures were found suitable for the growth of monolayer graphene on copper 

films and foils at 1080 oC on Cu foil of ⁓25m thickness (Good Fellow, UK). The area of produced 

graphene on Cu foil was ⁓25 mm x 25 mm. The results from Raman, HR-XPS and HR-TEM showed 

excellent quality of graphene. The presence of very small D peaks confirmed the high quality of 

graphene crystals with strictly monolayer to a few layers thickness, and the sample can be 

considered as a pristine graphene. Additionally, HR-XPS analysis demonstrated the high quality 

graphene with C 1s in sp2 configuration (284.8 eV). The standard quality of the samples was also 

reconfirmed by the absence of other components resembling the purity of graphene. The Raman 

mapping demonstrated a full coverage of the large area graphene on copper substrate. In 

addition, high crystallinity of graphene was confirmed by HR-TEM.  
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4. Synthesis of pure graphene on copper 
 

4.1. Graphene on different metallic substrates 

Metals play a crucial role in graphene depositions, where they act as catalysts for the growth 

process, and hence form a honeycomb like structures in/on different substrates. There are 

numerous reports in the literature on transitions metals that can be used for graphene 

deposition. Various metals such as ruthenium (Ru) [11, 202], iridium (Ir) [13, 203], cobalt (Co) 

[204], nickel (Ni) [2, 205], platinum (Pt) [204, 206] and palladium (Pd) [45, 204] are considered 

good for the growth process. The metal carbon solubility and the growth conditions determine 

the deposition mechanism. Metals are also responsible for the morphology along with the 

thickness of the graphene films. Graphene grown on Co(0001) and Ni(111) surfaces was reported 

to exhibit a lattice mismatch of less than 1% [26]. However, the mismatch can be more than 1% 

for Pt(111) [204], Pd(111) [204], Ru(111) [202], and Ir(111) [203]. In the case of Pt, it has higher 

catalytic ability of hydrocarbon (CH4) which was previously confirmed by theoretical calculations 

[207]. Furthermore, it has stronger catalytic ability for hydrogen-dissociation for forming active 

atomic H.    

Ni and Cu were reported to exhibit the promising results for graphene deposition. In particular, as 

compared to other transition metals, Cu can give good results because the electron transferred 

from CH bonds to fill 3d orbitals leads to only one unpaired electron available for interaction (the 

electronic configuration of Cu is [Ar] 3d104s1). However, in the case of Ni, one can find two 3d 

unpaired electrons. This is quite important as the electron passes from the 4d-orbital to 3d to 

generate a filled 3d electron shell to form most stable configuration [208]. Furthermore, the low 

solubility is also a key factor for suitable substrate. For example, Cu has solubility of 0.001 – 0.008 

wt % at ⁓1080 oC; Co - 0.9 wt % at ⁓1320 oC and Ni has 0.6 wt % at ⁓1320 oC. Due to this low 

solubility and low catalytic activity, Cu creates soft bonds with carbon via charge transfer from the 

π electrons in the sp2- hybridized carbon to the vacant 4s states of Cu [10, 209, 210].  Additionally, 

Ni and Cu are the most widely used due to their low cost and easy availability.  

Taking these above facts in account, Cu and Ni were chosen for graphene depositions in the 

present thesis work. Graphene growth on Ni seems to limit the control of the number of layers, 

thus resulting in a single to a few layer graphene [211]; whereas the used Cu provided the growth 

of uniform and high-quality single layer over a large area. The previously mentioned quality and 
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uniformity were later checked by different techniques like Raman, XPS and TEM, which are 

discussed in the sections followed hereafter. 

 

4.1.1. Growth conditions and characterization of the pure graphene on copper 

 

As mentioned above we chose Cu and Ni as growth substrates for graphene. Depositions were 

performed using a vacuum with a vacuum pump at one corner, an introduction of gases step at 

the opposite corner and an alumina tube in the center surrounded by a cylindrical furnace. The 

vacuum pump was used for removing the atmosphere inside the alumina tube in order to replace 

it by high quality gases at the desired pressure. Thus, after in-situ cleaning the substrate by H2/Ar 

gases at high temperature, the C-rich molecular precursor was added to the atmosphere. These 

precursors react with the Cu surface and decompose on it. Furthermore, the carbon atoms 

spontaneously reorganize on the surface forming the graphene sheet. 

The growth process can be divided into five stages as described in Figure 4-1. 

During the first stage, the metal substrate (Cu) was kept at room temperature (RT) inside the 

chamber for annealing in the Ar and H2 (Ar:H2::120:40, sccm) atmosphere till 900 oC under the 

pressure of 35 torr.  

At stage II, at 900 oC, the flow of Ar was shut down and only H2 was flown with 100 sccm till 1050 

oC. This process was used to crystallize the metal substrates in order to form large grains. 

During stage III, the furnace was tuned at the rate of 0.5 oC from 1050 oC to 1080 oC, and methane 

along with hydrogen (CH4:H2::10:50 sccm) was passed for the cracking and formation of methyl 

radicals from methane, which was the precursor of graphene, which later led to formation of high 

quality graphene.  

After deposition (⁓70 min) in stage IV, the furnace and methane was closed; however, the flow of 

hydrogen and argon was continued (H2:Ar::10:85 sccm) till 300 oC.  

In the final stage V, the hydrogen flow was shut down and only argon (Ar:85 sccm) was continued 

till room temperature is reached and finally at room temperature the sample was taken out. 

The as synthesized graphene, grown on Cu substrates was of high quality with the least number of 

defects, that was confirmed by different techniques, such as Raman, HR-TEM and HR-XPS. 
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Figure 4-1: Growth process diagram for the large area pure graphene on metal substrates by 
modified thermal Chemical Vapor Deposition setup. 

 

4.1.2. Characterization of as-synthesized graphene 

 

4.1.2.1. Raman spectroscopy:  

 

The as-synthesized graphene was characterized using non-destructive Raman spectroscopy, which 

has been considered the best method for quantifying the defect density and crystallographic 

quality of carbonaceous products [166]. This fast and non-destructive technique also allows us to 

distinguish graphene from graphite and a few-layer graphene and to probe doping level, strain, 

disorder, chemical derivatives and the atomic arrangement at the edges.  

There are various bands/peaks like G, 2D, D or D’, which determine the nature and quality of the 

graphene synthesized.  

Figure 4-2 shows the Raman spectroscopy results for pure graphene grown on 25µm thick Cu 

substrates (inset show the optical image). The spectra were recorded at different time intervals in 

the range from 10 to 1000s. The peak intensities related to D, G, D’ and 2D features were 
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collected and fitted with Lorentzian functions. As widely accepted, we refer to their heights as 

peak intensities and these are denoted as ID, IG, ID′, I2D for the D, G, D′, and 2D peaks, respectively.  

 

Figure 4-2: Full Raman spectra of pure graphene on copper substrate. The spectra show major 
peaks associated with graphene namely D, G and 2D. The inset shows the optical image taken 
using 100x objective lens in Confocal – Raman equipment. 

G and 2D peaks must satisfy the Raman selection rules making Raman spectroscopy one the most 

important tools for probing the structural defects. Single-phonon intervalley and intravalley 

scattering processes activate the first two peaks. The defect peaks D and D’ located as shoulder 

peaks on G peak provide the missing momentum in order to satisfy the momentum conservation 

in the Raman scattering process [167, 169].  
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Figure 4-3: G and 2D peaks of pure graphene on copper (Cu). The blue and red (dotted) spectra 
are respectively the experimental and fitted data obtained by Lorentzian mathematical 
function.  

From the above spectra (Figure 4-3), the G peak was found to be at ⁓1584 cm-1 (full width at half 

maxima: FWHM ⁓18) for the graphene deposited on 25 μm thick Cu substrates. This peak is due 

to the E2g phonon at the Brillouin zone center. The 2D peaks, located at ⁓2694 cm-1 (FWHM ⁓30), 

are assigned to the second orders of D peak. 

In the present work, we did not find D peak but small peaks were found (located at the concerned 

region) after magnifying in the range of 1280 – 1400 (cm-1). Moreover, a minor peak (negligibly 

weak) was also located at 1350 cm-1 with the intensity ID ⁓ 2.78. The latter band originated from 

the breathing modes of six-membered rings that are activated by defects. All these mentioned 

above parameters were acquired at 100 s acquisition time during Raman measurements. 
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Figure 4-4: (a) Full Raman spectra with highlighted D Peak, and (b) Magnified D peak (with the 
range of 1280 – 1400 cm-1) along with fitted data using Lorentzian mathematical function. 
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4.1.2.2. Transmission Electron Microscopy 

 

Transmission Electron Microscopy (TEM) is the best possible technique to view and to detail any 

nanostructure, for example to study the morphology of graphene at the nanoscale. It was 

extensively used to determine the presence of rotational stacking faults [32, 91, 212]. 

Furthermore, TEM is quite relevant and fast tool for direct imaging the atomic structural and also 

the rotational misorientation in the few layer graphene (FLG) giving rise to definitive patterns 

[213]. TEM has been reported to provide the information about structural aspects, phases, 

impurities, elemental analyses and dislocations. Beside this, Selected Area Electron Diffraction 

(SAED) is also required to calculate the lattice parameter and to observe the crystallinity of the 

sample.  

 

Figure 4-5: Bright-field HR-TEM images of graphene deposited on copper (Cu) substrate, taken 
on a Cu grid of 400 Mesh (Agar Scientific, G6210).  
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Figure 4-5 (above) shows the bright field TEM image, the uneven distribution of dark black and 

grey shows that upper and a lower secondary electrons detector, also a mix detection using both 

graphene is quite thick and amorphous with different layer. It was difficult to get the crystalline 

planes but, fortunately, they were found in HR-TEM image (Figure 4-6).  

 

Figure 4-6: HR-TEM picture of bright field image, where inset (red box) shows the set of planes. 

Figure 4-7 shows the HR-TEM of graphene. The red region (shown in the inset) represents a set of 

planes. Afterwards, FFT and inverse FFT were performed for processing the image (reducing 

unwanted noise and applying a mask). A line profile was also performed to analyze the set of 
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planes, the d spacing of the inter lattices was calculated and shown in the Table 4-1: Information 

related the d spacing and hkl from HR-TEMTable 4-1. 

 

Figure 4-7: HR-TEM image of the large area indicated with a red box in (a) Bright field image. (b) 
Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), (d) Masked 
applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). (e) Inverse 
FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

4.1.2.2.1 Line profile of HR-TEM 

 

The total distance of d spacing between the two-consecutive set of planes are found to be 6.69 Å.  

Taking this data into account and comparing the value with database one from CaRine 

crystallography v3.1, it was possible to attribute it to [0 0 1] corresponding to the zone axis where 

electron diffraction pattern was acquired.  

 

Table 4-1: Information related the d spacing and hkl from HR-TEM 

d d spacing (Å) hkl 

d 6.69 001 
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4.1.2.2.2 From Dark Field: Electron Diffraction 

 

Electron diffraction performed on the same region shows two-hexagonal structures with radii 𝑟1 

and 𝑟2, assuming the distance from the center to the spot a and b, respectively. There can be 

different possibilities for the measurements of SAED patterns. Since the measurements are 

performed in reciprocal space, it is recommended to use the ratio method as mentioned below. 

We cannot use the reciprocal measurement for the calculation as this may involve the error due 

to lens and camera constant. Keeping this in mind, the distance (in terms of pixels) from the 

center was calculated and found to be 76.446 and 133 pixels by using ImageJ software. 

 

Figure 4-8: (a) Electron Diffraction showing six hexagonal spots with different planes (b) with (1 
-2 0) and (c) with (1 -1 0) family of planes. 
 

Applying the relation: 

𝒓𝟏 𝒅𝟏 = 𝑳𝝀 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = 𝒓𝟐 𝒅𝟐 ,     (Eq. 4-1) 

where, 𝑟1 and 𝑟2 are the distance from the center of the spot, 𝑑1and 𝑑2 are the d spacing. 

Hence from Equation 4-1, we have  

𝒓𝟐

𝒓𝟏 
=  

𝟏𝟑𝟑.𝟕𝟏

𝟕𝟔.𝟒𝟒𝟔
= 𝟏. 𝟕𝟒𝟗       (Eq. 4-2) 
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After simulation from CaRine crystallography v3.1, and the values taken from it, we have: 

𝒅 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 ( 𝟏−𝟐 𝟎 ) 𝒑𝒍𝒂𝒏𝒆

𝒅 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 ( 𝟏−𝟏 𝟎 ) 𝒑𝒍𝒂𝒏𝒆
=

𝟐.𝟏𝟑𝟗

𝟏.𝟐𝟑𝟓
= 𝟏. 𝟕𝟑𝟗      (Eq. 4-3) 

 

The ratio of d spacing for (1 -2 0) and (1 -1 0) was found to be the most nearest to the ratio 

obtained in Equation 4-2 which also says that the assumption of two planes was right. 

 

Table 4-2: Information related the d spacing, radius, ratio and hkl from both experiment and 
database. 

 

 

 

 

 

 

Furthermore, reciprocal lattices from (-3 -3 -3) to (3 3 3) has been shown in the Figure 4-9. The 

zone axis was found to be [0 0 1]. The two hexagons are shown with the green and red dotted line 

presenting (1 -2 0) and (1 -1 0) planes.  

d Radius 

(in pixel) 

hkl d spacing  

(Data base) 

Ratio 

r2 & r1 

(experimental) 

Ratio 

d1 & d2 

(ICDD file) 

𝑟1 76.446 1-20 1.235  

1.749 

 

1.739 𝑟2 133.71 1-10 2.139 
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Figure 4-9: (a) Electron Diffraction showing six hexagonal spots of (1 -2 0) and (1 -1 0) family of 
planes, (b) The two set of planes with green and red dotted line (hexagonal shape) in reciprocal 
space. 

4.1.2.2.3 Contaminations 

 

During ED imaging mode, a few nanoparticles were observed very near to hexagonal structure. To 

confirm the same, dark field image acquisition was performed which showed the presence of 

copper oxide (CuO) or iron chloride (FeCl3) nanoparticles. Figure 4-10 presents the dark field 

image of the same region corresponding to bright field image Figure 4-6. 
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Figure 4-10: (a) Bright field image and (b) dark field image of contaminations. The inset showing 
CuO or FeCl3 nanoparticles. 

From the bright, dark, electron diffraction and HR-TEM modes, the graphene was found to be 

mostly thick and wrinkle based; although in some regions, it exhibited crystalline structure 

(hexagonal). The electron diffraction pattern resembled two hexagonal structure of (1 -2 0) and (1 

-1 0) family of planes. From the simulation (CaRine crystallography), the zone axis was calculated 

and found to be [0 0 1].  In case of HR-TEM image, by applying FFT to the image and calculating 

the d spacing, (0 0 1) plane was found, which says that probably during the HR-TEM image mode, 

the area which showed the crystalline structure was the zone axis in the ED mode. The same set 

of planes was viewed in HR-TEM and ED but in ED the sample was tilted to have better spots. 

 

4.1.2.2.4 Extra carbon depositions 

 

It would be interesting to mention here that it was very difficult to perform more HR-TEM images 

with much higher resolution because there was a huge carbon deposition due to strong electron 

beam (Figure 4-11: (a, b) Extra carbon depositions (in forms of rings) formed due to high energy 

electron beam during transmission electron microsocopy studies.Figure 4-11). The dark rings 

shown in the inset correspond to carbon deposition due to high energy. Keeping this in the mind, 

one has to perform TEM measurements at comparatively low electron beam energies. 
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Figure 4-11: (a, b) Extra carbon depositions (in forms of rings) formed due to high energy 
electron beam during transmission electron microsocopy studies. 

4.1.2.3. X-ray Photoelectron Spectroscopy 

 

X-ray Photoelectron Spectroscopy (XPS) is a well suited technique for characterizing graphene 

samples on different substrates [173]. Figure 4-12 shows the overview XPS spectrum of the as-

grown graphene on Cu substrate. Clear signals were identified related to Cu atoms from the 

substrate and carbon from graphene in a good agreement with literature. Only a small feature 

appears at a binding energy that corresponds to oxygen atoms.  

 

Figure 4-12: Overview of the XPS spectrum of graphene on copper (Cu) substrate along with 
major elements indicated. 
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Interestingly, it can be seen that the C 1s core level of graphene on Cu is very sharp and centered 

at a BE (binding energy) of 284.5 eV. This attributes it to the C sp2 bond and can be fitted by only 

one component; hence, high-quality graphene deposition on Cu substrate is confirmed.  

 

Figure 4-13: High Resolution XPS showing C 1s core levels peak. The as–grown graphene can be 
fitted by a single C sp2 component. 

 

4.1.2.4. Homogeneity of the graphene layer: Raman mapping 

 

The Raman mapping was performed to check the homogeneity of the deposited samples. Figure 

4-14 shows the Raman mapping of the D, G and 2D band intensity of the graphene grown on Cu 

substrate. The color contrast confirms that the graphene was more or less homogeneously 

deposited. However, the bright color contrast may differ from point to point due to the presence 

of some defects or uneven surface of Cu substrate, which occurred because of its annealing at 

relatively high temperature (⁓1080oC). 
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Figure 4-14: Raman mapping integrated intensities of the (a) G, (b) D and (c) 2D using 532 nm 
laser source of graphene grown on Cu substrates. (d) and (e) shows the calculation of integrated 
intensities of ID/IG and I2D/IG respectively. The vertical bars show the color profile in the Raman 
mapping, with scale in CCD counts. 

The mapping also assumes that the graphene was deposited on the entire surface of the 

substrate. This result suggests that the CVD process is able to produce large area graphene. 

 

4.1.3. Quantification of defects 

 

Although graphene is generally considered as a perfect honeycomb crystals real samples may 

have defects created during the growth process [214]. Using Raman spectroscopy, one can easily 

probe the defects concentration since it is a suitable technique that always obeys the Raman 

selection rule (due to presence of G and 2D peaks). In spite of the previous facts, the emergence 

of D and D’ is also natural because it provides the missing momentum that satisfies the Raman 

scattering process [167-169]. 



Synthesis of pure graphene on copper 

97 

 

By the intensive use of local activation model [215-217], the intensity of any defect activated peak 

𝐼(𝑥), where 𝑥 = 𝐷 𝑜𝑟 𝐷′, as compared to the G peak intensity 𝐼(𝐺), is given by: 

𝐼(𝑥)

𝐼(𝐺)
=  𝐶𝐴

(𝑟𝐴
2− 𝑟𝑠

2)

(𝑟𝐴
2− 2𝑟𝑆

2)
 [𝑒−𝜋𝑟𝑆

2/𝐿𝐷
2

−  𝑒−𝜋(𝑟𝐴−
2 𝑟𝑆

2)/𝐿𝐷
2

] + 𝐶𝑆[1 − 𝑒−𝜋𝑟𝑆
2/𝐿𝐷

2
] . (Eq. 4-4) 

It can be seen that above equation is dependent on the intensity of defect activated peaks which 

further depends on the two length scales, 𝑟𝑆 and 𝑟𝐴 . These are the radii of the two circular areas 

measured from the defect site.  

𝑟𝑆 corresponds to radius of the structurally disordered area around the defect; hence, this might 

change from defect to defect [217]. For distances larger than 𝑟𝑆 but shorter than 𝑟𝐴, the lattice 

structure is preserved; however, the proximity to a defect causes a mixing of Bloch states near the 

K and K’ valleys of the graphene Brillouin zone, hence causing the breaking of selection rules, and 

this will lead to an enhancement of the D band [215, 217].  

𝑟𝐴 corresponds to the disk, where the D peak scattering takes place and it defines the activated 

area.  

𝐶𝐴 depends only on the Raman mode, being roughly given by the ratio of the electron-phonon 

coupling between the two phonons considered [215, 217]. 𝐶𝑆 is the factor assumed to depend 

only on the geometry of the defect for a fixed phonon mode.  

It is important to mention that Eq. 4-4 can also be applied to the integrated area. In the case of 

low defect concentration, the use of integrated area or intensity is equivalent [215, 217, 218]. 

However in the case of high defect concentration, one must consider the peak intensity obtained 

from full width at half maximum [216]. 

Using the Taylor expansion of Eq. 4-4, the same equation can be modified and, using the 

concerned values of different variables (𝑟𝑆 ⁓3 nm, 𝑟𝐴 ⁓1 nm, 𝐶𝐴 = 4.2 and 𝐶𝑆 = 0 [216, 217]), the 

defect density can be calculated as:  

𝑛𝐷 =  1014 / 𝜋 𝐿𝐷
2  ,       (Eq. 4-5) 

where 𝑛𝐷 is the defect density (in cm-2) and 𝐿𝐷 is the mean distance between two defects.  

Hence, from the above equation we have:  

𝑛𝐷 = 1.8 x 1010 cm-2 
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However, this defect concentration calculated by the use of Raman spectroscopy can 

come from several reasons and one cannot confirm that these defects are directly related 

to carbon-carbon bonds. There might be other reasons such as effect of copper substrate 

etc. [219, 220].  

 

4.1.4. Conclusions 

 

From the above characterization results, it can be said that the use of methane as a precursor in 

the CVD can yield the growth of pure graphene on Cu substrate. The presence of very small D 

peaks confirmed high quality of graphene crystals with either a monolayer or a few layers 

graphene and the sample can be considered as pristine graphene. HR-XPS analysis confirm also 

the high-quality graphene with C 1s in sp2 configuration (284.8 eV). The absence of other 

components reflects the purity of graphene and again shows the absence of defects. 

Furthermore, from the Raman mapping image, full coverage of large area graphene on Cu 

substrate was demonstrated. HR-TEM results also corroborated the above conclusions and 

confirmed high crystallinity of the obtained graphene with two-type of rotational planes. This can 

be due the presence of wrinkles formed during the transfer of graphene sheet on TEM grids. 

However, it is common to have such type of wrinkles upon transfer of graphene from Cu on any 

arbitrary substrate such SiO2/Si, Au, Si3N4 etc. To this end, it can be concluded that CVD can be 

further extended to dope graphene with heteroatoms (H, N, B, etc.) and combine graphene with a 

wide variety of functional materials for intended applications. In principle, CVD is not only 

applicable for graphene, but also can be extended to other functional materials on industrial 

scale.  
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Abstract 

This chapter describes the experimental strategy used for in-situ ammonia doped graphene 

growth on copper substrates using a methane-based CVD method. Various trial and error 

depositions were performed for parameterizing the growth conditions. After numerous attempts, 

35 torr pressures were found to be suitable for doping of graphene. Several Cu substrates were 

used with different thicknesses (10, 20 and 25 µm). This chapter also describes the role of copper 

substrate thickness in the in-situ doping of graphene with ammonia. We convincingly show that 

the standard copper foil widely used for graphene deposition is not very efficient, and smaller 

thickness (10 µm) has to be used for the successful heteroatom engineering of graphene, which is 

strongly needed for many electronic applications of this material. The results from Raman, HR-XPS 

and HR-TEM demonstrate the efficient doping and defects created in graphene. The evidence of D 

and D’ peaks confirm the defects formation in graphene. High Resolution X-ray Photoelectron 

Spectroscopy (HR-XPS) precisely affirms ⁓0.4 atomic % of nitrogen intercalations in graphene. Our 

results show that the substitutional type of nitrogen doping dominates over the pyridinic 

configuration. In addition, X-ray diffraction (XRD) pattern displays all the XRD peaks associated 

with carbon. However, the peak at ⁓24o is suppressed by the substrate peaks (Cu). Furthermore, 

using Raman mapping, we demonstrate large area graphene deposition on copper substrates. 
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5. Synthesis of in-situ ammonia doped graphene 
 

To build graphene-based circuits for microelectronic applications, the modulation of electronic 

properties of this material is required. One way to achieve this is to induce defects by doping with 

n- or p-type doping elements. Doping is a common technique for tuning the electronic properties 

of any material. Previous reports show that carbon nanotubes (CNTs) can be efficiently doped 

with n-type and p-type using nitrogen and boron atoms, respectively [221-223]. Similarly, in the 

case of graphene, doping can also significantly change its electronic properties. Theoretical and 

experimental studies [224] revealed that substitutional doping should modify the electronic band 

structure of graphene [225-227] which enhances the possibilities of its applications [228-230]. 

Doped graphene promises several breakthroughs and widespread potential applications due to 

predicted superconductivity [231], ferromagnetism [232], etc. Given this, intensive research is 

now focusing on the possibility of graphene doping under controlled conditions.  

During this PhD work the focus was given on an in-situ nitrogen doping of graphene by the use of 

ammonia as a source of nitrogen atoms in the home made CVD setup.  

 

5.1. Growth of in-situ ammonia doped graphene by CVD 

Graphene growth on copper substrates was very similar to the synthesis of pure graphene on the 

same substrate. The growth process can be divided into six stages as described in Figure 5-1. 

Ammonia (NH3) gas was used in-situ to supply nitrogen atoms during growth in a CVD setup 

within the alumina tube furnace (see the schematic diagram).  

During the first stage, the metal substrate was annealed inside the chamber in the Ar and H2 

(Ar:H2::120:40 sccm) atmosphere from RT till 900 oC under the pressure of 35 torr.  

At stage II, at 900 oC the flow of Ar was shut down during this process and only H2 was flown with 

100 sccm for 1h, this process was required for crystallizing the metal substrate in order to form 

large grains.  
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Figure 5-1: Growth process diagram for the large area in-situ ammonia doping of graphene on 
metal substrates by modified thermal chemical vapor deposition setup. 

During stage III, the furnace was heated at the rate of 2 oC from 900 oC to 980 oC and ammonia 

along with methane and hydrogen (CH4:H2:NH3:: 10:50:10 sccm) was passed for 15 min for the 

cracking, doping and formation of methyl radicals from methane, which was the precursor of 

graphene which later led to the formation of high quality coating. During this, ammonia was the 

source for the nitrogen atoms for doping. This created additional nitrogen atoms involved in the 

methyl radicals and formed the nitrogen bonds with the carbon atoms. These enhanced the 

possible sites for N intercalation in graphene sheets. Mainly three types of bonding were found in 

graphene with incorporated nitrogen, namely, substitutional, pyridinic and pyrrolic ones [224]. 

After providing the sufficient amount of nitrogen for doping, the supply of ammonia was stopped 

as too much of ammonia will act as an etchant for graphene and copper substrate. At stage IV, 

only methane and hydrogen (CH4:H2::10:50 sccm) were passed for supplying more methyl radicals 

and sufficient carbon atoms for 20 min. 

After deposition (⁓15-20 min) at stage V, the furnace and methane flow were closed, however the 

flow of hydrogen and argon was continued (H2:Ar::10:85 sccm) till 300 oC, so that the copper 

substrate should not get oxidized.  
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At stage VI At (at around 300 oC) the hydrogen flow was shut down and only argon (Ar: 85 sccm) 

was continued till room temperature (RT) was reached and finally the samples were taken out.  

  

5.2. Characterization of as-synthesized ammonia doped graphene 

5.2.1.1. Raman Spectroscopy  

 

Raman spectra of as-synthesized in-situ ammonia doped graphene were measured (see Figure 

5-2) using non-destructive Raman spectroscopy, which is commonly used to quantify the defect 

density and crystallographic quality of carbonaceous products. It is the best fingerprint technique 

for analyzing the properties of the carbon related materials including graphene [166]. This 

technique allows distinguishing among single layer, a few layers graphene and graphite. It is also 

sensitive to defects, excess charge, strain and atomic arrangement of the edges. Various peaks 

such as G, 2D, D or D’ which can determine the nature and quality of the graphene were 

measured and fitted using mathematical Lorentzian function.  

 

Figure 5-2: Full Raman spectra of in-situ ammonia doped graphene on copper substrate. The 
spectra shows major peaks associated with graphene namely D, G, D’ and 2D. The inset showing 
the optical image taken using 100x objective lens in Confocal – Raman equipment. 
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The G peak (see Figure 5-3 (a)) corresponding to the E2g phonon at the Brillouin zone center (Γ 

point) was found at ⁓1580 cm-1 with FWHM around 50. The overtone peak 2D peak (see Figure 

5-3 (c)) which is associated with the breathing modes of six-atom rings (it comes from TO phonons 

in the vicinity of the K point and activated by a resonant intervalley scattering process) was found 

at ⁓2685 cm-1 with FWHM of 109. The D peak (at ⁓1350 cm-1, FWHM of 100) (see Figure 5-3 (b)) 

and D’ peak (at ⁓1630 cm-1, FWHM of 24) (see Figure 5-3 (a)) were related to single phonon 

intervalley scattering events. As it is well known, these defects provide the missing momentum in 

order to satisfy momentum conservation during the Raman scattering process.  

The as synthesized graphene was doped on 20µm copper substrate using ammonia. The ammonia 

gas is rich in nitrogen (N) atoms which contain one additional electron and, when replacing the 

carbon atom in the graphene lattice, novel electronic properties can be envisaged. 

 

 

Figure 5-3: Experimental (blue line) and fitted data using Lorentzian mathematical function 
(dotted lines).  (a) D, (b) G and D’, (c) 2D peaks associated with the in-situ ammonia doped 
graphene on Cu. 
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This incorporation of nitrogen into a matrix of carbon is a necessity to reach the desirable 

semiconducting properties [233-237].  

 

5.2.1.2. X-ray Photoelectron Spectroscopy 

 

HR-XPS was performed on as synthesized in-situ ammonia doped graphene to study and to 

identify chemical environments associated with the incorporation of nitrogen atoms into the sp2 

hybridized structure of carbon. Figure 5-4 shows the normalized overview of XPS spectra for the 

as-grown in-situ ammonia doped graphene. In the spectra, all the main core level peaks are 

indicated which are associated with carbon (C), copper (Cu) and nitrogen (N). The spectrum also 

describes the presence of oxygen, which was probably due to the fact of formation of oxides that 

were removed later by annealing of the samples at 873 oC.  

 

Figure 5-4: Normalized overview of XPS spectra of the in-situ ammonia doped graphene grown 
on copper substrate. The main core levels related to substrates (Cu, Si and O) are indicated 
together with C 1s. 

Figure 5-5 shows the high resolution core level peak associated with in-situ ammonia doped 

graphene as C 1s, this was quite similar to C 1s of pure graphene grown on copper substrate.  

Moreover, the peak can be fitted with only one component centred at BE of 284.5 eV, which can 
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be related to C sp2 [173]. In the spectra, the red line is the experimental data, the grey peaks are 

the mathematical fitting and finally the black line is the overall resultant fitting. The fitting was 

performed by the speciallized software (CasaXPS).  

 

 

Figure 5-5: Showing the C 1s core levels obtained by high resolution XPS of the as grown in-situ 
ammonia doped graphene. The peak can be fitted by a single C sp2 component.  

Figure 5-6 shows the core level peak of nitrogen (N 1s) of the as grown in-situ ammonia doped 

graphene on a Cu substrate. It also presents peak deconvolution into two individual 

subcomponents, indicating two types of nitrogen incorporation into the graphene framework. The 

feature appearing at lower binding energy (⁓398.5 eV) is commonly assigned to the pyridinic 

configuration, while the component located at higher BE (⁓401 eV) suggests graphitic nitrogen, 

where N directly substitutes sp2 hybridized carbon. From the ratio between both components in 

the in-situ ammonia doped graphene we can reveal a predominance of the desired graphitic N 

(substitutional) over the pyridinic type of substitution.  
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Figure 5-6: High resolution XPS spectrum showing the core level of N 1s of in-situ grown 
ammonia doped graphene on Cu substrate.  

 

5.2.1.3. Transmission Electron Microscopy 

 

After the CVD process of the in-situ ammonia doped graphene growth was completed, SEM 

images in transmission mode (Figure 5-7) were acquired. In can be seen from the TEM image that 

the majority of the areas covered by graphene looks like largely crumpled (Figure 5-8: TEM image 

showing the crumbled like structure of in-situ ammonia doped graphene on TEM grid.) paper on 

the lacey carbon TEM grid, which clearly indicates the flexibility of the sample. This crumpling is 

very common and can be seen in the majority of places on the TEM grid. It can be concluded that 

these are coming from both growth and post-treatment processes and can be also observed in 

the graphene produced by CVD in the absence of NH3 [236, 238]. Figure 5-10 - Figure 5-14 shows 

the HR-TEM image of in-situ ammonia doped graphene and we were able to find numerous 

crystalline planes (as marked in image). 
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Figure 5-7: The images of in-situ ammonia doped graphene from (a) upper (b) lower secondary 
electrons detectors in Transmission mode.  

 

Figure 5-8: TEM image showing the crumbled like structure of in-situ ammonia doped graphene 
on TEM grid. 
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Figure 5-9: HR-TEM bright field image. Inset (red box) shows the set of planes located at various 
places marked as labels. 

Location 1 (L1) 

Figure 5-10 shows the HR-TEM image of an in-situ ammonia doped graphene. The red box shows 

a set of planes. After processing the image (reducing unwanted noise and applying the mask) it 

was possible to perform FFT and inverse of FFT. A line profile was performed to analyze the set of 

planes, the d spacing of the inter lattices was calculated and shown in Table 5-1.  
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Figure 5-10: HR-TEM image of the large area location (L1) indicated with a red box, (a) Bright 
field image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), 
(d) Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). 
(e) Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution.  

5.2.1.3.1 Line profile of HR-TEM 

 

The total distance of d spacing between 10 consecutive planes was found to be 2.11 nm, so for 

each set of consecutive planes, it was 2.11 Å 

Comparing the above value with the database from CaRine crystallography v3.1, it was found that 

it belongs to a [100] plane, which corresponds to the zone axis when we acquired the electron 

diffraction pattern. 
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Figure 5-11: HR-TEM image of the large area location (L2) indicated with a red box, (a) Bright 
field image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), 
(d) Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). 
(e) Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

 

Figure 5-12: HR-TEM image of the large area location (L3) indicated with a red box, (a) Bright 
field image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), 
(d) Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). 
(e) Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 
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Figure 5-13: HR-TEM image of the large area location (L4) indicated with a red box, (a) Bright 
field image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), 
(d) Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). 
(e) Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 

 

Figure 5-14: HR-TEM image of the large area location (L5) indicated with a red box, (a) Bright 
field image. (b) Shows the set of planes. (c) Shows the FFT image of the region indicated in (a), 
(d) Masked applied FFT image corresponding to (c), (d) Unwanted noise reduced image of (c). 
(e) Inverse FFT image of the (d) with line profile. (f) Line profile showing the distribution. 
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Table 5-1: Information related about the d spacing and hkl from HR-TEM image at different 
locations. 

Location d spacing (Å) hkl 

L1 2.11 100 

L2 1.91 101 

L3 1.91 101 

L4 1.98 101 

L5 1.89 101 

 

 

5.2.1.3.2 Selected Area Electron Diffraction 

 

Electron diffraction was performed on the sample, showing two hexagonal structures,  𝑟 1 and 𝑟 2, 

assuming the distance from centre to spot a and b, respectively. Using ImageJ software, the 

distance (in terms of pixels) from the center was calculated to be about 988 and 1727 pixels. 

 

Figure 5-15: (a) Electron Diffraction showing 6 hexagonal spots with different planes (b) with 
(110) and (c) with (032) family of planes. 

Applying the relation: 

𝒓𝟏 𝒅𝟏 = 𝑳𝝀 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = 𝒓𝟐 𝒅𝟐  ,     (Eq.  5-1) 
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where 𝑟1 and 𝑟2 are the distances from the center of the spot, 𝑑1and 𝑑2 are the d 

spacings. 

Hence from 𝒓𝟏 𝒅𝟏 = 𝑳𝝀 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = 𝒓𝟐 𝒅𝟐  ,     

 (Eq.  5-1, we have  

𝒓𝟐

𝒓𝟏 
=  

𝟏𝟕𝟐𝟕

𝟗𝟖𝟖
= 𝟏. 𝟕𝟒𝟕.         

After simulation from CaRine crystallography v3.1, and the values taken from it, we have: 

𝒅 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 (𝟏𝟏𝟎 ) 𝒑𝒍𝒂𝒏𝒆

𝒅 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 ( 𝟎𝟑𝟐 ) 𝒑𝒍𝒂𝒏𝒆
=

𝟏.𝟐𝟑𝟏

𝟎.𝟔𝟗𝟓
= 𝟏. 𝟕𝟕𝟏      

 

The ratio of d spacing for (110) and (032) was found to be the nearest to the ratio obtained in 

Equation 5-1 which also says that these are two assumed planes.  

 

Table 5-2: d spacing, radius, ratio and hkl from both experimental and database. 

 

 

 

 

 

 

Furthermore, reciprocal lattices from (-5, -5, -5) to (5, 5, 5) are shown in the Figure 5-16. The zone 

axis was found to be [1 0 0]. The two hexagonal structures are shown with the green and red 

dotted lines for (1,1,0) and (0,3,2) planes, respectively. 

d Radius 

(in pixel) 

hkl d spacing  

(Data base) 

Ratio 

r2 & r1 

(experimental) 

Ratio 

d1 & d2 

(ICDD file) 

𝑟2 1727 110 1.231 
1.747 1.771 

𝑟1 988 032 0.695 
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Figure 5-16: (a) (a) Electron Diffraction showing 6 hexagonal spots of (0,3,2) and (1,1,0) family of 
planes, (b) The two sets of planes with green and red dotted line (hexagonal shape) in 
reciprocal space. 

5.2.1.3.3 Extra carbon deposition 

 

As observed earlier in the case of pure graphene, it was quite difficult to perform HR-TEM images 

with much higher resolution as there was huge carbon deposition due to strong electron beam 

(see, Figure 5-17). The rings (dotted lines) shown in the image correspond to carbon deposition 

due to high energy. Keeping this in the mind, we performed the HR-TEM with the energy less than 

200kV. This was an optimum for the high resolution TEM images and we were able to see the 

planes in the locations. 

 

Figure 5-17: Extra carbon depositions (in forms of rings) formed due to high energy electron 
beam during Transmission Electron Microscopy measurements. 
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5.2.1.3.4 Energy Dispersive X-ray Spectroscopy 

 

To have a better insight and to reconfirm the elements presented (the existence of the crystalline 

planes), Energy Dispersive X-ray Spectroscopy (EDS) measurements were performed exactly at the 

same location where previously HR-TEM and SAED were recorded. EDS relies on an interaction of 

some source of X-ray excitation and a sample. Its characterization capabilities are due in large part 

to the fundamental principle that each element has a unique atomic structure allowing a specific 

set of peaks in its electromagnetic emission spectrum.  Figure 5-18 shows the EDS spectrum 

obtained from the in-situ ammonia doped graphene transferred on TEM grid. The spectrum 

shows the peaks of carbon (C), nitrogen (N), oxygen (O), and iron (Fe). The presence of Fe in the 

sample is due to FeCl3 used for catalytic reaction of the substrate required for transfer process. 

This Fe was also observed in HR-XPS and the result was reported in the  literature [239]. On the 

other hand, the peaks from Cu are coming from the TEM grid.  

 

Figure 5-18: Energy dispersive X-ray spectroscopy (EDS) spectrum of the in-situ ammonia doped 
graphene on TEM grid.  

From the above EDS pattern, we found two hexagonal of (0,3,2) and (1,1,0) family of planes. After 

simulation from CaRine crystallography software, the zone axis was calculated, and it was found 

to be [1 0 0 ].  In case of HR-TEM, after applying FFT to image and calculating the d spacing, we 

found two planes of (1,0,0) and (1,0,1). And this was also compared with JCPDF XRD file (file 

reference is #C–00–056–0159 and #C–00–056–0160). Upon comparing the data, simulating using 

CaRine, and extracting the zone axis we came to the conclusion that the planes noticed in HR-TEM 
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image, are (1,0,0) and (1,0,1) whereas in the case of SAED we observed (0,3,2) and (1,1,0) family 

of planes. The zone axis obtained from the SAED pattern was [1 0 0]. The above calculation and 

observation lead us to the conclusion that the crystallinity in the in-situ ammonia doped graphene 

was maintained. The same set of planes was viewed in HR-TEM and ED but in EDS the sample was 

tilted to have better spots. 

 

5.2.1.4. Homogeneity of the graphene layer: Raman mapping 

 

To check the homogeneity of the sample, we performed Raman mapping. Figure 4-14 Raman 

mapping of the D, G and 2D band intensity of the graphene grown on Cu substrate can be seen in 

Figure 5-19. The color contrast depicts that the graphene flake deposited on Cu was sufficiently 

homogeneous. However, in some areas the contrast was absent due to defects and uneven 

surface of Cu substrate that was possibly due to the substrate annealing at high temperature 

(⁓1000 oC).  

 

Figure 5-19: Raman mapping integrated intensities of the (a) G, (b) D and (c) 2D band using 532 
nm laser source of in-situ ammonia doped graphene grown on Cu substrates.  (d) and (e) show 
the calculation of integrated intensities of ID/IG and I2D/IG, respectively. The vertical bars show 
the color profile in the Raman mapping with scale in CCD counts. 
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5.3. Defect concentration dependence on substrate thickness†  

Tuning the band-gap of graphene is a current need for real device applications. Copper (Cu) as 

substrate plays a crucial role in graphene deposition. Here we report the fabrication of in-situ 

nitrogen (N) doped graphene via CVD technique and the effect of Cu substrate thickness on the 

growth mechanism. The ratio of intensity ratio of G and D peaks was used to evaluate defect 

concentration based on the local activation model associated with the distortion of the crystal 

lattice due to incorporation of nitrogen atoms into graphene lattice. The results suggest that Cu 

substrate of 20 μm in thickness exhibits higher defect density (1.86 x 1012 cm-2) as compared to 10 

and 25 μm thick substrates (1.23 x 1012 cm-2 and 3.09 x 1011 cm-2, respectively). Furthermore, High 

Resolution -X-ray Photoelectron Spectroscopy (HR-XPS) precisely affirms ⁓0.4 atomic % of 

nitrogen intercalations in graphene. Our results show that the substitutional type of nitrogen 

doping dominates over the pyridinic configuration. In addition, X-ray diffraction (XRD) shows all 

XRD peaks associated with the carbon. However, the peak at ⁓24o is suppressed by the substrate 

peaks (Cu). These results suggest that nitrogen atoms can be efficiently incorporated into the 

graphene using thinner copper foils, rather than the standard 25 µm thick substrates. This is 

important for tailoring the properties of graphene required for microelectronic applications.  

Ni and Cu substrates are the most widely used due to low cost and ease of availability. 

Kim et al. reported high optical transparency (80%), low sheet resistance and greater electron 

mobility of 3700 cm2/V.s for the graphene grown by CVD on polycrystalline Ni, and transferred 

onto SiO2  substrate [3].  Recently Li et al. have demonstrated that using Ni foil limits the control 

of the number of layers, resulting in a single to a few layer graphene [211]. In the case of Cu, 

graphene grows as uniform and high-quality single layer over a large area. The studies of Sutter et 

al. have demonstrated uniform high quality single layered graphene growth over a large area up 

to 30-inches on polycrystalline substrates [7]. Their study further confirmed 95% of the copper 

surface covered by a single layered graphene while the remaining area was coated by 2-3 layer 

graphene. Copper, as a substrate, has shown catalytic behavior for several carbon allotropes, such 

as graphite [240], diamond [241], carbon nanotubes [242, 243] and graphene [7], as was 

unintentionally achieved in 1991 in an experiment designed to catalyze the growth of diamond by 

CVD.  

                                                           
† Parts of this chapter have been published as Physica B 513 (2017) 62–68). 
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Given the extensive applications of graphene related materials and based on the success of 

graphene growth on the large areas of Cu substrates, we aimed to grow doped thin films by CVD. 

We performed the growth of highly homogenous in-situ nitrogen doped graphene on these 

substratess in its single layer form. The effect of substrate thickness on structure is studied by 

calculating defect concentrations based on local activation model associated with the distortion of 

the crystal lattice upon introduction of nitrogen atoms. By means of confocal Raman spectroscopy 

and XPS we further confirmed the existence of defects created by nitrogen atoms on  different Cu 

substrates. Our studies reveal that graphene grown on 20μm Cu exhibits higher concentration of 

defects, as compared to 10 and 25μm substrates. 

 

5.3.1. Results and discussions 

 

5.3.1.1. High Resolution X-Ray Diffraction 

 

HR-XRD pattern of nitrogen doped graphene grown on different Cu substrates is depicted in 

Figure 5-20. The XRD patterns of Cu substrate (before and after deposition of nitrogen doped 

graphene on 10, 20 and 25μm thick substrates) can be seen in the figure. The results show the 

presence of strong peaks associated with Cu, which suppress the carbon (graphene) peak, 

typically expected around 2ϴ ⁓ 24o. This could be due to the fact that only a few layers of 

graphene were grown on the substrate; such observation is reported in literature for graphene 

films on various metal substrates. From  our XRD results three distinct diffraction peaks at 

approximately 2ϴ  ⁓ 43, 50, and 74o, which correspond to (003), (202) and (220) reflections of 

carbon [244] and  the crystallographic plane of Cu (111), (200) and (220), respectively [245]. The 

absence of other peaks confirms that no other elements are present in our sample as an impurity. 
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Figure 5-20: XRD patterns with corresponding peaks of Cu substrate (before deposition) and 
after deposition of nitrogen doped graphene. 

5.3.1.2. Raman spectroscopy and defect calculation 

 

Raman spectroscopy is the best fingerprint technique for analyzing the properties of the carbon 

related materials including graphene [166]. This technique allows distinguishing among single 

layer, a few layers graphene and graphite. It is also sensitive to defects, excess charge, strain and 

atomic arrangement of the edges. Figure 5-21 shows the Raman spectroscopy results of nitrogen 

doped graphene grown on 10, 20 and 25μm thick Cu substrates. The spectra were recorded at 

different time intervals in the range from 10 to 1000 s. The peak intensities related to D, G, D’ and 

2D features were collected and fitted with Lorentzian functions. As widely accepted we refer to 

peak intensities their height and these are denoted as ID, IG, ID′, I2D for the D, G, D′, and 2D peaks, 

respectively.  



Synthesis of in-situ ammonia doped graphene 

123 

 

 

Figure 5-21: Raman spectra of graphene grown on (a) 10, (b) 20 and (c) 25μm Cu substrate 
showing the distinct peaks D, G and 2D respectively. (d) Spectra showing the defect density with 
respect to time of acquisition for the graphene grown on 10, 20 and 25μm Cu substrates. 

G and 2D peaks must satisfy the Raman selection rule and this makes Raman spectroscopy one 

the most important tools for probing the structural defects. The first two peaks are activated by 

single-phonon intervalley and intravalley scattering processes, and the defect peaks D and D’ 

provide the missing momentum in order to satisfy the momentum conservation in the Raman 

scattering process [167, 169]. In our case D peak was found almost at the same position in all the 

samples (⁓1354 cm-1). However, the values of FWHM were found to be around 43, 53 and 53 for 

10, 20 and 25μm thick substrates, respectively. This band originates from the breathing mode of 

six-membered rings that are activated by defects. The G peak was found to be at ⁓1583 cm-1 

(FWHM ⁓47), ⁓1584 cm-1 (FWHM ⁓45) and ⁓1585 cm-1 (FWHM ⁓42) for 10, 20 and 25 μm thick Cu 

substrates, respectively, which are due to the E2g phonon at the Brillouin zone center. Finally, 2D 

peaks at ⁓2694 cm-1 (FWHM ⁓63), ⁓2697 cm-1 (FWHM ⁓100) and ⁓2695 cm-1 (FWHM ⁓87) for 10, 

20 and 25μm thick Cu substrates, respectively, are assigned to the second orders of D peak. All 
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these parameters were acquired at 100 s acquisition time during Raman measurements. Lucchese 

et al. have made extensive efforts to study the relationship between the amount (and nature) of 

defects and the intensities of D and D’ peaks [217]. A simple formula was proposed to calculate 

the defect density 𝑛𝐷  (in cm-2) with the help of mean distances in graphene (LD, nm) with relation 

to ID/IG.  

𝑰(𝒙)

𝑰(𝑮)
= 𝑪𝑨 

𝒓𝑨
𝟐−𝒓𝑺

𝟐

𝒓𝑨
𝟐−𝟐𝒓𝑺

𝟐  [ 𝒆

−𝝅𝒓𝑺
𝟐

𝑳𝑫
𝟐

−   𝒆

−𝝅(𝒓𝑨
𝟐−𝒓𝑺

𝟐)

𝑳𝑫
𝟐

],    (Eq. 5-2) 

where 𝑥 = 𝐷 or 𝐷′; 𝑟𝑆 (1 nm) and 𝑟𝐴 (3.1 nm) are the radii of the “structurally disordered” area 

and the “activated area” around the defects, respectively [217]. 

𝐶𝐴 correlates with the electron-phonon matrix elements and it was found to be 4.2 using the 

green laser excitation (532 nm). From the above equation, the defect densities 𝑛𝐷 (in cm-2) were 

calculated as follows: 

𝒏𝑫 =  𝟏𝟎𝟏𝟒 / 𝝅 𝑳𝑫
𝟐         (Eq. 5-3) 

Figure 5-21 (d) shows the defect densities calculated for the substrates with different thicknesses. 

From the measured spectra it was concluded that the highest defect density is observed for 20μm 

thick Cu substrate. Possible reason for this effect could be the increased surface roughness due 

rolling process used for the commercial fabrication of Cu substrates [246]. Due to strong D peak 

seen in graphene grown on 20μm Cu substrate and because of the defect density, the “activated” 

area starts to coalesce and the structurally disordered area dominates in the graphene sheets 

[247]. Figure 5-21 (d) shows the summary of defect densities calculated over different laser time 

acquisitions starting 10s to 1000s.  To check the homogeneity of the sample, we perform Raman 

mapping. Figure 5-22 shows the Raman mapping of the G band intensity, D peak intensity and 2D 

peak of the graphene grown on 10, 20 and 25μm respectively. The color contrast depicts that the 

graphene was homogeneously deposited on the Cu, though the quality differs due to different Cu 

substrates used during experiment. The mapping also confirms the overall uniform deposition of 

nitrogen doped-graphene on over most of the substrate surface. This result suggests that the CVD 

process is able to produce large areas of graphene. 
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Figure 5-22: Raman mapping of the G, D and 2D band intensity of the graphene grown on 10, 20 
and 25μm thick Cu substrates, respectively. The values in the scale are in CCD counts. 

5.3.1.3. High-Resolution X-Ray Photoelectron Spectroscopy 

 

Furthermore, we performed HR-XPS to re-confirm the nature of defects created by doping of 

graphene. XPS is a well-established technique used for revealing the elemental composition and 

the chemical environment of the detected elements. Figure 5-23 (a) shows the overview 

spectrum of as grown N doped graphene on 10, 20 and 25μm thick foils. Figure 5-23 (b) shows 

carbon (C) 1s and (c) nitrogen (N) 1s core levels.  
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Figure 5-23: HR-XPS comparison of nitrogen (N) – doped graphene grown on copper (Cu) 
substrate of 10 (brown), 20 (black spectra) and 25 (red) μm in thickness. (a) Shows the overview 
spectra of n-doped graphene. (b) C 1s and (c) N 1s core levels. The best fits are also included in 
green. In the case of the N 1s spectra of graphene grown on 25μm Cu substrate sample (bottom 
spectra) the blue line is a guide for the eyes. 

C 1s core level (Figure 5-23 (b)) can be fitted by a single component centered at a BE of 284.5 eV 

and can be ascribed to C sp2 [173]. Thus, from the XPS point of view C 1s seems to be almost the 

same in all the samples. On the contrary, significant changes were detected in the N 1s core level 

(Figure 5-23 (c)). Under the same growth conditions the quantity of nitrogen is almost zero in the 

case of the 25μm copper substrate (bottom spectra). The blue dashed line that is included in the 

bottom spectra is only a guide for the eye, fixed at the BE that we could expect substitutional 

nitrogen in graphene. On the other hand, the nitrogen intercalation in the graphene sheets is 

clear in the upper spectra, corresponding to the sample grown on the 20 μm thick copper 

substrate. Two components are clearly distinguished in the respective N 1s core level. The first 

one, centered at BE of 401.7 eV, is attributed to substitutional nitrogen atoms in a graphene 

sheet, whereas the second component (BE = 398.5 eV) is attributed to nitrogen atoms in a 

pyridinic configuration [224]. In this sample the amount of nitrogen quantified by XPS is about 0.4 

atomic %. Finally, in the case of the sample grown on 10μm thick copper substrate a sharp N peak 

is detected at 396.7 eV. This value of BE is too low for the substitutional nitrogen in the graphene 
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sheet. On the contrary, it can be related to the atomic nitrogen bonded to the copper substrate 

[239]. Figure 5-24 (b) shows the possible sites for N intercalation in graphene sheets. There are 

mainly three types of bonding found in graphene with incorporated nitrogen, namely 

substitutional, pyridinic and pyrrolic ones. However, in our graphene (grown on a 20μm thick 

copper substrate) we found only substitutional and pyridinic configurations of bonding. In 

substitutional type of configuration, three nitrogen valence electron form three σ– bonds, one 

electron fills the π–states, and the fifth electron enters the π*–states of the conduction band, 

providing a strong doping effect.  

 

5.3.1.4. Surface analysis 

 

Commonly, 25 µm Cu substrates are mostly used for the deposition of graphene. In our 

experiment, we used 10, 20 and 25 µm thick Cu foils and studied the effect of substrate thickness. 

As discussed earlier, we found that 20µm Cu substrates are the best for doping of graphene. The 

graphene grown on it has larger defect concentration as compared to that grown on 25µm thick 

foil. The conceivable mechanism can be as follows: it is well known that Cu sheets are prepared 

using a rolling process. This rolling technique creates lines with sufficiently high roughness 

(average roughness of highly smooth Cu sheet can be as high as 100 nm) [246]. Since Cu surface 

plays an important and crucial role for the grain growth during annealing process (during 

deposition) [248], we infer that thinner Cu substrates are likely to have higher surface roughness 

that will create more nucleation sites for graphene growth and subsequent doping. As in the case 

of 20μm, the results show that the number of grains is higher than that for 25 μm substrates. On 

the contrary 10 μm substrate might have even higher number of grains but, since the deposition 

is done around 1000 oC, it leads to evaporation of Cu atoms from the surface (because of the 

melting temperature of Cu ⁓1085oC). This is deleterious for the graphene deposition and its 

doping. It is worth mentioning that we tried the same experiment around ⁓1050 oC and it was 

surprising that 10µm Cu substrate was completely evaporated due to high temperature, as also 

confirmed by Ago et al. [248].   
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Figure 5-24: (a) Schematic diagram of the experiment showing the 10, 20 and 25µm copper (Cu) 
substrates placed in alumina boat in CVD furnace, (b) Possible nitrogen (N) incorporation in 
graphene structure showing (1) substitutional or graphitic N, (2) pyridine-like N, (3) single N 
pyridinic vacancy, (4) triple N pyridinic vacancy, (c–e) Atomic Force Microscopy (AFM) image for 
average RMS surface of virgin Cu substrates of 10, 20 and 25µm respectively (inset showing the 
optical image captured during AFM). 

Atomic Force Microscopy (AFM) was used to quantify the root mean square (RMS) roughness in a 

semicontact mode using a cantilever with force constant 3 Nm-1 of all as-received Cu foils (Good 

Fellow, 99.97+%) and the results are presented in Figure 5-24 (c-e). The graphene films grown on 

10, 20, and 25µm Cu substrates have a uniform thickness with an RMS roughness of 46, 25 and 18 

nm, respectively. Hence, from the above observation we infer that thinner Cu substrates have 

higher roughness as compared to thicker substrates; consequently, it is the roughness that 

controls the grain number and doping efficiency. 

 

5.4. Conclusions 

 

In conclusion, we argue that the use of ammonia along with methane as a precursor in the CVD 

can yield the N-doped graphene on copper substrates. The presence of D peaks confirms the 

doping of graphene and, moreover, we were able to control the amount of doping by varying the 
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time duration. HR-XPS analysis shows the growth of high quality graphene with C 1s in sp2 

configuration (284.8 eV). Furthermore, we were able to determine the type of doping and amount 

of nitrogen intercalations in the graphene sheets. Moving further, the Raman mapping image 

demonstrated the full coverage of large area in-situ ammonia doped graphene on copper 

substrate. Lastly, from the HR-TEM results, we identified the crystalline plane, which reconfirmed 

the crystallinity of the sample. However, the sheet (transferred on TEM grids) was crumbled like 

paper due to the flexibility and thin nature of the material. Further, we also observed the 

apparent effect of Cu substrate thickness on in-situ nitrogen doping of graphene by using NH3 as 

precursor. In general, 25 μm thick Cu foils are the standard substrates for the growth of pristine 

epitaxial graphene. Our results based on Raman spectroscopy, HR-XPS, HR-XRD and AFM indicate 

that the use of a thinner copper substrate (20µm) rather than the standard one (25µm) is 

preferred to significantly increase the efficiency of doping of graphene sheets with nitrogen. Thus, 

this study provides a clue for heteroatom engineering of graphene, which is required for the 

electronic applications of graphene. 
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Chapter 6 

Graphene growth on nickel substrates 
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Abstract 

This chapter describes the experimental strategy used for pure graphene growth on various nickel 

substrates using a methane-based CVD method. Trial and error method was applied for 

parameterizing the growth conditions. After many attempts, 35 torr pressures was found to be 

suitable for the pure graphene deposition. The deposition of graphene on nickel substrates 

involves two major processes, initially the dissolution of the (released) carbon atoms into the 

metal at high temperature followed by the crystallization of carbon atoms on the metal surface to 

form graphene. The as synthesized graphene was found to be multilayer graphene (MLG) due to 

high amount of carbon absorbing on nickel. This was confirmed by Raman spectroscopy. MLG 

were found to be highly crystalline in nature, with sharp G peak at ⁓1560 cm-1 (with FWHM as 

⁓24). However, we were able to see the D peak due to possible wrinkle formation in MLG. This 

was proved by SEM images. Moreover, the results from HR-XPS show that the peak can be fitted 

by only one component centered at 284.4 eV, which firmly confirms the sp2 nature of carbon.  

Also, the Raman mapping shows the overall coverage of the sample on the large area. 

In addition, we have calculated the charge injection as well as subsequent charge diffusion with 

time on the MLG/nickel surface by using Kelvin Probe Force Microscopy. The results unveiled that: 

(i) MLG surface can be either positively or negatively charged through the injection process using 

Pt coated Si-based AFM probes; (ii) the charges accumulated and eventually reached the 

saturated concentrations of (+4.45 ±0.1) μC/m2 and (−1.3 ±0.1) μC/m2; (iii) the charge diffusion 

coefficients on graphene surface were measured to be (1.50 ±0.05) × 10−16 m2/s and (0.64 ±0.05) × 

10−16 m2/s for the positive and the negative charges, respectively.  
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6. Graphene growth on nickel substrates 

 

Graphene growth on the catalytic transition metal substrates seems to be the most promising 

during the past decades and found to be the best for delivering high quality and large area 

crystalline graphene. By using thermal decomposition of carbon-based gaseous precursors such as 

methane or ethylene in CVD technique allowed us to achieve the high-quality graphene.  Nickel 

exhibits significant carbon solubility and additionally has a high carbon diffusivity [249]. It is worth 

noting that Ni as a catalyst allows the faster growth of graphene layers as compared to copper 

[250].  

Growth of graphene on nickel substrate evolves in two major steps, initially the dissolution of the 

(released) carbon atoms into the metal at high temperature (700–1000 oC) and, secondly, the 

crystallization of carbon atoms onto the metal surface to form graphene. The crystallization step 

may take place during the high-temperature period of the treatment or during cooling [1, 3, 11, 

13, 250-252]. In these phenomena, the metals used as catalysts which dehydrogenate the 

hydrocarbons (such as methane, ethylene) used, thus leaving only carbon on the surface. Noble 

metals such as Au (gold) and Ag (silver) does not exhibit high enough catalytic activities for the 

dehydrogenation, but in some cases Au was used as catalyst and growth of graphene was 

demonstrated under appropriate conditions [253]. It is quite relevant to state that metal type and 

temperature play a crucial role for the growth of graphene on any surface. This controls the 

amount of diffusivity into the bulk. The amount of carbon in the bulk depends on the carbon 

solubility of the metal and this property is important to determine whether graphene grows on 

the surface of the metal at high temperatures, as it is the case for copper, or carbon dissolves into 

the bulk at high temperatures, as it is the case for nickel [254]. Ni and other materials (mainly 

metals) dissolving larger quantity of carbon in the bulk are likely to form graphitic layers or 

multilayers of graphene upon cooling from high temperatures. High carbon solubility in nickel 

makes difficult conditions for monolayer growth in Ni and also the formation of graphene at low 

temperatures is complicated by the presence of another carbon containing surface phases such as 

carbon forming a surface-carbide, i.e. a single atomic monolayer ordered Ni2C phase on the 

Ni(111) surface [255, 256]. Furthermore, lattice mismatch and metal–graphene interaction are 

also important regarding the growth of the graphene. Typically, Ni(111) surface is the closest 

matched interface with respect to graphene of all transition metals. This close lattice match 

enables the formation of a 1 x 1 structure of graphene on Ni(111) under vacuum growth 
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conditions, while on all the other metals a periodic lattice matching condition results in a Moiré 

superstructure.  

 

6.1. Graphene growth on nickel substrate 

Graphene on Ni as substrate can be easily grown in ultra-high vacuum (UHV) using hydrocarbon 

precursors, typically methane, ethylene or propylene, with low pressures in the 10-9 to 10-6 Torr 

range. It is interesting to mention that the thickness of the Ni substrate determines the amount of 

carbon dissolvability. Another parameter playing a role is the duration of reaction with the 

hydrocarbon at a given high temperature.  In particular, carbon content in the substrate strongly 

affects the growth of graphene on Ni.  

Graphene was grown on Ni substrates (GoodFellow, 99.95+%) of 30 µm in thickness. The process 

was similar to that performed for pure and in-situ ammonia doped graphene on copper 

substrates. The growth parameters were quite similar to the parameters used by Hawaldar et al. 

[173] As usual, the growth process can be divided into six stages as described in Figure 6-1.  

During the first stage Ni metal substrate was heated from RT to 1050 oC inside the chamber in the 

Ar and H2 mixture (Ar:H2::120:40, sccm) under the pressure of 35 Torr.  

In stage II, the flow of Ar was shut down at 900 oC, during this process only H2 was flown with 100 

sccm till 1050 oC. This process played a critical role for crystallizing the metal substrate and 

combining the small size grains in order to form a larger grain.  

During stage III, the furnace was heated to 1050 oC from 900 oC (with predefined rate) and 

methane along with hydrogen (CH4:H2::10:50 sccm) was passed for the cracking and formation of 

methyl radicals from methane (which was the precursor of graphene) which later led to the 

formation of high quality graphene. This was done only for a few minutes (max ⁓10 min) as Ni has 

higher carbon solubility as compared to Cu (in case of Cu it was 60 min). 

After deposition (⁓10 min) at stage IV, the furnace with methane was closed, however the flow of 

hydrogen and argon was maintained (H2:Ar::10:85 sccm) till 300 oC. This was done to remove the 

access methyl radicals in order to avoid the formation of too many layer graphene.  

During stage V the hydrogen flow was shut down and only argon (Ar:85 sccm) was continued till 

room temperature (RT) and finally at room temperature the sample was taken out. 
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The as synthesized graphene grown on Ni substrates was found to have sufficiently high quality 

with some defects, which were confirmed by different techniques, such as Raman, HR-TEM and 

HR-XPS.  

 

Figure 6-1: Growth process diagram for the large area pure graphene on Ni substrate by 
modified chemical vapor deposition setup.  

 

6.2. Characterization of graphene grown on Ni 

6.2.1.1. Raman spectroscopy  

 

Raman spectra of as-synthesized graphene grown on Ni substrates were acquired (see Figure 6-2) 

using Raman spectrometer. This technique allows distinguishing among single layer, a few layer 

graphene and graphite. It is also sensitive to defects, excess charge, strain and atomic 

arrangement of the edges. Various peaks including G, 2D and D were measured and fitted using 

mathematical Lorentzian function.  
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Figure 6-2: Full Raman spectra graphene on Ni substrate. Inset shows the optical image with the 
mark where the spectrum was taken. The spectra show major peaks associated with graphene, 
namely D, G and 2D. 

The G peak (see Figure 6-3(a)) was found to be at ⁓1563 cm-1 with FWHM of ⁓24. The overtone 

peak 2D peak (see Figure 6-3 (c)) was found at ⁓2640 cm-1 with FWHM of 33. D peak (defect peak) 

was found to be at ⁓1359 cm-1 with FWHM of 29 (see Figure 6-3 (b)). However, we also found a 

small shoulder D’ peak at ⁓1604 cm-1 having FWHM of 24 (see Figure 6-3 (a)) that was related to 

the single phonon intervalley scattering events. Also, both the D and D’ defects provide the 

missing momentum in order to satisfy momentum conservation during e Raman scattering 

process.  
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Figure 6-3: Experimental (blue line) and fitted data of Raman spectra using Lorentzian 
mathematical function (dotted line).  (a) G and D’, (b) D, (c) 2D peaks associated with the as 
synthesized graphene on Ni substrate. 

 

6.2.1.2. X-ray Photoelectron Spectroscopy 

 

The as synthesized graphene on Ni substrate was characterized by HR-XPS. The spectrum in Figure 

6-4 shows the overview XPS scan. It can be clearly seen that the C 1s peak is dominant. This 

confirms the fact that multilayer graphene was deposited on Ni substrate. However, we were still 

able to find small minor peaks associated with the substrate of Ni 2p and Ni 2s at 855 and 1011 

eV, respectively. Beside this we found O1s peak that can come from the atmospheric oxygen. This 

peak was later removed by annealing the sample at around 800 oC.   
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Figure 6-4: X-ray Photoelectron Spectroscopy result showing the overview scan of as-
synthesized graphene on Ni substrate.  

Figure 6-5 shows the high-resolution core level peak associated with carbon (in the form of 

graphene) deposited on Ni. It must be noted that in the case of carbon, we need to used DS 

(Doniach-Sunjic) with DS(α, n) with a Gaussian profile with the width characterized by an integer  

0 ≤ n ≤ 499. This fitting was performed by the specialized software (CasaXPS). It can be seen that 

the peak can be fitted by only one component centered at 284.4 eV confirming its C sp2 nature. 

These results are in accordance with the earlier literature data [173].  
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Figure 6-5: High-resolution XPS scan for the C 1s core level peak of graphene on Ni. The main 
core levels peaks can be deconvoluted in three components. In the spectra dots are the 
experimental data points, black line is the overall fitting performed with the CasaXPS . 

Figure 6-6 displays the oxygen-related components of O 1s level deconvoluted into two peaks. 

The presence of oxygen most likely originates from the residual oxygen in low-vacuum chamber of 

our CVD system. The O 1s spectrum shows peaks at 532.33 (1) and 532.3 eV (2), which could be 

assigned to C-OH/C-O and hydroxides, respectively. 

 

 

Figure 6-6: High-resolution XPS scan for the O 1s core level peak of the graphene grown on Ni. 
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6.2.1.3. Homogeneity of the graphene layer: Raman mapping 

 

To check the homogeneity of the deposited graphene, we performed Raman mapping.  Raman 

mapping of the D, G and 2D band intensity of the graphene grown on Ni substrate is shown in 

Figure 6-7. The color contrast confirms that the graphene was homogeneously deposited on Ni. 

Some variation of the color contrast may be due to the presence of defects (e.g. wrinkles) or 

uneven surface of Ni substrate, which occurs because of annealing the Ni substrate at high 

temperature (⁓1000 oC).  

 

 

Figure 6-7: (a) Optical image, Raman mapping of integrated intensities of (b) D, (c) G and (d) 2D 
band of the graphene grown on Ni.  (e) and (f) show the calculation of integrated intensities of 
ID/IG and I2D/IG, respectively. The vertical bars show the color profile in the Raman mapping 
(scale in CCD counts). 
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6.3. Studies of charge injection in multilayer graphene using ambient Kelvin 

Probe Force Microscopy‡ 

 

This study presents the method for quantitative characterization of nanoscale electrostatic 

properties of as-grown multilayer graphene (MLG) sheets on nickel by a combination of Atomic 

Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM). Large area epitaxial MLG 

sheets were grown on nickel by using Chemical Vapor Deposition technique describe in the 

previous sections. High crystallinity MLG sheets on nickel were confirmed by Raman spectroscopy 

that revealed average G-bandwidths of about 20. Herein, the charge injection as well as 

subsequent charge diffusion in the MLG/nickel surface was studied for the first time. The results 

unveiled that: (i) MLG surface can be either positively or negatively charged through the injection 

process using Pt coated Si-based AFM probes; (ii) the charges were accumulated and eventually 

reached saturated concentrations of (+4.45 ±0.1) μC/m2 and (−1.3 ±0.1) μC/m2; (iii) the charge 

diffusion coefficients on graphene surface were measured to be (1.50 ±0.05) × 10−16 m2/s and 

(0.64 ±0.05) × 10−16 m2/s for the positive and the negative charges, respectively. The discovery of 

charge injection in MLG may pave the way for designing a new class of microelectronic devices. 

Additionally, our study demonstrated a technique for nano-patterning/charge lithography of 

surface charges by contact electrification, which could be a promising approach to create 

controlled nanostructures for next generation of graphene based nanoelectronic devices [257]. 

From both scientific and technological points of view, charge injection on insulating films 

has been of great interest for the development of multiple devices including triboelectric 

nanogenerators for building self-powered portable electronics, large-scale energy harvesting, and 

also to develop data storage devices [258]. In particular, charge injection measured using Kelvin 

Probe Force Microscopy (KPFM) technique was reported to be a useful method to study the 

electrostatic properties of materials at the nanoscale level [259]. Determination of the interface in 

carbon nanotubes (CNTs) based devices or distinguishing the metallic and semiconducting nature 

of CNTs with the same diameters, silicon nanoparticles, and semiconducting quantum nanorods 

are the major examples of the application of KPFM technique. In addition, KPFM has also been 

used to study different charge states of single metal atoms, molecules, atomic point defects, and 

imaging of the charge percolation pathways in two-dimensional quantum dot arrays [260]. 

                                                           
‡ Parts of this chapter have been published as Applied Materials Today 8 (2017) 18–25). 
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Recently, KPFM was used for the imaging of charge distribution in different complex systems such 

as semiconducting quantum dots, carbon nanotubes, graphene on SiO2, organic molecules, and 

even bacterial protein filaments [261-273]. Besides direct KPFM measurements, researchers have 

also performed nanolithography and manipulation of graphene by using AFM. For example, 

conductive Atomic Force Microscopy (c-AFM) [271] has been used to analyze the local current 

mapping and patterning of reduced graphene oxide. Sibel et al. used Electrostatic Force 

Microscopy (EFM) technique for the elucidation of the charge transport mechanisms in 

progressively deposited reduced graphene oxide [273]. With these measurements, it is possible to 

correlate the detailed morphology of graphene (e.g., wrinkles, multilayer regions, and local 

defects) with its nanoscale electrical characteristics, reading/writing charges, and local electronic 

behavior at graphene-metal interface.  

In this particular direction, present study has shown successful charge injection (both positive and 

negative) and the subsequent visualization of charge distribution, as well as charge diffusion over 

time on the large area as-grown MLG surface. In addition to this, stable charged nanosized areas 

were created using so-called “charge nanolithography” These findings provide new insights in 

understanding the electronic charge behavior in large area MLG on nickel surface at the 

nanoscale. We assumed that this phenomenon arises due to low conductivity, and may be 

originated from MLG-nickel interface (which often introduces various defects into the mono- and 

a few layers graphene-nickel interface, so-called “defective regions”) [274, 275]. These include 

misorientation within the graphene layers, point defects, grain boundaries, wrinkles or ripples of 

the MLG sheets. Indeed it has been already proven that the sensitivity of electronic systems 

directly correlates with the defects and/or deformation in two-dimensional graphene lattice 

[276]. 

6.3.1. Results and discussion 

 

6.3.1.1. Scanning Electron Microscopy 

 

Figure 6-8 (a) shows representative Scanning Electron Microscopy (SEM) image of CVD-grown 

large-area MLG-nickel foil, which acts as a catalyst for graphene growth as well as bottom 

electrical contact during KPFM measurements. The inset shows some typical wrinkles on large 

area MLG sheet grown on nickel. 
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6.3.1.2. Raman Spectroscopy 

 

To confirm the identity and quality of our as deposited MLG sheets on nickel foil, we performed 

detailed micro-Raman studies (see Figure 6-8 (b)). Raman mapping over different areas with 1 µm 

steps (not shown) as well as individual spectra were obtained from MLG-Ni sample. Figure 6-8 (b) 

reveals the Raman spectra taken of the grown sample clearly showing strong G peak (⁓1580 cm-1), 

which indicates the formation of hexagonal lattice of carbon atoms. The high crystalline quality of 

MLG sheets on nickel is indicated by Raman spectroscopy revealing average G bandwidths as low 

as 20 at 488 nm excitation. Furthermore, the absence of disorder-induced D peak (⁓1360 cm-1) 

also indicates extremely low density of defects in as-grown MLG sheets. We note that no D peak 

has been found in any area of the sample. The 2D peak (⁓2700 cm-1) is weaker compared to the G 

peak and has a wide line width of ⁓60, and its position is slightly up shifted compared to 

monolayer graphene. It is worth to mention that the Raman data presents the information only 

about the top graphene layers, which are away from MLG/nickel interface due to the low 

penetration depth of Raman excitation source into the sample. Thus, the top graphene layers 

(several nanometers) are free from any crystal defect as evidenced by the absence of Raman D 

peak mentioned above. 

 

6.3.1.3. High Resolution X-Ray Photoelectron Spectroscopy 

 

High Resolution X-Ray Photoelectron Spectroscopy (HR-XPS) was performed to reconfirm the 

quality of MLG-nickel sample and also to detect any contamination on the surface. XPS is a well-

established technique used for revealing the elemental composition and the chemical 

environment of the detected elements. Figure 6-8(c) shows the overview spectrum of as grown 

MLG/nickel (in which only carbon is detected) and the inset displays the C 1s core level. C 1s 

spectrum demonstrates a quite sharp peak centered at a binding energy (BE) of 284.5 eV, which 

can be due to the high quality of sp2 carbon. 
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Figure 6-8: (a) Scanning electron microscopy (SEM) image of CVD-grown large-area MLG on 
nickel foil (inset shows the ripple), (b) Raman spectra of as-grown MLG on nickel, clearly 
showing the strong G peak (⁓1580 cm-1) Inset is the zoom of the G and 2D peaks, (c) X-ray 
photoelectron spectroscopy of as-synthesized MLG on nickel, inset shows high-resolution XPS of 
C 1s core level of MLG on nickel. 

Moreover, its FWHM is 0.5, which clearly indicates a high-quality sample from the XPS point of 

view. Furthermore, an extra proof of the quality of the graphene sample is the lack of XPS peaks 

that could be ascribed to contaminants such as oxygen species (C-O or C=O) [266]. Finally, we 

notice that XPS did not detect any signature of the nickel substrate, indicating that several 

graphene layers grew on it.  

Thus, the full set of characterization techniques (SEM, Raman spectroscopy and XPS) confirmed 

the high quality and defect free MLG/nickel sample. Additionally, the thickness of the MLG sheet 

was estimated by analyzing the AFM images of transferred samples (not shown) and found to be 

⁓150 nm. 
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6.3.1.4. Kelvin Probe Force Microscopy 

 

KPFM was done by using the two-pass technique for imaging of the contact potential difference 

between the sample and the AFM tip (see Figure 6-9). The principle of the KPFM is to match the 

probe bias Vdc with the contact potential difference between the sample and the probe Vcpd by 

nullifying the vibration of the probe, which is initially driven (with frequency ω) by the 

electrostatic force (Fes) as described by the equation below. 
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where, C, z, Vac, and t are the equivalent capacitance between the tip and sample, the tip−sample 

distance, the magnitude of ac voltage applied to the probe, and the time, respectively.  Vdc is the 

tip bias voltage and Vcpd  is the contact potential difference. . 

Figure 6-9 shows detailed schematics of the charge injection experiments on MLG/nickel sample 

by KPFM. The local charge injection was performed by applying various dc voltages to the 

conducting tip, and followed by KPFM imaging (Figure 6-9). A representative topographic image 

with the superimposed surface charge potential (color coded) of the selected area is shown in 

Figure 6-9(b). In the chosen region, the dc biases of Vinj = +10V (on the right) and -10 V (on the 

left) were applied between the conductive tip and the bottom electrode. The injection time (tinj) 

was about 10 s, and the time interval between positive and negative applications was about 100 s. 

Immediately after the charge injection step, the tip was lifted around 20 nm away from the 

surface and the surface potential image was obtained in the KPFM mode.  
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Figure 6-9: Charge injection experiments on MLG/nickel surface based on AFM. (a) Schematic 
illustration of KPFM and contact mode for charge injection process. (b) 3D example of charge 
injection schematic presentation. The topography is mapped onto the third dimension (z-axis) 
and the recorded surface potential is color coded. 

The observed KPFM image reveals two stripes with a clear contrast due to the local potential 

difference and surface charge redistribution (see Figure 6-9(b)). It is worth mentioning that the 

contact potential difference of the area induced by the applied bias voltage is several times 

greater than that of the applied voltage. 

Macroscopically, the injection occurs via the local area in the situation where the electric field is 

uniform. The RMS roughness of MLG/nickel obtained by AFM is around 3 nm (for 3x3 𝜇m2 scan) 

confirming high quality and uniformity of the MLG film. Therefore, the injection averaged over the 

entire region under the electrode. In surface potential experimental conditions, the electric field 

is strongly localized and inhomogeneous, and, therefore, the injection starts with the nucleation 

of a small area just under the AFM tip. Under the applied voltage, this area elongates to the 

bottom electrode and simultaneously expands in lateral directions until reaching an equilibrium 

size, which depends on the value of the maximum applied voltage. Saturation of the injection is 

achieved, when the size of the area is much larger than the contact tip-surface area. The 

threshold voltage describes the voltage at which a stable injected area is formed below the tip. 
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Figure 6-9(b) shows the effect of the voltage applied to the AFM conducting tip on the surface 

potential signal. The size and stability of injected area is directly related to macroscopic properties 

such as conductivity and its anisotropy, effective tip diameter and contact conditions. The 

calculations of the electric field distribution under the AFM tip with effective diameter ⁓10 nm 

and applied voltage of ±10 V corresponds to an electric field of ⁓0.006 V/Å for MLG sheet 

thickness of ⁓150 nm. 

In the present work, the topography of the scanned area was checked each time before and after 

local charge injection, and no changes were revealed even after the application of dc voltages up 

to +12 V. Figure 6-10 (a-f) shows charge injection experiment along linear paths on MLG/nickel 

sample. Figure 6-10 shows the topographic image before (a) and after (b) the charge injection 

with Vinj=−5 V and +5 V, injection time (𝑡𝑖𝑛𝑗)=10 s, and scanning tip velocity of 3.5 𝜇𝑚𝑠−1. 

Immediately after the charge injection step the AFM tip was lifted 20 nm to measure the surface 

potential (see Figure 6-10 (d).  For better clarity Figure 6-10 (e) represents the difference between 

the images of Figure 6-10 (c) and (d). The areas in which the charge injection was done are clearly 

recognized. Furthermore, the profile presented in Figure 6-10 (f) resembles the potential contrast 

between the charged and non-charged areas. 

The difference in SP values (∆𝑉) was correlated to the surface charge density 𝜎 using a parallel 

capacitor model, as given in Eq. 6-2, since the scale of the charged area (⁓4 𝜇𝑚2) is much larger 

than the thickness of the MLG sheet. 

𝝈 =
𝚫𝑽𝜺𝟎𝜺𝑴𝑳𝑮

𝒕𝑴𝑳𝑮
,        (Eq. 6-2) 

where 휀0 (8.854187817 x 10−12 Fm-1) is the vacuum dielectric constant and 휀𝑀𝐿𝐺  and 𝑡𝑀𝐿𝐺  are the 

relative dielectric constant and thickness of MLG sheets, respectively. Recently, Santos et al. 

studied the effect of electric field on the effective dielectric constant in n-layer graphene and 

noted that the values of out-of-plane (휀⊥) and the in-plane (휀∥) dielectric constant are nearly 

constant (⁓3 and ⁓1.8, respectively) under applied electric field (⁓0.005 V/Å) [277]. In the case of 

ΔV+ = 0.025 V, σ is calculated to be (+4.45 ± 0.1) μCm-2 and ΔV- = 0.007 V, σ is (-1.3 ± 0.1) μC/m-2. 
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Figure 6-10: Charge injection experiments on MLG/nickel. AFM topography image before (a) 
and after (b) charge injection, performed with the conducting tip (Vinj=−5 V, Vinj=+5 V; and 
injection time tinj=10 s).  Surface potential image before (c) and after (d) injection. (e) 
represents the difference between images (c) and (d) for more clarity. (e & f) Profile of the 
surface potential signal across red dotted lines. 
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Besides this, we studied the surface stability of MLG-Ni film under higher voltage injection via the 

AFM tip (Figure 6-11). Figure 6-11 (a) and (b) show the topography before and after injection, 

respectively, while (c) represents the surface potential image before injection. In our experiment, 

we created a pattern of dark lines by applying bias voltages of Vinj= +2.5, +5.0, +7.5, +10.0 and 

+12.5 V, from left to right in Figure 6-11 (d-f), with scanning tip velocity of 3.5 𝜇𝑚𝑠−1 and 

injection time of 10 s. Figure 6-11 (e) shows the profile along the red line indicated in (d), while (f) 

shows the surface potential as a function of the applied voltage. The difference in the injected 

charges in the parallel lines leads to the variation in contrast, which can be explained by charging 

the capacitance (polarization). Interestingly, we observed that the MLG-Ni surface topography is 

stable even at the highest tip voltages (Figure 6-11 (b)). 



Graphene growth on nickel substrates 

152 

 

 

Figure 6-11: Surface stability of MLG films under higher voltage injection through the AFM tip. 
(a) Surface topography of as-grown MLG film before and (b) after injection. (c) Surface potential 
image before injection and (d) Surface potential images of the electric-field-induced contrast on 
MLG films obtained after the application of Vinj=+2.5, +5.0, +7.5, +10.0, and +12.5 V to the tip 
(dark lines from left to right). (e) profile along the red dotted line showed in (d). (f) SP intensity 
vs applied voltage obtained from (e). 
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Figure 6-12: Topography with KPFM image over-imposed (colored coded) before (a), 
immediately after (b) poling, +5 V, 10 s, and (c) after prolonged aging 3h (c). (d) Charge 
relaxation starting before injection till 180 min after injection, with the intervals of 20 min.(e) 
Profile of the images taken before, immediately after poling, and after 2-3 hrs. (f and g) SP 
intensity vs. time obtained from (e) and (g) D*t vs time. 

Moreover, taking the advantage of the nanometer scale resolution of AFM and KPFM, the method 

is able to study the charge propagation by monitoring the surface potential distribution on two-

dimensional MLG/nickel surface. In our experiment (Figure 6-12 (a-g)), we examined the 
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evolution of induced surface potential as a function of time by measuring the potential 

immediately after charging (Figure 6-12 (b)), and after prolonged aging time (Figure 6-12 (c)). For 

this particular experiment, the charge was injected (Vinj=+5 V, and tinj=10 s) at a point and the 

subsequent charge relaxation was monitored (Figure 6-12 (d)) during nearly 3 hrs with the time 

intervals of 20 min.  From the Figure 6-12 (e-f); it is clearly seen that the initial pattern is not really 

stable and reduces about 30% of the initial value of surface potential after about 3 h (t = 300 s is 

the time needed for a single scan). The fitting was done with the Kohlrausch–Williams–Watts 

formula (Eq. 6-3) commonly used to describe relaxation in the system with dipole–dipole 

interactions, as described below [278]. 

𝑺𝑷 = 𝑺𝑷𝟎𝐞𝐱𝐩[−(𝒕
𝒕𝟎

⁄ )𝒃],      (Eq. 6-3) 

where t is the time, bt0 is the effective relaxation time and b is the parameter. For b = 1 the Eq. 6-

3 reduces to simple Debye relaxation formula. For our case, we obtained effective relaxation time 

⁓ 1 hr (see Figure 6-12 (e, f)). This parameter is much higher than 10−9 s, which is obtained from 

the simple formula (Eq. 6-4) for Maxwell relaxation time. Moreover, Maxwell’s equation actually 

reproduces Ohm’s law for the case when the initial potential difference is given and discharge as 

the function of relaxation time (𝜏) is studied. For the case of constant voltage (conductivity does 

not change) relaxation time and conductivity are related as described in Eq. 6-4.  

𝝉 = 𝟒 𝝅𝜺𝜺𝟎𝝆,        (Eq. 6-4) 

where, ε0 is the vacuum dielectric constant and ε dielectric constant. Based on the conductivity 

measurement from the recent report published by Rani et al. [279], the Maxwell relaxation time 

(from Eq. 6-4) is estimated to be ⁓10−9 s. It means that the locally induced charge states decay 

with a characteristic time that is many orders of magnitude greater than the expected Maxwell 

relaxation time of uncharged surface material. Moreover, charges diffuse laterally on the surface 

in two-dimensions as well as vertically into the bulk [280, 281]. In our charge injection 

experiment, we noticed that the charge migration is mostly in two dimensions and very low in 

vertical direction. It is due to some charges leaked into the bottom electrode rather than 

spreading over the surface. Since the characteristic length of the charge diffusion on the surface 

(⁓5 𝜇𝑚) is much larger than the thickness of the MLG film (⁓150 nm) we can employ the model 
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for a two-dimensional diffusion to estimate the surface charge diffusion coefficient on MLG sheet 

from a point source (𝑥0 , 𝑦0), as described in Eq.6-5 [282, 283]. 

𝝈(𝒙, 𝒚, 𝒕) =  
𝑨

𝒕−𝒕𝟎  
𝐞𝐱𝐩[−

(𝒙 − 𝒙𝟎)𝟐+(𝒚 − 𝒚𝟎)𝟐

𝟒𝑫 (𝒕−𝒕𝟎)
],    (Eq. 6-5) 

where, 𝜎(𝑥, 𝑦, 𝑡)is the surface charge density of a point  (𝑥, 𝑦) at a time (𝑡), 𝐴 is the magnitude 

constant and 𝐷 is the diffusion coefficient on the given surface [282]. This equation represents 

the modified theoretical distribution of the applied electric field outside the moving tip in the 

frame of the spherical model and point charge approximation first developed by Mele et al. [284-

286]. Furthermore, Figure 6-12 (d) represents the series of images of charge distribution as a 

function of time after positive charge injection. The surface potential/charge distribution was 

monitored by KPFM every 20 min. By fitting the data at different diffusion times (as illustrated in 

Figure 6-12 (e-f)), we can calculate the slope of the curve "𝐷" Figure 6-12 (g). From the fitting, the 

positive surface charge diffusion coefficient 𝐷 = (1.50 ± 0.03) × 10−16 m2s-1 was obtained. Using the 

same method, the negative surface charge diffusion coefficient on the MLG film was estimated to 

be (0.64 ± 0.05) × 10−16 m2s-1. The difference in the surface diffusion coefficients may be related to 

difference in the mobilities of charge carriers and the structure of the surface. Interestingly, after 

several hours KPFM signals from locally modified areas were still visible. 

We assume that the charge in the locally modified areas is stabilized due to low conductivity, 

multi-layer graphene nature, and may be originated from MLG/nickel interface (often introduce 

significant defects into the mono and a few layers graphene-nickel interface layer, so-called 

“defective region”) [274, 275, 287].  

Another reason of the slow relaxation of the charge may be the strain on MLG film on nickel, 

which arises due to different  thermal expansion coefficients for nickel and graphene [+13x10−6/°C 

and −8x10−6/°C, respectively] [288]. We estimated the total strain on multi-layer graphene film 

after cooling from 1000 °C to room temperature is ⁓2%. This strain produces high degree of 

ripples, and boundary conditions (domain-like structures) on the atomically flat surface of the 

MLG sheets (clearly observed in Figure 6-10 (a)). In addition, differences in work functions and 

charge density under mechanical deformation [289] could be also responsible for the stabilization 

of the injected states in MLG films. For example, contact with metal and doping modifies the work 

function of single and MLG graphene sheet [290-292]. In the case of nickel, the reported value is 

0.125 eV [293]. We also performed this experiment with monolayer graphene samples fabricated 
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in our lab, and did not observe these phenomena. We assume that this is due to the high-

conducting nature of monolayer graphene sheet. 

Using demonstrated capability of controlled charge injection process, we can investigate the local 

charge transfer at the interface. This can be also used for the patterning of surface charges at the 

nanoscale. The polarity of the written charges could be controlled simply by positive and negative 

voltage pulses.  

 

6.3.2. Conclusions 

 

The experiment described above resulted in the deposition of thick graphene layers on nickel 

substrates. The as synthesized graphene was found to be multilayer graphene (MLG) due to high 

carbon absorbing nature of nickel. The results from Raman spectroscopy confirm that MLG is 

highly crystalline in nature, with sharp G peak at ⁓1560 cm-1 (with FWHM of ⁓24). The D peak 

(⁓1350 cm-1) confirms the existence of defects present in the form of wrinkles.  This was further 

proven by SEM images. Moreover, the results from HR-XPS show that the C sp2 nature and the 

peak can be fitted by only one component centered at 284.4 eV. In addition, results obtained 

from Raman mapping demonstrates the overall coverage of the sample on the large area.  

Lastly, in the charge injection experiments, nanoscale electrostatic properties of as-grown MLG 

sheets on nickel were performed by a combination of contact mode AFM and KPFM. By using this 

method, we systematically investigated the charge injection (by applying positive or negative 

potential to the AFM tip) and subsequent charge diffusion. From the above measurements, we 

elucidated that after injection, charge area is quite stable (even after 3 h) and the relaxation time 

is much longer than the expected Maxwell relaxation time required for the charge equilibration. 

The outcomes of this study could be promising for nano-patterning of surface charges with clear 

potential for directed self-assembly of charged nanostructures for nanoelectronic devices such as 

super-capacitors, and in the field of energy-harvesting devices.  
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Chapter 7 

Transfer of pure and n-doped graphene on 

different substrates 
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Abstract 

This chapter describes the results concerning transfer of graphene flakes on SiO2/Si substrates 

done in this work. Transfer of graphene is essential for its utilization in many applications. We 

have studied the transfer methods and optimized the procedures to obtain clean and 

mechanically robust graphene on rigid substrates. Observed Raman lines are all belonging to the 

known peaks of pure and in-situ ammonia doped (n-doped) graphene. Moreover, the mapping 

obtained by micro Raman spectroscopy demonstrated sufficiently uniform layers deposited over 

the large area by using our standard transfer method (without any polymer, such as PMMA). 

Results from HR-XPS spectra show the carbon (sp2) nature of the peak of the transferred 

graphene. However, for the case of in-situ ammonia doped graphene on SiO2 we found C-O peak 

(along with C sp2). In the as grown n-doped graphene a predominance of desired graphitic 

nitrogen (N) was revealed. The dominance of pyridinic N at the expense of substitutional N 

evidences again the generation of defects on the graphene sheet during growth. We also report 

the iron intercalation in graphene sheets upon the transfer process. This was confirmed by HR-

XPS and stabilization was checked by the heat treatment in ultra-high vacuum.  
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7. Transfer of pure and n-doped graphene on different substrates 
 

Transfer of graphene is essential process because graphene sheets on different substrates are 

likely to be used in various industrial applications. Depending upon the growth method the 

transfer process varies, e.g. graphene from graphite samples requires micromechanical cleavage 

etc. Hence, different transfer processes come into play and plays a crucial role in the formation of 

final structure. Literature reports describe graphene transfer on various substrates such as SiO2 

[4], Al2O3 [25], WO3 [91] etc. Beside these it has been also transferred on polymers such as 

polyethylene terephthalate (PET) [92], polydimethylsiloxane (PDMS) [93], polystyrene (PS) [94], 

polyimide (PI) [95]) etc. Moreover, a few metallic substrates have been also reported including Au 

[96], Ti [97], NiFe [43], nanostructured Ag [98], and Li [99]). Substrates such as boron nitride 

[100], SiC [101], SiNx [102], sapphire [103], InAs/GaAs [105] and KBr [106] are considered for the 

transfer of graphene.  

There are various methods which have been applied for the transfer of graphene on desired 

substrates. Reina et al. [294] used a polymeric layer for the support of graphene. It must be kept 

in mind that a single layer of graphene is so thin that perfect transfer without cracks or defects is 

extremely hard to do. Therefore, spin coating of polymeric layer on graphene/substrate film is 

used in order to manipulate it easily.  

 

Figure 7-1: Schematic diagram highlighting the major procedure for the transfer of graphene 
using poly(methyl methacrylate)) (PMMA). Adapted from [294].  
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Figure 7-1 shows the transfer process used by Reina et al.[294], in which a polymer PMMA 

(poly(methyl methacrylate)) is spin coated on graphene grown on a substrate. Afterwards, it is 

immersed in the etchant solution in order to etch the substrate away leaving freestanding 

PMMA/graphene. This freestanding graphene/PMMA is washed out in water to clean of the 

remaining etchant solution. Finally, the graphene/PMMA is transferred on the substrate. Upon 

this, the polymer layer is dissolved in the acetone leaving only graphene deposited on the desired 

substrate. This method is the most employed technique due to easy availability of PMMA. 

However, dissolving PMMA is a critical issue and, to our best knowledge, only three PMMA 

solvents are currently being used:  

(i) Anisole (2% [108], 4 vol.% [111], 5% [101], 6–9 wt.% [110], 8 wt.% [112] or 50% 

[113]), 

(ii) Chlorobenzene (3% [114], 10% [99], 20 mg/ml [109] or 46 mg/ml [115], 50 mg/ml 

[116]) 

(iii) Toluene (4 wt.% [117]) 

The influence of the PMMA residue on the graphene deteriorates the electrical conductivity and 

other properties of graphene. Hence, it is quite important to remove the residual PMMA after the 

graphene is transferred.  

The use of PMMA to protect graphene layer is an easy technique for the graphene transfer on any 

desired substrate and many researchers tried to improve this process. In 2009, Li et al. used 

second layer of PMMA deposited on first layer by spin coating. This prevents the cracks, which 

were observed if only one layer of PMMA is used. During the second coating, a liquid PMMA 

solution was added to the first layer in order to dissolve the pre-coated PMMA. That involves 

mechanical relaxation at the interface between PMMA and graphene layer, which can be 

transferred more easily without cracks and tears [134]. In another work published in 2011 Suk et 

al. used to bake out their samples at 180 oC for 3 h to improve the graphene adhesion and its 

quality after transfer. 

Beside this Regan et al. [295] used direct transfer of graphene on the desired substrate (see 

Figure 7-2). In this work, they used the mechanism of surface tension and evaporation in order to 

pull Cu-supported graphene into intimate contact with the targets, simultaneously achieving the 

desired graphene/target bond and providing a rigid graphene support (the target substrate) 

during subsequent Cu etching. The benefit of this direct transfer is that it is cleaner and gentler 
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than the polymer-based methods, which makes it ideal for the fabrication of a variety of optical, 

chemical, and electronic devices that utilize large, uniform graphene sheets. In the direct transfer 

methods, this support is provided by the target substrate, specifically TEM grid’s a-C film in this 

case. For better bonding of graphene and a-C film, they placed the TEM grid just on the top of 

graphene/Cu and dropped the isopropanol (IPA) solution. Consequently, both the grid’s a-C film 

and the underlying graphene film got wet. As the IPA evaporates, the surface tension draws the 

graphene and a-C TEM grid together into intimate contact. 

 

Figure 7-2: Schematic diagram and comparison between the standard, e.g., PMMA-based and 
direct transfer of layer-area graphene to hole of an a-C TEM grid. Adapted from [295]. 
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Apart from this, Kim et al. [3] in their extensive work used CVD technique for the growth of a few 

layer graphene films and their successful transfer on arbitrary substrates without intensive 

mechanical and chemical treatments, in order to preserve their high crystalline quality. The 

transferred graphene films show very high conductivity and very low sheet resistance of 280 Ω 

per square (2cm x 2cm), 80% optical transparency (also at low temperatures), and high electron 

mobility (greater than 3,700 cm2 V-1 s-1).  

 

Figure 7-3: Schematic diagram of the synthesis, etching and transfer processes for the large 
scale and patterned graphene films. (a) Synthesis of patterned graphene films on thin nickel 
layers, (b) Etching using FeCl3 and transfer of graphene films using a PDMS stamp, (c) Etching 
using BOE or hydrogen fluoride (HF) solution and transfer of graphene films. Adapted from [3]. 

The authors of Ref [3] initially deposited a very thin layer of nickel (thickness < 300 nm) on SiO2/Si 

using an electron-beam evaporator, and then they grew graphene on this substrate (see Figure 

7-3 (a)). Upon this, they etched away the nickel substrate using FeCl3 as described elsewhere, 

leaving the adhered graphene film on the PDMS substrate (Figure 7-3 (b)). By using the pre-

patterned nickel substrate (Figure 7-3 (c)), they were able to transfer graphene of various sizes 
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and shapes on any arbitrary substrate. This dry-transfer process turns out to be very useful in 

making large-scale graphene electrodes and devices without additional lithography process [3].  

In addition, it is interesting to mention that various etchant solutions were used to etch the metal 

substrates. For copper substrate: ammonium persulfate (0.05M [296], 0.2M [297], 0.5M 

[298][129], 0.05 g/ml [299], 1 wt.% [300],  ammonium sulfate (0.1M [301]), iron (III) chloride (0.4 

g/ml [302], 1M [303], iron (III) nitrate (0.05 g/ml [304], 0.7M [305], iron (III) chloride (0.25M) 

followed by HF (10%) [306], and commercial etchant from Transene: 49-1 [307], CE-100 [308], CE 

100/200 [309], CE-100 followed by HCl (10%) [310], CE-100 followed by HNO3 (10 min) [311] were 

used. For the nickel substrates hydrogen fluoride [233], hydrochloric acid (3w.% [250], 15% [312], 

and nickel etchant from Transgene (90◦C – 2 h) [313] were used.  

 

7.1.1. Results and discussions 

7.1.1.1. Optical data, Raman spectra and Raman mapping 

 

In our case, we used standard procedure, i.e. graphene films grown on Cu substrates were put in 

FeCl3 aqueous solution (1M) for etching the underlying copper. After the removal of copper 

substrate, the floating graphene film was washed in DI (deionized distilled water) for the removal 

of etchant residues. Finally, fresh clean graphene was ready to be transferred directly on Si/SiO2 

(300 nm) substrates (see Figure 7-4). It is worth mentioning that, since graphene was transferred 

on these substrates, it made a clear optical contrast seen by the eye.  



Transfer of pure and n-doped graphene on different substrates 

166 

 

 

Figure 7-4: Major transfer processes for the large-scale graphene films: Large-scale graphene 
film grown on copper (Cu) substrate, floating graphene film after etching the copper layers in 
(1M) FeCl3 aqueous solution. After the removal of the copper layers, the floating graphene film 
can be transferred directly on Si/SiO2 (300 nm) substrate. 

7.1.1.1.1. Pure graphene transferred on SiO2/Si 

 

Silicon dioxide (SiO2/Si) substrates were used to transfer both pure and n-doped graphene grown 

on Cu substrates using CVD technique.  Silicon wafer is the most common material and widely 

used for a variety of high-tech industries, including integrated circuits, detector/sensor devices, 

MEMS, opto-electronic components, solar cells etc. This substrate has a native oxide layer of ⁓300 

nm in thickness, which makes them optically blue. This feature enables us to see directly the 

quality of the transferred samples.  
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Figure 7-5: (a) Optical image of pure graphene deposited on SiO2/Si taken using 10x objective 
for large area, (b) Raman spectrum of the graphene taken at point L1 (marked on optical image), 
(c) Raman spectrum of the graphene taken at point L2 (marked on optical image). 

It can be seen from the optical image (Figure 7-5 (a)) that the graphene transferred on the 

substrate is quite good in quality and has sufficiently large area. The clear color contrast can 

distinguish the area covered by graphene and the interface between the graphene and SiO2/Si. 

The Raman spectra were taken at different places as marked by L1 and L2 (shown on optical 

image). Figure 7-5 (b) shows the Raman spectrum recorded at “L1” point and demonstrates the 

evidence of the good quality of the graphene upon transferring. The peak positions, intensities 

and FWHM related to D, G, and 2D features were recorded and they are summarized in Table 7-1. 
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Table 7-1: Positions, intensities and FWHM of the Raman peaks acquired from pure graphene 
transferred on SiO2/Si 

Locations Peaks Position (cm-1) FWHM Intensity (a. u.) 

L1 

D 1340.57 12.62 790 

G 1586.62 18.62 876 

2D 2673.00 63.18 63 

L2 

D 1350.77 23.63 804 

G 1581.00 17.50 1018 

2D 2703.96 34.00 1095 
 

To check the homogeneity of the deposited layers, we performed Raman mapping. Figure 7-6 (a-

c) presents the Raman mapping of the G peak, D peak and 2D peak intensities of the graphene 

transferred on SiO2/Si, respectively. The color contrast clearly depicts that the graphene was 

relatively homogeneous, however the intensity changed in the right upper corner of the image (G 

and 2D band) possibly due to defects. However, relative intensities (D/G and 2D/G) were uniform, 

indicating the overall good coverage of the sample on large area. 

 

Figure 7-6: Raman mapping of (a) G, (b) D and (c) 2D band intensities of the pure graphene 
transferred SiO2/Si. Maps of relative intensities ID/IG (d) and I2D/IG (e) are also shown on the 
figure. 



Transfer of pure and n-doped graphene on different substrates 

169 

 

7.1.1.1.2. In-situ ammonia doped graphene transferred on SiO2/Si 

 

Similarly, to the case of pure graphene in situ ammonia doped graphene was transferred on 

SiO2/Si. Figure 7-7 (a) shows the optical image of the sample and its uniformity on large area. 

However, a few cracks have been detected and presented as dotted lines (red color). The clear 

contrast between the graphene and the substrate is seen, as well as the interface between the 

two. The Raman spectra were taken at randomly different places and are marked as L1, L2 and L3 

in the optical image. Figure 7-7 (b) displays the Raman spectrum recorded at “L1”, which is a 

signature of good quality of graphene upon the transfer. 

 

Figure 7-7: Optical image and Raman spectra of pure graphene transferred on SiO2/Si using 
standard procedure without polymer such as PMMA. (a) Optical image taken using 10x 
objective to see large area, (b) Raman spectrum of the graphene taken at point L1 (marked on 
optical image), (c) Raman spectrum of the graphene taken at point L2 (marked on optical 
image), (d) Raman spectrum of the graphene taken at point L3 (marked on optical image). 
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The peak intensities and FWHM related to D, G, and 2D features were collected and are 

summarized in Table 7-2. The table clearly shows that the region covered by L1 are in the 

agreement of good quality n-doped graphene transferred on the substrate. The lower values of 

FWHM shows high sharpness of the peak directly confirms the quality of the sample. Additionally, 

the intensities of the G, D and 2D peaks are also high which re-confirms the quality of the sample. 

Table 7-2: Positions, intensities and FWHM of Raman peaks acquired from an in-situ ammonia 
doped graphene transferred on SiO2/Si. 

Locations Peaks Position (cm-1) FWHM Intensity (a. u.) 

L1 

D 1348.22 45 1264 

G 1584.15 35 1465 

2D 2691.13 70 1080 

L2 

D 1348.22 44 1243 

G 1584.15 33 1506 

2D 2688.98 67 1071 

L3 

D 1348.22 40 980 

G 1586.62 30 977 

2D 2684.70 62 840 

 

Similar to the previous case, we performed Raman mapping to check the homogeneity of the 

transferred layers. Figure 7-8 (a-c) shows the Raman maps of the G, D and 2D peak intensities of 

the graphene transferred on SiO2/Si, respectively. The color contrast clearly depicts that the 

graphene covers large area on the substrate, however, intensity of the peaks may vary due to 

some wrinkle formation upon transfer.  
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Figure 7-8: Raman mapping of the (a) G, (b) D and (c) 2D band intensities of nitrogen doped 
graphene transferred SiO2/Si substrates, respectively. It also shows the maps of the peak 
intensity ratios, ID/IG (d) and I2D/IG (e), respectively. 

7.1.1.2. X-Ray Photoelectron Spectroscopy 

 

As mentioned above, XPS is a useful technique for characterizing graphene samples on different 

substrates. Figure 7-9 compares the overview XPS spectra of the as-grown graphene (Gr) and in-

situ ammonia doped graphene (N-Gr) on Cu substrate before and after their transfer to SiO2/Si 

substrates. Both spectra, are almost identical in the XPS wide scans (see black and green lines in 

Figure 7-9). Clear signals are identified and related to copper atoms from the substrate and 

carbon from graphene in a good agreement with literature reports [173]. 
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Figure 7-9: Normalized overview XPS spectra of pure and in-situ ammonia doped graphene 
before and after their transfer to SiO2/Si. The main core levels related to substrate (Cu, Si and 
O) are indicated together with C 1s peak for carbon. Furthermore, a small quantity of iron 
atoms is detected on the transferred sample that were incorporated into the graphene sheets 
during the transfer process. 

Only a small feature appears at a binding energy that corresponds to oxygen atoms. Small 

concentration of nitrogen atoms in the in-situ ammonia doped graphene samples was not 

detected in the wide XPS scans. After transferring the samples to SiO2 (red and blue spectra of 

Figure 7-9) XPS wide scan detects several peaks that can be ascribed to carbon, silicon and oxygen 

atoms related to graphene sheets and substrates. Copper substrate peaks completely 

disappeared as can be seen in the red and blue spectra of Figure 7-9. Interestingly, a clear feature 

appears in the overview scans at binding energies (BEs) of around 710 eV, which is ascribed to Fe 

atoms that were incorporated into graphene during the transfer process. 
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Figure 7-10 presents more detailed comparison of the C 1s core levels obtained by high resolution 

XPS. 

 

Figure 7-10: Comparison of the C 1s core levels obtained by high resolution XPS in pure and n-
doped graphene. The as grown graphene can be fitted by a single C sp2 component (black and 
green spectra). After transferring the samples, two new components appear that can be related 
to C sp2 and C-O bonds (red and blue spectra). 

C 1s core level of pure and in-situ ammonia doped (n-doped) graphene on copper are very similar. 

Both can be fitted by only one component, centred at a BE of 284.5 eV, which can be related to 

carbon (C) sp2 level [173]. Thus, from the XPS point of view, the quantity of defects in the C-C 

bonds in the as grown (n-doped) graphene sheets can be neglected. On the contrary, upon the 

transfer to SiO2 three peak components were necessary to perform the curve fitting. The 

difference between the C 1s core levels before and after transfer the samples is clear in the 

comparison reported in supplementary information of [173]. After the transfer, first component 

corresponds to the C-C bond as in the case of the spectra obtained before the transfer. The 

second component appears at BEs of 285.15 eV and 285.05 eV for the pure and n-doped 

graphene on SiO2, respectively. This component can be ascribed to C sp3 [224] and it typically 
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appears in the XPS spectra because of the generation of defects in the graphene sheets during the 

transfer. Finally, the last component is centred at the BE of 286.3 eV and can be related to C-O  

bond [173]. 

In case of n-doped samples further information can be obtained by characterizing the N 1s core 

level. Figure 7-11 shows the N 1s peak and its deconvolution into two individual subcomponents, 

indicating two types of nitrogen incorporation into the graphene lattice. The feature appearing at 

lower binding energy (⁓398.5 eV) is commonly assigned to the pyridinic configuration, while the 

component located at higher BE (⁓401 eV) suggests graphitic nitrogen, where N directly 

substitutes sp2 hybridized carbon [224]. 

The ratio between both components in the as grown n-doped graphene reveals a predominance 

of desired graphitic nitrogen over the pyridinic one. On the contrary, this aspect ratio is swapped 

in the N 1s spectra of the samples transferred to SiO2. The increase of pyridinic N at the expense 

of substitutional N during transfer evidences again the generation of defects in the graphene 

sheet upon this process. This fact agrees with the emergence of the carbon sp3 component in the 

C 1s spectra of the transferred samples in literature reports [173, 224].  

As it was mentioned above, the only element not related to the graphene sheets and substrates 

detected by XPS was Fe. 
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Figure 7-11: Comparison between the N 1s high-resolution XPS spectra of (n-doped) graphene 
on Cu foil (green) and that transferred onto a SiO2 substrate (blue). 

Previous experimental and theoretical studies revealed the existence of interactions between 

graphene and single metal atoms including iron [314-316]. In particular, the report by Zhao et al. 

mentioned the inclusion of iron atoms in the graphene sheets during the transfer process [239]. 

Their study based on low-voltage spherical aberration-corrected TEM (LVACTEM) demostrated 

the interaction between graphene and Fe atom under electron-beam irradiation. The transferred 

samples typically consist of large areas of monolayer graphene in which some regions contain 

remnant material from the transfer process, including Fe species from decomposed FeCl3. Under 

close inspection, pure Fe can be found as small nanocrystals formed on the surface of the 

graphene, as single atoms or small clusters at the edge of pores in clean graphene, or as 2D 

crystalline membranes suspended across perforations in the graphene. Figure 7-12 (a) shows 

typical a HR-TEM image of graphene pore holding the one of these suspended Fe membranes in-

as BCC and HCP atomic structure and their image simulation as an inset (bottom left of b and c), 

respectively.  
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Figure 7-12: (a) Low-voltage spherical aberration-corrected transmission electron microscopy 
(LVACTEM) images of graphene perforations. (b) BCC and (c) HCP Fe nanocrystals, with atomic 
structure and image simulation shown as insets [239]. 

Furthermore, for better understanding, they performed after Fourier transform filtering (to 

reduce the noise) as shown in Figure 7-13 and the inner reflexes correspond to the (100) plane of 

Fe where as the outer reflexes arise from the (1-100) plane of graphene. In addition, the (110) 

plane for Fe almost overlaps the (1-100) graphene planes. This indicates preferential alignment of 

the Fe(110) plane with the graphene (1-100) plane.  

 

Figure 7-13: (A) LVACTEM image of monoatomic Fe layer. Inset shows the interatomic spacing of 
the square unit cell. (B) Smoothed image of (A). (C) Image simulation of a monoatomic Fe layer. 
(D) Fast Fourier transform of the structure in (A). (E) Normalized intensity profiles from the 
image simulation (black line) and experimental image (red line). (F) Atomic structure of a 
suspended monoatomic Fe layer in a graphene pore. All scale bars 0.6 nm. Adapted from [239]. 
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Moreover, they performed simulation and two profiles (experimental and simulated) matched 

each other extremely well. The image simulation of single atomic layer of Fe atoms is shown in 

Figure 7-13 thus confirming that the suspended Fe structure was single-atom-thick Fe layer. 

Therefore, individual atoms, small metallic cluster or even single-atom-thick 2D membranes can 

be trapped in graphene defects and pores. 

In our case, in order to study the oxidation state of the iron atoms incrusted in the graphene 

sheets during the transfer process we performed high resolution XPS of the Fe 2p core level as a 

function of the temperature by heating the samples under UHV condition. The evolution of the 

shape and BEs of the Fe 2p level as a function of temperature is shown in Figure 7-14. Fe 2p core 

level has two sublevels (Fe 2p3/2 and Fe 2p1/2) and a satellite between them. 

 

Figure 7-14: Fe 2p core levels obtained by XPS of a transferred graphene sample as a function of 
temperature. The inset shows Fe 2p3/2 level in detail. 
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At room temperature, Fe 2p3/2 and Fe 2p1/2 asymmetric peaks are centred at BEs of 710.9 eV and 

724.5 eV, respectively. Furthermore, a clear satellite peak appears at 719.2 eV. Thus, XPS 

indicates that iron atoms are oxidized as Fe3+, this state remains stable even after heating the 

sample to 600 K (black and red spectra in the inset of Figure 7-14). A significant change occurs 

after heating the sample to 520 K (green spectra in Figure 7-14). The position of the centre of the 

main peaks (Fe 2p3/2) is almost the same as before the annealing but significant changes occur in 

the shape of the core level. On one hand the satellite strongly diminishes and a shoulder appears 

at lower binding energies than the main peak. This information altogether strongly indicates a 

partial reduction of the iron from Fe3+ to Fe2+. Both, Fe3+ and Fe2+, probably, coexist in the sample 

after heating to 520 K. This experimental results from HR-XPS reconfirm the results obtained by 

Zhao et al. [239] and we can say that there can be an inclusion of iron atoms in the graphene 

sheets during the transfer process. In order to reaffirm the existence of Fe atoms as a result of 

transfer process, we performed the graphene transfer on Au substrates, as discussed in the 

following section.  

 

7.1.1.2.1. Pure and in-situ ammonia doped graphene on Au 

 

7.1.1.2.1.1 Raman Spectroscopy 

 

Pure and n-doped graphene were transferred to gold coated substrates using a standard 

technique (i.e. without using polymer such as PMMA). The substrate was 100 nm gold coated 

silicon (http://www.amsbio.com/productpage.aspx?code=AU.1000.SL1). The purpose of the 

transfer of the graphene on this substrate was to see if we are still able to find Fe atoms in the 

pores of graphene or not. Initially we recorded the Raman spectrum to see the existence of the 

graphene on the Cu substrate and latter it was tranferred. Figure 7-15 shows the optical image 

and Raman spectra acquired at various locations. Optical image on Figure 7-15 (a) verifies that the 

graphene was indeed transferred on a large scale and it was found to be quite stable. We were 

able to clearly see the interface between graphene and Au substrate. Figure 7-15 (b) shows the 

Raman spectra recorded at vairous locations namely L1, L2, L3 and L4. A brief summary is shown in 

Table 7-3. 
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Table 7-3: Peak positions, intensities and FWHM of Raman spectra of pure graphene transferred 
on Auric. 

Locations Peaks Position (cm-1) FWHM Intensity (a. u.) 

L1 

D 1332.25 119 38 

G 1568.85 127 355 

2D 2680.97 50 93 

L2 

D 1332.25 80 32 

G 1568.85 52 452 

2D 2674.53 50 109 

L3 

D 1342.46 66 23 

G 1573.81 66 170 

2D 2678.83 83 87 

L4 

D 1332.25 62 39 

G 1573.81 46 344 

2D 2678.83 114 121 

 

Figure 7-15 (c) shows the Raman maps of the G, D and 2D peak intensities of the Raman spectra 

of graphene transferred on Au substrate. The ratios of ID/IG and I2D/IG are also shown. The color 

contrast clearly depicts that the graphene was homogeneously transferred, though there are 

some variations in the peak intensities due to defects. 
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Figure 7-15: Optical image and Raman spectra of pure graphene transferred on Au/Si using 
standard procedure without using polymer such as PMMA. (a) Optical image using 10x objective 
to see large area, (b) Raman spectrum of the graphene taken at various location namely L1, L2, L3 
and L4 (marked on optical image). (c) Raman mapping of G, D and 2D band intensities of the 
pure graphene transferred Au/Si. Maps of relative intensities ID/IG and I2D/IG are also shown. 

Similaryly to pure graphene, as discussed above n-doped graphene was transferred on Au 

substrate in order to corroborate the existence of Fe (discussed earlier in XPS). Figure 7-16 shows 

the optical image and Raman spectra recorded at various locations. The optical image as shown in 

(Figure 7-16 (a)), cleary confirms the presence of sample on the Au substrate. The sample was 

even distributed on the large scale upon transfer. As in the case of pure graphene, we were still 

able to see the interface between n-doped graphene and Au substrate. Similarly, vairous 

locations, namely, L1, L2, L3 and L4 were marked and the corresponding spectra were recorded. 
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Figure 7-16 (b) shows the spectrum acquired at different locations namely at L1, L2, L3 and L4. The 

summary of these measurements is shown in Table 7-3.  

Table 7-4: Peak positions, intensities and FWHM of Raman spectra of n-doped graphene 
transferred on Auric. 

Locations Peaks Position (cm-1) FWHM Intensities 

L1 

D 1316.91 119 193 

G 1571.33 127 200 

2D 2680.97 53 18 

L2 

D 1352.65 82 50 

G 1573.81 52 87 

2D 2663.79 61 22 

L3 

D 1352.65 66 265 

G 1581.24 45 386 

2D 2689.55 83 92 

L4 

D 1350.11 62 487 

G 1583.72 46 713 

2D 2685.28 114 99 

 

Figure 7-16 (c) shows the Raman maps of the G, D and 2D peak intensities of the Raman spectra 

of graphene transferred on Au substrate. The ratio of ID/IG and I2D/IG are also shown. The color 

contrast clearly depicts that the graphene was homogeneously transferred on the substrate, 

though there are some minor variations in the peak intensities. 

However, while acquiring the Raman mapping the high laser (⁓7.5mW) the sample area which 

was scanned was found to be burnt. The burnt sample area is marked in rectangle, as shown in 

the Figure 7-16 (d). 

 



Transfer of pure and n-doped graphene on different substrates 

182 

 

 

Figure 7-16: Optical image and Raman spectra of n-doped graphene transferred on Au/Si using 
standard procedure without using polymer such as PMMA. (a) Optical image using 10x objective 
to see large area, (b) Raman spectrum of the graphene taken at various location namely L1, L2, L3 
and L4 (marked on optical image). (c) Raman mapping of G, D and 2D band intensities of the n-
doped graphene transferred Au/Si. Maps of relative intensities ID/IG and I2D/IG are also shown. 
(d) Burnt sample area marked in rectangle. 
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7.1.1.2.1.2 High-Resolution X-ray Photoelectron Spectroscopy 

 

As discussed earlier, to verify the existence of Fe in the graphene sheet HR-XPS measurements 

were performed and similar resullts were found as compared to those transferred on SiO2/Si.  

Figure 7-17 shows the overview XPS spectra for the as-grown on Cu  and n-doped graphene 

transferred on Au/Si substrate. 

 

Figure 7-17: Normalized overview XPS spectra of pure (black line) and n-doped (green line) 
graphene on copper substrate and after their transfer to Au/Si substrates. The main core levels 
related with the substrates (Cu, Au and O) are indicated together with C 1s. Furthermore, a 
small quantity of iron atoms is detected on the transferred samples that were incorporated to 
the graphene sheets during the transfer process. 

Both, pure and n-doped graphene transferred on Au/Si are almost identical in the XPS wide scans 

(see black and green spectra of Figure 7-17). Clear peaks are identified and marked. The peaks are 

in good agreement with previous works [173]. In the overview scan it was difficult to observe the 
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small quantity of nitrogen atoms in the in-situ ammonia doped graphene samples. Since the 

samples were transferred on the Au/Si substrate, we did not find any Cu peaks. On the contrary, 

huge peaks of Au 4d3/2 and 4d5/2 were found at 353 and 335 eV in the pure graphene transferred 

on Au whereas in the n-doped graphene on Au these were comparatively small. 

Figure 7-18 shows a comparison between the C 1s core levels obtained by high resolution XPS. In 

the case of pure graphene the core level peak was observed at 284.4 eV where in the n-doped 

graphene it was shifted to higher binding energy by 0.2eV. This can be due to the presence of 

nitrogen Intercalation in the graphene sheet.  

 

Figure 7-18: Comparison between the C 1s core levels obtained by high resolution XPS. The C 1s 
peak of pure graphene can be fitted by four components (bottom) whereas in the case of n-
doped graphene it was fitted by only 3 components (top figure). 
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Various components used to fit in pure graphene were marked as (1), (2), (3), and (4) 

corresponding to C sp2, C-OH, C-O, and C=O bonds, at 284.4, 284.7, 285.7 and  286.6 eV, 

respectively [173]. The O bonds with C are due to the presence of oxygen which arised as a 

consequence of transfer process. We did not annealed the sample to remove the oxygen due to 

presence of Si (as a substrate) and quality of Au was not that good. In the case of n-doped 

graphene we observed only 3 components which were attributed to: component (1) to C sp2, 

component (2) to C-OH and component (3) to C-O.  

As discussed above, we observed Fe 2p peak in both pure and n-doped graphene (see Figure 

7-19). The spectra were recorded at room temperature due to low quality of Au deposited on Si 

substrate.  

 

Figure 7-19: Fe 2p core levels obtained by XPS of pure (black line) and n-doped (green line) 
graphene on Au/Si.  

Similar to the case of graphene transferred on SiO2/Si the iron atoms appeared during the transfer 

process. High resolution XPS of the Fe 2p core level of both pure and in-situ ammonia doped 
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graphene were recorded, as shown in Figure 7-19. Both spectra were identical and it was found 

that Fe 2p core level has two sublevels (Fe 2p3/2 and Fe 2p1/2) at 711.2 and 711.4 eV, respectively, 

with a satellite between them at 719.1 eV. This assumed the appearance of iron in 2D form in 

graphene sheet during the transfer process irrespectively of substrate used.  

 

Conclusion 

For any real application of graphene, the key factor is the transfer process. Different transfer 

processes have been reported in the literature resulting in uniform and large area coatings. In this 

work, a standard procedure without using polymer was applied to transfer the graphene on 

different substrates, namely SiO2/Si and Au/Si.  The optical images of both pure and n-doped 

graphene demonstrated an evidence of the successful transfer of graphene on these substrates. 

In both cases, Raman spectra acquired at different locations show typical features of a few layer 

graphene. However, some non-uniformity was found in the Raman intensity maps, which are due 

to wrinkles formed during transfer process. In addition, the sharpness of the peaks (low FWHM 

values) corroborates good quality of pure graphene transferred on SiO2/Si. In the case of in-situ 

ammonia doped graphene, the Raman results substantiate the existence of D’ and D peaks due to 

doping.  

Moreover, based on XPS measurements the core level peak of C1s was found to contain two 

different components, namely, C-C sp2 and C sp3 for transferred pure graphene, whereas in the 

case of in-situ ammonia doped graphene it can be deconvoluted into three different components, 

namely, C-C sp2, C sp3 and C-O. In the case of N 1s spectra were deconvolute into two individual 

subcomponents, indicating two types of nitrogen assembling, namely, pyridinic and substitution 

types in the graphene framework. The ratio between both components in the as grown and in-situ 

ammonia doped graphene revealed a predominance of desired graphitic nitrogen over the 

pyridinic impurities which switches upon the transfer process.  

Finally in the HR-XPS spectrum, we found the inclusion of iron atoms in the graphene sheets due 

to the transfer process. The core level peak of Fe 2p was deconvoluted into two parts, namely, Fe 

2p3/2 and Fe 2p1/2 peaks centred at BEs of 710.9 eV and 724.5 eV, respectively, with satellite peak 

at 719.2 eV. In order to check the stability of the Fe atoms, we measured the spectra with respect 

to temperature increase and the results indicate that these iron atoms remain stable even after 

heating the sample to 400 K. 
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Furthermore, we performed the same transfer process of pure and n-doped graphene on Au/Si in 

order to reaffirm the results obtained on SiO2/Si and we got similar results as expected. The 

experiments confirm our previous conclusions and show clear evidence of the incorporated iron 

atoms in the form of nanocrystals. 
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Chapter 8 

Deposition and investigation of MoS2 
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Abstract 

In recent few years, monolayers of transition metal dichalcogenides (TMDs) have attracted 

significant attention of researchers due to their potential applications in the new generation of 

optoelectronic and nanoelectronic devices. In particular, molybdenum disulfide (MoS2) as one of 

the TMDs was found to be a good substitution of graphene in the next generation of 

nanoelectronics. This chapter describes the experimental strategy used for the growth of large 

area MoS2 from monolayer to a few layers using Chemical Vapor Deposition (CVD) at different 

pressures. After several trials and errors, we came to conclusion that using 50 mbar is an 

optimum pressure for the growth of large area MoS2. The as synthesized MoS2 was found to have 

a direct bandgap of 1.6 eV, as calculated using UV-Visible spectroscopy data. The results of micro-

Raman spectroscopy clearly show the presence of distinct E1
2g and A1

g peaks. High-Resolution X-

ray Photoelectron Spectroscopy substantiated high quality of MoS2 by examining different Mo 

and S core level peaks. Electrical measurements show both ohmic and semiconducting behavior 

of the crystals. Demonstrated growth of high-quality single-layer MoS2 is important in view of 

their further application in microelectronics as it has a capacity to replace graphene in near 

future.  
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8. Emergence of MoS2
§ 

 

Graphene, being a semi-metallic material due to its special π-π* band structure, has sparkled the 

dramatic increase in the 2D materials research [17, 122, 145]. Extremely high mobility value of 

graphene (⁓105 cm2 V-1 s-1 ) which is higher than in the parent material (graphite) makes it much 

more attractive for semiconductors industry. The conduction band and valence band of graphene 

are symmetrical about the Dirac point; hence its electronic properties can be described via Dirac 

equation, not the Schroedinger one. The Fermi surface is just the intersection point of the 

conduction and valence bands, making graphene to be a zero bandgap material. This unique 

structure provides outstanding electrical properties, but it limits its application in logical circuits 

for low-power electronic switching [32]. As a result, the electric current in graphene cannot be 

turned off and it is deemed unfavourable for the development of transistors [32, 122]. Since the 

invention of graphene researchers have started focusing on graphene-like 2D materials aiming at 

overcoming the disadvanatges of graphene and broadening the range of their applications [16, 

317]. 

Generally, 2D insulating and semi-conducting materials are more likely to be obtained due to the 

intrinsic chemical activity of most metallic materials. Graphite, hexagonal boron nitride (hBN) and 

molybdenum disulfide (MoS2) stand out in this competition.  Due to its widespread nature as 

molybdenite, MoS2 has been one of the most studied layered transition metal dichalcogenides 

(TMDCs). Monolayer MoS2 is a semiconductor with a direct bandgap of 1.8 eV [16], which makes 

it possible a substitution of gapless graphene, providing a possibility for 2D materials to be used in 

the next generation switching and optoelectronic devices. So far, MoS2 has achieved primary 

progress in several application areas, such as energy conversion and storage [19, 318] and 

hydrogen evolution reaction (HER) [319]. Additionally, MoS2 with odd number of layers could 

produce notable piezoelectric voltage and current outputs, indicating its potential applications in 

powering nanodevices and stretchable electronics [320]. 

8.1. CVD upgrade for MoS2 growth 

To implement MoS2 to be used for semiconductor industries, the materials should have: (i) large 

surface area, (ii) possibilities to controlling the thickness, and (iii) high crystallinity along the 

planes and high yield in fabrication.  

                                                           
§ Parts of this chapter have been published as Materials Research Bulletin, 97, pp. 265-271 (2017). 
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Just like in graphene case a common method used to obtain monolayer TMDs is the scotch-tape 

based micromechanical cleavage technique as reported in early publications [17, 145]. However, 

this method has various limitations, such as the lack of control over the flake thickness and size, 

which is likely to be crucial for nanoelectronics and optoelectronics. Keeping this in mind, a 

bottom-up method which envolves Chemical Vapor Deposition (CVD) technique has emerged in 

recent years. CVD is the most common and desired technique for the synthesis of MoS2 because it 

allows easy control of deposition parameters by regulating the temperature and the carrier gas 

flow. Also, these CVD methods are able to synthesize reasonably good quality material with 

typical flake sizes from hundreds of nanometers to a few micrometers.  

In CVD synthesis, the method for achieving the final product may differ depending on the 

precursor and temperature used. For example, one can use initially pure sulfur (S) and MoO3 

powder for the deposition directly on the substrate or one can predeposit the MoO3 and then 

perform functionalization using S in the next step.  

The key parameter for large area synthesis of MoS2 is the control of the reaction between 

between MoO3 and S. MoO3 compounds go through the transition from MoO(3-x) species with S 

interaction to form the final composition (MoS2) with stepwise reaction as shown below. 

𝑴𝒐𝑶𝟑 + 𝒙/𝟐 𝑺 →   𝑴𝒐𝑶𝟑−𝒙  + 𝒙/𝟐 𝑺𝑶𝟐    (Eq. 8-1) 

𝑴𝒐𝑶𝟑−𝒙 + (𝟕 − 𝒙)/𝟐 𝑺 →   𝑴𝒐𝑺𝟐  + (𝟑 − 𝒙)/𝟐 𝑺𝑶𝟐   (Eq. 8-2) 

where 𝑥 < 1 is the arbitrary number. When there is an incomplete reaction, an intermediate 

product such as MoOx can be found which further might react with S.  

In our case, we used modified CVD equipment and optimized the best growth condition. The 

modification of the existing CVD system was performed for controlling the temperature of two 

different regions of the CVD system at the same time. Figure 8-1 (a) shows a schematic diagram of 

the upgraded experimental facility used for the growth of the samples.  

The standard CVD system was modified by including a second heater near one of the corners of 

the quartz tube. In particular, a heating belt was installed in the position indicated in Figure 8-1 

(a) and its temperature was calibrated by the use of a thermocouple. By this way, this particular 

section of the quartz tube can be heated independently of the central part of the CVD system, 



Deposition and investigation of MoS2 

195 

 

allowing the sublimation of different products at different temperatures at the same time. The 

range of temperatures allowed by the heating belt is between room temperature and 150oC.  

For the growth of MoS2 samples, sulfur and MoO3 powders under a full set of different 

experimental conditions were used. In particular, the temperatures of both products, the 

pressure of the system, the growth time and the flow of the carrier gases (argon) were 

systematically changed in order to obtain high quality MoS2 samples. The following section will 

describe the best growth conditions that were found in our modified CVD system. 

Step 1: Installation of the powders and substrate. In the central part of the quartz tube an 

alumina boat is installed with MoO3 powder and a substrate for the growth.  The substrate was 

⁓300 nm of SiO2 on Si(111) of the size ⁓10 × 10 mm2. In our experiment, the distance between S 

and MoO3 was ⁓20 cm. When the heating of S takes place with the help of a heating belt, it will 

create more pressure which enhances the overall pressure in the CVD system. This will further 

reduce the vapor of MoO3 and hence lead to a reduction in the reaction of both compounds. 

Moreover, the substrate is located in the upper part of the alumina boat, providing a bridge 

between its lateral walls while the MoO3 powder is located at the bottom of the boat. With this 

configuration, upon heating, the sublimated MoO3 is directly deposited on the substrate. On the 

other hand, the sulfur is installed in a second alumina boat, located just in the region heated by 

the heating belt, near the inlet region of the carrier gases. In this way, upon heating, the 

sublimated sulfur can be carried by the argon gas (with Ar:150 sccm). 
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 Figure 8-1: (a) Schematic diagram of modified CVD equipment for the growth of MoS2. (b) The 
temperature diagram for the growth process of large area MoS2 by modified CVD. 

Step 2: Purge of the system. After installing the products the system is closed and purged. First, a 

vacuum of 10-2 mbar was achieved in the CVD during 20 min. Then, the CVD is fulfilled with pure 

argon gas. By repeating up to three times, this procedure allows most of the atmospheric 

contaminants to be removed from the quartz tube. 

Step 3: Heating Ramp – stage 1. The CVD furnace is heated in an argon atmosphere (50 mbar) at a 

rate of 20 oC /min until reaching a temperature of 650 oC. 
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Step 4: Heating Ramp – stage 2. The temperature of the furnace is maintained at 650 oC for 20 

minutes, conditions in which the MoO3 powder is slowly sublimated from the alumina boat. At the 

same time, during this stage, the heating belt is heated to 150 oC for sublimating the sulfur. This is 

a key in order to obtain single layer MoS2 samples, and the optimization of it will be discussed 

below. 

Step 4: Heating Ramp – stage 3. At the beginning of this stage the sulfur was completely 

sublimated from the alumina boat and the heating belt is switched off. On the contrary, the 

temperature of the CVD furnace is increased at a rate of 10 oC/min until reaching a temperature 

of 850 oC. This post annealing treatment drastically improved the quality of the samples. 

Step 5: Heating ramp – stage 4. The sample is maintained at 850 oC during 20 min. After this time, 

all the heating elements are switched off. During the cooling (stage 5) of the system the 

atmosphere inside the quartz tube is maintained with pure argon in order to avoid any 

contamination of the sample.  

The program steps used in the furnace for the growth of MoS2 are the following:  

 TSP 1 (Target Set Point): 650oC 
  RMP 1 (Ramp): 20.0  
  DWEL 1 (DWELL): 0:20 

 TSP 2 (Target Set Point): 850oC 
 RMP 2 (Ramp): 10.0 
 DWEL 2 (DWELL): 0:20 

  
The above code was used for the growth of MoS2 on SiO2/Si substrate. The heating 

rate used was 20 oC/min till 650 oC, there it will dwell for 20 mins (as a part of 

annealing). After annealing the temperature will increase with the rate of 10 oC until it 

reaches to 850 oC and then it will dwell for 20 min. Afterwards it cools slowly until 

room temperature is reached. Point to be noted is that we used natural cooling and 

the cooling rate was not controlled. 

In our experiments we used trial and error method to vary the pressure and found that 50 mbar 

pressure is  ideal for large area single layer growth of MoS2 on SiO2/Si. We tried various pressures 

keeping other conditions the same. After sorting out the data, we report the results for 3 

pressures: 10, 50 and 100 mbar representative enough to be explained by the described above 

chemical reaction mechanism. In the beginning with the pressure around 10 mbar, the reaction 

time was very short and thus the compounds were unreacted. Hence we infer that intermediate 
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compound (probably MoO(3-x) crystal) is only formed instead of MoS2. The rhombohedral shape of 

the MoO(3-x) crystals is clear in the optical image shown in Figure 8-2 (a) while two distinct Raman 

active peaks of MoS2 do not appear in the Raman spectra presented in Figure 8-4. At this 

pressure, the as grown sample comprises some rhombohedral structures (as shown in figure).  

 

Figure 8-2: Optical image of as synthesized MoS2 on SiO2/Si (300 nm). (a) Synthesized at 
⁓10mbar having ⁓5-7µm samples of MoO(3-x) with rhombohedral structure, (b) Synthesized at 
⁓50 and (c) ⁓100 mbar with average size of 22 and 50 µm, respectively. 

The average size of these rhombohedral structures was found to be around 5-7 µm. In the next 

series of experiments conducted at around 50 mbar pressure, triangular crystals were clearly 
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observed in the optical image. The average grains of MoS2 crystals synthesized at this pressure 

were found to be in the range between 5 and 22 µm, see Figure 8-2 (b). The shapes were quite 

similar to those reported by Zande et al. [321]. This pressure was found to be optimal for the 

growth of best MoS2. At this pressure S evaporates and successfully reacts with MoO3, leaving 

very small residue, hence less intermidiate MoO(3-x) is formed. We can say that the reaction leads 

to the nucleation of small triangular domains at random locations. Thus nucleated crystals 

continued to grow and formed boundaries until the favorable conditions are present (such as 

pressure and sufficient supply of precursors) [322]. Finally the results are compared with the 

samples grown under a pressure of 100 mbar. Under this condition MoS2 triangular crystals were 

still obtained, but unpredictable cracks were created, and the average grain size was found to be 

a maximum (⁓50 µm), see Figure 8-2 (c). It iwas concluded that the reaction between compounds 

was fine but, due to high pressure, it leads to cracking of MoS2 single crystals (see Figure 8-2 (a)). 

Similar result has been reported by Zande et al. [321]. 

Through this trial and error method, we conclude that the yield of the final product strongly 

depends on one of the growth parameters, i.e. the pressure. It is the pressure of the system 

during the sublimation of sulfur (step 4 of the growth protocol) that plays a key role. As an 

example, Figure 8-4 shows a comparison of Raman spectra of the obtained samples by keeping 10 

mbar of pressure during the growth in comparison with the sample obtained at the pressure of 

100 mbar. During the growth of samples all the other growth parameters were kept the same. 

 

8.2. Characterization of the MoS2 samples 

 

8.2.1.1. Raman spectroscopy  

 

Raman spectroscopy based on the frequency shift or intensity change  of the Raman modes of the  

inter-layer and in-plane vibration is the best technique not only to characterize the materials 

structure but also to study the electron-phonon-coupling effects. It can be used in almost all two 

dimenional TMDs to identify the number of the layers and other properties. Typically, MoS2 has 

four distinct Raman-active modes (E1g, E1
2g, A1g and E2

2g) and two IR-active modes (A2u and E1u) 

[323-326]. E1
2g is an in-plane mode resulting from the opposite vibration of two S atoms with 

respect to the Mo between them. On the contrary, the A1g mode is attributed to the out-of-plane 
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vibration of only S atoms in opposite directions. When moving from single layer to multiple layers 

(bulk), the frequency of E1
2g mode (see Figure 8-3) increases, whereas in the case of A1g mode (see 

Figure 8-3), it moves towards  lower frequencies [325, 327, 328]. Previous studies show that E1
2g 

mode is controlled by the long-range interlayer Coulombic interaction between molybdenum 

atoms. On the other hand, A1g mode is less affected by the interlayer interactions [329]. The A1g 

mode is very sensitive to adsorbates on the MoS2 surface [330] and electron doping [331]. Hence, 

due to stronger electron – phonon coupling of the A1g mode, it shows a shift and an increase in 

the peak width with increasing doping level. This frequency or frequency-shift difference between 

these two modes on the Raman spectrum can be used to determine the layer number of a few-

layer flakes [327]. Beyond this, there exist two low-frequency interlayer breathing (B2
2g) and shear 

(E2
2g) modes which are sensitive to the number layers and also can be used to examine the 

structural properties of a few-layer MoS2 and to determine the number of layers [324, 332, 333]. 

It must be noted that both these modes disappear for single layer MoS2 as they result from the 

interlayer interaction.  

 

Figure 8-3: Typical four distinct Raman-active modes present in MoS2 vibrational due in-plane 
and out-of-plane vibrations.  

Figure 8-4 (a, b, and c) shows the Raman spectra of the sample grown at different pressures: 10, 

50 and 100 mbar, respectively.  Starting from the sample grown under ⁓10 mbar pressure, the 

Raman spectra (Figure 8-4 a) have no distinct peaks associated with Raman active mode (E1
2g and 

A1g ) at ⁓380 cm-1 and ⁓409 cm-1 , respectively [16, 321, 328, 334, 335]. However, we detected  

minor peaks from MoO(3-x) and major peak from the Si substrate at ⁓520 cm-1. On contrary, in the 
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case of the samples grown under 50 mbar pressure (Figure 8-4 b), Raman spectra display two 

distinct Raman active modes, E1
2g at 380 cm-1 and A1g at 409 cm-1 inherent to single layer MoS2. 

The first peak (E1
2g) is associated with the planar vibrations whereas the second peak is concerned 

with the vibration of sulfides in the out-of-plane direction. Both peaks are quite sharp with a 

difference (Δ) ⁓ 25.69 cm-1 while their full width at half maxima (FWHM) were 11.72 and 11.88, 

respectively. Finally, in the case of samples synthesized under about 100 mbar  two distinct peaks 

of E1
2g and A1g are still observed. However, the peaks are slightly shifted towards lower 

wavenumber. They appear at ⁓ 375.18  and 406 cm-1 with a FWHM of 11.45 and 10.46 for E1
2g and 

A1g , respectively, with the difference (Δ) ⁓ 31.41 cm-1. The Δ value in 50 and 100 mbar ssamples is 

similar to earlier results on CVD grown MoS2 samples under similar pressure (40 – 10 mbar) [336]. 

The observed increase in the difference from 25.69 to 31.18 cm-1 is due to the increase of the 

number of layers [334]. Here, it is noteworthy to mention that Raman mode around 450 cm-1 for 

50 and 100 mbar grown samples corresponds to two-phonon Raman process of successive 

emission of a dispersive quasi-acoustic phonon and a dispersionless transverse-optical phonon 

propagating along the c- axis [337]. These observations are clear indications that the grown MoS2 

consists of a few layers. It is interesting to mention that, while acquiring the Raman spectra 

(Figure not shown), we could see the excited PL (photoluminescence) response of the sample. As 

mentioned earlier this response was apparently weaker in the sample synthesized at ⁓100 mbar, 

as compared to ⁓50 mbar. Possible reason is the increase in the the number of layers in 100 over 

50 mbar sample. This can be reasoned by the fact that the optical bandgap transforms from 

indirect to direct one when the dimension of MoS2 is reduced from a multilayer layer form to a 

few layer sheet [149]. Here it is important to note that both E modes become broader when the 

pressure changes from  50 to 100 mbar and A1g modes are shifted at 3 cm-1 that corresponds to 

1.2 GPa hydrostatic pressure [338]. Thus, the change in Ar pressure and corresponding strain in S-

Mo-S chains resuls in microstructural changes shown in the optical image (Figure 8-2 b and c).  

Furthermore, Raman mapping was performed on the sample 50 and 100 mbar sintered samples.  
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Figure 8-4: Raman spectra of the sample grown at (a) 10mbar, (b) 50mbar, and (c) 100mbar. The 
spectra clearly shows the distinct peaks E1

2g, A1
g and Si in sample synthesized at 50 and 100mbar 

pressure respectively. The inset (b and c) showing the E1
2g and A1

g peaks.  
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Figure 8-5 shows the combined Raman image using two distinct Raman lines. The blue spectra 

correspond to the average spectra of Si substrate (520 and 960 cm-1). The red spectra correspond 

to MoS2, where the two characteristic Raman bands are contributing from 

semiconductor/metallic (later confirmed by electrical characterization).The observed Raman 

bands from Si are apparently coming from the substrate used [334].   

 

Figure 8-5: Combined Raman imaging using the distinct Raman spectra (left) and respective 
Raman spectra used for the combined Raman image (right) of the sample grown at 50 and 100 
mbar. The blue spectra (b, d) correspond to the blue region (a, c) and the red spectra (b, d) 
correspond to the red region (a, c) in Raman imaging respectively. The differences (Δ) between 
(E1

2g - A1g) were found to be 25.7 and 28.55 cm-1 for the sample synthesized at 50 and 100 mbar 
respectively. 
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8.2.1.2. X-ray Photoelectron Spectroscopy 

 

High-Resolution X-ray Photoelectron Spectroscopy (HR-XPS) is one of the most important 

techniques for evaluating chemical bonding states of the MoS2 layers. It also allows us to study 

the surface chemistry of MoS2 grown under different pressures by measuring the binding energies 

of both Mo and S. Thus, XPS is one of the best experimental techniques that allows to prove the 

formation of single layer MoS2. We performed HR-XPS spectra of all the sintered samples. Figure 

8-6 (a and b) shows the Mo 3d and S 2p core levels of all the samples grown under 10, 50 and 100 

mbar. The fits were performed by a convolution of Gaussian and Lorentzian (70:30) functions 

after removing a Shirley type background. The binding energies in the XPS spectra were 

conventionally calibrated against the adventitious carbon C (1s) singlet (BE = 284.6 eV).  Figure 8-6 

(a) shows the core level peaks of Mo 3d of the sample grown at ⁓10, 50 and 100 mbar. The 

obtained spectra values were imported in CasaXPS and fitting was performed. The areas shown in 

green, blue, and cyan are the result of the overall fitting, while the red line shows the envelop 

obtained by fitting the experimental spectra (dotted points). Mo 3d spectra consist of two main 

peaks, namely Mo 3d3/2 (blue) and Mo 3d5/2 (cyan)  at 232.6 and 229.4  eV, with a spin orbit 

splitting (Δ) of 3.2 eV. Their FWHMs were found to be around 0.95 and 1.17, respectively. 

However, in the spectra we were able to find the intermediate peak probably coming from        

Mo3d6+ (expected area shown by green), from which we infer that the reaction was not 

completed during the growth [339]. The spectra do not show any significant S 2s peaks near the 

region of Mo. In the latter spectra of the samples grown at 50 and 100 mbar the scenario is 

completelly different. A clear peak appears at ⁓226.6 eV that can be ascribed to S 2s coming from 

MoS2 [339, 340]. In the case of S, see Figure 8-6 (b) (sample grown under ⁓10mbar)  we were not 

able to find any significant peak of S 2p, which indicates apparent absence of S on the surface of 

the sample, though we scanned over  large range of energies (data not shown). Figure 8-6 (a) 

(⁓50 mbar) represents the highly resolved core level peaks for Mo 3d3/2 ⁓ 232.6 eV (blue) and Mo 

3d5/2 ⁓ 229.4 eV (cyan) coming from Mo3d4+. Their FWHMs were found to be 0.84 and 0.67 with 

the spin orbit splitting (Δ) of 3.2. As mentioned earlier, a small peak of S 2s was observed at 226.6 

eV (yellow), with FWHM of 1.80. It is important to mention that no peak of intermediate 

compounds such as Mo 3d 6+
 were observed.  
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Figure 8-6: X-Ray photoelectron spectroscopy spectra of (a) Mo and (b) S respectively. The black 
dots are experimental data; red line is resultant fitting; green, blue, cyan and yellow are 
different components used for fitting. 

In the case of S 2p peaks (Figure 8-6 (b) P = 50 mbar), two components are cleary detected and 

ascribed to S 2p1/2 and S 2p3/2 at 163.5eV (yellow) and 162.3eV (pink), respectively. Their FWHMs 

were found to be 0.67 and 0.64 for S 2p1/2 and S 2p3/2 , respectively. Similar trends were found in 

the sample grown at ⁓100 mbar  as shown in Figure 8-6 (a). Thus obtained Mo 3d core peaks 

were deconvoluted into two parts, namely, for Mo3d 4+ and Mo3d 6+. The first part (marked as 

MoO(x)) can be attributed to Mo 3d 6+. However, the peak centered at BE = 233 eV shows a mixed 

contribution coming from Mo 3d 6+ and Mo 3d4+ [339]. The peak centered at BE = 232. 8 eV is 

coming from Mo 3d 4+. The spin orbit splitting between Mo3d3/2 and Mo 3d5/2 was found to be 3.2 
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eV with FWHM of 1.20 and 0.99, respectively. The presence of Mo3d 6+ clearly confirms the 

existence of intermediate oxidized state (green) Mo peak at 235.5 eV, which is indicative of 

incomplete reaction. As discussed earlier, the possible reason for it could be high pressure used 

during synthesis process. However, in this sample we found S 2s core level at around 226.7 eV 

(yellow), with FWHM of 2.24. In the case of S 2p core level (Figure 8-6 (b) ⁓100 mbar),  the two 

components (S 2p1/2 and S 2p3/2) were observed at around 163.6 eV (FWHM ⁓0.79) and 162.6 eV 

(FWHM ⁓0.97), indicated by yellow and pink color, respectively.  Thereon, we will now focus on 

the samples grown at 50 mbar as they showed the best quality as compared to the others. 

 

8.2.1.3. Ultraviolet Photoelectron Spectroscopy 

 

Ultraviolet Photoemission Spectroscopy (UPS), a photoemission spectroscopy using photons in 

the ultraviolet spectral range, is a powerful tool to detect a monolayer of an adsorbate or 

contaminant covering on the surface of the sample being examined due to its ultra-high surface 

sensitivity, especially sensitive to oxygen and carbon contaminations. Also, by applying UPS one 

can basically determine electronic band structure and work function of a solid since the energy of 

the photon source is low enough to just eject electrons form the valence/conduction bands of a 

material. Therefore, the energies of the ejected electrons are related to their original binding 

energies in the solid and also to their wave vector with their original states. The binding energy 

can be determined by measuring the observed kinetic energy using Einstein’s photoelectric effect 

equation.  

𝑩𝒊𝒏𝒅𝒊𝒏𝒈 𝑬𝒏𝒆𝒓𝒈𝒚 (𝑬𝑩) = 𝒉𝒗 −  𝑬𝒌 − (𝑬𝒗𝒂𝒄 −  𝑬𝑭) ,   (Eq. 8-3) 

where ℎ  the Planck’s constant; 𝑣 is the frequency; 𝐸𝑘 is the kinetic energy of an emitted 

photoelectron;  𝐸𝐹 is the fermi energy. 

The schematic diagram below (Figure 8-7) specifies the photoelectric phenomena associated with 

MoS2.  

 

 

 



Deposition and investigation of MoS2 

207 

 

 

Figure 8-7: Schematic diagram of the Ultraviolet Photoelectron Spectroscopy associated with 
MoS2 

In our case we used He I 21.2 eV as the source for the excitation and calculated the work function 

of MoS2 on SiO2/Si. 

  

Figure 8-8: The figure shows the full UPS spectrum of MoS2 on SiO2/Si (red) and pristine SiO2/Si 
(black) acquired with He I. The inset shows the broad scale to focus the shift, in order to have 
linear fitting (black dotted line). The obtained work function is 4.67 eV. 
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Figure 8-8 shows the full valence band (VB) spectrum of MoS2 on SiO2/Si (red) and pristine SiO2/Si 

(black) acquired using XPS. To our best knowledge, we report for the first time VB spectra of MoS2 

on SiO2/Si. The inset in the Figure highlights the magnified spectra of both pristine SiO2/Si (fresh 

cleaned substrate without any sample) and MoS2 grown on SiO2/Si (synthesized at ⁓50 mbar). The 

Figure clearly shows two distinct peaks at ⁓17.075  and 16.25 eV. We consider the peak located at 

17.075 eV to come from SiO2/Si as this can also be seen in the pristine SiO2/Si. On the contrary, 

the peak located at lower BE could be from MoS2. The spectra indicate the shift of the peak 

towards higher BE from 17.025 to 17.075 eV. This could be due to the presence of MoS2 on the 

substrate. A linear fitting was done in order to calculate the work function of MoS2 on SiO2/Si. The 

obtained work function was found to be 4.3 eV. Note that in the case of pristine SiO2/Si substrate 

an unknown peak was observed at ⁓ 16.7 eV. 

 

8.2.1.4. UV-Visible Spectroscopy 

 

Photoluminescence (PL), along with Raman measurements, is the most used method to evaluate 

the quality of grown MoS2, especially for monolayer samples [150, 322, 341-344]. In addition, by 

the extensive use of UV-visible absorption, we were able to calculate the direct band gap in MoS2. 

In contrast to bulk samples, monolayer MoS2 where the direct band gap is dominant, direct band 

radiative recombination becomes viable means for excitonic recombination [345]. Direct as well 

as indirect exciton transition in single  to a few layers MoS2 is found to be a result of the existence 

of in-plane excitons [346] and may help in understanding exciton-phonon interactions. In our 

case, using Eq. 1, we calculated the value of direct band gap.  

(𝜶𝒉𝒗)𝒏 ∝ (𝒉𝒗 − 𝑬𝒈)  ,      (Eq. 8-4) 

where 𝑛 = 2 for direct band-gap, 𝛼 is the absorption coefficient, ℎ𝑣 is the photon energy and 𝐸𝑔 

is the energy band-gap. When (𝛼ℎ𝑣)2𝑣𝑠 𝐸𝑝𝑙𝑜𝑡  is plotted the value of the bandgap can be 

obtained. Figure 8-9 shows the UV-visible diffuse reflectance spectrum of MoS2 on SiO2/Si. Inset 

to Figure 8-9 displays  dependence [347]. The fitting parameter extrapolated at

, indicates a bandgap of 1.6 eV for MoS2 (shown in inset) which lies in the range of the 

previously reported literature values [149, 348-350]. For the bulk MoS2 a band gap of 1.42 eV is 

expected while the present observation of 1.6 eV further hints to the formation of a few layer 

crystallites [351].  
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Figure 8-9: Shows the UV-visible diffuse reflectance spectrum of MoS2 synthesized on SiO2/Si 

substrate. Inset showing the (𝜶𝒉𝒗)𝟐 𝒗𝒔 𝑬 plot for calculating the direct bandgap. 

 

8.2.1.5. Electrical properties 

 

The electrical conductance (G) and conductivity (σ) of the grown MoS2 was mainly defined by two-

terminal I-V measurements. Figure 8-10 (a) shows focused ion beam scanning electron 

microscopy setup used for electroding of the sample while b and c shows the SEM image acquired 

after electroding the single grain and double triangular grain. Inset shows the captured image 

during the electroding process. Figure 8-11 depicts the representative I-V curves measured by the 

two-probe method for our MoS2. In order to check the electrical behavior of crystalline MoS2 

(having two triangles), we performed I-V measurements. Theoretically, electrical conductivity (G) 

can be described by:  

𝑮 =  
𝑰

𝑽
=  

𝝈 𝑨

𝒍
=  

𝝈 𝒘 𝒕

𝒍
 ,        (Eq. 8-5) 
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where A is the electrode area for current transport, are the length, width and 

thickness of the conductor, respectively.  

The linear I-V relationship curve suggests an apparent Ohmic beahvior for the entire range of 

applied voltages, -40 V to +40 V. When the applied voltage was below ±10 V, MoS2 showed Ohmic 

behavior and the current increased to 0.11 nA. This behavior of MoS2 depends on the electronic 

structure of the boundary (individual sample area) which further depends on the atomic structure 

[352]. In the case of double/joint MoS2 (having two triangles), the current versus voltage is 

linearly ranging from -40 V to +40 V, suggesting Ohmic contacts with our Pt electrodes. The 

forward current is approximately +6 nA at 40 V and -6 nA at -40 V.  

 

Figure 8-10: Electrical characterization of CVD synthesized MoS2. (a) Showing Focused Ion Beam 
Scanning Electron Microscopes used for electroding of the sample. (b and C) Showing the SEM 
image acquired after electroding the single grain and double triangular grain. Inset showing the 
captured image while the electroding process.  
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Figure 8-11: Shows the corresponding electrical measurement conducted horizontally with 
operating voltage in the range -40 V to +40 V which show (a and c) semiconducting and (b and 
d) Ohmic nature of single grain and double triangular grain, respectively. 

 

8.2.1.6. Conclusion 

 

After a decade of intensive investigations, graphene – related works are going to enter in matured 

zone. Hence, more and more research works are focused on other 2D materials. MoS2 became 

one of the favorite compounds for the researchers from the large family of layered transition 

metal dichalcogenides due to its outstanding properties. Moreover, there exists massive potential 

to broaden this area by designing and producing 2D or 3D hybrid components by combining 

graphene and graphene-like 2D blocks. However, the growth of high quality MoS2 for large area 

applications is still challenging. We have successfully demonstrated the growth of large-area 

continuous layers of MoS2 on SiO2/Si by using our home-made CVD technique. The role of 

pressure has been studied relevant to the sulfurization of molybdenum trioxide (MoO3). The goal 

of the study was to find the suitable pressure for the highly crystalline MoS2 to be formed. When 
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the pressure of the gas flow is low, 10 mbar, the ad-atoms retain insufficient kinetic energy due to 

fewer collisions during the transportation towards the surface of the substrate. When the 

pressure is increased to 50 mbar, the high surface mobility of ad-atoms gives rise to densely 

formed triangular grains, which is inherent to MoS2. Further increase in pressure, however, 

hinders the mobility of atoms resulting in porously formed triangles inside the MoS2 thin film. This 

will further affect the grain boundaries, which are essential for optimizing electronic and optical 

properties of MoS2 based devices. The as synthesized MoS2 layer on SiO2/Si shows the direct band 

gap of 1.6 eV. Raman spectra and their maps clearly confirm the existence of large area material 

deposited on SiO2/Si. Moreover, the XPS and UPS studies have been extensively used to 

distinguish the concerned core level peaks and also elucidated the mechanism of the growth 

procedure and its pressure dependence. In addition, we conclude that, band gap engineering of 

both graphene and MoS2 can be used for achieving superior electrical performance and tunable 

band structure.  
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9. General conclusions and future work 

 

Graphene, a single atomic layer of graphitic carbon, has attracted considerable interest as a new 

electronic material from many perspectives. It has a wide range of applications in electronics and 

it is a strong contender to replace silicon in future solid-state devices. However, most electronic 

applications are handicapped by the absence of a bandgap in the pristine graphene. For example, 

devices made from zero-band gap graphene are difficult to switch off the current through them. 

Therefore, pure graphene is fundamentally limited by its electronic properties and is not suitable 

for the digital circuitry that comprises the vast majority of devices. In this sense, it is highly 

desirable to introduce a bandgap in graphene in order to tailor its transport properties. Another 

task is to produce pristine or doped graphene of sufficiently high quality on technological 

substrates such as Si or Au. 

Following this global task, the present thesis has made significant contributions toward the 

advancement of the process technology and the scientific understanding of the synthesis of pure 

and in-situ ammonia doped graphene by CVD on copper and nickel foils. The home-made CVD 

setup was built in the TEMA associate laboratory of the University of Aveiro for the dedicated 

growth of 2D materials. Besides assembling the deposition process was parameterized and 

characterization of the properties of graphene and other 2D material (MoS2) was carried out. In 

order to tune the electronic properties of graphene, this work focused not only on the growth of 

high quality graphene but on in-situ heteroatom doping by ammonia (NH3). Furthermore, the 

processing conditions were also parameterized for the synthesis of high quality TMD materials 

(such as MoS2) by modifying the current CVD equipment. A thorough review of the fundamental 

properties as well as methods of synthesis and properties of 2D materials was also done in the 

present PhD work. 

After establishing the home-made setup for the fabrication of large area graphene and other 2D 

materials, the thesis also presented the systematic study of in-situ ammonia doped graphene as a 

function of the thickness of the substrate used for the deposition. The novelty of this work is that 

it establishes and explains the thickness dependence mechanism for the defect creations by 

nitrogen atoms. As discussed in the corresponding chapter, 20 μm thick Cu foils should be used 

for this purpose. This conclusion was based on the detailed investigation by Raman, HR-XPS and 

AFM techniques. This thickness significantly increases the efficiency of doping of graphene sheets 
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with nitrogen as compared to standard 20 μm foils. This opens up an efficient way for heteroatom 

engineering of graphene, which is required for its electronic applications.  

Further, the thesis describes a detailed study of the charge injection process into multilayer 

graphene (MLG) performed by Kelvin Probe Microscopy. For the first time, it is reported how the 

charge injection proceeds over time. The obtained results unveiled that: (i) MLG surface can be 

either positively or negatively charged through injection process using Pt coated probes; (ii) the 

charges accumulated can reach saturated concentrations as high as +4.45 and −1.3 μC/m2 for 

positive and negative charges, respectively; (iii) the charge diffusion coefficients on graphene 

surface are about 1.50 and 0.64 × 10−16 m2/s for the positive and the negative charges, 

respectively. This discovery of charge injection into MLG may pave the way for designing a new 

class of energy harvesting and memory devices. Additionally, we expect that our studies 

demonstrated a technique for nano-patterning/charge lithography of surface charges by contact 

electrification, which could be a promising application to create charged nanostructures for next 

generation nanoelectronic devices. 

In addition to graphene study to the work was devoted to the fabrication of 2D materials such as 

MoS2 using conventional home-made quartz based CVD equipment. Using sulfurization of MoO3, 

the thesis provides an understanding of the effect of growth parameters (e.g. base pressure) on 

the quality of MoS2 films on SiO2/Si substrates. The as synthesized MoS2 on ⁓10 × 10 mm2 

substrates were ready to be used for further device fabrication. The applications of MoS2 are 

growing rapidly in many areas, such as transistors, photodetectors, solar cells, etc. 

In the direction of future work, I would like to proceed with the fabrication of other 2D TMDs such 

as tungsten disulfide (WS2), tungsten diselenide (WSe2) and molybdenum diselenide (MoSe2) etc. 

The CVD setup assembled in this work can be used for any TMD materials which are also very 

interesting for real device applications.  I would like also to study the effect of transfer method on 

the properties of graphene. As reported in chapter 7 we observed significant predominance of 

pyridinic impurities over desired graphitic nitrogen after transferring the graphene on SiO2. The 

increment of pyridinic N at the expense of substitutional N is probably due to the transfer process 

and evidences the generation of defects on the graphene sheet during this process. It would be 

interesting to conduct additional studies of this effect based on some theoretical modeling. A few 

literature reports have been found on this issue. Another interesting effect is the inclusion of iron 

atoms in the graphene sheets during the transfer process. The transferred samples typically 

consist of large areas of monolayer graphene in which some regions contain remnant material 
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from the transfer process, including Fe atoms from decomposed FeCl3. As discussed in the 

corresponding chapter, pure Fe can be found as small nanocrystals forming on the surface of the 

graphene, as single atoms or small clusters at the edge of pores in clean graphene, or as 2D 

crystalline membranes suspended across perforations in the graphene. It will be interesting to 

carry out the investigation of the formation of Fe nanocrystals for nanotechnological purposes. 

Further interest in this area is due to transfer of both pristine and in-situ ammonia doped 

graphene on specially prepared ferroelectric substrates (ferroelectric PMN-PT, PZN-PT, single 

crystals of BiFeO3). These substrates have high polarization and electromechanical properties that 

could induce large mechanical deformations. The measurements of nanoelectromechanical 

effects and expected polar states in graphene will be accompanied by rigorous calculations of 

stress/strain distribution and evaluation of various accompanying effects e.g., flexoelectricity, 

Joule heating by the tip, defect formation under the tip force, etc. By this way, we can study the 

fully uniform external strain and local properties as a function of calibrated strain transferred 

from the substrate to graphene. 
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