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Kesterite, Cu2ZnSnSe4 Células solares, absorvente de CZTSe, evaporacão por  
feixe de electrões, precursor, selenização, propriedades optoelectrónicas, 
passivação de interface, interface posterior de Mo/CZTSe, p-n junção  
  
Células solares baseadas em Kesterites, Cu2ZnSn(S,Se)4 (CZTSSe), estão a ser 

investigadas como um alternativa de mais baixo custo às células solares de elevada 

eficiência baseadas em CIGS. Em compostos de kesterite, elementos abundandes na 

natureza como Zn and Sn são usados em vez de elementos raros como In e Ga na 

calcopirite CIGS. Mesmo tendo propriedades optoelectrónicas promissoras, como 

elevada absorcão e bandgap próximo do ideal, o desempenho das células solares de 

kesterites ainda fica aquém do requerido para a sua exploração em larga escala. 

Nesta tese, são apresentadas três  abordagens seguidas para melhorar o desempenho 

das células solares de CZTSe: modificacão de (1) camada absorvente de CZTSe, (2) da 

interface Mo/CZTSe e (3) da junção CZTSe/CdS. 

O fabrico da camada absorvente de CZTSe é conseguido por meio de um processo 

em 2-passos, onde se inclui a evaporacão por feixe de electrões (e-beam) das camadas  

Sn/Zn/Cu precursoras seguida de um tratamento térmico rápido usando o gás de 

H2Se (passo de selenização). São apresentados resultados do estudo de optimização da 

espessura, da ordem das camadas percursoras, e do caudal de H2Se. 

O efeito da espessura das camadas percusoras nas propriedades químicas e 

morfológicas do filme de CZTSe foi estudado. As propriedades optoelectrónicas 

foram investigadas por meio de medições da fotoluminescência resolvidas no tempo 

(TR-PL), curvas currente-tensão (J-V) e capacidade-tensão (C-V). 

A interface posterior de Mo/CZTSe foi alterado através da introdução por meios 

químicos de uma película de MoO3 na interface. A medição das curvas de currente-

tensão das células solares com e sem MoO3 foram efectuadas a diferentes 

temperaturas. O efeito da modificação da interface posterior nas propriedades 

optoelectrónicas de dois tipos de células com diferentes espessuras da camada 

absorvente  foi estudado. 

A junção CZTSe/CdS foi modificada pela introdução de uma camada ultra-fina de 

TiO2. O efeito desta alteração nas propriedades optoelectrónicas da célula 

photovoltaica foi estudado. 

Uma compreensão mais profunda da junção CZTSe/TiO2/CdS foi alcançada por meio 

da realização de microscopia electrónica de transmissão e da análise do perfil de 

composição química..  

Neste estudo foi possivel obter uma eficiência maxima de 7.8% para células solares 

com a estrutura: SLG/Mo/CZTSe/CdS/i-ZnO/AZO. Finalmente são apresentadas 

algumas sugestões para desenvolvimentos futuros, visto ser necessário mais 

optimização das condições de deposição dos precursores e da sua selenização para 

melhorar ainda mais a qualidade da camada absorvente e desempenho das células 

solares. 
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abstract 

 
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells are being investigated as a 
cost effective alternative for high efficiency CIGS solar cells. In kesterite, earth 
abundant Zn and Sn elements replace rare In and Ga in chalcopyrite CIGS. 
Despite promising optoelectronic properties of kesterite like high absorption 
coefficient and near to ideal band gap, the performance of kesterite solar cells 
is still lower than the required for large scale exploitation.  
This thesis includes 3 main approaches to improve the performance of CZTSe 
solar cells: modification of (1) CZTSe absorber layer (2) Mo/CZTSe interface 
and (3) CZTSe/CdS junction. 
We fabricated CZTSe absorber layer by a two-step approach including e-beam 
evaporation of Sn/Zn/Cu stacked precursors followed by an annealing step 
using H2Se gas (selenization step) in a rapid thermal processing system. 
Several parameters of the fabrication process were studied and suitable 
conditions of precursor thickness, precursor order, and H2Se flow rate were 
presented. 
The effect of thickness of precursors on chemical and morphological properties 
of CZTSe films was studied. The optoelectronic properties of the solar cells 
were investigated using time-resolved photoluminescence (TR-PL), PL, current 
density-voltage (J-V) and capacitance-voltage measurements. 
Mo/CZTSe rear interface was modified by introducing a solution processed 
MoO3 interfacial layer. Current-voltage curves of solar cells with and without 
MoO3 layer were measured at different temperatures. The effect of the 
modification of rear surface on optoelectronic properties of two types of solar 
cells with thin and thick absorber layers was studied.  
CZTSe/CdS junction was modified by introducing an ultra-thin TiO2 layer. The 
effect of this modification on optoelectronic properties of solar cells was 
studied. Transmission electron microscopy and compositional profile analysis 
were performed to gain a deeper understanding of the CZTSe/TiO2/CdS 
junction. 
The best efficiency of a SLG/Mo/CZTSe/CdS/i-ZnO/AZO solar cell in this study 
was 7.8 %. Some suggestions for future work are presented. It is suggested 
that further optimization of the precursors and selenization conditions are 
required to improve the quality of absorber layer and the performance of solar 
cells.  
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1 Introduction 

1.1 Photovoltaics for renewable energy 

One of the most important necessities in human life is energy. Despite recent development 

of renewable energy sources; the fossil fuels are the dominant source of energy. However fossil 

fuels can not last forever, they are the main source of greenhouse gas emissions and the price of 

these fuels is a challenging issue. On the other hand, there are renewable and environmentally 

friendly resources of energy like solar, wind, geothermal energy, biofuels, etc. There are 

enormous efforts to make these alternative energy resources economically viable to use, to meet 

the increasing demand for energy while reducing the side effects of fossil fuels. One of the most 

accessible and widely distributed resources of renewable energy is photovoltaic (PV), also 

known as solar energy. A photovoltaic device converts the sunlight into the electricity based on 

the photovoltaic effect. The solar energy is widely distributed and accessible in almost 

everywhere around the world. It can be harvested in small scale for rural electrification as well 

as in large scales for multi-megawatt power plants for big industries and city applications. These 

advantages do not widely apply to several renewable energy alternatives in terms of 

geographical availability or economic issues. Photovoltaic electricity generation still contributes 

only about 1% to the word’s electricity generation [1]. The initial investment is the main obstacle 

to the wide application of PV energy as the main source of electricity generation. Further 

development of semiconductor industry and manufacturing techniques are required to reveal the 

full potential of photovoltaic energy. 

1.2 Thin film solar cells 

The first generation of solar cells is based on Si wafer technologies including two major 

categories, mono-crystalline Si and multiy-crystalline Si technologies. Although the conversion 

efficiencies of these traditional solar cells are quite high near the theoretical limits (up to 26.3 

% and 21.3 % for mono-Si and multi-Si solar cells, respectively [2]), high embodied energy is 

required for their fabrication process.  
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Thin film solar cells including Cu(In,Ga)(S,Se)2 (CIGS), CuIn(S,Se)2 (CIS), CdTe and 

amorphous Si are the second generation of solar cells. Thin film solar cells are based on direct 

band gap semiconductors, thus only a few microns thickness of the absorber layer is enough to 

absorb the complete solar spectrum. In addition to the decrease of raw materials consumption, 

film solar cells are also less sensitive to the impurities as compared to the Si-wafer based solar 

cells, hence their production cost can be cheaper. Moreover, the possibility of producing 

transparent and flexible thin film solar cells can fulfill new applications such as large area 

building integrations, facades, windows, wearable devices, etc. So far, high conversion 

efficiencies up to 22.6 % and 22.1 % have been achieved in laboratory scale for CIGS and CdTe 

[2], respectively and commercial modules based on CIGS and CdTe technologies have been 

marketed. However, the use of rare and expensive elements such as Indium, Gallium and 

tellurium [3,4] and heavy metal Cd restricts significantly the production capacity of the 

mentioned technologies. Recently emerging thin film technologies such as kesterite, perovskite, 

organic solar cells, quantum dot solar cells, etc. have attracted the attention of PV community. 

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has gained attention as an environmentally benign 

alternative to the leading technologies CIGS and CdTe. Kesterite CZTSSe has some similar 

optoelectronic properties with high efficient chalcogenide CIGS and it consists of earth 

abundant and inexpensive elements. While the air and temperature stability is an issue for the 

emerging PV technologies such as perovskite solar cells, kesterite solar cells have a good air 

and temperature stability.  

1.3 Cu2ZnSn(S,Se)4 Crystal structure 

CZTSSe is derived from the chalcopyrite structure of CuInS2 by replacing In atoms with 

Sn and Zn atoms, as illustrated schematically in Figure 1-1. This substitution leads to two main 

crystal structures: (i) kesterite (space group I4) and (ii) stannite (space group I4 2m). These 

tetragonal structures are very similar. The only difference is the stacking order of Cu and Zn 

along the c-axis. In kesterite structure, Cu-Sn/Cu-Zn/Cu-Sn cationic layers are arranged along 

the c-axis. In stannite structure, the arrangement is Cu/Zn-Sn/Cu as shown in Figure 1-2 [5,6]. 

It’s not easy to distinguish kesterite and stannite structures by X-Ray diffraction due to the very 
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similar atomic form factor of Cu2+ and Zn+ that are neighbors in the periodic table. Neutron 

scattering can be used to determine the cation distribution in CZTSSe as Cu and Zn have 

different neutron scattering length [7,8]. According to ab initio calculations kesterite has slightly 

lower formation energy, as compared to the stannite phase, thus it is thermodynamically more 

stable [9]. S. Schorr suggested that CZTS have a phase transition from kesterite to stannite at 

around 870 ºC [8].  

Figure 1-1 CZTSSe is derived from the chalcopyrite structure of CuInS2 by replacement of In atoms 

with Sn and Zn atoms. 

 

1.4 Optoelectronic properties of CZTSSe 

The optical studies indicate that CZTSSe is a direct band gap p-type semiconductor with 

an absorption coefficient above 104 cm-1 that is suitable for photovoltaic applications. Band gap 

has been estimated to be around 1.0 eV for Cu2ZnSnSe4 [10] and 1.5 eV for Cu2ZnSnS4 [11]. 

Several groups have tried to tune the band gap by: (i) adding both S and Se anions to the 

compound and changing the S/(S+Se) ratio [12,13], (ii) substituting part of the Sn amount with 

Ge [14] or Si [15–17] and part of Cu amount with Ag [18].  

Figure 1-2 Illustration of kesterite and stannite 

structures [5]. 
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1.5 Defects 

Defects have an important impact on the optoelectronic properties of semiconductors. 

Doping of CZTSSe is due to the intrinsic defects, similar to the intrinsic doping properties of 

CIGS. Doping density in CZTSSe is reported in the range of 1015 to 1020cm-3[19–22], depending 

on the sample preparation condition and the composition of the kesterite compound [23–25]. 

Usually, the shallow defects contribute to the carrier concentration of the material while the 

deep defects act as traps and recombination centers. There are several possible intrinsic point 

defects in kesterite structure such as vacancies (VCu, VZn, VSn and V(S,Se)), antisites (CuZn, ZnCu, 

CuSn, SnCu, ZnSn and SnZn) and self-interstitial defects (Cui, Zni and Sni) [21]. Chen et al. 

calculated transition-energy levels for the mentioned intrinsic defects, as shown in Figure 1-3 

[21]. Formation of the mentioned point defects in kesterite depends on the stoichiometry. 

According to the literature carrier concentration of kesterite is mainly due to the CuZn acceptor 

defects. Formation of donor defects such as ZnCu and compensated cluster defects such as 

[CuZn+ZnCu] and [VCu+ ZnCu] are also likely. These defects lead to a p-type conductivity for 

CZTSSe along with a high degree of compensation [21].  

 

Figure 1-3 The transition energy levels of the intrinsic defects in the band gap of CZTS [21]. 
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1.6 Formation reaction of CZTSSe 

F. Hergert and R. Hock proposed there are two reaction paths for the formation of 

CZTSSe based on crystallographic models: 

(i) Cu2X/CuX + ZnX + SnX/SnX2 → CZTX  

(ii) (a) CuX2/CuX + SnX/SnX2 → Cu2SnX3 

(b) Cu2SnX3 + ZnX→ CZTX 

Where X is the chalcogen S or Se [26]. By applying in-situ X-ray diffraction 

measurements during the annealing process of electrodeposited Cu–Zn–Sn precursor, Schurr et 

al. also showed the formation of kesterite happens through a solid state reaction between 

Cu2SnS3 and ZnS. They showed the formation of Cu2SnS3  can be through two different reaction 

paths depending on the metallic ratios of the precursors [27].  

1.7 Secondary phases 

Fabricating high-quality single phase CZTSSe is very challenging because of (i) a narrow 

stable region of CZTSSe in the phase diagram, (ii) decomposition reactions at the rear and the 

top surface of CZTSSe during the annealing process in S or Se atmosphere. As shown in 

section 1.6, CZTS(Se) can be synthesized through chemical reactions between ZnS(Se), 

Cu2S(Se), and SnS(Se)2. Olekseyuk et al. presented a phase diagram of the Cu2S–ZnS–SnS2 

pseudo-ternary system at 670 K. According to this phase diagram, shown in Figure 1-4, single 

phase Cu2ZnSnS4 exists only in a very narrow region (region 1 in Figure 1.4). In all other 

regions, there are always some secondary phases along with CZTS [28]. Hence the formation 

of secondary phases such as ZnS(Se), SnS(Se)x, CuS(Se)x, and Cu2SnS(Se)3 are likely in off- 

stoichiometric region. SnS(Se)x, CuS(Se)x and Cu2SnS(Se)3 have low band gap and they can 

reduce the shunt resistance significantly. Highest efficiencies for CZTSSe so far is recorded for 

Cu-poor and Zn-rich regime of the phase diagram in which formation of low band gap SnS(Se)x, 

CuS(Se)x and Cu2SnS(Se)3 are less likely [29,30]. ZnS(Se) is shown to be the dominant 

secondary phase under the Cu-poor and Zn-rich growth condition. ZnS(Se) has a wide bandgap 
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(~3.54 eV for ZnS and ~2.82 eV for ZnSe) and it is not considered as a very harmful phase. 

However, the formation of big clusters of ZnS(Se) can decrease the active region of the absorber 

layer and decrease the JSC. A Zn-rich composition leads to a spatial inhomogeneity and it may 

lead to band gap fluctuation since the different phases in the compound have different band 

gaps.  

1.7.1 Decomposition reactions  

In addition to the very narrow single-phase regime in the phase diagram, decomposition 

reactions that happen during the annealing step lead to the formation of secondary phases. These 

reactions at (i) Molybdenum (Mo) rear interface and (ii) top surface of CZTSSe make the 

fabrication of single-phase kesterite compound even more challenging. Scragg et al. showed the 

Figure 1-4 Phase diagram of Cu2S–SnS2–ZnS system at 670 K [10]. 
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instability of Mo and easily reduction of Sn during the selenization/sulfurization process can 

lead to the decomposition of CZTSSe [31,32]. This decomposition reaction can be shown by 

this reaction: 

2Cu2ZnSnSe4 + Mo → 2 Cu2Se + 2 ZnSe + 2 SnSe + MoSe2   

Thus the formation of detrimental secondary phases such as CuS(Se)x, SnSe and MoSe2 

are very likely at the rear surface. The decomposition of CZTSSe at the rear surface also leads 

to the formation of voids in this region. The existence of voids and secondary phases at 

Mo/CZTSSe rear surface is widely reported in kesterite solar cells [31,33,34]. These 

imperfections at the rear surface are detrimental to the performance of solar cells. The pores at 

the rear surface are not good for the adhesion of the film and they can suppress the charge carrier 

transport and decrease the JSC. The decomposition of CZTSSe at the rear interface may introduce 

deep defects such as Se and Sn vacancies that increase the recombination rate at the rear 

interface and decrease of the open circuit voltage (VOC). To avoid the decomposition reaction at 

the Mo rear interface, introducing an inert interfacial layer between Mo and CZTSe such as TiN 

[32,35], ZnO [36], TiB [34], Ag [37], MoO3-X [38], etc has been suggested by several groups.  

Decomposition of CZTSSe from the top surface during the selenization/sulfurization is 

also reported in the literature. Weber et al. indicated a decomposition reaction for CZTS from 

the top surface through the reactions shown schematically in Figure 1-5. According to their study 

evaporation of SnS and consequently Sn loss is significant at pressures around 10-2 Pa and 

temperature above 350 ºC but this decomposition can be suppressed by using inert gasses and 

increasing the pressure during the annealing process [39].  
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Figure 1-5 Schematic representation of reactions at the top surface of CZTS [39]. 

1.8 Fabrication techniques of kesterite 

Generally, the fabrication methods of kesterite compound can be classified into one-step 

and two-step methods and these methods also can be also divided into the vacuum and non-

vacuum techniques. In one-step methods, all the elements are incorporated into the kesterite 

compound in one step. In two-step techniques, first, a precursor containing only the metals or 

metals and a small amount of sulfur is deposited at low temperatures by vacuum or non-vacuum 

techniques. In the second step, the as-deposited precursors are annealed using Sulfur/Selenium 

vapor or H2S/H2Se gas. The two-step methods are more common in kesterite technology and 

generally, most of the best efficiencies for kesterite solar cells have been reported by two-step 

techniques [19].  

1.8.1 Vacuum-based deposition methods 

The vacuum-based methods usually include physical vapor deposition (PVD) techniques 

such as evaporation techniques, DC and RF magnetron sputtering and pulsed laser deposition. 

Cu2ZnSnS4 (CZTS) material was firstly reported in 1988 by Ito and Nakazawa at Shinshu 

University, using a sputtering technique [40]. In 1996, Katagiri et al prepared the first CZTS 

thin film solar cell with an SLG/Mo/CZTS/CdS/TCO structure. CZTS thin films were prepared 

by an e-beam evaporation of Zn/Sn/Cu stack, followed by a sulfurization using H2S at 500 ºC. 
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This first CZTS solar cell had a conversion efficiency of 0.66 % and an open-circuit voltage of 

400 mV [41]. This group continually improved the fabrication techniques of CZTS absorber 

layer. Using co-sputtering technique and optimizing the sulfurization condition they achieved 

6.7% efficiency in 2009 [42]. Since then different groups prepared CZTS and CZTSSe solar 

cells using vacuum based deposition of precursors followed by annealing in chalcogenide gas. 

In 2008 Moriya et al fabricated a CZTS solar cells using pulsed laser deposition (PLD) technique 

with 0.64 % efficiency and 336 mV VOC [43]. So far the highest efficiency of 5.85 % is reported 

for a CZTS solar cell prepared by PLD technique [44]. Wang et al. (2010) fabricated CZTS solar 

cells by thermal evaporation of precursors followed by annealing in Sulfur vapor and they 

reported 6.8 % conversion efficiency and 587 mV VOC. K. Sun et al. prepared CZTS solar cells 

by sulfurization of co-sputtering of Cu/ZnS/SnS precursors within sulfur containing atmosphere. 

They achieved 9.2 % efficiency for solar cells with Zn1-xCdxS buffer layer [45]. G. Brammertz 

et al. prepared CZTSe solar cells by selenization of DC sputtered Cu10Sn90/Zn/Cu stack followed 

by selenization using H2Se gas and they achieved up tp 9.7 % efficiency for solar cells with 1 

cm2 area in 2013 [46]. Lee et al. reported a CZTSe solar cell with 11.6 % and 0.43 cm2 area 

using thermal co-evaporation technique followed by selenization on a hot plate [47]. 

1.8.2 Nonvacuum deposition methods 

Non-vacuum techniques such as spray-pyrolysis, electrochemical deposition and spin 

coating are promising techniques for cost effective and easy fabrication of kesterite compounds. 

K.Woo et al. reported an ethanol-based ink technique for preparation of CZTSSe absorber layers 

and they reported the fabrication of CZTSSe solar cell with 7.2 % efficiency [48]. Mitzi et al. 

reported the highest efficiency of 12.6 % for CZTSSe kesterite solar cells using a hydrazine 

solution based process [49,50]. However, this method is not suitable and economical for large 

scale productions due to the use of hydrazine reagent.  

1.9 Structure of kesterite solar cell 

The structure of CZTSSe solar cells is adopted from CIGS solar cells. In Figure 1-6 

(left) a CZTSSe solar cell structure is illustrated schematically, a SEM image of this multilayer 
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structure is also shown in Figure 1-6 (right). This adopted structure may not be the ideal 

structure for kesterite solar cell and it can be modified in order to enhance the performance of 

the kesterite solar cells. Several studies indicated that Mo is not an ideal back contact for 

kesterite solar cell as it is unstable during the fabrication of absorber layer [31,51]. The band 

alignment between Mo back contact and kesterite absorber layer is the second issue regarding 

the back contact in kesterite solar cells. Mo/CZTSSe rear interface is reported to be a Schottky 

barrier [52], however, the formation of a MoS2/MoSe2 layer at the rear surface can lead to an 

ohmic contact [53]. Although a few studies reported on using alternative back contacts including 

transparent conducting oxide glass substrates such as ITO and FTO [54] in kesterite solar cells, 

so far Mo-coated glass substrate was the most common back contact. It is suggested that using 

interfacial layers is beneficial to enhance the quality of rear surface and consequently the 

performance of the kesterite solar cells [32,33,35,36,38,51,55]. 

The other important layer in kesterite solar cell is the n-type layer, known as buffer layer. 

CdS layer is the most common buffer layer in kesterite solar cells and the best efficiency has 

been achieved using this buffer layer [50]. A few studies also reported alternative buffer layers 

such as Zn1-xSnxOy [56], Zn1–xCdxS [45] and ZnS [57] in kesterite solar cells. Theoretical studies 

indicated the band alignment between the buffer layer and absorber layer affects the electrical 

properties of the solar cells [58]. The band alignment between CdS buffer layer and CZTS is a 

Figure 1-6 Scheme of a standard kesterite solar cell (left) and cross-sectional SEM image of a 

CZTSe solar cell (right). 
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cliff-like band alignment in which the conduction band of the absorber layer is higher than the 

one in CdS [59]. The cliff-like band alignment can be a barrier to the injected electrons under 

forward bias, thus increase the recombination at the p-n junction and decrease the VOC [58]. The 

CZTSe/CdS is reported to be a spike-like band alignment with an offset below 0.4 eV. A spike-

like band alignment is not a barrier for the injected electrons but for the photo-generated 

electrons. If the conduction band offset is lower than 0.4 eV the photo-generated electrons can 

transport by thermionic emission. Thus a spike like band alignment does not decrease the VOC 

but it may decrease the JSC if it is higher than 0.4 eV [58]. Another issue regarding the 

kesterite/CdS buffer layer interface is the presence of defects and dangling bonds [60,61]. 

Passivation of the p-n junction can decrease the recombination via these defects and improve 

the VOC. So far ultra-thin interfacial layers such as Al2O3 and TiO2 layers deposited by atomic 

layer deposition (ALD) techniques are used for passivation of a p-n junction in kesterite solar 

cells [60–62].  

1.10  Kesterite solar cells challenges 

Kesterite compounds are considered as promising candidates for cost-effective and 

abundant thin film solar cells. However, so far device performance of kesterite solar cells is 

limited to around 12 % that is still far away from the commercial level. One of the main flaws 

of kesterite solar cell is its low open circuit voltage (VOC), thus a large VOC deficit from the 

bandgap (Eg/q-VOC). Many theoretical and experimental studies have been dedicated to 

understanding the main reasons for large VOC deficit and reduce it. These efforts can be 

categorized to three main approaches: (1) Improving the absorber layer to reduce the bulk 

recombination via the tail states and potential fluctuations in the bands. The high density of 

charged defects [63,64], Cu-Zn disorders [65], secondary phases [66,67], grain boundaries [68], 

etc. are counted as the possible reasons of the tail states in kesterite compounds. (2) Improving 

the rear contact by introducing an interfacial layer such as TiN [32,51,69], MoO3-X [33,38], etc., 

between Mo and absorber layer in order to address two main problems that are attributed to the 

Mo rear contact in kesterite solar cells: (i) the decomposition reactions at the rear interface due 

to the instability of Mo rear contact that leads to the formation of secondary phases and voids at 
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the rear surface, (ii) a Schottky barrier at the Mo/kesterite interface that decreases the hole 

transport and increases the recombination at the rear interface. (3) Improving the p-n junction 

in kesterite solar cells by: chemical cleaning using KCN [70,71], ammonium sulfide [72], etc. 

to remove the secondary phases, optimization of CdS buffer layer deposition [73,74], 

introducing ultra-thin interfacial metal oxides like Al2O3  [61,62] and TiO2 [60] to passivate the 

p-n junction, and introducing alternative buffer layers [45,56,57]. 

1.11 The structure of this research 

In this thesis, several approaches are investigated in order to overcome the three main 

problems in kesterite solar cells: absorber layer, Mo back interface and CZTSe/CdS p-n 

junction. Improving the bulk quality of the absorber layers is our main objective in chapter 3,4 

and 5. We studied several processing parameters in order to improve the CZTSSe and CZTSe 

absorber layer. In chapter 6 the issues related to the Mo rear contact are discussed and a solution 

processed MoO3-X layer is introduced to improve the back contact. In Chapter 7 an ultra-thin 

layer of TiO2 is introduced for passivation of the p-n junction. 
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2 Experimental techniques  

Fabrication of CZTSSe and CZTSe thin films in this study was performed by a two-stage 

process, the first step consists of deposition of precursors on Mo-coated SLG and the second 

step includes annealing the precursors in the Se-containing atmosphere. Deposition of 

Zn/SnS2/CuS precursors was performed in PV lab of the University of Aveiro, using a hybrid 

thermal evaporation/RF-sputtering system. Deposition of metallic Sn/Zn/Cu precursors was 

performed in imec- PV lab using an e-beam evaporation technique. 

2.1 Preparation of Mo-coated SLG substrates 

In this study, Mo-coated SLG was used as the back contact in CZTSe solar cells. In PV 

lab of the university of Aveiro, we deposited Mo on 1 mm thick 3×3 cm2 SLG substrates using 

a DC sputtering system as will be explained in next section. In imec PV lab, we used 3 mm thick 

SLG substrates on which a 400 nm of Mo was deposited by Guardian company. We cut the Mo-

coated SLG sheets into 5×5 cm2 substrates. Then to remove the oxides, fingerprints, and organic 

residues from the surface of the substrates, we cleaned the substrates by soaking in a 1 molar 

NH4OH solution for 3 min, rinsing in deionized water and drying with an N2 gun.  

2.1.1 Deposition of Mo using DC sputtering 

Sputtering is a physical vapor deposition (PVD) technique. In the sputtering system a 

target acts as a cathode and is connected to a high direct current/alternating current (DC/RF). 

Anode is the substrate holder that is grounded. In the evacuated chamber, a noble gas such as 

Ar is introduced to create a plasma environment. A glow discharge is initiated By applying a 

critical voltage and the collision of energetic ions ejects target atoms which are deposited on the 

substrate [75]. In magnetron sputtering, a magnetic field is applied in order to confine the 

electrons near the target vicinity. The trapped electrons have more chance to collide with argon 

atoms. Magnetron sputtering allows to reduce the working gas pressure; thus particles collide 

the substrate with higher energy that leads to higher deposition rates. In addition by trapping the 
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electrons near the target the substrate temperature is reduced and the quality of the film improves 

[75]. 

We deposited Mo on 3×3 cm2, 1 mm thick soda-lime glasses (SLG) substrates. SLG 

substrates were cleaned in consecutive ultrasonic baths of acetone, ethanol and deionized water 

for 10 min each and dried using an N2 flux. A bilayer Molybdenum (Mo) film was deposited on 

the cleaned substrates using a DC magnetron sputtering system in which the distance between 

the substrates and target was 10 cm. The Mo target purity was N3. The base pressure of the 

chamber was about 5×10−6 mbar before the deposition using a turbo pump backed by a rotary 

pump. Using Ar as the sputtering gas, the work pressure in the chamber could be changed 

between 1 × 10−3 and 1 × 10−2 mbar. A bilayer Mo was sputtered in a two-step deposition 

process. First, an ultra-thin layer of Mo was sputtered using 0.04 kW power for 2 min at a high 

working pressure of 2 × 10−2 mbar. In the second step, Mo was deposited at 0.1 kW power for 

6 min at a low pressure of about 10-3 mbar. This deposition recipe had been already optimized 

by Salome et.al [76]. The reason of two-step deposition first at high and then low pressure is to 

achieve good adhesion along with low resistivity for the Mo film to be a good ohmic contact for 

the high-temperature process kesterite solar cell. The sheet resistances of the Mo-coated films 

were measured using a four point probe to be below 1 Ω□. 

2.2 Deposition of multi-stacked Zn/SnS2/CuS precursors  

When the target is a conducting material a direct current (DC) is appropriate for the 

sputtering however sputtering of an insulator target leads to accumulation of positive charges. 

To avoid the charge build up, an alternating current (AC) voltage is applied in radio frequency 

(RF) sputtering and an impedance matching network is required between the power supply and 

the discharged chamber [75].  

We prepared SLG/Mo/8×(Zn/SnS2/CuS) stacks using a hybrid evaporation/sputtering 

system. Thermal evaporation was used for deposition of Zn because of the availability of this 

system in our lab and also because evaporating elemental Zn has been found to be more 
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reproducible than sputtering while RF sputtering of SnS2 and CuS was reproducible. In this 

process, Zn pellets with purity of N5 were thermally evaporated while SnS2 and CuS were 

sputtered successively using RF magnetron sputtering of the compound targets. The purity of 

SnS2 and CuS targets was N4. This process was repeated in eight periods to prepare multi-

stacked layers of precursors. The deposition times were set to deposit 180 nm of Zn, 320 nm of 

SnS2 and 660 nm of CuS, confirmed by step profilometry. The base pressure of the deposition 

chamber was about 10-5 mbar before the deposition using a diffusion pump backed by a rotary 

pump. The deposition was done in an Ar atmosphere at a working pressure of 4.0×10-3 mbar.  

2.3 Deposition of Sn/Zn/Cu precursors 

In electron beam evaporation technique (also known as e-beam) a beam of electrons scan 

the surface of the source material and evaporate or sublimate it from the surface. By applying a 

very high voltage (10 kV) to a filament an electron beam will create. This beam is magnetically 

directed into the crucible where the source material is placed. The crucible is water cooled in 

order to avoid the diffusion of impurities from the crucible. Usually, we use graphite crucible 

for Sn, Zn, and Cu. Sn, Zn, and Cu were deposited sequentially on Mo-coated SLG substrates 

by e-beam evaporation in a Pfeiffer PLS 580A tool. The tool was a multiple crucible rotary e-

Guns so deposition of multilayer stacks of different materials in one deposition run was possible. 

Before starting the deposition a base pressure of about 10-5 mbar was achieved after 1-hour 

pumping using a turbo-pump. Sn/Zn/Cu stack precursors were deposited in 1 deposition run 

without breaking the vacuum by 10 kV accelerating voltage and the deposition rate was 1 nm/s 

for Sn and Cu and 0.7 nm/s for Zn. The electron beam was swept on the surface of the target in 

a triangular pattern during the deposition to heat the material more evenly. The thickness of the 

coated film was controlled by a quartz crystal. Samples were rotated during the deposition for 

improving the homogeneity of the films. In each e-beam evaporation, we could deposit 18 

samples.  
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2.4 Selenization in rapid thermal processing system 

Pure selenide CZTSe absorber layers were prepared by selenization of 

SLG/Mo/Sn/Zn/Cu precursors in a rapid thermal processor (RTP) using an AnnealSYS AS-One 

150 tool. The schematic of RTP system is depicted in Figure 2-1. Figure 2-2 (left) shows our 

RTP chamber when it is in the open position. The system was attached to N2, H2, H2Se and H2S 

lines and an XDS5 dry scroll pump to avoid oil contamination in the chamber. It was possible 

to perform the annealing under vacuum or up to 1 atm in the presence of an N2 background. The 

heating was performed from the top with halogen lamps. A thermocouple inserted to the graphite 

susceptor to control the temperature. The standard selenization process includes annealing the 

SLG/Mo/Sn/Zn/Cu precursors using 10 % H2Se gas diluted in N2 for 15 min at 460 °C with 1 

°C/s heating rate, as this selenization receipt is shown in Figure 2-2 (right). 

Figure 2-1 Scheme of selenization chamber 
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2.5 Solar cell processing  

The as-deposited absorber layers were subjected to a standard KCN treatment in which 

samples were dipped in a 5 wt % KCN solution in H2O for 2 min, followed by rinsing the 

samples in deionized water and drying with an N2 gun. KCN etching is beneficial for improving 

the performance of the CZTSe solar cells performance because it removes secondary phases 

such as CuxSe, SnSe, Se and oxides such as SnO as shown in [70]. The CdS was deposited as 

an n-layer by chemical bath deposition at 65 ºC using Cd(CH₃CO₂)₂ and SC(NH2)2 in the 

aqueous NH3 medium for 7 minutes. Solar cells were then completed by successive RF 

magnetron sputtering of intrinsic ZnO (~ 50 nm ) and Al-doped ZnO ( ~ 300-400 nm ) and 

finally e-beam evaporation of a Ni (50 nm)/Al (1µm)/Ni (50 nm) finger contact pattern through 

a shadow mask. Solar cells with 0.5 cm2 area were laterally isolated by needle scribing of the 

devices. Figure 2-3 shows the picture of one of our devices including 32 solar cells. 

Figure 2-2 RTP chamber in its open position (left) selenization recipe (right). 
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2.6 Characterization techniques 

2.6.1 Current density-voltage measurement 

Current density-voltage measurement (J-V) under standard illumination condition, 100 

mW/cm2 AM1.5 spectrum at 25 ºC is one of the most important methods for characterizing the 

solar cells. Open circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF) and 

solar cell efficiency (η) can be determined directly from the illuminated J-V curve, as shown in 

Figure 2-4. JSC is the current density when voltage is zero. VOC is the voltage when current is 

zero. FF is the ratio of the product of voltage and current density at the maximum power obtained 

from the solar cell (Vmp and Jmp) to the product of VOC and JSC. Efficiency is defined as the 

fraction of the incident power that is converted to the electricity: 

η =
Pout

Pin
=

Vof×Isc×FF

Pin
      Equation 2-1 

Where ISC is the short circuit current. η is measured under standard illumination 

condition 100 mW/cm2 AM1.5 spectrum, thus the input power for our typical solar cells with 

0.5 cm2 area is 50 mW. 

Figure 2-3 One of the devices fabricated in this study including 32 solar cells. 
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The J-V curve of an ideal solar cell can be obtained by superposition of the J-V curve of 

solar cell diode in dark plus the photo-generated current (JL): 

J (V) = J0 [exp (
qV

kT
) − 1] − JL      Equation 2-2 

Where J0 is the dark saturation current. In a thin film solar cell, the effect of parasitic 

losses has to be considered, therefore for a real solar cell: 

J (V) = J0 [exp (
q(V−RsJ)

AkT
) − 1] +

V−RsJ

Rsh
− JL    Equation 2-3 

Where Rs is series resistance, Rsh is shunt resistance and A is ideality factor. The Rs, Rsh, 

A and J0 can be determined from illuminated and dark J-V curves using a procedure explained 

by Hegedus and Shafarman [77]. This procedure is illustrated in Figure 2.5 and is explained in 

the following steps. The illuminated and dark J–V characteristics were measured using an 

AM1.5 g Oriel solar simulator system and a MATLAB code was used for the J-V analysis. 

Figure 2-4 Current density (black line) and power (red line) versus voltage for a typical CZTSe 

solar cell. The short-circuit current density (Jsc), open-circuit voltage (Voc) points and the maximum 

power point (Vmp, Imp) are marked in the curve. 
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(a) A linear plot of illuminated and dark J–V curve with sufficient data. Usually, for 

CZTSe solar cells we measure J-V curves from -1.0 to 1.0 V.  

(b) A plot of derivative of J with respect to V (dJ/dV) near Jsc and in reverse bias 

determines the shunt conductance, G = 1/Rsh. Shunt resistance can be obtained as the reverse of 

shunt conductance from illuminated and dark J-V curves as shown in Figure 2.5b. 

(c) A plot of dV/dJ versus (J+Jsc)
-1, will yield a straight line with intercept Rs assuming 

that photogenerated current JL is voltage independent and JL = Jsc. A linear fit to this curve gives 

an intercept of Rs and a slope AkT/q from which A can be calculated.  

(d) A semilogarithmic plot of J-V after corrections for Rsh and Rs. Applying a linear fit 

to the corrected J-V plot, the intercept gives J0 and the slope is q/AkT. This value of A agrees 

with the value obtained in step 3 for well-behaved solar cells. 

Figure 2-5 Hegedus and Shafarman procedure to obtain diode parameters from the J-V curve, (a) dark 

and illuminated J-V, (b) shunt resistance obtained by dV/dJ in the range of (-0.1,0) V, (c) series 

resistance obtained in the range of (0.9,1.0) V and ideality factor (A) and J0 obtained by a log plot of 

corrected J-V. 
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2.6.2 Capacitance-Voltage (C-V) measurement 

Capacitance-voltage (C-V) measurements were performed to obtain the doping 

concentration and the depletion width of CZTSe solar cells. The C-V was measured at room 

temperature using an Agilent 4980A LCR-meter as a function of frequency varying from 10 

kHz to 100 kHz and bias voltage from −2 V to 0.5 V, while AC voltage was 30 mV.  

In CZTSe solar cells the measured capacitance is attributed to the p-n+ junction formed 

between CZTSe absorber layer (p-type) and CdS buffer layer (n-type). The Mott-Schottky 

model was used for approximating the doping density of the absorber layer:  

1

C2
=

2(Vbi−V)

A2qεN
       Equation 2-4 

Where C is the measured capacitance, A is the area, q is the electron charge, ε the 

dielectric permittivity of CZTSe, N is the doping concentration of CZTSe, V is the applied dc 

bias and Vbi is the built-in voltage. Thus by fitting a linear line to the plot of 1/C2 as a function 

of V (known as Mott-Schottky plot), one can derive the doping density (N). 

 Depletion region width (W) can be calculated as: 

W = √
2ɛ(Vbi−V)

qN
       Equation 2-5 

Since W varies by the bias voltage, a plot of N versus W(V) gives the doping density 

profile across some portion of the absorber layer. In thin film solar cells N gives the shallow 

carrier density |Na-Nd| (Na is the doping density of acceptors and Nd is the doping density of 

donors) plus the charge emitted from or captured at deep states that can respond in the ac period 

[77,78]. 



32 

 

 

 

2.6.3 External quantum efficiency measurement 

External quantum efficiency (EQE) measurement is a useful technique to quantify the 

spectral response of a solar cell and identify the origins of Jsc losses. The EQE is defined as the 

ratio of the number of carriers collected by the solar cell to the number of incident photons at 

each wavelength. EQE system measures the spectral response of the solar cell by focusing the 

light into a small spot of the solar cell and measuring the generated current as a function of 

wavelength. One can derive the Jsc from EQE measurement using this equation:  

 Jsc = q ∫ φ(λ)AM1.5. EQE(λ)dλ
λ2

λ1
     Equation 2-6 

Where q is the charge of electron and φ(λ)AM1.5 is the photon flux. λ1 and λ2 are the 

lowest and largest wavelengths of the measurement range (for CZTSe solar cells a range of 300-

1500 nm is appropriate). We measured the EQE of our solar cells at room temperature using a 

laboratory-built system with a grating monochromator-based dual-beam setup under chopped 

light from a Xe lamp. 

2.6.4 Time-resolved photoluminescence (TR-PL) measurement 

In time-resolved photoluminescence technique, a pulsed laser illuminates the sample and 

excites electrons from the valence band to the conduction band. These generated carriers 

recombine back to the equilibrium state and the resulting photoluminescence (PL) intensity is 

measured as a function of time. The radiative recombination rate depends linearly on the number 

of minority carriers. In p-type material p0>>n0 and:  

Rrad = B[p0(𝐫) + p(𝐫, t)]n(𝐫, t)     Equation 2-7 

Where B is the radiative recombination constant, p0 is the concentration of holes and p 

and n are the excess hole and electron concentrations. r and t represent space and time, 

respectively. In low injection conditions, p << p0, and according to the Equation 2-7 the rate of 

radiative recombination is linearly proportional to the number of minority carriers. In high 
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injection condition, p >> p0, and PL signal is proportional to p2 and even though the situation is 

more complicated but still the excess carrier concentration can be tracked by the decay of the 

PL signal. The PL decay tracks minority carrier recombination, even if it is mainly due to non-

radiative processes such as Shockley-Read-Hall (SRH) or Auger recombination [79]. Figure 2-6 

shows a TR-PL measurement of a CZTSe solar cell. Usually, this PL decay signal consists of 

two different exponential decays. First, the signal decays at a fast rate which is interpreted as 

the separation of charges due to the built-in field of the device. Then the signal decays at a 

slower rate which is considered as the minority carrier lifetime in the bulk of the absorber layer 

due to the different radiative and non-radiative recombination channels [80].  

In this work, low injection TR-PL measurements were acquired at room temperature by 

a Hamamatsu C12132. C12132 is a near infrared compact fluorescence lifetime spectrometer 

that contains a YAG LASER for excitation light, variable neutral density (ND) filter for 

adjusting excitation light level, iris (aperture) and ND filter for adjusting emission light level, 

filter for cutting excitation light, automatic monochromator and two types of PMT 

(photomultiplier tube) detectors (VIS and NIR). Using this system, an area of 3 mm diameter of 

samples was illuminated by a 532 nm laser with 15 kHz repetition rate, 1.3 ns pulse width, and 

1.0 mW average power. 

 

Figure 2-6 TR-PL measurement of a CZTSe solar cell. 
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2.6.5 Photoluminescence measurement 

Photoluminescence (PL) measurements were performed with Hamamatsu C12132. The 

PL spectrum of kesterite solar cells is usually an asymmetric broadband spectra and the PL peak 

position is often at lower energies, as compared to the band gap of kesterite semiconductors. 

The observed broad PL peak with this redshift as compared to the band gap and its dependence 

on the excitation power and temperature indicate the existence of potential fluctuation and tail 

states in bands [81,82]. 

2.6.6 Transmission electron microscopy (TEM) 

High angle annular dark field scanning transmission electron microscopy (HAADF-

STEM) images and energy dispersive X-ray (EDX) maps were acquired using an FEI Osiris 

microscope and Titan3 microscope equipped with a Super-X detector and operated at 200 kV. 

The specimens for TEM were prepared using the focused ion beam (FIB) technique, on a Be 

support. EDX maps were generated from the intensity of the Mo-K, Se-K, Cu-K, Cd-L, Zn-K, 

Sn-L, S-K, Ti-K, O-K, C-K lines.  

2.6.7 X-Ray diffraction technique 

X-ray diffraction (XRD) is a useful technique to characterize the crystal structure of 

materials and identify the phases present in the films. Identifying secondary phases ZnS(Se) and 

Cu2Sn(S(Se))3 with XRD is very difficult as they have very similar XRD pattern to CZTS(Se). 

A complementary technique such as Raman spectroscopy is required to distinguish these phases 

[6]. However it is possible to identify CZTSSe, Sn(S,Se), Sn(S,Se)2 and Cu2-x(S,Se) using XRD. 

Using Scherrer’s equation, one can also estimate the crystallite size:  

D =
Kλ

Bcos(θ)
         Equation 2-8 

Where D is the crystallite size, K is a dimensionless factor around 0.9, λ is the X-ray wavelength, 

B is the full width at half maximum (FWHM) and θ is the Bragg angle.  
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2.6.8 Glow discharge optical emission spectroscopy (GDOES) 

In Glow discharge optical emission spectroscopy (GDOES), the sample is bombarded 

by the glow discharge Ar plasma source and an optical spectrometer is used as the real-time 

detection to determine the elemental depth profiles as a function of the thickness. The sputtering 

process is very fast and the sputtering rate is of the order of µm/min. 

Here, compositional depth profiles of elements are recorded by GDOES using a Horiba 

Scientific GD-Profiler 2 operated in RF-mode at powers of 26 W and argon pressures of 5 mbar. 

The measurement spot has a diameter of 4 mm and a depth-resolution within the absorber of 

about 60 nm is achieved.  

2.6.9 Raman spectroscopy 

Raman spectroscopy relies on inelastic scattering where a laser beam interacts with 

molecular vibrations (phonons). This interaction leads to a shift of laser photon energy that is 

unique for different molecules and can be used for identification of the materials. The frequency 

difference between the scattered light and the incident light is called Raman shift that is usually 

in the unit of wavenumber (cm-1). A Raman spectrum is a plot of the intensity of the scattered 

light as a function of Raman shift. Raman spectroscopy is very useful characterization technique 

for identifying CZTSSe and other secondary phases that may form during the fabrication process 

such as Cu2SnS(Se)3, SnS(Se)/SnS(Se)2 ,ZnS(Se) [11]. Using Raman spectroscopy it is possible 

to estimate the amount of x=[S]/[Se]+[S] ratio in the CZTSSe compound. A1 vibration mode of 

CZTSSe is related to the vibration of anions while the cations are fixed. This A1 vibration mode 

is at ~ 338 cm-1 for pure sulfide CZTS and around 196 cm-1 for pure selenide CZTSe. For the 

intermediate values of x the Raman spectrum shows a bimodal behavior in which the A1 peak 

of CZTSe shifts to higher values and the A1 peak of CZTS shifts to lower values [83,84], as 

shown in Figure 2-7 [84].  
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2.7  Reflection and transmission measurement 

To estimate the band gap of the kesterite absorber layers, we prepared absorbers on glass 

substrates and the reflection and transmission spectra of these samples were measured using a 

Shimadzu UV3600 spectrophotometer equipped with an integrating sphere. The absorption 

coefficient, α, is given by: 

α =
−1

d
ln [

−(1−R)2+√(1−R)4+4T2R2

2TR2
]      Equation 2-9 

Where d is the thickness of the film, R is the reflectance, and T is the transmittance spectra. For 

a direct bandgap semiconductor such as kesterite, bandgap can be derived by this equation: 

α ∝ √hυ − Eg        Equation 2-10 

Where h is the Plank’s constant, υ is the frequency, and Eg is the bandgap energy. So one 

can obtain the band gap energy from a linear fit to (α.hν)2 plot versus photon energy hυ (known 

as Tauc’s plot) [6].  

Figure 2-7 Raman spectra of CZTSSe thin films 

with different S/(S+Se) ratio measured with 

532.0 nm excitation wavelength [84]. 
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3 Optimizing the selenization condition of Zn/SnS2/CuS 

precursors 

Recent studies indicate an improvement by incorporation of both S and Se in kesterite 

compound so as to form Cu2ZnSn(Sx,Se1-x)4 alloy, known as CZTSSe [48,85]. The best 

efficiency recorded so far for kesterite solar cell (12.6 %) belongs to a Cu2ZnSn(Sx,Se1-x)4 

(CZTSSe) having a [S]/([S] + [Se]) ratio of about 30% [50]. The variation of sulfur to selenium 

ratio in this compound changes the structural, electrical and optical properties of the film [21]. 

In this study, we investigate the effect of selenization conditions on the structural and 

morphological properties of CZTSSe thin films. CZTSSe thin film is prepared in a two-step 

process, first, the deposition of Zn/SnS2/CuS precursors on the Mo-coated glass using the hybrid 

sputtering-evaporation technique and then annealing in a Se vapor environment. The 

selenization was performed using two different approaches including a tube furnace and a rapid 

thermal processing system. The annealing conditions were varied and their effects on the film 

properties were studied. 

3.1 Experimental details 

3.1.1 Selenization in a tube furnace and a rapid thermal processing system 

Cu2ZnSn(S,Se)4 (CZTSSe) thin films were prepared by selenization of Zn/SnS2/CuS 

precursors. Fabrication of Zn/SnS2/CuS precursors has been already explained in section 2.2. 

The precursors were selenized using two different approaches- one using a conventional Tube 

Furnace (TF) and the other using a Rapid Thermal Processing system (RTP). In the first 

approach, precursors were selenized by placing them inside a graphite box within the TF, along 

with 140 mg of selenium pellets with purity of N5. The pressure inside the graphite box was 

kept constant during the annealing at 600 mbar using N2 gas. The precursors were selenized at 

various temperatures including 350, 400, 450, 480 and 500 ºC for 5 min and then cooled down 

naturally, as shown in Figure 3-1. In the second approach, about 2 µm thick layer of Se was 
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deposited over identical precursor stacks after which they were annealed in RTP furnace using 

N2 + 5 % H2 gas at a pressure of 1 atm. The heating rate and annealing time, in this case, were 

fixed at 1 ºC/s and 2 min, respectively. The precursors were annealed at maximum annealing 

temperatures of 400, 450, 500 and 525 ºC. Bearing in mind that in RTP the heating rate was 

higher and the time at maximum temperature was shorter than in the tube furnace, selenization 

at slightly lower temperatures has been chosen in the case of the tube furnace in order to decrease 

the loss of sulfur during the annealing. Still, a good overlap in the temperature ranges of both 

annealing processes has been ensured. The samples are named according to the type of 

selenization method and their maximum temperature. For example, sample selenized using TF 

at 500 ºC was named as Se-TF-500 and that using RTP at 500 ºC was named as Se-RTP-500. 

3.2 Morphological and chemical characterizations 

The morphology and the composition of the films were investigated by scanning electron 

microscopy (SEM) and energy dispersive spectrometry (EDS), using an SU-70 Hitachi 

combined with a Rontec EDS system, and the acceleration voltages of 4 kV and 25 kV were 

used for cross-sectional SEM and EDS, respectively. The cross-sectional SEM images of 

CZTSSe films selenized using the tube furnace are shown in Figure 3-2 (a) to (d). The multilayer 

structure of Se-TF-350 is related to the initial precursor stack, indicating that a selenization 

temperature of 350 ºC is not enough for the full conversion of the precursors to CZTSSe. It could 

Figure 3-1 Temperature profile of 

selenization at different temperatures in TF. 
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be observed that the grain size increased as the selenization temperature is increased. At 500 ºC 

the grain size is about 1 µm and the film morphology has improved compared to that at lower 

temperatures. Figure 3-2 (e) to (f) corresponds to the cross-sectional SEM images of the samples 

selenized in RTP furnace at different temperatures. Similar to that observed in SEM images of 

the TF annealed samples, in the case of RTP annealed samples also, a critical annealing 

temperature (450 ºC) is observed, below which the precursor stack does not inter-diffuse 

completely to form a compact film of CZTSSe.  

Figure 3-4 (a) and (b) show the top view SEM images of the sample selenized at 400 ºC 

in TF at different magnifications. Figure 3-3 (a) and (b) show the top view SEM images of the 

samples selenized at 400 and 450 ºC in RTP, respectively. The surface of the samples selenized 

at 400 ºC in TF and RTP consist of crystal-like formations with well-defined facets. These 

structures are copper selenide phases and were confirmed by Raman and XRD measurements 

which will be presented in the next section. By increasing the temperature to 450 ºC, these well-

defined crystalline structures become globular like formations. 

The composition of the samples was measured by EDS and the results are given in Table 

3-1. The EDS measurements revealed that the TF and RTP annealed samples were copper and 

zinc rich. This is evident from the presence of copper selenide crystals over the sample surface.  
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Figure 3-2 Cross-sectional SEM images of samples selenized in a tube furnace (TF) and a 

rapid thermal processor (RTP) at various temperatures:  (a) Se-TF-350, (b) Se-TF-450, (c) 

Se-TF-480, (d) Se-TF-500, (e) Se-RTP-400, (f) Se- RTP-450, (g) Se- RTP-500 and (h) Se- 

RTP-525. 
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Figure 3-4 (a) and (b) Top view SEM images of Se-TF-400. 

3 µm 100 µm 

10 µm 10 µm 

Figure 3-3 Top view SEM images of (a) Se-RTP-400 and (b) Se-RTP-450. 
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3.3 Structural and optical characterization 

X-ray diffraction patterns were acquired using a XPert MPD Philips diffractometer in 

the Bragg–Brentano configuration (θ–2θ), using the Cu-Kα line (λ = 1.5406 Å), with the 

generator settings, 40 mA, and 45 kV. Figure 3-5 (a) shows XRD pattern of the TF annealed 

films under different selenization temperatures. The films annealed at 450 ºC and above, show 

strong peaks corresponding to (112), (220), (204), (312) and (116) planes of tetragonal CZTSe, 

according to the International Center for Diffraction Data (ICDD), (Reference code: 04-010-

6295). These results suggest that at temperatures above 450 ºC all the sulfur contained in the 

precursor is replaced by the selenium supplied by the atmosphere during the annealing. For the 

films annealed at temperatures below 450 ºC, there is a shift to higher diffraction angles. 

Considering the amount of peak shift with respect to that of pure CZTSe (27.16o for (112) peak), 

the [S]/([S] + [Se]) ratio estimated using the empirical relation developed by Salome et al. [12], 

was 10 % and 78 %, respectively for samples Se-TF-400 and Se-TF-350. The existence of CuSe 

Table 3-1 Metal composition of the samples at various temperatures. 

Sample [Cu]/[Zn] [Cu]/[Sn] [Zn]/[Sn] [Cu]/([Zn]+[Sn]) 

Se-TF-350 2.66 2.31 0.87 1.24 

Se-TF-400 2.03 1.9 0.93 0.98 

Se-TF-450 1.34 2.02 1.51 0.81 

Se-TF-480 2.04 3.5 1.71 1.29 

Se-TF-500 2.27 3.23 1.42 1.33 

Se-RTP-400 1.95 3.56 1.82 1.26 

Se-RTP-450 1.95 2.99 1.53 1.18 

Se-RTP-500 1.76 2.77 1.57 1.08 

Se-RTP-525 1.77 2.72 1.53 1.07 
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(Ref code: 01-086-1239 and 00-034-0171) is also indicated by XRD. XRD patterns of the RTP 

annealed samples are given in Figure 3-5 (b). In case of RTP annealed samples also, estimation 

of Se incorporation was done by identifying the amount of shift in diffraction peak (112) in the 

XRD pattern. For the Se-RTP-400, this peak is at 27.87o which is at a considerably higher 

(lower) position than that of pure CZTSe (CZTS) (2θ=27.16o; ICDD card no. 04-010-6295 for 

CZTSe and 2θ=28.44o; ICDD card no.01-080-8225 for CZTS). This is clearly an indication of 

the formation of CZTSSe. With the increase in selenization temperature, the peak slowly shifts 

to lower values suggesting that more and more Se is being incorporated. The estimated ratio of 

[S]/([S] + [Se]) is given in Table 3-2. In addition to the main peaks, peaks corresponding to 

the secondary phases are also observed in the diffraction pattern. For Se-RTP-400 a secondary 

peak could be seen at a diffraction angle of 31.45o. This could be due to either CuSe (2θ=31.11o; 

ICDD card no.01-086-1239) or due to SnS (2θ=31.52o; ICDD card no. 04-004-3833); or may 

be due to both. The presence of CuSe is evident from the cross-sectional SEM images whereas 

that of SnS may be justified from the fact that the layers of precursors are not completely inter-

diffused at this temperature and that SnS2 might have decomposed to SnS. The variation of (112) 

peak position and crystallite size with annealing temperature for TF and RTP annealed samples 

Figure 3-5 XRD patterns of samples selenized (a) using a tube furnace (TF), and (b) a rapid 

thermal processor (RTP), at various temperatures. 
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is given in Table 3-2. The crystallite size was evaluated from the XRD data using the Scherrer 

formula. The [S]/([S] + [Se]) ratio estimated from the XRD analysis indicate that in both 

methods increasing the temperature will increase the incorporation of selenium and the loss of 

sulfur. The results also show that at the same temperatures, there is a higher amount of sulfur in 

RTP annealed samples compared to the TF annealed ones, due to the shorter annealing time in 

RTP that decreases the loss of sulfur during the annealing. The shorter annealing time is possible 

and chosen in RTP to ensure higher sulfur contents at higher temperatures than those observed 

in the tube furnace in which short annealing times are difficult to achieve due to the thermal 

inertia of the system.  

 

Figure 3-6 (a) shows the Raman spectra of TF annealed samples. Raman spectra of the 

samples annealed at 450 ºC and higher temperatures have characteristic peaks at 173, 196, 235 

cm-1 indicating the formation of pure CZTSe [10]. The samples annealed at lower temperatures 

shows a bimodal behavior in the Raman spectrum with peaks corresponding to A1 vibrational 

modes of CZTSe and CZTS. However, the A1 mode vibrations of CZTSe are shifted to higher 

Table 3-2 (112) peak position, Full Width at Half Maximum (FWHM) and crystallite size of samples 

selenized in a tube furnace (TF) and a rapid thermal processor (RTP) at various temperatures. 

Sample  
(112) peak position 

(degree) 

FWHM 

(degree) 

Crystallite size 

(nm) 

[S]/[S]+[Se] 

(%) 

Se-TF-350 28.16 0.38 21.5    78 

Se-TF-400 27.30 0.30 27.2 10 

Se-TF-450 27.17 0.15 54.5 < 1 

Se-TF-480 27.17 0.14 58.4 < 1 

Se-TF-500 27.17 0.14 58.4 < 1 

Se-RTP-400 27.87 0.28 29.6 55 

Se-RTP-450 27.68 0.25 33.1 41 

Se-RTP-500 27.28 0.20 41.3 9 

Se-RTP-525 27.25 0.18 45.9 7 
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wavenumbers whereas that of CZTS is shifted to lower wavenumbers. This clearly is an 

indication of the formation of a CZTSSe phase in which S atoms are partially replaced by Se. 

The intense peak in case of Se-TF-350 is at 333 cm-1 indicating the presence of CZTSSe, the 

other peak at 235 cm-1 may be related to CZTSe. Se-TF-400 has a small peak at 328 cm-1 that 

indicates the presence of CZTSSe, it also has an intense peak at 196 cm-1 corresponding to 

CZTSe and a shoulder at 202 cm-1 that may correspond to a CZTSSe phase. The peaks in the 

range 260-267 cm-1 in the spectra belong to CuSe phase. Raman spectra of RTP annealed films 

at 400 and 450 ºC, as shown in Figure 3-6 (a), consist of two broad peaks centered at 215 and 

330.5 cm-1. However, it may be noted that the peak at 215 cm-1 is actually composed of two 

peaks one centered around 211cm-1 and the other at around 220.5 cm-1. The peak at 211 cm-1 

appears only as a shoulder to the peak at 220.5 cm-1 in Se-RTP-400. On increasing the annealing 

temperature to 450 ºC, the intensity of this peak increases, indicating its association with 

CZTSSe, since more sulfur is being replaced by selenium with an increase in temperature. The 

peak at 330.5 cm-1 is also attributed to CZTSSe. At higher temperatures, this peak is almost 

completely suppressed and the spectra consist of only three peaks at 174, 197 and 234.5 cm-1 

characteristic of CZTSe.  

Figure 3-6 Raman spectra of samples selenized (a) using a tube furnace (TF), and (b) a rapid thermal 

processor (RTP) at various temperatures. 
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The reflection and transmission spectra of the samples selenized in TF were measured 

for samples prepared on SLG substrates using a Shimadzu UV3600 spectrophotometer equipped 

with an integrating sphere. The absorption coefficient was calculated, according to the 

procedure that was explained in chapter 2. As shown in Figure 3-7 (a) and (b), the absorption 

coefficient of the samples selenized at different temperatures are above 104 cm-1 in the visible 

range and the bandgaps are below 0.98 eV, very close to the bandgap of pure CZTSe (1 eV). 

Bandgap measurements are consistent with other characterization techniques that indicate the 

formation of pure selenide compound using TF furnace.  

 

Figure 3-7 (a) Absorption coefficient, α of samples deposited on glass and selenized in a tube furnace 

as a function of energy (E), (b) (αE)2 as a function of energy. 

With a large amount of CuSe secondary phases, we didn’t consider to make solar cells 

from the absorber layers prepared by selenization of binary sulfide precursors. This large 

amount of CuSe can short circuit the solar cells as they have a small band gap. Thus in order to 

make solar cells, further optimization of the composition was necessary to reduce the formation 

of CuSe. Unfortunately, we couldn’t continue this study due to the unavailability of the sulfide 

targets. Sulfide targets were more expensive than the metallic targets and they had a short 

lifespan, so we decided to abandon using the sulfide targets in our lab. The next studies of this 

thesis were performed in the imec-PV lab. The PV group in imec used a similar two-step vacuum 

based techniques to prepare kesterite solar cells. CZTSe films were prepared by selenization of 
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e-beam evaporated metallic precursors using 10 % H2Se gas in N2 environment. The details of 

the fabrication and characterization techniques were explained in chapter 2 and in the following 

chapters the different approaches for improving the CZTSe absorber layer and CZTSe based 

solar cell will be explained. 

3.4 Conclusions 

The effect of selenization temperature on the structural and morphological properties of 

CZTSSe thin films obtained through the selenization of multi-stacked precursors using a 

conventional tube furnace (TF) and a rapid thermal processing system (RTP) was studied. From 

the cross-sectional SEM analysis, it was observed that at temperatures lower than 450 ºC, 

irrespective of the selenization method, the precursor stack does not interdiffuse completely to 

form a compact layer of CZTSSe. The film formed at these temperatures consists of a sulfur-

rich CZTSSe phase along with secondary phases of CuSe and SnS. At 450 ºC, sulfur in the 

precursors is almost completely replaced by selenium in the conventional tube furnace whereas 

in RTP a much higher percentage of sulfur is observed due to the shorter annealing time that 

decreases the loss of sulfur. Above 450 ºC, RTP selenization also resulted in Se-rich films. 

However, the results suggest that RTP selenization method could have an advantage over the 

conventional tube furnace in obtaining CZTSSe films at much shorter annealing time. This study 

also indicates that it’s not easy to control the amount of sulfur in CZTSSe only by incorporating 

sulfur in the precursors. To prepare high quality CZTSSe films an annealing at sulfur and 

selenium vapor is required.  
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4 Effect of absorber thickness on the performance of CZTSe 

solar cells 

Absorber layer thickness is one of the most important physical factors affecting the kesterite 

solar cells performance. However, despite many studies about the influence of other parameters 

such as composition, morphology, etc., on kesterite solar cells there aren’t many studies about 

the impact of kesterite absorber layer thickness. Ren et.al studied the effect of variation of 

absorber layer thickness for pure sulfide Cu2ZnSnS4 (CZTS) kesterite solar cells [86]. They 

prepared absorber layers by a two-step process including deposition of Cu/Zn/Sn/S precursors 

using an H2S gas reactive sputtering system, followed by sulfurization of the precursors in a 

tube furnace at 560 ºC for 10 min in Ar atmosphere. Solar cells with different absorber layer 

thickness in the range of 500-2000 nm were prepared by changing the sputtering time of the 

precursors between 20–80 min. The solar cells with different thickness had efficiencies in the 

range of 3.0 % to 6.8 % and the best efficiency belongs to a solar cell in which the thickness of 

the absorber layer was 1500 nm. Their study indicated that JSC, VOC and consequently the 

efficiency of (CZTS) solar cells improve strongly by increasing the thickness while the 

improvement saturated at 1500 nm. In this study, we fabricated pure selenide Cu2ZnSnSe4 

(CZTSe) films by selenization of e-beam evaporated Sn/Zn/Cu precursors. We changed the 

thickness of absorber layers by changing the thickness of Sn/Zn/Cu precursors. The effect of 

variation of the thickness of the absorber layers on the physical, optical and electrical properties 

of the solar cells is investigated. To the best of our knowledge, this is the first study that 

investigates the effect of CZTSe absorber layer thickness on the optoelectronic properties of 

selenide kesterite solar cells.  

4.1 Fabrication of solar cells with different absorber layer thicknesses 

In order to fabricate absorber layers with different thicknesses, we changed the thickness 

of Sn/Zn/Cu precursors systematically. Metallic layers with different thickness (See Table.1) 

were deposited using an e-beam evaporation system, as explained in section 2.3. The metallic 
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ratios of precursors were kept constant in order to control the composition. In the second step, 

the Sn/Zn/Cu stacks were selenized by 10 % H2Se gas diluted in N2 for 15 min at 460 °C in a 

rapid thermal processing system with 1 ºC/s heating rate. Absorber layers with thicknesses of ~ 

300, 700, 1000, 1200 and 1700 nm were fabricated. The thickness of the absorber layers was 

measured by cross-sectional SEM images. Solar cell devices with different absorber layer 

thicknesses were prepared and in the following, the best results that have been achieved for 

these solar cells are discussed.  

4.2 Morphological and chemical characterization  

Top-view SEM images of CZTSe absorber layers with thicknesses of 300, 700, 1200 

and 1700 nm are shown in Figure 4-1(a) to (d), respectively. Cross-sectional SEM images of 

devices with 700, 1000, 1200 and 1700 nm thickness are shown in Figure 4-2 (a) to (d), 

respectively. SEM images reveal by increasing the thickness, the morphology of the absorbers 

improves, the grain size increases and less voids and pinholes can be observed in the films. 

 

Figure 4-1 Top view SEM images of absorber layers: (a) to (d) 

absorbers with 300, 700, 1200, 1700 nm thickness. 
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The composition of the samples was measured by EDS and the results are given in Table 4-1. 

Although the metallic ratios were kept constant in order to control the composition and X-ray 

fluorescence measurement of initial precursors confirmed the expected thicknesses for all 

samples, the Cu/Sn decreases constantly by decreasing the thickness. The reason of Sn excess 

composition of the thinner samples is not quite clear, however, the faster interdiffusion of the 

three metal layers and consequently reduced the formation of volatile SnSe2 might be the reason 

for the larger amount of Sn in the thinner samples as compared to the thicker samples. Moreover, 

the thinnest absorber layer has a very Zn-poor composition despite the same metallic ratios of 

the Sn(54)/Zn(26)/Cu(30) precursor compared to the other precursors. It might be possible that 

Zn loss is more severe in this sample that has only a thin layer of Cu (30 nm) covering the Zn 

layer. 

  

1 µm 

700 nm 

Figure 4-2 Cross sectional SEM images of absorber layers; (a) to (d) absorbers with 

700, 1000, 1200, 1700 nm thickness. 

(a) 
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Table 4-1 Metal composition of CZTSe absorbers with different thickness. 

 

4.3 Structural characterizations 

The XRD pattern of absorber layers with different thicknesses, (See Figure 4-3) confirms 

the formation of CZTSe. Peaks corresponding to (112), (220), (204), (312) and (116) planes of 

CZTSe are indicated according to International Center for diffraction Data, (ICDD Reference 

code: 04-010-6295). The intensity of the peaks increases by increasing the thickness due to the 

improvement of the crystalline quality of the samples. Peaks corresponding to CuSe can be seen 

in all samples. Thin samples with 200 nm and 500 nm have peaks corresponding to SnSe as 

expected for Sn-rich composition in these samples, as well as broad peaks at 31.1 o and 56.0 o 

corresponding to MoSe2. (MoSe2: 04-004-8782).  

Thickness (nm) Thickness (nm) 

Cu/Zn Cu/Sn Zn/Sn Cu/(Zn+Sn) 

Sn/Zn/Cu  After Selenization 

54/26/30 300 1.97 1.24 0.63 0.76 

107/53/60 700 1.34 1.38 1.03 0.68 

215/105/120 1000 1.51 1.59 1.06 0.77 

260/126/145 1200 1.49 1.59 1.07 0.77 

310/150/160 1700 1.71 1.74 1.04 0.86 
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4.4 Optical characterizations  

Figure 4-4 shows the room temperature photoluminescence (PL) of the solar cells. The 

position of the PL peak of the solar cells with different thickness is summarized in Table.2. By 

decreasing the thickness, the PL spectra become broader and the PL peak position shifts slightly 

towards lower energies. The PL peak of CZTSe is generally attributed to a donor to acceptor 

recombination in the presence of a large amount of band tail states and potential fluctuations 

[82]. The red shift of the PL spectra by decreasing the thickness might be due to a larger amount 

of band tail states in the thinner samples. The reason of larger tail states in thinner samples is 

Figure 4-3 XRD pattern of the absorber layers with different thickness of 300, 700 and 1700 nm. 

Mo 

In
te

n
si

ty
 (

ar
b

. 
u
n
it

s)
 



54 

 

 

 

not completely clear but it can be due to several reasons such as the Sn-rich composition which 

can lead to the formation of SnCu and SnZn deep defects or the formation of secondary phases 

with different band gaps that produce tail states and fluctuation in bands.  

Figure 4-5 shows the minority carrier lifetime, τ2 of solar cells with different thickness. 

The minority carrier lifetime is derived using a two exponential fit to the photoluminescence 

decay curve. The slower decay time usually is considered as the minority carrier lifetime [80]. 

The minority carrier lifetime of the samples increases by increasing the thickness and it reaches 

8.4 ns when the thickness of absorber layer is 1700 nm. The enhancement of the minority carrier 

lifetime by increasing the thickness is correlated to the lower doping concentration that will be 

discussed in the next session (4.5 Electrical characterization). Also, the Sn-rich composition of 

ultra-thin samples may lead to electron trapping defects such as SnCu, SnZn or other compensated 

Figure 4-4 Room temperature Photoluminescence spectra of solar cells with different thicknesses. 
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defect clusters that increase the recombination and degrade the minority carrier lifetime 

significantly.  

 

4.5 Electrical characterizations 

Figure 4-6 shows the doping density profile of the absorbers with different thicknesses 

obtained by Mott–Schottky plot from the C-V measurement at a frequency of 40 kHz. By 

increasing the thickness, the doping density (Na) decreases substantially, thus the space charged 

region (SCR) becomes wider. The reason for this large variation of doping density with the 

absorber layer thickness is not quite clear but might also be related to the variation of the 

composition mainly the Cu to Sn ratio in the absorbers with different thickness. By increasing 

the thickness, the Cu to Sn ratio increases while the doping density decreases significantly (See 

Figure 4-8 (a)). Another possibility of variation of doping density with thickness might be the 

Figure 4-5 TR-PL spectra of solar cells with different thickness. τ2 is the minority carrier lifetime. 
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influence of the rear interface. By increasing the thickness, the edge of the space charge region 

where we measure the carrier concentration is less affected by the imperfections at the rear 

contact. 

 

Figure 4-6 Doping density profile (Na) of solar cells with different thicknesses derived from Mott–

Schottky plot, W is the space charged region width. 

 

Figure 4-7 shows the illuminated/dark J-V curve (solid/dashed lines) of the champion 

solar cells of each thickness. The corresponding cell parameters are derived from the procedure 

explained by Hegedus and Shafarman [77] and are summarized in Table 4-2. Shunt resistance, 

Rsh is very low when the absorber thickness is ≤ 1000 nm and it improves significantly to 512 

Ω.cm2 for the thickest sample since the CZTSe film becomes more compact. JSC is very low 

when the thickness of the device is ≤1000 nm because of the incomplete collection of the solar 

spectrum. Further improvement of JSC of samples thicker than 1000 nm can be attributed to a 

wider space charged region that facilitates the collection of carriers. Figure 4-8 (c) shows that 
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by increasing the thickness from 1000 nm to 1700 nm the depletion region width increases from 

70 nm to 300 nm and JSC improves up to 36.4 mA/cm2. The significant improvement of VOC by 

increasing the thickness indicates the reduction of recombination currents and it is consistent 

with the enhancement of minority carrier lifetime (See Figure 4-8(b)). It can be observed that 

the first three samples have very low FF below 47 % while devices with 1200 nm and 1700 nm 

have a better behaved illuminated J-V curve in the reverse region and the FF improves to 54 %. 

 

  

Figure 4-7 Current-voltage measurement of solar cells with different absorber 

thickness under dark (dashed line) and 1 sun illumination (solid line). 
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Table 4-2 Electrical and optical parameters of solar cells with different absorber thicknesses ;short circuit current (Jsc), open 

circuit voltage (VOC), fill factor (FF), efficiency (η), shunt resistance (Rsh) and series resistance (Rs) are derived from 

illuminated J-V measurement. PL peak position and lifetime (τ) are derived from TR-PL measurement.

Thickness 

(nm) 
JSC(mA/cm2) 

JSC 

(EQE) 

(mA/cm2) 

VOC    

(mV) 

FF 

(%) 

η 

(%) 

Rsh 

(Ω.cm2) 

Rs 

(Ω.cm2) 

PL 

peak 

(eV) 

τ 

(ns) 

300 2.3 _ 175.0 25 0.1 68 2.07 0.89 0.1 

700 15.2 _ 262.0 34 1.4 31 1.16 0.89 1.4 

1000 26.9 26.60 363.0 47 4.6 98 1 0.93 5.3 

1200 30 34.92 385.0 54 6.2 277 1.26 0.91 6.8 

1700 36.4 39.50 406.0 53 7.8 512 1.35 0.95 8.4 

 

The EQE measurement is shown in Figure 4-8 (d) indicates that by increasing the 

thickness photocurrent collection improves especially at long wavelength region that can be 

mainly due to the longer minority carrier lifetime and wider space charged region.  

In Table 4-3 the values of ideality factor (A) and dark saturation current (J0) of the solar 

cells with different thickness derived from dark (D) and illuminated (I) J-V measurement are 

shown. Also, doping density and the space charged region width derived from C-V 

measurements are summarized in Table 4-3. By decreasing the thickness, the ideality factor 

increases. Large ideality factor above 2 indicates peculiar recombination mechanisms such as 

tunneling enhanced recombination, donor-acceptor pair recombination or fluctuation of 

activation energy of the main recombination path [53]. By increasing the thickness from 700 

nm to 1700 nm, the dark saturation current is decreasing. The decrease of the dark saturation 

current by increasing the thickness indicates the decrease of recombination and it is consistence 

with increasing of VOC and lifetime. 
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Figure 4-8 (a) Cu to Sn ratio and hole concentration (Na), (b) Minority carrier lifetime and VOC, (c) SCR 

and Jsc at various thickness. (d) External quantum efficiency (EQE) of solar cells with different absorber 

layer thickness. 
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Table 4-3  Ideality factor (A), the dark saturation current (J0) are derived from dark (D) and Illuminated 

(I) J-V measurement, doping density and depletion with are derived from C-V measurement. 

Thickness 

(nm) 
A (D)   A (I) 

J0 (D) 

(×10-5) 

J0 (I) 

(×10-5) 

Doping 

Density      

(×1015 cm-3) 

W 

(nm) 

300 2.35 4.26 0.15 3.20 600 70 

700 2.13 2.35 2.00 8.00 330 51 

1000 2.9 2.90 0.70 15.00 70 74 

1200 1.41 2.24 0.05 3.00 8 284 

1700 1.28 1.90 0.01 1.40 2 305 

 

4.6  Conclusion 

In conclusion, increasing the thickness improved the quality of CZTSe absorber layers 

prepared by selenization of e-beam evaporated Sn/Zn/Cu stacks. Thicker metal starting layers 

led to a larger Cu to Sn ratio in the final absorber, possibly because the thinner starting layers 

show faster interdiffusion of the metals and suppressed SnSe2 evaporation. The enhanced 

physical quality of the absorber layers leads to higher performance of solar cells, especially due 

to a, longer minority carrier lifetime and accordingly higher VOC. In addition, it was found that 

the doping of the absorber layer decreased with increasing sample thickness and the wider space 

charge region of the thicker devices lead to the better collection of photogenerated carriers and 

higher JSC. 
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5 Optimization of precursors and selenization step 

In this chapter, we will discuss several parameters of the fabrication process that can affect 

the performance of the baseline CZTSe solar cell. 

5.1 Effect of precursor order on the performance of CZTSe solar cells 

The order of metal elements in the stack precursors may affect the reaction of the elements 

and consequently influence the bulk properties of the CZTSe film. Usually, Cu is deposited as 

the last layer to suppress the decomposition reaction from the surface and decrease the loss of 

SnSe and Zn. In addition, formation of liquid CuSe at the beginning stages of annealing process 

leads to better crystallization and larger grains. Bigger grain size is reported for the stack orders 

in which Sn and Cu layer are beside each other because the formation of ternary Cu2SnS(Se)3 

improves the crystal quality of the CZTSSe [19]. The stack order was already optimized in imec 

PV lab for precursors prepared by DC sputtering of Cu10Sn90, Zn, and Cu and the best results 

were achieved for a Cu10Sn90/Zn/Cu stack order [23]. Here we will investigate the effect of stack 

orders for e-beam evaporated precursors. 

5.1.1 Fabrication of precursors with different stack orders: 

Two set of precursors with different stack orders were deposited on Mo-coated SLG: (I) 

SLG/Mo/Sn(260)/Zn(125)/Cu(135) and (II) SLG/Mo/Zn(125)/Sn(260)/Cu(135). These 

precursors were selenized in RTP annealing system with the standard selenization recipe as 

explained in section 2.4. Figure 5-1 shows the statistics of the efficiencies that has been 

achieved from several samples prepared from these two stacks. Each point in the graph 

represents the best efficiency of one sample including at least 12 solar cells. The scattering of 

the results that can be observed for both types of stacks shows the irreproducibility of the 

selenization process, as will be explained later. The best efficiency of 6.8 % was achieved for 

the stacks with Sn as the first layer (Type I) and the best efficiency of 6.6 % was achieved for 

the stacks with Zn as the first layer (Type II). It can be concluded statistically that these two 
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types of precursors are quite similar regarding the efficiency of final solar cells. We chose 

Sn/Zn/Cu order as the baseline as there was no remarkable difference between these two types.  

 

5.2 Optimizing the selenization condition 

To optimize the selenization condition, we varied several engineering parameters of the 

standard selenization recipe (See Figure 2-2 (right)) including the selenization temperature 

(440, 450, 460, 470 and 480 ºC), selenization dwell time (10, 15, 20 min) and heating rate (0.5, 

1, 2 and 3 ºC/s). We have observed that the standard selenization recipe (with the bold 

parameters) usually lead to the best results. The main issue of selenization at high temperatures 

(≥ 470 ºC), fast ramping (≥ 2 ºC/s) and long annealing time (≥20 min) was the delamination of 

 

Figure 5-1 Best efficiencies of different samples prepared from 

precursor type (I) and (II) at different selenization runs. 
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the absorber from Mo after KCN treatment. In the next study, we investigate the effect of H2Se 

flow rate during the selenization process.  

 

5.2.1 Effect of H2Se flow rate during the selenization process 

In the baseline selenization recipe, the flow rate of H2Se gas was 200 sccm. In order to 

keep the pressure below the safe pressure of the tool, which is 1 atm, two pumping steps were 

introduced during the 15 min selenization and the selenization chamber was pumped to 20 mbar 

when the pressure inside the chambers reaches to 990 mbar. In addition to the safety issue, 

introducing the pumping steps may have some advantages such as outgassing the residual 

gasses, the possibility to fill the chamber with a high H2Se flow rate. However decreasing the 

pressure can also affect the reaction. It can increase the tendency toward decomposition reaction 

and increase the loss of volatile elements. In order to study the effect of the pumping during the 

selenization, we made 2 more selenization recipes with 150 and 80 sccm. By using 150 sccm 

H2Se flow rate, only one pumping step is required in the middle of selenization and by using 80 

sccm there is no need for pumping during the 15 min selenization. 

Figure 5-2 shows the best efficiencies achieved for solar cells prepared by selenization 

at different flow rates. Each point in this figure represents the best efficiency of one sample 

including at least 12 solar cells. It can be observed that efficiencies from 0 to around 8 % can 

be achieved using all the 3 selenization recipes with 80,150 and 200 sccm. The scattering of the 

results again shows the irreproducibility of our fabrication process, as will be explained in the 

next section. It can be concluded statistically that all these 3 selenization recipes led to quite 

similar results in terms of efficiency and reproducibility. However, this study also suggests that 

there is no need of high flow rate of H2Se and with a lower flow rate as 80 sccm (without a 

pumping step), we can still achieve similar results.  
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5.3 Irreproducibility of CZTSe solar cell fabrication process 

Figure 5-3 shows the efficiency of some of the devices processed each month since July 

2015 to June 2016. There is a big variation in the performance of the solar cells even though 

most of these samples had nominally the same processing recipes. In the following, we will 

discuss some of the possible reasons of irreproducibility in our baseline process.  

Figure 5-2 Best efficiencies achieved for different samples prepared by selenization at 

different flow rates at different selenization runs and different solar cell processing. 
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5.4 Selenization irreproducibility 

One of the main issues of our processing was selenization in the rapid thermal processor 

system. A memory effect observed in selenization process. Figure 5-4 shows the best efficiency 

of solar cells prepared from absorber layers selenized in different days and in different 

selenization runs (Se-1 to Se-5). For example, in day 4, we did 5 selenization and the efficiencies 

of the samples selenized in the 1th, 2nd, 3rd, 4th and 5th run (represented by Se1,Se2, etc. in Figure 

5-4) change from around 0 % to 7 %. It was found that samples selenized in the first selenization 

runs often has lower performance as compared to other samples and sometimes they had below 

1 % efficiencies. Checking the history of these selenizations, we found that usually, this issue 

happens when other groups use the oven for sulfurization of their samples on different substrates 

such as Si wafers. Thus, this problem could be mainly due to a contamination in the chamber 

Figure 5-3 Efficiencies of some of the devices processed in our lab since July 2015 to June 2016. 
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with Si, etc. To reduce the contamination, we used different susceptors for different samples. 

Also, an additional cleaning run was performed before starting a new series of selenizations. 

With those approaches, the reproducibility was improved. As it can be observed, the efficiency 

of the solar cell prepared from the absorber layer selenized in the first runs are higher than 3 %, 

in day 7 to 11 in which a cleaning run was introduced before the selenization. However, still, 

the efficiencies of solar cells prepared from absorbers selenized at different selenization runs 

are different. It may indicate that the irreproducibility of the selenization process exists. Another 

possibility could be the irreproducibility in other processing steps such as CdS and TCO 

deposition. 

 

  

 

  

Figure 5-4 Best efficiencies of solar cells prepared from absorber layers selenized in 

different days (1-10) and in different selenization runs (Se1 to Se5). 
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5.5 Conclusion 

Several processing parameters of our standard two-step fabrication technique of CZTSe 

absorber layers were studied in this chapter. It was observed that there is no significant 

difference between Sn/Zn/Cu and Zn/Sn/Cu precursors concerning the efficiency of final 

CZTSe solar cells. Moreover, the deviation of most of the parameters from standard selenization 

including selenization time, temperature, and ramping rate led to a lower performance of final 

solar cells. The effect of H2Se flow rate was studied systematically. Selenization under three 

different values of flow rate including 200, 150 and 80 sccm in which 2, 1 and 0 pumping steps 

were required during 15 min selenization, was performed. It was observed, all these 3 

selenization recipes can lead to 0 to 8 % efficiency that indicates using different flow rates or in 

other word introducing pumping steps during the selenization doesn’t have a remarkable impact 

on the performance of solar cells. As using a flow rate of 80 sccm during the selenization can 

lead to the same results as using 200 sccm, thus it is more convenient and cost effective to use 

this lower flow rate. Moreover, an irreproducibility or a memory effect was observed in the 

selenization process. This irreproducibility was reduced by introducing additional cleaning steps 

and avoiding the contamination sources.  

 

 

  



68 

 

 

 

  



69 

 

 

 

6 Modification of CZTSe solar cell performance by Mo/MoO3-X 

rear contact 

Molybdenum (Mo) coated glass usually is used as the rear contact in CIGS and kesterite 

solar cells because of several advantages such as moderate reflectivity, good resistance to the 

selenization/sulfurization process and providing beneficial alkali elements such as Na and K for 

kesterite compound. Despite these advantages two main problems are attributed to the Mo rear 

contact in kesterite solar cells: (i) The decomposition reactions due to the instability of the 

Mo/kesterite interface that leads to the formation of secondary phases and voids at the rear 

surface that affect the film growth, and introduces defects into the absorber layer [32]. (ii) The 

existence of a Schottky barrier at the Mo/ kesterite interface decreases the hole transport and 

increases the recombination at the rear interface. Based on the thermal behavior of the series 

resistance (Rs) a barrier height up to 135 meV for CZTSe solar cells [35] and 320 meV for CZTS 

solar cells [87] are reported. In CIGS solar cell it has been shown that formation of a Mo 

chalcogenide layer decreases this Schottky barrier height [88]. However, in kesterite solar cells 

the formation of a too thick Mo chalcogenide layer due to the uncontrolled reaction between Mo 

and kesterite can be detrimental to the solar cell performance [31,51]. The existence of voids 

and secondary phases at Mo/CZTSSe rear surface is reported by several groups and we observed 

it frequently in our baseline samples in cross-sectional SEM and TEM images. Figure 6-1 shows 

HAADF-STEM image and individual elemental maps of one of our baseline samples near the 

Mo rear interface. EDX spectra from the areas outlined in the HAADF-STEM image indicate 

the presence of Mo in region 1, Mo selenide and Cu-selenide in region 2 and 3. In this sample, 

Mo selenide and Cu-selenide layers and voids can be seen at the rear interface. These 

imperfections at the rear surface are detrimental to the performance of solar cells. The pores at 

the rear surface are not good for the adhesion of the film and they can suppress the charge carrier 

transport and decrease the JSC. The decomposition of CZTSSe at the rear interface may introduce 

deep defects such as Se and Sn vacancies that increase the rear recombination rate at the rear 

interface and decrease of the open circuit voltage (VOC). 



70 

 

 

 

To address these issues related to the Mo rear contact, different interfacial layers have been 

introduced between the Mo and absorber layer such as TiN [32,35,51], TiB [34], Ag [37], ZnO 

[36], Al2O3 [55], MoO2 [33], etc. TiN layer was reported as a promising candidate to avoid the 

decomposition reactions [32] and also to improve the band alignment by decreasing the barrier 

height to 15 meV [35]. Ultra-thin ZnO layer was also introduced as an inert layer for avoiding 

the decomposition reactions [36], although it’s an n-type semiconductor and it can alter the band 

alignment. Recently, using thermally evaporated MoO2 layer, large open circuit voltage (VOC) 

around 460 mV was achieved for a CZTSe solar cell [33]. We investigated several interfacial 

layers. By introducing sputtered TiN and ZnO no improvement has been achieved compared to 

Figure 6-1 HAADF-STEM image and individual elemental EDX maps of a standard CZTSe solar cell.  

200 nm 
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our baseline solar cells. Using a solution based NiO interfacial layer (~ 10 nm) led to severe 

degradation of the solar cells mainly due to the diffusion of Ni into the CZTSe layer during the 

selenization process. Here we will report only the result achieved by introducing a MoO3-X 

interfacial layer as it looks very promising. MoO3-X layers were synthesized by an easy, fast and 

reproducible solution based process. Solution processed MoO3-X is an appropriate interfacial 

layer for the rear contact application because it is a wide band gap p-type semiconductor (~ 3.8 

eV) with high work function (~ 6.8 eV [89]) compared to the Mo rear contact that has a work 

function around 4.5 eV. Using a solution-based method has many advantages compared to 

thermally evaporated MoO3-x layer. Besides reproducibility, feasibility, cost-effectiveness and 

industrial viability, solution-based techniques lead to conservation of highest oxidation state 6+ 

for the MoO3-X layer (X→ 0), hence keeping its work function as high as possible. When MoO3-

X material is thermally evaporated - due to heat - some amount of oxygen is lost during the 

processing, which leads to lowering the oxidation state and formation of MoO2 layer. Lower 

oxidation states of MoO3-x leads to a lower work function (MoO2 work function is ~ 5.9 eV 

[89]) compared to high work function of MoO3. The Schottky barrier (ϕb) at the interface of a 

metal/ p-type semiconductor depends on the work function of the metal, the bandgap (Eg) and 

electron affinity (χ) of the semiconductor [52]: 

ϕb =Eg+ χ- ϕm        Equation 6-1 

Figure 6-2 Band diagram at the Mo/CZTSe interface. 
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By using a p-type interfacial layer with high work function the barrier height will decrease 

and disappear if ϕm ≥ ( Eg+ χ) as shown schematically in Figure 6-2.  

According to our previous study, explained in chapter 4, the thickness of the absorber 

layer is an important factor for the performance of CZTSe solar cells. We observed that by 

increasing the thickness of the absorber layer the performance of the solar cells improved 

significantly and part of this improvement was attributed to less recombination at the rear 

interface. By increasing the thickness, the distance between the p-n junction and the rear surface 

increases which lead to less rear interface recombination and enhancement of the minority 

carrier lifetime and VOC [25]. Thus in this study, we aim to introduce an appropriate interfacial 

layer at the rear interface of kesterite solar cell, mainly to improve the band alignment, avoid 

the decomposition reactions and enhance the rear interface quality.  

6.1 Preparation of SLG/Mo/MoO3-X rear contact 

Two types of rear contact were used in this study: (i) conventional Mo-coated Soda Lime 

Glass, SLG/Mo and (ii) Mo-coated SLG with an ultra-thin layer of MoO3-X (thickness ~10 nm), 

SLG/Mo/MoO3-X. Mo-coated SLG substrates were prepared and cleaned as explained in 

section 2.1. MoO3-X was synthesized by spin coating of Ammonium Molybdate on SLG/Mo 

substrate. The speed for spin coater was set to 1000 rpm, with an acceleration of 5000 rpm/s2. 

The substrates were rotated for 30 s and then were annealed on a hot plate at 200 ºC for 10 min. 

More details about the physical characterization of this MoO3-X layer are explained in reference 

[90].   

6.2 CZTSe solar cells with SLG/Mo and SLG/Mo/MoO3-X rear contact  

CZTSe absorber layers were prepared in a two-stage process. First e-beam deposition of 

Sn, Zn and Cu followed by selenization of precursors by 10 % H2Se gas diluted in N2 for 15 

min at 460 °C in a rapid thermal processing system with 1 °C/s heating rate, as explained with 

more details in section 2.4. Here the effect of the MoO3-X interfacial layer for two types of solar 
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cells is investigated: (a) solar cells with thin absorber layers prepared by selenization of Sn(215 

nm)/Zn(100 nm)/Cu(110 nm) stack and (b) solar cells with thick absorber layers prepared by 

selenization of Sn(310 nm)/Zn(150 nm)/Cu(160 nm) stack. The final thickness of the absorber 

layers after the selenization is measured by cross-sectional scanning electron microscopy (SEM) 

to be around 1 µm and 1.7 µm for the thin and thick absorbers, respectively. Solar cells were 

then synthesized after KCN treatment, chemical bath deposition of CdS (~ 50 nm), sputtering 

of intrinsic ZnO (~ 50 nm) and Al-doped ZnO (~ 300-400 nm) and finally evaporation of 

Ni/Al/Ni grids. Solar cells with 0.5 cm2 area were isolated laterally by needle scribing. Solar 

cells in this study were annealed in N2 atmosphere at 200 ºC for 1 hour and all the optical and 

electrical characterizations reported here are performed after the post-annealing step. The 

beneficial impact of this post annealing step was already reported by several groups [91]. 

Samples are named according to their rear contact type: with MoO3-X layer (S) and without 

MoO3-X layer (R). S/R-(i=1,2) samples are made from thin absorber layer while S/R-(i=3,4) are 

made from thick absorber layer.  

6.3 Time Resolved-Photoluminescence (TR-PL) measurements 

 In Figure 6-3(a) and (b) the TR-PL spectra of the solar cells with Mo and Mo/MoO3-X 

rear contacts are compared for thin and thick devices, respectively. Solar cells with MoO3-X 

layer have longer PL decay time compared to the reference samples. Generally, the PL decay 

time is also remarkably longer for thicker devices, thus it can be concluded that both the rear 

surface and the bulk quality of CZTSe solar cells affect the recombination and consequently the 

minority carrier lifetime.  
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Figure 6-3 Room temperature TR-PL spectra of the samples with and without MoO3-X layer (a) thin 

samples and (b) thick samples. Room temperature PL spectra of (c) thin and (d) thick samples. 

 

The photoluminescence spectra of the thin and thick solar cells are also shown in 

Figure 6-3(c) and (d), respectively. It can be observed that the PL peaks of solar cells with 

MoO3-X layer move slightly toward higher energies closer to the band gap of CZTSe (1 eV). The 

PL peak shift is more pronounced in thin solar cells in which the effect of the rear surface is 

more important. It is reported that the PL peak position of kesterite solar cells is lower than their 

bandgap due to the existence of a large amount of tail states and potential fluctuation [63,82]. 

Part of the tail states in kesterite can be attributed to the formation of defects such as Sn and Se 

vacancies due to the decomposition reactions at the rear surface [31]. 
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6.4 Electrical characterizations 

In Figure 6-4 the device parameters of 4 samples (each sample includes at least 12 solar 

cells) with MoO3-X layer (S-i=1-4) are compared with their references (R-i=1-4). (e.g. S-1 is 

prepared under the same condition as its reference R-1). In general, by introducing the MoO3-X 

layer the VOC improved significantly while short circuit current (Jsc) and Fill Factor (FF) did not 

change considerably. Moreover, JSC and FF improved significantly by increasing the thickness, 

mainly due to an enhanced bulk quality of the CZTSe absorber layer - as described in previous 

chapter.  

Figure 6-4 Electrical parameters of the samples made with/without MoO3-X layer (S/R). 

 Each box represents values measured from samples containing at least 12 solar cells. 
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Table 6-1 Electrical parameters of the best solar cells of the samples with different rear contact and 

absorber thickness: short circuit current (Jsc), open circuit voltage (VOC), fill factor (FF), efficiency (η), 

shunt resistance (Rsh), series resistance (Rs) and ideality factor (A). 

 

The AM 1.5 illuminated Current density-Voltage (J-V) curve of the champion solar cells 

with/without the MoO3-X layer of one of the thin samples (S/R-1) and one of the thick samples 

(S/R-4) are illustrated in Figure 6-5 (a) and (b), respectively. The diode parameters of the 

devices are derived by the procedure explained in reference [77], and are summarized in Table 

6-1. Introducing the MoO3-X layer leads to the significant improvement of VOC from 395 to 441 

mV for thin solar cells and from 384 to 413 mV for thick solar cells. Even though solar cell S-

1 has a relatively large VOC of 441 mV, it is suffering from low FF and quite large ideality factor 

(A). Large ideality factor above 2 indicates peculiar recombination mechanisms such as 

tunneling enhanced recombination, donor-acceptor pair recombination or fluctuation of 

activation energy of the main recombination path [53]. 

 

Sample 
 

Rear contact Thickness  VOC  Jsc  FF  η  Rsh  Rs  A  

     (µm) (mV) (mA.cm2) (%) (%) (Ω.cm2) (Ω.cm2) (/) 

R-1  Mo 1 395 23.9 43.2 4.1 113 1.3 3.1 

S-1  Mo/MoO3-X 1 441 24.7 36.8 4 171 1 3.9 

R-4  Mo 1.7 384 32.8 47 5.9 164 2.1 2.6 

S-4  Mo/MoO3-X 1.7 413 32.9 52.3 7.1 311 1.7 2.4 
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The illuminated and dark J-V curves of the best thin solar cells R-1 (without MoO3-X) 

and S-1 (with MoO3-X) were measured at different temperatures, as shown in Figure 6-6 and 

Figure 6-7. 

 

Figure 6-5 (a) Illuminated J-V curve of the champion thin and (b) thick solar cells 

with/without the MoO3-x layer (S/R-1). 
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Figure 6-6  Illuminated 

curve of the best thin solar 

cells with/without MoO3-x 

(R-1/S-1) were measured at 

different temperatures. 

Figure 6-7 Dark J-V 

curve of the best thin solar 

cells with/without MoO3-x 

(R-1/S-1) were measured 

at different temperatures. 
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Thermal behavior of VOC, series resistance, Arrhenius plot of series resistance and 

ideality factor/dark saturation current are illustrated in Figure 6-8 (c), (d), (e), (f), respectively. 

As can be seen in Figure 6-8 (c) and (d) solar cells with and without MoO3-X layer show quite 

similar series resistance (Rs) thermal behavior. By making an Arrhenius plot of Rs [92] the 

barrier height (ϕb) is estimated to be around 30 meV for both solar cells, i.e. with and without 

MoO3-X layer (See Figure 6-8 (d)). Low barrier height of S-1 and R-1 indicates a good band 

alignment between Mo and CZTSe and can be due to the formation of a thin MoSe2 layer, 

(MoSe2 is found in XRD pattern of the CZTSe absorber layers, see Figure 6-9).  

In Figure 6-8 (e) the thermal behavior of VOC of the solar cells S-1 and R-1 are shown. 

The temperature dependence of VOC can be explained by equation 6-2:  

Voc =
EA

q
−

AkT

q
ln (

J00 

JL
)           Equation 6-2 

where EA, A, k, J00, and JL are the activation energy, diode ideality factor, Boltzmann 

constant, reverse saturation current pre-factor, and the photocurrent, respectively [77]. Reverse 

saturation current pre-factor is related to the dark saturation current according to equation 6-3: 

J0 = J00 exp(−
EA

AkT
)      Equation 6-3 

Generally, the activation energy (EA) is correlated to the main recombination path in the 

solar cell. When the bulk recombination is dominant then EA ~ Eg (Eg is the band gap of the 

absorber layer) while in the case of interface recombination (including the rear or front interface) 

EA < Eg [77]. However, other factors such as band gap fluctuation in the absorber layer (that is 

very likely in CZTSe) can also lead to lower activation energy than bandgap [53]. As shown in 

Figure 6-8 (e), a solar cell with MoO3-X has higher EA around 837 meV compared to the 

reference solar cell for which EA is around 770 meV. In Figure 6-8 (f), the dark saturation 

current density (J0) of solar cells with and without MoO3-X layer at various temperatures, derived 

at intermediate voltage. 
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Based on the optical and electrical measurements of this study, the beneficial effects of 

MoO3-X layer is mainly due to the reduction of recombination. Larger VOC of solar cells with 

MoO3-X interfacial layer along with other results including higher activation energy, lower J0 

and longer minority carrier lifetime indicate a reduction of recombination. This might be due to 

the reduction of the decomposition reactions at the rear interface by introducing MoO3-X layer 

and improvement of the rear surface quality. Several studies have already reported the instability 

of Mo during the selenization/sulfurization process that leads to the formation of voids, and 

secondary phases and introduce defects such as Se vacancies [16-25]. Another hypothesis could 

be the role of oxygen in passivation of defects, as in high temperature processing the oxygen 

can be released and fill the different vacancies. 

Figure 6-8 (c) Thermal behavior of series resistance (Rs), (d) Arrhenius plot of Rs, (e) Thermal 

behavior of VOC and (f) dark saturation current (J0) of the best thin solar cells with/without MoO3-x 

layer (S-1/R-1). 
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In order to investigate the impact of the MoO3-X layer on the diffusion of alkali eement 

such as Na, GDOES measurements were performed on solar cells after removing the transparent 

conducting oxide and CdS layers by etching in diluted HCl. In Figure 6-10 (a) and (b) the depth 

profile of different elements including Na in the reference solar cell R-4 (with Mo rear contact) 

and S-4 (with Mo/MoO3-X rear contact) are shown, respectively. The GDOES measurements 

indicate that Na diffusion is even slightly higher in solar cells with MoO3-X layer compared to 

the reference solar cells, thus MoO3-X layer is not a barrier for diffusion of Na. 

  

Figure 6-9 XRD pattern of the thin samples with/without MoO3-X layer. 
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In Figure 6-11 top view SEM images of the corresponding absorber layers after 

removing the top layers are shown. SEM images revealed that the absorber layers especially the 

one prepared on conventional Mo substrate suffer from the existence of too many voids and 

secondary phases mainly ZnSe. The average chemical composition of normal regions (such as 

A) measured with EDS was Zn/Sn ~ 1.1, Cu/(Zn+Sn) ~ 0.8, and Se/(Cu+Zn+Sn) ~ 1.1. While, 

the average composition of the white spots (B) was Zn/Sn ~ 4, Cu/(Zn+Sn) ~ 0.3 and 

Se/(Cu+Zn+Sn) ~ 1.5. The CZTSe layer prepared on Mo/MoO3-X substrate looks more compact 

and uniform with less secondary phases compared to the CZTSe layer on Mo substrate. Better 

morphology can be achieved due to the improvement of rear surface quality and better growth 

condition.  

  

Figure 6-10 (a) GDOES measurements of SLG/Mo/CZTSe and (b) SLG/Mo/MoO3/CZTSe. 

Sputter time = 0 s is the top surface of the CZTSe absorber layer. 
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6.5 Conclusions  

In this study, the effect of rear contact on the performance of two types of CZTSe solar 

cells including solar cells with thin and thick absorber layer was studied. It was shown that by 

introducing an ultra-thin layer of MoO3-X between Mo rear contact and CZTSe absorber layer 

the minority carrier lifetime and VOC improve remarkably. JSC and FF did not change 

considerably by introducing the MoO3-X layer but they improved significantly by increasing the 

absorber layer thickness. The temperature dependent J-V measurement showed that the band 

alignment at the rear interface doesn’t change considerably by adding the MoO3-X layer and the 

activation energy of the main recombination path shifts toward the higher energies. Top view 

SEM images of the absorber layers revealed that samples prepared on MoO3-X layer are more 

uniform and compact. Thus, according to these measurements, the main role of MoO3-X layer 

can be explained as avoiding or reducing the reaction between Mo and CZTSe during the 

selenization process and passivation of defects. The best solar cell in this study was the thick 

one with MoO3-X interfacial layer that showed a 7.1 % conversion efficiency. 

Figure 6-11 Top view SEM images of (left) sample R-4 (SLG/Mo/CZTSe) and (right) 

S-4 (SLG/Mo/MoO3-X/CZTSe). 
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7 Modification of Cu2ZnSnSe4/CdS junction by introducing 

solution processed TiO2 layer  

Kesterite/CdS junction has a crucial impact on the performance of the kesterite solar cells. 

There are two main concerns about this junction: (i ) the importance of band alignments at the 

absorber layer/buffer layer junction [58,59] and (ii) decomposition reactions of kesterite during 

the fabrication process that occur at the top surface [32,39]. According to the theoretical 

calculations by Minemoto et al. [58] the conduction band offset between the CIGS absorber 

layer and buffer layer has a crucial impact on the electrical parameters of CIGS solar cells. 

Based on this study a negative offset, also called cliff like band alignment, in which the 

conduction band of the buffer layer is lower than the one of the absorber layer (see Figure 7-1b) 

decreases the VOC in CIGS/CdS solar cells. This negative offset is a barrier for injected 

electrons under forward bias that leads to accumulation of injected electrons and increasing of 

the recombination. On the other hand, a positive offset, known as a spike like conformation (see 

Figure 7-1a) is not a barrier for injected electrons but for photogenerated electrons. If this 

positive offset is below 0.4 eV, photogenerated electrons can pass the barrier through the 

thermionic emission but when it is higher than 0.4 eV, it suppresses the transition of 

photogenerated electrons leading to the decrease of JSC and FF [58]. The band alignment between 

CZTSe and CdS is reported to be a spike like band alignment with an offset value of 0.48 [93] 

or 0.34 eV [94] that is almost near to the optimum value.  

Decomposition reactions during the fabrication process of kesterite absorber layer lead to 

the poor quality of the interfaces. Although several groups tried to suppress the decomposition 

reactions at the rear surface by introducing interfacial layers [36,38,55] and at the top surface 

by optimizing the fabrication process [39], these reactions, especially at the top surface, persist. 

The decomposition reactions at the top surface lead to the formation of secondary phases such 

as SnSeX and CuXSe. Even though chemical cleanings such as KCN treatment can remove most 

of these secondary phases [70] the formation and etching of these secondary phases can 

introduce defects, vacancies, and dangling bonds. Recently, several studies focused on 
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passivation of the p-n junction in kesterite solar cells by introducing n-type metal oxide layers 

such as Al2O3 [61,62] or TiO2 [60] layers between the kesterite absorber and CdS buffer layers 

which did improve VOC. The beneficial effect of these passivation layers can be explained by 

reducing the interface recombination by chemical passivation (reduction of interface trap 

density) and field effect passivation (formation of a fixed charge density and consequently 

decreasing the charge carrier concentration at the interface) [55,95]. However, these passivation 

layers might have several drawbacks such as high resistivity and not optimized band alignment 

that can suppress the charge transport. Hence, passivation layers with nano-sized openings are 

desirable to improve the charge transport since the interface can be partially passivated while 

the photo generated carriers can be collected by use of the lateral openings. Passivation layers 

with nano-sized point openings have been already used in thin film solar cells including 

Cu(In,Ga)Se2 [96–100] (and references therein) and CZTS [55] solar cells. So far, atomic layer 

deposition (ALD) is typically used for deposition of passivation layers and several approaches, 

e.g. e-beam lithography [55,98], are used to create the nano-sized openings through these layers. 

In this study, we introduce an easy and fast solution processed technique to synthesize a TiO2 

interfacial layer with lateral openings to be used as a promising passivation layer at the 

CZTSe/CdSe junction. 

Figure 7-1 Schematics of band diagram of buffer layer/CIGS absorber structure when the 

conduction band of buffer layer is above (a) and below (b) that of CIGS [58]. 
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7.1 Experimental details 

The processing steps of the modified CZTSe solar cells are shown in Table 7-1. CZTSe 

absorber layers were prepared by a two-step approach including e-beam deposition of Sn(310 

nm)/Zn(150 nm)/Cu(160 nm) stack precursors followed by selenization in 10 % H2Se gas in the 

N2 atmosphere using a rapid thermal processing system. Standard CZTSe solar cells were 

processed after KCN treatment, chemical bath deposition of CdS buffer layer, sputtering of i-

ZnO/Al-ZnO and e-beam evaporation of Ni-Al-Ni. In modified solar cells, a layer of TiO2 was 

deposited on top of the CZTSe absorber layer after KCN etching and before the CdS deposition. 

We used two types of TiO2 layers and named as (i) closed and (ii) open TiO2 layers. To deposit 

the closed TiO2 layer, an ethanol-based solution (sol-gel) was spin coated with 1000 rpm, 5000 

rpm/sec2 for 60 seconds. The closed TiO2 layer is ready directly after the coating at room 

temperature and does not need any further treatment. This TiO2 sol-gel and its physical and 

chemical properties are explained in more details in the reference [101]. The open TiO2 layer 

was deposited in two steps, first, a closed TiO2 layer was deposited on the CZTSe absorber 

layers and then another KCN treatment was performed on the samples.  

Table 7-1 Overview of all steps required to fabricate closed and open TiO2 layers. 

Step Description 

1 Mo-coated SLG cleaning in 1 molar NH4OH/Deionized water 

2 e-beam evaporation 

3 Selenization in 10 % H2Se in N2 at 460 ºC 

4 2 min KCN treatment 

5 deposition of closed TiO2 by spin coating 

6 2 min KCN treatment only for open TiO2 

7 CBD CdS deposition 

8 (i-)ZnO/Al-ZnO window sputtering 

9 0.5 cm2 solar cell scribing 

10 Annealing in N2 at 200 ºC for 1 hour 
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The KCN treatment includes dipping the samples in a 5 wt % KCN solution in H2O for 2 

min, followed by rinsing the samples in deionized water and drying with an N2 gun. Solar cells 

were annealed in N2 atmosphere at 200 ºC for 1 hour and all the characterizations reported here 

are performed after this post-annealing step. 

In this study, we present the results of one sample with closed TiO2 (as named sample 1), 

four samples with open TiO2 (samples 3, 5, 7 and 9) and their references (samples 2, 4, 6, 8 and 

10, respectively). Each sample includes at least 12 solar cells and samples with TiO2 layer 

(sample i, i=1, 3, 5, 7 and 9) were prepared along with their references (sample i+1) at the same 

processing condition to exclude the effect of irreproducibility of the fabrication process. 

7.2 Results and discussions 

High angle annular dark field scanning transmission electron microscopy (HAADF-

STEM) images and energy dispersive X-ray (EDX) maps were acquired using an FEI Osiris 

microscope and Titan3 microscope equipped with a Super-X detector and operated at 200 kV. 

EDX maps are generated from the intensity of the Mo-K, Se-K, Cu-K, Cd-L, Zn-K, Sn-L, S-K, 

Ti-K, O-K, C-K lines. The specimens for TEM were prepared using the focused ion beam (FIB) 

technique, on a Be support.  

Overview HAADF-STEM images and STEM-EDX maps of the samples 1 (with closed 

TiO2 layer), 3 (with open TiO2 layer) and 4 (the reference of sample 3) are shown in Figure 7-

2. The bluish areas on the STEM-EDX maps correspond to the occurrence of ZnSe grains. 

According to the STEM-EDX analysis a layer of MoSe2 (~ 200-300 nm) and on top of it, a thin 

layer of copper selenide exists at the rear interface, in all samples. Note that in the samples 1 

and 4 the CZTSe grains are densely packed. However, there are two different regions in sample 

3, one consists of big and densely packed grains and the other region consists of small grains 

(inside the dashed circle). According to the STEM-EDX analysis, there is a 10-30 nm layer of 

copper and/or cadmium sulfide segregated at the grain boundaries of this region of sample 3. 

This segregation of copper and/or cadmium sulfide might happen during the chemical bath 

deposition of CdS through the pin holes in the absorber layer. In sample 1 the segregation of 
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copper sulfide was only observed at the bottom part of the CZTSe layer. No segregation was 

observed in sample 4. The composition of 14 individual CZTSe grains of sample 1, 3 and 4 was 

measured and in sample 1, 3 and 4 the composition is found to be Cu1.98(6)Zn1.17(4)Sn0.90(2)Se3.95(9), 

Cu2.05(8)Zn1.13(6)Sn0.87(4)Se3.95(10) and Cu2.06(7)Zn1.13(5)Sn0.91(9)Se3.91(7), respectively.  

High-resolution TEM and composition profile analysis of these samples were performed 

at the CZTSe/CdS/ZnO interface. HAADF-STEM images and individual elemental maps of 

sample 1 with closed TiO2 and sample 4 (without TiO2) are shown in Figure 7-3a and b, 

respectively. Note that the peaks of Cd-L (3.13 keV) and Sn-L (3.44 keV) are very close giving 

an unavoidable erroneous presence of Sn in the CdS layer. We performed six EDX maps from 

different positions of sample 1 and a layer of Ti was found in all measurements, an example is 

shown in Figure 7-3a.  

  

Figure 7-2 Overview HAADF-STEM images of the samples 1 (a), 3 (b) and 4 (c). The 

corresponding STEM-EDX maps are given at the bottom. The bluish areas inside the CZTSe 

region correspond to the ZnSe inclusions. 
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(b) (a) 

(b) (a) 

Figure 7-3 Elemental EDX maps of sample 1with closed TiO2 (a) and sample 4 without TiO2 (b). 

Figure 7-4 Elemental EDX maps of sample 3 with open TiO2 in two different regions, EDX maps of this 

sample indicate that Ti containing layer is not continuous. 
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We also performed six EDX maps of sample 3 with an open TiO2 layer. A layer of Ti was 

found in two EDX maps of this sample, one of them is shown in Figure 7-4 a. However, in the 

other four EDX maps of this sample, we couldn’t find a continuous layer of Ti, as one shown in 

Figure 7-4 b. Based on these EDX measurements, we conclude that in the open TiO2 layer there 

are some openings in certain regions (see Figure 7-4 b), while the closed TiO2 layer is 

continuous. Figure 7-5 a and b show the EDX compositional profile of sample 1 with closed 

TiO2 layer and sample 3 with an open TiO2 layer in a region that Ti exists, respectively. As 

mentioned previously, the peaks of Cd-L (3.13 keV) and Sn-L (3.44 keV) are very close giving 

an unavoidable presence of Sn in the CdS layer. 

 

 
  

Figure 7-5 Mixed map of elements and the line profile measured perpendicular to the interface 

for sample 1 with closed TiO2 (a) and sample 3 with open TiO2 in a region where Ti exists (b). 
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Table 7-2 Electrical parameters of the best solar cells in samples 1 (closed TiO2), 3 (open TiO2), and 4 

(reference). 

Sample 

JSC VOC FF Eff Rsh (I) Rs (I) 

(mA/cm2) (mV) (%) (%) (Ω.cm2) (Ω.cm2) 

1- Closed TiO2 26.2 425 31.7 3.5 141.6 2.6 

3- Open TiO2 32.5 426 50.0 6.9 324.2 1.7 

4- Reference 26.6 391 51.9 5.4 335.7 1.9 

 

Figure 7-6a shows the current-voltage (J-V) curves of the champion solar cells of 

sample 1 (closed TiO2), sample 3 (open TiO2) and its reference sample 4. Solar cell parameters 

of these samples are also summarized in Table 7-2. The J-V curve of the champion solar cell of 

sample 2 which is the reference of sample 1 is not shown in Figure 7-6 as it was very similar to 

results of sample 4 (see Figure 7-7). It can be observed that VOC is ~ 35 mV higher in solar cells 

with TiO2 layers (both open and closed types). However, the J-V curve of the sample with closed 

TiO2 has a kink anomaly and FF is very low. This kink behavior might be attributed to a high 

positive conduction band offset at the absorber/buffer junction. A high positive offset (> 0.4 eV) 

can be a barrier for the photogenerated electrons, as shown schematically in Figure 7-1a. When 

the recombination velocity is low in the junction (due to the passivation of defects) and there is 

a positive offset at the junction, the photogenerated electrons accumulate at the junction. At a 

high forward bias, the accumulated electrons flow back to the absorber layer and recombine 

there. On the other hand, when the recombination velocity is high, which is the case in standard 

CZTSe solar cells, the electrons can recombine at the junction at an intermediate forward voltage 

[53]. By introducing a KCN etching after deposition of TiO2 in sample 3 with an open TiO2 

layer, JSC is improved. Moreover, FF is improved to match that value of the reference solar cell. 

Based on the TEM analysis the improvement of solar cells with open TiO2 layer can be attributed 

to the formation of openings that facilitates the charge transport through the open TiO2 layer. 

Series resistance (Rs) is slightly higher in samples with the TiO2 layer. This increased resistance 

can be attributed to the TiO2 layer and it is more pronounced in solar cells with a closed TiO2 
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layer as compared to the solar cells with an open TiO2 layer which may have a lower thickness 

and lateral openings. Figure 7-6 b shows the EQE measurements of the champion solar cells of 

sample 3 with open TiO2 layer and the reference sample 4 and sample 1 with the closed TiO2 

layer. The EQE measurements confirmed the JSC values measured by J-V measurements and 

indicate that collection of photo-generated carriers is improved in the whole region of the 

spectrum. This improvement can be attributed mainly to the passivation of defects at the 

CZTSe/CdS junction and the reduction of recombination currents. Figure 7-7 illustrates the 

solar cell parameters of several samples including sample 1 with closed TiO2 layer (red boxes), 

samples 3, 5, 7 and 9 with open TiO2 layer (green boxes) and their corresponding references 2, 

4, 6, 8 and 10 (black boxes). It can be concluded statistically that by introducing a TiO2 

interfacial layer at the junction, VOC improved. JSC, FF, and the conversion efficiency are also 

statistically higher in solar cells with open TiO2 layer as compared to their reference solar cells. 

  

(a) 

(b) 

Figure 7-6 Illuminated and dark J-V curves of the champion solar cells with closed/open TiO2 layers 

and the reference (a), EQE of the best solar cells with open and closed TiO2 and the reference (b). 
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Figure 7-7 Electrical parameters of the samples with closed TiO2/open TiO2 layer (red/green 

boxes) and their references (black boxes). Each box represents values measured from samples 

containing at least 12 solar cells. 
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7.3 Conclusion 

A few studies already reported on the passivation of kesterite solar cells by introducing 

ALD coated TiO2 and Al2O3 layers between the kesterite absorber layer and CdS buffer layer. 

Here, by using a solution processed TiO2 layer, a significant improvement of VOC was observed, 

however, a kink anomaly appeared in samples with as deposited TiO2 layer. This kink anomaly 

that severely degrades the FF might be attributed to a high barrier at the conduction band. By 

introducing an additional KCN treatment after spin coating of the TiO2 layer, the kink anomaly 

vanished, short circuit current improved and FF also improved to match that of the reference 

solar cells. EDX mappings of the p-n junction using cross-sectional TEM indicated that in 

samples with as deposited TiO2 there is a continuous layer of Ti at the junction while in samples 

with KCN treatment after deposition of TiO2, the Ti layer is not continuous and there are 

openings at the Ti-containing layer. These openings at the TiO2 interfacial layer can facilitate 

the charge carrier transport through this layer. Thus in addition to the beneficial effect of the 

passivation and reduction of recombination currents, the charge transport becomes easier 

through these openings in the interfacial layer. With a CZTSe/CdS/TiO2/(KCN treatment)/TCO 

fabrication process, the best efficiency of 6.9 % was achieved as compared to the 

CZTSe/CdS/TCO baseline process for which 5.4 % efficiency was achieved. 
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8 Conclusions and suggestions for future work 

In this thesis, we aimed to improve the performance of kesterite solar cells by two main 

approaches: (i) improvement of the bulk properties of kesterite absorber layer and (ii) 

modification of solar cell structure by introducing interfacial passivating layers at the back 

contact and the p-n junction. Improvement of kesterite absorber layer was our main focus in 

chapter 3, 4 and 5 and in chapter 6 and 7 the modification of solar cell structure was studied. 

In chapter 3 we explained about a hybrid sputtering/evaporation technique to deposit 

binary sulfide precursors on Mo-coated SLG substrates (SLG/Mo/8×(Zn/SnS2/CuS)). 

Selenization of binary sulfide precursors with selenium vapor were performed in two types of 

furnaces (i) a tube furnace (TF) and (ii) a rapid thermal processing system (RTP). The aim of 

this work was to control the S/Se ratio in CZTSSe films. Morphological, chemical and structural 

characterization of the absorber layers selenized at different temperatures in TF and RTP were 

analyzed. It was observed that at temperatures lower than 450 ºC, irrespective of the selenization 

method, the precursor stack does not interdiffuse completely to form a uniform CZTSSe film. 

At higher temperatures (≥ 450 ºC) sulfur was replaced by selenium and a pure selenide CZTSe 

film was formed. Thus, in order to fabricate CZTSSe absorber layers with good crystalline 

quality and a controlled amount of S/Se ratio, it’s not enough to incorporate sulfur only in the 

precursors and an annealing process in sulfur and selenium atmosphere is required.  

The rest of the work was done in imec-PV lab where a two-step technique was used for 

fabrication of CZTSe absorber layers including (i) e-beam evaporation of Sn/Zn/Cu precursors 

on Mo-coated SLG (SLG/Mo/Sn/Zn/Cu) and (ii) selenization of precursors in a rapid thermal 

processing system using 10 % H2Se gas in N2 atmosphere. We prepared CZTSe solar cells with 

a standard structure of SLG/Mo/CZTSe/CdS/i-ZnO/Al-ZnO.  

The thickness of Sn/Zn/Cu precursor was investigated in chapter 4. It was observed that 

physical properties of the absorber layers strongly depend on the thickness of precursors. 

Thicker metal starting layers led to a larger Cu to Sn ratio in the final absorbers, possibly because 



98 

 

 

 

the thinner starting layers show faster interdiffusion of the metals and suppressed SnSe2 

evaporation. In addition increasing the thickness improved the morphological quality of CZTSe 

absorber layers. By increasing the thickness, the distance between the p-n junction and the rear 

surface was increased, thus the influence of imperfections at the rear surface was reduced. The 

enhanced physical quality of the absorber layers led to the higher performance of solar cells, 

especially due to a longer minority carrier lifetime and higher VOC. It was found that the doping 

density of the absorber layer decreased with increasing the thickness. Lower doping density led 

to the increasing of the depletion region width and accordingly better collection of the 

photogenerated carriers and higher JSC. Here, the best performance was achieved for a solar cell 

with an absorber layer thickness of 1700 nm that showed 406 mV VOC, 36.4 mA/cm2 JSC and 

7.8 % efficiency. 

In chapter 5 we studied several processing parameters in order to improve the efficiency 

and reproducibility of CZTSe solar cells. We investigated the effect of the order of precursors 

for a large set of samples. It was observed statistically that selenization of the baseline Sn/Zn/Cu 

precursor and a Zn/Sn/Cu precursor lead to quite similar results concerning the efficiency of 

final solar cells. In another study, the effect of H2Se flow rate was studied for a large set of 

samples. We used three different flow rates of H2Se including 200, 150 and 80 sccm, in which 

2, 1 and 0 pumping steps were required during 15 min selenization. All these 3 selenization 

recipes led to CZTSe solar cells with efficiencies up to 7 % efficiency. Thus, it can be concluded 

that the flow rate of H2Se (or the number of pumping steps during the selenization process) 

doesn’t have a considerable impact on the performance of final solar cells. Moreover, an 

irreproducibility was observed in the selenization process. This irreproducibility was decreased 

by introducing additional cleaning steps and avoiding the contamination sources in selenization 

process.  

In chapter 6, a solution processed MoO3-X was introduced as a promising passivating 

interfacial layer between Mo rear contact and the CZTSe absorber layer. The effect of this ultra-

thin MoO3-X interfacial layer was studied for two types of CZTSe solar cells including solar cells 
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with thin and thick absorber layers. Using this ultra-thin MoO3-X, we aimed to (i) reduce the 

decomposition reactions at the rear surface (ii) improve the band alignment between CZTSe and 

Mo rear contact as MoO3-X is a p-type semiconductor with a high work function. By introducing 

MoO3-X interfacial layer, VOC improved remarkably. JSC and FF did not change considerably by 

introducing the MoO3-X layer but they improved significantly by increasing the absorber layer 

thickness. The temperature dependent J-V measurement showed that the band alignment at the 

rear interface didn’t change considerably by adding the MoO3-X layer, but the activation energy 

of the main recombination path shifted toward higher energies. Top view SEM images of the 

absorber layers revealed that samples with MoO3-X layer are more uniform. According to these 

measurements, the main role of MoO3-X layer can be explained as reducing the decomposition 

reaction between Mo and CZTSe during the selenization process and/or passivation of defects. 

In this study, the best performance belonged to a thick solar cell with MoO3-X interfacial layer 

that showed a 413 mV VOC, 32.9 mA/cm2 JSC, 52.3 % FF and 7.1 % efficiency. While the 

reference solar cell showed a 384 mV VOC, 32.8 mA/cm2 JSC, 47 % FF and 5.9 % efficiency. 

The aim of chapter 7 was to improve the CZTSe/CdS junction by introducing a solution 

processed TiO2 layer. Using, this ultra-thin TiO2 interfacial layer (~ 3 nm) VOC improved 

significantly. However, a kink anomaly appeared in the J-V curve of the solar cell with the TiO2 

interfacial layer. By introducing an additional KCN treatment after the spin coating of TiO2 

layer, the kink anomaly vanished, short circuit current improved remarkably and FF also 

improved to match that of the reference solar cells. EDX mappings of the p-n junction using 

cross-sectional TEM indicated that the as-deposited TiO2 layer is continuous while in samples 

with the TiO2 layer and additional KCN treatment, the interfacial layer is not continuous and 

there are lateral openings in the TiO2 layer. The openings at the TiO2 interfacial layer formed 

by the KCN treatment can facilitate the charge carrier transport through this layer. Thus in 

addition to the passivation of defects by the TiO2 interfacial layer that led to the reduction of 

recombination and improvement of VOC, the photo-generated carriers transport through the 

openings in the TiO2 layer. Here, the best performance belonged to a solar cell with the TiO2 

interfacial and the additional KCN treatment that showed a 426 mV VOC, 32.5 mA/cm2 JSC, 
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50.0 % FF, and 6.9 % efficiency. While the reference solar cell showed a 391 mV VOC, 26.6 

mA/cm2 JSC, 51.9 % FF and 5.4 % efficiency. 

Comparing the results of chapters 4 to 6 it may be concluded that the best efficiency of 

7.8 % was achieved for a standard Mo/CZTSe/CdS/i-ZnO/Al-ZnO structure. Bearing in mind 

the irreproducibility of the fabrication process, one can only compare solar cells prepared in the 

same processing run. Solar cells processed in different fabrication runs may be affected by the 

irreproducibility of each processing step including the fabrication of absorber layers, CdS buffer 

layer deposition, and i-ZnO/Al-ZnO deposition. Moreover, we showed statistically for several 

samples in this study that modification of CZTSe solar cell structure with appropriate 

passivating layers at the rear interface and p-n junction led to a significant improvement of VOC 

and the performance as compared to their reference solar cells.  

8.1 Suggestions for future work 

The highest world record efficiencies for kesterite solar cells belong to a CZTSSe solar 

cell prepared by hydrazine solution-based technique (12.6 %) [50] and a pure CZTSe solar cell 

prepared by a co-evaporation technique (11.6 %) [47]. In this study, we achieved up to 7.8 % 

efficiency for pure selenide CZTSe solar cells prepared by selenization of e-beam evaporated 

Sn/Zn/Cu precursors. Although several studies showed CZTSSe absorber layers with Zn-rich 

and Cu-poor composition leads to higher efficiencies, here the composition of the best CZTSe 

absorbers was measured to be Cu/(Zn+Sn) ~ 0.8 and Zn/Sn ~ 1. A systematic study of the 

metallic ratios of the precursors is suggested for the further improvement of the composition of 

CZTSe absorber layers.  

To improve the CZTSe absorber layer, one suggestion is to incorporate a thin layer of Ge 

in the precursors. We already tried selenization of Ge(30)/Sn(280)/Zn(150)/Cu(160) precursors 

in the RTP system which led to CZTSe absorber layers with big grain and good crystalline 

quality. Solar cells prepared by selenization of this Ge-containing precursors showed up to 6 % 

efficiencies. However, so far we selenized the Ge-containing samples in an upside down 
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configuration. In the upside down configuration, samples are placed upside down on a graphite 

susceptor in which 4 holes are embedded for the 5×5 cm2 substrates. The reason of upside down 

selenization is to avoid the contamination of quartz window as GeSe2 evaporate from the surface 

of samples and it sticks to the quartz window. However, the GeSe2 can be easily wiped off the 

stainless steel after the upside down selenization. So far, the highest efficiency achieved by this 

configuration was ~ 4 % for the standard Mo/Sn/Zn/Cu precursors and ~ 6 % for Mo/Ge/ 

Sn/Zn/Cu precursors. Optimizing the upside down selenization may improve these efficiencies. 

We also suggest a systematic optimization of the thickness, metallic ratios and order of elements 

of the Ge-containing precursors. 

We believe the standard selenization process using H2Se gas in the RTP system is almost 

optimized. For future work, selenization using Se vapor instead of H2Se gas is suggested. 

Several groups reported good results for kesterite absorber layers prepared by selenization using 

Se vapor in tube furnaces or hot plates. We had already achieved up to 3 % efficiency for pure 

CZTSe solar cells prepared by selenization of e-beam precursors in a tube furnace and it can be 

improved by further optimization of the selenization conditions such as time, temperature, etc. 

These CZTSe films selenized in the tube furnace are usually very compact and they have very 

good crystalline quality and big grains. The main problem of these samples is a thick layer of 

MoSe2 which leads to a high series resistance in CZTSe solar cells. In order to decrease the 

thickness of MoSe2 layer in theses samples, it is suggested to use appropriate interfacial layers 

such as MoO3-X, TiN, etc. between Mo and CZTSe.  

As shown in chapter 6, quality of the rear surface is a big challenge in kesterite solar cells. 

The imperfections such as voids and secondary phases at the rear surface not only increase the 

interface recombination but also they affect the film growth and bulk properties of the absorber 

layer. We observed by introducing MoO3-X interfacial layer the performance of solar cells 

improves mainly due to the improvement of VOC. A systematic study about optimizing the 

MoO3-X interfacial layer for the rear surface application in kesterite solar cells is suggested.  
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In chapter 7 we showed by introducing an ultra-thin layer of TiO2 at the p-n junction the 

performance of kesterite solar cells improved. This ultra-thin layer was prepared by spin coating 

of TiO2 followed by a KCN treatment. Solar cells with this TiO2 interfacial layer and without 

KCN treatment had a kink anomaly in their J-V curve that could be explained by a large positive 

conduction band offset at the CZTSe/TiO2/CdS interface. We suggest optimizing the recipe of 

TiO2 layer in order to improve the electrical properties of the TiO2 interfacial layer for this 

application and avoiding the additional KCN treatment. 
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