
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Sara Cristina Pereira
Loureiro

Qualidade de Experiência em Navegação Web

Quality of Experience in Web Browsing

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Sara Cristina Pereira
Loureiro

Qualidade de Experiência em Navegação Web

Quality of Experience in Web Browsing

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica do Doutor
João Paulo Silva Barraca, Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Professor Doutor Óscar Emanuel Chaves Mealha
Professor Associado com Agregação da Universidade de Aveiro

Professor Doutor João Paulo Silva Barraca
Professor Auxiliar da Universidade de Aveiro

agradecimentos/
acknowledgments Ao meu orientador, o Professor Doutor João Paulo Barraca, pelo apoio e

disponibilidade.
À equipa da Altice Labs que me acolheu no desenvolvimento desta
dissertação de mestrado, o meu agradecimento pela oportunidade.
Aos meus amigos, pelo apoio e companhia ao longo desta caminhada.
Em especial, à minha faḿılia, a quem dedico este trabalho, por me terem
proporcionado todas as condições para a concretização deste objectivo e
estarem sempre dispońıveis e presentes em todos os momentos, o meu
muito obrigada!

palavras-chave Qualidade de Experiência, Qualidade de Serviço, Automação de browsers,
Navegação Web headless

resumo

Esta dissertação de Mestrado tem por objectivo o estudo e o desenvolvi-
mento de uma ferramenta de aferição de métricas de Qualidade de Ex-
periência, no contexto da navegação Web, de modo a percecionar, da forma
mais real posśıvel, a experiência dos utilizadores comuns na navegação em
páginas Web arbitrárias. A obtenção de métricas que permitam determi-
nar a Qualidade de Experiência e de Serviço são uma ferramenta essencial
para as operadores de telecomunicações, de forma a diagnosticar o ńıvel de
qualidade dos serviços prestados e, consequentemente, perceber o grau de
satisfação dos clientes. Neste contexto, a solução desenvolvida foi uma fer-
ramenta que atua de forma independente e efetua testes que permitem aferir
a experiência a que um utilizador normal estaria sujeito face à navegação
numa página Web, num browser real. Assim, a aplicação desenvolvida é ca-
paz de: extrair intervalos temporais para inferir a qualidade da experiência,
informações acerca da navegação e do estado da página Web, bem como
dos seus componentes. Para além disso, permite configurar cenários de
interação simples ou complexos com a página, tirar capturas de ecrã em
vários momentos durante o correr do programa e ainda, permite descar-
regar todos os ficheiros que compõem a página Web, que foram carregados.
Esta solução foi sujeita a testes de averiguação do desempenho e da confia-
bilidade dos valores devolvidos (métricas) pela mesma, quando comparados
com uma navegação real.

keywords Quality of Experience, Quality of Service, Browser Automation, Headless
Web Navigation

abstract This Master dissertation has the aim of study, and further develop, a tool
that allows to gather Quality of Experience metrics, in the Web browsing
context, in order to perceive, as close to reality as possible, the experience
that real users would have during the navigation in webpages. The gather-
ing of Quality of Experience and Service metrics are essential for telecom
operators, in order to diagnose the quality of services and, consequently,
perceive the level of satisfaction of its clients. In this context, the solution
was an application that acts independently and performs tests, that allow to
infer the experience that a real user would face during the access to a web-
page, through a real browser. The solution is able to: extract time metrics,
information related with the Web navigation, the status of the webpage and
its resources. Furthermore, it allows to configure simple or more complex
interaction test scenarios with the webpage, take screen captures during the
test execution and even download all the files belonging to the webpage that
were loaded. The solution was tested in order to evaluate its performance
and returned values (metrics) reliability, comparing with a real navigation
values.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

1.3 Contributions . 2

1.4 Structure . 3

2 State-Of-The-Art 5

2.1 Quality of Experience (QoE) . 5

2.1.1 QoE Metrics . 9

2.1.2 Comparison between QoE and Quality of Service (QoS) 10

2.2 Internet . 11

2.2.1 Transmission Control Protocol/Internet Protocol (TCP/IP) 13

2.2.2 World Wide Web Concepts . 14

Hypertext Transfer Protocol . 15

Webpage . 18

Document Object Model (DOM) . 20

2.3 Browser Automation . 21

2.3.1 Browsers . 21

2.3.2 User-agents . 23

2.3.3 Headless Browsers . 24

2.3.4 Browser Automation Tools . 26

2.3.5 Headless Experience Tools . 27

2.4 Existing Solutions . 28

2.4.1 Comparison of QoE Estimation Solutions 33

3 SmartBrowsing Solution 35

3.1 Overview . 35

3.2 Use Cases . 36

3.3 Requirements . 38

i

ii Contents

3.4 Flow Diagram . 39

3.5 Architecture . 41

4 Implementation 45

4.1 Adopted Technologies . 45

4.2 Configuration File . 52

4.3 Headless Display . 57

4.4 Webdrivers . 57

4.5 Outputs . 59

4.5.1 Webpage’s Status Code . 59

4.5.2 Metrics Extracted And Other Informations 60

4.5.3 User Interactions . 65

4.5.4 Screen Captures . 65

4.5.5 Webpage Download . 66

5 Evaluation And Analysis 69

5.1 Program Execution Time . 70

5.2 Page Load Time . 73

5.3 Static versus Dynamic Webpages . 76

5.4 SmartBrowsing Navigation . 78

5.4.1 Domain Name System (DNS) Lookup Time 79

5.4.2 Transmission Control Protocol (TCP) Connect Time 80

5.4.3 Request and Response Time . 81

5.5 Interactions . 81

5.5.1 Login and Logout . 81

5.5.2 Scroll Down . 85

5.6 Comparison with a Web Tool Results . 87

6 Conclusions And Future Work 91

Bibliography 93

A Appendix 99

A.1 Minimum Operating Requirements . 99

A.2 Solution Deployment . 100

List of Figures

1.1 ArQoS Probe. 2

2.1 “Delivery chain for a typical webpage.” . 7

2.2 QoE versus QoS. 11

2.3 Transmission Control Protocol/Internet Protocol (TCP/IP) Protocol Archi-

tecture . 14

2.4 Diagram of the technologies that compound the Web. 15

2.5 Fetching of documents located in different servers. 17

2.6 Process of request and return of a static webpage. 18

2.7 Client-side scripting process. 19

2.8 Server-side scripting process. 20

2.9 Desktop Browsers Market Share Chart, between the month of July from year

2016 to the same month of year 2017. 22

2.10 Desktop Browsers Market Share Chart percentage mean, between the month

of July from year 2016 to the same month of year 2017. 23

2.11 Intraway Qx Architecture. 30

2.12 QoE Doctor Overview. 32

3.1 SmartBrowsing Use Case Diagram. 38

3.2 SmartBrowsing Flow Diagram. 41

3.3 SmartBrowsing Architecture Diagram. 42

4.1 Proggraming languages ranking, acoording with a study made by Institute of

Electrical and Electronics Engineers (IEEE) Spectrum. 47

4.2 Python’s library, PyVirtualDisplay, Hierarchy. 48

4.3 Browser Non-normative Webpage Processing Model, from World Wide Web

Consortium (W3C). 49

5.1 Program execution time test (with no interactions) using Google Chrome and

Mozilla Firefox browsers, on a 4 GB RAM and Intel Core i3 device. 71

iii

iv List of Figures

5.2 Program execution time test (with no interactions) using Google Chrome and

Mozilla Firefox browsers, on a 8 GB RAM and Intel Core i5 device. 72

5.3 Page Load Time (with no interactions) using Google Chrome and Mozilla Fire-

fox browsers, on a 4 GB RAM and Intel Core i3 device. 74

5.4 Page Load Time (with no interactions) using Google Chrome and Mozilla Fire-

fox browsers, on a 8 GB RAM and Intel Core i5 device. 75

5.5 Client-side processing time or the time it takes to complete the load the web-

page or the first part of the webpage, for a static and for a dynamic webpages. 77

5.6 Page Load Time measured on a static and on a dynamic webpage. 78

5.7 IPv4 DNS request and response captured packets in parallel with a Smart-

Browsing test. 79

5.8 IPv6 DNS request and response captured packets in parallel with a Smart-

Browsing test. 80

5.9 Three-way handshake Transmission Control Protocol (TCP) connection packets. 81

5.10 Captured packet of a webpage HyperText Transfer Protocol (HTTP) GET

request and its respective HTTP response. 81

5.11 Screen capture of the initial page captured after the webpage acces. 82

5.12 Screen capture taken after the insertion of the credentials to perform the login. 82

5.13 Screen capture of the webpage loaded after the login has been successfully

performed. 83

5.14 Screen capture taken after the logout has been succesfully performed. 83

5.15 Screen capture taken after the webpage request. 85

5.16 Screen capture taken after a scroll down by the specified amount of pixels on

the configuration file. 86

5.17 Screen capture taken after a scroll down to the bottom of the webpage. . . . 86

Listings

4.1 Example of a test configuration file (JSON) with login and logout interactions. 55

4.2 Example of a test configuration file (JSON) with scroll by pixel and scroll to

the bottom interactions. 56

4.3 Code snippet to perform a scroll down to the bottom of the webpage. 56

4.4 Code snippet of the creation and starting of a headless display using Xvfb. . 57

4.5 Code snippet with example of the Google Chrome webdriver initialization. . . 57

4.6 Code snippet with example of the Mozilla Firefox webdriver initialization. . . 58

4.7 Code snippet example of how the status code was obtained. 59

4.8 Code snippet example of the Domain Name System (DNS) Lookup Time ex-

traction. 60

4.9 Code snippet example of the TCP Connection Time extraction. 61

4.10 Code snippet example of the extraction of the navigationStart event, from

Mozilla Developer Network (MDN) Performance Application Programming In-

terface (API). 62

4.11 Code snippet example of how the webpage resources are extracted. 64

4.12 Code snippet example of how screen captures are performed. 65

5.1 Partial JSON output file, obtained from a test to the http://www.sapo.pt/

webpage. 79

5.2 Partial output written to the JavaScript Object Notation Syntax (JSON) file,

of a test with login and logout interactions . 84

5.3 Partial output written to the JSON file, of a test with scroll interactions. . . 87

v

http://www.sapo.pt/

vi Listings

List of Tables

2.1 Most Popular Browsers Market Share, on March 2017 22

2.2 Table with the main metrics collected by the three solutions. 33

2.3 Table with the target devices of the referred tools. 33

4.1 Table with entries of the configuration file. 53

4.2 Table with entries of the JSON interaction field from the configuration file. . 54

4.3 Table with entry fields of the informations extracted to the output file. 67

5.1 Table with the analysis of the “program execution time” fifty samples, for PC

Low tests. 71

5.2 Table with the analysis of the “program execution time” fifity samples, for PC

High tests. 73

5.3 Table with the analysis of the “page load time” fifty samples, for PC Low tests. 75

5.4 Table with the analysis of the “page load time” fifty samples, for PC High tests. 76

5.5 Table with the metrics measured (in seconds), by the WebPageTest tool, for

the webpages: www.sapo.pt and www.facebook.com. 88

5.6 Table with the metrics measured (in seconds), by the SmartBrowsing solution,

for the webpages: www.sapo.pt and www.facebook.com. 88

vii

www.sapo.pt
www.facebook.com
www.sapo.pt
www.facebook.com

viii List of Tables

Acronyms

API Application Programming Interface

ARP Address Resolution Protocol

CDN Content Delivery Network

CPE Customer Premises Equipment

CPU Central Processing Unit

CSP Communications/Content Service Provider

CSS Cascading Style Sheets

DNS Domain Name System

DOM Document Object Model

FTP File Transfer Protocol

GB GigaByte

GUI Graphical User Interface

HAR HTTP Archive

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ICMP Internet Control Message Protocol

IE Microsoft Internet Explorer

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ix

x Acronyms

IGMP Internet Group Management Protocol

IP Internet Protocol

ISP Internet Service Providers

ITU International Telecommunication Union

JS JavaScript

JSON JavaScript Object Notation Syntax

KPI Key Performance Indicators

MDN Mozilla Developer Network

MOS Mean Opinion Score

OS Operating System

OSI Open Systems Interconnection

OTT Over-The-Top

PHP Hypertext Preprocessor

POP Points Of Presence

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RIP Routing Information Protocol

RTT Round-trip delay time

SNMP Simple Network Management Protocol

SMTP Simple Mail Transfer Protocol

SOCKS Socket Secure

SSL Secure Sockets Layer

SWF Shockwave Flash File

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

xi

TLS Transport Layer Security

TTFB Time To The First Byte

TTFP Time To The First Paint

UDP User Datagram Protocol

URL Uniform Resource Locator

URI Uniform Resource Identifier

UX User Experience

VNC Virtual Network Computing

VOD Video On Demand

VoIP Voice over IP

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

Xvfb X Virtual FrameBuffer

Xvnc X-based Virtual Network Computing Server

xii Acronyms

1

Introduction

Motivation

Nowadays, with the fast evolution of the Web, increased contents available, new tech-

nologies involved and faster retrieval of information due to speedy and reliable networks and,

also, the rising of solutions to bring data closer to the end-users - the use of Content Delivery

Network (CDN) and Cloud CDN solutions -, raised the exigency and expectations of the

users about their Internet service and navigation experience. Thereby, in order to provide

the best Web navigation experience to their clients, the Communications/Content Service

Provider (CSP) - commonly, the telecom operators - need to keep improving the Quality of

Service (QoS) delivered to their costumers, by evolving their networks and bet on the investi-

gation of new solutions of software and hardware, to maintain the clients and markets already

acquired, but also, conquer new ones. Consequently, it urged the need to create solutions that

allow the possibility of a more reliable perception of the end-User Experience (UX) in terms

of their navigation experience, known as the Quality of Experience (QoE) in Web browsing.

The QoE aims are to reveal the users experience on what they see during their navigation

time, to better grant the CSP clients satisfaction about the service they applied to and reduce

the churn rate, that is the amount of clients who leave the subscription of CSP services.

Objectives

In this work, it will be addressed the perceived UX quality during Web browsing - Web

Experience -, considering the user-agent type, the accessed webpage and further manipulation

1

2 Chapter 1. Introduction

(for example, login into a website to determine the time needed to the return of the action

result, that is, a visible answer to the user), within a maximum time interval threshold

(timeout) considered reasonable to receive the response for the test specific allocated tasks.

The main aim is to perceive what would be the end-user QoE in a real navigation from the

returned results of the browsing simulation test. The results returned can be further analyzed

to measure the experience quality and to infer what would a real user feel about the browsing

experience.

The aim of this work is to provide an application that works independently and that

mimics a real end-user behavior, while navigating on the Web on a real browser, in order to

acquire metrics that can relate its experience.

In that way, the solution developed is capable of extracting temporal metrics and infor-

mation about the webpage, such as its code status and loaded components. Also, it can take

screen captures in several temporal instants during the program running time. It is possible,

as well, to configure testing scenarios for interactions with the webpage, using three different

scenario possibilities: no interactions configured, one interaction (simple scenarios) and more

than one interaction (complex scenario).

Furthermore, this application was aimed to be included in a probe that would trigger tests

and provide the informations extracted to the support unit of the Altice Labs ArQoS team.

As such, this application was developed in the scope of Altice Labs ArQoS NG project, which

aim was to develop this application for future integration on their ArQoS NG probes.

Contributions

This dissertation is included in the scope of the Altice Labs project, the ArQoS.

The ArQos is a performance monitoring system of services and telecommunication net-

works. This system is composed by probes and a management system, which communicate

between each other. The probes (vide Figure 1.1), fix or mobile, can be configured to perform

several tasks and, further, send the results to the management system. The management

system is the unit that schedules the tasks requests and performs the results analysis, besides

other functionalities, such as, for example, alarm management or reporting.

Figure 1.1: ArQoS Probe.

1.4. Structure 3

In this work was developed a tool to access webpages, through real browsers, in order to

gather metrics and perform interactions in an automated way.

The need to automate a web navigation urged with the need to evolve from the ArQoS

existing solution, which focus is on the extraction of QoS metrics. Moreover, the existing

solution does not interact with the webpage in the same way as a real browser. As long as

it uses command line tools, the wget and libcurl, to perform the Uniform Resource Locator

(URL) request, the navigation does not correspond to a real experience. The main difference

is on the webpage loading, as the wget loads the totality of the webpage at once, which does

not correspond to a real user-scenario. By contrast, the real browsers are able to partially

load the webpages, and the remaining as the users scrolls on the page.

Since that, there was the need to have a solution that could approximate to a real user

navigation, by using real browsers, in order to gather QoE-related metrics and also perform

interactions, for example: login, logout and scroll actions. Furthermore, the new solution

should be compatible with devices with no graphical capabilities, as it must run on the

ArQoS devices, the ArQoS NG Probes. These probes run ArQoS tasks, which are scheduled

by the the management system team. The probes run the tasks that were scheduled and,

afterwards, send the response to the management system, where the response is collected and

analyzed. The solution developed throughout this dissertation is, also, a task that must run

on these probes.

Hence, the solution proposed and developed, throughout this dissertation work, allows the

access to webpages, to gather QoE-related metrics, take screenshots of the scenario at certain

instants, and execute user-like interactions, through an inputted configuration. Afterwards,

this solution returns the results, which can be further analyzed.

Structure

This master dissertation is divided in six chapters, below there is the list and the descrip-

tion of each of them:

Chapter 1 - Introduction: In this chapter are presented the motivation that triggered

this project and, also, the objectives to be fulfilled.

Chapter 2 - State-Of-The-Art: This chapter aim was to investigate the topics

directly connected with this theme and that were important in the construction of the

SmartBrowsing solution.

4 Chapter 1. Introduction

Chapter 3 - SmartBrowsing : Solution: In this chapter it is described the solution,

along with the use cases, flow and architecture diagram.

Chapter 4 - Implementation: In this chapter it is described the way the application

solution is implemented.

Chapter 5 - Evaluation And Analysis: In this chapter the solution was tested

and the results analyzed, in order to prove that the solution is adequate to the task

envisioned.

Chapter 6 - Conclusion: The last chapter has the main conclusions taken and the

future work.

2

State-Of-The-Art

In this chapter it will be approached the themes related with this master dissertation aim.

The themes will be addressed by order, that is, from the most core concepts to the most

corner related others. Also, it will be described tools and solutions that deal with the QoE

evaluation.

Quality of Experience (QoE)

The user experience perception is an aim that both websites developers and content service

providers (CSPs) want to acquire, as such may help to improve the contents availability

and access speed to the service end-user. Consequently, both website owners and CSPs

can maintain their user targets satisfied and loyal to their services or contents. Therefore,

the concept of Quality of Experience urged due to that need of knowing what is the user

acceptance in relation to a target product or service (for example: the users feel boredom

or satisfaction or if they quit after an awaiting time) and translate that sensations into data

that can be treated and analyzed, in order to trace an ideal profile of the users requirements

to better fulfill their expectations about the product or service.

The concept of QoE is still, nowadays, a fresh and important theme as there is no final

answer to the question of how to perform its measurement. Due to the enormous variety

of factors associated to the user experience and also, the difficulty to obtain exact values to

define the real perception of what is being sensed, the objective is to get as closer as possible

to the best approximation of what seems to be a good performance and behavior to the human

users.

The Quality of Experience concerns about what is the consumer impression about a prod-

5

6 Chapter 2. State-Of-The-Art

uct or a service. Thus, it seeks what distinguish a good experience from a bad one and which

are the factors that affect it.

In this field, there are multiple research papers and experiments that relate what can

influence the QoE and which are the metrics that seem to have a bigger impact on the final

QoE. Some works [1] separate the QoE influences in terms of:

- Human Factors (extrinsic and intrinsic);

- Context Factors (the environment of use);

- System Factors (the characteristics intrinsic to the service or product being analyzed).

The Human Factors relate to the users characteristics, in terms of gender, age, culture,

personality, and others intrinsically related to the users mind. This influencing factors forms

the particularities set of each individual [1].

The Context Factors relate to the environment characteristics, such as, the experiment

location, the day time, the space/environment physical conditions [1] and, also, the task type

and its imperativeness for the end-user [2].

Lastly, the System Factors are connected to the specific characteristics of the target prod-

uct or service. An ITU Recommendation [2] defines some sub-types of system influencing

factors for web-browsing QoE: “server-related” factors, that are linked to the response time

of the system components, like the Central Processing Unit (CPU), Operating System (OS),

memory or software in use, but also the server link capacity to the Internet; “Content-related”

factors, that relates to the content available on the World Wide Web (WWW), such as

text, media content - images, audio and video -, HyperText Markup Language (HTML),

JavaScript (JS), Cascading Style Sheets (CSS) files and others. Otherwise, the page organi-

zation and structure affects widely the time of page load, due to aspect such as, the amount

of objects and elements, its length and the order they are loaded; “Delivery network” that

consider factors as the network capacity, its contribution to the transaction time (i.e., “is the

sum of all the component times for a given transaction type, where the number and direction

of exchanges and device configurations are specified” [3]) and the presence of elements along

the network that allow caching of requests, resulting in a reduced server response time, con-

sequently reducing the Round-trip delay time (RTT) (that is, the time it takes to send and

process a request until the respective acknowledge is received); “Client influencing factors”

that aggregate the “resource (webpage) loading procedure”, “processing power”/capacity,

browser type, “TCP/IP stack and configuration” and the OS. “All of these IF’s (influencing

factors) impact the user perceived performance of the webpage display when requested by the

user” [2].

The Figure 2.1 shows an illustration of the location where these factors are applied in an

access to a webpage, immediately after an end-user request:

2.1. Quality of Experience (QoE) 7

Figure 2.1: “Delivery chain for a typical webpage.”[2].

As such, the Figure 2.1 shows that the user is the agent who perceives the quality of

what is shown on its device. The access network, core networks and Internet allow the return

of QoS metrics, which can impact on the quality observed by the user (this topic will be

further addressed on the subsection 2.1.2). Finally, the server contains the data content to

be requested and sent to the destination, which by itself has characteristics that can also

influence on the quality of the data received by the user.

And, hence, the QoE is commonly defined as “the overall acceptability of an application

or service, as perceived subjectively by the end-user”[4], which are influenced by the factors

referenced above.

This strategy of differentiating the factors in three different aspects is an International

Telecommunication Union (ITU) Recommendation that several researchers use as a starting

point for their paper works, about this thematic. This entity is an agency specialized in the

fields of telecommunications, information and communication technologies (ICTs) [2], whose

work aim is to provide Recommendations for technical, operating and tariff questions, in order

to provide standardized rules worldwide.

However, all the concept definitions are complex to be translated into standards, due to its

subjectivity, as they rely on human characteristics that are composite and difficult to measure

and complicated of being read automatically by a system.

Some papers about the QoE, besides addressing the concept along with the factors which

influence it, also state features of QoE, that characterize the experience for of each individ-

ual using a service and how that characteristic influences its quality. Accordingly with the

Qualinet White Paper about QoE [1], there are four levels of features: “Direct perception”

based on “sensory” information obtained during the experience, for example, image quality

or synchronism of video image with sound; “Interaction” that comprehends the interaction

between human-to-human and human-to-machine, like responsiveness to actions or efficiency

of the communication; “Usage situation”, that is, in under what conditions does the service is

used, for example, the accessibility or stability of the service; And the “service” level is how

this one is sensed aesthetically, its “usability, joy and ease of use”. The same work [1], also

states that “in applications like web browsing or HTTP-based media streaming, the percep-

8 Chapter 2. State-Of-The-Art

tion of waiting times before streaming or webpage loadings is an important feature to measure

and monitor QoE of such systems”, which means that the time of page loading and of its

components are an important metric to measure the QoE, as it is a “direct perception” for

the end-users. This is a particularly important fact for this work, as this states an important

metric to measure the QoE.

This question, the QoE measurement, is applied to many areas, but with more focus on

the following:

- Video and audio quality, whose QoS measurement can be measured with certainty, as

its metrics are well defined and can be determined by calculate time metrics acquired on

the network response to actions. However, the QoE is more challenging to be known, as

it depends on the end-user perception of the video or audio experience. But, in fact, QoE

measurement is important to increase the end-user satisfaction, which is advantageous

for the media providers, that want more visualizations, in order to get more profit from

it. [5]

- Gaming, is an area with particular interest to measure the QoE, as the end-user expe-

rience is the most important, in order to avoid loosing players due to a poor experience

during the action. This is particularly important to interactive, online or multiplayer

games, that depend on the game responsiveness. Game producers are very interested

in having tools that can help them perceive what their users are sensing, so they can

improve their games quality, as well as, keep the users attached to the game or acquire

new ones, due to a good game reputation. Since this will be translated into revenues

increase to the game enterprise. [5]

- Web Browsing, is an area to which the QoE measurement is important both to

telecommunication operators and webpage developers, in order to perceive how the

service provided is sensed by the end-user, the responsiveness observed or how appeal-

ing is the webpage to him. This is critical to these stakeholders, as it may entail services

termination of contract, leading to a churn rate increase, otherwise, it can cause a de-

crease in the amount of time the users spend on a webpage, reducing the number of

visitors after some time and, consequently, lowering the webpage owners profits. The

QoE measurement, in this area, depends on several factors that match the ones men-

tioned above (Human, Context and System), as the web browsing experience depends on

the device type used (Random Access Memory (RAM) available, CPU model and other

characteristics), the type of Internet connectivity, the end-users intrinsic characteristics

that will imply in the way they sense the experience. But also, the network connectivity

and the webpage host server characteristics can imply on the QoE, although they are

more associated with QoS measurement. And that is the key problem of retrieving a

QoE value from a navigation experience. [5]

2.1. Quality of Experience (QoE) 9

QoE Metrics

In this subsection, it will be addressed some metrics that relate to the topic of QoE, with

focus on the Web, and that are known to be helpful in the QoE measurement, considering

some paper works in this area.

As it was referred before, QoE is an important thematic as the WWW has been increasing

its number of users, which, as a result, opens possibilities of business for website owners. As

such, it is important to keep the focus on the end-users satisfaction, in order to get in return

the highest profit possible, from the content they publish.

Nowadays, web navigators are becoming more demanding about the experience they have

during the time they navigate on the web. This fact, introduces more complexity to the

problem of measurement, as there are more factors involved and with more relation between

each others. Moreover, the factors, as mentioned above, are also, in its majority, subjective,

because they involve intrinsic characteristics of the users, which are diverse and complex to

measure, as well as the environmental factors, which are very diversified too.

However all this complexity, there are already some studies and works that try to state

some metrics to acquire the QoE.

- Page Load Time: that is the average time needed to completely load a webpage;

- Time to the First Byte: that is the time interval needed to receive the first byte response

from the server, immediately after a request;

- Time to the First Paint : the average time to obtain the first visible painting on the

webpage.

- Time to the Above The Fold / Time to The Full Screen: this metric was proposed by

Google and corresponds to the time it takes to the webpage being visible and loaded on

the screen of the user, even if in its totality it is still processing and loading resources.

This metric states the importance of having the first part of the webpage ready to be

showed to the user and giving the idea of a completely loaded and responsive webpage,

even if the invisible part for the user is still not complete.[6]

- Mean Opinion Score (MOS): arithmetic mean of the scores given by each individual

that participated on the classification test. The scores are between 1, that represents

the worst score, and 5, that is the best score possible.

The MOS is a common test to obtain the real end-user perception of a service, generally,

it is associated with tests on telephony systems.

10 Chapter 2. State-Of-The-Art

The MOS is calculated as the mean of individual scores, given by real persons, in a

range scale of 1 (one - the worst score) to 5 (five - the best score):

MOS =

∑N
i=1(Xi)

N

, where Xi is an individual score value (within 1 to 5) and N is the total number of

individuals scores. [7]

The scores given by each individual classify the service in the perspective of the user

experience, enabling the comprehension of how the system is seen by the overall users.

The Mean Opinion Score value is calculated as the mean of all answers of each individual,

which can result in a deceiving final score, due to the opinions distribution. Because

the scores given can be very sparse, mixing very good classifications with very bad ones,

the average final classification may not be representative of all user opinions. Besides

that, additional calculations would help to understand if the resulting score is more or

less trustworthy, like the scores standard deviation, that would detect the amount of

opinions dispersion.

Although it is not very common to use this measure in other areas rather than in

telecommunication systems, the MOS can be useful to obtain a better understanding

of how the target users see a product or service. The users, that participate in the

MOS tests, contact directly with the system or product to be classified and score it

accordingly with the experience. This is useful to understand if the service or product

serve well the target audience.

In the web, the MOS can be useful to classify webpages, according with the responsive-

ness that the page users experience. This measure is an important factor that influence

the websites quality of experience classification, since it is the direct contact between

the end-users and the webpage being evaluated, i.e. the scores relies on the persons who

use it, which provide a more realistic perception of the QoE.

Comparison between QoE and Quality of Service (QoS)

Since the emergence of the QoE concept that it is correlated with the topic of Quality

of Service (QoS). The QoS concept is defined in standards that are specific to products or

services that obey to defined performance rules. [8]

2.2. Internet 11

Some of the most used metrics to calculate the QoS are: the response time, that is defined

as the time between a request and the beginning of its response; the latency, that is the time

between the request sending and the response receiving; jitter, that is the variation of the

latency on a packet flow being transmitted, showing if there is more delay in the transmission

of some packets in relation to others from the same flow; throughput, that is the rate of

packets delivered per time unit; the packet loss, that is the amount of packets lost during a

transmission. [8]

Figure 2.2: QoE versus QoS. [9]

As the Figure 2.2 depicts, the QoS metrics are related with the network performance, since

the QoE is more related with the way the user perceives what is being seen on the application

used. But, since the application performance depends on the network, the network factors

themselves impact on the user-perceived QoE. And that is the reason why the QoS metrics

are also important on the measure of the QoE.

Internet

The Internet is an international network of networks that connects computational devices

all over the world, via fiber, copper, radio or satellite means, using communication protocols.

The Internet had its start in an experiment on connecting computer networks. This project

was leaded by an agency belonging to the United States of America (USA) Department of

Defense, the Advanced Research Projects Agency (ARPA, today known as DARPA) along

with other institutions, like universities or private companies, that helped raise the Internet.

This experiment started with a network compound by four nodes and using the packet-

switching technology, in order to communicate in-between the nodes. The packet-switching

12 Chapter 2. State-Of-The-Art

technology relies on the split of chunks of data (packets) to be sent to the destination where

they are reassembled, in case the packets arrive out of order, as the packets could choose any

path available to reach the destination. The network gets redundant and reliable, because,

in case of failure of one or more nodes or links, the packets can reach the destination, while

there are paths available to reach it. [10]

This investigation project had the aim to explore the paths to achieve a secure and reli-

able way of communication. Each node was known as an IMP (Interface Message Processor),

representing the first gateways, that then evolved to the nowadays routers. However, ques-

tions of compatibility, in terms of the communication signals switched between devices with

different characteristics (mainly, different operating systems), were raised and the solution

came with the emergence of protocols. The protocol term can be defined as the rules that

define the way the communication should occur, but also, the abstraction needed to hide the

differences between the systems that communicate. The first protocol used was the Network

Control Protocol (NCP), that at the time allowed the users to remotely access machines, to

transport files between computers and the switch of electronic mails. But, years later, the

NCP protocol was discontinued and ARPANET and all attached subnetworks started to use

TCP/IP protocols. [11]

After the online release, the ARPANET started to grow with the join of organizations

private networks, like government and universities, to the initial one. The ARPANET had a

policy that prohibited its commercial use, known as the Acceptable Use Policy (AUP). Due to

its amount of traffic, the ARPANET become overloaded and this problem triggered the need

of a response, that came from the National Science Foundation (NSF), with the NSFNET

network solution. Meanwhile, the ARPANET was deactivated. The NSFNET was made of

regional and peer networks connected to the its core backbone. After that, the NSFNET

started to connect educational institutions and research campuses to the regional networks

connected to its backbone.[10]

But, since there were other parties interested in using this network for commercial com-

munications, Internet Service Providers (ISP) started to appear, in order to give a response to

these requests. Nowadays, the Internet is a set of Points Of Presence (POP) located on sev-

eral regions that allow users to have connection to the Internet through their region network

service providers. [10]

In fact, with the increasing number of Internet users and amount of contents there is a

growing concern about the contents’ quality, which has been changing the way the Internet

provides them to the end-users. Those changes are, for example, the integration of new

elements that increase the contents’ delivery speed, such as the case of CDNs.

2.2. Internet 13

Transmission Control Protocol/Internet Protocol (TCP/IP)

The TCP/IP, also called Internet Protocol Suite, is a set of protocols that rule the com-

munications in the Internet, with the aim to allow the communication between networks with

different characteristics. This protocols set is divided in four layers, listed below [12]:

- Application: This is the top layer on the stack of protocols of the TCP/IP model.

And the protocols belonging to it provide the interface needed to communicate between

hosts. Some of this layer protocols are: HTTP, File Transfer Protocol (FTP), Simple

Mail Transfer Protocol (SMTP), Telnet, DNS, Routing Information Protocol (RIP)

and Simple Network Management Protocol (SNMP). These protocols operate over the

protocols belonging to the layer below to it, the transport layer. They allow the user

to perform connections to remote hosts, packet routing, information transfers, by using

services over the lower layers protocols. [13]

- Transport: The main protocols of this layer are the TCP and User Datagram Protocol

(UDP). Since that, this layer has the responsibility to transport data either on a reliable

way, by using TCP connections, or a non-reliable way, using UDP connections. [12]

- Internet: In this layer are treated the addressing, routing and packaging. The main

protocols belonging to this layer are Internet Protocol (IP), Address Resolution Protocol

(ARP), Internet Control Message Protocol (ICMP) and Internet Group Management

Protocol (IGMP).[12]

- Network: This layer does the management of the TCP/IP packets that circulate on

the network and it is responsible for the incomings and outgoing packets [12].

There is another layer model, the Open Systems Interconnection (OSI) Model, that is

compound of seven layers, as shown in Figure 2.3: the application, presentation, session,

transport, network, data-link, physical layers. These layers have a correspondence to the

TCP/IP model, although it is not a direct correspondence, that is, one layer from the TCP/IP

model has common protocols with one or more layers of the OSI model.

14 Chapter 2. State-Of-The-Art

Figure 2.3: TCP/IP Protocol Architecture. Source: [12]

These protocols are the means of communication and delivery of data on the Internet,

consequently, they are related with the services’ quality provided to the users and, further,

their experience. For example, the time took on the lookup for the DNS is an indicative

metric of the quality of service.

World Wide Web Concepts

The WWW, also known as Web, was born by the hands of an British scientist, Tim

Berners-Lee, in the early nineties. The WWW is part of the Internet, as it is a service on the

top of its infrastructure, that uses the HTTP protocol to spread data and make it available.

By using an URL, on a browser, it is possible to access webpages available on the Web, as

it describes the location of their documents (for example: HTML documents, CSS, JS or

multimedia). The URL is a subset of Uniform Resource Identifier (URI)s, that identifies and

describes the location of a resource [14].

The technologies that rely on the base of WWW are: the HTML, that describes the content

of the webpage; Languages as JS and CSS are part of the majority of the webpages structure

and are related with the page look and interaction (respectively); The HTTP protocol, that

allows the retrieval of resources across the web.

The Figure 2.4 shows the languages that are used on the Web and the protocols under

which the Web is supported by.

2.2. Internet 15

Figure 2.4: Diagram of the technologies that compound the Web.[15]

The IP, as the name indicates is the protocol under which all the Internet is sustained,

and makes possible the communication between hosts connected to the Internet, due to the

attribution of IP addresses that will identify them.

The DNS performs the match between IP addresses and domain names (strings), in order

to be easier for humans to remember than the correspondent IP addresses.

The UDP and TCP are used to transport data between systems, although they are differ-

ent from each other, as the UDP is a stateless protocol, i.e., the exchanged messages between

hosts does not imply the confirmation that the messages were receipt successfully [16], and so

it is a non-reliable protocol. In contrast, the TCP is a stateful protocol and so a reliable one,

as it implies the confirmation that each message sent was receipt properly, i.e., the message

was not corrupted nor lost. Usually, this confirmation is made by the reception of an acknowl-

edge message type on the sender side, from the message receiver [17]. In brief, both these

protocols are used to transport data across the Internet, belonging to the transport-layer.

The Transport Layer Security (TLS) is a protocol that enables the transport of messages

in a secure way, as it aims to provide integrity and privacy to the data switched between

entities [18].

Following, it will be addressed with more detail, the HTTP protocol due to its importance

to the Web. Further, the concepts of webpage and the way it is organized and structured will

be studied.

Hypertext Transfer Protocol

The HTTP protocol is a client-server protocol, as its usage relies on the switching of

messages between servers and the client requester. As such, the client, known as the user-

agent, performs requests that are sent to a server that will provide the correspondent response

16 Chapter 2. State-Of-The-Art

message that answers to the request made. Furthermore, this protocol is also a stateless

protocol, as none of the parts involved wait for a response of acknowledge after each message

sent. Stated that, the exchanged messages between client-server are sent over the Internet by

using TCP or TLS over TCP connections, or other identical protocol that serves the same

purpose, in order to keep the data secure during its transmission across the Internet and also,

grant the reliability of the communication [15]. The TCP connections are stateful, that is,

the requester and the sender agents keep a history of the messages switched, to prevent loss

of data and make the communication reliable, what would not be possible if they were not

used due to the reasons explained above.

The HTTP protocol is used for “distributed, collaborative, hypermedia information sys-

tems” at the application level, which is in use since the year of 1990 [19]. Since then, there

were released some versions that improved the amount of features available. The first HTTP

was HTTP/0.9 that allowed the transfer of raw information data across the Internet. This

was followed by the HTTP/1.0 version, that allowed to pass meta-information about the

data being transferred. Still, this version was not sufficient for the needs of proxies, caching,

persistent connections an virtual hosts usage. Then, the version HTTP/1.1 arrived, in order

to supply those needs.[19] More recently, the birth of the HTTP/2.0 represents the optimiza-

tion of the previous version, with characteristics such as: the decrease of the latency effects,

with the adding of header field compression and the allowance of single-connection multiple

transactions. Although that, the HTTP/1.1 is still the most widely used. [20]

In essence, this protocol aim is the fetch of resources, such as HTML, CSS, JS, images

or videos, in order to build an entire document that form the webpage [15]. The resources,

that compose the webpage document, to be fetched can be located in different places, known

as servers, on the Internet, as it is illustrated in Figure 2.5. In this Figure 2.5, the webpage

document is compound by several files, some of them located in other servers, different from

the server that contains webpage base files, such as the HTML and CSS. The server (rep-

resented on the Figure by the name of “Web server”) hostages the base webpage resources:

the style sheet (CSS file, represented on the Figure by the name of “layout.css”), the image

(represented on the Figure by the name of “image.png”) and the HTML file (represented on

the Figure by the name of “page.html”). The other resources: the video (represented on the

Figure by the name of “video.mp4”) is located on a different server (represented on the Figure

by the name of “Video server”), as well as the the “Ads” image (represented on the Figure

by the name of “ads.jpg”), that is located on another server (represented on the Figure by

the name of “Ads server”).

2.2. Internet 17

Figure 2.5: Fetching of documents located in different servers.[15]

The HTTP response of a resource return provides informations like a status code. There

are several types of status codes, that are represented by a number, which the first number

indicates to which category it belongs to.[13] The categories of status codes are the following:

- Informational - 1xx: the codes belonging to this category have the purpose to inform

about intermediate stages before the final response.

- Successful - 2xx: the codes from this category indicate success to the response and can

also provide more information about it, like the type or amount of content transferred

(for example: “206 Partial Content”).

- Redirection - 3xx: These codes provide indications to the user-agent, in terms of the

actions in need to be performed (for example: “305 Use Proxy”).

- Client error - 4xx: these codes, as the name of the category states, provide informa-

tion about client-side errors, for example, “400 Bad Request”.

- Server error - 5xx: this category provide the codes to inform about server errors, for

example, the “500 Internal Server Error”.[13]

In the WWW, it is common to observe websites that use the HTTP over TLS, the

HyperText Transfer Protocol Secure (HTTPS), in order to provide a secure navigation on

the WWW, by transferring the traffic through a different server port than the one used to

forward the HTTP traffic. For that, the client triggers the process of the TLS handshake

with the server, and after this process is finished, it is performed the HTTP request, under a

secure session.[21]

18 Chapter 2. State-Of-The-Art

Webpage

A webpage is a document that can be displayed on web browsers, and the collection of

webpages that are interconnected is known by the term of website. The host of a website is

denoted as a web server. These concepts are important as they are elements that are part of

the WWW.

There are two main types of webpages: static and dynamic. The dynamic pages can be

separated, for matters of definition, in two different processing modes, the client-side scripting

and the server-side scripting. Although, nowadays, dynamic pages are the most common on

the Web, as static webpages are on the verge of extinction, due to the fact of only return

static content and use few technologies, which make them less attractive to the end-user (as

it will be further explained in this section).

A static webpage, also named flat page or stationary page, always presents the same

content, that is, the webpage shows to every user the stored content on its web server.

The client (browser of the user computer) performs a HTTP Request of the intended

webpage URL, and in return the web server, that hosts the webpage, returns the HTTP

Response with the corresponding HTML document of the requested URL. This message

switching process is illustrated on the Figure 2.6.

Figure 2.6: Process of request and return of a static webpage.

A dynamic webpage displays different contents on each access, which can depend on

circumstances as the user login on a webpage, or other type of interaction that show the user

interests, or the user history. Other conditions like changing the contents depending on the

day, month, or time are also events of a dynamic webpage. As such, there are two types of

dynamic webpages: client-side webpages and server-side webpages.

The initial process of a dynamic webpage request, to the web server, is identical to the

process of a static webpage.

In the case of a client-side webpage, which processing is called client-side scripting, the

content displayed to the user changes accordingly with his actions on the page (e.g., button

clicks, menu selections, enable/disable audio/video). The page contents only depends on the

user interaction with the page, as the user browser has all the code (web scripts) needed and

2.2. Internet 19

the content displayed is generated locally, on the client-side - browser. Hence, the process

request, as referred above, occurs in the same way as in the case of a static webpage (with

HTTP Request from the client-side to the web server). After that, the web server answers

with an HTTP Response with the webpage scripts. The web scripts, like HTML, CSS, JS,

Shockwave Flash File (SWF) files, returned by the web server response, will trigger changes

on the webpage look and content after user interactions with the page. This mechaninsm is

illustrated on the Figure 2.7.

Figure 2.7: Client-side scripting process.

In the other dynamic page type, the server-side webpage, known as the process of server-

side scripting, the content displayed is customized according with informations retrieved by

the user (for example, login, frequent or related searches). The page content displayed is

defined on the web server by scripts that run there. These scripts/programs are programmed

with back-end languages. There are multiple types of languages and frameworks to run on

the server-side, some of the most common ones are Hypertext Preprocessor (PHP), Python,

Java, Ruby (languages), ASP.NET, Django, Ruby on Rails (frameworks).

After the client webpage request to the web server, the server will process it, by executing

the programs on the server-side and, therefore, the web server will return the data needed to

compose the webpage on the client-side. This process is illustrated on Figure 2.8.

20 Chapter 2. State-Of-The-Art

Figure 2.8: Server-side scripting process.

Normally, both dynamic types coexist, that is, both the server-side scripting and the

client-side scripting happen together in a dynamic webpage.

Related with the term of webpage is the website, that consists on a set of webpages linked

with the same root domain name.

Document Object Model (DOM)

The Document Object Model (DOM) is an interface for HTML and Extensible Markup

Language (XML) documents that permits the representation of the webpage document as

objects and nodes, so languages, like JS, can access and manipulate the webpage document

content by accessing its elements. [22]

Some of the data types made available on DOM API and that can be accessed by scripting

languages, in order to perform actions over them, for example: the document, element and

attribute. These types allow to execute methods that return objects by searching its id or

name, or DOM events, like scroll on the page or return the status of the webpage document,

that can be[22]:

- uninitialized : that indicates that the document loading is not initialized yet;

- loading : indicates that the document is being loaded;

- loaded : indicates that the document already loaded;

- interactive: indicates that the webpage has loaded enough to allow the interaction by

the user, but some resources may not still be loaded;

- complete: indicates that the webpage is fully loaded and also its resources.[22]

Also, scripting languages, like JS are allowed to execute scripts, to do so, it is needed

to specify in the HTML document the element script, that contains a scripting language

function, that will be triggered when the document is being loaded.[22]

2.3. Browser Automation 21

The increasing complexity of the webpages raised the worrying about the users experience

during the process of accessing, in terms of the loading perceived lag and how responsive they

appear to be.

Browser Automation

This section will address the theme of web browsers automation, in order to allow the

manipulation of the browser without human intervention. Furthermore, it will compare tools

for that purpose and also, to use the browsers in a headless way, that is, use the browser

without the need of using a Graphical User Interface (GUI). Also, it will be made an analysis

of the current browsers market share.

Browsers

A browser is a software that allows users to navigate on the WWW, in order to access and

render websites or resources, like multimedia (images or videos) and non-multimedia content

that compound a webpage (JS, CSS, HTML,..), and these contents are located by their URL

or URI, inputted by the end-users on the browser. The URL address supports the HTTP

protocol, but also other prefixes (URI), such as FTP, for the transference of files from remote

servers or file prefix, for the opening of local files.

Moreover, a browser can save history and cookies, that is data retrieved by the website

that is saved on the user desktop, with the purpose of save it for a future access to the same

webpage. This way, the end-user avoids the need of reintroduce repeated information, for

example, login credentials or content preferences.

The first browser was invented by the scientist Tim Berners-Lee, that is also the inventor

of the WWW. Nowadays, the scientist is the Director of the W3C, that develop technologies

for the WWW [23].

Currently, the most used popular browsers, that is, with the highest number of users, are

Google Chrome, Safari, Internet Explorer and Edge, Mozilla Firefox and Opera.

The Figure 2.9 shows a graphic with the evolution of the browsers market share along

the period between July 2016 and July 2017. It is possible to observe that, by far, the

Google Chrome browser has the highest market share of them all, showing a growth along

the time period considered. Following is the Internet Explorer browser that, although having

the second higher market share, is experiencing a decline. Next, the Mozilla Firefox browser

appears right below with a little growth of its market share along the time period. Finally,

the least used browsers, and which show a constant market share, are the Microsoft Edge

followed by Safari.

22 Chapter 2. State-Of-The-Art

Figure 2.9: Desktop Browsers Market Share Chart, between the month of July from year
2016 to the same month of year 2017. [24]

The Figure 2.10 shows the percentage of market share mean for the same time period.

The conclusions to be observed are the same stated above, by the observance of the Figure

2.9.

Google Chrome [25] is undoubtedly the one with the highest market share, also other

webpages (for example: W3Schools webpage [26] or StatCounter webpage [27] or User Agent

Breakdowns Wikimedia Foundation webpage [28]) that have studies about desktop browsers

market share agree that the highest slice of the market belongs to it. This browser is free of

costs for the end-user and also compatible with several operating systems (Windows, Linux,

macOS) [25]. The other browsers market share statistics vary according with the market

share statistic source consulted, although the ones referred above are the most popular and

have, next to Google’s browser, the higher market shares. For example, accordingly with the

w3schools.com webpage [26], that counts with 45 million visitors per month, users accesses

were made mostly from Google Chrome and Mozilla Firefox browsers (vide Table 2.1). The

least used browsers were Microsoft Internet Explorer (IE)/Edge, Apple Safari, Opera and

others less known or older.

Browser Name Market Share %

Chrome 75.1

Firefox 14.1

IE/Edge 4.8

Safari 3.6

Opera 1.0

Others 1.4

Table 2.1: Most Popular Browsers Market Share, on March 2017 (Source: [26])

Mozilla Firefox [29] is a free and open-source browser, that belongs to the group of

most popular browsers. Beyond these advantages, this browser is also compatible with several

2.3. Browser Automation 23

operating systems (Linux, Windows and macOS).

Internet Explorer [30] is a product of Microsoft and its system requirements only allow

its usage on Microsoft operating systems (Windows). Microsoft Edge [31] is also a Microsoft

browser, whose characteristics in terms of system requirements are identical to the Internet

Explorer, as the browser only works on Windows 10 operating system.

The Safari browser [32] is, as the Internet Explorer or Microsoft Edge, an exclusive

browser of macOS operating systems, as it is a creation of Apple. This characteristic of

system requirements exclusivity, reduce the number of possible users of these browsers, which,

consequently, result on lower market shares.

The Opera browser [33] is free of costs and is compatible with Linux, Windows and

macOS operating systems and was developed by Opera Software. It has the lowest market

share in the scope of the most popular browsers, as it is visible on the Figure 2.10.

Figure 2.10: Desktop Browsers Market Share Chart percentage mean, between the month of
July from year 2016 to the same month of year 2017. [24]

User-agents

When the web users request a webpage, the browser sends the user-agent in the HTTP

header of the request. The user-agent is important because it has information about the

browser and which version is being used and which is the device’s operating system from

where the request for the webpage came from. With this information, the webserver1 can

provide different content or return a different layout of the webpage, accordingly with the

characteristics of the requester user-agent.

The user-agent is sent as a string that obeys to certain format defined by a Internet

Engineering Task Force (IETF)2 standard. That standard states that the user-agent field

1Briefly, a webserver is a server that hostages the source files of a webpage or a website and that accept
HTTP requests and answers with HTTP responses.

2“is a large open international community of network designers, operators, vendors, and researchers con-
cerned with the evolution of the Internet architecture and the smooth operation of the Internet”[34]

24 Chapter 2. State-Of-The-Art

is compound by one or by a sequence of products identifiers (name and its version), op-

tionally followed by comment(s) that together represent the user-agent software and its sub-

products.[35] Although there is this standard, it allows some freedom in what concerns to its

content, there is no string pattern to be followed by every user-agents.

Beyond the desktop and mobile browsers user-agents, there are several other types of

them. For example, there are user-agents for: offline browsers, crawlers, gaming consoles,

e-mail clients and collectors, feed readers, link checkers, validators.[36] Although that, the

focus of this work will be in the desktop and mobile browser user-agents.

Below, there is an example of a desktop user-agent and the respective explanation of the

information that can be extracted from it:

- Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:47.0) Gecko/20100101 Firefox/47.0

This user-agent string means that the browser is Mozilla compatible with the version

5.0. It uses a X Window System, the operating system is Linux and runs over a sixty

four bit Intel CPU and the version of the Mozilla layout engine (Gecko) is 47.0, the

browser’s build date was 1st of January of 2010. Finally, the name of the browser,

Firefox, and its version, 47.0.

For the mobile browser user-agents, it is common that their user-agent has the word

“Mobile” on the string. An example of a mobile user-agent is the following:

- Mozilla/5.0 (Linux; Android 6.0.1; SM-G920V Build/MMB29K) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.36

Headless Browsers

An headless browser is a browser without GUI. This type of browser is useful to be used

in devices that have no graphical capabilities, or to be used to automation and tests. In this

section, it will be addressed some examples of this type of browsers:

PhantomJS [37] is a headless browser, that is, a browser without a GUI, but is also

a non-real browser as it is not used by real users (unlike Google Chrome or Mozilla Firefox

browsers), so its purpose is only the automation of webpage interactions. This “fake” browser

has a JS API and allows to [37]:

- Access and render webpages;

- Take screen captures, by capturing what is on the webpage;

- Monitor page loading, such as, the sniffing of all the webpage resources requests and

responses;

2.3. Browser Automation 25

- Export the HTTP Archive (HAR) files: log file that gathers the data captured during

the monitoring task.[37]

Splash[38] is a JS rendering browser that is controlled via its HTTP API. This browser’s

features include:

- The processing of multiple webpages in parallel;

- Take screen captures;

- Disable elements in the webpage, like block images or ads, in order to enhance the

webpage rendering performance;

- Execute JS in the webpage;

- Return HAR files containing rendering information;

- Write scripts in Lua3 programming language. [38]

BrowserKit Component[40] is not a browser, but simulates the behavior of one. This

tool allows to:

- Perform a HTTP request for a webpage;

- Perform clicks and submit forms in an automated way;

- Store, retrieve and create cookies;

- Store the navigation history.[40]

These headless browser tools are useful for webpage developers that want to test their

webpages, but to measure the QoE they are not, although there is the option to automate

some user-like tasks, the browsers are not real and consequently, the experience is not close

to a real one.

Thus, to accomplish this objective, to get as closer as possible to a web user experience,

there are tools that can automate real browsers and other tools that can make the automation

headless, as addressed on the next subsections.

3The Lua language is commonly used on development of applications such as games or web applications,
but is also used on image processing. [39]

26 Chapter 2. State-Of-The-Art

Browser Automation Tools

In order to create an application that simulates the behavior of a real user, while accessing

to a webpage from a browser, it is imperative to automate the browser. For that purpose,

there are tools that can perform that automation, such as:

Selenium (Selenium Webdriver) [41] is a free of costs tool, open-source and free of

license for commercial usage, as it uses the Apache License 2.0 [42], which does not restrict

the commercialization of the product that uses it. This tool is compatible with real browsers,

such as: Google Chrome, Mozilla Firefox, Internet Explorer, Safari and Opera. Moreover, it

has a community of users and documentation, which helps to reduce the learning curve. It

also has support for several programming languages, they are: Python, Ruby, NodeJS, C#

and Groovy. In matter of features, it allows the interaction with webpages, through click

functions or text input on a webpage, for example.

A Webdriver is a interface that allows to control the behavior of browsers remotely and

is commonly used to write tests for browser automation.[43]

For example, the Google Chrome browser webdriver is the ChromeDriver, that is an open-

source tool available for several operating systems, like MacOS, Linux and Windows on Desk-

top devices, but also for devices running the Android operating system. The Chromedriver’s

features are, for example: webpage navigation, user inputs and JS execution to trigger actions

on the webpage.[44]

Another example of a known browser webdriver, is the Mozilla Firefox webdriver, named

Geckodriver that uses the Marionette[45] remote protocol, in order to allow, similarly to the

ChromeDriver, to replicate user-like actions. This way the webdrivers allow the manipulation

of user-agents in order to simulate the users behavior while using a browser. [46]

Sahi [47] is a tool that allows browsers automation, that has two types of features pack-

ages: a non-free version (Sahi Pro) or the free version (Sahi Open-Source), this one with

limited functionalities available. This fact, of features restrictions, limits the possibilities for

browsers automation. The support and community, due to the reason above, is limited and

closed, having focus on its clients. This tool, as it happens with Selenium, permits the usage

of real browsers: Google Chrome, Mozilla Firefox, Microsoft Edge, Internet Explorer and

Safari.

Watir [48] is an open-source Ruby library for browsers automation, similarly with Sele-

nium, it can use real browsers. This library is powered by Selenium, as a derivation of the

Selenium 2.0 API. Despite that fact, the Watir only has support for the Ruby language.

2.3. Browser Automation 27

Headless Experience Tools

In order to run applications without a GUI, there are at least three possibilities, that are

very similar to each other. Following, it will be addressed the characteristics of each of the

three identical tools. All the tools addressed below are based on the free X Window System,

commonly known by X, that provides management of GUIs on computers that use Linux or

Unix-based operating systems, with cross-platform support that uses the client-server model.

[49]

By cross-platform it is meant to refer that the X has compatibility with systems with

different characteristics, such as: different operating systems, different CPUs or different

hardware computing systems. [49]

And the use of a client-server model refers to the existence of two principal entities: the

server and the client. The client, that commonly refers to the user machine, consumes/accesses

the services provided by the servers, by performing a request to this one. The server, that

commonly refers to a remote machine, can handle several clients requests and be able to

process the requests and construct the responses that will be sent to the respective clients.[50]

Despite that definition of a common client-server model, the X system uses the client-server

model in an inverted way, that is, the X server, that is a program, runs locally on the user

device and the X client, that is an application program, runs on a local or remote machine,

and the X server can access to one or more X clients. The X server has the following tasks:

manage the access to local graphics cards, display screens and input devices (like mouses or

keyboards) and, also, perform the requests of the intended graphical operations. In that way,

the X server services are:

- Input handling : sending of events from input devices, such as keyboards or mouses, to

the clients via the window manager client, which will manage windows-related opera-

tions (for example: close, open, move or resize). [51]

- Window services: compound by the tasks of create or destroy windows or give informa-

tion about the them to the client. [51]

- Graphics: related with drawing and bitmap operations. [51]

- Text and Fonts: include text input in certain locations using specific fonts and sending

information about the fonts available. [51]

- Resource Management : provide database for the clients. [51]

The X client displays the result of the requested graphical operations on the X server,

without using graphical resources from the machine where the X server in running on. The

communication between server and client in the X Window System is the X protocol, which

rules the messages switched between them. [51]

28 Chapter 2. State-Of-The-Art

Next, there are the three tools that can be used in order to run an application in a headless

way. Despite their similarities, referred above, they work in different modes, and so, it will

be addressed their specificities. The tools are:

- X Virtual FrameBuffer (Xvfb) : a X server, compatible with Unix systems, that

emulates a framebuffer4 with an unreal display that runs all its graphical operations on a

virtual memory. And so, it can run applications in a headless way, making it compatible

with systems without graphical hardware or with none input devices. In that way, the

Xvfb allows the configuration of display (fake display) characteristics (however it allows

other types of configurations), for example: width, height, depth. [52]

- X-based Virtual Network Computing Server (Xvnc): is a Unix Virtual Net-

work Computing (VNC) server, based on the X server standard, that is free and cross-

platform. It behaves like two servers, as for the applications it is an X server, where

the applications display themselves, but for the VNC users it is a VNC server. [53]

The VNC is a software for remote control and interaction with computers desktops and

is compound by a server and a viewer. The server generates the display and the viewer

is responsible for the drawing of the display on the user screen. [54]

The Xvfb tool allows the configuration of some options for the display creation (al-

though it allows other types of configurations related with the connections or where the

application can be run from), for example: width, height and depth. [53]

- Xephyr: it is a kdrive5 based X server that display its outputs on a host X display,

that is used as a framebuffer. [56]

The Xephyr also allows the configuration of the display dimensions: width and height.

[53]

Existing Solutions

This dissertation was triggered by the need to evolve from the ArQoS NG solution, that

has its focus on the QoS of the services provided by the telecommunication operator, to some

solution that could allow the extraction of metrics that gather the QoE, with the maximum

approximation to the QoE perceived by real users.

These days, there are several web tools focused on webpage developers, that want to keep

their pages on the top of the most well scored by the web engines, and make the page more

appealing to the user and reduce its early abandonment, increasing the time the user spends

on the webpage visit. To do so, there are tools which focus is on the webpage structure and

4Area of the RAM memory where the information is kept to be displayed on the device screen.
5X server designed for environments with low memory capacities. [55]

2.4. Existing Solutions 29

organization, but are also good tools to perceive part of what the user perceives, as they

return time metrics about the page responsiveness. Although, in fact, these tools cannot, by

themselves, return the QoE of the page, as they do not consider webpage interactions.

Google PageSpeed Insights[57] analyzes the content of a webpage, for desktop and mobile

devices. It evaluates the HTML structure, the organization of external resources (images,

JS and CSS files) and the server configuration. Then, returns suggestions to improve the

webpage performance, in terms of time to above-the-fold load and time to full page load and

classifies the page with a score (within 0 and 100) and a classification (“Good”, “Needs Work”

and “Poor”). [57]

Pingdom[58] is a non-free tool that evaluates several aspects of a webpage, such as: web-

page availability, interactivity, page speed (like, load time). But also provides alerts for

webpage malfunctions, tests the webpage from multiple locations and the webpage structure

and external resources usage. Then, provide reports to the user. [58]

WebPageTest [59] is an open-source tool that can test a webpage from different locations

using real browsers (Google Chrome and Internet Explorer). It allows the user to test his

webpage on scenarios of multi-step transactions, video capture and content blocking, but also

in terms of load time, time to the first byte and time to start the render. [59]

But, in fact, the above tools are not easy to automate nor embrace all the stakeholders,

for example, the telecommunication operators.

Today, there is an increase of works that address the theme of QoE estimation. In this

context, there are several papers that state the metrics that can provide clues about the

quality perceived by the end-users. Some of the research is also about the development of

software tools that can acquire and return the quality of experience for services, and the web

browsing is one of the concerns, specially in the mobile scenario. This way, following are

presented some solutions which aim is the measure of the experience and service quality

Intraway QX Suite

This is a tool that emulates the behavior of the end-user and measures the experience

through the use of automatically programmable probes.

The Intraway solution has the ability to: detect defects outside the network, that have im-

pact on the clients experience; Perform measures on applications with Over-The-Top (OTT)

contents, that consist on multimedia content (audio, video or other media type) that is trans-

ported over the Internet as an isolated service instead of using an operator service, and are

examples of this type of OTT content applications: the Youtube, the NetFlix, the WhatsApp

30 Chapter 2. State-Of-The-Art

or the Skype; Perform measures on the operator Video On Demand (VOD) (systems that

display media content that the user selects when, where and which part to see) platform, in

order to evaluate the connections reliability to the online games servers.

The tool also allows to perform: Speed tests, in order to measure the connection down-

stream and upstream bandwidths and latency; For the web browsing it provides the times

to full page load, but also, the time to the first frame received and the network interface

bandwidth; It performs pings to acquire the network latency, jitter and packet loss; It does

download and upload of files to measure the download and upload bandwidths and times,

bytes sent and received and the time it takes to connect to the server that hosts the files; In

the video streaming field, it measures the streaming bandwidth, and identifies buffering and

pauses timings; It also measures the UDP performance (in gaming, Voice over IP (VoIP) and

others) in terms of latency, jitter, packet loss; It measures the DNS lookup time for IPv4 and

Ipv6; And, performs packet sniffing to catch the TCP/UDP packets.

The Intraway QX Suite also provides reports with the Key Performance Indicators (KPI)

collected, and the possibility to define thresholds to each of them and display the data by

history or by specific time intervals. Also, it provides information about the time the peaks

occur. [60]

Figure 2.11: Intraway Qx Architecture.[60]

The tool uses three types of probes to perform the measures, like it is shown in the Figure

2.11: the Small-PC Probe, which focus is on the measurement of the user experience on video

streaming; The Router Probe, based on Linux, is a probe that makes measures of the most

2.4. Existing Solutions 31

common KPIs of the QoS and also performs measures on video streaming, to the level of its

transmission across the network; And lastly, the Smartphone Probe is an Android application

developed to evaluate the Android mobile device users, as well as, measure KPIs related with

the quality and performance of the mobile network. [60]

The probes used are deployed behind a Customer Premises Equipment (CPE), fix or

mobile, in order to return the status of the network service. [61]

Firelog

The Firelog is an hybrid probe that performs measures in active and passive ways in the

domain of Web navigation. Its aim is to detect low QoE (for example, a high page load time)

and diagnose what are the causes.

This tool is constituted by three different modules: a non-real headless (without a GUI)

browser, the PhantomJS (vide 2.3.3); a network packet analyzer, that performs measurements

at the transport-layer; And an active measurements monitor, which aim is to gather infor-

mation from the network layer. These components perform events and metrics capture, and

store them on a local database, in order to evaluate the current web browsing session, in

search of the causes for high timings of web page loading.

This tool tests are performed in three steps: The first step corresponds to the URL

browsing, in order to extract the metrics on the application level and gather all the fetched

objects from the webpage; The second step corresponds to perform traceroute commands

to all the webpage objects loaded, in order to collect path informations to all the webpage

objects and the measuring of the RTT to the webpage IP address. In the final step, all the

information gathered is stored for later analysis.

The main metrics collected are the following: the page load time, the time to the reception

of the first byte, immediately after the HTTP GET object request, the TCP handshake time,

the object reception time and its length, the RTT to the destination and the size of the page,

defined as the sum of all objects sizes.

This tool is compatible with Unix/Linux environments. [62]

QoE Doctor

This tool uses automation techniques to reproduce the interaction of a real user using a

mobile device. The tool automates interactions, such as the publishing of posts on Facebook

and, at the same, performs time measurement of the latency perceived by the user, through

the changes that occur on the mobile screen.

32 Chapter 2. State-Of-The-Art

Figure 2.12: QoE Doctor Overview.[63]

The QoE Doctor analyzes several layers of the network (application, transport, network

and radio), as can be observed on Figure 2.12, with the objective of detecting the causes of

a good or a bad user experience. Although that, this tool was developed only for Android

platforms and only performs measurements for popular applications, such as the case of

Facebook (publish posts and update the news feed), Youtube (video visualization), Google

Chrome and Mozilla Firefox (to load a webpage).

The components of the QoE Doctor shown in Figure 2.12 are: the QoE-aware UI controller

that runs on the mobile device and automates the user interface, in order to reproduce the

user behaviors, like button clicks or page scroll, and collects, simultaneously, data from the

application, transport, network and radio layers; The data collected from the layers, referred

previously, is further analyzed in offline mode, by the Multi-layer QoE Analyzer component.

The metrics obtained are: the user perceived latency, in user-tasks, for example, the

news feed update or the upload of a post to Facebook, or the stalls during a video playing

(on Youtube); It is also gathered the video initial loading time and the re-buffering ratio (on

Youtube); In web browsing, it is measured the webpage load time; The tool also gathers traffic

logs from the transport and network layers, allowing to measure the mobile data consumption,

during the user behavior replaying; And gathers information from the radio link layer that

allows the measurement of the device battery energy consumption, during the test.[63]

2.4. Existing Solutions 33

Comparison of QoE Estimation Solutions

The Table 2.2 gathers the main metrics collected by the tools described above, the Intraway

QX Suite, the Firelog and the QoE Doctor.

Metrics Intraway QX
Suite

Firelog QoE Doctor

DNS Lookup Time Yes – –

TCP Connection
Time

– Yes —

Time To The First
Byte (TTFB)

Yes Yes –

Response Time – Yes –

Page Load Time Yes Yes –

Initial Page Load
Time

– – Yes

Update news feed
Time (Facebook
website)

– – Yes

Re-buffering Ratio
(Youtube website)

– – Yes

File Upload /
Download Time

Yes –

Packet Loss Yes –

Latency Yes Yes

Table 2.2: Table with the main metrics collected by the three solutions.

There are other differences like, the devices where the tools run, as can be seen on Table

2.3.

Device Intraway QX
Suite

Firelog QoE Doctor

Mobile Yes – Yes (Android)

Desktop Yes Yes —

Table 2.3: Table with the target devices of the referred tools.

As previously referred, these tools have different characteristics and collect different met-

rics, although with some similarities between some of them, as can be observed on Table 2.2.

The main differences, besides the metrics returned by each of them, are the devices where

the software applications run. Some are focused only on mobile devices, like the QoE Doctor,

34 Chapter 2. State-Of-The-Art

others, like the Firelog, has it focus on a performing tests on a “fake” browser (not used

by real users), that however, allows the emulation of different user-agents. And lastly, the

Intraway QX Suite can test several devices types, as it does not run on them, but in probes

behind the user devices.

In fact, these tools have the same purpose of measuring the QoE perception of a real user

on scenarios like the web browsing, that is the focus of this master thesis.

Conclusion

This chapter intent was to approach all the themes that were related with this dissertation

title, in order to serve as an introduction and contextualization to the next chapters. For that,

were approached themes from the most core concepts, as the Internet concepts to tools and

existing solutions that could be taken as an input to new research work on the Web QoE

measurement area.

3

SmartBrowsing Solution

In this chapter, it will described the proposed solution. The SmartBrowsing solution

has the aim to automate a web navigation scenario (the access to a webpage), in order to

extract informations about it. Moreover, the solution must be able to automate scenarios

of common user interactions. Hence, in this chapter, the solution will be presented through

the description of the requirements and diagrams, such as, use cases, flow and the system’s

architecture.

Overview

The collection of experience-related metrics implies the need to extract data from a real

navigation. Therefore, this work focus is on the development of an application that will

impersonate the behaviour of a real user, while accessing to a website. This tool must access

to webpages by using a common browser, in order to approximate this automation to a real

web navigation. Hence, the objective is to mirror a real UX, by using real browsers and

simulate different types of user-agents, along with the possibility of automate interactions

with the webpage.

This solution came in the sequence of the need to evolve from an earlier existing solution:

the ArQoS solution, which focus is on the extraction of QoS metrics and does not allow the

testing of generic interaction scenarios (such as, login, logout and scroll actions). In order to

download the webpage and obtain some measures, related to its access, the existing ArQoS

solution uses the wget package, which is a command line tool.

The tests performed with the application should be made under different conditions of

network and hardware capabilities, allowing the possibility to trace profiles based in all these

variants, with the aim of inferring about what does have a significant impact in the real

end-user Quality of Experience. This means that, although there is no option to configure

35

36 Chapter 3. SmartBrowsing Solution

the network or the hardware device, the application should run in different devices connected

to different networks, if the device is configured with the needed packages and tools. The

SmartBrowsing must compatible with the ArQoS probes, for future integration.

This program (bot) should have a configuration file as input, in order to define the condi-

tions under which the tests will be executed. In this configuration file, it should be possible

to setup several fields, in order to have the desired testing scenario. Some of the setups

available to be configured must be: the browser, the URL of the webpage to be tested, the

“display”1 resolution to be emulated, the user-agent, the interaction(s), the enable or disable

of the webpage download (all files and media that are part of the webpage), and the paths to

where the output files, such as logs and screen captures must be saved to.

The program should start by performing the access to the URL, of the configured webpage

to be tested, and then, extract metrics, load information about the webpage components.

And, also return, for example, the status code of the webpage and for each of its loaded

components.

Moreover, it should allow to take “screen” captures along the test, with the purpose of

being possible a future analysis of those screen captures. These screen captures can serve as a

proof for some of the information extracted or, otherwise, help to diagnose problems occurred

during the test.

Additionally, as referred above, the application must have the ability to perform interac-

tions with the page. In order to approximate the simulation to a real human user experience.

These interactions should be performed by doing clicks and scroll tasks on the webpage,

and further measure the time it took to accomplish each interaction, and gather the loaded

components information.

This program should perform the tests on a real browser as if a real-user was accessing it

in the anonymous/private/incognito mode. Since that, topics of cache and cookies were not

considered in this solution.

Use Cases

In Figure 3.1 are visible the options available to configure the input file. This configuration

file is a JSON compound by several fields, where can be defined: the browser, with two

possibilities of being filled with: Google Chrome or Mozilla Firefox ; The webpage URL; The

user-agent, that if it is left empty will be assumed the default of the device system in use; The

“display” resolution, that can be overlapped by the resolution of the user-agent defined; the

possibility of download the full webpage, i.e., all the media, for example, images or videos,

and files of the page, such as the HTML, JS and CSS files.

The browser to be used, during the test execution, should be an option of two possibilities,

1The word “display” appears surrounded by quotation marks, due to be a headless display and not a real
GUI, this will be further addressed on the system requirements, in this chapter.

3.2. Use Cases 37

the Google Chrome or Mozilla Firefox browsers. The reason for these choices rely, mainly, on

these browsers market share, that will be further explained (vide section 4.1 from chapter 4),

and on the system requirements (vide section 3.3). The availability of two browser options is

to allow the analysis of the differences between tests executed on different browsers.

The URL to be configured defines the webpage that will be tested, however, when login

or logout interactions are configured, the solution must return, besides the time it took to

perform the interaction, the time it took to load the webpage requested after the interaction

(for example, in the login case, it must return the time it took to load the webpage requested

after the login success).

The user-agent field must be configurable or not, in case of no user-agent setup, the

program should assume the default one, which is the system’s user-agent.

The “screen” resolution is a required field to be configured.

The download of the webpage and its resource must be optional, that is, it must be

possible to define, in the configuration file, if it is to be done or not. If the test is configured

to download the webpage, this download must be outputted to a compressed folder. Besides

that, it is needed to define the location to where this compressed folder will be saved to.

Other possible configurations should be interactions with the webpage, such as: login,

logout, scroll down to the bottom of the page, or to a certain position on the page. In the

interactions case, it must be possible to configure one or more by test. Although, it must be

optional to setup interactions on the configuration file, as it must be possible to run a test

without interactions configured.

The interactions are performed by the order of setup in the input configuration file.

To setup the configurations to be performed, it is needed to define which is the type of

interaction and which are the actions to execute, by order, to accomplish the task. Also,

it is needed to specify the element, which visibility on the “screen”, will state whether the

interaction was successfully finished or not.

Finally, the configuration file needs the paths (compound by the directory path plus the

file name) to where the output files (logs, results, “screen” captures and, eventually, the

zipped folder, containing all the webpage’s files loaded) are going to be saved on the device’s

system, where the test is executed.

38 Chapter 3. SmartBrowsing Solution

Figure 3.1: SmartBrowsing Use Case Diagram.

Requirements

This system should be developed under certain requirements that are crucial to the com-

patibility of this solution with the ArQoS probes. These requirements will justify some of the

choices made in terms of the technologies adopted. Those requirements are: the SmartBrows-

ing solution must have no graphical interface, that is, no GUI, in order to be possible the

integration of the solution in the ArQos Probes, as these probes have no graphical capabilities.

Furthermore, the solution must run on a Linux system. Besides the fact that Linux is

an open-source operating system, it is the operating system running on the ArQos Probes.

Since that, it is imperative to have a solution that can run on Linux.

Beyond these requirements, there are others needed to fulfill the purpose of the solution

in matters of QoE. The proposed solution must be able to return metrics that could help

the measure of QoE, and also be able to take “screen” captures, although the requirement of

running in devices without graphical processing capabilities as previously referred.

Furthermore, the solution needed to perform tests on a scenario as much real as possible,

in order to be closer to a real navigation on the Web. In that way, the use of real browsers,

3.4. Flow Diagram 39

that is, browsers commonly used by real users, like Google Chrome and Mozilla Firefox was

imperative. The reason beyond the browsers choice is explained in the following chapter, in

section 4.1.

Also, the solution must consider the possibility of emulating different user-agents, to have

more variables in the equation to determine if these differences (device and browsers used)

impact on the QoE.

Other requirements that add value to the application would be the possibility to configure

tests to save the full webpage accessed, and return files: with results (JSON file), to be

processed by a management system; Log files, one for the clients of the application service

with few details about the steps taken during the test, and another for the support team,

with more specific details of the steps and tasks performed by the program, to help in case

of an abnormal behavior or error of the solution.

Overall, the solution must provide a totally automated tool, that allows the configuration

of tests. The tests must be configurable to acess a webpage, through the use of real browsers.

The solution must have the capability to gather information and perform interactions without

human intervention.

Flow Diagram

Figure 3.2 shows the program flow: which actions are performed, which decisions need to

be taken and which are the program inputs and outputs.

Initially, before the program start, it is inputted a configuration file with the informations

wanted to test a specific scenario. This input file is a JSON that will be read right after the

start of the program is triggered and its configurations are assumed, to be considered along

the program run.

After the reading and processing of the inputted configurations, the headless “display”

is created and initialized, in order to run the application program without the need of a

graphical interface.

Following, is the initialization of the Selenium Webdriver, that is the tool that will allow

the browser automation, and which is the mean to perform interactions with the page. The

Selenium Webdriver is initialized accordingly with the browser chosen and specified on the

input configuration file: if the browser chosen was the Google Chrome, then, the webdriver

used is the Chromedriver ; Otherwise, if the chosen browser was the Mozilla Firefox, then the

driver to be used is the Geckodriver.

The tests are performed without using cached data, as the webdriver runs a browser

session as if it was in anonymous/private mode. And, also, only one access is made to the

configured URL.

Next, with all the needed initializations concluded, it is triggered the access to the web-

40 Chapter 3. SmartBrowsing Solution

page, using the URL read from the configuration file.

After, are extracted webpage informations, such as the status code, and temporal instants,

that correspond to triggered events, that will be used to do further metrics calculations.

Furthermore, it is returned a list of the webpage components, that were loaded after the

access to the webpage, along with informations about each, such as: its identification href

(that is a HTML attribute with the URL of the destination webpage), the status code and

temporal instants.

From this point, the program can proceed to the closing and saving, on the directory path

defined on the configuration file, of the log files and the application program ends. Or, if

there were one or more interactions configured on the input file, then the program proceeds

to perform the interaction(s), and measure the time it took to complete it. The interactions

available to be configured are: login, logout or scroll down to the bottom of the page or to a

certain position of this one.

Immediately after each interaction, are extracted the loaded components and also infor-

mations and temporal instants of each of them. This succession of events occur till there is

no more interactions on the list read from the configuration file. So, when the interactions

lists reach the end, the program proceeds to the close of the writing to the output files (the

debug and clients log, that have informations about the events that occur along the program

run and the JSON file that only has the values and informations extracted) and the program

is finished.

In the end, there is another output that can be also saved, a compressed zip folder that

contains the webpage source code and all the components that are part of the page, although

this is only an output of the program if it is specified on the configuration file that the webpage

download must be done.

Along this flux of events and actions are taken “screen” captures along the run, that are

saved on the directory path defined on the input configuration file.

3.5. Architecture 41

Figure 3.2: SmartBrowsing Flow Diagram.

Architecture

In this section it will be proposed the application architecture, in order to describe the

overall components of the solution and how they should be connected to each other.

The Figure 3.3 depicts the SmartBrowsing solution.

To run SmartBrowsing solution, it must be used a computer device (with or without

graphical capabilities), running Linux and have real browsers installed (vide section 3.3).

Furthermore, the test performed, using the solution, should access the webpage specified in

a configuration file, through a real browser. This access must be made along with a tool that

allows to automate a navigation, such as the Selenium Webdriver. This is needed because, the

tests must run without human intervention, and gather information from it, such as: timings

that would allow the calculation of metrics, take screen and perform user-like actions (login,

logout and scroll interactions).

Furthermore, the use of a automation tool, like the Selenium Webdriver, implies its in-

42 Chapter 3. SmartBrowsing Solution

stallation on the device. Also, the device must have the webdrivers installed, for the browsers

to be considered, the Google Chrome webdriver (ChromeDriver) and the Mozilla Firefox

webdriver (Geckodriver), in order to allow the browsers running.

These webdrivers, ChromeDriver and Geckodriver, have functionalities that allow the

automation and interaction with their respective real browsers. Those webdrivers will perform

the access to the webpage, by making an HTTP GET request.

Afterwards, will execute a JS on the browser in use, to obtain the timings from the

webpage accessed.

If there are interactions to be made, the webdrivers use their methods, such as, clicking,

submit forms or scroll, in order to trigger actions on the webpage.

After each interaction, the API must be called via JS execution, as referred, to extract

the webpage resources loaded and its informations.

Figure 3.3: SmartBrowsing Architecture Diagram.

3.5. Architecture 43

Conclusion

This chapter intended to provide the overall scenario of the solution developed in the

context of this master thesis.

In order to provide the SmartBrowsing solution description, this chapter approached de-

tails, such as: the overall description, the solution requirements and the use cases, flow and

architecture diagrams.

44 Chapter 3. SmartBrowsing Solution

4

Implementation

In this chapter it will be described the adopted technologies and explained the details of

the implementation of the solution, along with some code snippets, in order to better illustrate

the deployment.

Adopted Technologies

In this section, it will be described all the technologies adopted in the creation of the

SmartBrowsing solution. Beyond that, the choices of the technologies adopted will, also, be

justified.

The first base of this solution was to automate a browser, since that, it was used the

Selenium Webdriver (vide 2.3.4) tool. This tool was chosen instead of the others, because

its use is free of licensing for commercial uses, which is a big advantage as this project

can become a product, since it is licensed under Apache 2.0. Other advantages are the

fact that it is compatible with real browsers, for example, Google Chrome, Mozilla Firefox,

Internet Explorer, Safari and Opera. Beyond this, it counts with a large user community

and open documentation, allowing a more efficient development and a lower learning curve,

compared with other tools which support is limited, due to being payed tools or less popular

(smaller community) (vide 2.3.4). Finally, it has the advantage to be compatible with several

programming languages: Python, Ruby, Java, NodeJS, C# and Groovy and has webpage

interaction functionalities, like clicks or text insertion, besides others.

In order to emulate a reality-close experience, real browsers were used to perform the

tests. For the browsers choice it was taken into consideration the need of being compatible

with Linux systems and also, rankings of the most used and popular nowadays. Hence, the

browsers that fulfilled these requirements and were the selected are: Google Chrome and

45

46 Chapter 4. Implementation

Mozilla Firefox. As can be observed on the subsection Browsers 2.3.1, on the State-Of-The-

Art chapter:

- Figure 2.9 depicts the Google Chrome as the one with the highest percentage of market

share, comparing with the other browsers, and also shows some growth.

Although Internet Explorer has the second better market share, it presents a decline.

Also, it has the disadvantage of being incompatible with Linux systems, which is one of

the solution requirements. For the same reason, the Safari browser was excluded, since

it is only compatible with the Apple operating systems, MacOS.

- Table 2.1, from a W3Schools website study, and the Figure 2.10, from the NetMarket-

Share website, show that the Firefox browser has one of the three bigger market shares

and is Linux compatible. These advantages were the influence for the choose of this

browser. The Opera browser, which is also compatible with the Selenium, has a very

little percentage on the market share, which was the reason for not being chosen.

Hence, were chosen two browsers that were representatives of the major slice of the market

share, in order two have two options and, also, to infer if the browsers impact on the QoE.

To connect the use of these browsers to the Selenium, it was required to obtain the

correspondent browsers drivers, the Chromedriver (for Google Chrome) and the Geckodriver

(for Mozilla Firefox). These browsers drivers allow the connection between the Selenium

automation tool and the respective real browser, Chrome and Firefox.

The programming language used to develop this application was Python, since it was one

of the languages with compatibility with the chosen automation tool, the Selenium Web-

driver. Also, as the Figure 4.1 depicts, Python has an emerging popularity, along with an

increased demand for programmers with knowledges on this language. The Figure 4.1 shows

a popularity ranking of programming languages, that relies on a study published in the year

of 2017, made by the IEEE Spectrum.

4.1. Adopted Technologies 47

Figure 4.1: Programming languages ranking, according with a study made by IEEE Spectrum.
(Image source: [64])

The ranking shows that Python is the most popular, along with C and Java. Since that,

from the top three languages, Python and Java are compatible with the automation tool,

Selenium Webdriver, so it was chosen the Python language due to the advantages previously

stated, that rely on its popularity growth along programmers and even on enterprise context.

Those advantages, previously stated, are particularly important, as the long term support

is imperative if this solution becomes a product in the future.

Since a critical requirement (vide 3.3) to this solution was the ability to run in a headless

environment, in order to be possible the future integration on the ArQoS probes, the Xvfb

tool (vide 2.3.5) was used. This tool runs the graphical operations in a virtual memory. There

was other two similar options beyond this, as they could be used for the same purpose and

with similar capabilities. In that way, any of them could have been used.

In order to integrate this headless tool on the solution, it was needed to use the Python

library, PyVirtualDisplay, that is a wrapper for the Xvfb. This way, the solution opens the

browser in a virtual framebuffer, the Xvfb, so the solution can run in a headless mode.

The Figure 4.2 depicts the PyVirtualDisplay hierarchy. The PyVirtualDisplay is a library

that provides a wrapper to the virtual displays Xvfb, Xvnc and Xephyr, so, applications that

are implemented using the Python programming language can use these tools.

48 Chapter 4. Implementation

Figure 4.2: Python’s library, PyVirtualDisplay, Hierarchy. (Image Source: [65])

As the main purpose of this work was to extract QoE metrics, it was used the Performance

MDN API [66], that, by executing JS requests, can return several temporal instants along

with other informations, such as: the list of external resources loaded, along with temporal

instants for each and other informations like its identification HTML attribute - href. And

this API has compatibility with the browsers chosen: Google Chrome and Mozilla Firefox.

The MDN Performance API is based on a non-normative webpage processing model for

a browser, and it belongs to W3C. [67]

That W3C model can be observed on Figure 4.3, where there are shown the different events

that occur between the input of the URL on the browser till the webpage is totally rendered

on the browser window and visible to the user. However, as the non-normative word suggests,

these timeline events can occur in another order than the one presented. This depends on

the browser used, on the webserver hosting the webpage, on the network technology or even

on the users device processing capabilities.

4.1. Adopted Technologies 49

Figure 4.3: Browser Non-normative Webpage Processing Model, from W3C.[67]

The events, returned by the API in milliseconds and presented on Figure 4.3, were used

to perform the metrics calculation, that will be further explained in this chapter on section

4.5. Each of the events will be briefly explained on the topics below. Those topics, that

describe each of the time events from the non-normative model of W3C (vide Figure 4.3), will

appear underlined in case they were the ones taken into consideration to perform the metrics

calculation extracted in this solution. This will be further addressed on the Subsection 4.5.

- navigationStart : Temporal instant that occurs immediately after to the user-agent per-

form the prompt for unload of the previous document (webpage).

If there is no previous document, the temporal instant returned will have the same value

of the fetchStart event.

- unloadEventStart and unloadEventEnd (unLoad block): The unloadEventStart is trig-

gered immediately before the beginning of the previous document unload, by the user-

agent. This event occurs if there is a previous document, and if it has the same origin

from the current one. On the opposite, i.e., if there is no previous document, or if this

one does not have the same origin from the current one, then the value returned by the

unloadEventStart will be equal to zero.

50 Chapter 4. Implementation

For the unloadEventEnd case, the contrary occurs, i.e., the temporal instant returned is

the one immediately after the user-agent ends the previous document unload. Similarly

to the unloadEventStart, if the previous document does not have the same origin from

the current one or does not exist, the temporal instant returned will be zero.

Thus, if the previous document is still not totally unloaded, then the unloadEventEnd

should return zero.

- redirectStart and redirectEnd (Redirect block): The redirect block is defined by both

this time instants, the redirectStart and the redirectEnd. This block represents the time

interval between the instant of the beginning of the fetch of this redirect (redirectStart)

and the instant immediately after it (redirectEnd), which corresponds to the reception

of the last byte of the response from the last redirect.

This block only returns these time instants if there are HTTP redirections with the same

origin, otherwise, the value returned by these instants, redirectStart and redirectEnd, will

be zero.

- fetchStart : Time instant that occurs immediately before the user-agent begins the search

for applications in cache. This is considered only if the component is fetched by HTTP

GET requests or equivalent, otherwise, the value returned will be zero.

- domainLookupStart and domainLookupEnd (DNS block): The time instants that de-

limit this block, domainLookupStart and domainLookupEnd, allow the calculation of

the domain lookup time for the current document, in case the connection in use is a

non-persistent1 one.

If the connection is persistent, or the current document is saved on cache or on local

resources, the value of both these time instants, domainLookupStart and domainLooku-

pEnd, is equal to the fetchStart.

- connectStart and connectEnd (TCP block): The time instants that delimit this block,

connectStart and connectEnd, compound the time interval of the TCP connection to

the server. However, if the connection is persistent, or the resources are saved locally or

in cache, both events (connectStart and connectEnd) will return the same value, equal

to the one returned by the domainLookupEnd. If the connection to the server fails and

the user-agent performs another attempt to reconnect to the server, the connectStart

and connectEnd will return the values correpondent to the new established connection.

The instant correspondent to the connectEnd includes the Secure Sockets Layer (SSL)

handshake time and Socket Secure (SOCKS) authentication.

1A non-persistent connection means that the TCP connect session is not the same between the sending and
receiving of HTTP requests/responses pairs. That way, for each request/response pair it is established a new
TCP connection.

4.1. Adopted Technologies 51

- secureConnectStart (TCP block): This event is only applied to HTTPS webpages, and

corresponds to the time instant immediately before to the establishment of a new secure

connection (handshake).

If the webpage is not HTTPS, or the user-agent does not have this attribute available,

the returned value will be zero.

- requestStart (Request block): This event marks the time immediately before to the user-

agent request for the current document to the server, or to the cache or local resources.

- responseStart and responseEnd (Response block): This block represents the time inter-

val it takes to the server to provide a response to the previous request.

The responseStart corresponds to the instant immediately before to the reception, by the

user-agent, of the first byte of the response. And, the responseEnd occurs immediately

after the reception of the last byte of the requested document, or immediately after to

the server connection close.

- domLoading (Processing block): This event belongs to the processing block, and returns

the instant immediately before to the document change of state to “loading”, by the

user-agent.

- domInteractive (Processing block): This event, also part of the processing block, returns

the instant immediately before to the document change of state to “interactive”, by the

user-agent.

- domContentLoaded (Processing block): This event, from the processing block, repre-

sents the time immediately after to the completing of the document loading.

- domComplete (Processing block): This event returns the time immediately before to

the user-agent changes the state of the current document to “complete”.

- loadEventStart and loadEventEnd (onLoad block): These two time events, from the

onLoad block, mark the trigger of the document load start (loadEventStart), and the

time when the document has finished loading (loadEventEnd).

Since the MDN Performance API returns the same value for the instants that allow the cal-

culation of the DNS lookup time (domainLookupStart and domainLookupEnd instant events)

and the TCP connection time (connectStart and connectEnd instant events), as described

above, there was the need to have an alternative to calculate this metrics.

Thus, for both the domain lookup time and connection time to the webserver, the Python’s

subprocess library was used . This library allows to execute a customized curl command, in

52 Chapter 4. Implementation

order to obtain both time intervals, the domain lookup time and the TCP connection time

metrics.

In order to obtain the status code of the target webpage and, also, the status code from

each of its external resources loaded, it was used a Python library, the selenium-requests[68].

This library is an extension for the Selenium Webdriver features that is compatible with the

browsers chosen to be used in this solution (Google Chrome and Mozilla Firefox).

Configuration File

Firstly, the program reads the configuration file, that has the instructions of what tasks

will be performed, during the program run. Since that, the configuration file is a JSON file

that allows the configuration of: the browser to be used, the webpage URL, the user-agent,

screen size (width and height), interactions to be performed (login, logout, scroll down to

bottom or scroll down by pixels), the possibility to download the page source along with the

external resources, the paths to the directories where the outputs should be saved to and the

path to the Firefox binary (for Chrome it is not needed).

In the case of one or more interactions configuration, it is needed to specify the type of

interaction and the elements to be clicked, with the click() webdriver method, or where to

input text, using the send keys() webdriver method. These elements can be selected by their

name, id, XPath, class and others, and need to be specified in the JSON configuration file.

The elements identifier is found by using, for example, the webdriver find element by id()

method, in the case the element identifier, specified on the configuration file, corresponds to

the element id.

The Table 4.1 presents the fields available on the configuration file and the respective

description.

The configuration file has a JSON field, named “interaction”, that is compound by a

boolean field and a JSON dictionary with the interactions to be performed (one or more).

The Table 4.2 shows the fields that can be configured on the “interaction” field, from the

configuration file.

4.2. Configuration File 53

Parameters Description

browser The browser short name. There are two possibilities available:
Google Chrome or Mozilla Firefox.

timeout The time in seconds to receive a response (bytes) from server. If
server returns no response within timeout seconds, then a error
code is raised.

userAgent The browser user-agent to be emulated. If the field is left empty,
the user-agent used is the default from the system where the test
is being performed.

screenWidth The value to set the screen resolution width.

screenHeight The value to set the screen resolution height.

webpage The URL of the webpage to be tested.

cacheEnable Boolean entry to set if the cache is enabled (true) or disabled
(false). By now, this field has no function, since the tests only
open a browser session, that is, the browser is never closed neither
are done several accesses to more than one website.

screenshot Boolean to set if the test should return screenshots or not.

interaction JSON to set the interaction(s) that should be performed or if no
interaction should be made during this test. (vide Table 4.2)

downloadPage Boolean value for the option of download the page source plus its
external resources.

firefoxPath Path to where the Mozilla Firefox browser is located.

firefoxWebdriverPath Path to the Geckodriver is located.

chromePath Path to where the Google Chrome browser is located.

chromeWebdriverPath Path to the ChromeDriver is located.

pathToOutputsDir Path to directory where the outputs should be written to.

pathDirToWebpageZip Path and filename to where the page source and resources should
be written to. If empty, the program will not return the webpage
and neither its resources.

pathToDebugLog Path and filename to where the debug log file should be written
to.

pathToClientlog Path and filename to where the client log file should be written
to.

pathToOutputValues Path and filename to where the extracted informations file should
be written to.

Table 4.1: Table with entries of the configuration file.

54 Chapter 4. Implementation

Parameters Description

performInteraction Boolean value that state if the test should perform interaction(s)
with the webpage or not.

interactionType String of the type of interaction to be performed during the test.
The interactions available are: login, logout and scroll down and
scroll down by pixel.

interactionTimeout Value, in seconds, during which the interactionType needs to be
completed. If the interaction timeouts, it is considered unsuccess-
ful and it is returned an error code to the output files (debug and
client logs and to the values file).

username Username or email or other data used to identify the user account
on the webpage.

password Password string credential matching the username specified in
the above field.

usernameElem JSON with element HTML identifier (e.g.: id, class, XPath) key
and HTML element label, corresponding to the key, to where the
username will be inserted.

passwordElem JSON with element HTML identifier (e.g.: id, class, XPath,...)
key and HTML element label that indicates the location where
the password will be inserted.

loginElemClick JSON dictionary composed by element(s) HTML identifier(s) key
(for example: id, class, name, XPath) and the HTML element(s)
label to be clicked, in order to complete the login.

loginElemSuccess JSON with element HTML identifier (e.g.: id, class, XPath,...)
key and HTML element label that should be visible, in order to
consider the login action successful. Otherwise, if the element
identifier is not visible, it is considered that the action was not
successfully performed.

logoutElem JSON with element(s) HTML identifier (e.g.: id, class, XPath,...)
key(s) and HTML element(s) label to be clicked, in order to logout
from the webpage.

logoutElemSuccess JSON with element HTML identifier (e.g.: id, class, XPath,...)
key and HTML element label that should be visible, in order to
consider the logout action successful. Otherwise, if the element
identifier is not visible, it is considered that the action was not
successfully performed.

scrollBottomElem JSON with element(s) HTML identifier (e.g.: id, class, XPath,...)
key(s) and HTML element(s) label to be found, in order to know
if the page bottom was reached.

pixelsNumber Integer value that corresponds to the pixels number to scroll the
page by.

cookieButtonClick JSON with cookie element HTML identifier (e.g.: id, class,
XPath,...) key and HTML element label to be clicked if the page
of login or logout has a pop-up that needs to be closed, in order to
proceed with the interaction login action. It is an optional field,
as it can be left empty and only used when needed.

Table 4.2: Table with entries of the JSON interaction field from the configuration file.

4.2. Configuration File 55

Following there are two examples of configuration files for the four types of interactions

available: login, logout, scroll by pixel and scroll down.

1 {
2 ” browser ” : ” f i r e f o x ” ,

3 ” timeout ” : 25 ,

4 ” userAgent ” : ”” ,

5 ” screenWidth ” : 1170 ,

6 ” screenHe ight ” : 890 ,

7 ”webpage” : ” https : //www. facebook . com/” ,

8 ” cacheEnable ” : f a l s e ,

9 ” s c r e en sho t ” : true ,

10 ” i n t e r a c t i o n ” : {” pe r f o rmInt e rac t i on ” : true ,

11 ” a c t i o n s ” :

12 [{
13 ” inte rac t ionType ” : ” l o g i n ” ,

14 ” inte ract ionTimeout ” : 25 ,

15 ”usernameElem” : {” id ” : ” emai l ” } ,

16 ”passwordElem” : {” id ” : ” pass ” } ,

17 ”username” : ” chophipaco@inaby . com” ,

18 ”password” : ” chophipaco@inaby . com” ,

19 ” log inElemCl ick ” : {” id ” : ” log inbut ton ” } ,

20 ” log inElemSuccess ” : {” id ” : ” userNav igat ionLabe l ” } ,

21 ” cook ieButtonCl ick ” : ””

22 } , {
23 ” inte rac t ionType ” : ” logout ” ,

24 ” inte ract ionTimeout ” : 25 ,

25 ” logoutElem ” : [{ ” id ” : ” userNavigat ionLabe l ” } ,{ ” x path ” : ”// l i

[1 2] / a/span/span” }] ,

26 ” logoutElemSuccess ” : {” id ” : ” log inbut ton ” } ,

27 ” cook ieButtonCl ick ” : ””

28 }]} ,

29 ”downloadPage” : f a l s e ,

30 ” f i r e f oxB inaryPath ” : ”/ usr / bin / f i r e f o x ” ,

31 ”pathToOutputsDir” : ”/opt /QoE/ outputs /” ,

32 ”pathDirToWebpageZip” : ”/ opt/QoE/ outputs / webpage content . z ip ” ,

33 ”pathToDebugLog” : ”/ opt /QoE/ outputs / debug log . l og ” ,

34 ” pathToCl ient log ” : ”/opt /QoE/ outputs / c l i e n t l o g . l og ” ,

35 ”pathToOutputValues” : ”/ opt/QoE/ outputs / va lue s . j s on ”

36 }

Listing 4.1: Example of a test configuration file (JSON) with login and logout interactions.

The Listing 4.1 is an example of a JSON configuration file to perform an access to the

Facebook webpage, with further login and logout interactions scheduled, with the purpose of

56 Chapter 4. Implementation

illustrate the previous explanations.

1 {
2 ” i n t e r a c t i o n ” : {” pe r f o rmInt e rac t i on ” : f a l s e ,

3 ” a c t i o n s ” :

4 [{
5 ” inte rac t ionType ” : ” s c r o l l b y p i x e l ” ,

6 ” inte ract ionTimeout ” : 25 ,

7 ” pixelsNumber ” : 100

8 } ,{
9 ” inte rac t ionType ” : ” sc ro l ldown ” ,

10 ” inte ract ionTimeout ” : 25 ,

11 ” scrol lBottomElem ” : {” c l a s s ” : ” f o o t e r ”}
12 }]} ,

13 }

Listing 4.2: Example of a test configuration file (JSON) with scroll by pixel and scroll to the

bottom interactions.

This Listing 4.2 illustrates how the interactions of scroll down to the webpage’s bottom

and the scroll by pixel are configured, on the configuration file.

The Listing 4.3 depicts a Python code snippet, with the JS executed by the webdriver, in

order to perform a scroll down by a certain amount of pixels and a scroll down to the bottom,

respectively. In this case, it is done the execution of a JS, by the webdriver, to scroll down

to the page height (bottom).

1 from selenium . webdriver . support . u i import WebDriverWait

2 from selenium . webdriver . support import e x p e c t e d c o n d i t i o n s as

ExpectedCondit ions

3 from selenium . webdriver . common . by import By

4

5 . . .

6

7 s e l f . d r i v e r . e x e c u t e s c r i p t (”window . s c r o l l T o (0 , document . body . s c r o l l H e i g h t) ; ”)

8 wait = WebDriverWait (s e l f . d r ive r , INTERACTION TIMEOUT)

9 wait . u n t i l (ExpectedCondit ions . v i s i b i l i t y o f e l e m e n t l o c a t e d ((By . ID , va l)))

Listing 4.3: Code snippet to perform a scroll down to the bottom of the webpage.

In the Listing 4.3 it is illustrated what was used to detect elements on the page and

how the timeout waiting is done. So, in order to wait till the interaction is completed, it

was introduced a timeout waiting, that along with the selenium.webdriver.support.ui library

it is allowed to have a waiting condition that is non-blocking, till the event that is wanted

occurs. In this snippet case, the waiting condition duration is till it reaches the timeout

4.3. Headless Display 57

specified, or till the element id (this is done with the help of the selenium.webdriver.common.by

library) is detected visible on the webpage, this by using the expected conditions from the

selenium.webdriver.support library. For the scroll by pixel interaction, it is also executed a

JS: “window.scrollBy(0, pixels to scroll)”.

Headless Display

In order to create a headless display, besides having the Xvfb installed, the PyVirtualD-

isplay library, which is a wrapper for the Xvfb, was imported. Then, to create the headless

display it is needed to specify some of this class parameters: the backend and the screen

resolution (width and height), although there are others that could be specified, such as, the

color depth, background color, or the visibility of the screen. Although this latter (screen

visibility) is an alternative to specify the backend, because if it is set to True or 1, then the

Xephyr tool is used , else if it is set to False or 0, is the Xvfb that is used. And, finally, is it

started the display by using the start() method.

The Listing 4.4 is a code snippet with the method example of how it is created and started

the headless display. It is used the Xvfb backend and the screen size used is the one specified

by the screenWidth and screenHeight fields of the configuration file.

1 from p y v i r t u a l d i s p l a y import Display

2

3 # Method to c r e a t e head l e s s d i sp l ay

4 de f c r e a t e h e a d l e s s d i s p l a y (screen width , s c r e e n h e i g h t) :

5

6 #Display with no i n t e r f a c e

7 d i s p l ay = Display (backend=’ xvfb ’ , s i z e =(screen width , s c r e e n h e i g h t))

8 d i s p l ay . s t a r t ()

Listing 4.4: Code snippet of the creation and starting of a headless display using Xvfb.

Webdrivers

After the headless display is created and started, the next step is to initialize the web-

drivers (vide Listings 4.5 and 4.6). It is needed to import the Selenium Webdriver API and

then use its Chrome and Firefox classes.

1 from selenium import webdriver

2

3 . . .

4

58 Chapter 4. Implementation

5 # i f not de f ined : use user−agent o f the dev i c e per forming the t e s t

6 i f USER AGENT == ”” :

7 d r i v e r = webdriver . Chrome ()

8

9 # e l s e i f the user agent i s de f in ed : setup the s p e c i f i e d user−agent

10 e l s e :

11 chrm opts = webdriver . ChromeOptions ()

12 chrm opts . add argument (’−−user−agent=’ + USER AGENT)

13 d r i v e r = webdriver . Chrome(chrome opt ions=chrm opts)

Listing 4.5: Code snippet with example of the Google Chrome webdriver initialization.

In the initialization of the Google Chrome webdriver (vide Listing 4.5), if the user-agent

field was left empty on the configuration file, then the user-agent used is the default, which

is the user-agent with the characteristics of the device and browser in use.

Otherwise, if a user-agent was specified in the configuration file, then that is the one

assumed on the test. In this case, in order to set the user-agent specified on the configura-

tion file, it was used the ChromeOptions class, whose add argument() method enables the

possibility of adding this characteristic to the webdriver initialization as an input parameter.

1 from selenium import webdriver

2 from selenium . webdriver . common . d e s i r e d c a p a b i l i t i e s import D e s i r e d C a p a b i l i t i e s

3

4 . . .

5

6 dc = D e s i r e d C a p a b i l i t i e s .FIREFOX

7 dc [’ b inary ’] = FIREFOX BINARY LOCATION

8

9 # i f not de f ined : use user−agent o f the machine per forming the t e s t

10 i f USER AGENT == ”” :

11 d r i v e r = webdriver . F i r e f ox (c a p a b i l i t i e s=dc)

12

13 # e l s e i f the user agent i s de f in ed : setup the s p e c i f i e d user−agent

14 e l s e :

15 p r o f i l e = webdriver . F i r e f o x P r o f i l e ()

16 p r o f i l e . s e t p r e f e r e n c e (” gene ra l . useragent . o v e r r i d e ” , USER AGENT)

17 d r i v e r = webdriver . F i r e f ox (c a p a b i l i t i e s=dc , f i r e f o x p r o f i l e=p r o f i l e)

Listing 4.6: Code snippet with example of the Mozilla Firefox webdriver initialization.

Similarly, the Mozilla Firefox webdriver uses the default user-agent of the device and

browser being used, in case of no user-agent was specified in the configuration file (vide

Listing 4.6).

Otherwise, the FirefoxProfile class is used, in order to allow the setup of the user-agent

specified on the configuration file, by using the set preference() method. In the case of this

4.5. Outputs 59

webdriver, opposing to the Google Chrome webdriver, there is the need to define the Firefox

binary location, which is setup by using the DesiredCapabilities class, that is further used as

an input parameter on the webdriver’s inititalization (vide Listing 4.6). In the case of the

Google Chrome webdriver, the path to the binary does not need specification (vide Listing

4.5).

Outputs

Webpage’s Status Code

In order to obtain the status code of the webpage and of its external resources, it was

used the selenium-requests Pyhton library [68] (vide Listing 4.7).

1 from se l en iumreque s t s import Chrome

2 from se l en iumreque s t s import F i r e f ox

3

4

5 # Method to obta in the s t a t u s code o f a webpage or e x t e r n a l r e s ou r c e

6 # Args :

7 # − browser name : Name o f the browser (f i r e f o x or chrome)

8 # − u r l : URL o f the webpage or r e s ou r c e

9 de f g e t s t a t u s c o d e (browser name , u r l) :

10 #var i n i t

11 s t a t u s c o d e = None

12

13 i f browser name == ’ f i r e f o x ’ :

14 s t a t u s c o d e = Fi r e f ox () . r eque s t (’GET’ , u r l)

15

16 e l i f browser name == ’ chrome ’ :

17 s t a t u s c o d e = Chrome () . r eque s t (’GET’ , u r l)

18

19 # Apply f i l t e r to the s t r i n g returned by the reques t () method

20 #to return only the s t a t u s code number .

21 s t a t u s c o d e = f i l t e r (s t r . i s d i g i t , s t r (re sponse))

22 re turn s t a t u s c o d e

Listing 4.7: Code snippet example of how the status code was obtained.

The Listing 4.7 shows how it is returned the status code of an URL. For that purpose,

the selenium-requests library was used, and both Webdrivers were imported (Google Chrome

and Mozilla Firefox webdrivers).

Then, depending on the browser specified on the configuration file, the webdriver is se-

lected by the conditional IF statements, and it is made a HTTP GET request to the webpage

60 Chapter 4. Implementation

or external resource URL. Then, the response is filtered, in order to obtain only the code of

the URL status.

Metrics Extracted And Other Informations

As referred on section 4.1, of the “SmartBrowsing Solution” chapter, for both the domain

lookup time and connection time to the webserver, it was used the Python’s subprocess library.

This library allowed to execute a customized curl command, in order to obtain both time

intervals, the domain lookup time and the TCP connection time metrics.

The Listing 4.8 depicts the extraction of the DNS lookup time, and the Listing 4.9 shows

the extraction of the TCP connection time.

For the DNS Lookup Time:

1 import subproces s

2

3 # Method to obtind the domain lookup time

4 # in seconds

5 # Args :

6 # − page URL

7 de f get domain lookup t ime (s e l f , u r l) :

8 t ry :

9 cmd = subproces s . Popen ([” c u r l ” , ”−s ” , ”−w” , ’%{time namelookup} ’ , ”−o” ,

”/dev/ n u l l ” , ”” + s t r (u r l) + ””] ,

10 stdout=subproces s . PIPE)

11 except Exception , ex :

12 pr in t s t r (ex)

13 re turn

14

15 lookup t ime = cmd . communicate () [0]

16 re turn f l o a t (lookup t ime . r e p l a c e (” , ” , ” . ”))

Listing 4.8: Code snippet example of the DNS Lookup Time extraction.

4.5. Outputs 61

For the TCP Connection Time:

1 import subproces s

2

3 # Method to obtind the domain lookup time

4 # in seconds

5 # Args :

6 # − page URL

7 de f g e t t c p c o n n e c t i o n t i m e (s e l f , u r l) :

8 t ry :

9 cmd = subproces s . Popen ([” c u r l ” , ”−s ” , ”−w” , ’%{t ime connect } ’ , ”−o” , ”/

dev/ n u l l ” , ”” + s t r (u r l) + ””] ,

10 stdout=subproces s . PIPE)

11 except Exception , ex :

12 pr in t s t r (ex)

13 re turn

14

15 tcp t ime = cmd . communicate () [0]

16 re turn f l o a t (tcp t ime . r e p l a c e (” , ” , ” . ”))

Listing 4.9: Code snippet example of the TCP Connection Time extraction.

To calculate both these metrics, the Popen class method, from the subprocess library, was

used. The Popen accepts, as input, an array of arguments that, in this case, compounds the

command curl, and the output’s location, that in this case is the command’s output result,

which is sent to a new pipe opened to the standard stream (subprocess.PIPE).

Then, the data sent to the stdout is read by the communicate() method, and then trun-

cated to the first element of the command response, which corresponds to the value of the

metric being extracted, the DNS Lookup Time or the TCP Connection Time.

The command curl is customized in both the methods of these code snippets examples,

in order to output the value of the intended metric: the “%time namelookup” argument for

the DNS time and the “%time connect” for the TCP time. The other command arguments,

apart from the webpage’s URL to be measured, are:

- “-s” (–silent): is the silent mode, meaning that the curl command will not output a

progressing bar.

- “-w” (–write-out FORMAT): this argument states the format of the command resulting

output. That, in this case, will be the “%time namelookup” or “%time connect” value,

depending on the time requested on the command.

- “-o” (-output FILE): this tells to write the output to the path instead of outputting

to the stdout, in this case, the FILE is the “/dev/null” path. This “/dev/null” path

represents a null device on the UNIX operating systems, that accepts all data sent to

it without storing it. In this situation, the content that is received and then excluded

62 Chapter 4. Implementation

from the command output is correspondent to the webpage’s HTML of URL requested

on the command.

In order to extract the other time metrics, the time events from the MDN Performance

API (on section 4.1 of the “SmartBrowsing Solution” chapter) were used. In order to extract

those metrics it is needed to execute a JS with Selenium Webdriver. In the Listing 4.10

is shown the request for the navigationStart event timestamp, which is further added to a

dictionary, for later use in metric calculation.

1 x [’ nav i ga t i onS ta r t ’] = d r i v e r . e x e c u t e s c r i p t (” re turn window . performance . t iming

. nav i ga t i onSta r t ; ”)

Listing 4.10: Code snippet example of the extraction of the navigationStart event, from MDN

Performance API.

After the extraction of all webpage’s events timings, returned by the API, the metrics are

calculated, besides the TCP connection time and DNS lookup time, already referred upper.

Those metrics and its calculation equations are the following:

RequestT ime = (responseStart− requestStart) ∗ 0.001(seconds) (4.1)

Accordingly with the Mozilla documentation[69], the request and response times could be

given by subtracting the responseEnd to the requestStart event. That way, both the request

and response times can be calculated separately, as it was assumed on this solution, based on

the W3C processing model (referred on section 4.1 of the “SmartBrowsing Solution” chapter).

This Equation 4.1 returns the time interval of the URL request to the webpage hostage

server, which is given by the elapsed time at which the requestStart event is triggered and

the time at which the responseStart is triggered. And, since the event timings are returned

in milliseconds, the multiplication concerns to seconds conversion.

ResponseT ime = (responseEnd–responseStart) ∗ 0.001(seconds) (4.2)

The Equation 4.2 returns the time interval of the response from server, which is given

by the elapsed time at which the responseStart event is triggered and the time at which the

responseEnd is triggered.

InitialReponseTxT ime = (responseStart–domainLookupStart) ∗ 0.001(seconds) (4.3)

In order to return a metric that gives the total network delay till the start of the response

transmission (Tx), it was considered that it was given by the elapsed time at which the

4.5. Outputs 63

domainLookupStart was triggered, which is relative to the start of the URL translation, till

the time at which the responseStart is triggered, i.e., the time at which the server started to

send the response (Equation 4.3).

TotalResponseTxT ime = (responseEnd–fetchStart) ∗ 0.001(seconds) (4.4)

The Equation 4.4 allows to calculate the webpage and its resources latency, accordingly

with the W3C model recommendation, which includes all the process, from the entering of

the webpage URL till the end of the response receiving.

TTFB = (responseStart–navigationStart) ∗ 0.001(seconds) (4.5)

The Equation 4.5 gives the total time taken till the first byte was received (responseStart),

since the very beginning of the navigation start, i.e., since the time it was entered the URL

on the browser.

PageLoadT ime = (loadEventEnd–navigationStart) ∗ 0.001(seconds) (4.6)

Once again, accordingly with the Mozilla documentation for the API, it was considered

that the time it takes to the page to load (Equation 4.6) is the time interval between the

beginning of the navigation and the end of the webpage loading on browser.

HTMLProcessingT ime = (domComplete–domLoading) ∗ 0.001(seconds) (4.7)

The render time (Equation 4.7) is also considered by the Mozilla documentation to be the

time elapsed from the DOM loading start, till the time the DOM has completed its loading.

Although that, for the tests performed and presented on chapter 5, this equation was not

used. Following, it is presented the equation used (Equation 4.8), due to the fact of being

more embracing in terms of the webpage processing events occurred on the client-side.

Client− sideProcessingT ime = (loadEventEnd–domLoading) ∗ 0.001(seconds) (4.8)

The Equation 4.8 is similar to the previous one (Equation 4.7), due to the same start

time considered. However, this equation measures the total time it takes to the client-side

to process and load the webpage, by assuming the time elapsed at which the DOM starts its

loading till the loading ends.

TimeToWebpageInteractivity = (domInteractive–navigationStart)∗0.001(seconds) (4.9)

64 Chapter 4. Implementation

This Equation 4.9 indicates the time interval it took to the webpage to become interactive,

that is, to allow the user to interact with it. Although that, it does not give information about

the state of the webpage resources loading, for example, the images, CSS files and others.

Anyhow, it can be a good indicative of the page responsiveness.

Furthermore, another metric was extracted, the Time To The First Paint (TTFP) (Equa-

tion 4.10). However, this one is only available for tests that use Google Chrome browser,

due to two time instants (firstPaintTime and startLoadTime) that are only returned by this

browser.

TTFP = (firstPaintT ime− startLoadT ime) ∗ 0.001(seconds) (4.10)

This Equation 4.10 calculates the time interval needed to the appearance of the first paint

in the webpage, i.e., the first visual element. Thereby, it is considered an important metric

as the users tend to appreciate the appearance of visual elements, as it is indicates that the

loading of the webpage is in progress. This is more satisfying for the user perception of the

webpage responsiveness, rather than waiting, without any clue of what is happening in the

background, and then having all the webpage loaded and visible at the same time on the

screen.

Furthermore, besides all the previous referred metrics measured after the webpage access,

the API also returns the list of external resources loaded after the webpage access. For each

of the external resources loaded, the previous metrics are calculated, and the status code is

obtained. These results are obtained using the same ways as the ones used to obtain the same

informations for the webpage.

The Listing 4.11 shows the JS executed, in order to obtain a JSON with the resources

loaded, along with the previously referred time events associated to each of them, the identi-

fication href HTML attribute and the bytes transferred. Further, the previous equations are

performed, and all the informations are then written to the output files.

1 j s o n r s c l i s t = d r i v e r . e x e c u t e s c r i p t (” re turn JSON. s t r i n g i f y (window . performance

. getEntriesByType (\” r e sou r c e \”)) ; ”)

Listing 4.11: Code snippet example of how the webpage resources are extracted.

After the execution of the code depicted on Listing 4.11, it is returned a list of external

resources (belonging to the webpage content). This list is compound by the resources loaded

till the webpage loading is finished. In case of heavy webpages, i.e., webpages compound by

many resources and/or with a big height, the elements returned are the ones loaded till the

load spinning wheel symbol stops, meaning that not all the webpage resources are returned

on the list (only the loaded ones are). If a scroll down action is performed and the code

(illustrated on Listing 4.11) runs once more, the list returned will include more resources,

4.5. Outputs 65

that correspond to the ones which loading was triggered by the scroll action. If this situation

occurs, the SmartBrowsing solution returns a new list with the external resources loaded after

the scroll action.

Besides those informations, are also returned for each external resource, the correspondent

transferred bytes (the resource bytes length plus the bytes of the header, that is, the trans-

ferred bytes are correspondent to the packet(s) length(s) that brings the resource). Then,

each time new external resources are loaded, a sum of all the bytes of the loaded resources is

performed, which are also written to the outputs files, in a JSON format.

User Interactions

In terms of the interactions, the solution measures the time it takes to perform the login,

logout and scroll to the webpage bottom. For that measuring, the time Python library is

used, and the measure is done by saving the time at which the action starts, when the first

action that leads to the login/logout/scroll down to the bottom is triggered, till the time the

element that indicates the success of the interaction is loaded and the element is visible on

the page.

The time taken to perform each of the interactions: login, logout and scroll down to the

bottom is written to the output files.

Screen Captures

In the beginning of the access, during an interaction and at the end of the navigation test,

screen captures are taken and saved to the directory path, specified on the configuration file.

These screen captures serve has a proof that the test run within the expected, or in

case of some abnormal situation (for example, an unsuccessful interaction or an unreachable

webpage) it helps in the process of debugging, as the test runs on a headless environment and

without human intervention.

The Listing 4.12 shows how the Selenium Webdriver tool performs screen captures, using

a Xvfb display (headless).

1 d r i v e r . s a v e s c r e e n s h o t (” screenshot name . png”)

Listing 4.12: Code snippet example of how screen captures are performed.

66 Chapter 4. Implementation

Webpage Download

Finally, the download of the page source and its external resources is also possible in this

solution. The option to download the page source and its resources must be specified in the

configuration, on field “downloadPage” (vide Table 4.1). The webpage files are downloaded

into a compressed zip folder.

This can be useful if the webpage is opened in a browser in offline mode (no Internet

connection and by clicking on the HTML file and having the other files in the same folder)

with the purpose of viewing how was the webpage after the test ending (for example, to check

if every resource hosted on the webpage webserver was loaded or not). This can work as an

addition to the informations written into the output files that can confirm the informations

on them.

In order to extract the page source and external resources, the webdriver’s page source()

method was used. This method allows to extract the webpage HTML. After that, the

extracted HTML is written into a file, in the utf-8 encoding format. After that, the Beau-

tifulSoup Python library is used in order to parse the HTML document, and search for the

external resources that will, also, be downloaded. To find the webpage external resources,

the find all() method, of the BeautifulSoup Python library, is used, in order to search for all

the “src” tags in the HTML file. After finding a “src” tag, with the use of urlparse Python

library, the webpage URL is joined with the “src” tag value, by using the urljoin() method.

After that, the resource is copied to the path specified on the configuration file, by using

the urlretrieve() method, from the urllib Python library. Finally, all the files downloaded are

zipped into a folder, by using the zipfile Python library.

The JSON output file, where all the information values and list of resources extracted are

stored, have the fields presented on Table 4.3:

4.5. Outputs 67

Parameters Description

generalInfo JSON with the informations configured: URL, screen
size, user-agent, status code of the webpage, and the
browser in use.

webPageTimings JSON with the time intervals measured for the webpage.

pageInteractive Time interval to the webpage status turn to interactive.

requestTime Time interval of the request.

connectionTime Time interval of the TCP connection with the webserver
(webpage host).

pageLoadTime Time interval correspondent to the webpage loading.

lookupTime Time it took to perform the DNS lookup.

score Score value, in a range of 1 (Bad) to 5 (Excellent), in-
dicating the score of the webpage in terms of page load
time. It was based on the premise that a webpage should
load within two seconds.

TTFB Time interval to the arriving of the first byte of the
response from the webserver.

clientSideProcessingTime Time interval correspondent to the processing on the
client-side.

latency Time interval correspondent to the latency.

webPageResourcesTimings JSON array of JSONs with the loaded resources infor-
mations extracted for each (the referred above plus the
resource identification href).

loginTime Time it took to perform and complete successfully the
login interaction.

logoutTime Time it took to perform and complete successfully the
logout interaction.

loginTimeAndPageLoadTime Time it took to perform and complete successfully the
login interaction plus the page load time of the page
loaded after the login.

logoutTimeAndPageLoadTime Time it took to perform and complete successfully the
logout interaction plus the page load time of the page
loaded after the logout.

scrollTime Time it took to perform and complete the scroll down
to the bottom interaction.

resourceTransferSize The sum of the total bytes transferred of the resources
loaded. This includes the size of the header and the
payload of the responses.

Table 4.3: Table with entry fields of the informations extracted to the output file.

68 Chapter 4. Implementation

Conclusion

This chapter aim was to provide all the details of the implementation of the SmartBrowsing

solution and, also, its deployment requirements, in order to give all the information about the

way the solution was implemented. The information provided were: the technologies adopted

to the solution implementation; The configuration and output files, along with illustrative

code snippets for each approach. The system and deployment requirements to deploy the

SmartBrowsing application can be consulted in the Appendix chapter.

5

Evaluation And Analysis

In this chapter, it will be made the analysis of the tests results performed in order to

check the solution capabilities and analyze the the solution performance.

The tests performed were based on the metrics extracted, on different webpages (static

and dynamic) and under none, one or complex (more than one) interactions on the webpage.

The application was analyzed in terms of performance in two computers (available at the

time of the solution deployment) with different characteristics, essentially with focus on the

CPU and RAM differences. It was also analyzed the differences in-between tests using two

different browsers (the ones available of use on the solution: Google Chrome and Mozilla

Firefox).

Afterwards, were made several test samples in order to check whether the render of a

webpage would differ depending on its type: static or dynamic. Also, the page load time for

each of these two types were analyzed, to inquire if there was a relationship between both,

and how much the render time would affect the page load time.

To examine other metrics, like the DNS lookup, the TCP connection, the request and the

response times, there were performed tests in parallel with packet capturing, by using the

tcpdump[70] tool for the packet capture, and the Wireshark [71] to open the files and analyze

them. These tests aim was to check the reliability of these metrics, extracted by the solution,

and the time intervals extracted on the captures.

The other two metrics, Network Delay Time and the TTFB are included in the request

time metric, which is analyzed along with the response time, on the scenarios further described

in this chapter. This way, there were made no tests to those metrics (Network Delay Time

and the TTFB) specifically, due to the fact that they are part of the time intervals of the

request and response metrics formulas 4.5.2.

The tests described in this chapter were made without using cache, since each test/sample

was executed in a new browser session in anonymous/private mode, with a single request for

69

70 Chapter 5. Evaluation And Analysis

each URL, and cache options were disabled for the Selenium Webdriver (as referred in chapter

3).

Program Execution Time

In these tests was examined the impact of using devices with different capabilities, focusing

on the RAM and processing (CPU) characteristics. It was used a computer with 4 GigaByte

(GB) of RAM along with an Intel Core i3 CPU (PC Low), and another with 8 GB of RAM

and an Intel Core i5 CPU (PC High). The tests performed used both browsers, Google

Chrome and Mozilla Firefox, to access a dynamic page, without any interactions scheduled.

For this purpose was used the webpage https://www.ua.pt/, from the University of Aveiro.

For this scenario, were made fifty tests under the conditions referred above (for each

browser), and the metrics returned from the tests executions annotated for further analysis.

The Figure 5.1 shows the tests execution timings (Y axis), in seconds, for each one of the

fifty tests (X axis), executed on both browsers. This tests were made on a computer with 4

GB of RAM and an Intel Core i3 CPU.

The conclusions that can be extracted from the observation of the results obtained are:

that the tests performed with the Google Chrome browser, in all of the samples, presents a

lower execution time than the tests performed on the Mozilla Firefox browser.

https://www.ua.pt/

5.1. Program Execution Time 71

Figure 5.1: Program execution time test (with no interactions) using Google Chrome and
Mozilla Firefox browsers, on a 4 GB RAM and Intel Core i3 device.

The difference between the execution times of each browser presents a gap of, approxi-

mately, four and a half seconds between them.

Browser Google Chrome Mozilla Firefox

Average (seconds) 13,63 18,14

Maximum (seconds) 18 23

Minimum (seconds) 12 17

Standard Deviation 1,12 1,36

Confidence Interval (Confidence Level = 95%) [13, 32; 13, 94] [17, 78; 18, 50]

Table 5.1: Table with the analysis of the “program execution time” fifty samples, for PC Low
tests.

Table 5.1 contains the measured values for the average, maximum and minimum for each of

the browsers considered. And also, presents the standard deviation and confidence interval,

with a confidence of 95 percent. By calculating the coefficient of variation (given by the

division of the standard deviation by the mean):

72 Chapter 5. Evaluation And Analysis

- For Google Chrome, it is obtained a coefficient of 0,082, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time.

- For Mozilla Firefox, it is obtained a coefficient of 0,075, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time, as well.

The same tests were performed on the PC High. Figure 5.2 shows that the difference

between the execution times for each browser decreased, and it is less intuitive to take con-

clusions. Still, from the observation of the chart, it can be affirmed that the Google Chrome

test samples present lower execution times than the Mozilla Firefox. This is similar to what

was concluded for the device with lower capabilities.

In this case, the values for the program execution, in both browsers, are more similar than

the ones observed for the PC Low (vide Figure 5.1). In addition, it is coherent that the PC

High does not present a big difference between the results obtained for each browser. In fact,

a device with higher capabilities has a better performance executing the running processes.

Also, a PC with more RAM presents less visible differences between the navigation in each of

the browsers considered. Consequently, the impact on the program execution time is lower.

Figure 5.2: Program execution time test (with no interactions) using Google Chrome and
Mozilla Firefox browsers, on a 8 GB RAM and Intel Core i5 device.

5.2. Page Load Time 73

Table 5.2 shows the average, maximum and minimum values in seconds, corresponding to

the data presented in Figure 5.2. And also, presents the standard deviation and confidence

interval values, with a confidence of 95 percent. By calculating the coefficient of variation:

- For Google Chrome, it is obtained a coefficient of 0,094, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time.

- For Mozilla Firefox, it is obtained a coefficient of 0,126, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time, as well.

Browser Google Chrome Mozilla Firefox

Average (seconds) 10,68 12,02

Maximum (seconds) 14 26

Minimum (seconds) 10 10

Standard Deviation 1,00 1,52

Confidence Interval (Confidence Level = 95%) [10, 40; 10, 96] [11, 60; 12, 44]

Table 5.2: Table with the analysis of the “program execution time” fifity samples, for PC
High tests.

Table 5.2 reveals that the gap between the two browsers execution times is, approximately,

of one point three seconds.

To conclude, from the data obtained, it can be affirmed that the device running the

SmartBrowsing solution influences the time that it takes to execute a test. A device with

less memory and less processing capabilities increase the time of execution of the test. It can

also be concluded that the tests which use the Mozilla Firefox browser take, in average, more

time to execute than the ones made using the Google Chrome browser. And, also, the Mozilla

Firefox browser presents a bigger difference between the average values of the lower capability

device and the higher capability device, of, approximately, six seconds (18,14 - 12,02 = 6,12).

While the Google Chrome browser presents a difference between the average values of each

device of, approximately, three seconds (13,63 - 10,68 = 2,95). In summary, the browser and

the device used have impact on the SmartBrowsing execution performance.

Page Load Time

In this section, the same two devices and the same webpage, described on the section 5.1,

were used. In this case with the purpose of taking conclusions about the influence on the

page load time, and consequently, on the user QoE perceived when loading the page.

74 Chapter 5. Evaluation And Analysis

Firstly, considering the PC Low, in the sequence of the tests made on the section 5.1,

were extracted the page load times for each browser, Google Chrome and Mozilla Firefox, in

a total of fifty tests per browser.

Figure 5.3 shows the page load time, in seconds, for the fifty tests made for both browsers.

It can be observed that the page load times measured in each browser are not conclusive of

a distinguishing difference.

Figure 5.3: Page Load Time (with no interactions) using Google Chrome and Mozilla Firefox
browsers, on a 4 GB RAM and Intel Core i3 device.

Table 5.3 shows the average, maximum and minimum values, in seconds, for the set of

fifty samples. And also, presents the standard deviation and confidence interval values, with

a confidence of 95 percent. By calculating the coefficient of variation:

- For Google Chrome, it is obtained a coefficient of 0,149, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time.

- For Mozilla Firefox, it is obtained a coefficient of 0,202, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time, as well.

In fact, the difference of page load times between each browser is not significant and the

range of values is very similar.

5.2. Page Load Time 75

Browser Google Chrome Mozilla Firefox

Average (seconds) 2,68 2,47

Maximum (seconds) 3,65 3,72

Minimum (seconds) 1,79 1,36

Standard Deviation 0,4 0,5

Confidence Interval (Confidence Level = 95%) [2, 57; 2, 79] [2, 33; 2, 61]

Table 5.3: Table with the analysis of the “page load time” fifty samples, for PC Low tests.

Considering the PC High, in the sequence of the tests made in section 5.1, it extracted

the page load times for each browser in a total of fifty tests per each.

In the Figure 5.4, it can be observed that the Google Chrome presents a shorter range of

values, and also more stable values of page load timings than the Mozilla Firefox, that presents

a wider range of values for the page load time (higher difference between the maximum and

minimum points).

Figure 5.4: Page Load Time (with no interactions) using Google Chrome and Mozilla Firefox
browsers, on a 8 GB RAM and Intel Core i5 device.

Table 5.4 show the values of average, maximum and minimum for the set of fifty samples.

And also, presents the standard deviation and confidence interval values, with a confidence

76 Chapter 5. Evaluation And Analysis

of 95 percent. By calculating the coefficient of variation:

- For Google Chrome, it is obtained a coefficient of 0,102, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time.

- For Mozilla Firefox, it is obtained a coefficient of 0,279, which is inferior to one, indi-

cating a low dispersion between the samples of program execution time, as well.

It can be concluded that the difference of page load time between each browser is of

approximately, two seconds. Google Chrome has the higher page load times.

Browser Google Chrome Mozilla Firefox

Average (seconds) 1,77 1,29

Maximum (seconds) 2,21 2,22

Minimum (seconds) 1,2 0,59

Standard Deviation 0,18 0,36

Confidence Interval (Confidence Level = 95%) [1, 72; 1, 82] [1, 19; 1, 39]

Table 5.4: Table with the analysis of the “page load time” fifty samples, for PC High tests.

The conclusion to be taken from the observance of this data is that the device capabilities

also impact on the way of how the webpage loading is perceived by the user and, consequently,

on the QoE. As such, the device with lower capabilities (PC Low) has increased values of

page load time, but without a perceptible difference in terms of the browser used, as they have

similar page load timings. Otherwise, the device with higher capabilities (PC High) present

a lower range of page load timings and a tenuous difference between the times obtained for

each browser in use, by Figure 5.4 observance. The difference between the page load times for

each device is of, approximately, one second (for Google Chrome: 2,68 - 1,77 = 0,91 seconds;

for Mozilla Firefox : 2,47 - 1,29 = 1,18 seconds).

Static versus Dynamic Webpages

In this section, it will be analyzed the impact on the webpage render time and on the

page load time, depending on whether the page is static or dynamic.

For this, the tested scenarios were: perform twenty tests without interaction to the static

webpage https://srlrr.github.io/test/ (webpage made for this purpose), composed by

images, links and a HTML file; Perform twenty tests without interaction to the dynamic

webpage https://www.ua.pt/. The focus of the tests were the Client-side Processing Time

and the Page Load Time metrics, as they are the most relevant to compare dynamic versus

static webpages.

https://srlrr.github.io/test/
https://www.ua.pt/

5.3. Static versus Dynamic Webpages 77

Figure 5.5 represents the Client-side Processing Time values obtained on the tests exe-

cuted, for the static and dynamic webpages.

In Figure 5.5 it is explicitly visible that the dynamic page takes more time to be loaded

than the static one, which is fair, as the static one always loads the same content and has

less types of files associated, for example, no JS files, reducing the processing needed on the

client-side.

Figure 5.5: Client-side processing time or the time it takes to complete the load the webpage
or the first part of the webpage, for a static and dynamic webpages.

In Figure 5.6 it is represented the page load times extracted on the twenty tests performed

for each page type (static and dynamic).

78 Chapter 5. Evaluation And Analysis

Figure 5.6: Page Load Time measured on a static and on a dynamic webpage.

In agreement with Figure 5.5, it is visible that the dynamic webpage takes longer on the

process of page loading than the static one, showing that the type of webpage impacts on

the client-side time, as well as on the total time of the webpage loading. Since that, it can

be concluded that the render and DOM loading events are important on the comparison of a

static with a dynamic webpage, as the charts 2.7 and 5.6 are very similar.

SmartBrowsing Navigation

In this section, it will be analyzed the coherence of the DNS Lookup time, the TCP

connection time, the request time and response time metrics on a real navigation and on an

emulated navigation performed by the SmartBrowsing solution on the access to the http:

//www.sapo.pt/ webpage. For that purpose, it was performed a packet capturing during a

real access to the webpage and also during a SmartBrowsing test to access the webpage.

For the case of the SmartBrowsing access to the webpage, the partial JSON output file is

presented in Listing 5.1, with the metrics obtained after the webpage access, along with some

informations about the test scenario.

http://www.sapo.pt/
http://www.sapo.pt/

5.4. SmartBrowsing Navigation 79

1 {
2 ”webPageTimings” : {
3 ”networkDelayTime” : 0 . 092 ,

4 ” p a g e I n t e r a c t i v e ” : 1 . 208 ,

5 ” requestTime ” : 0 . 051 ,

6 ” connectionTime ” : 0 . 05 ,

7 ” la t ency ” : 0 . 185 ,

8 ”pageLoadTime” : 5 . 896 ,

9 ” lookupTime” : 0 . 061 ,

10 ” s co r e ” : 1 ,

11 ” responseTime ” : 0 . 092 ,

12 ”TTFB” : 0 . 104 ,

13 ” c l i en tS ideProce s s ingT ime ” : 5 .787

14 } ,

15 ” g e n e r a l I n f o ” : {
16 ” u r l ” : ” http ://www. sapo . pt/” ,

17 ” sc r een ” : {
18 ” screenHe ight ” : 730 ,

19 ” screenWidth ” : 1053

20 } ,

21 ” userAgent ” : ” Moz i l l a /5 .0 (X11 ; Ubuntu ; Linux x86 64 ; rv : 4 7 . 0) Gecko

/20100101 F i r e f ox /47 .0 ” ,

22 ” browser ” : ” f i r e f o x ” ,

23 ” statusCode ” : 200

24 }
25 }

Listing 5.1: Partial JSON output file, obtained from a test to the http://www.sapo.pt/

webpage.

Domain Name System (DNS) Lookup Time

Figure 5.7 shows two captured packets, while the SmartBrowsing solution was running

a test to access the http://www.sapo.pt/ webpage. These packets correspond to the DNS

lookup query and response for the IPv4 address matching the URL. By subtracting the

packets timestamps (3,185056 - 3,182687), it is obtained a DNS lookup time of 0,002369

seconds.

Figure 5.7: IPv4 DNS request and response captured packets in parallel with a SmartBrowsing
test.

Figure 5.8 is referent to the captured packets of the DNS lookup for the IPv6 address,

http://www.sapo.pt/
http://www.sapo.pt/

80 Chapter 5. Evaluation And Analysis

correspondent to the http://www.sapo.pt/ webpage. These two packets were captured, also,

while the SmartBrowsing solution was running the access to the SAPO webpage. The DNS

lookup time for IPv6 is obtained by subtracting the packets timestamps (3,185799 - 3,182745),

with a result of 0,003054 seconds.

Figure 5.8: IPv6 DNS request and response captured packets in parallel with a SmartBrowsing
test.

In the partial output JSON file, presented in Listing 5.1 in the beginning of this subsec-

tion “SmartBrowsing Navigation”, the DNS lookup time obtained by the solution was six

milliseconds, which is not exactly the same as the sum of both of the DNS values calculated

from the captured packets timestamp (0,002369 + 0,003054) which is, approximately, five

milliseconds. However, this does not mean that the SmartBrowsing solution is returning a

wrong time, it can mean that the DNS queries and responses for IPv4 and IPv6 are made in

parallel, or one of them can be triggered while the other response has not arrived, or made

with a temporal space in-between. Thus, the difference is not inconsistent, as both values are

of the same order of magnitude in terms of units (milliseconds), and with very close values,

approximately one millisecond of difference. Still, the value returned by the solution, com-

pared with the one given by the subtraction of the packets timestamps, can be considered

accurate. It is, the SmartBrowsing solution does not introduce delays on the DNS lookup

time that is returned, compared to the value from the captures.

Transmission Control Protocol (TCP) Connect Time

The packets in Figure 5.9 represent the three-way handshake connection with the web-

server. By subtracting the timestamps of the last and the first packets (2,655039 - 2,610855),

the time interval for the connection was, approximately, of forty four milliseconds. This value

dist from the one returned by the SmartBrowsing solution by, approximately, six milliseconds.

However, this difference may be due to the a delay introduced by the curl command that

performs the request for the TCP connection time.

http://www.sapo.pt/

5.5. Interactions 81

Figure 5.9: Three-way handshake TCP connection packets.

Request and Response Time

Figure 5.10 shows the packets correspondent to the HTTP GET request and to the HTTP

response. By subtracting the packets timestamps (4,175272 - 4,032341) the time of request

plus the response is of 0,142931 seconds, which coincides, approximately, with the sum of

the values of request and response returned by the SmartBrowsing solution (0,051 + 0,092 =

0,143 seconds).

Figure 5.10: Captured packet of a webpage HTTP GET request and its respective HTTP
response.

Interactions

In this section will be shown examples of the interactions available to be performed, by

showing the partial JSON output file, to illustrate the timings and informations that are

outputted and also the screen captures taken during the tests performed.

Login and Logout

The scenario tested for the login and logout interactions were performed to the https:

//www.facebook.com/ and it will be presented the screen captures taken during the test, by

order of capture:

In the first capture (vide Figure 5.11), it is visible the screen capture taken after the

webpage access.

https://www.facebook.com/
https://www.facebook.com/

82 Chapter 5. Evaluation And Analysis

Figure 5.11: Screen capture of the initial page captured after the webpage access.

Figure 5.12 depicts the action before the trigger of the login interaction: the credentials

insertion on the correspondent places, that were defined on the configuration file.

Figure 5.12: Screen capture taken after the insertion of the credentials to perform the login.

Figure 5.13 shows the screen capture taken after the login trigger, by the click on the

login button. This screen capture (Figure 5.13) shows the webpage loaded after the login:

the user’s news feed.

5.5. Interactions 83

Figure 5.13: Screen capture of the webpage loaded after the login has been successfully
performed.

Figure 5.14 shows the webpage loaded after the logout interaction. The logout action

implies the click on the menu on the right corner of the webpage (vide Figure fig:loginDone)

and, then, on the logout option of that menu. In the webpage loaded after the logout (vide

Figure 5.14) it is visible the indication of the user that logged out, on the left side of the

webpage, showing that the logout was successful.

Figure 5.14: Screen capture taken after the logout has been successfully performed.

84 Chapter 5. Evaluation And Analysis

Listing 5.2 shows part of the outputted JSON file, which is composed by the informations

gathered during the test. These informations include: the time metrics extracted after the

URL fetch; The informations about the testing scenario configured (generalInfo), such as, the

webpage tested and its status code, the user-agent, the screen size and the browser used. In

this JSON, the list of loaded resources is not represented.

1 {
2 ”logoutTimeAndPageLoadTime” : 5 . 123 ,

3 ”webPageTimings” : {
4 ”networkDelayTime” : 0 . 391 ,

5 ” p a g e I n t e r a c t i v e ” : 1 . 26 ,

6 ” requestTime ” : 0 . 208 ,

7 ” connectionTime ” : 0 . 057 ,

8 ” la t ency ” : 0 . 488 ,

9 ”pageLoadTime” : 2 . 78 ,

10 ” lookupTime” : 0 . 061 ,

11 ” s co r e ” : 1 ,

12 ” responseTime ” : 0 . 097 ,

13 ”TTFB” : 0 . 406 ,

14 ” c l i en tS ideProce s s ingT ime ” : 2 .351

15 } ,

16 ”loginTimeAndPageLoadTime” : 11 .272 ,

17 ” g e n e r a l I n f o ” : {
18 ” u r l ” : ” https : //www. facebook . com/” ,

19 ” sc r een ” : {
20 ” screenHe ight ” : 730 ,

21 ” screenWidth ” : 1053

22 } ,

23 ” userAgent ” : ” Moz i l l a /5 .0 (X11 ; Ubuntu ; Linux x86 64 ; rv : 4 7 . 0) Gecko

/20100101 F i r e f ox /47 .0 ” ,

24 ” browser ” : ” f i r e f o x ” ,

25 ” statusCode ” : 200

26 } ,

27 ” logoutTime ” : 2 . 921 ,

28 ” loginTime ” : 5 .451

29 }

Listing 5.2: Partial output written to the JSON file, of a test with login and logout interactions

To prove that the login and logout timings were accordingly with a real experience, both

tasks were made by a real user, by accessing the Facebook website through the Mozilla Firefox

browser. The browser session was opened in a private/anonymous session mode, in order

to have a scenario with no cached credentials, as it occurs on tests performed using the

SmartBrowsing solution.

The times for the login and logout were measured with the help of a chronometer, taking

5.5. Interactions 85

into consideration the elements that needed to be visible on the screen (the ones used on the

SmartBrowsing test configuration in Listing 4.1) as the ending point of the interaction (login

or logout) time measurement and the click on the login/logout button (the same configured for

the SmartBrowsing test) as starting point. Since that, the times measured were 4,10 seconds

for the login task and 2,57 seconds for the logout task time. These values are different from

the ones returned by the application, however, the difference between them is reasonable, as

they are within the same order of magnitude. The login value resulting from the automated

test dist from the real login value of 1,351 seconds. And the logout time resulting from the

automated test dist from the real one in 0,351 seconds. The values measured may have a delay

(increased or decreased value), not only related with the user reaction time while starting and

stopping the chronometer, but also, with the user perception of the elements appearing on

the screen.

However, this comparison allows the conclusion that the automated test for these inter-

actions does not dist in much from the times of real interactions.

Scroll Down

In the SmartBrowsing solution there are two options of scroll down interactions: scroll

down to the bottom of the webpage or scroll by a certain amount of pixels.

Following, will be presented the screen captures outputted by a test to the https:

//lifestyle.sapo.pt/ webpage, that performed both types of scroll interactions. This

webpage was chosen due to its big height, in order to better perceive the two types of scroll

interactions on Figures 5.16 and 5.17.

Figure 5.15 shows the screen capture taken after accessing to the webpage with the Smart-

Browsing solution, in order to have the webpage view after the webpage request.

Figure 5.15: Screen capture taken after the webpage request.

https://lifestyle.sapo.pt/
https://lifestyle.sapo.pt/

86 Chapter 5. Evaluation And Analysis

Then, the program starts to trigger the defined interactions, in this case, the first one

is the scroll down by pixels. And, similarly, the program takes a screen capture after the

accomplishment of the interaction (vide Figure 5.16). If there were, still, resources unloaded

before the scroll interaction(s), they will be listed and outputted to the JSON file.

Figure 5.16: Screen capture taken after a scroll down by the specified amount of pixels on
the configuration file.

Figure 5.17 corresponds to the last interaction, the scroll down to the bottom of the

webpage.

Figure 5.17: Screen capture taken after a scroll down to the bottom of the webpage.

5.6. Comparison with a Web Tool Results 87

Listing 5.3 represents part of the JSON output file, containing the general information

and the metrics and interactions timings extracted during the test. In this JSON, it is not

represented the list of loaded resources.

1 {
2 ”webPageTimings” : {
3 ”networkDelayTime” : 0 . 335 ,

4 ” p a g e I n t e r a c t i v e ” : 2 . 273 ,

5 ” requestTime ” : 0 . 048 ,

6 ” connectionTime ” : 0 . 163 ,

7 ” la t ency ” : 0 . 467 ,

8 ”pageLoadTime” : 10 .376 ,

9 ” lookupTime” : 0 . 125 ,

10 ” s co r e ” : 1 ,

11 ” responseTime ” : 0 . 132 ,

12 ”TTFB” : 0 . 348 ,

13 ” c l i en tS ideProce s s ingT ime ” : 10 .026

14 } ,

15 ” scrollDownTime” : 0 . 108 ,

16 ” g e n e r a l I n f o ” : {
17 ” u r l ” : ” https : // l i f e s t y l e . sapo . pt/” ,

18 ” sc r een ” : {
19 ” screenHe ight ” : 730 ,

20 ” screenWidth ” : 1053

21 } ,

22 ” userAgent ” : ” Moz i l l a /5 .0 (X11 ; Ubuntu ; Linux x86 64 ; rv : 4 7 . 0) Gecko

/20100101 F i r e f ox /47 .0 ” ,

23 ” browser ” : ” f i r e f o x ” ,

24 ” statusCode ” : 200

25 }
26 }

Listing 5.3: Partial output written to the JSON file, of a test with scroll interactions.

Comparison with a Web Tool Results

This section presents the tests performed, with two of the previously webpages used, on

the WebPagetest tool[59]. This web tool was approached on chapter 2.

The tests to the two webpages, using the web tool, were made under the same conditions,

that is, same location and browser.

The WebPagetest [59] allows to specify the location from where the test will be executed.

However, Portugal was not in the options of the locations available. The location used was

88 Chapter 5. Evaluation And Analysis

Paris (France), because it is in Europe and was the most close location to Portugal, from all

the options available.

The comparison will be performed between the results obtained from the web tool and from

the SmartBrowsing solution. The values used were extracted from the SmartBrowsing tests,

previously presented (vide Listings 5.1 and 5.2). Hence, the browser used on the WebPagetest

tool was the Mozilla Firefox, because it was the used on those previous SmartBrowsing tests.

Table 5.5 depicts the metrics returned by the WebPagetest tool, for two of the websites

used on previous sections: www.sapo.pt and www.facebook.com.

SAPO Facebook

Page Load Time (seconds) 7,613 2,297

TTFB (seconds) 0,171 0,493

Table 5.5: Table with the metrics measured (in seconds), by the WebPageTest tool, for the
webpages: www.sapo.pt and www.facebook.com.

Table 5.6 depicts the same metrics returned by the SmartBrowsing solution, for two of

the websites used on previous sections: www.sapo.pt and www.facebook.com. These values

were extracted from the Listings 5.1 and 5.2, respectively.

SAPO Facebook

Page Load Time (seconds) 5,896 2,78

TTFB (seconds) 0,104 0,406

Table 5.6: Table with the metrics measured (in seconds), by the SmartBrowsing solution, for
the webpages: www.sapo.pt and www.facebook.com.

The values obtained are very similar for both metrics. The page load time for the SAPO

webpage, measured with the WebPageTest tool, dist from the SmartBrowsing value by 1,717

seconds. Also, the TTFB dist by 0,067 seconds. For the Facebook webpage, the page load

time dist by 0,483 seconds, and for the TTFB there is a difference of 0,087 seconds.

The page load time metric is compound by network and device factors. Hence, the page

load time considers the interval between the beginning of the URL access and the time at

when the webpage stops loading. This interval considers events are dependent from: traffic,

amount of requests to the webpage host server, delaying the response, or even the existence

of CDN that can cache the most accessed content by users, and, consequently, reduce the

waiting time. Besides connection factors, the device used, which performs the URL request,

also impacts on the page load time. The device impact is in terms of the webpage rendering,

as previously discussed on section 5.2.

www.sapo.pt
www.facebook.com
www.sapo.pt
www.facebook.com
www.sapo.pt
www.facebook.com
www.sapo.pt
www.facebook.com

5.6. Comparison with a Web Tool Results 89

The TTFB corresponds to the time it took to receive the first byte of the response from

the server, from the time of the URL request. Since that, this metric also includes factors of

network and device capabilities.

From the observance of Tables 5.5 and 5.6, the values are within the same order of magni-

tude, indicating that the SmartBrowsing solution returns identical values to the ones returned

by WebPageTest, for these metrics.

The SAPO webpage results present a bigger difference comparing to the Facebook results.

This can be due to the fact that the SAPO webpage target users are the Portuguese pop-

ulation, and so, the web servers are located in Portugal. Consequently, the tests made to

the SAPO webpage with the SmartBrowsing tool show that the webpage responsiveness is

higher than for the WebPageTest tool, which test location was in France. That is due to the

distance that the packets need to through.

Although the differences stated with the SAPO webpage, the tests to the Facebook web-

page present very similar results in both tools. The reason for these similarities can be due to

the interest of the Facebook company for the all the users of the world. This webpage is used

by millions of people af over the globe, since that, the Facebook needed to create strategies in

order to have a uniform responsiveness of its website. That strategies can include the presence

of CDNs on several places of the world, that bring the contents closer to the users, in order

to provide a better responsiveness and, hence, a better experience for all the users, even the

ones that are far from the Facebook hosting servers. This can explain the close results for

each metric extracted with each tool.

Conclusion

This chapter aim was to address the tests performed, in order to proof the solution effec-

tiveness on the emulation of a real experience on webpage access through a real browser.

Since that, the tests performed intended to analyze the overall scenarios of the Smart-

Browsing solution. For that purpose, the solution was run and were made several tests: to

verify if the device used has impact on the solution performance; Packet captures, to proof

the reliability of the results; “Screen” captures to better illustrate the program flow for tests

with interactions; And, a comparison between the metrics available for both the WebPageTest

tool and SmartBrowsing solution.

In this chapter can be concluded that the device in use has impact on the webpage

loading time, and on the SmartBrowsing program execution time, consequently, impacting

on the QoE. Moreover, the timings gathered by the SmartBrowsing solution were considered

reasonable, after the packets analysis. In the interactions scenarios, when compared to the

90 Chapter 5. Evaluation And Analysis

values measured on real interactions, the SmartBrowsing values were proved to be reliable.

The network-related metrics extracted are dependent on several factors, such as the loca-

tion from where the webpage access is done, the traffic or requests amount to the webpage

host server at the time. Since that, the values obtained on different tools that perform tests

from different locations are likely to have differences on the values returned.

Although that, companies like Facebook that has users from all over the world, needs to

improve the responsiveness of the webpage. For that purpose, this companies use strategies

such as, the presence of elements like CDNs in strategic places of the world, allow to improve

and uniform the experience for all the world users. That justifies the fact of the very close

values obtained for both metrics in the test scenario that compared the SmartBrowsing with

the WebPageTest tool.

6

Conclusions And Future Work

This master thesis studied the possibilities to automate the browsers and perform interac-

tions on the webpages, in order to simulate a real-user experience. This way and by analyzing

the metrics extracted along with the screen captures, it is possible to debug the causes that

differentiate a good and a bad experience. Also, this could be completed with real users

opinions, in order to calibrate the labeling of good and bad experience perception.

The SmartBrowsing solution is a useful tool both for web developers, that can debug their

webpages and see what are the biggest influences on their webpage performance in terms of

QoE, but can also, for example, help enterprises in the improvement of their web services,

like the pages of authentication to have access to a wireless connection, in places such as,

restaurants, hotels or free access hotspots available in certain locations.

The proposed objectives were all accomplished as it was implemented a solution that

can perform user-like interactions in real browsers and obtain the times associated with the

webpage access.

Further in time, the solution can be improved in terms of including other test scenarios, like

the possibility to test on mobile browsers, although the SmartBrowsing solution allowance

to define an user-agent, even a mobile one. It also supports the specificities of a mobile

interaction, but by now, it is not possible to use a mobile browser, rather than the Google

Chrome or the Mozilla Firefox ones.

Next improvements can also include a more complex and viable formula to score the

webpages. Also, it is needed to test and integrate the solution on the ArQoS probes and

management system.

There is also the possibility to evolve from the metrics extracted to others, as the QoE

topic evolves over time, other metrics appear.

Furthermore, there is the need to keep the technologies used, on the deployment of this

solution, updated, in order to keep the solution updated and with more possibilities to be

91

92 Chapter 6. Conclusions And Future Work

implemented as the technologies used evolve.

The conclusions taken are that the device characteristics and the browser in use impact

on the QoE and impact on the execution times of the SmartBrowsing application. Also, the

packets captured proved that the metrics tested were reliable, and can be inferred that the

other metrics, not directly analyzed, are also reliable.

Overall, this solution allows to test different scenarios and retrieves several metrics that

can be further evaluated by a person, in order to debug the causes of a good or a bad

experience.

The metrics measured in each web access are different, due to its dependency on several

factors. The factors influencing that difference are, for example, the location from where

the access is performed, the traffic or the amount of requests to the web server at the time.

All these factors have impact on the users QoE. Besides those factors, the presence of some

elements in the network, like the CDNs, can improve the user-experience while navigating on

the Web, as the contents requested are closer to the end user. In addition, the device, the

browser used and the type of webpage accessed, have impact on the QoE perceived by the

end-user.

The measuring of the QoE, while navigating in the Web, is complex and implies the need

to have in consideration all the factors previously referred, along with each user individuality

on the experience perception. The classification of the web navigation QoE needs research to

verify which are the most impacting factors on a web navigation experience.

This master dissertation intends to give a contribute on the automation of the QoE eval-

uation perceived by real users, while navigating on a Web browser.

Bibliography

[1] K. Brunnström et al., Qualinet White Paper on Definitions of Quality of Experience.

Qualinet - European Network and Services, 2013.

[2] T. S. S. O. ITU, “ITU-T Rec. G.1031 (02/2014) QoE factors in web-browsing,” ITU -

International Telecommunication Union, Tech. Rep., 2014.

[3] T. S. S. O. ITU, “ITU-T Rec. G.1040 Network contribution to transaction time, institu-

tion = ITU - International Telecommunication Union,” Tech. Rep., 2006.

[4] T. S. S. O. ITU, “Vocabulary for performance and quality of service, amendment 1: New

appendix i – definition of quality of experience (qoe),” ITU - International Telecommu-

nication Union, Tech. Rep., January 2007.

[5] F. Kuipers, R. Kooij, D. De Vleeschauwer, and K. Brunnström, “Techniques for mea-

suring quality of experience,” in Proceedings of the 8th International Conference on

Wired/Wireless Internet Communications, ser. WWIC’10. Berlin, Heidelberg: Springer-

Verlag, 2010, pp. 216–227.

[6] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of experience of web users,”

in Proceedings of the 2016 Workshop on QoE-based Analysis and Management of Data

Communication Networks, ser. Internet-QoE ’16. New York, NY, USA: ACM, 2016,

pp. 37–42.

[7] T. Hoßfeld, P. E. Heegaard, M. Varela, and S. Möller, “QoE beyond the MOS: an in-

depth look at QoE via better metrics and their relation to MOS,” Quality and User

Experience, vol. 1, no. 1, p. 2, sep 2016.

[8] ETSI, “Humman Factors (HF): QoE requirements for real-time communication services,”

Tech. Rep., 2009.

[9] K. Kilkki, “Quality of experience in communications ecosystem,” vol. 14, no. 5, pp.

615–624, March 2008.

93

94 Bibliography

[10] S. Halabi, “Evolution of the Internet,” in Internet Routing Architectures. Cisco, 2000,

ch. 1, pp. 1–50.

[11] C. Wareham, “On the Moral Equality of Artificial Agents,” in Moral, Ethical, and Social

Dilemmas in the Age of Technology: Theories and Practice. IGI Global, 2013, ch. 5,

pp. 70–78.

[12] Microsoft, “Tcp/ip protocol architecture,” 2010. [Online]. Available: http://technet.

microsoft.com/en-us/library/cc958821.aspx [Accessed: 2017-09-07]

[13] Parziale et al., TCP/IP Tutorial and Technical Overview, 8th ed. IBM’s International

Technical Support Organization, 2006, vol. 1, no. December 2006.

[14] World Wide Web Foundation, “History of the Web – World Wide Web Foundation,”

2008. [Online]. Available: http://webfoundation.org/about/vision/history-of-the-web/

[Accessed: 2017-05-5]

[15] P. S. Wang, “An Overview of HTTP,” pp. 1–28, 2017. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview [Accessed: 2017-08-

02]

[16] J. Postel, “User datagram protocol - rfc 768,” United States, 1980.

[17] IETF, “Transmission Control Protocol - RFC 793,” 1981.

[18] T. Dierks, “The transport layer security (TLS) protocol version 1.2 - RFC 5246,” 2008.

[19] R. Fielding et al., “Hypertext Transfer Protocol – HTTP/1.1 - RFC 2616,” 1999.

[20] M. Belshe et al., “Hypertext Transfer Protocol Version 2 - RFC 7540,” 2015.

[21] E. Rescorla, “HTTP over TLS - RFC 2818,” 2000.

[22] M. D. Network, “Introduction to the dom - gecko dom reference — mdn.”

[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/Document

Object Model/Introduction [Accessed: 2017-09-09]

[23] W3C, “Tim Berners-Lee,” 2016. [Online]. Available: https://www.w3.org/People/

Berners-Lee/ [Accessed: 2017-07-12]

[24] NetMarketShare, “Mobile/Tablet Browser Market Share,” 2015. [Online]. Available:

https://netmarketshare.com/ [Accessed: 02/08/2017]

[25] Google, “Download and install Google Chrome - Computer - Google Chrome

Help.” [Online]. Available: https://support.google.com/chrome/answer/95346?co=

GENIE.Platform%3DDesktop&hl=en [Accessed: 2017-08-03]

http://technet.microsoft.com/en-us/library/cc958821.aspx
http://technet.microsoft.com/en-us/library/cc958821.aspx
http://webfoundation.org/about/vision/history-of-the-web/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://www.w3.org/People/Berners-Lee/
https://www.w3.org/People/Berners-Lee/
https://netmarketshare.com/
https://support.google.com/chrome/answer/95346?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/chrome/answer/95346?co=GENIE.Platform%3DDesktop&hl=en

Bibliography 95

[26] W3Schools, “Browser Statistics,” p. 5, 2015. [Online]. Available: https://www.

w3schools.com/browsers/default.asp [Accessed: 2017-05-02]

[27] StatCounter, “StatCounter Global Stats - Browser, OS, Search Engine including

Mobile Market Share,” 2013. [Online]. Available: http://gs.statcounter.com/ [Accessed:

2017-08-03]

[28] W. Foundation, “Dashiki: Simple Request Breakdowns.” [Online]. Avail-

able: https://analytics.wikimedia.org/dashboards/browsers/#desktop-site-by-browser/

browser-family-timeseries [Accessed: 2017-08-03]

[29] Mozilla, “Firefox.” [Online]. Available: https://www.mozilla.org/en-US/firefox/

[Accessed: 2017-08-03]

[30] Microsoft. Internet explorer system requirements ie9. [Online]. Available: https:

//support.microsoft.com/en-us/help/11531/internet-explorer-system-requirements [Ac-

cessed: 2017-08-03]

[31] Microsoft., “Microsoft Edge requirements and language support (Microsoft Edge for

IT Pros) - Microsoft Docs.” [Online]. Available: https://docs.microsoft.com/en-us/

microsoft-edge/deploy/hardware-and-software-requirements [Accessed: 2017-08-03]

[32] Apple, “macOS - Safari - Apple.” [Online]. Available: https://www.apple.com/safari/

[Accessed: 2017-08-03]

[33] Opera. Best browser for linux — download — fast & safe — opera. [Online]. Available:

https://www.opera.com/computer [Accessed: 2017-08-03]

[34] IETF, “About the IETF,” 2015. [Online]. Available: https://www.ietf.org/about/

[Accessed: 2017-08-17]

[35] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP 1.1) - Semantics and

Content - RFC 7231,” 2014.

[36] UserAgentString, “UserAgentString.com - List of User Agent Strings.” [On-

line]. Available: http://www.useragentstring.com/pages/useragentstring.php [Accessed:

2017-08-17]

[37] A. Hidayat, “PhantomJS — PhantomJS,” 2016. [Online]. Available: http:

//phantomjs.org/ [Accessed: 2017-08-09]

[38] ScrapingHub, “Splash - A javascript rendering service — Splash 2.3 documentation.”

[Online]. Available: http://splash.readthedocs.io/en/stable/index.html [Accessed: 2017-

08-17]

https://www.w3schools.com/browsers/default.asp
https://www.w3schools.com/browsers/default.asp
http://gs.statcounter.com/
https://analytics.wikimedia.org/dashboards/browsers/#desktop-site-by-browser/browser-family-timeseries
https://analytics.wikimedia.org/dashboards/browsers/#desktop-site-by-browser/browser-family-timeseries
https://www.mozilla.org/en-US/firefox/
https://support.microsoft.com/en-us/help/11531/internet-explorer-system-requirements
https://support.microsoft.com/en-us/help/11531/internet-explorer-system-requirements
https://docs.microsoft.com/en-us/microsoft-edge/deploy/hardware-and-software-requirements
https://docs.microsoft.com/en-us/microsoft-edge/deploy/hardware-and-software-requirements
https://www.apple.com/safari/
https://www.opera.com/computer
https://www.ietf.org/about/
http://www.useragentstring.com/pages/useragentstring.php
http://phantomjs.org/
http://phantomjs.org/
http://splash.readthedocs.io/en/stable/index.html

96 Bibliography

[39] Lua, “Lua: getting started.” [Online]. Available: http://www.lua.org/start.html

[Accessed: 2017-08-17]

[40] SensioLabs, “The BrowserKit Component (The Symfony Components).” [On-

line]. Available: https://symfony.com/doc/current/components/browser{ }kit.html

[Accessed: 2017-08-17]

[41] S. Stewart, “Selenium WebDriver,” 2012. [Online]. Available: http://www.seleniumhq.

org/docs/03 webdriver.jsp [Accessed: 2017-07-03]

[42] “SeleniumHQ/selenium is licensed under the Apache License 2.0.” [Online]. Available:

https://github.com/SeleniumHQ/selenium/blob/master/LICENSE [Accessed: 2017-07-

04]

[43] W3C, “WebDriver.” [Online]. Available: https://www.w3.org/TR/webdriver/ [Ac-

cessed: 2017-08-29]

[44] Google, “ChromeDriver - WebDriver for Chrome.” [Online]. Available: https:

//sites.google.com/a/chromium.org/chromedriver/ [Accessed: 2017-08-19]

[45] Mozilla, “Marionette - Mozilla — MDN.” [Online]. Available: https://developer.mozilla.

org/en-US/docs/Mozilla/QA/Marionette [Accessed: 2017-08-29]

[46] Mozilla., “WebDriver - Mozilla — MDN.” [Online]. Available: https://developer.

mozilla.org/en-US/docs/Mozilla/QA/Marionette/WebDriver [Accessed: 2017-08-29]

[47] Sahi, “Automation Testing Tool For Web Applications — Free - Sahi.” [Online].

Available: http://sahipro.com/ [Accessed: 2017-08-07]

[48] Watir, “Watir is... – Watir Project – Watir stands for Web Application Testing In

Ruby. It facilitates the writing of automated tests by mimicking the behavior of a

user interacting with a website.” [Online]. Available: http://watir.com/ [Accessed:

2017-08-07]

[49] Linux Information Project, “An introduction to X by The Linux Information

Project (LINFO),” 2006. [Online]. Available: http://www.linfo.org/x.html [Accessed:

2017-08-16]

[50] IBM, “IBM Knowledge Center - The client/server model.” [Online]. Avail-

able: https://www.ibm.com/support/knowledgecenter/en/SSAL2T 8.1.0/com.ibm.cics.

tx.doc/concepts/c clnt sevr model.html [Accessed: 2017-08-16]

[51] Linux Information Project, “X server definition by The Linux Information Project,”

2005. [Online]. Available: http://www.linfo.org/x server.html [Accessed: 2017-08-16]

http://www.lua.org/start.html
https://symfony.com/doc/current/components/browser{_}kit.html
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/docs/03_webdriver.jsp
https://github.com/SeleniumHQ/selenium/blob/master/LICENSE
https://www.w3.org/TR/webdriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Marionette
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Marionette
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Marionette/WebDriver
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Marionette/WebDriver
http://sahipro.com/
http://watir.com/
http://www.linfo.org/x.html
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_8.1.0/com.ibm.cics.tx.doc/concepts/c_clnt_sevr_model.html
https://www.ibm.com/support/knowledgecenter/en/SSAL2T_8.1.0/com.ibm.cics.tx.doc/concepts/c_clnt_sevr_model.html
http://www.linfo.org/x_server.html

Bibliography 97

[52] D. P. Wiggins, “XVFB.” [Online]. Available: https://www.x.org/archive/X11R7.6/doc/

man/man1/Xvfb.1.xhtml [Accessed: 2017-08-16]

[53] T. Richardson, “Xvnc - the X-based VNC server,” 2013. [Online]. Available:

http://www.hep.phy.cam.ac.uk/vnc docs/xvnc.html [Accessed: 2017-08-16]

[54] A. Laboratories, “Getting Started with,” 1999. [Online]. Available: http://www.hep.

phy.cam.ac.uk/vnc docs/start.html [Accessed: 2017-08-16]

[55] J. Chroboczek, “The KDrive Tiny X Server.” [Online]. Available: https:

//www.irif.fr/∼jch/software/kdrive.html [Accessed: 2017-08-16]

[56] M. Allum, “Xephyr,” 2004. [Online]. Available: ftp://www.x.org/pub/X11R7.5/doc/

man/man1/Xephyr.1.html [Accessed: 2017-08-16]

[57] Google, “PageSpeed Insights,” 2015. [Online]. Available: https://developers.google.

com/speed/pagespeed/insights/?hl=en-EN [Accessed: 2017-08-16]

[58] Solarwinds, “Website And Performance Monitoring — Pingdom.” [Online]. Available:

https://www.pingdom.com/ [Accessed: 2017-08-16]

[59] P. Meenan, “WebPagetest - Website Performance and Optimization Test,” 2016.

[Online]. Available: https://www.webpagetest.org/ [Accessed: 2017-08-16]

[60] Intraway, “Intraway - Quality of Experience Smart Probes.” [Online]. Available:

http://www.intraway.com/w01/solutions/customer-experience/qx [Accessed: 2017-08-

09]

[61] Intraway., “Intraway qx - brochure.” [Online]. Available: http://web.intraway.com/

brochures/QX/Intraway QX-Brochure-ENG.pdf [Accessed: 2017-08-09]

[62] mPlane Consortium, “PUBLICATIONS Building an Intelligent Measurement Plane for

the Internet.” [Online]. Available: http://www.ict-mplane.eu/public/firelog [Accessed:

2017-08-09]

[63] Q. A. Chen et al., “QoE Doctor,” Proceedings of the 2014 Conference on

Internet Measurement Conference - IMC ’14, pp. 151–164, 2014. [Online]. Available:

http://web.eecs.umich.edu/∼alfchen/alfred imc14.pdf [Accessed: 2017-08-15]

[64] IEEE Spectrum, “The 2016 Top Programming Languages - IEEE Spec-

trum,” 2016. [Online]. Available: http://spectrum.ieee.org/computing/software/

the-2016-top-programming-languages [Accessed: 2017-08-18]

[65] P. S. Foundation, “PyVirtualDisplay — PyVirtualDisplay 0.2.1 documentation.”

[Online]. Available: http://pyvirtualdisplay.readthedocs.io/en/latest/ [Accessed: 2017-

08-23]

https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://www.hep.phy.cam.ac.uk/vnc_docs/xvnc.html
http://www.hep.phy.cam.ac.uk/vnc_docs/start.html
http://www.hep.phy.cam.ac.uk/vnc_docs/start.html
https://www.irif.fr/~jch/software/kdrive.html
https://www.irif.fr/~jch/software/kdrive.html
ftp://www.x.org/pub/X11R7.5/doc/man/man1/Xephyr.1.html
ftp://www.x.org/pub/X11R7.5/doc/man/man1/Xephyr.1.html
https://developers.google.com/speed/pagespeed/insights/?hl=en-EN
https://developers.google.com/speed/pagespeed/insights/?hl=en-EN
https://www.pingdom.com/
https://www.webpagetest.org/
http://www.intraway.com/w01/solutions/customer-experience/qx
http://web.intraway.com/brochures/QX/Intraway_QX-Brochure-ENG.pdf
http://web.intraway.com/brochures/QX/Intraway_QX-Brochure-ENG.pdf
http://www.ict-mplane.eu/public/firelog
http://web.eecs.umich.edu/~alfchen/alfred_imc14.pdf
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://pyvirtualdisplay.readthedocs.io/en/latest/

98 Bibliography

[66] M. D. Network, “Performance - Web APIs — MDN.” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Performance [Accessed: 2017-08-

21]

[67] Z. Wang, “Navigation Timing,” 2012. [Online]. Available: https://www.w3.org/TR/

navigation-timing/ [Accessed: 2017-08-21]

[68] P. S. Foundation, “selenium-requests 1.3 : Python Package Index.” [Online]. Available:

https://pypi.python.org/pypi/selenium-requests/ [Accessed: 2017-08-21]

[69] M. D. Network, “Navigation Timing API - Web APIs — MDN.” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Navigation timing API [Accessed:

2017-08-25]

[70] Tcpdump/Libpcap, “TCPDUMP/LICPCAP public repository,” 2014. [Online].

Available: http://www.tcpdump.org/ [Accessed: 2017-08-29]

[71] Wireshark Foundation, “Wireshark. Go deep.” p. 27.05.2010, 2010. [Online]. Available:

http://www.wireshark.org/ [Accessed: 2017-08-29]

[72] SeleniumHQ, “Platforms Supported by Selenium.” [Online]. Available: http:

//docs.seleniumhq.org/about/platforms.jsp [Accessed: 2017-08-22]

[73] Google, “Chrome system requirements - Chrome for business and education

Help.” [Online]. Available: https://support.google.com/chrome/a/answer/7100626?hl=

en [Accessed: 2017-08-22]

[74] Mozilla Firefox, “Firefox 51.0.1 System Requirements.” [Online]. Available: https:

//www.mozilla.org/en-US/firefox/51.0.1/system-requirements/ [Accessed: 22-08-2017]

https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://pypi.python.org/pypi/selenium-requests/
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
http://www.tcpdump.org/
http://www.wireshark.org/
http://docs.seleniumhq.org/about/platforms.jsp
http://docs.seleniumhq.org/about/platforms.jsp
https://support.google.com/chrome/a/answer/7100626?hl=en
https://support.google.com/chrome/a/answer/7100626?hl=en
https://www.mozilla.org/en-US/firefox/51.0.1/system-requirements/
https://www.mozilla.org/en-US/firefox/51.0.1/system-requirements/

A

Appendix

Minimum Operating Requirements

In this section are presented the requirements of the operating system and the technologies

versions installed in order to get this application functional. These requirements are focused

only on the solution requirements 3.3, on the chapter “SmartBrowsing Solution”, that is, it

will only be addressed the compatibilities with the Linux system.

The technologies versions installed in the deployment of the solution were:

- The Selenium Webdriver version installed was 3.0.2.

- The ChromeDriver version installed was 2.27.440175.

- The Geckodriver version installed was 0.14.0.

- The Google Chrome version installed was 57.0.2987.98.

- The Mozilla Firefox version installed was 51.0.1.

Accordingly with the Selenium team, this tool is mainly tested on Ubuntu operating sys-

tems, but should work well on other variations of Linux and also be functional if the browsers

manufacturers support those operating systems [72], which got proved as this solution was

tested on a Linux -based operating system.

The Google Chrome browser requirements in terms of the Linux-based operating system

are (accordingly with the Google Chrome Support [73]):

- For 64-bit Ubuntu: version 14.04 or newer.

99

100 Appendix A. Appendix

- For Debian: version 8 or upper.

- For openSUSE : version 13.3 or upper.

- For Fedora Linux : version 24 or upper.

And for the Mozilla Firefox browser, the requirements were in terms of the following

libraries and packages [74]:

- GTK+ with version 3.4 or higher;

- GLib with version 2.22 or higher;

- Pango with version 1.14 or higher;

- X.Org with version 1.0 or higher. Although, the installation of version 1.7 or higher is

recommended;

- libstdc++ with version 4.6.1 or higher.

But, the Mozilla support states that for a optimal functioning of the browser, it is recom-

mended the following packages and libraries [74]:

- NetworkManager with version 0.7 or higher;

- DBus with version 1.0 or higher;

- GNOME with version 2.16 or higher.

Solution Deployment

In this section, it will be addressed the steps and downloads needed to have the run the

solution in a device compatible with the versions addressed on the previous section “Minimum

Operating Requirements” A.1.

Firstly, to install the Python programming language, can be used the following commands:

1 $ wget −−no−check−c e r t i f i c a t e https : //www. python . org / f tp /python /2 . 7 . 12/ Python

−2 .7 . 12 . tgz

2 $ ta r −xz f Python−2 .7 . 11 . tgz

3 $. / c o n f i g u r e

4 $ make

5 $ sudo make i n s t a l l

Then, to install the headless display, the Xvfb, the commands used were:

A.2. Solution Deployment 101

1 $ sudo apt−get i n s t a l l xvfb

After that, it was installed the PyVirtualDisplay, with the following commands:

1 $ sudo apt−get update

2 $ sudo apt−get i n s t a l l python−p y v i r t u a l d i s p l a y

For the installation of the Selenium it was used the following command:

1 $ pip i n s t a l l −U selenium

In order to install the webdrivers, ChromeDriver and Geckodriver, the commands were

the following:

For the ChromeDriver :

1 $ sudo apt−get i n s t a l l unzip

2 $ wget −N http :// chromedriver . s t o rage . g o o g l e a p i s . com/2.10/ chromedr ive r l inux64 .

z ip −P <p a t h t o d e s t i o n a t i o n d i r e c t o r y >

3 $ unzip <p a t h t o z i p f i l e d i r e c t o r y >/chromedr ive r l inux64 . z ip −d <

p a t h t o d e s t i n a t i o n d i r e c t o r y >

4 $ chmod +x <path to webdr i v e r d i r e c t o ry >/chromedriver

5 $ sudo mv −f <path to webdr i v e r d i r e c t o ry >/chromedriver / usr / l o c a l / share /

chromedriver

The available versions of the ChromeDriver can be consulted on the following link: http:

//chromedriver.storage.googleapis.com/.

For the Geckodriver :

1 $ wget https : // github . com/ moz i l l a / geckodr ive r / r e l e a s e s /download/v0 . 1 4 . 0 /

geckodr iver−v0 .14.0− l i nux64 . ta r . gz

2 $ ta r −xvz f geckodr ive r ∗
3 $ chmod +x geckodr ive r

4 $ export PATH=$PATH: / path−to−extracted− f i l e / geckodr ive r

The available versions of the Geckodriver can be consulted on the following link: https:

//github.com/mozilla/geckodriver/releases/.

Finally, were installed the following libraries:

The Selenium-requests Python library:

1 $ sudo pip i n s t a l l selenium−r e q u e s t s

The beautifulsoup4 Python library:

1 $ pip i n s t a l l b eau t i f u l s oup4

http://chromedriver.storage.googleapis.com/
http://chromedriver.storage.googleapis.com/
https://github.com/mozilla/geckodriver/releases/
https://github.com/mozilla/geckodriver/releases/

102 Appendix A. Appendix

	Introduction
	Motivation
	Objectives
	Contributions
	Structure

	State-Of-The-Art
	Quality of Experience (QoE)
	QoE Metrics
	Comparison between QoE and Quality of Service (QoS)

	Internet
	Transmission Control Protocol/Internet Protocol (TCP/IP)
	World Wide Web Concepts
	Hypertext Transfer Protocol
	Webpage
	Document Object Model (DOM)

	Browser Automation
	Browsers
	User-agents
	Headless Browsers
	Browser Automation Tools
	Headless Experience Tools

	Existing Solutions
	Comparison of QoE Estimation Solutions

	SmartBrowsing Solution
	Overview
	Use Cases
	Requirements
	Flow Diagram
	Architecture

	Implementation
	Adopted Technologies
	Configuration File
	Headless Display
	Webdrivers
	Outputs
	Webpage's Status Code
	Metrics Extracted And Other Informations
	User Interactions
	Screen Captures
	Webpage Download

	Evaluation And Analysis
	Program Execution Time
	Page Load Time
	Static versus Dynamic Webpages
	SmartBrowsing Navigation
	Domain Name System (DNS) Lookup Time
	Transmission Control Protocol (TCP) Connect Time
	Request and Response Time

	Interactions
	Login and Logout
	Scroll Down

	Comparison with a Web Tool Results

	Conclusions And Future Work
	Bibliography
	Appendix
	Minimum Operating Requirements
	Solution Deployment

