
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Kevin Filipe Ganhito
Pinto

Mecanismos de Redundância H́ıbrida para Redes
Wireless Soft Real-Time
Hybrid Redundancy Mechanisms for Soft
Real-Time Wireless Networks

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Kevin Filipe Ganhito
Pinto

Mecanismos de Redundância H́ıbrida para Redes
Wireless Soft Real-Time
Hybrid Redundancy Mechanisms for Soft
Real-Time Wireless Networks

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e Telecomunicações, realizada sob a orientação cient́ıfica do
Professor Dr. Paulo Pedreiras, Professor Auxiliar do Departamento de
Electrónica, Telecomunicações e Informática da Universidade de Aveiro.

I dedicate this dissertation to my parents, which supported me in countless
ways.

Júri

Presidente Professor Doutor Pedro Nicolau Faria da Fonseca
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática

da Universidade de Aveiro

Vogais Doutor Paulo Jorge de Campos Bartolomeu
Diretor, Globatronic - Electrónica e Telecomunicações, Lda

Professor Doutor Paulo Bacelar Reis Pedreiras
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática

da Universidade de Aveiro (orientador)

Acknowledgment I would like to express my gratitude to my family, especially to my mother
Adélia, who supported me during my whole life and did the impossible to
provide me an happy life. I would also like to thank to all my friends, es-
pecially Edgar Gonçalves, Daniela Ribeiro, Manuel Roda, Miguel Inocêncio
which supported me during all the course and made me a better person.
Mihaela Barać for having patience and helping me with the grammar. To
all the embedded system laboratory collegues, which provided me a family-
like work environment and kept everyone smiling. I would like to thank to
professor Paulo Pedreiras for his patience in supervising me during my long
and hard journey in the dissertation and also his motivation.

Palavras Chave ad-hoc, Ethernet, wireless, IEEE 802.11, soft real-time, mesh network, spa-
tial redundancy, time division, TDMA, Linux, Streaming

Resumo O streaming de v́ıdeo em ambientes com alta probabildidade de perda de pa-
cotes necessita do uso de mecanismos de redundância. O protocolo WSRT
foi criado para melhorar a probabilidade da entrega dos pacotes numa rede
mesh multi-hop em meios canais com elevadas perdas usando o protocolo
IEEE 802.11.
Wireless Soft Real-Time (WSRT) cria caminhos múltiplos para minimizar
nós em comum entre estes, e quando posśıvel, reencaminha a informação
por cada um destes, aumentando assim a probabilidade de recepção. Além
disto, este sistema usa uma mecanismo de TDMA para evitar colisões, mel-
horar a eficiência energética e largura de banda.
Para alcançar estes objectivos os sistema está decomposto em 3 fases difer-
entes. Anúncio na qual o sistema irá ter conhecimento de todos os nós.
Definição de caminho na qual múltiplos caminhos disjuntos são distributivos
e modo de operação na qual o sistema retransmite dados úteis entre dois
pontos, a fonte e o consumidor.
O protocolo foi implementado em Linux. Esta dissertação descreve a ar-
quitetura, implementação e um conjunto de resultados experimentais, que
validam as caracteŕısticas do protocolo, também inclúıdos.

Keywords ad-hoc, Ethernet, wireless, IEEE 802.11, soft real-time, mesh network, spa-
tial redundancy, time division, TDMA, Linux, Streaming

Abstract Video streaming in environments with high probability of packet losses re-
quires the use of redundancy mechanisms. The WSRT protocol was created
to improve the packet delivery probability in multi-hop mesh networks with
lossy channels by employing IEEE 802.11 protocol.
WSRT creates multiple disjoint paths which minimize common nodes be-
tween them, whenever possible, and relays the same data by each one of
them, thus increasing the reception probability. Moreover, it also uses a
TDMA scheme to avoid collisions and so improve energy and bandwidth
utilization.
To achieve these objectives the system is decomposed in 3 different phases,
Announcement in which the system will have knowledge of every node in
the network. Path Definition in which the multiple disjoint paths are dis-
tributed and Running in which the system relays usefull data between two
points, source and sink.
The protocol was implemented on Linux. This dissertation describes the ar-
chitecture, implementation and a set of experimental results, which validate
the main protocol features, is also included.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Dissertation organization . 2

2 State of the Art 3
2.1 Computer Networking . 3

2.1.1 Packet and Circuit Switching . 5
2.1.2 Network Models . 8
2.1.3 Link Layer . 9

2.1.3.1 Multiple Access Link and its protocols 9
2.1.4 Wired and Wireless Communications 10

2.1.4.1 Ethernet . 10
2.1.4.2 Institute of Electrical and Electronics Engineers (IEEE) 802.11 11
2.1.4.3 Others wireless communication protocols 12

2.1.5 Routing Protocols . 13
2.2 Embedded Systems . 13

2.2.1 Linux . 14
2.3 Multimedia . 14

2.3.1 Video . 14
2.3.2 Audio . 15

3 System Architecture 17
3.1 Announcement . 17
3.2 Path Definition . 19
3.3 Running State . 19

3.3.1 Time Division Multiplexing . 22

4 Implementation 23
4.1 System Implementation . 23

4.1.1 Packet Structure . 25
4.1.2 Announcement . 25
4.1.3 Path Definition . 25

4.1.3.1 Best Paths Algorithm . 26
4.1.4 Running . 27

4.1.4.1 Streaming . 29

i

ii Contents

4.1.4.2 Forward . 29
4.1.4.3 Store . 29
4.1.4.4 Time Division Multiplexing 30

4.1.5 Transmission and Reception . 30
4.2 Protocol Usage . 31

4.2.1 Requirements and Setup . 32
4.2.2 Tools . 32

4.2.2.1 Remote Connection and File Transference 32
4.2.2.2 Network Monitorization . 33

5 Results and Analysis 35
5.1 Network Initialization . 35
5.2 Running Mode . 38

5.2.1 Spatial Redundancy . 38
5.2.2 Paths Jitter . 39

5.3 Jitter between consecutive nodes . 40
5.4 Maximum achievable data rate . 40
5.5 Results conclusions . 43

6 Conclusion 45
6.1 Future Work . 45

A Protocol Usage Example 49

B Operating System Configuration Instructions 53

C Cluster SSH Instructions 57

D Software Upload Instructions 59

E MATLAB script for announcing phase results processing 61

F MATLAB script for path definition phase results processing 63

G MATLAB script for running mode data processing 65

H Inter node jitter calculation 69

I Bandwidth calculation 73

List of Figures

2.1 Alice and Bob conversation as a network protocol analogy. 4
2.2 From top left to bottom right Spatial division, Time division, Frequency divi-

sion, Code division. 5
2.3 Typical Network topologies. 6
2.4 Packet switching example. 7
2.5 Circuit switching example. 7
2.6 Forwarding analogy using mail. 8
2.7 Open Systems Interconnection (OSI) model and Internet Protocol Stack[1] . . 8
2.8 Time Division Multiplexing scheme. 10
2.9 IEEE 802.11 evolution. [2] . 11
2.10 Ethernet frame. 11
2.11 IEEE 802.11 Architecture . 12
2.12 On the left is the original picture. The other is the compressed one. 16

3.1 Protocol use case. 18
3.2 WSRT based model and abstraction layers handling by the devices. 18
3.3 WSRT state machine. 18
3.4 Possible typical topology. 19
3.5 Convergence of the connectivity matrix, by only having 3 nodes in the network.

With middle node (2) connected to source and middle node (3). 20
3.6 Forwarding tables of all the network. 3.4. 20
3.7 System normal operation. Based in the example of figure 3.4. 21
3.8 Time division nodes allocation based on the network topology of figure 3.4. . 21

4.1 Source node WSRT state machine. 24
4.2 Middle node WSRT state machine. 24
4.3 Sink Node WSRT state machine. 24
4.4 Packet structure. 25
4.5 Announcement flowchart. 26
4.6 Path Definition flowchart. 27
4.7 Best path algorithm flowchart based in common nodes minimization. 28
4.8 Streaming flowchart to generate Streaming packets. 29
4.9 Forward flowchart to retransmit packets. 29
4.10 Store flowchart to provide the user with the received data stream. 30
4.11 Sequential packet insertion. 30
4.12 Transmission and Reception flowchart. 31

iii

iv List of Figures

4.13 Necessary steps to implement the protocol. 32

5.1 Network implemented in laboratory for experiments,the monitor node captures
all the network traffic and is placed about the same distance to every node. . 36

5.2 Announcing Convergence with relation to packet losses. 37
5.3 System Error with independent paths. 38
5.4 Paths jitter. 39
5.5 System performance regarding to the transmission between 2 neighbor nodes. 40
5.6 Delay during multiple packet transmissions in the same slot. 41
5.7 Network data rate and system error rate. 41

B.1 Check for IBSS mode support. 54

List of Tables

2.1 Network categories [3]. 6
2.2 Network video streaming transmission rates [4]. 15

4.1 Comparison table between paths. 28

5.1 Network convergence time. 36
5.2 Announcing packets loss till convergence. 37
5.3 Network path distribution duration. 37
5.4 Table of packet loss percentage for each path and overall system error. 39
5.5 Time Slots Overlapping . 42

v

vi List of Tables

Glossary

QoS Quality of Services

OSI Open Systems Interconnection

WSRT Wireless Soft Real-Time

ID Identification

TDMA Time Division Multiplex Access

IEEE Institute of Electrical and Electronics Engineers

TCP Transmission Control Protocol (TCP)

IP Internet Protocol

TDM Time Division Multiplexing

FDM Frequency Division Multiplexing

HTTP Hypertext Transfer Protocol

SMTP Simple Mail Transfer Protocol

UDP User Datagram Protocol

FEC Forward Error Correction

CRC Cyclic Redundancy Check

CAMBADA Cooperative Autonomous Mobile roBots with Advanced Distributed
Architecture

MAC Medium Access Control

TDMA Time Division Multiplexing Access

CSMA Carrier Sense Multiplexing Access

AP Access Point

IoT Internet of Things

JPEG Joint Photographic Experts Group

vii

viii List of Tables

MPEG Moving Picture Experts Group

CD Compact Disk

DVD Digital Video Disc

FPS Frames per second

AAC Advanced Audio Coding

LC Low Complexity

SSH Secure Shell

SFTP Secure Shell (SSH) File Transfer Protocol

BSS Base Station Subsystem

IBSS Independent Base Station Subsystem (BSS)

OS Operating System

AP Announcing Packets

PP Path Packets

SP Streaming Packets

1

Introduction

1.1 Motivation

The necessity to transmit high amounts of data, like video streaming, between two distinct
points in lossy environment, implies the use of a suitable protocol to attain acceptable Quality
of Services (QoS) level. An example of a real life problem is video streaming from a lake or a
river to land. Water absorbs the electromagnetic radiation generated by the Wi-Fi antennas
due to the fact of being a relatively high frequency, 2.4 GHz. The objective of this dissertation
is developing an IEEE 802.11 based communication protocol featuring spatial redundancy
mechanism to achieve acceptable packet delivery ratio in harsh environments and avoiding
data collision. As an additional requirement, the protocol shall be lightweight in order to be
deployable on low cost hardware platforms, namely single board computer such as Raspberry
Pi and similar platforms.

1.2 Objective

This dissertation aims at creating a lightweight protocol for the IEEE 802.11 standard
to transmit data between two distinct points using intermediary nodes to retransmit the
information through multiple paths and also in different time slots to avoid packet collisions
and increase its delivery rate. Developing such system requires a timely platform and in this
case it will be employed a soft real-time system to schedule the transmission of data packets
with a reasonable degree of accuracy, providing spatial redundancy and temporal division
by assigning paths and transmission time slots to the data. To achieve this objective it is
necessary to address the following topics:

• Computer networking: network topologies, network protocols,OSI model, Transmission
Control Protocol (TCP) (TCP) and Internet Protocol (IP) model, Ethernet frames
structure, routing mechanisms.

• Available options of single boards computers and ways of transmitting data by wireless.

• Study how video and audio are encoded and their typical bit-rate.

• Study Linux programming interface for soft real-time operation.

1

2 Chapter 1. Introduction

1.3 Dissertation organization

This dissertation is divided into the following sections:

• Chapter 1 - Introduction - Presents the motivation and strategy to solve the problem
in transmitting data in lossy environments.

• Chapter 2 - State of the Art - Discusses the existing technologies and theoretical
background to provide some degree of knowledge to allow the reader understand this
dissertation.

• Chapter 3 - System Architecture -Represents the global system architecture, in-
cluding configuration and operational phases such as Announcement, Path Definition
and Running.

• Chapter 4 - Implementation - Describes how the system operates internally.

• Chapter 5 - Experimental Results - presents a set of experimental results that aim
at validating the correct operation of the system as well its performance.

• Chapter 6 - Conclusion - Summarizes the main conclusions and presents the chal-
lenges encountered.

2

State of the Art

This section contains a collection of data covering a wide range of topics, namely Computer
Networking(2.1), Embedded systems(2.2) and Multimedia(2.3), which are closely related with
the scope of this work and aim to provide the reader with essential background information.

2.1 Computer Networking

Most of the contents covered in this sections were mostly based using books called Com-
puter Networking - A top-down approach [1], Data Communications and Networking [5],
Computer Networks [3] and Data and Computer Communications [6] The information ex-
change between independent computers through cooper, fiber, microwaves or other medium
provides the idea of computer networking [3]. To achieve this information exchange there
must be a common language between the computers, the network protocol. It is defined as
the exchange of messages and correspondent action or event between two or more communi-
cating entities, hardware or software, like a router, smartphone or a computer. A common
analogy is the conversation between two persons. Alice sends a greeting message and Bob
understands it and replies by greeting Alice as shown in figure 2.1. By both talking the same
language, both can understand each other and this is analogous to the networking protocol
[1].

The network is implemented by nodes and links. The role of a node depends on the
performed actions. It could either be an end node, to generate and receive data flows, or a
router node to forward the data until it reaches its final destination. Links are the entities
that provide reliable message exchange between the end nodes. A network is described as a
group of nodes1 and links2 to establish the telecommunication between devices through one
or many networking protocols depending on the desired actions or events in the nodes [5] [1].
The data exchange, called data flow, through the links can be done in three different ways.
Lets say there are 2 devices communicating between each other, A and B. The types of data
flow are represented next and were based in [5].

• Simplex

1Constituted by computers, smart phones, routers
2Entity that permits the transference of reliable messages between nodes.

3

4 Chapter 2. State of the Art

Hello Bob!

Hi Alice!

How are you?

Fine. And you?

Figure 2.1: Alice and Bob conversation as a network protocol analogy.

The data flow is unidirectional. Device A only sends data to Device B and never the
opposite.

• Half-duplex

In this flow mode the transmission/reception can be done by both devices but never at
the same time.

• Full-duplex

In full duplex mode both devices can transmit concurrently. In order for this to be
possible the link must, e.g: use different frequencies or wires.

Assuming the links are always bidirectional, there are different duplex procedures as de-
scribed in figure 2.2.

• Spatial Division - uses distinct physical paths to transmit the information. For example
one wire to send from A -> B and another to receive from B->A or in wireless networks.

• Time Division - Sends data using slots. Device A and B transmit by turns. A simple
example is a road with 2 semaphore and cars. Only one lane can pass each time.

• Frequency Division - implies having a frequency for A and a different frequency for B.

• Code Division - it uses orthogonal codes and shares the same channel.

The arrangement of nodes and links is called a network topology, and there are four basic
types: ring, bus, star and mesh. The connections types can be point-to-point or multi point.

2.1. Computer Networking 5

f

Figure 2.2: From top left to bottom right Spatial division, Time division, Frequency division,
Code division.

A point-to-point connection provides a dedicated link between the nodes and so the link
capacity is only reserved for that purpose. If the links are shared by more than two nodes it
is a multipoint connection and the channel capacity can be shared [5].

Regarding the topologies, this are explained with some detail in [5] in which the described
topologies briefly explained below.

In a ring topology each node is only connected to its direct neighbors and due to that it is
a point-to-point connection. The data is passed from device to device until the data reaches
its final destination.

The bus topology is a little bit different from the ring topology as there is no closed loop
and all nodes share the same link, so it is a multipoint connection once all nodes are connected
to each other through the bus.

In the star topology all nodes are connected to the same hub. The hub is a single point
of failure. If it fails, the whole network fails too. It as a point-to-point link, but the devices
don’t connect directly between each other.

The mesh topology is a multipoint connection where the links are shared and there are
intermediary nodes to forward the data to other nodes.

A network can be separated also int different categories regarding to its size as presented
in table 2.1.

2.1.1 Packet and Circuit Switching

Data transfer among nodes can be carried out by two different methods, packet and
circuit switching described in [1]. In packet switching method, data is divided into size
limited fragments called packets and transmitted through routers independently of each other
according to the router forwarding table. It is a connectionless mode once the packets are
routed independently. In figure 2.4 packets from computer A to computer B follow distinct
paths. Packets are routed independently, meaning that each packet may not be transmitted
in the same path.

6 Chapter 2. State of the Art

Ring
Topology

Bus Topology

Star
Topology

Mesh Topology

Figure 2.3: Typical Network topologies.

Table 2.1: Network categories [3].
Category Description

PAN
Personal Area Network - devices communicate in a range of a person.
Example: connection between computer peripherals like mouse or key-
board.

LAN
Local Area network - devices communicate in a range of an building like
an house. Example: computers connected ti the same wireless router.

MAN
Metropolitan Area Network - devices communicate in a range of a city.
Example: Television Network.

WAN
Wide Area Network - devices communicate in a range of a country or
continent. Example: Internet.

2.1. Computer Networking 7

Packet 1

Packet 1

Packet 2
Packe

t 2

Packet 3

Pa
ck

et
 3

Computer A Computer B

Figure 2.4: Packet switching example.

Computer A
Computer B

Figure 2.5: Circuit switching example.

Unlike packet switching, circuit switching needs to establish a connection first before
transmitting data. The path for a data flow is always the same. This is a connection based
transmission. A good example of a circuit switching network is a telephony network. It
guarantees a fixed transmission rate until the connection ends, once it has been reserved. In
figure 2.5, after the reservation the packets only are transmitted between computer A and B
using the green line, which is virtually a direct connection between them.

After the reservation it is necessary to provide some multiplexing mechanism once data
can share the same channel and it is necessary to avoid collisions. This can employ Frequency
Division Multiplexing (FDM) or Time Division Multiplexing (TDM). Mechanisms which were
discussed and represented earlier in figure 2.2.

From a resource efficiency point of view packet switching is more efficient because data
packets can be forward through different paths and packets are forwarded independently. In
circuit switching if the computer A is not transmitting any data there is a waste of bandwidth
for that transmission once it has been previously reserved.

All the router known connections form the forwarding table. This permits the router
compare packet destination and determine to which link it should forward it. This table is
generated using a routing protocol that will be discussed later. It is important to notice that
this routing protocol is one of the many network protocols. A good analogy for the forwarding
table is the mail transport between 2 cities. Each city has its own post office and there is a
transporter for the mail exchange between the 2 cities and then the city postman delivers the
mail to each house of its city. In order for the mail to reach its final destination it is necessary
to know to who is addressed to, city A or B at a first level. On a second level it is necessary
to have knowledge about the city streets and doors. In each city the post office represents a
router, the mail and transporter corresponds to links, while each house is a end node such as

8 Chapter 2. State of the Art

Figure 2.6: Forwarding analogy using mail.

Figure 2.7: OSI model and Internet Protocol Stack[1]

a computer as it is described in figure 2.6.

2.1.2 Network Models

In an heterogeneous network the devices are developed by different entities, and so it
is necessary to have a standard to achieve connection between different devices. The most
known standards are the OSI and TCP/IP models presented in figure 2.7. Each layer was
created to provide an abstraction to perform a well defined function. In this section only the
Internet Protocol Stack will be briefly explained, based on Computer Networking - A Top
Down Approach [1], once it is the standard used in the project development.

1. Application Layer - this layer includes protocols that support user applications,
as well some known network services. Example are the Hypertext Transfer Proto-
col (HTTP)3 and Simple Mail Transfer Protocol (SMTP)4.

2. Transport Layer - used to convey the application layer message between end nodes

3Request/Transfer of web documents
4Transfer of e-mail messages

2.1. Computer Networking 9

using TCP5 or User Datagram Protocol (UDP)6.

3. Network Layer - its functions are addressing, rejecting and routing, allowing network
packets, known as datagrams, from one node to another eventually across multiple
networks. This layer is used by routers to forward the datagrams by using the IP
protocol. This layer also provides routing protocols to route packets between source
and destination

4. Link Layer - A little bit similar to the network layer, the link layer provides the ability
to transmit the packets, frames, between a node and its neighbor, but it only operates
on the link to which the node is connected to. This layer has some the very important
protocols such as Ethernet and IEEE 802.11, that is widely used nowadays and the
protocols will be discussed with some detail.

5. Physical Layer - moves frames between one network element to another, it converts
the bits into electric signals and modulates/demodulates the electrical signals.

2.1.3 Link Layer

As the link layer is very important for this dissertation, it will be explained with more
detail. The layer has a Medium Access Control (MAC) to impose rules in frames transmission.
Coordinating the frame transmissions among the nodes. The link layer may also provide a
reliable delivery service adding an extra overhead to transmit the network layer datagram.
This service is usually used in wireless networks where the errors can be corrected locally.
Some extra bits are added to check which bits have error and correct it, such as Forward
Error Correction (FEC) technique.Cyclic Redundancy Check (CRC) only allows to check for
errors.

2.1.3.1 Multiple Access Link and its protocols

Having explained the two types of connections point-to-point or multipoint, if the con-
nection is multipoint all nodes may be able to transmit frames and those could collide at the
receiver node and tangle the frames, called multiple access problem. To solve the problems
there are a few protocols that can be implemented in the network to avoid the broadcast
of two or more nodes at the same instant, called multiple access protocols. To reduce the
probability of these protocols different categories exist:

• Channel partition protocol

These protocols employ techniques already discussed earlier such as time, frequency,
space and code division. Giving the relevance to this dissertation, only one of this
mechanisms will be discussed with some detail, Time Division Multiplexing Access
(TDMA). TDMA protocol gives to each node a specific time slot for each sending frames
as shown in figure 2.8 [3]. The respective slot owner has permission to broadcast data

5Connection-oriented protocol that guarantees the delivery of application layer messages by returning ac-
knowledges to the sending node of which segments arrived to the receiver. It also provides congestion-control
mechanisms so that the sending node decreases its data rate to avoid the network overflow and consequently
lose packets

6Connectionless protocol without any flow control and no congestion control. If a packet is lost during the
transmission, source node will not have any acknowledge if it was received.

10 Chapter 2. State of the Art

Figure 2.8: Time Division Multiplexing scheme.

frames having guarantees that no other node is transmitting. E.g node 3 has a dedicated
slot in the time frame. Synchronization can be distributed or based on a single node,
called clock master.A paper called ”Self-configuration of an Adaptive TDMA wireless
communication protocol for team of mobile robots” [7] dynamically generates the slots
according to all active team member and synchronizes the their start times based on
the previous message transmission and number of nodes on the system. If the channel
has uncontrollable load the protocol takes into account also delays the transmission.
This is used in Cooperative Autonomous Mobile roBots with Advanced Distributed
Architecture (CAMBADA) which is a RoboCup Middle-Size League soccer team which
shares the same channel with the opposite team and the need of the previously presented
TDMA scheme applies.

• Random Access protocol

The transmitting node, when there is a collision, retransmits the frame after a random
waiting period. The most common are the Carrier Sense Multiplexing Access (CSMA) in
which each node listens to the medium to detect if there are any other node transmitting
and if not start transmitting [3].

2.1.4 Wired and Wireless Communications

Over the years, multiple ways of transmitting data were created. In wired transmissions,
Ethernet is nowadays the standard. In wireless communication IEEE 802.11 [2] variants
(different operating frequency, bit rate and function as in figure 2.9) is widely used. There
are others wireless protocols such as Zigbee [8], WirelessHART[9], Bluetooth [10] which will
will be discussed in this section.

2.1.4.1 Ethernet

Ethernet first appearance was in the 80’s and it is still widely used in wired LAN [1]. The
Ethernet frame structure is represented in figure 2.10 and it is composed by:

• Preamble - it is used to wake up the receiving adapters and to synchronize to the senders
clock.

• Destination address - represents the frame final destination. If the address matches
the one of the receiver node or a broadcast frame, FF:FF:FF:FF:FF:FF, the link layer
passes the data to the network layer. Otherwise the link layer discards the frame.

• Source address - Contains the sender MAC address.

• Ethertype - represents the data chosen protocol, such as IP.

2.1. Computer Networking 11

Figure 2.9: IEEE 802.11 evolution. [2]

Preamble
Destination

MAC Address
Source

MAC Address
Ethernet

Type
Ethernet

Type

8 bytes 6 bytes 6 bytes 2 bytes 46 to 1500 bytes

FCS

4 bytes

Figure 2.10: Ethernet frame.

• Data - carries the datagram with minimum of 46 bytes and a maximum of 1500 bytes.
The datagram is going to be delivered to the network layer.

• Frame Check Sequence - to detect bit errors in the frame.

Over the years Ethernet technologies have been standardized, having different speed, 10
Mbps, 100 Mbps, 100 Gbps over different physical medium, such as coaxial cable, employing
Carrier Sense Multiple Access with collision detection, or optical fiber [11].

2.1.4.2 IEEE 802.11

IEEE 802.11 allows secure connections to a network infrastructure at high speeds while
being able to keep the connections when changing location while in the network covered area.

It can be use to extend or replace the wired infrastructure, such as the Ethernet previously
discussed, creating temporary networks, such as the Ad-hoc network [12].

Figure 2.12 represents the two possible modes to create the network. These modes are:

• Infrastructure mode

In this mode each client is associated with an Access Point (AP) that is connected to
other network. The other network could be for example the Internet.

• Ad-hoc network

12 Chapter 2. State of the Art

Infrastructure Mode Ad-hoc Mode

Figure 2.11: IEEE 802.11 Architecture

All devices are associated between them without any central structure such as an AP.
The devices can send frames directly between them. This mode is ideal to create a mesh
topology.

Both Ethernet and IEEE 802.11 have similar structure , except the link layer in 802.11
is divided into two or more sublayers to make the frames indistinguishable from the network
abstraction layer part.

The IEEE 802.11 had many revisions over the years[2], regarding to its speed and fre-
quency. The most common are the 802.11n that works at 2.4/5GHz and provides maximum
bit rate between 7.5 Mbit/s to 72.2 Mbit at 2.5 GHz. and 15 Mbit/s to 150 Mbit/s.

2.1.4.3 Others wireless communication protocols

There are many other alternatives to IEEE 802.11. ZigBee protocol typical range is
between 10 to 100 meters with a maximum data rate of 250 Kbps [13], although there are
some products which have an increased range up, 3200 meters, and data rate of 1 Mbps [14].
It is based in IEEE 802.15.4 suitable for home automation, medical devices and industrial
applications. It is reliable because it uses mesh topology, when one device fails the others
will keep operating and it is also low power being so ideal for the Internet of Things (IoT)7.
However its not appropriated for streaming large amounts of data streaming such as video
and audio with good quality at the same time [13].

WirelessHART protocol [15] works at 2.4 GHz band and implements a wireless mesh
employing TDMA. It is used in measurements and industrial control. This technology was
created to satisfy the timing requirements and security in the industrial control. Its network
layer provides support to a self-organizing and self-healing mesh network. [16]

Bluetooth was created in order to provide an easy way of connecting short range devices
and accessories at low-power. It is composed by a master node that can handle up to 7
connections, known as piconet. And the interconnected piconets are called scatternet [10].
Bluetooth had many upgrades over the years in which allowed the consumption decrease and

7Connect everything to the Internet to provide data to monitor, control and understand the environment

2.2. Embedded Systems 13

range increase of the bluetooth devices. Bluetooth 5 greatly increases the range, speed and
message broadcasting when compared with previous versions being ideal for IoT [10].

2.1.5 Routing Protocols

When a packet arrives to a router, the router determines the link to which will retransmit
to reach the final destination. To be able to do this, a routing algorithm is necessary to
populate the forwarding table. This mechanism is implemented at the OSI network layer [1].

The purpose of employing a routing algorithm is to populate the forwarding tables. Each
routing algorithm takes into account possible network problems. Its purpose is to find a
”good” path which satisfies the routing protocol conditions. These conditions can be the
shortest paths, having minimum number of hops, or packet loss, or signal quality [1]. In the
routing algorithm a graph is generated with a set of nodes and edges. Each edge represents
the link between nodes and it has a cost. The routing algorithm can choose the least-cost
path, by having into consideration all the sum of all possible path edges cost and chose the
minimum cost. If all edges have the same cost, the algorithm chooses the shortest path [1].

A routing algorithm can be generated in a global or decentralized manner. The global
algorithm computes the least-cost path between source and destination by using all the ac-
quired data. The algorithm can run in a centralized location, where one node calculates
the least-cost path and distributes it to the other nodes, or decentralized, where all nodes
calculate the least-cost paths. In the decentralized manner the least-cost path is generated
without each node having a complete connectivity table, from which can receive data. This
iterative process requires the information exchange with its neighbor nodes [1].

Each node forwarding table can be statically or dynamically populated depending if it is
the user whose inserts the forwarding table or a routing algorithm, respectively.

There are multiple routing algorithms which can be employed in the network, these are
detailed in Computer Networking - A top down approach [1] book and briefly explained below:

• Link-State (LS) Routing Algorithm - It a global algorithm where network topology
and links costs are known. This is obtained by having every node broadcasting link-
state packets and costs of it, and also its attached links. If each node has the same
connectivity matrix with the same costs, can compute locally the Link-State algorithm
generating the same path in every single node.

• Distance-Vector (DV) Routing Algorithm - It is a distributed algorithm that
asynchronously uses the received information to calculate the link costs.

2.2 Embedded Systems

Embedded systems is a combination between hardware and software that uses electrical,
mechanical and chemical components designed for a specific function. It is widely used in
routers, switches, smartphones...

The market is full of embedded solutions for the most different needs, such as the Rasp-
berry Pi [17] or ODROID [18]. Raspberry Pi is an affordable small computer that can
be programmed and connected to the Internet. There are a large variety of models with

14 Chapter 2. State of the Art

single/multi-core8 and some of them also have WiFi and Bluetooth 4.0 capabilities [17].
These small computers also provide an USB interface. Raspberry Pi supports a big range
of operating systems such as Linux based ones, RTOS (Real Time Operating System) and
even a special version of Windows for IoT. Raspberry Pi Zero is one of the low cost and
affordable computer. It has a single-core processor, and it only has one USB interface which
is directly connected to its processor. This capability provides On-The-Go connection and
makes possible to program it by a virtual Ethernet interface.

2.2.1 Linux

Nowadays the Linux kernel is supported in almost every processor architecture such as
x86, ARM and others. Linux kernel is a clone of the UNIX operating system written by Linus
Torvalds. It aims for the portable operating system interface (POSIX) to develop software
for different computer architectures. Linux is an open-source operating system (OS) and so
ideal to develop application without paying royalties to use the OS. It allows multitasking,
virtual memory9, shared libraries, networking using IPv4 and IPv6 [19].

Since Linux kernel 2.6, Linux was able to provide soft real-time to its applications natively.
Tasks which allow for the Operating System (OS) to occasionally miss deadlines without
having a catastrophic impact results is called soft real time. This soft real time is achieved
by employing a patch to Linux kernel called PREEMPT RT. PREEMPT RT has the goal
in minimizing the non-preemptible kernel code and minimizing the changes to provide this
functionality without rewriting the whole kernel [20]. Besides soft real-time there is also hard
real time in which deadline miss isn’t allowed once it could present a major problem for the
whole system, for example if a pacemaker misses its deadline it could be catastrophic. Hard
real-time can be achieved by patching the kernel with Xenomai [21].

2.3 Multimedia

Video and audio generate lots of data, creating the need of being compressed in order to
provide low space occupation and decrease the network bandwidth usage. Data compression
imposes one of the biggest challenges in technology as decreasing the data size may generate
losses. The compression can be of 2 types:

• Lossless - allows the reconstruction of data as it was before compression. This method
can restore data without losses.

• Lossy - with this scheme already compressed data cannot be fully recovered when de-
compressed.

2.3.1 Video

Video can generate large amounts of data and compression is crucial to minimize the
impact when transmitting it in the network. There are 2 basic compression formats:

8Having a processor with more than one cores makes the system distribute the load increasing processing
speed.

9It is a technique in mapping the memory address used by the program, this allows the program being
mapped in different RAM locations and hard drive at the same time.

2.3. Multimedia 15

Table 2.2: Network video streaming transmission rates [4].
Quality Resolution Video Bitrate

240p 426x240 300 - 700 Kbps

360p 640x360 400 - 1,000 Kbps

480p 854x480 500 - 2,000 Kbps

720p 1280x720 1,500 - 4,000 Kbps

1080p 1920x1080 3,000 - 6,000 Kbps

• Joint Photographic Experts Group (JPEG)

It is a picture compression format widely used today, because it is easy use it. It has
a very high compression ratio in exchange of obtaining pictures with degraded quality.
There are many JPEG flavours, one of them called Motion JPEG used in digital video
sequences using groups of JPEG pictures [22].

• Moving Picture Experts Group (MPEG)

MPEG format is dedicated to digital video sequences it includes many variants such as:

– MPEG-1 compression method using in video Compact Disk (CD) and online video.
Offers high compatibility to computers and Digital Video Disc (DVD) players [23].

– MPEG-2 is an upgrade to MPEG-1. Handles higher and larger resolution moving
pictures with the disadvantage of increasing the bandwidth usage. It is the DVD
standard and used in broadcasting and cable distributed systems [23].

– MPEG-4 is standard for Internet, broadcast, and media storage. Supports pro-
gressive scan and interlaced video [23].

– H.264 is designed to provide flexibility to a wide range of applications having
latency or bit-rate dependencies. For example: telecommunication services want
low-latency to keep a viable conversation or entertainment where can have high
latency but lower bit-rate.

Youtube service provides the H.264 compression method for the user to uploads videos
in different resolutions, reaching a maximum of 60 Frames per second (FPS) presented
in Table 2.2.

2.3.2 Audio

It is crucial for audio to have a small footprint in the transmission, once when transmitting
video, audio should also be transmitted. In order to also have a balance in bandwidth con-
sumption audio should also be compressed. There are numerous ways of encoding audio. The
most common one in video websites such as Youtube, is the Advanced Audio Coding (AAC)
format with low complexity. It was standardized in 1994 as part of MPEG-2. There are
different flavors for AAC compression such as Low Complexity (LC) used in Youtube, high
efficiency for low bit rates used in Apple iTunes and others, high quality that provides scalable
and lossless audio compression [24].

AAC-LC used in Youtube provides audio quality indistinguishable from the original, de-
spite the fact of the original and the coded signal not being mathematically equivalent. Typical

16 Chapter 2. State of the Art

Figure 2.12: On the left is the original picture. The other is the compressed one.

bit-rates are between 128 kbps and 320 kbps depending if it is stereo10 or 5.1 multichannel
signals. AAC-LC also provides a mechanisms to store the audio metadata [4]11.

10Method to create the illusion of multi direction audio
11Represents the creation data and filename

3

System Architecture

With the objective of creating a lightweight protocol to handle video and audio streaming
between two nodes using a mesh network with high losses due to environmental conditions,
the WSRT protocol was created. This protocol is to be deployed in wireless scenarios, where
all nodes share the same medium, air. One specific example to employ this protocol is
in wet environments, once water absorbs high frequency electromagnetic radiation such as
2.4 GHz used in IEEE 802.11, thus causing high packet losses. To minimize this problem,
spatial redundancy will be implemented to provide multiple paths for transmissions, thus
increasing the probability of packets reaching its destination. Moreover, a TDMA scheme is
also included, to avoid collisions and permit wider bandwidth efficiency.

Each network node may have one of three functions, either is source, a middle or a sink
node. The source node has the function of initializing the network by defining the best paths
for the data to travel and stream data. Middle nodes are required to forward packets, through
the defined paths, until data reaches the sink node, where it will be absorbed and stored.

Figure 3.1 depicts the functionalities the protocol must satisfy. The streamer (source
node) can send its data only when the network is initialized. This network initialization
requires knowing à priori all the available network connections. The consumer (sink node)
accepts the data stream to be later used.

WSRT protocol is located within the network layer of a modified OSI model presented in
the abstraction layers of figure 3.2. This system architecture is centralized. The source node
responsible in changing the network state machine, represented in figure 3.3, and generate the
forwarding tables for every single node in the network. The system architecture is divided
into three states announcement, path definition and running. These will be covered in next
sections as well the state machine, in figure 3.3, having into consideration an example network
topology presented in figure 3.4.

3.1 Announcement

During the Announcement state it is acquired knowledge about all nodes in the network.
Each node should announce itself while also sharing all known connections from other nodes
as well its own direct connections. When other nodes receive this information they update
their local connectivity matrix.

17

18 Chapter 3. System Architecture

Figure 3.1: Protocol use case.

Source Node Middle Node Middle Node Sink Node

Application Layer

Network Layer

Link Layer

Physical layer

Application Layer

Network Layer

Link Layer

Physical layer

Application Layer

Network Layer

Link Layer

Physical layer

Application Layer

Network Layer

Link Layer

Physical layer

Figure 3.2: WSRT based model and abstraction layers handling by the devices.

Figure 3.3: WSRT state machine.

3.2. Path Definition 19

Figure 3.4: Possible typical topology.

Figure 3.5 represents how the connectivity matrix can be generated. Dotted arrows rep-
resent the matrix update event, and underline numbers are the new inserted node IDs into
the connectivity matrix. The first element of each line represents the node who owns the
remaining elements in the same line. These elements are the known connections to the node.

In step 1, the source node starts transmitting its own connectivity matrix. At step 2 the
middle node (2) updates its local connectivity table and broadcasts the updated matrix. Step
3 the source and middle nodes (3) join the received matrix to their own local matrix. In step
4 node 1 transmits and node 2 updates its matrix. The same process is repeated through step
4 to 7 until all the nodes connectivity matrix are exactly the same. When that happens the
network has converged. When network convergence occurs this state is then concluded and
the system can transit to the next state (Path Definition).

3.2 Path Definition

Path definition is the state in which the most favorable paths are distributed through the
network. The source node generates these paths by employing an algorithm which creates
multiple paths to communicate between source node and sink node through the middle nodes.
This algorithm must choose the paths and minimize the common nodes between these paths
to make sure the data will be transmitted in a distributed way by avoiding the same data
being lost in the same path. The distribution is performed by broadcasting the table in
figure 3.6, in which the left column represents the nodes that are allowed to forward data by
the nodes on the right column. This table was based in the example network provided before.
In this example two virtual circuits are made using paths defined by the source node, through
nodes 1, 2, 3, 6 and 1, 4, 5, 6 providing spatial redundancy by two distinct paths. When all
nodes get informed of the forwarding tables, the system can move to the next state, in which
the actual communication take place.

3.3 Running State

When the system enters in the last state, running, it provides a reliable communication by
having data being sent between source and sink node, and forwarded by using the forwarding

20 Chapter 3. System Architecture

Figure 3.5: Convergence of the connectivity matrix, by only having 3 nodes in the network.
With middle node (2) connected to source and middle node (3).

Figure 3.6: Forwarding tables of all the network. 3.4.

3.3. Running State 21

Figure 3.7: System normal operation. Based in the example of figure 3.4.

Figure 3.8: Time division nodes allocation based on the network topology of figure 3.4.

table over redundant paths. After the previous network initialization, all nodes have an
allowed connection matrix which will allow them deciding which packets they should forward
and which ones to discard. Figure 3.7 represents the system normal operation mode, which
is based on the example network provided in figure 3.4. During transmissions packets may be
rejected, this rejection is represented in the figure with a red cross. When each node receives
data which is supposed to forward, waits for its time slot and broadcasts it. The source node
broadcasts data, middle nodes 2 and 4 accept it and wait for their slot. The second slot of the
frame belongs to node 2, thus it will broadcast the data and nodes 3, 4 and 1 receive it, but
only node 3 accepts it since node 2 is declared at its own forwarding table. After that, node 3
will broadcast in time slot 3 and nodes 2, 5 and 6 receive it, but only node 6 accepts it. The
same will happen with node 4 and 5. If there are losses in the first path, the existence second
path increases the chances of node 6 receiving it. The sink node (6) may receive duplicated
data in such case it will discard te duplicate. The sink node (6) also can receive out of order
packets, in which the sink will be able to order them.

22 Chapter 3. System Architecture

3.3.1 Time Division Multiplexing

For the system to be able to avoid collisions, it is used a TDMA scheme during the running
state. The slot allocation algorithm takes into account the previous forwarding tables and
performs the slot allocation. Time frame is created using slots, which is the travel duration
of data between source and sink node. The node placement into the frame can be performed
into distinct ways, either can be allocation by hop or by path. On allocation by hop the slots
are filled by one node of every path sequentially, until there are no nodes left to allocate. On
the allocation by path, consecutive time slots are filled with the whole path, until no paths
are left. Using the example provided, two allocation modes are represented in figure 3.8.
After the source node defines the optimal paths, the allocation takes place and chooses one
of the two possibles options. Each node will synchronize itself with the node which is allowed
to receive. For example, in allocation by path, node 3 will forward data after receiving it
from node 2. By using this mechanism collisions are avoided when nodes broadcast their
information, once they schedule transmissions between them.

4

Implementation

WSRT was developed to be executed in low cost embedded platforms which may not be
able to satisfy very precise time constraints. The platform used to deploy this protocol was
a Raspberry Pi running Arch Linux.

The system implementation is presented in section 4.1 and the usage of the previous
implementation in section 4.2.

4.1 System Implementation

The WSRT protocol has a centralized architecture, with the source node being the one
responsible for the overall management.The node which initializes the network and changes
all other systems states at network convergence. Middle and Sink nodes are subject to the
source node’s current state and thus there will be distinct working modes and consequently
different state machines.

WSRT protocol has its own packet structure to allow the information exchange between
nodes through the different protocol operation modes, Announcing, Path Definition and Run-
ning, as described in chapter 3. This structure is presented in section 4.1.1.

The source, middle and sink nodes state machines are represented in figures 4.1, 4.2 and
4.3. All these state machines have the same implementation regarding to the Announcement
and Path Definition state. The differences between node types lies in the state transitions
and also the last state.

When the source node is started, Announcing Packets (AP) are sent. The AP reception
event causes the middle and sink node transit to the Announcement state initiating the
AP transmissions. During this process, information about the nodes connectivity matrix is
exchanged between all the network nodes, as described previously in section 3.1, and the AP
generation is presented in section 4.1.2.

When the convergence event occurs, the source node executes the best paths algorithm,
presented in section 4.1.3.1, transiting then to the Path Definition state where Path Packets
(PP) will be generated, as described in section 4.1.3, causing the middle and sink node move
to the Path Definition state and updating their forwarding table. During this state all nodes
will be listening and transmitting PP.

23

24 Chapter 4. Implementation

After distribution, source node transits to the Streaming state and runs the TDMA slot
allocation, previously presented in section 3.3.1, which will start sending Streaming Packets
(SP) and consequently causing transition and execution of the TDMA slot allocation on the
middle and sink nodes to the Forward and Store states respectively.

These previous states, Streaming, Forward and Store are sub-states of the Running state,
discussed in section 3.3 and implemented in section 4.1.4.

The transmission and reception of the previously generated packets are implemented in
section 4.1.5 and are responsible for the send and receive events of the presented state ma-
chines.

Figure 4.1: Source node WSRT state machine.

Figure 4.2: Middle node WSRT state machine.

Figure 4.3: Sink Node WSRT state machine.

4.1. System Implementation 25

Figure 4.4: Packet structure.

4.1.1 Packet Structure

To be lightweight, avoiding unnecessary headers, in IEEE 802.11 frame an Ethernet based
frame represented in figure 4.4 was used, which only has Destination MAC, Source MAC
address and Ethernet Type fields. To properly transmit the data between source and sink
nodes, it is necessary to define a packet structure with control fields.

• Mode - Defines the current state of the network protocol. It can be of three types:
Announcement, Path Definition, Running.

• Sequence Number - Represents the packet sequence number which is being forwarded.
This is used to eliminate duplicates and sort the packets at sink node.

• Node Identification (ID) - sender ID used to retransmit or discard packets according
to the sending node forwarding table

• Payload - Protocol application data.

4.1.2 Announcement

Announcement state is equal on every node, either it is a source, middle or sink node.
This state has the function of providing knowledge to the whole network about all the avail-
able connections between the nodes. The transmission and reception flowchart of the AP is
represented in figure 4.5.

At the AP reception, the system waits until it has the received AP packet, then the
packet payload is searched for tables with possible connections. If there are any tables, the
local connectivity matrix will be updated and the search continues until the packet has no
information left to be processed. If there are no tables left, the packet is discarded and the
system waits for more tables. At some point the connectivity matrix will not have any new
information being added, and thus the network has converged.

Regarding to the transmission of AP, the system will wait for a timer event and if the
actual system state is to create an AP, the system will transform the local connectivity
matrix into tables, copy it into the packet payload and insert it in a waiting queue to be sent
as described in section 4.1.5.

The AP send events are achieved by setting a timer. When the timer expires, the corre-
spondent packet is sent. The timer intervals are composed by a base time contained with a
random counterpart. This technique is used to avoid probabilistically consecutive collisions
among nodes, when they transmit at the same time.

4.1.3 Path Definition

Path definition establishes the paths for application data flows by creating a forwarding
table for every active node in the network. These tables are transmitted and retransmitted
to every other node until they are distributed by all the participating nodes at the last stage.

26 Chapter 4. Implementation

Figure 4.5: Announcement flowchart.

The flowchart in figure 4.6 is similar to the Announcement, except the search is done for
forwarding tables. At reception, the system awaits for a PP and searches it for the forwarding
table. Then the node updates its internal forwarding table data with the received ones and
forwards it to allow the dissemination through the whole network.

To create a PP, the system waits for a trigger to generate it, and if the source, middle
or sink node are at the Path Definition state, the system will copy the local node forwarding
table and transmit it by putting the PP in a waiting queue to be sent, will presented in
section 4.1.5.

4.1.3.1 Best Paths Algorithm

To provide the maximum redundancy possible, the best paths algorithm was created. This
algorithm generates paths by minimizing common nodes, trying to avoid the same data being
forwarded by the same node. Figure 4.7 represents the process to obtain the best paths.

First it is necessary to generate all possible paths. Then a table of similar paths is created.
This is done by comparing every single path node with each other and counting the common
nodes. After that, the paths chosen are the ones with a minimum of nodes in common.

For the network example presented in figure 3.4 there ares 8 possible paths. The com-
parison between every path is represented in table 4.1. For example, path 0 is compared up
against every other path. When compared with path 1 it detects 4 common nodes. When
compared to path 2, 3, 4, 5, 6 and 7 there are 4, 3, 4, 4, 3 and 2 common nodes respectively.
This process is repeated until all comparisons between paths are processed.

• Path 0 : 1 2 3 6

4.1. System Implementation 27

Figure 4.6: Path Definition flowchart.

• Path 1 : 1 2 3 5 6

• Path 2 : 1 2 4 5 3 6

• Path 3 : 1 2 4 5 6

• Path 4 : 1 4 2 3 6

• Path 5 : 1 4 2 3 5 6

• Path 6 : 1 4 5 3 6

• Path 7 : 1 4 5 6

4.1.4 Running

The Running state implementation is more complex than the previous states, since it
depends on the node type. The source node Streaming state implementation is explained
in section 4.1.4.1, middle node Forward state in section 4.1.4.2 and sink node Store state
in section 4.1.4.3. Both states work according to the TDMA allocation previously executed
in which transmissions are schedule depending the received message and slot position in the
TDMA frame. This is presented in 4.1.4.4. Middle and Store node have a mechanism to
discard duplicated packets. This is done by having a fixed sized table to record the previously
received SP sequence number. If the packet number is presented in the table, packet is
discarded, otherwise it is accepted and its sequence number will substitute the oldest packet
in the table.

28 Chapter 4. Implementation

Table 4.1: Comparison table between paths.
Path 0 1 2 3 4 5 6 7

0 - 4 4 3 4 4 3 2

1 - - 5 4 4 5 4 3

2 - - - 5 5 6 5 4

3 - - - - 4 5 4 4

4 - - - - - 5 4 3

5 - - - - - - 5 4

6 - - - - - - - 4

7 - - - - - - - -

Figure 4.7: Best path algorithm flowchart based in common nodes minimization.

4.1. System Implementation 29

Figure 4.8: Streaming flowchart to generate Streaming packets.

Figure 4.9: Forward flowchart to retransmit packets.

4.1.4.1 Streaming

During the Streaming state, the source node generates data to be send. The data handling
for this process is represented in figure 4.8. The system waits for a send trigger and if there
is data to be sent by the user, SP are put in the transmission waiting queue. After this the
send trigger is reset in order to generate more SP later. The transmission waiting queue is
handled in section 4.1.5.

4.1.4.2 Forward

Forward state as the function in retransmitting packets, and its flowchart is represented
in figure 4.9. After a SP has been received, belongs to the node forwarding table and was
not previously received, the packet is moved to a waiting transmission queue, explained in
section 4.1.5. Once the packet is moved it is necessary to verify if the timer which provides
send event is running or not. Because the timer is set by the first allowed packet it receives
and takes into account the processing duration of the packet to be forwarded.

4.1.4.3 Store

The Store state flowchart is presented in figure 4.10, the system awaits for a packet
reception event. If the sender SP are declared at the sink node forwarding table and the
packet is not a duplicate of an already received ones, then data is stored by sequentially and
handled to the consumer. The packets are discarded and the system awaits for more. The

30 Chapter 4. Implementation

Figure 4.10: Store flowchart to provide the user with the received data stream.

Figure 4.11: Sequential packet insertion.

user is only allowed to get packets only if there are fixed minimum packets stored, once to
order the received packets it is a few are required in the buffer. This is shown in figure 4.11.

4.1.4.4 Time Division Multiplexing

To provide time division, the best paths must be known. After having this, slot allocation
can take place to allocate slots to nodes. The slots duration should consider into account the
transmission duration and a guard duration to overcome the non ideal characteristics of the
platform in use. In the network example from figure 3.4 the allocation can take place by hop
or path. Assuming the allocation algorithm taken into account was by path, the top time
frame from figure 3.8 is generated. When node 3 receives its first packet from node 2, its
transmission slot is supposed to start one slot time ahead, therefore it sets its transmission to
one slot duration ahead, adjusted to the processing delays. Other example is node 4, when
it receives a packet from node 1, it sets its transmission to 3 TDMA slots ahead from node 1
first transmission, once again adjusted from the packet processing delay.

4.1.5 Transmission and Reception

Transmission and Reception provide the reception and send operation events at the pre-
vious presented state machine.

The transmission is done every time the send event timer is triggered. This timer is set by
the previously discussed flowcharts. When the timer is triggered, the node checks whether it
has a packet or not by inspecting the transmission waiting queue. If true, the packet is sent,

4.2. Protocol Usage 31

Figure 4.12: Transmission and Reception flowchart.

else returns to the waiting process until the timer is triggered once more.

In the reception, system waits for a packet to be received and when received, the system
generates a reception event and at the same time, the packet is being put in a waiting queue
to be processed.

4.2 Protocol Usage

This section aims to teach the WSRT protocol usage in a suitable operating system,
by using the example provided in appendix A. The example can be executed by using the
listing 4.1.

Listing 4.1: Protocol execution

1 Usage: $ sudo .\WsrtSoftware −i <iface> −id <id> −t <typ> [−e <err>] [−p <file>]
2

3 Eg: $.\WsrtSoftware −i wlan0 −id 2 −t middle

The following options are passed to the software. It is mandatory to provide the wireless
interface name, ID and node type.

• -i - to provide the wireless interface name which will be used.

• -id - to specify the ID given to the node.

• -t - to specify the node type. Which can be divided into three types: source, middle or
storing node.

• -e - to specify the system error rate. It will make the system randomly discarding
packets according to the assigned error.

• -p - file location containing user defined paths. The first line of this file must contain
the amount of paths declared in it, while other lines are filled with defined paths. If
this command is not used, paths will be dynamically generated.

32 Chapter 4. Implementation

Figure 4.13: Necessary steps to implement the protocol.

Before the protocol execution, the OS must satisfy the requirements and be already pre-
configured. This is described in section 4.2.1. To smooth the software distribution through
all nodes in the network, debugging and monitoring tools are presented in section 4.2.2.

4.2.1 Requirements and Setup

To allow the user to use the WSRT protocol, the flowchart of figure 4.13 needs to be com-
pleted. If the OS is Linux, the system execute the protocol, assuming it supports Independent
BSS (IBSS) mode and was previously pre-configured, otherwise the user should get a suitable
operating system. A bash script was generated to setup the OS. The script main objective
is to assign a static IP address to remotely control every single node, which will be discussed
in section 4.2.2.1, and to create or join to an Ad-Hoc network at the OS boot. This process
is explained in appendix B.

4.2.2 Tools

This section aims to describe the procedure by remotely controlling the system to trans-
mit, compile and start 4.1 of the software to every single node in the network, described in
section 4.2.2.1. A monitorization software was made for debugging purposes, called ”Wsrt-
Monitor” which will be discussed in section 4.2.2.2.

4.2.2.1 Remote Connection and File Transference

To be able to control each node remotely Cluster SSH should be used. This allows to
control all the nodes OS as if they were a single node, by only inputing the commands into
one terminal that will send them to every node. To execute Cluster SSH a file must be created
having declared each node OS user credentials and ip. After this, the user needs to input
the command presented in the listing 4.2 and is able to control all the nodes remotely. This
procedure, as well as the cluster file name, is explained in appendix C.

Listing 4.2: Cluster SSH execution

1 $ cssh cluster

To upload an updated software version to every node, SSH File Transfer Protocol (SFTP)
is used. To implement this a bash script is used. This procedure is described in D.

4.2. Protocol Usage 33

4.2.2.2 Network Monitorization

Network monitorization provides the means for capturing all WSRT protocol packets only.
When captured, the system records the time at which it has been received and puts it into

a buffer. When the buffer has some amount of packets, these are transfered and stored in a
text file allowing the user to debug the network if problems arise or to evaluate the protocol
performance.

To use the network monitorization program the listing 4.3 in which it is necessary to pass
as argument the wireless interface name which will monitor the network and also the file name
to store the data.

Listing 4.3: Command to monitor the network

1 $ sudo .\WsrtMonitor −i <iface> −n <fileName>

With the obtained dataset some MATLAB scripts were created to process the file contents
and generate human understandable data, which was used, for example, to gather the data
used to perform evaluation, presented in chapter 5.

34 Chapter 4. Implementation

5

Results and Analysis

To evaluate the performance of the implemented spatial redundancy and time division
multiplexing protocol, a few experiments were conducted. These experiments were conducted
in a small laboratory environment, in which all nodes were connected. The test network is
represented in figure 5.1.

At the source node, the protocol is executed in a laptop with Arch Linux and preemption
enabled. Middle and Sink nodes are based on Raspberry Pi Zero, B, B+ and 3 in which
Raspberry 3 has also preemption enabled. Finally, the monitor is a computer with Xubuntu
14.04 which captures and stores packets into a text file, for later processing with Matlab.

The laptops use its internal wireless interface, while the Raspberries use an USB wireless
dongle. Nodes 2 and 3 wireless interface were cheap wireless dongles. Nodes 4, 5 and 6 use
two TP-Link High Gain and Cisco wireless interface.

5.1 Network Initialization

In this section, Network Initialization, the system was initiated and executed until con-
vergence and path distribution.

The experiment was broadcasting packets with 1500 bytes with connectivity matrices and
forwarding tables with a transmission interval of 100 ms with a 10% variation around this
value. Each state, Announcement and Path Definition, had the duration of 5 seconds to make
sure the network had converged and paths were distributed.

In the Announcement state, at the convergence point all nodes were broadcasting the same
connection matrix. The procedure to handle the results related to the Announcement state
is provided in appendix E. The system was executed with different error rates, to simulate
different operational conditions and 10 tests were made for each error rate. The errors were
introduced at the reception layer of nodes, which discarded packets randomly, with a given
probability.

The obtained results are shown in table 5.1 and table 5.2 as well figure 5.2. In figure 5.2
an increment of the convergence time with the error rate was expected to be seen, this did
not happen, despite the fact that for each of the error rates 10 tests were made. The reason
for this can be traced to the uncontrollable packet losses, since it is broadcasting into air,
the medium can be perturbed. This hypothesis is confirmed when comparing table 5.1 with

35

36 Chapter 5. Results and Analysis

Figure 5.1: Network implemented in laboratory for experiments,the monitor node captures
all the network traffic and is placed about the same distance to every node.

Table 5.1: Network convergence time.
Induced Error 0% 2% 4% 8% 12% 16% 20%

Node 1 539 ms 634 ms 614 ms 540 ms 553 ms 672 ms 1034 ms

Node 2 621 ms 679 ms 741 ms 648 ms 698 ms 730 ms 1109 ms

Node 3 637 ms 779 ms 696 ms 700 ms 643 ms 688 ms 1120 ms

Node 4 595 ms 656 ms 629 ms 606 ms 584 ms 685 ms 1053 ms

Node 5 580 ms 649 ms 664 ms 589 ms 559 ms 672 ms 1074 ms

Node 225 609 ms 713 ms 677 ms 626 ms 618 ms 687 ms 1074 ms

Maximum 637 ms 779 ms 741 ms 700 ms 698 ms 730 ms 1120 ms

table 5.2. The nodes which provide the maximum convergence time are directly associated
with the higher packet losses. For example in the experiment with induced error of 4% the
convergence time is around 779 ms and the correspondent node has a packet loss of 40%.
Convergence time is flat between 5% and 15% because of the lack of tests.

During the Path Definition state, since all nodes were in direct contact with each other,
the path distribution should not take more than the transmission interval imposed, around
100 ms. If bigger, it is due to packet losses.

Table 5.3 has relevant information about the path distribution duration. This table was
generated with a MATLAB script described in appendix F. Node 1 is not included since it was
the one which provided the best paths. In this table it is important to notice, that in every
test the distribution time does no bring significant changes, due to every node being in direct
contact. When source node, node 1, transmits the path and every other node receives it, the
receiving node will transmit it once more and at this point the monitoring node captures the
time when this happens.

Some distribution duration values are smaller than the minimum established transmission
interval, less than 90 ms. This happens because the send event timer was already set at the
Announcement state and the system had already transited to the Path Definition state in
which it will resend a path packet right after it triggers.

5.1. Network Initialization 37

Table 5.2: Announcing packets loss till convergence.
Induced Error 0% 2% 4% 8% 12% 16% 20%

Node 1 3.6% 3.2% 6.6 % 3.6% 1.75% 1.5% 18%

Node 2 29.8% 28.6% 33.3% 31.3% 39.2% 40.4% 28.2%

Node 3 29.1% 40.4% 37.3% 42.3% 31.9% 29.4% 38.5%

Node 4 2.2% 6.1% 8.5% 6.5% 6.8% 17.6% 9.5%

Node 5 6.5% 2% 15.3% 6.4% 4.4% 5.7% 8.9%

Node 225 6.6% 11.8% 16.3% 15.2% 27.5% 43.9% 2.7%

Figure 5.2: Announcing Convergence with relation to packet losses.

Table 5.3: Network path distribution duration.
Induced Error 0% 2% 4% 8% 12% 16% 20%

Node 2 126 ms 150 ms 179 ms 199 ms 175 ms 120 ms 209 ms

Node 3 155 ms 175 ms 176 ms 158 ms 330 ms 131 ms 224 ms

Node 4 133 ms 151 ms 145 ms 108 ms 126 ms 113 ms 142 ms

Node 5 90 ms 124 ms 142 ms 149 ms 78 ms 69 ms 107 ms

Node 6 77 ms 139 ms 175 ms 163 ms 114 ms 78 ms 110 ms

Maximum 155 ms 175 ms 176 ms 199 ms 330 ms 131 ms 224 ms

38 Chapter 5. Results and Analysis

Figure 5.3: System Error with independent paths.

5.2 Running Mode

These are the most important test results, once they assess the overall performance of the
protocol developed in the scope of this dissertation. It is said that the protocol, WSRT is
aimed to provide spatial redundancy to increase the packet reception at the sink node and also
time division to schedule transmissions. This section also evaluates retransmissions variation,
paths jitter and system bandwidth.

The slot base time is 100 ms, and frame duration is based on the active transmitting nodes
in the network, in this case, nodes 1,2,3,4,5, which generates a time frame of 500 ms. The
results in this section were processed by a MATLAB script presented in appendix G.

5.2.1 Spatial Redundancy

The results in this section aim to verify spatial redundancy, being represented in Table 5.4.
The table describes the path error and the overall system error when having 2 paths. With
the induced error incrementation, the path error probabilities were expected to increment,
and that does not happen between 0% and 4%.

Experiments were repeated several times, but the result was the same. This can be
explained by the induced error rate being very low, to the dominant error source.

With the same data flowing through path 1 and path 2 to the sink node, probability of
receiving the data increases. If the path probabilities were independent, which they are not,
because they share the same environment and can influence it, by multiplying path 1 to path
2 errors probabilities, the result is near the system error. This comparison can be visualized in

5.2. Running Mode 39

Table 5.4: Table of packet loss percentage for each path and overall system error.
Induced Error 0% 2% 4% 8% 12% 16%

Path 1 22.5% 29.69% 32.02% 32.82% 37.12% 41.35%

Path 2 21.1% 16.51% 15.46% 22.02% 28.69% 33.29%

System 5.2% 5.77% 6.06% 8.65% 11.46% 14.16%

Figure 5.4: Paths jitter.

figure 5.3 which relates independent path probabilities error, with the measured probability.

5.2.2 Paths Jitter

During system normal operation mode, the nodes will not transmit exactly at the specified
time instant calculated using the allowed packet reception. This is because of the uncontrol-
lable background OS tasks and the platforms not being suitable for this kind of application.
This is shown in figure 5.4 where the most probable jitter for path 1 is between 40 to 45 ms
and path 2 between 30 to 35 ms. Path 1 was formed by Raspberry Pi Zero and B+, while
path 2 was formed by a Raspberry Pi Zero and 3. Raspberry Pi 3 had a preemptive OS with
four cores and so it caused less 10 ms of jitter. The maximum likely paths jitter can also
establish a minimum slot duration.

If jitter was bigger than the slot duration, node 5, could still be transmitting at the same
time node 1 is starting a new frame, resulting in a possible collision. This is verified in
section 5.4.

40 Chapter 5. Results and Analysis

Figure 5.5: System performance regarding to the transmission between 2 neighbor nodes.

5.3 Jitter between consecutive nodes

In this tests, only 2 nodes were used, node 1 and 2, both running on Raspberry Pi,
with the monitor node to track jitter between nodes but also the period deviations between
transmissions. Slot duration for each node is set to 100 ms with only one packet transmitted
each slot. The sampling lasted 70 minutes and the results are displayed in figure 5.5. The
first and second box, from left to right, represents the maximum, average and minimum
transmission jitter every time each node sends a packet, respectively. The last box, represents
the jitter between node 2 sending a packet and node 3 retransmitting it. Node 2 has a average
jitter of 7 ms, node 3 has 10 ms and between nodes is 23 ms. These results were processed
with the MATLAB script presented in appendix H.

5.4 Maximum achievable data rate

For each test, the system was programmed to transmit a fixed amount of packets for
each slot to obtain the maximum possible network bandwidth. In this case five tests were
conducted for 1, 2, 3, 4 and 5 packet transmissions for each slot with 100 ms of slot duration.

During this tests processing, a delay was discovered for multiple packet transmissions at
the same slot on every Raspberry Pi nodes, although this delay was not visible using a laptop
which transmitted all the packets in less than one millisecond interval. The dataset for two
packets per slot was used to obtain this detected delay. These results were processed with
the MATLAB script presented in appendix I. This dataset generated the figure 5.6 in which
the maximum, minimum and average delay are presented. The average delay between same
slot transmissions is 14 ms. The main source of this delay could be hidden in the Raspberry
Pi OS system tick which generates interruptions with every 10 ms. Other delay source could
be the wireless dongle connected to the Raspberry Pi USB hub.

5.4. Maximum achievable data rate 41

Figure 5.6: Delay during multiple packet transmissions in the same slot.

Figure 5.7: Network data rate and system error rate.

42 Chapter 5. Results and Analysis

Table 5.5: Time Slots Overlapping
Time
Stamp

Node ID
Sequence
Number

17.78967 001 0a

17.80785 001 0b

17.82180 001 0c

17.83697 001 0d

17.85095 001 0e

17.88494 005 05

17.89742 005 06

17.91077 005 07

17.92326 005 08

17.93575 005 09

17.97229 002 0a

17.98476 002 0b

17.99881 002 0c

18.02660 002 0e

18.16375 003 0a

18.17629 004 0a

18.18882 003 0b

18.20260 004 0b

18.21504 003 0c

18.22994 004 0c

18.24240 004 0d

18.26986 003 0e

18.28233 004 0e

In figure 5.7, the straight line represents the obtained network data rate, while the dashed
line represents the system error rate. The system error rate increasing is due to slot overlap-
ping of consecutive TDMA frames presented in table 5.5. According to the TDMA frame,
the transmissions are done sequentially following the transmission order of 1, 2, 3, 4, 5. It is
possible to verify that node 5 is always transmitting packets from the previous frame due to
node 1 and 5 slot overlapping. Due to this, node 1 and 5 packets collide and are lost.

The overlapping origin is caused by the path cumulative jitter for each transmission. For
example, in path 1, 4 and 5, according to section 5.3, the average jitter between nodes is on
average 23 ms. Transmission of multiple packets in the same slot generates a delay of 14 ms
proportional to the packets quantity. So at node 5 transmission starts with an offset of 69
ms and when transmitting more than 3 packets this surpasses the defined slot period of 100
ms. Due to this, node 1 starts transmitting a new frame while node 5 is still transmitting.
The error rate after 3 packets sent per slot starts to greatly increase due to overlapping, so
the maximum data rate should be smaller than 8.5 KB/s, considering that the theoretical is
9 KB/s, once the used TDMA frame has the duration of 500 ms and each frame transmits 3
packets of 1500 bytes.

5.5. Results conclusions 43

5.5 Results conclusions

According to the presented results, spatial redundancy and time division multiplexing
mechanism improve the system performance having verified low error rates through multiple
paths when compared with errors only using a single one. Although video and audio streaming
cannot be achieved using the current platforms, since it is needed at least 300 Kbps for low
resolution video streaming, as presented in table 2.2 and the system has a maximum data
rate of of 68 Kbps, or 8.5 KB/s.

Low data rates obtained are related to every cumulative jitter through the paths and also
the delay when transmitting multiple packets in the same slot, caused by the Linux system
tick, which cause the time division multiplexing mechanism to fail.

The increase the data rate obtained in this dissertation IEEE 802.11 frame structure which
allows to transmit more data in the same frame could be applied to overcome the payload
limit of 1500 bytes.

Another proposed solution is a usage of a more powerful platform, a laptop, once the
source node, running in a laptop, was sending multiple packets at its own frame with small
time impact over all the system, below millisecond delay.

44 Chapter 5. Results and Analysis

6

Conclusion

The actual objective of this dissertation was to develop a system to transmit via wireless
multimedia in lossy environments. To solve this a protocol was created using spatial redun-
dancy in which each packet is forwarded through ”n” disjunct paths, with ”n” being defined
by the user. It is used a TDMA mechanism to avoid collisions. The protocol was implemented
in low cost hardware, in this case Raspberry Pi.

The experimental results verify the protocol satisfies the main objective, but the platform
characteristics block the practical usage of the system, since it wastes too much bandwidth.

Possible project improvements are presented in section 6.1, which could solve the band-
width efficiency and also insert new nodes and delete others.

6.1 Future Work

This project can still be greatly improved by applying some of the following modifications:

1. Protocol implementation at kernel level to reduce processing latency.

2. Implementation of IEEE 802.11 frame to increase the amount of data being sent and
possibly increasing transmission rate.

3. Monitor tool, to have a real time visualization over the overall system performance and
nodes.

4. Implementation of preemptive patch to the middle nodes operating system to have a
more precise transmission.

5. The system should run a more complex algorithm to allow multiple nodes to the same
slot if this nodes are not in range.

6. Dynamic node ID attribution based in MAC addresses, which requires a modification to
the announcement state where MAC addresses are sent instead of node ID and between
Announcement state and Path Definition, having a intermediary node to inform which
ID was given to the node.

45

46 Chapter 6. Conclusion

7. Automatic best path update, to allow the inclusion of new nodes and remove nodes that
fail permanently.

Bibliography

[1] James Kurose and Keith Ross. Computer Networking - A top-down approach. 2013.

[2] IEEE Computer Society. What is 802.11 doing? http://www.ieee802.org/11/

presentation.html, 2015.

[3] Andrew S Tanenbaum. Computer Networks. 1996.

[4] Youtube. Recommended upload encoding settings. https://support.google.com/

youtube/answer/1722171?hl=en.

[5] Behrouz A. Forouzan and Sophia Chung Fegan. Data Communications and Networking.
2007.

[6] William Stallings. 2007.

[7] Frederico Santos, Lúıs Almeida, and Lúıs Seabra Lopes. Self-configuration of an adaptive
TDMA wireless communication protocol for teams of mobile robots. IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA, pages 1197–1204,
2008.

[8] Zigbee Alliance. What is ZigBee. http://www.zigbee.org/what-is-zigbee/. [Online;
accessed 15-05-2017].

[9] D. Chen et al. WirelessHART: Real-Time Mesh Network for Industrial Automation.
Springer, 2010.

[10] Bluetooth. Discover Bluetooth. https://www.bluetooth.com/

what-is-bluetooth-technology/discover-bluetooth. [Online; accessed 15-05-
2017].

[11] IEEE Computer Society. Ieee standard for ethernet. http://standards.ieee.org/

getieee802/download/802.3-2015.zip, 1995.

[12] Microsoft. What Is 802.11 Wireless? https://technet.microsoft.com/en-us/

library/cc757419(v=ws.10).aspx. [Online; accessed 23-06-2017].

[13] Shahin Farahani. ZigBee Wireless Networks and Transceivers. 2008.

[14] Digi. Digi XBee R© ZigBee.

47

http://www.ieee802.org/11/presentation.html
http://www.ieee802.org/11/presentation.html
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
http://www.zigbee.org/what-is-zigbee/
https://www.bluetooth.com/what-is-bluetooth-technology/discover-bluetooth
https://www.bluetooth.com/what-is-bluetooth-technology/discover-bluetooth
http://standards.ieee.org/getieee802/download/802.3-2015.zip
http://standards.ieee.org/getieee802/download/802.3-2015.zip
https://technet.microsoft.com/en-us/library/cc757419(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc757419(v=ws.10).aspx

48 Bibliography

[15] FieldCommGroup. HART - DIGITAL TRANSFORMATION FOR ANALOG INSTRU-
MENTS. https://fieldcommgroup.org/technologies/hart. [Online; accessed 15-05-
2017].

[16] Jianping Song, Song Han, Aloysius K. Mok, Deji Chen, Mike Lucas, Mark Nixon, and
Wally Pratt. WirelessHART: Applying wireless technology in real-time industrial process
control. Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS, pages 377–386, 2008.

[17] Raspberry Pi. Products. https://www.raspberrypi.org/products/. [Online; accessed
15-05-2017].

[18] Hardkernel. Products. http://www.hardkernel.com/main/main.php. [Online; accessed
15-05-2017].

[19] Kernel. About Linux Kernel. https://www.kernel.org/linux.html. [Online; accessed
15-05-2017].

[20] Libby Clark. Intro to Real-Time Linux for Embedded Developers. https://www.linux.
com/blog/intro-real-time-linux-embedded-developers, 2013. [Online; accessed
04-07-2017].

[21] Xenomai. How does Xenomai deliver real-time? https://xenomai.org/start-here/.
[Online; accessed 15-05-2017].

[22] Dave Marshall. Video and audio compression. https://users.cs.cf.ac.uk/Dave.

Marshall/Multimedia/node200.html, 1995.

[23] Andy Beach. Video Compression.

[24] Toni Fiedler. The aac audio coding family for broadcast and cable tv. https:

//www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_

White-Paper_AAC-Broadcast-CableTV.pdf.

https://fieldcommgroup.org/technologies/hart
https://www.raspberrypi.org/products/
http://www.hardkernel.com/main/main.php
https://www.kernel.org/linux.html
https://www.linux.com/blog/intro-real-time-linux-embedded-developers
https://www.linux.com/blog/intro-real-time-linux-embedded-developers
https://xenomai.org/start-here/
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node200.html
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node200.html
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_White-Paper_AAC-Broadcast-CableTV.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_White-Paper_AAC-Broadcast-CableTV.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_White-Paper_AAC-Broadcast-CableTV.pdf

A

Protocol Usage Example

To use this protocol the user should use the example code provided in listing A.1 to stream
data.

Listing A.1: WSRT usage example.

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude ”Wsrt/Wsrt . h”
4

5 i n t main (i n t argc , char ∗∗ argv) {
6 i n t i ;
7 char ∗ i n t e r f a c e ; ;
8 u i n t 8 t type = 0 ;
9 u i n t 8 t id = 0 ;

10 u i n t 8 t mode = PATHS DYNAMIC;
11 u i n t 8 t e r r = 0 ;
12 char ∗ f i leName ;
13 s e tbu f (stdout , NULL) ;
14

15 // Read arguments
16 f o r (i = 0 ; i < (argc) ; ++i) {
17 i f (strcmp (argv [i] , ”− i ”)==0){
18 i n t e r f a c e = mal loc (s i z e o f (argv [i +1])) ;
19 i n t e r f a c e = argv [i +1] ;
20 p r i n t f (” [Test ing] I n t e r f a c e : %s \n” , argv [i +1]) ;
21 }
22 i f (strcmp (argv [i] , ”−t ”)==0){
23 i f (strcmp (argv [i +1] , ” source ”) == 0) {
24 p r i n t f (” [Test ing] Source Node i n s e r t e d .\n”) ;
25 type = WSRT SOURCE;
26 }
27 i f (strcmp (argv [i +1] , ” s ink ”) == 0) {

49

50 Appendix A. Protocol Usage Example

28 p r i n t f (” [Test ing] Sink Node i n s e r t e d .\n”) ;
29 type = WSRT SINK;
30 }
31 i f (strcmp (argv [i +1] , ” middle ”) == 0) {
32 p r i n t f (” [Test ing] Middle Node i n s e r t e d .\n”) ;
33 type = WSRT MIDDLE;
34 }
35 }
36 i f (strcmp (argv [i] , ”−path”)==0){
37 f i leName = argv [i +1] ;
38 mode = PATHS STATIC;
39 }
40 i f (strcmp (argv [i] , ”−id ”)==0){
41 id = a t o i (argv [i +1]) ;
42 }
43 i f (strcmp (argv [i] , ”−e”)==0){
44 e r r = a t o i (argv [i +1]) ;
45 p r i n t f (”ERROR: %d” , e r r) ;
46 }
47 }
48 p r i n t f (” [Test ing] i n i t i a l i z i n g Wsrt .\n”) ;
49 Wsrt ∗wsrtPtr = w s r t i n i t (i n t e r f a c e , id , type ,PACKET SIZE) ;
50

51 i f (type == WSRT SOURCE && mode == PATHS STATIC) { // i f i t i s source
node and mode i s dec l a r ed as dynamic , d e f a u l t i s dynamic

52 p r i n t f (” [Test ing] Mode s e t to S t a t i c − %s \n” , f i leName) ;
53 wsrt setPathMode (wsrtPtr , mode , f i leName) ;
54 }
55 p r i n t f (” [Test ing] i n i t i a l i z i n g threads .\n”) ;
56 wsr t in i tThreads (wsrtPtr) ;
57 w s r t s e t E r r o r (wsrtPtr , e r r) ;
58

59 u i n t 3 2 t counter = 0 ;
60 u i n t 8 t dataStream [wsrtPtr−>packetLength−WSRT DATA POS] ;
61 u i n t 8 t bu f f [PAYLOAD SIZE] ;
62 p r i n t f (”Waiting f o r network to be ready .\n”) ;
63

64 whi le (wsrt ready (wsrtPtr) == 0) ;
65 p r i n t f (”Network i s ready . . . \ n”) ;
66

67 whi le (1) {
68 i f (type == WSRT SOURCE) { // Generate data every 100 ms
69 memcpy(dataStream ,& counter , s i z e o f (u i n t 3 2 t)) ;
70 memset (dataStream + s i z e o f (u i n t 3 2 t) ,0 , wsrtPtr−>packetLength−

WSRT DATA POS−s i z e o f (u i n t 3 2 t)) ;
71 counter++;

51

72 wsr t wr i t e (wsrtPtr , dataStream , wsrtPtr−>packetLength−
WSRT DATA POS) ;

73 us l e ep (100000) ;
74 }
75 e l s e i f (type == WSRT SINK) { // Get data whenever the re i s a

packet .
76 whi le (wsrt hasNext (wsrtPtr)) {
77 i f (wsr t read (wsrtPtr , bu f f))
78 per ro r (”No payload to re turn .\n”) ;
79 u i n t 3 2 t count ;
80 memcpy(&count , buf f , s i z e o f (u i n t 3 2 t)) ;
81 p r i n t f (”SEQ %d\n” , count) ;
82 }
83 }
84 }
85 re turn 0 ;
86 }

52 Appendix A. Protocol Usage Example

B

Operating System Configuration
Instructions

This appendix aims to provide the operating system necessary configuration to handle
the created protocol. It is expected the user already has an Arch Linux operating system
installed in the device which will use. This instructions were made to be done in a Raspberry
Pi.

First it is necessary to check if USB dongle which provides wireless communication sup-
ports an interface mode called IBSS. This is done by using in the Linux terminal the following
command:

1 $ iw l i s t

This command provides the output presented in figure B.1, in which the supports IBSS
interface mode. If this doesn’t appear, means that the used interface is not capable of handling
the protocol.

53

54 Appendix B. Operating System Configuration Instructions

Figure B.1: Check for IBSS mode support.

To configure the OS, a configuration script was made. This script provides the automatic
startup of an mesh network. This script is called WsrtConfig and it is made by other small
scripts, in which one of them generates an ad-hoc start script which will be run every time
the OS system boots up.

Listing B.1: Preparation script for OS.

1

2 #! / bin /bash
3 #### . / WsrtConfig . sh f i l e ###
4 echo −e ”−−−−− I n s t a l l Openssh −−−−−”
5 #yes | pacman −Syu openssh
6 echo −e ”−−−−− Add sshd s e r v i c e f o r ssh −−−−−”
7 sy s t emct l enable sshd . s e r v i c e
8 sy s t emct l s t a r t sshd . s e r v i c e
9

10 echo −e ”−−−−− Using . / addHosts . sh $ (cat hostArgs) −−−−−”
11 . / addHosts . sh $ (cat hostArgs)
12 echo −e ”−−−−− Using . / generateAdHocScript . sh $ (cat adhocArgs)−−−−−

”
13 . / generateAdHocScript . sh $ (cat adhocArgs)
14

15 cp adhoctStart . t imer / e t c / systemd/system/
16 cp adhoctStart . s e r v i c e / e t c / systemd/system /
17

18 sy s t emct l enable adhoctStart . t imer

55

19 sy s t emct l s t a r t adhoctStart . t imer

Listing B.2: Change hosts accordingly to specified Node ID

1 #! / bin /bash
2 ### . / addHosts . sh f i l e ###
3 whi le ge topt s p : h : d : opt ion
4 do
5 case ”${ opt ion }”
6 in
7 p) IP=${OPTARG} ; ;
8 h) HNAME=${OPTARG} ; ;
9 d) dm=${OPTARG} ; ;

10 esac
11 done
12

13 hos t en t ry=”$IP $HNAME. $dm $HNAME”
14 rm / etc /hostname
15 echo ”$HNAME” >> / e tc /hostname
16

17 d i s p l a y u s a g e () {
18 echo −e ”Usage example :\n $. / addHosts . sh −p 1 2 7 . 0 . 1 . 1
19 −h NodeX −d localDomain ”
20 }
21

22 echo ” $hos t en t ry ”
23 i f [[−z $IP]] | | [[−z $HNAME]] | | [[−z $dm]]
24 then
25 d i s p l a y u s a g e
26 e x i t 1
27 f i
28

29 i f [! −z ” $matches in hos t s ”]
30 then
31 echo ”Updating e x i s t i n g hos t s entry . ”
32 # i t e r a t e over the l i n e numbers on which matches were found
33 whi le read −r l ine number ; do
34 # r e p l a c e the text o f each l i n e with the d e s i r e d host entry
35 sed − i ’ ’ ”${ l ine number } s / .∗/ ${ hos t en t ry } /” / e tc / hos t s
36 done <<< ” $matche s in hos t s ”
37 e l s e
38 echo ”Adding new host s entry . ”
39 echo ” $hos t ent ry ” | t e e −a / e tc / hos t s > /dev/ n u l l
40 f i

Listing B.3: Generates a ad-hoc script to be initialized on the OS system startup

1 #! / bin /bash

56 Appendix B. Operating System Configuration Instructions

2 #### . / generateAdHocScript . sh f i l e ###
3 whi le ge topt s i : n : c : p :m: a opt ion
4 do
5 case ”${ opt ion }”
6 in
7 i) INTERFACE=${OPTARG} ; ;
8 n) NETWORKNAME=${OPTARG} ; ;
9 c) CHANNEL=${OPTARG} ; ;

10 p) IP=${OPTARG} ; ;
11 m) MASK=${OPTARG} ; ;
12 esac
13 done
14

15 d i s p l a y u s a g e () {
16 echo −e ”Usage example :\n $. / generateAdHocScript
17 − i wlan0 −n MeshPi −c 2412 −p 1 9 2 . 1 6 8 . 1 . 1 −m 24”
18 }
19

20 echo −e ”#!/ bin /bash\n
21 ip addr f l u s h $INTERFACE\n
22 ip l i n k s e t ${INTERFACE} down\n
23 iw $INTERFACE s e t type i b s s \n
24 ip l i n k s e t $INTERFACE up\n
25 iw $INTERFACE i b s s j o i n $NETWORKNAME $CHANNEL \n
26 ip addr add $IP/$MASK dev $INTERFACE” > / usr / l o c a l / bin /adhoc . sh
27 chmod 777 / usr / l o c a l / bin /adhoc . sh

C

Cluster SSH Instructions

To be able to use Cluster SSH it is necessary to have a configuration file located at ”\etc”
with the name of clusters. This file must contain every node information as presented in
listing C.1

Listing C.1: Clusters config file

1 c l u s t e r s wsrt@192 . 1 6 8 . 1 . 2 wsrt@192 . 1 6 8 . 1 . 3 wsrt@192 . 1 6 8 . 1 . 4
wsrt@192 . 1 6 8 . 1 . 5 wsrt@192 . 1 6 8 . 1 . 6

57

58 Appendix C. Cluster SSH Instructions

D

Software Upload Instructions

To upload the software into every node in network containing 6 nodes the listing D.1
is used. This uploads the software using SFTP by using the SFTP commands declared in
listing D.2, in which will put all the contents from the ”BinSFTP” folder in every single node
and exit. This folder must be in the same location as the ”FirmwareUpload.sh” file.

Listing D.1: Firmware upload script

1 #! / bin /bash
2 #### . / FirmwareUplod . sh f i l e ###
3 echo ”Node 1”
4 s shpass −p q s f t p −oBatchMode=no −b binBatch wsrt@192 . 1 6 8 . 1 . 1
5 echo ”Node 2”
6 s shpass −p q s f t p −oBatchMode=no −b binBatch wsrt@192 . 1 6 8 . 1 . 2
7 echo ”Node 3”
8 s shpass −p q s f t p −oBatchMode=no −b binBatch wsrt@192 . 1 6 8 . 1 . 3
9 echo ”Node 4”

10 s shpass −p q s f t p −oBatchMode=no −b binBatch wsrt@192 . 1 6 8 . 1 . 4
11 echo ”Node 5”
12 s shpass −p q s f t p −oBatchMode=no −b binBatch wsrt@192 . 1 6 8 . 1 . 5
13 echo ”Node 6”
14 s shpass −p q s f t p −oBatchMode=no −b binBatch wsrt@192 . 1 6 8 . 1 . 6

Listing D.2: Preparation script for OS.

1 #### binBatch f i l e ###
2 put −r BinSFTP
3 e x i t

59

60 Appendix D. Software Upload Instructions

E

MATLAB script for announcing phase
results processing

The following script was used to provide the time when each node converged. The overall
system convergence was calculated by using the maximum of the nodes convergence. This
script is used to process text files generated by the WsrtMonitor.

1 % Read txt f i l e
2 t t = readtab l e (f i leName , ’ ReadVariableNames ’ , true , ’ De l im i t e r ’ , ’ , ’) ;
3

4 % F i l t e r by debug message type
5 toDe l e te = t t . MsgType == 2 ;
6 fTT = t t (toDelete , :) ;
7 fTT (: , 2) = [] ;
8

9 % Read Packets Message Content
10 i n f o = c e l l (l ength (fTT . Message) , l ength (s t r s p l i t (char (fTT . Message (1)

)))) ;
11 f o r i = 1 : l ength (fTT . Message)
12 i n f o (i , :) = s t r s p l i t (char (fTT . Message (i))) ;
13 end
14 fTT . MacAddr = i n f o (: , 1) ;
15 fTT . type = st r2doub l e (i n f o (: , 2)) ;
16 fTT . seq = st r2doub l e (i n f o (: , 3)) ;
17 fTT . s r c = hex2dec (i n f o (: , 4)) ;
18 fTT . Payload = reshape (hex2dec (i n f o (: , 2 : end)) , [s i z e (in fo , 1) s i z e (

in fo , 2) −1]) ;
19 fTT . Message = [] ;
20

21 % Obtain Announcement Phase Data
22 toDe l e te = fTT . type == 1 ;
23 announcTable = fTT(toDelete , :) ;

61

62 Appendix E. MATLAB script for announcing phase results processing

24 announcTable . Payload (: , [1 : 3]) = [] ;
25

26 % Get Announcement Convergence and Loss
27 announcTable . plLength = sum ((announcTable . Payload ˜= 0) ,2) ; % f o r

announcement
28 maxLength = max(announcTable . plLength) ; % Gives when convergence

happens .
29 nodesL i s t = unique (announcTable . s r c) ; % Al l nodes which

broadcasted ID and connect i ons t a b l e s
30 f o r i = 1 : l ength (nodesL i s t)
31 node (i) . id = nodesL i s t (i) ;
32 toDe l e te = announcTable . s r c == nodesL i s t (i) ;
33 node (i) . announcPhase = announcTable (toDelete , :) ;
34 pos = f i n d (node (i) . announcPhase . plLength == maxLength) ;
35 convTime (i) = round ((node (i) . announcPhase . TimeStamp(pos (1)) − node (

f i n d (nodesL i s t == 1)) . announcPhase . TimeStamp (1)) ∗1000) ;
36 maxPcktSeq = node (i) . announcPhase . seq (pos (1)) ;
37 pcktReceived = s i z e (node (i) . announcPhase (1 : (f i n d (node (i) .

announcPhase . seq == maxPcktSeq)) , :) , 1) ;
38 txRxConv (1 , i) = maxPcktSeq + 1 ; % Transmitted packets by node
39 txRxConv (2 , i) = pcktReceived ; % Received packets by the monitor
40 node (i) . convTime = convTime (i) ;
41 end

F

MATLAB script for path definition
phase results processing

The following script was used to provide the time when every node has the paths which
data will be forwarded. The overall system distribution time was calculated by using the
maximum of nodes time instant when it happened.

1 % Read txt f i l e
2 t t = readtab l e (f i leName , ’ ReadVariableNames ’ , true , ’ De l im i t e r ’ , ’ , ’) ;
3

4 % F i l t e r by debug message type
5 toDe l e te = t t . MsgType == 2 ;
6 fTT = t t (toDelete , :) ;
7 fTT (: , 2) = [] ;
8

9 % Read Packets Message Content
10 i n f o = c e l l (l ength (fTT . Message) , l ength (s t r s p l i t (char (fTT . Message

(1))))) ;
11 f o r i = 1 : l ength (fTT . Message)
12 i n f o (i , :) = s t r s p l i t (char (fTT . Message (i))) ;
13 end
14 fTT . MacAddr = i n f o (: , 1) ;
15 fTT . type = st r2doub l e (i n f o (: , 2)) ;
16 fTT . seq = st r2doub l e (i n f o (: , 3)) ;
17 fTT . s r c = hex2dec (i n f o (: , 4)) ;
18 fTT . Payload = reshape (hex2dec (i n f o (: , 2 : end)) , [s i z e (in fo , 1) s i z e (

in fo , 2) −1]) ;
19 fTT . Message = [] ;
20

21 % Divide Data by Path D e f i n i t i o n Phase
22 toDe l e te = fTT . type == 2 ;
23 pathTable = fTT(toDelete , :) ;

63

64 Appendix F. MATLAB script for path definition phase results processing

24 pathTable . Payload (: , [1 : 3]) = [] ;
25

26 % Get Path D i s t r i b u t i o n and Loss
27 nodesL i s t = unique (pathTable . s r c) ;
28 f o r i = 1 : l ength (nodesL i s t)
29 node (i) . id = nodesL i s t (i) ;
30 toDe l e te = pathTable . s r c == nodesL i s t (i) ;
31 node (i) . pathPhase = pathTable (toDelete , :) ;
32 end
33

34 f o r i = 1 : l ength (nodesL i s t)
35 dTime(i) = node (i) . pathPhase . TimeStamp (1) ;
36 dTime(i) = round ((dTime(i) − node (f i n d (nodesL i s t == 1)) . pathPhase

. TimeStamp (1)) ∗1000) ;
37 node (i) . dTime = dTime(i) ;
38 end

G

MATLAB script for running mode
data processing

The presented script allows to verify the spatial redundancy and jitter induced by each
path.

1 c l e a r
2 %% Packets Proce s s ing
3 % Control v a r i a b l e s
4 MAX PCK PROC = 50 ;
5 %% Read txt f i l e
6 f i leName = ’ runTest 16 1 . txt ’
7 t t = readtab l e (f i leName , ’ ReadVariableNames ’ , true , ’ De l im i t e r ’ , ’ , ’) ;
8 %% F i l t e r by debug message type
9 toDe l e te = t t . MsgType == 2 ;

10 fTT = t t (toDelete , :) ;
11 fTT (: , 2) = [] ;
12 %% Read Packets Message Content
13 i n f o = c e l l (l ength (fTT . Message) , l ength (s t r s p l i t (char (fTT . Message

(1))))) ;
14 f o r i = 1 : l ength (fTT . Message)
15 i n f o (i , :) = s t r s p l i t (char (fTT . Message (i))) ;
16 end
17 fTT . MacAddr = i n f o (: , 1) ;
18 fTT . type = st r2doub l e (i n f o (: , 2)) ;
19 fTT . seq = st r2doub l e (i n f o (: , 3)) ;
20 fTT . s r c = hex2dec (i n f o (: , 4)) ;
21 fTT . Payload = reshape (hex2dec (i n f o (: , 2 : end)) , [s i z e (in fo , 1) s i z e (

in fo , 2) −1]) ;
22 fTT . Message = [] ;
23

65

66 Appendix G. MATLAB script for running mode data processing

24 %% Divide Data by network phases − Announcement , Path De f i n i t i on ,
Running

25 toDe l e te = fTT . type == 3 ;
26 runTable = fTT(toDelete , :) ;
27 runTable . Payload (: , [1 : 3]) = [] ;
28

29 %% Running Data Proce s s ing
30 % Objec t ive s :
31 % −> Get Packet Loss f o r each path
32 % −> Calcu la te J i t t e r o f each path
33 %
34 runTable . streamNumb = 256.∗ runTable . Payload (: , 2) + . . .
35 runTable . Payload (: , 1) ; % f o r announcement
36 nodesL i s t = unique (runTable . s r c) ;
37 % organ i z e t a b l e s to correspondent nodes .
38 f o r i = 1 : l ength (nodesL i s t)
39 node (i) . id = nodesL i s t (i) ;
40 toDe l e te = runTable . s r c == nodesL i s t (i) ;
41 node (i) . runPhase = runTable (toDelete , :) ;
42 end
43

44

45 %% Calcu la te Packet Loss Per d i r e c t ne ighbours and per Path
46 path = [1 2 3 ;
47 1 4 5] ;
48 % Due to monitor computer r e c e p t i o n e r ro r s , l e t s check how
49 % many packets the monitor r e c e i v e d be f o r e the end node , which
50 % the monitor didn ’ t r e c e i v e from 1 . those are packets
51 % which the network didn ’ t l o t s . This i s used to compensate
52 % the monitor packets l o s s e s . Because s i n c e a node
53 % forwarded a packet which wasn ’ t detec ted by the node
54 % which transmit ted .
55

56 maxPacketsSent = 0 : 1 : max(node (1) . runPhase . streamNumb) ;
57 monitorLoss = (1 − s i z e (node (f i n d (nodesL i s t == 1)) . runPhase , 1) / . . .
58 l ength (maxPacketsSent)) ∗ 100 ;
59 f o r y = 1 : s i z e (path , 1)
60 f o r x = 2 : s i z e (path , 2)
61 node (f i n d (path (y , x) == nodesL i s t)) . pcktLoss = 100 ∗ (1 − s i z e (

node (f i n d (path (y , x) == nodesL i s t)) . runPhase , 1) / s i z e (node (f i n d
(nodesL i s t == path (y , x−1))) . runPhase , 1)) ;

62 node (f i n d (path (y , x) == nodesL i s t)) . l o s s L i nk = [path (y , x−1) , path
(y , x)] ;

63 end
64 end
65

66 f o r i = 1 : s i z e (node , 2)

67

67 nodesL i s t (i) = node (i) . id ;
68 end
69

70 f o r y = 1 : s i z e (path , 1)
71 node (f i n d (255 == nodesL i s t)) . pcktLoss (y , :) = 100 ∗ (1 − ((s i z e (

node (f i n d (path (y , end) == nodesL i s t)) . runPhase , 1)) / l ength (
maxPacketsSent))) ;

72 node (f i n d (255 == nodesL i s t)) . l o s s L in k (y , :) = [path (y , 1) , path (y ,
end)] ;

73 end
74

75 %% Calcu la te o v e r r a l l packet l o s s by proving redundancy
76 SOURCE = 1 ;
77 i f (node (1) . id == SOURCE)
78 maxPckt = max(node (1) . runPhase . streamNumb) ;
79 end
80

81 checkRpt = [] ;
82 f o r i = 1 : s i z e (path , 1)
83 checkRpt = [checkRpt ; node (f i n d (nodesL i s t == path (i , end))) .
84 runPhase . streamNumb] ;
85 end
86

87 [˜ , ind] = unique (checkRpt) ;
88 d u p l i c a t e i n d = s e t d i f f (1 : s i z e (checkRpt , 1) , ind) ;
89 t o t a l D i f f R e c e i v e d = length (checkRpt) − l ength (checkRpt (

d u p l i c a t e i n d)) ;
90

91 t o t a l = maxPckt ;
92 e r r o r = 100 − (t o t a l D i f f R e c e i v e d / t o t a l) ∗ 100 ;
93

94 % Calcu la te Paths j i t t e r
95 TDMA baseTime = 0 . 1 ; % in seconds
96 TDMA frame = [1 2 3 4 5] ;
97 TDMA ofss = [0 0 .1 0 .1 0 . 3 0 . 1] ;
98 path = [1 2 3 ;
99 1 4 5] ;

100

101 f o r i = 1 : s i z e (path , 1)
102 checkRpt = [node (f i n d (nodesL i s t == path (i , 1))) . runPhase ; node (

f i n d (nodesL i s t == path (i , end))) . runPhase] ;
103 checkRpt = sort rows (checkRpt) ;
104 cnt = 0 ;
105 pathDi f f = path (i , end) − path (i , 1) ;
106 f o r x = 2 : l ength (checkRpt . TimeStamp)
107 i f (checkRpt . streamNumb(x−1) == checkRpt . streamNumb(x))

68 Appendix G. MATLAB script for running mode data processing

108 pathDur (i) = (checkRpt . TimeStamp(x) − checkRpt . TimeStamp(x−1)
) ;

109 cnt = cnt + 1 ;
110 p J i t t e r (i , cnt) = pathDur (i) − pathDi f f ∗ TDMA baseTime ;
111 end
112 end
113 p J i t t e r (i , 1 : end−1) = p J i t t e r (i , 2 : end) ;
114 end
115 p J i t t e r = pJ i t t e r ’ ;

H

Inter node jitter calculation

This appendix provides a MATLAB script to calculate the deviation after a node receives
a packet and starts transmitting it.

1 %% Read txt f i l e
2 t t = readtab l e (’ N1 N2 J i t t e r 1 . txt ’ , ’ ReadVariableNames ’ , true , ’

De l im i t e r ’ , ’ , ’) ;
3 %% F i l t e r by debug message type
4 toDe l e te = t t . MsgType == 2 ;
5 fTT = t t (toDelete , :) ;
6 fTT (: , 2) = [] ;
7

8 % Choose Running Mode Messages
9 i n f o = c e l l (l ength (fTT . Message) , l ength (s t r s p l i t (char (fTT . Message

(1))))) ;
10 f o r i = 1 : l ength (fTT . Message)
11 i n f o (i , :) = s t r s p l i t (char (fTT . Message (i))) ;
12 end
13 fTT . MacAddr = i n f o (: , 1) ;
14 fTT . type = st r2doub l e (i n f o (: , 2)) ;
15 fTT . seq = st r2doub l e (i n f o (: , 3)) ;
16 fTT . s r c = hex2dec (i n f o (: , 4)) ;
17 fTT . Payload = reshape (hex2dec (i n f o (: , 2 : end)) , [s i z e (in fo , 1) s i z e (

in fo , 2) −1]) ;
18 fTT . Message = [] ;
19

20 toDe l e te = fTT . type == 3 ;
21 runTable = fTT(toDelete , :) ;
22 runTable . Payload (: , [1 : 3]) = [] ;
23

24 % Divide t r a n sm i s s i o n s by nodes
25 runTable . streamNumb = 256.∗ runTable . Payload (: , 2) + runTable .

Payload (: , 1) ; % f o r announcement

69

70 Appendix H. Inter node jitter calculation

26 nodesL i s t = unique (runTable . s r c) ;
27 f o r i = 1 : l ength (nodesL i s t)
28 node (i) . id = nodesL i s t (i) ;
29 toDe l e te = runTable . s r c == nodesL i s t (i) ;
30 node (i) . runPhase = runTable (toDelete , :) ;
31 end
32

33 % Calcu la te J i t t e r between 2 nodes
34 s lotTime = 100 ; % 100 ms o f s l o t time
35 path = [1 2] ;
36

37 % InterNode J i t t e r
38 p J i t t e r = [] ;
39 f o r i = 1 : s i z e (path , 1)
40 checkRpt = [node (f i n d (nodesL i s t == path (i , 1))) . runPhase ; node (

f i n d (nodesL i s t == path (i , end))) . runPhase] ;
41 checkRpt = sort rows (checkRpt) ;
42 cnt = 0 ;
43 pathDi f f = path (i , end) − path (i , 1) ;
44 f o r x = 2 : l ength (checkRpt . TimeStamp)
45 i f (checkRpt . streamNumb(x−1) == checkRpt . streamNumb(x))
46 pathDur (i) = (checkRpt . TimeStamp(x) − checkRpt . TimeStamp(x−1)

) ;
47 cnt = cnt + 1 ;
48 p J i t t e r (i , cnt) = 1000∗pathDur (i) − pathDi f f ∗ s lotTime ;
49 end
50 end
51 p J i t t e r (i , 1 : end−1) = p J i t t e r (i , 2 : end) ;
52 end
53 p J i t t e r = pJ i t t e r ’ ;
54

55 % Imprec i s i on s when in 1 s t node t r a n s m i s s i on s
56 % For Node 1
57 checkRpt = node (1) . runPhase ;
58 checkRpt = sort rows (checkRpt) ;
59 cnt = 0 ;
60 timeFrame = 500 ;
61

62 intervVarN1 = [] ;
63 f o r x = 2 : l ength (checkRpt . TimeStamp)
64 i f ((checkRpt . streamNumb(x−1)+1) == checkRpt . streamNumb(x))
65 pathDur (i) = abs ((checkRpt . TimeStamp(x) − checkRpt . TimeStamp(x

−1))) ;
66 cnt = cnt + 1 ;
67 intervVarN1 (i , cnt) = abs (1000∗pathDur (i)−timeFrame) ;
68 end
69 end

71

70 intervVarN1 (i , 1 : end−1) = intervVarN1 (i , 2 : end) ;
71 intervVarN1 = intervVarN1 ’ ;
72

73 % For Node 2
74 checkRpt = node (2) . runPhase ;
75 checkRpt = sort rows (checkRpt) ;
76 cnt = 0 ;
77 timeFrame = 500 ;
78

79 intervVarN2 = [] ;
80 f o r x = 2 : l ength (checkRpt . TimeStamp)
81 i f (((checkRpt . streamNumb(x−1)+1) == checkRpt . streamNumb(x)))
82 pathDur (i) = (checkRpt . TimeStamp(x) − checkRpt . TimeStamp(x−1)

) ;
83 i f (abs (1000∗pathDur (i)−timeFrame) < 300)
84 cnt = cnt + 1 ;
85 intervVarN2 (i , cnt) = abs (1000∗pathDur (i)−timeFrame) ;
86 end
87 end
88 end
89 intervVarN2 (i , 1 : end−1) = intervVarN2 (i , 2 : end) ;
90 intervVarN2 = intervVarN2 ’ ;
91

92 j i t t (1) = mean(p J i t t e r) ;
93 j i t t (2) = mean(intervVarN1) ;
94 j i t t (3) = mean(intervVarN2) ;
95 vJ i t = [intervVarN1 ; intervVarN2 ; p J i t t e r]
96 grp = [z e ro s (1 , l ength (intervVarN1)) , ones (1 , l ength (intervVarN2)

) , 2 .∗ ones (1 , l ength (p J i t t e r))] ’
97

98 h = boxplot (vJ it , grp)
99 x l a b e l (’ Nodes J i t t e r ’) ;

100 y l a b e l (’ j i t t e r (ms) ’) ;
101 t i t l e (’ Nodes j i t t e r comparison ’)
102 s e t (h (7 , :) , ’ V i s i b l e ’ , ’ o f f ’)
103 g r id on

72 Appendix H. Inter node jitter calculation

I

Bandwidth calculation

This script is used to evaluate the system maximum data rate and also deviations imposed
when transmitting multiple packets.

1 t = readtab l e (f i leName , ’ ReadVariableNames ’ , true , ’ De l im i t e r ’ , ’ , ’) ;
2 %% F i l t e r by debug message type
3 toDe l e te = t t . MsgType == 2 ;
4 fTT = t t (toDelete , :) ;
5 fTT (: , 2) = [] ;
6 %% Read Packets Message Content
7 i n f o = c e l l (l ength (fTT . Message) , l ength (s t r s p l i t (char (fTT . Message

(1))))) ;
8 f o r i = 1 : l ength (fTT . Message)
9 i n f o (i , :) = s t r s p l i t (char (fTT . Message (i))) ;

10 end
11 fTT . MacAddr = i n f o (: , 1) ;
12 fTT . type = st r2doub l e (i n f o (: , 2)) ;
13 fTT . seq = st r2doub l e (i n f o (: , 3)) ;
14 fTT . s r c = hex2dec (i n f o (: , 4)) ;
15 fTT . Payload = reshape (hex2dec (i n f o (: , 2 : end)) , [s i z e (in fo , 1) s i z e (

in fo , 2) −1]) ;
16 fTT . Message = [] ;
17

18 % Divide Data by network phase − Running
19 toDe l e te = fTT . type == 3 ;
20 runTable = fTT(toDelete , :) ;
21 runTable . Payload (: , [1 : 3]) = [] ;
22

23 runTable . streamNumb = 256.∗ runTable . Payload (: , 2) + runTable .
Payload (: , 1) ; % f o r announcement

24 nodesL i s t = unique (runTable . s r c) ;
25 % organ i z e t a b l e s to correspondent nodes .
26 f o r i = 1 : l ength (nodesL i s t)

73

74 Appendix I. Bandwidth calculation

27 node (i) . id = nodesL i s t (i) ;
28 toDe l e te = runTable . s r c == nodesL i s t (i) ;
29 node (i) . runPhase = runTable (toDelete , :) ;
30 end
31

32

33 % Obtain s t a r t timeStamp
34 startTm = node (1) . runPhase . TimeStamp (1) ;
35 lastTm = node (5) . runPhase . TimeStamp(end) ;
36 dur = lastTm − startTm ;
37

38 % Packets sent
39 maxPckt = max(node (1) . runPhase . streamNumb) ;
40

41 % Obtain system r e c e i v e d packets
42 checkRpt = [] ;
43 pcktS i ze = 1500 ;
44 overHead = 17 ;
45 checkRpt = [node (5) . runPhase . streamNumb ; node (3) . runPhase .

streamNumb] ;
46 [˜ , ind] = unique (checkRpt) ;

% i n d i c e s to unique
va lue s in column 3

47 d u p l i c a t e i n d = s e t d i f f (1 : s i z e (checkRpt , 1) , ind) ;
% d u p l i c a t e i n d i c e s

48 r e c e i vPck t s = length (checkRpt) − l ength (checkRpt (d u p l i c a t e i n d)) ;
% s u c e s s e f u l l packets r e c e i v e d withoud d u p l i c a t e s

49 data (1) = (1 − r e c e i vPck t s /maxPckt) ∗ 100 ;
50 data (2) = (r e c e i vPck t s ∗ pcktS i ze) /(dur ∗ 1000) ;

% ra t e in kbps
51 data (3) = (r e c e i vPck t s ∗ (pcktSize−overHead)) /(dur ∗ 1000) ;
52

53 %% I n t e r packets J i t t e r .
54 t t = readtab l e (f i leName , ’ ReadVariableNames ’ , true , ’ De l im i t e r ’ , ’ , ’) ;
55 % F i l t e r by debug message type
56 toDe l e te = t t . MsgType == 2 ;
57 fTT = t t (toDelete , :) ;
58 fTT (: , 2) = [] ;
59 % Read Packets Message Content
60 i n f o = c e l l (l ength (fTT . Message) , l ength (s t r s p l i t (char (fTT . Message

(1))))) ;
61 f o r i = 1 : l ength (fTT . Message)
62 i n f o (i , :) = s t r s p l i t (char (fTT . Message (i))) ;
63 end
64 fTT . MacAddr = i n f o (: , 1) ;
65 fTT . type = st r2doub l e (i n f o (: , 2)) ;
66 fTT . seq = st r2doub l e (i n f o (: , 3)) ;

75

67 fTT . s r c = hex2dec (i n f o (: , 4)) ;
68 fTT . Payload = reshape (hex2dec (i n f o (: , 2 : end)) , [s i z e (in fo , 1) s i z e (

in fo , 2) −1]) ;
69 fTT . Message = [] ;
70

71 % Divide Data by network phase − Running
72 toDe l e te = fTT . type == 3 ;
73 runTable = fTT(toDelete , :) ;
74 runTable . Payload (: , [1 : 3]) = [] ;
75

76 % remove source from data p r o c e s s i n g because i t i s a laptop
77 toDe l e te = fTT . s r c == 1 ;
78 runTable = fTT(toDelete , :) ;
79 runTable . Payload (: , [1 : 3]) = [] ;
80

81 runTable . streamNumb = 256.∗ runTable . Payload (: , 2) + runTable .
Payload (: , 1) ; % f o r announcement

82 cnt = 0 ;
83

84 f o r x = 1 : l ength (runTable . streamNumb) − 1
85 i f ((runTable . streamNumb(x)+1 == (runTable . streamNumb(x + 1))) &&

(runTable . s r c (x) == runTable . s r c (x+1)))
86 d i f f e r e (x , :) = [((runTable . TimeStamp(x+1) − runTable . TimeStamp(

x)) ∗1000) runTable . s r c (x) runTable . streamNumb(x) runTable . s r c
(x+1) runTable . streamNumb(x + 1)] ;

87 i f (d i f f e r e (x , 1) < 50)
88 cnt = cnt + 1 ;
89 i n t e r P c k t J i t t e r (cnt) = d i f f e r e (x , 1) ;
90 end
91 end
92 end
93

94 h = boxplot (i n t e r P c k t J i t t e r)
95 y l a b e l (’ Delay (ms) ’) ;
96 t i t l e (’ Delay between pakets t ransmi s s i on at the same s l o t ’)
97 s e t (h (7 , :) , ’ V i s i b l e ’ , ’ o f f ’)
98

99 g r id on

76 Appendix I. Bandwidth calculation

	Introduction
	Motivation
	Objective
	Dissertation organization

	State of the Art
	Computer Networking
	Packet and Circuit Switching
	Network Models
	Link Layer
	Multiple Access Link and its protocols

	Wired and Wireless Communications
	Ethernet
	IEEE 802.11
	Others wireless communication protocols

	Routing Protocols

	Embedded Systems
	Linux

	Multimedia
	Video
	Audio

	System Architecture
	Announcement
	Path Definition
	Running State
	Time Division Multiplexing

	Implementation
	System Implementation
	Packet Structure
	Announcement
	Path Definition
	Best Paths Algorithm

	Running
	Streaming
	Forward
	Store
	Time Division Multiplexing

	Transmission and Reception

	Protocol Usage
	Requirements and Setup
	Tools
	Remote Connection and File Transference
	Network Monitorization

	Results and Analysis
	Network Initialization
	Running Mode
	Spatial Redundancy
	Paths Jitter

	Jitter between consecutive nodes
	Maximum achievable data rate
	Results conclusions

	Conclusion
	Future Work

	Protocol Usage Example
	Operating System Configuration Instructions
	Cluster SSH Instructions
	Software Upload Instructions
	MATLAB script for announcing phase results processing
	MATLAB script for path definition phase results processing
	MATLAB script for running mode data processing
	Inter node jitter calculation
	Bandwidth calculation

