
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Rui Filipe
Pedro

Gestão de Desempenho em Ambientes de Rede
Virtualizados (NFV) e Programáveis (SDN)

Performance Management in Virtualized and
Programmable Network Environments (NFV and
SDN)

“No one is dumb who is curious. The people who don’t ask questions
remain clueless throughout their lives.”

— Neil deGrasse Tyson

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Rui Filipe
Pedro

Gestão de Desempenho em Ambientes de Rede
Virtualizados (NFV) e Programáveis (SDN)

Performance Management in Virtualized and
Programmable Network Environments (NFV and
SDN)

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Rui Filipe
Pedro

Gestão de Desempenho em Ambientes de Rede
Virtualizados (NFV) e Programáveis (SDN)

Performance Management in Virtualized and
Programmable Network Environments (NFV and
SDN)

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requesitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica da Pro-
fessora Doutora Susana Sargento, Professor Associada com Agregação do
Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade de Aveiro, e do Doutor Pedro Miguel Naia Neves, Engenheiro de
Telecomunicações na Altice Labs.

o júri / the jury

presidente / president Prof. Doutor António Lúıs Jesus Teixeira
Professor Associado com Agregação do Departamento de Eletrónica, Telecomu-

nicações e Informática da Universidade de Aveiro (por delegação da Reitora da

Universidade de Aveiro)

vogais / examiners committee Profa. Doutora Susana Sargento
Professora Associada com Agregação do Departamento de Eletrónica, Telecomu-

nicações e Informática da Universidade de Aveiro (orientador)

Prof. Pedro Sousa
Professor Auxiliar do Departamento de Informática da Universidade do Minho (ar-

guente)

agradecimentos /
acknowledgements

Gostaria de agradecer em primeiro lugar aos meus orientadores, Professora
Susana Sargento e Pedro Neves, pela grande oportunidade que me deram
para desenvolver novas capacidades pessoais, académicas e profissionais,
pela orientação rigorosa, pelo apoio e pelo espaço que me forneceram para
decisões autónomas no que toca ao trabalho desenvolvido.

Quero também agradecer conjuntamente ao NAP, o grupo de investigação
no qual me encontro, às equipas da Altice Labs, e aos membros do SELF-
NET, com as quais eu tenho interagido, pelas discussões produtivas e fun-
damentais para a realização do meu trabalho.

Agradeço também a todos os meus amigos, pelos momentos de diverti-
mento, de conv́ıvio, e especialmente de amizade, que me proporcionaram
ao longo de todo o meu percurso académico e ao longo da minha vida.

Finalmente, e não de menos importância, um especial agradecimento a toda
a minha faḿılia pelo esforo emocional e financeiro, pela educação que me
deram e por todo o apoio que sempre me deram.

Palavras-chave 5G, SON, SDN, NFV, Virtualização, Monitorização, Agregação

Resumo Mais do que tendências e doḿınios de conhecimento exploratórios, ex-
iste a forte convicção na indústria de que os paradigmas da virtualização
das funções de rede (NFV Network Functions Virtualization) e das redes
programáveis (SDN Software Defined Networking) vieram para ficar no
mundo dos servios de telecomunicações. Para que possam navegar esta
onda de mudança, os operadores terão que evoluir significativamente a ar-
quitetura da sua rede, os seus mecanismos de gestão e, simultaneamente,
o seu negócio. Esta Dissertação de Mestrado pretende contribuir para a
evolução dos mecanismos de gestão operacional dos operadores, nomeada-
mente no doḿınio da supervisão/monitoria. Em concreto, o trabalho a
desenvolver no âmbito desta Dissertação de Mestrado terá como principal
objetivo a evolução da plataforma de performance management (Altaia) da
Altice Labs para o novo paradigma de rede baseado nos conceitos de vir-
tualização (NFV) e programabilidade (SDN). Importa ainda salientar que
as atividades desenvolvidas no âmbito deste trabalho estaro enquadradas
num projeto de I&D internacional financiado pela Comisso Europeia no
âmbito do programa H2020 5G-PPP designado SELFNET (A Framework
for Self-Organized Network Management in Virtualized and Software De-
fined Networks). A Altice Labs é um dos participantes no consórcio do
SELFNET juntamente com outros 10 parceiros internacionais. O projeto
tem um âmbito bastante abrangente e pretende enderear cenários de Self-
Organizing Networks (SON) em contexto NFV/SDN. Uma das ferramentas
essenciais para cenários SON é a deteção e predição de potenciais anomalias
da rede e dos serviços. É neste contexto que a versão evolúıda da plataforma
Altaia será utilizada no projeto SELFNET. Esta dissertação propõem o de-
senvolvimento das ferramentas necessárias para modelar, persistir, e realizar
processamento de dados provenientes da infraestrutura de rede em tempo
real. Mais especificamente, esta dissertação desenvolveu: primeiramente
o Raw and Aggregation Data Model, que unificou ambos dados brutos e
agregados num único modelo, em segundo o Raw Data Loader, o compo-
nente que recebe dados da rede monitorada e os transforma de forma a
serem persistidos, finalmente a Complex Event Processing Framework, uma
estrutura de processamento em tempo real para processar dados usando
uma abordagem dinâmica baseada em regras. Dos objectivos propostos to-
dos foram desenvolvidos com sucesso. O Raw and Aggregation Data Model,
juntamente com o Raw Data Loader, garantem que os sensors do SELFNET
cumprem a especificação do modelo, unificando todos os dados de monito-
ria num único modelo. Além disso, a Complex Event Processing Framework
foi posta em execução, carregada com regras de agregação relativas ao use
case Self-Protection do SELFNET, e é capaz de providenciar, em tempo
real, informação sobre botnets detetadas na rede. Do processo de desen-
volvimento desta framework, surgiu um novo componente denominado de
Configuration Manager, que gere dados que são partilhados usando serviços
distribúıdos de coordenação, usado para aplicar regras dinâmicas sobre a
Complex Event Processing Framework. Este componente não foi apenas
uma contribuição para o SELFNET mas também para a Altice Labs. Esta
tarefa levou a que se percebesse qual é o papel das ferramentas de gestão
de rede para as operadoras e para as novas gerações de rede.

Keywords 5G, SON, SDN, NFV, Virtualization, Monitoring, Aggregation

Abstract More than tendencies and exploratory knowledge domains, there is a
strong conviction in the industry that network function virtualization (NFV)
and software-defined network (SDN) paradigms came here to stay in the
telecommunication services world. So that operators can surf the waves
of change, they will have to significantly change their network architec-
ture, their management mechanisms, and, simultaneously , their business
model. This Master Thesis intends to contribute to the operators operation
management mechanisms evolution, namely in the supervision/monitoring
domains. More concretely, the work to be developed in this Master Thesis,
will have as its main objective the evolution of the performance manage-
ment platform (Altaia) from Altice Labs to the new networking paradigm
based on the NFV and SDN concepts. It is also important to outline that
the activities to be developed in the scope of this work, will be aligned in
an international R&D project, financed by the European Commission, cov-
ered by the H2020 5G-PPP program, that is SELFNET (A Framework for
Self-Organized Network Management in Virtualized and Software Defined
Networks). Altice Labs is one the participants in the SELFNET consor-
tium, together with 10 more international partners. The project was a
vast scope and intends to address Self-Organizing Network (SON) scenar-
ios, and prediction over potential network and services prediction. It is in
this context that the evolved version of Altaia will be introduced to the
SELFNET project. This thesis proposes to develop the necessary tools to
model, persist and perform real-time processing over network infrastructure
data. More specifically, this thesis developed: firstly the Raw and Aggrega-
tion Data Model, that unified both raw and aggregated data under a single
model, secondly the Raw Data Loader, a component that receives network
sensed data and transforms it so it can be persisted, lastly the Complex
Event Processing Framework, a real-time processing framework for process-
ing data using a dynamic rule-based approach. Out of what it was proposed
no objective was left behind, all components were successful developed. The
Raw and Aggregation Data Model, together with the Raw Data Loader, en-
forced SELFNET sensors to follow this model, thus unifying all sensed data
under a known model. Moreover, the Complex Event Processing Framework
was put into to place, with aggregation rules relative to the SELFNET Self-
Protection use case, and is able to provide, in real-time, information about
detected botnets around the underlying network. From the development of
this framework a new component emerged, a Configuration Manager that
manages data to be shared using distributed coordination services, used to
apply dynamic rules over the Complex Event Processing Framework. This
component is not only a contribution for SELFNET but as well as for Altice
Labs. In a more high-level point-of-view, this task brought a new under-
standing about the role of network management tools for network operators
and next-generation networks.

Contents

Contents i

List of Figures v

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 5G Networks . 1

1.2 ALTAIA . 2

1.3 SELFNET . 2

1.3.1 Use Cases . 2

1.4 Motivation and Objectives . 4

1.5 Thesis Outline . 5

2 Related Work 7

2.1 Research projects . 7

2.1.1 T-NOVA . 7

2.1.2 UNIFY . 7

2.1.3 CROWD . 7

2.1.4 5G-NORMA . 8

2.2 Products . 8

2.2.1 PrOptima . 8

2.2.2 ZTE Network Performance Management 8

2.2.3 ALTAIA . 8

2.3 Research papers . 9

2.3.1 Key Challenges for the Radio-Access Network 9

2.3.2 Video Quality in 5G Networks . 10

2.3.3 What Will 5G Be? . 10

2.3.4 Leveraging SDN to Provide an In-network QoE Measurement Network 11

2.3.5 Toward Software-Defined Cellular Networks 11

2.3.6 DevoFlow: Scaling Flow Management for High-Performance Networks 11

2.3.7 Software Defined Monitoring (SDM) for 5G Mobile Backhaul Networks 12

2.3.8 SDN Meets SDR in Self-Organizing Networks: Fitting the Pieces of
Network Management . 12

i

2.3.9 Enabling Software-Defined Networking for Mesh Networks in Smart
Environments . 12

2.3.10 Autonomics and SDN for Self-Organizing Networks 12

2.4 Discussion . 13

3 Technologies 15

3.1 Service Coordination . 15

3.1.1 Apache Zookeeper . 15

3.1.2 HashiCorp Consul . 18

3.2 Message Bus . 18

3.2.1 Apache Kafka . 18

3.2.2 Pivotal RabbitMQ . 21

3.3 Aggregation Tools . 22

3.3.1 Trifacta Wrangler . 22

3.3.2 MongoDB Aggregation Framework . 22

3.3.3 Apache Storm . 23

3.4 Storage . 25

3.4.1 InfluxData InfluxDB . 25

3.4.2 Openstack Gnocchi . 26

3.4.3 Apache Cassandra . 26

3.5 Monitoring Tools . 27

3.5.1 QoSient Argus . 27

3.5.2 Openstack Monasca . 27

3.5.3 Openstack Ceilometer . 29

3.5.4 Apache Chukwa . 31

3.6 Discussion . 31

4 Architecture 35

4.1 SELFNET Architecture . 35

4.2 Aggregation Detailed Architecture . 38

4.2.1 Monitoring Framework . 41

4.2.2 Aggregation Framework . 41

4.3 SELFNET Use cases impact on Aggregation Architecture 44

4.3.1 Self-Healing . 44

4.3.2 Self-Optimization . 44

4.3.3 Self-Protection . 45

4.4 Summary . 48

5 Interfaces, Data Sources and Data Models 49

5.1 Aggregation Framework APIs . 49

5.1.1 Northbound . 49

5.1.2 Southbound . 52

5.1.3 Configuration . 52

5.2 Data Sources . 52

5.2.1 Sensors . 52

5.3 Data Models . 53

5.3.1 Raw and Aggregation Data Model . 53

ii

5.3.2 Raw Database Data Model . 55

5.4 Summary . 57

6 Implementation 59

6.1 Monitoring Framework . 59

6.1.1 Raw Data Loader . 59

6.2 Aggregation Framework . 61

6.2.1 Complex Event Processing Framework 61

6.3 Summary . 70

7 Application and Results 71

7.1 Applications . 71

7.1.1 Raw Data Loader . 71

7.1.2 Raw and Aggregation Data Model . 71

7.1.3 Complex Event Processing Framework 71

7.1.4 ASF Configurations over Zookeeper extension 72

7.2 Scenario . 73

7.2.1 Test-bed . 73

7.2.2 Use case . 74

7.3 Results . 74

7.3.1 Raw Data Loader . 76

7.3.2 Complex Event Processing Framework 83

7.4 Summary . 88

8 Conclusion and Future Work 89

Bibliography 93

A Data Models 99

A.1 Raw and Aggregation Data Model (RADM) examples for Self-Protection UC:
Loop 1 . 99

A.1.1 Input - Aggregation (batch) counters 99

A.1.2 Output - Aggregation (batch) - monasca threshold alarm 100

A.2 Raw and Aggregation Data Model (RADM) examples for Self-Protection UC:
Loop 2 . 102

A.2.1 Input - aggregation (realtime) - two snort zombie detected event . . . 102

A.2.2 Output - aggregation (realtime) - botnet detected alarm 103

B APIs 105

B.1 Raw Counters DB API . 105

B.2 Raw Events DB API . 105

C Configuration Files 107

C.1 Raw Data Loader Configuration . 107

C.1.1 Yaml file example . 107

C.1.2 Yaml file deployed . 108

iii

D Rules examples 110
D.1 Self-Protection use case . 110

D.1.1 Botnet listing using SNORT . 110

iv

List of Figures

3.1 Zookeeper high-level architecture [23] . 16

3.2 Zookeeper data tree [25] . 17

3.3 Kafka high-level architecture [29] . 19

3.4 Kafka topic partitions [29] . 20

3.5 RabbitMQ Performance test [54] . 21

3.6 MongoDB Aggregation Framework Pipeline 23

3.7 Storm topology example . 24

3.8 Comparison of InfluxDB with Cassandra on time series data [36] 25

3.9 Scalability of Cassandra [34] . 27

3.10 Monasca Architecture . 28

3.11 Ceilometer Architecture [38] . 30

3.12 Ceilometer Workflow [38] . 31

3.13 Message Bus performance comparison: RabbitMQ versus Kafka [54] 32

4.1 SELFNET Logical Architecture Level 0 . 36

4.2 SELFNET Logical Architecture Level 1 . 37

4.3 SELFNET Logical Architecture Level 2 . 39

4.4 SELFNET Logical Architecture Level 2 Detailed 40

4.5 Complex Event Processing Engine Framework (CEPF) 43

4.6 Self-Optimization Use-Case . 45

4.7 1st Loop of the Self-Protection Use-Case . 46

4.8 2nd Loop of the Self-Protection Use-Case . 47

6.1 Raw Data Loader Architecture . 60

6.2 Generic Topology . 63

6.3 Aggregation process flowchart . 65

6.4 Generic Topology and CEP Manager Interaction 67

6.5 A bolt and CEP Manager Interaction . 68

6.6 CEP Manager internal components . 69

7.1 High Level Infrastructure Diagram . 73

7.2 Batch aggregation - Average packet count metric for each unique combination
of source IP, destination IP and destination port present in the network, with
a sampling rate of 120 seconds on a 30 minute time window 75

7.3 Batch aggregation - Communication frequency metric for each unique combi-
nation of source IP, destination IP and destination port present in the network,
with a sampling rate of 120 seconds on a 30 minute time window 75

v

7.4 Average packet count and communication frequency metrics pairs for each
unique combination of source IP, destination IP and destination port that have
been identified as suspicious zombies . 76

7.5 RDL Performance 1 . 79
7.6 RDL Performance 2 . 82
7.7 Generic Topology StormUI Load 1 . 85

vi

List of Tables

5.1 Monasca API - Read-only operations . 50
5.2 RADM Report Data Types . 53
5.3 Raw DB Counters structure . 55
5.4 Raw DB Events structure . 56

7.1 RDL Performance Load 1, sample time 280 seconds 80
7.2 RDL Performance Load 2, sample time 180 seconds 83
7.3 Topology summary . 84
7.4 Topology Spouts 10 minutes stats . 86
7.5 Topology Bolts 10 minutes stats . 87

vii

Abbreviations

5G Fifth generation networks

ACM Aggregation configuration manager

AMN Autonomic network management

AMQP Advanced message queueing protocol

API Application programming interface

BAF Batch aggregation framework

BGP Border gateway protocol

CDP Cisco discovery protocol

CEP Complex event processing

CEPF Complex event processing framework

CI Congestion index

CLI Command line interface

CPU Central processing unit

CQL Cassandra query language

CRUD Create, read, update and delete

DB Data base

DC Data center

DNS Domain name system

DPI Deep packet inspection

EPC Evolved packet core

FMA Flow monitoring agent

HAS Hypertext transfer protocol adaptive streaming

HD High definition

HDFS Hadoop distributed file system

HTTP Hypertext transfer protocol

IMQF In-network quality of experience measurement framework

IMT International mobile telecommunication system

IP Internet protocol

IPTV Internet protocol television

JSON JavaScript object notation

JVM Java virtual machine

LLDP Link layer discovery protocol

LTE Long term evolution

MAC Media access control

MIT Massachusetts Institute of Technology

viii

NFV Network functions virtualization

OSS Operation support system

PNF Physical network function

PoP Point-of-presence

PPP Public-private partnership

QHD Quality high definition

QoE Quality of experience

QoS Quality of service

RAM Random access memory

RAN Radio access network

RDL Raw data loader

REST Representational state transfer

RPC Remote call procedure

RTBI Real-time business intelligence

SDM Software-defined monitoring

SDN Software-defined network

SDR Software-defined radio

SH-UC Self-healing use case

SLA Service level agreement

SNMP Simple network management protocol

SO-UC Self-optimization use case

SON Self-organizing network

SP-UC Self-protection use case

SQL Structured query language

SQM Service quality management

UC Use case

UHD Ultra high definition

UI User interface

UML Unified modeling language

VCPU Virtual central processing unit

VM Virtual machine

VNF Virtual network function

YAML YAML ain’t markup language

ix

Chapter 1

Introduction

With the everlasting search for perfection that comes from the human thirst for knowledge,
it is natural that so much effort is put into discovering new ways of doing what we do today,
better. Computer networking is no exception of this, it follows the same path of evolution,
which brings new technologies, paradigms and ways of solving problems.

As such phenomena continues to happen, we can already perceive that new next-generation
networks are being idealized and researched. One proof of this is the fifth generation of mobile
networks (5G), which brings novelty to the thriving world that is networking.

This document aims to research performance management in virtualized and programmable
network environments (NFV and SDN, respectively), and starts by introducing its work con-
text with Sections 1.1, 1.2 and 1.3. Having provided the environment of this thesis, Section
1.4 presents the motivation and objectives that drive this research, and lastly, Section 1.5
exposes this document outline, providing an overview of what is to come.

1.1 5G Networks

5G networks or fifth generation mobile networks, commonly abbreviated as 5G, are a
next step beyond 4G/IMT-Advanced [1] network standards. 5G aims to surpass 4G capabili-
ties by increasing data transfer rates, improving mobile broadband density, coverage, latency
and signalling efficiency, supporting device-to-device communication, as well as reducing bat-
tery consumption on mobile devices and therefore enabling better Internet of Things (IoT)
developments [2].

Given that, as of the date, there are not any 5G standards [1], it is a difficult task to
define what exactly is 5G. However, its main goals can help us perceive that 5G will further
extend the networks that we know today, giving space to new use cases [3] and user demands.
An important aspect to realize from this evolution that is the 5G pursuit, is the flexibility
it will bring to mobile networking by introducing network function virtualization (NFV) and
software defined network (SDN) concepts, as well as the ability to build complex, heteroge-
neous and self-organized networks controlled by intelligent management systems. Ultimately,
these advancements will most likely introduce new networking paradigms to the ecosystem.

1

1.2 ALTAIA

ALTAIA is the Altice Labs product for performance and QoS management for telecommu-
nications networks and systems. It gives a telecommunications operator information about its
underlying infrastructure to be used for problems detection and resolution as well as historical
data analysis.

It is a performance management platform that supports a vast functionality set that allows
the operator to perform measurements over 2G, 3G and 4G networks (e.g. LTE) and their
network services (e.g. IPTV, High-Speed Internet). ALTAIA collects, processes and analyses
data regarding non-virtualized (non-NFV) and non-programmable (non-SDN) resources and
services. Moreover, it is a system that calculates an average of 100 million indicators per
hour, being able to reach peak values of 1000 million indicators per hour. It is also deployed
in a fully redundant architecture with disaster recovery on two different sites.

1.3 SELFNET

SELFNET is a European project [4] supported by the European Commission under the
Horizon 2020 Program, that aims to design and implement an autonomic network manage-
ment framework to achieve self-organizing capabilities in managing network infrastructures
by automatically detecting and mitigating a range of common network problems that are
currently being addressed in a manual fashion by network providers.

The self-organizing network (SON) capabilities aim to significantly reduce operational
costs (OPEX) and improve user experience. SELFNET explores a smart integration of several
state-of-the-art techonologies in Software Defined Networks (SDN), Network Function Virtu-
alization (NFV), Self-Organizing Networks (SON), Cloud computing, Artificial intelligence,
Quality of Experience (QoE) and next generation networking to provide a novel intelligent
network management framework capable of assisting network operators in key management
tasks: automated network monitoring with automatic NFV applications deployment in order
to facilitate system-wide awareness of Health of Network metrics to have a more direct and
precise knowledge about the real status of the network; autonomic network maintenance by
defining high-level tactical measures and enabling autonomic corrective and preventive actions
against existing or potential network problems.

In order to build and validate such framework, SELFNET defines three different use cases
designed to address the following major network management problems: Self-Healing, Self-
Optimization and Self-Protection. These use cases are described in Section 1.3.1 and their
architectural impact is further detailed in Section 4.3.

1.3.1 Use Cases

1.3.1.1 Self-Healing

The Self-Healing use case goal is to detect and predict common network failures in a
5G environment, exposing infrastructure and/or operation vulnerabilities, hardware and/or
software failures, or power supply outages, in order to recover and heal the network reactively
or preventively.

With this in mind, to reach this goal a Self-Healing analyzer will be used to infer Health of
Network (HoN) metrics combined with Self-Healing diagnosis intelligence to predict potential

2

problems. Furthermore, it enables a decision making intelligence to infer proactive healing
actions to apply on the network.

That said, these processes will bring innovations in two main areas: intelligent man-
agement capabilities to improve the QoE/Quality of Service (QoS) of 5G systems, and in
infrastructure metrics and service level agreement (SLA) indicators to infer HoN metrics and
implement context-aware decisions in 5G control plane.

1.3.1.2 Self-Optimization

This use case sets its goal in providing autonomic behaviours to automatically respond to
actual and predicted QoE degradation, together with end-to-end proactive energy manage-
ment for an optimized resource deployment across 5G networks.

That being the case, SELFNET monitoring and analysis tools will be used in order to
observe or predict large video traffic loads, so that packet marking and intelligent encoding
schemes, and self-adjusting traffic management mechanisms can be put in place to reduce
video loss and delay.

Bringing these mechanisms will introduce innovations: new sensors, actuators and decision
making logic to realize QoE-based video streaming and novel energy monitoring sensors to
develop a global view on energy usage across the network.

1.3.1.3 Self-Protection

The Self-Protection use case aims to detect and mitigate cyber-attacks and restore security
to 5G network traffic.

By deploying virtual network functions (VNF) such as: virtual traffic monitor/deep packet
inspection (DPI), virtual threat management system, virtual honeynets, virtual intrusion
protection system. These VNFs can be chained in different parts of the network (e.g. mobile
access point, point-of-presence (PoP), in the network core).

Following this virtualized way of introducing dynamic functionalities to the network, the
use case presents innovation in: new ways of deploying multi-tenant security services dis-
tributed across edge and core networks, and new business chances for network and service
providers with the security as a service concept.

3

1.4 Motivation and Objectives

With the advancements on the next generation mobile networks (i.e. 5G) that bring into
play new network environments by introducing network functions virtualization and software
defined networks functionalities to the existing networks, it is natural that the existing soft-
ware that allows operators to manage their networks and the services they provide must also
evolve to support this new environment.

As such, one motivation behind this thesis is to research and create a proof of concept that
will allow Altice Labs to understand how ALTAIA must be evolved in order to encompass a 5G
network scenario. Furthermore, another import motivation factor is the SELFNET project
which will provide a research platform that will allow to validate the proof of concept to be
developed. This can only happen due to the overlapping of the subjects addressed by ALTAIA
and SELFNET, since SELFNET aims to create an autonomic management framework for 5G
networks, it also aims to provide a performance management system for 5G networks, this
also being the next evolutionary step for ALTAIA.

The performance management system advancement task in a 5G scenario comprises
data gathering, aggregation, correlation and analysis originated from virtualized and pro-
grammable network elements (NFV and SDN, respectively). This data can be processed in
two different ways: batch (non-real-time processing) and streaming (real-time processing).
In both scenarios, indicators will be produced in order to expose the services and network
“health” (i.e. Health of Network Symptoms). These symptoms will be consumed by machine-
learning algorithms for three scenarios: self-optimization, self-healing and self-protection.

The main objective of this work is to build a real-time performance management system
that allows dynamic configurations in order to be able to ingest new gathered data from
virtualized networks, due to the dynamic nature of virtualized networks, and to produce
new indicators originated from autonomic nature, i.e. machine learning algorithms that will
request new metrics to be calculated in order to learn better ways to model network symptoms
and how to address them. Moreover, this main objective can be structured as follows:

1. Data gathering from virtualized and programmable services and network elements (NFV
and SDN, respectively);

2. Streaming processing of the gathered data (real-time or near-real-time processing times)
based on dynamic rules;

3. Provide indicators about the virtualized and non-virtualized network and services status
per use case:

� Self-Protection: bot-nets detection by aggregating deep packet inspection func-
tions reports on individual bots detected;

� Self-Optimization: provide QoE and QoS indicators by calculating congestion
indexes and available bandwidth based on virtualized and non-virtualized network
equipment counters, and network flows data.

4

1.5 Thesis Outline

Despite the existence of a table of contents, which objective is to provide an organized
view over the content to be exposed, it is important to also explain how sections are connected
and why this document structure is organized in such way, the reasoning is as follows:

� Chapter 2 Related Work - holds related work references and high level descriptions
of other similar projects or frameworks and how they contribute to the 5G Network
ecosystem;

� Chapter 3 Technologies - presents the state-of-the-art research regarding software
technologies related to this thesis scope. It also includes the reasoning behind the choice
of said technologies;

� Chapter 4 Architecture - covers SELFNET’s high level architecture, both logical
and functional, focusing on this thesis core work: Raw Data Loader and the CEP
Framework;

� Chapter 5 Interfaces, Data Sources and Data Models - documents the existing
interfaces that allow interaction between the presented components, as well as the rele-
vant data sources (sensors and monitoring tools), that will be referred throughout this
document, and the data models associated;

� Chapter 6 Implementation - exposes the implementation of said components in a
detailed fashion;

� Chapter 7 Application and Results - summarizes the results and practical appli-
cations obtained from the development process;

� Chapter 8 Conclusion and Future Work - establishes a critic vision over the
achieved results and sets goals for future work.

5

6

Chapter 2

Related Work

Several companies and research centers also have their eyes set on the future of 5G,
some with the objective of developing new products, others with the aim to contribute to
5G standards. That being said, this Section exposes some of the related work regarding
5G and this thesis theme in order to shed some light upon the surrounding and evolving
network ecosystem. Moreover, this chapter divides the related work research in three sections:
research projects, products, and research papers. At the end, it provides a discussion area to
understand the relevance of this research.

2.1 Research projects

2.1.1 T-NOVA

T-NOVA [5] was an Integrated Project co-funded by the European Commission, with the
aim of introducing a framework, to network operators, that is able to offer virtual network
appliances (firewalls, gateways, proxies, etc) to their clients on-demand and as-a-Service. The
aim of this project was to reduce the hardware necessity from customers, and thus introduc-
ing a cloud orchestration platform for the automated provision, configuration, monitoring and
optimization of Network Functions-as-a-Service (NFaaS) over virtualized network infrastruc-
tures.

2.1.2 UNIFY

UNIFY [6] was a project co-funded by the European Commission, that attempted to
address the lack of flexibility caused by the rigid network control. In order to tackle this
problem, their idea was to pursue full network and service virtualization and attain flexible
services and operational efficiency. They aimed to research and develop an orchestrator
system that was able to put in place, verify and observe end-to-end services in both home
and enterprise networks.

2.1.3 CROWD

CROWD [7] was a project co-funded by the European Commission, which focused on
connectivity management for energy optimized wireless dense networks. The increasing wire-
less users also increases the demand for more infrastructure elements that allow this growth

7

to happen. However, it implies that more hardware is put in place to handle this density
change, potentially leading to a scenario of wireless chaos and huge energy wastes. In order
to provide a solution for this matter, CROWD objective was to arrive to a new connectivity
management way by using novel heuristic algorithms that exploited regional information to
offer more energy efficient operations, enhancements to the MAC layer for 802.11 and LTE,
and new dynamic back-haul reconfiguration strategies to achieve energy consumption levels
proportional to traffic demands.

2.1.4 5G-NORMA

5G-NORMA [8] is one of the 5G-PPP projects under the Horizon 2020 initiative that
aims to develop a novel mobile network architecture to address adaptability in network re-
sources usage when dealing with traffic demand fluctuations originated from heterogeneous
and dynamic network services. Exploring software-defined networking (SDN) and network
functions virtualization (NFV) will allow the 5G-NORMA project to tackle multi-tenancy
and multi-service scenarios on mobile networks, in order to develop enhanced 5G base sta-
tions, software-based centralized controllers and software-based radio access network (RAN)
elements.

2.2 Products

2.2.1 PrOptima

PrOptima�[9] is a MYCOM OSI telecom company product, designed to address end-to-
end network performance management for mobile, IP, virtualized and fixed networks. It offers:
out-of-the-box support for multiple domains, technologies, network equipment vendors, and
service suppliers; scaling ability to process large volumes of performance data in near real-
time using next generation object storage; advanced reporting and analysis capabilities with
flexible configurations; ready to support performance of hybrid NFV based networks as well
as internet of things (IoT) data traffic; amongst others.

2.2.2 ZTE Network Performance Management

Following the development path of network providers, ZTE offers a network performance
management service [10] for fixed and wireless networks, ensuring stable network operations,
improving performance indicators, reducing operations and maintenance costs, and providing
good customer experience through smart network management that encompasses network
monitoring to be provided with performance indicators to be used for troubleshooting faults,
and improving network performance.

2.2.3 ALTAIA

ALTAIA is a service performance and quality management system that is part of Altice
Labs NOSSIS suite of OSS systems [11]. Its central role in management architecture involves,
in a first phase, the real-time capture and analysis of network performance indicators. This
online, integrated and consolidated overview of the status of the service, designated in the
eTom (Business Process Framework) and SQM (Service Quality Management) architecture,
forms one of the main pillars of the operations management “puzzle”.

8

Using both these indicators and inventory data, delivered through its integration with
inventory systems, ALTAIA’s next step is to monitor and oversee the service levels agreed with
the clients (SLA - Service Level Agreement). It detects and generates alarms for degradations
which could potentially degenerate into breaches of contractual thresholds.

To support the distributed collection and calculation of KPIs, ALTAIA uses an Altice Labs
pluggable asynchronous framework that provides clustering capabilities and asynchronous
communication between modules. ALTAIA is able to manage, schedule and distribute data
collection tasks across a cluster of agents responsible for their execution.

2.3 Research papers

2.3.1 Key Challenges for the Radio-Access Network

The work in [12] discusses the challenges envisioned for the radio-access network (RAN)
that will take place with the advancement of radio technologies in 5G. It is important to
notice that it was published in September 2013 and it still offers a quite complete high level
overview of the upcoming 5G wireless world. It mentions that the evolution of radio-access
technologies can be seen as seven different evolution directions:

1. improving service provision and cost efficiency, as seen in the past with the transitions
from second generation up to the forth generation of mobile communications, primarily
targeting resource usage improvements (e.g. spectrum usage);

2. decreasing the size of radio cells being deployed with the aim of improving capacity,
reducing resources cost and better spectrum usage;

3. introducing composite wireless infrastructures that interconnect cellular systems with
wireless local area networks (WLANs), to improve application provisioning by offering
application through the most appropriate wireless networks;

4. establishing heterogeneous network deployments based on one cellular standard (i.e.
under their assumption, the 4G/LTE-advanced standard), which make use of different
types of infrastructure elements that can be configured to improve cellular coverage,
efficiency while providing a better service;

5. applying flexible spectrum management that makes use of different radio cells sizes,
which offer different wireless ranges, to further improve the radio spectrum usage;

6. allowing machine-to-machine (M2M) communications to create dynamic network con-
structs, that features end user devices intercommunication, and change the management
mechanism in order to support this scenario;

7. exploiting cloud-RAN and mobile cloud concepts that bring a shared use of storage
and computing resources, avoiding multiple deployment of identical components, thus
reducing costs and pushing a new ways of managing resources.

To address these challenges, the introduction of intelligence based systems is paramount in
order to be able to fully grasp and manage the complexity of the heterogeneous network and
cloud-RANs brought by 5G. This intelligence is needed to manage the network functionalities
in their optimal configurations, something that requires a system capable of sensing its own
network, recognize non optimal situations, decide upon an action needed to be taken and,
finally actuate.

The work envisions that the main enabling and emerging technologies are software defined
networks (SDNs) and network function virtualization (NFV), two technologies that require
network operators to introduce virtual infrastructures comprised of high-volume hardware

9

servers connected using high-volume network switches organized by automated orchestration
processes, capable of supporting virtualized network functions controlled by SDN controllers.

Although radio-access technologies continue to evolve and enable more heterogeneous
and complex networks, it seems that an evolution of the management principles is needed,
something that confers an important role to intelligent management systems.

2.3.2 Video Quality in 5G Networks

Context-aware QoE management in the SDN control plane is the main theme that drives
the work in [13]. It aims to address the challenges in delivering high-demanding multimedia
applications in 5G networks by proposing a new QoE and context-aware system.

To tackle the expected increase of devices that demand Ultra High Definition (UHD) video
content distribution over 5G mobile networks, the proposed system intends to make use of
the SDN environment, that is expected to rise with 5G, together with traffic flows to improve
QoS and QoE by using SDN-controllers that use scalable video codecs to adjust video quality
dynamically.

One of the main key aspects of the system is the usage of the last generation of video
codecs, the H.265 codec that possesses a scalable extension which allows an H.265 coded video
stream, that itself is comprised of video layers of different qualities (e.g. high definition (HD),
quality high definition (QHD), UHD, etc), to drop layers in order to adapt to the available
network bandwidth.

The other key aspect, and a very important one, is the way this drop process is triggered.
By making use of flow and network path statistics and topology discovery data collected from
SDN switches, the network can be monitored in order to estimate the QoE over video streams,
thus being able to identify cases where QoE is degraded and an action may be needed to solve
the issue by: changing the video stream path on the network or even dropping video layers
to continue to offer the video stream, although in a lower quality.

This work reports that many of the individual components required to implement the
SDN based system have already been developed and tested, and that they are working on
implementing an SDN video quality orchestrator that handles video quality management
based on the gathered network metrics.

2.3.3 What Will 5G Be?

Asking the high level question of what 5G will be, the work in [14] claims that it will not be
an incremental advance over 4G. While previous generations of cellular technology represented
major improvements over preceding ones, they never established backwards compatibility. For
this matter, 5G is expected to bring a paradigm shift that further evolves carrier networks
to have higher frequencies and bandwidths, extreme network density, on both base stations
and user devices, and an enormous number of antennas. However, and in contrast with
the lack of backward compatibility that previous generations demonstrated, 5G will have to
also integrate with existing technologies (e.g. air interfaces integration with LTE and WiFi),
providing a universal radio access and seamless user experience. To encompass this, 5G will
need to be able to establish intelligent and flexible core networks, so that efficient resources
management can be achieved in this scenario.

10

2.3.4 Leveraging SDN to Provide an In-network QoE Measurement Net-
work

With the proliferation of media services and online video streaming, HTTP Adaptive
Streaming (HAS) is becoming the most popular content delivery mechanism [15]. As network
and content providers offer this kind of services, they also become interested in ensuring high
quality of experience (QoE) levels for their end-users. However, the existing network-level
metrics are not enough to provide insight over the end-users’ perception of the delivered
content. To address this, the authors of this work introduce an in-network QoE measurement
framework (IQMF) that provides QoE monitoring for HAS streams as a service. In order
to achieve a non-intrusive quality monitoring system and to close the QoE-aware service
management control loop, the software-defined networking (SDN) concept is included so that
the control plane functionality can be exploited. From this research crucial service quality
metrics could be measured, thus providing quality data to be used, alongside with SDNs,
to properly control QoE and to ensure that high quality video content is delivered to the
end-user.

2.3.5 Toward Software-Defined Cellular Networks

The work in [16] focuses on cellular networks negative aspects, their inflexible and expen-
sive equipment, complex control plane protocols, and vendor specific configuration interfaces.
Their aim is to discuss how software-defined networking (SDN) can simplify the design and
management of cellular networks. It is important to notice that scalability challenges are
likely to be presented when dealing with: supporting many subscribers, subscribers frequent
mobility, the fine-grained measurement and control of network elements, and the real-time
adaptation of network loads. To address these key issues, the authors of the work propose
extensions to controller platforms, switches and base stations that controller applications are
able to enforce subscriber based policies, to perform real-time and high precision traffic con-
trol at the switches level, to perform deep packet inspection, and to remotely manage base
stations resource sharing. From this discussion, it emerged an SDN architecture for cellular
networks, thus taking a step into software defined cellular networks.

2.3.6 DevoFlow: Scaling Flow Management for High-Performance Net-
works

Software-defined networking simplifies network and traffic management in enterprise and
data centers. However, the work in [17] claims that the OpenFlow protocol, while a great
concept, imposes excessive overheads. Despite it enabling flow level control over network
switches and making network flows global visible in the network, these features are not free
to take as-is. It implies implementing switches that support OpenFlow, as well as involving
OpenFlow controllers for flow setups and statistical data collection, thus introducing com-
munication overheads. To further investigate these claims, the authors of this work analysed
said overheads and concluded that OpenFlow current design did not meet high-performance
networks requirements. In order to address this, they proposed an extension to the OpenFlow
protocol called DevoFlow, which slightly separates the coupling between control and global
flow visibility, thus being able to discard some of the overheads identified.

11

2.3.7 Software Defined Monitoring (SDM) for 5G Mobile Backhaul Net-
works

In 5G and future networks, software-defined networking will play a significant role as
their enabler, since it introduces the ability to design dynamic, manageable, cost-effective
and adaptable network architectures. The work in [18] exposes that the networking monitor-
ing functionalities will be transferred into a software entity that is able to work together with
configurable hardware accelerators, defining the software-defined monitoring (SDM) scheme,
in order to attain the necessary dynamism to monitor next-generation networks. The work
proposes a novel SDM architecture for the future mobile backhaul networks. Since SDM en-
compasses SDN, the proposed architecture provides dynamic network management capabili-
ties using programmable interfaces, centralized network control and virtualized abstractions.
Given this, the SDM framework is open to address the various challenges introduced by the
separation of the control and data planes. As an outcome of the research, major limitations
were found in the current monitoring techniques, the lack of interoperability on vendor specific
network hardware, the high dependence on physical resources, amongst others. Despite these
limitations, the SDM framework showed that it is possible to simplify network management
operations as well as to support dynamic networks monitoring.

2.3.8 SDN Meets SDR in Self-Organizing Networks: Fitting the Pieces of
Network Management

The work in [19] explores the LTE self-organizing networks (SONs) which already auto-
mate several management mechanism regarding network configuration, planning and opti-
mization. These features require network programmability at the control and data planes,
making these SONs a target for implementing software-defined networking (SDN) and software-
defined radio (SDR). Following this line of thought, merging SON, SDN, and SDR, the paper
proposes a SON-based management framework, capable of dynamically configuring both data
and control planes.

2.3.9 Enabling Software-Defined Networking for Mesh Networks in Smart
Environments

The work in [20] has as its main focus, wireless mesh networks (WMNs) and states that
they serve as a key for enabling technology for smart initiatives, such as smart power grids,
having in mind that it might be possible to provide a self-organized wireless communication
highway, capable of monitoring health and performance indicators, and enabling efficient trou-
ble shooting notifications. While ideally providing these features to WMNs, it is important
to notice that current routing protocols are still limited, making it hard to implement SON
capabilities. However, the work considers that by introducing software-defined networking
(SDN) and by using a three-stage routing strategies in WMNs, that it is possible to achieve
SDN enabled wireless mesh networks when using centralized controllers.

2.3.10 Autonomics and SDN for Self-Organizing Networks

To understand the relationship between autonomic network management (ANM) and
software-defined networking, the work in [21] studies their interaction under Long Term Evo-
lution (LTE) Self-Organizing Networks (SONs). ANM and SDN have few common goals

12

and have shown to be complementary to each other in terms of network abstractions and
expectations. AMN focuses on delivering self-functionalities by providing an adaptation layer
between autonomic and the managed infrastructure, while SDN architecture allows program-
matic management control over network resources. However, despite the fact that flow based
control mechanisms are becoming more popular and being used in core networks and data
centers, the same notion of network flow has yet to be defined for radio access and SON. To
address the lack of flow definition over SON, this work proposes an Autonomic SDN controller
that integrates with the Unified Management Framework introduced by the UNIVERSELF
project, to self-optimize an LTE-Advanced heterogeneous network, thus exercising the notion
of network flow over SON.

2.4 Discussion

With three main research categories, projects, products, and papers, which provide insight
mainly over software-defined networking (SDN), network function virtualization (NFV), self-
organizing network (SON), and autonomic network management areas, it is now possible to
arrive to a conclusion on what path should be taken to achieve performance management in
NFV and SDN environments.

Taking into account that the arriving 5G environment will bring new features: faster
internet speeds, higher bandwidth, lower communication latencies, efficient spectrum man-
agement, support for denser wireless networks, and others; it is possible to understand that
changes must be introduced to the current technologies that are in place today, something
that can be perceived by looking into the necessity already identified by network operator
products (as seen in Sections 2.2.1, 2.2.1 and 2.2.2). Furthermore, these necessities are cur-
rently being investigated by research projects, such as, T-NOVA which addresses NFVs as
a service for operators, 5G-NORMA which is expanding the mobile network by using SDN
and NFV to support multi-tenancy and multi-service. It seems that, increasing the feature
pool of next-generation mobile networks also increases the complexity of their deployment
and management, and for this matter a possible solution, that is still being researched, is
the usage of SDN controllers to separate the data and control planes, allowing a simpler
way of managing traffic, something that was covered by most presented papers in Section
2.3. However, introducing SDN to mobile networks is only one part of the scenario foreseen
by 5G. The paradigm shift that is expected to happen is to combine SDN, NFV, SON and
integrate them with autonomic systems: the work in 2.3.10 provides some insight on this
aspect. In order to further optimize resources usage in complex network environment where
the task of monitoring them is increasingly difficult, it seems natural that us, humans, start
being replaced by autonomic functionalities when it comes to network management, further
enhancing the self-organizing network meaning.

All things considered, the research environment regarding next-generation networks seems
to be embracing the new paradigm of having SDN, NFV, SON and autonomic systems in place
to further improve the network environment of today. Given this, it can be safely stated that
this thesis theme is aligned with the future of networking.

13

14

Chapter 3

Technologies

This chapter provides an overview of the available technologies that were studied to de-
velop the proposed architecture. Section 3.1 describes the available service coordination
technologies, while Section 3.2 explores the considered message bus systems, then Section
3.3 covers aggregation tools that might be useful for the implementation process, Section
3.4 refers to research on storage technologies specially aimed for time-series data, and lastly
Section 3.5 presents the studied monitoring tools.

3.1 Service Coordination

3.1.1 Apache Zookeeper

Apache Zookeeper [22] is a Java cross-platform open source project under the Apache
foundation. In its essence, ZooKeeper is a hierarchical distributed key-value database that
can be accessed similarly to a traditional file system, allowing the coordination of distributed
processes through a shared hierarchical name space of data registers (znodes). Targeting
distributed systems and contrary to normal file systems, ZooKeeper provides ordered access
to the znodes for its clients with highly available and high throughput while maintaining a
low latency.

As mentioned, ZooKeeper works in a cluster where multiple nodes serve multiple clients,
as depicted in Figure 3.1. To provide high reliability the clients can interact with any server,
assigned by the leader. In case of node failure, a new one will be assigned by the leader, and
in case of leader failure a new one is elected from the remaining nodes.

15

Figure 3.1: Zookeeper high-level architecture [23]

It is a distributed coordination service aimed for distributed applications. Distributed
applications are applications that, instead of running on a single machine, are executed in
a distributed environment over a network. Distributed applications allow a clear separation
between functionalities provided enabling both:

� Reliability: whenever a node that is part of the network goes down, another one can
resume the ongoing task;

� Scalability: meaning that more resources can be added when the applications load
justifies so.

Despite its advantages, ensuring coordination is one of the main problems that arise with
distributed applications, namely the need to guarantee that every action of each component
is coordinated. To overcome the coordination problem and simplify the deployment and
management of a distributed application, Zookeeper offers a service that implements higher
level services for synchronization, configuration maintenance, and groups and naming [23].
Zookeeper is designed to be simple, replicated, ordered and fast. It uses a shared namespace
following a similar approach to a file system, as seen in Figure 3.2, but instead of storage files
and directories, Zookeeper uses memory to store its data.

16

Figure 3.2: Zookeeper data tree [25]

To use Zookeeper, an application needs to use a Zookeeper client. This client is then re-
sponsible to communicate with Zookeeper servers. Zookeeper can work in single mode, where
only one server is instantiated, or in a quorum mode, where multiple servers are instantiated
and can respond to client requests [24].

Zookeeper has a key role in the SELFNET project because it allows developers to focus
on the innovation and relevant applications functionalities instead of cluster coordination for
distributed applications. Most of the aggregation modules are distributed modules working
in parallel and they use Zookeeper for coordination and configuration. It will be used for the
leader election on cluster oriented services and as in-memory storage for configuration between
nodes in the same cluster. The configurations from Aggregation Configuration Manager
(ACM) will be distributed to the Complex Event Processing (CEP) nodes using Zookeeper.
On top of that it is also used to store Kafka offsets and progress information as well as the
Kafka cluster leader election process.

17

3.1.2 HashiCorp Consul

Consul [26] is a service discovering and configuring tool that allows the creation of dynamic
clusters by deploying a distributed server/client communication architecture. Its main key
features are:

� Service Discovery: Consult clients are able to provide a service (e.g. an API or a
MySQL database), enabling other clients to discover these services through DNS or
HTTP;

� Health Checking: clients of Consult can provide health checks functionalities, that
can be associated to a service, which can then be used to monitor cluster health and
route traffic away from less healthy clients;

� Key Value Data-store: a data-store exposed by a simple HTTP API that allows
applications to use a multi-purpose key value store (e.g. leader election, service coordi-
nation, dynamic configuration, amongst others);

� Multi Datacenter support: out-of-the-box multiple datacenter support, abstracting
multi-region systems coordination.

Its deployment consists of Consul agents located at each node which then communicates with
one or more Consul servers. All data is stored and replicated at the Consul servers, which
themselves elect a leader. Service discovery is achieved through the existing connectivity be-
tween the servers and these agents, which are able to forward queries to servers automatically.

3.2 Message Bus

3.2.1 Apache Kafka

Apache Kafka [27] aims to provide a scalable, high-throughput, low-latency unified plat-
form for handling real-time data feeds. It is a distributed streaming platform that targets
real-time applications requiring reliable and effective pipelines to get data between systems,
usually getting compared to message queues or enterprise messaging systems. Apache Kafka
is a Java/Scala cross-platform open-source project under the Apache foundation.

As a distributed application, Kafka runs as a cluster on one or more servers and stores
the data in topics in the shape of records composed by a key, a value, and a timestamp. It
allows applications to publish and/or subscribe to streams of records, as seen in Figure 3.3.

18

Figure 3.3: Kafka high-level architecture [29]

It allows clients to publish into streams, subscribe to streams, store streams of records in
a fault-tolerant way, or process streams of records as they occur via its APIs.

The Producer API allows an application to publish a stream of records to one or more
Kafka topics.

The Consumer API allows an application to subscribe to one or more topics and process
the stream of records produced.

The Streams API allows an application to act as a stream processor, consuming an input
stream from one or more topics and producing an output stream to one or more output topics,
effectively transforming the input streams to output streams.

The Connector API allows building and running reusable producers or consumers that
connect Kafka topics to existing applications or data systems. For example, a connector to a
relational database might capture every change to a table.

Topics in Kafka are always multi-subscriber, so a topic can have zero, one, or many
consumers that subscribed to the data written to it, but when analyzing how Kafka client
subscription to topics works, there are a few important concepts to regard:

1. Client Groups: A single application can have multiple client threads connecting to
the same topic in order to increase throughput and allow parallel processing. Thus,
these clients share the same client group. All the clients in a group will connect to the
same topic(s) but to different sections of the topic, thus avoiding replication of messages
between clients in the same group. One message should only be consumed by only one
client in a group. Clients in different groups may consume the same messages as each
group can consume all the messages.

19

2. Partitioning: A topic is split into multiple sections called partitions, as seen in Figure
3.4. A client can connect to any number of partitions, but two clients in the same Client
Group cannot connect to the same partition. Partitions can be split into different devices
(i.e. hard drives) to improve I/O performance.

3. Replication: In a cluster, topic partitions can be duplicated on different nodes or
devices to allow redundancy and fail recovery. For instance, even if a node or device
fails, with proper partitioning, it is possible to obtain the data from another node in
the cluster. For a topic with a replication factor N, Kafka will tolerate up to N-1 server
failures without losing any records.

4. Offsets: Each client group keeps an offset for each partition in a topic, thus allowing a
client to choose where to start consuming records (at the start, the end or a previously
committed offset).

Figure 3.4: Kafka topic partitions [29]

When comparing to other messaging systems, Kafka pushes many of the typical responsi-
bilities to the clients and the architecture using Kafka. Record Consumption is sequential on
a partition and the client applications are responsible to know where they want to consume,
to re-position the consumers after failure, and to know if they want to consume said records.
Kafka does not allow search or record filtering on the server side. Thus, Kafka can achieve
massively success [28] in the scalability of its publish/subscribe architecture.

Kafka is also known for its versatility allowing applications to use it as messaging systems,
website activity tracking, metric aggregation and operational data monitoring, log aggrega-
tion, stream processing, event sourcing, commit log, etc. For SELFNET, Kafka is a valuable
assistant and is expected to act as a messaging system between modules and work-packages;
as a message aggregator, collecting messages from multiple and different sensors, etc.; and as
a streaming processing pipeline allowing metrics and events to be sequentially processed.

20

3.2.2 Pivotal RabbitMQ

RabbitMQ [53] is a general purpose message broker that supports various standard mes-
saging protocols, such as AMQP, to offer a solid and mature message bus with routing ca-
pabilities. RabbitMQ is known for being easy to use and for supporting a large number of
development platforms (e.g. Python, Java, Ruby, Go, C, Node.js, amongst others), making
it a flexible message broker that implements:

� message queues by using exchange points;
� multiple consumer support for each queue;
� message distribution over all available consumers;
� message redelivery upon failure situations;
� delivery order in queues with a single consumer.

It uses a smart broker versus dumb consumer model that has consistent messages delivery to
consumers while keeping track of their state. However, keeping the consumer dumb and having
the smart broker that keeps track of consumer states and control over reliability features on
queues, makes its performance to only reach 310 messages per second (sent and received), in
a single-node deployment, and reaching 1600 messages per second (sent and received) when
deployed with eight nodes (depicted in Figure 3.5).

Figure 3.5: RabbitMQ Performance test [54]

Despite these facts, RabbitMQ features make the message broker popular since it of-
fers a reliable way of communication that supports consumers and producers from different
environments.

21

3.3 Aggregation Tools

3.3.1 Trifacta Wrangler

Wrangler is a Trifacta product [46] that offers a platform for data processing, comprised
of various layers (not fully represented here):

� Connectivity Framework: provides data collection from several different sources:
Hadoop sources, cloud services, files (CSV, TXT, JSON, XML, etc) and relational
databases;

� Any Scale Data Processing: the data transformation processes that use their Intel-
ligent Execution Engine, that takes user define transformation steps and automatically
finds the best-fit processing framework (Apache Spark, Google DataFlow, our Photon,
Trifacta’s in-memory engine) based on data scale;

� Intelligence & Context: the framework area that learns from the registered data
and how it is used, in order to suggest on how data might be transformed into useful
information;

� Core Data Wrangling User Experience: is the module that leverages data visual-
ization, machine learning and human-computer interaction techniques to better present
and explore the processed, or to be processed, data;

� Publishing & Access Framework: is the northbound limit of Wrangler, an API that
allows access to all data registered in Wrangler as well as, a variety of analytics, data
catalogue and data governance applications.

Wrangler is available, as of July 2017, in various versions [47], having a free version [48]
with several severe constraints (see [47]), thus offering a crippled software that does not meet
the requirements presented in Section 4.3.

3.3.2 MongoDB Aggregation Framework

As part of what MongoDB offers as whole, there is its Aggregation Framework [42], a
simpler alternative to their map-reduce feature. Currently, as of July 2017, the Aggregation
Framework comes bundled in MongoDB version 3.4. This framework can be viewed as a set
of data processing pipelines used for data aggregation based of previously defined models,
reducing the amount of data already stored in their database, MongoDB.

22

Figure 3.6: MongoDB Aggregation Framework Pipeline

These pipelines allow for data to be filtered and grouped together before being subjected
to aggregation functions [43] as seen in Figure 3.6. Despite this, aggregations are somewhat
limited, since they cannot refer to documents from other collections, aggregation results can
only produce documents up to 16 megabytes of size [44] and pipeline stages have a 100
megabytes limit of RAM [45]. To address larger datasets configurations need to be applied
in order to allow disk usage, creating temporary files and slowing down the data processing.
In conclusion, MongoDB Aggregation Framework is a simple utility tool set that addresses
data stored within MongoDB to produce simple aggregation results.

3.3.3 Apache Storm

Storm is an open source distributed system to process data streams in real time. Storm
can receive data from multiple inputs and provides mechanisms to process and transform
data. The real-time processing enabled by Storm ensures that data is processed as received,
without the need of batch gathering [30]. Besides stream processing, Storm can also be used
to offer continuous computation, distributed Remote Procedure Call (RPC) and real time
analytics, offering the following features [31]:

� Fast: Storm can handle over a million tuples per second;
� Horizontal Scalability: it is possible to increase the number of computer nodes that

offer more processing capabilities to Storm;

23

� Fault Tolerant: whenever a Storm worker dies, Storm is responsible to restart the
worker on the same computer node or in another one;

� Guaranteed Data Processing: Storm has tools to not only guarantee that each
message received is processed, but also has mechanisms that allow to process each
message only once, despite its parallelism;

� Programming language agnostic: Storm is executed in a Java Virtual Machine
(JVM). It is worth to mention, however, that applications written to run in Storm can
use any programming language, since it is capable of reading the input streams and
write output streams.

A Storm cluster is composed of three different components: Nimbus, Zookeeper Cluster
and Supervisor Nodes. The Nimbus is responsible to coordinate a Storm cluster by distribut-
ing the code and the work across other components (only one Nimbus exists in a Storm
ecosystem). Zookeeper is used to coordinate the distributed applications. Zookeeper can
have many nodes allowing Nimbus and the supervisors to communicate through its channels.
Supervisors consist in worker nodes, responsible to create, start and stop worker processes
[31].

Storm uses three main components as its data model: Streams, Spouts and Bolts. To-
gether, the collection of instances of these components create a Storm Topology. Further
explaining each component, a stream is a collection of tuples that can be processed in par-
allel, a spout consists in a source of streams outside of a Storm topology responsible to pass
them to the Storm topology, a bolt is where the streams are processed involving tasks like
filtering, aggregations, joins and more. The outcome of a bolt can be used as input for other
bolts [32]. Storm complex topologies can be created based on how spouts and bolts are
combined, Figure 3.7.

Figure 3.7: Storm topology example

Taking into consideration Apache Storms characteristics and proven scalability, it is the
perfect candidate for SELFNET support of Complex Event Processing (CEP). It allows the
real-time processing of a large number of events and metrics produced by sensors while scaling
(only requiring addition of new computing resources without redesigning the architecture or

24

modules) to cope with network growth. It will also be used as the engine in the Cassandra
Threshold Engine for similar reasons.

3.4 Storage

3.4.1 InfluxData InfluxDB

InfluxDB [35] is a time series database which specializes in storing metrics and events in
large numbers. It is optimized for fast retrieval of time series datasets for monitoring and
real-time analytics. It was first released on 2013-11; as of May 2017, its most recent stable
version is version 1.2.4, released on 2017-05-08. The free open-source version is distributed
under MIT license. However, some features, including deployment on multiple nodes, are
only available in the commercial enterprise edition.

InfluxDB manages simple data types such as 64-bit integers, double precision floating
point values and also strings in key-value stores. Time-series specific compression algorithms
are employed to maximize disk space utilization.

As datasets consisting of raw metrics grow rapidly in time, InfluxDB provides a system of
configurable policies controlling automatic deletion and down-sampling of older data. Bench-
marks show that, when used for the particular purpose of storing time series, InfluxDB can
perform even better than Cassandra, which can be seen in Figure 3.8.

Influx features a great synergy with the Monasca project (see Section 3.5.2) as it is one
the storage choices for that framework.

Figure 3.8: Comparison of InfluxDB with Cassandra on time series data [36]

As InfluxDB is designed as a native time series database, it is ideal for monitoring metrics,
sensor data and real-time analysis since all these are data points collected at regular intervals
over a period of time. Monasca supports this database, making this technology a natural
choice as the metrics and alarms database for the Aggregation Framework.

25

3.4.2 Openstack Gnocchi

Gnocchi [37] is the project name of a TDBaaS (Time Series Database as a Service) project
started under the Ceilometer program umbrella. It is a multi-tenant time series, metrics and
resources database. It provides an HTTP REST interface to create and manipulate the data.
It is designed to store metrics at a very large scale while providing access to metrics and
resources information and history.

From the beginning of the Ceilometer project, a large part of the goal was to store time
series data that were collected. In the early stages of the project, it was not really clear what
and how these time series were going to be handled, manipulated and queried, so the data
model used by Ceilometer was very flexible. That ended up being really powerful and handy,
but the resulting performance has been terrible, to a point where storing a large amount of
metrics on several weeks is really hard to achieve without having the data storage backend
collapsing.

Having such a flexible data model and query system is very important, but in the end
users are doing the same request over and over, and the use cases that need to be addressed
are a subset of that data model. On the other hand, some queries and use cases are not solved
by the current data model, either because they are not easy to be expressed or because they
are just too slow to run.

Lately, during the Icehouse Design Summit in Hong-Kong [37], developers and users
showed interest in having Ceilometer doing metric data aggregation, in order to keep data
in a more long running fashion. No work has been done during the Icehouse cycle on that,
probably due to the lack of manpower around the idea, even if the idea and motivation was
validated by the core team back then.

Considering the amount of data and metrics Ceilometer generates and has to store, a new
strategy and a rethinking of the problem was needed, so Gnocchi is a try on that.

3.4.3 Apache Cassandra

Apache Cassandra is a NoSQL database which aims to provide fast access to big datasets
organized in tables while maintaining high availability. Cassandra was originally developed
at Facebook and later open-sourced in 2008. Cassandra is now a free open-source software
distributed under the Apache License 2.0 [33]. As of April 2017, the most recent stable version
of Cassandra is version 3.10, released on 2017-02-03.

Cassandra’s architecture enables deployment on clusters spanning tens of thousands of
nodes in multiple datacenters running decentralized and asynchronously, with no single point
of failure. To achieve high data throughput, Cassandra does not support the full relational
database model; in particular, Cassandra does not support joins. Instead, data denormal-
ization is encouraged. It is also a column oriented NoSQL database. As such, it relies on
schemas to specify the type of data found in table columns. This contrasts the approach of
document oriented NoSQL databases such as MongoDB, which make no assumptions on the
structure of the data they store.

Benchmarks show that among currently available NoSQL databases, Cassandra is one of
the best performing alternatives. Scalability is excellent, data throughput scales linearly for
both reads and writes with the number of machines added to a cluster, as can be observed in
Figure 3.9. Installing new nodes and replacing failed nodes does not require time consuming
reconfiguration procedures to be applied.

26

Figure 3.9: Scalability of Cassandra [34]

In addition to performance - and given the nature of the data provided by the sensors
in SELFNET, where descriptors and counters vary according to what is being measured -
Cassandra provides a very useful Map-type column. It allows data from different sources to be
stored in the same table, without the need to create or change tables in order to accommodate
for new sensors or upgrades to old ones. This simplifies database administration and lowers
the need for human intervention.

3.5 Monitoring Tools

3.5.1 QoSient Argus

Argus is an open-source project network Audit Record Generation and Utilization System
[49], developed by QoSient and released as stable in version 3.0.8.2, as of July 2017.

It has the objective of developing all aspects of large scale network situational aware-
ness derived from network activity audits. It is a next-generation network flow technology,
processing packets, either on the wire or in captures, into advanced network flow data.

It is composed of the Argus sensor, an advanced comprehensive network flow data gener-
ator, used to process live packet data or capture files, and then to generate detailed network
flow status reports for all captured flows. Argus can also be used to provide network activity
reports for network transactions, empowering security, operations and performance manage-
ment tasks.

3.5.2 Openstack Monasca

Monasca [40] is an OpenStack project that provides an open-source multi-tenant, highly
scalable, performant, fault-tolerant Monitoring-as-a-Service solution (MONaaS).

27

Metrics can be published to the Monasca API, stored and queried. Alarms can be created
and notifications can be sent when the alarms transition states.

It builds an extensible platform for advanced monitoring services that can be used by
both operators and tenants to gain operational insight and visibility, ensuring availability
and stability.

Figure 3.10: Monasca Architecture

Several off the shelf open-source components are used, including:

� Keystone [55]: identity service for authentication, authorization and multi-tenancy;
� Apache Kafka [27]: central component in Monasca and provides the infrastructure

for all internal communications between its components;
� Apache Storm [32]: used in the Monasca Threshold Engine;
� Apache Zookeeper [22]: used by Kafka and Storm;
� InfluxDB [35]: used for storing metrics and alarm history;
� MySQL [56]: used to store alarm definitions and notification methods.

Figure 3.10 illustrates Monascas architecture, showing only the relevant components that
were used in the Aggregation Framework. All interactions with the service is done through the
Monasca API, which on its hand will interact with both databases (InfluxDB and MySQL)
and with the message bus (Apache Kafka).

28

The configuration database (MySQL), as its name suggests, will store all the configurations
of the service, namely the Alarm Definitions and the Notification Methods.

The metrics and alarms database (InfluxDB), once again as the name suggests, is where
all metrics and triggered alarms will be stored.

All the metrics posted to the Monasca API will be published to the message bus, and the
Monasca Persister will fetch and persist them in the corresponding database.

The Threshold Engine will also monitor the message bus for those metrics and will trigger
alarms if needed, based on the Alarm Definitions present on the configuration database. If an
alarm is triggered and published to the message bus, the Notification Engine is the component
responsible for monitoring them and dispatch notifications if required to do so, that is, if it
is configured in the corresponding Alarm Definition.

There are other components of the architecture, such as Transform Engine and the
Anomaly and Prediction Engine, which were not used in the Aggregation Framework; hence
they were not represented in the figure. Nevertheless, the full architecture diagram is available
online [40] to make a comparison.

The rationale behind the adoption of Monasca is mainly due to the time series database
(InfluxDB), as well the Threshold Engine, although these are not the only reasons. Being an
open-source monitoring-as-a-service solution under the OpenStack “Big Tent” and with many
major companies also involved in developing and deploying it [41], it gives us the confidence
of having a solid solution that serves our needs while releasing us from the burden of having
to develop a similar architecture, giving us the freedom to concentrate on the development of
other features of the Aggregation Layer.

3.5.3 Openstack Ceilometer

Ceilometer [38] is part of Telemetry project and it was developed to facilitate the meter
gathering of virtual resources from OpenStack deployments. Ceilometer collects relevant
information of different OpenStack projects like Nova (Compute), Neutron, and so on [38].
Ceilometer also allows the creation of personalized alarms, providing resource tracking and
creation of new plugins from external sources [39]. Ceilometer architecture is shown in Figure
3.11.

29

Figure 3.11: Ceilometer Architecture [38]

The components of Ceilometer Architecture are described below:

� Agents: The data gathering is done by two types of agents: Polling and notifications
agents:

1. Polling Agents poll OpenStack services;
2. Notification agents listen notifications on message queue.

The main difference between polling and notification agents is the method to collect
data (Push or poll strategy). On one hand, polling agents retrieve information from
different resources such as Compute, Network, Cinder or Glance Projects, in a given
period of time. On the other hand, notification agent listens the notification bus in
order to consume messages or events from the queue.

� Collector is in charge of gathering and recording events and metering data. It is an
optional component.

� Ceilometer API allows to query and view data recorded by the collector.

The agent daemons could be running on the central (cloud controller) and compute node
(Nova) and the collector and notification agent runs on the cloud management node. Once
the information is gathered, this could be transformed into another format (aggregate) or
published in different destinations. Then, the meter data is stored in a specific database like
MongoDB or Gnocchi project [37]. This process is illustrated in Figure 3.12.

30

Figure 3.12: Ceilometer Workflow [38]

In general terms, Ceilometer provides an architecture based on plugins that allows easy
scalability, extensibility and meter customization by means of the creation of new agents.
These agents will gather metrics not considered before or meters from external sources. Ad-
ditionally, this information can be accessed through the REST API provided by Ceilometer.

3.5.4 Apache Chukwa

Chukwa [52] is an open source data collection system for monitoring large distributed
systems. More precisely, it aims to be used for log collection and analysis while being designed
for big data, robustness and scalability, and providing a tool kit log analysis. Chukwa is built
using Hadoop, combining the MapReduce framework and the Hadoop Distributed File System
(HDFS), thus inheriting its scalability and robustness. It was first released in 8 November
2009 and last updated at 8 October 2016 (version 0.8.0); as of July 2017. However, the project
still looks as if it still is in its early ages, displaying unclear documentation files, making it
unfit to be chosen as a monitoring tool.

3.6 Discussion

This section has the objective of communicating the chosen technologies, their purpose and
the reasoning behind each choice. For this matter, the chapter was organized in technology
category sections, facilitating their discussion:

� Service Coordination: is to be used to coordinate different components within the
Aggregation Framework (to be presented in Section 4.2.2) and so, two technologies were
investigated: Zookeeper and Consul. Consul provides a way to coordinate services in a
high level way by using HTTP and DNS protocols, something that is actually viewed as
a negative aspect, since inside of the Aggregation Framework a more simple and lower
level interaction is expected to happen between components. Based on this rationale
and since Zookeeper provides such functionality, by directly implementing it on the
components, it was chosen as the service coordination tool;

� Message Bus: is to used to input and output data to the Aggregation Framework. The
technologies considered for this matter were: RabbitMQ and Kafka. RabbitMQ offers
a more traditional message broker with solid robustness. However, when compared to
Kafka, it comes short in terms of message throughput, as seen in Figure 3.13 with Kafka
showing a 2.5x speed-up relative to RabbitMQ.

31

Figure 3.13: Message Bus performance comparison: RabbitMQ versus Kafka [54]

In a framework where performance is paramount, the technologies must also follow such
standard, thus making Kafka a better solution than RabbitMQ. It must also be referred
that Kafka has Zookeeper as a dependent service, facilitating its choice;

� Storage: the requirements for choosing a storage technology lie upon the need to persist
aggregated data within the Aggregation Framework. The nature of the aggregated data
is intricately the same of time-series data. While various database technologies were
surveyed (InfluxDB, Gnocchi and Cassandra), the ones that fitted this requirement were
InfluxDB and Gnocchi. Please note that Cassandra was already chosen by the SELF-
NET consortium for raw data persistence. Both InfluxDB and Gnocchi provided the
needed functionalities of storing time-series data with multi-dimension support; how-
ever, Gnocchi showed that it was really tied to Openstack Ceilometer, forcing their
model for data storage, and that the provided documentation was lacking detail, some-
thing important in order to make an educated decision. Since the same does not happen
with InfluxDB, which provides clear and complete documentation, it was chosen as the
database to store aggregated data;

� Aggregation Tools: the main feature required by the Aggregation Framework and this
thesis objectives was the ability to perform real-time aggregations. Several technologies
were investigated: Trifacta Wrangler, MongoDB Aggregation Framework and Apache
Storm. Although MongoDB has an aggregation framework, it does not qualify has a
valid tool since its aggregation operations are done in an offline manner, after data is
stored in MongoDB. This leaves Wrangler and Storm as the remaining technologies to
analyse. Wrangler provides a huge tool set for aggregation purposes and, despite not
being an open-source technology, it offers a free version of their tool. However, since it is
a close-source tool, it does not enable its extension in order to support new features that
emerge from the dynamicity that SELFNET requires of the Aggregation Framework
real-time component. Since Storm is open-source and is a technology to be used to

32

implement other frameworks or tools, it fits SELFNET requirements. Moreover, it
also provides distributed clustering features with performance in mind, further aligning
itself with SELFNET ideals. Given this, Apache Storm was chosen as the aggregation
technology;

� Monitoring Tools: while other technology categories (e.g. storage, service coordina-
tion, etc) elected only one tool from their area, the monitoring tools category is open
to electing more than one tool in order to provide a complete monitoring solution.
The ability to collect data from the virtualized environment is the main aspect to look
for. Gathering data from the physical components was already decided, by the SELF-
NET consortium, that would be performed either physical sensors and LibreNMS [51]
monitoring tool. Because of this, QoSient Argus, which provides a way of collecting
network flow information, is left out since there is already a physical sensor (Flow Mon-
itoring Agent, presented in Section 5.2.1.1), developed by a SELFNET partner, that
provides the same functionalities. While Apache Chukwa only provides log monitoring,
Openstack Ceilometer overlaps and expands the features that Chukwa presents, by sup-
porting a wide range of areas to monitor (e.g. network, storage usage, computational
resources, amongst others) from the virtualized environment that is Openstack, a tool
that is already used by SELFNET to virtualize its infrastructure. However, in order
to monitor the produced aggregation data by the Aggregation Framework, Openstack
Monasca offers the capabilities needed to store data with a time-series nature, while
providing an easy to use API to expose data. It also integrates, by default, with In-
fluxDB. Give all of this, Openstack Ceilometer and Openstack Monasca were chosen as
the monitoring tools to use.

In the end, and as a whole, the technologies chosen were: Apache Zookeeper for Service
Coordination, Apache Kafka for Message Bus, InfluxData InfluxDB for Storage, Openstack
Monasca with InfluxData InfluxDB and Openstack Ceilometer for Monitoring Tools, and at
last, Apache Storm for Aggregation Tools. As one might notice, this choice of technologies
sets an environment mostly comprised of Openstack and Apache tools, providing a rather
stable tool set for developing new solutions.

33

34

Chapter 4

Architecture

A custom approach to a system architecture allows a better control over the importance
of each component when exposing the architecture, something that does not happen when
exclusively using models like the Unified Modelling Language (UML) or Architecture View
Model (4+1 view model).

Thereby, this section will cover the SELFNET’s logical architecture from a high level
perspective down to the singular components perspective, i.e. the components which are the
focus of this thesis, providing a way to backtrack a low level component up to its place in a
higher level view. For this matter, the content presented here will follow a use case driven
architecture design that establishes three logical levels:

� Level 0 (L0): high level conceptual perspective;
� Level 1 (L1): intermediate level conceptual perspective;
� Level 2 (L2): implementable perspective.

Please note that this approach only explores the logical side of the architecture, the
functional part will be detailed in Section 6.

This chapter will be organized as follows: firstly, the SELFNET architecture will be
presented to provide a high level context of the work in this thesis (Section 4.1); second, a
zoom-in is provided into the detailed aspects regarding the Aggregation Sublayer (Section 4.2),
and last it is presented the impact that the SELFNET use cases have over the Aggregation
architecture (Section 4.3).

4.1 SELFNET Architecture

Given that the scope of this thesis is deeply engrained within SELFNET, it is paramount
to present its architecture in order to provide context about this work’s environment, so that
we can further zoom in to the relevant components.

Figure 4.1 represents the SELFNET high level architecture, also referred to as level 0
architecture. It includes the Monitor & Analyser, Autonomic and Orchestration Sublayers,
as well as the transversal Catalogue and Inventory Services.

35

Figure 4.1: SELFNET Logical Architecture Level 0

The Monitor & Analysis Sublayer objective is to gather, aggregate and analyse sensor
provided data originated from a 5G network environment composed of NFVs, SDNs and
legacy network elements. It is its responsibility to provide HoN symptoms, by using prediction
algorithms, which pro-actively indicate potential problems.

Similarly, the Autonomic Sublayer, considered the core of SELFNET, takes the provided
HoN symptoms, performs a diagnosis of the most probable causes, and decides on the most
appropriate tactics and actions to pro-actively prevent end-to-end services from being affected.

Furthermore, the Orchestration Sublayer is designed to enforce all actions defined in the
autonomic process, which includes orchestrating the available heterogeneous network func-
tions (e.g. SDN-Apps, VNFs) and actuators, up to their deployment and configuration pro-
cesses.

Lastly, the Catalogue and Inventory Services are the entities accountable for managing
and making available all on-boarding (Catalogue) and instantiation (Inventory) information
for every other components, eliminating the replication of this data across sublayers. The
Catalogue Framework and the Inventory Framework are complimentary. The Catalogue is a
repository that contains all data regarding internal procedures present in other sublayers, for
instance, information about which type of sensors exist, how their data is collected, which
aggregation rules take the sensors counters to produce metrics, as well as how these sensors are
to be deployed and configured. On the other hand, the Inventory Framework is the repository

36

that holds the records regarding all instantiation information (i.e. sensor, SDN, NFV and so
on, instantiation details).

Figure 4.2 goes down one level on the architecture, zooming in into the Monitor & Analyser
Sublayer and exposing the major high-level components: Monitoring layer, Aggregation &
Correlation layer and the Analyser layer.

Figure 4.2: SELFNET Logical Architecture Level 1

Starting from the bottom, the Monitoring Framework collects data from sensors which
is then persisted, for later use, and forwarded to the Aggregation Framework. Then, the
Aggregation Framework aggregates and/or correlates data and provides the results to the
Analyser Framework. It is to highlight that, in some specific scenarios, it is possible to forward
the aggregated data directly to the Autonomic Framework when, for example, a threshold
crossed alert that indicates a severe problem was detected. The Analyser role here is to
provide HoN metrics, built by using the provided Aggregation Framework results and applying
prediction algorithms. Consequently, the Autonomic Framework will have the necessary HoN
symptoms and/or aggregated data to perform its autonomic functionalities. Moreover, Figure
4.2 also depicts interactions between the Catalogue and Inventory services with the Monitor
& Analyser Sublayer components, these represent the on-boarding of configurations, e.g.
life-cycle management of aggregation rules. With this in mind, it is now clear that the
Aggregation Framework role is to be the entity that effectively processes all sensed data,
creating meaningful data by correlating and aggregating it, as well as reducing the amount
of stored data by transposing it into time-series data. This allows for upper layers to use this

37

information for analysis purposes and to take intelligent decisions. The framework not only
aggregates data, but also offers threshold capabilities, together with notification mechanisms,
further removing the other layers burden from constantly polling for new data.

4.2 Aggregation Detailed Architecture

In this section, the Aggregation Framework internal architecture is described in detail.
The detailed perspective provided in this section is the level 2 perspective of the Aggregation
Framework architecture, according to the terminology previously introduced in Section 4. In
order to provide a comprehensive view of the level 2 architecture, it is described, in a step-by-
step approach, how level 1 is decomposed into the level 2 perspective. Besides depicting the
framework’s architecture, a detailed view of the Monitoring Framework architecture is also
provided, which interacts directly with the aggregation layer on the southbound (see Section
5.1.2).

Before delving into the detailed architecture inwards, establishing a clear definition of
what raw data, aggregated data, counters, events and so on, are:

� Raw Data: it is data originated from the sensors itself and is characterized in two
different types:

- Counters: statistical data usually periodically reported;
- Events: a specific occurrence that took place in sensed domain (e.g. a Virtual

Machine (VM) created event). Raw events can be further extended into:
– Alarms: are associated to a reactive indication that some occurrence has

taken place (e.g. hardware failure).
� Aggregated Data: refers to already processed raw data and is split into two types:

- Metrics: measurements usually built by aggregating raw counters (e.g. commu-
nication frequency metric built by aggregating the packet count between different
network elements);

- Events: an aggregated bundle of raw events, generally correlated together to
provide meaningful context (e.g. a list of source IPs that communicated with the
same destination IP). Aggregated events can also be extended into:

– Alarms: an extension of the aggregated event that originates from a threshold
crossed over already aggregated data (e.g. alarm triggered when the bandwidth
of a certain network node exceeded a pre-defined value).

38

Figure 4.3: SELFNET Logical Architecture Level 2

Figure 4.3 makes the transition from the level 1 architecture (Figure 4.2) to the level 2
architecture depicted in Figure 4.4. The focus here will be the Monitoring and Aggrega-
tion Frameworks, the Analyser will be left out since it is not contained in this document’s
scope. Focusing our attention on the Monitoring Framework, and having in mind this frame-
work’s role covered in Section 4.1, we can see that collecting and persisting data is the Raw
Data Management high-level component task, further detailed in Section 4.2.1. This data is
persisted in the Raw Database (Raw DB), a database that holds all sensor gathered data,
providing the most granular access to it.

Furthermore, we have the Aggregation Framework now divided into three major com-
ponents: Metrics Database (Metrics DB), Batch Aggregation Framework (BAF) and the
Complex Event Processing Framework (CEPF). Each one of them possess different roles, the
Metrics DB has persisted, in a time-series fashion, all aggregated data.

This aggregated data is created inside BAF, by accessing the Monitoring Framework
Raw DB to fetch raw data in batch and aggregate it, in a non-real-time pace (e.g every 30
seconds, 1 minute, 1 hour, etc) and based on pre-defined rules, thus producing metrics. BAF
also contains threshold capabilities, outputting aggregation events, when they are crossed, to
external systems that previously configured those threshold rules.

Lastly, CEPF provides a real-time, or near-real-time (i.e. provide a result within five
seconds), approach to data aggregation/correlation. It processes data in a streaming way
and produces aggregation events, similar to the ones provided by BAF, as its output. Those
can range from a threshold crossed by a metrics calculated in real-time to a metric that

39

was aggregated/correlated in real-time. It is to note that this output is rule based, making
the results vary from rule to rule. Although CEPF processes data in a streaming fashion,
producing an output as soon as it can, the aggregation events it produces are always stored
in the Metrics DB, thus providing historical data that may prove useful for future analysis.
This component architecture is further detailed in Section 4.2.2.1 and its implementation can
be seen in Section 6.2.1.

Figure 4.4: SELFNET Logical Architecture Level 2 Detailed

Figure 4.4 further explores the concepts here presented and will support the upcoming
subsections in exposing the Raw Data Loader (RDL) and CEPF components, which are the
main objectives of this thesis.

40

4.2.1 Monitoring Framework

Figure 4.4 contains a representation of the Monitoring Framework; however, it is depicted
from the Aggregation Framework point of view, thus not addressing every component that the
framework possesses. The reason being that it is not relevant to expose all components that
do not belong to this document’s scope. The exposure of this framework, in this document,
is to provide context on how sensors report data and what path it follows until it is stored.

4.2.1.1 Raw Data Loader

As seen in Figure 4.4, Raw Data Loader (RDL) is the component, within the Monitoring
Framework, that takes raw data (counters and events) from a message bus and persists them
in the Raw Database.

This component task objective is to provide a single data entry point, that enforces a
common data model in order to guarantee that data stored in the Raw Database is normalized,
therefore minimizing the number of data models and simplifying data access to every other
layer or external systems. This common data model is the Raw and Aggregation Data Model,
which can be found in Section 5.3.1, and the Raw Database model is depicted in Section 5.3.2.

RDL internals and implementation are further described in Section 6.1.1.

4.2.2 Aggregation Framework

As seen in Section 4.1, the Aggregation Framework is composed of two main blocks, the
Batch Aggregation Framework and the Complex Event Processing Framework. However,
Figure 4.4 introduces a new component named Aggregation Configuration Manager. This
new component is responsible for receiving information from the Catalogue Framework about
new aggregation and threshold rules to be applied in BAF and CEPF.

4.2.2.1 Complex Event Processing Framework

The Complex Event Processing Framework (CEPF) main goal is to aggregate and correlate
counters and/or events in real-time. Architecturally, the CEPF is split in five main areas:

1. Configuration area to enable dynamic configuration of real-time aggregation rules;
2. Filtering area to protect the upper processing areas from being flooded with large

amounts of non-relevant raw counters and/or events;
3. Processing area which collects already filtered raw counters and/or events and produces

aggregation events (triggered due to a threshold over a metric, aggregated alerts and
aggregated alarms);

4. Persistence area for the produced metrics and/or aggregation events;
5. Publication area to deliver the real-time processing/aggregated data towards the exter-

nal components of SELFNET.

Figure 4.5 illustrates the CEPF in detail. The ACM is the component responsible for
interacting with the Catalogue Framework and propagating the configuration rules internally
towards the CEP Manager. The latter is the element responsible for the life-cycle management
of CEP topologies. It identifies and manages the required set of CEP internal entities (in this
case Apache Storm Spouts and Bolts) that are required to implement the aggregation rules
in real-time. The ACM, together with the CEP Manager, implements the configuration area.

41

Further details, as well as technological choices and implementation details about the CEP
Manager are provided in section 6.2.1.1.

The CEP Engine is the entity responsible for performing the real-time data processing.
Several types of real-time processing graphs, also known as ”CEP Topologies” in the Apache
Storm terminology, might be applied. For example, the CEP Engine might implement a sin-
gle CEP topology per use-case/aggregation rule, or if the required real-time data processing
across several use-cases/aggregation rules is similar, the same CEP topology can be applied
for several aggregation rules. The decision on the type of CEP topologies that have to be
applied to support the configured aggregation rules is made by the CEP Manager compo-
nent. Internally, a CEP topology includes a set of internal nodes to implement the received
aggregation rule, such as:

� Filtering Node: receives raw counters and/or raw events and filters the undesired
ones;

� Aggregation Node: aggregates filtered raw counters and/or raw events based on the
aggregation rules;

� Routing Node: routes data flowing through the topology based on which actions need
to be performed next, for instance, an enrichment or a publish action;

� Enrichment Node: enriches data using external data sources e.g. metrics database,
raw database, catalogue services;

� Publisher Node: as the name states, publishes the CEP output into a message bus
or a database.

42

The CEP Engine embraces filtering, processing and publication areas described above.
More details about the CEP Engine can be found in section 6.2.1.

Figure 4.5: Complex Event Processing Engine Framework (CEPF)

43

4.3 SELFNET Use cases impact on Aggregation Architecture

Having introduced a high level overview of what SELFNET use cases are (see Section
1.3.1), it is important to also expose how these use cases will bring requirements and how
they will exercise SELFNET Aggregation Architecture.

4.3.1 Self-Healing

The Self-Healing use case (SH-UC) aims to pro-actively detect potential network equip-
ment failures, for example, a network failure caused by a power outage, and migrate the
potentially affected existing network services to another Data Center Point-of-Presence (DC-
PoP).

This UC will demand that a very large amount of energy related counters coming from
physical energy sensors are persisted and aggregated in a periodical, non-real-time, approach.
This will be critical to identify trends and energy fluctuations which might be an important
indicator that a network equipment can be approaching a failure state. As a result, the
Aggregation Framework, described in Section 4.2.2, must be capable to periodically (e.g.
20 second intervals) fetch energy related counters from the Monitoring Framework, briefly
depicted in Section 4.1, and produce contextualized aggregated metrics that indicate energy
fluctuations.

When threshold values for these metrics are crossed, the Analyser and/or Autonomic
Frameworks must be notified in order to analyse and mitigate the potential network equipment
failure risk. Additionally, besides energy-related counters, alerts and/or alarms might also
be provided in real-time by the energy sensor, as well as by the sensor retrieving information
from the physical and/or virtual infrastructure servers. These alerts and/or alarms might
need to be correlated with each other in real-time to produce contextualized metrics about
the potential network equipment failure. The Analyser and the Autonomic Frameworks will
handle these notification events produced by the Aggregation Framework, to predict potential
network link failures and decide on corrective measures, such as service migration for a DC-
PoP not affected by the link failure.

4.3.2 Self-Optimization

The Self-Optimization use case (SO-UC) aims to optimize the Quality of Experience (QoE)
of a 4K resolution video stream in congested network links.

Figure 4.6 illustrates the SO UC control loop. Sensing information about all the network
flows traversing the network, as well as counters about the physical network equipment is sent
towards the Monitor & Analyser Sublayer. All sensing information is: persisted (Monitoring
Framework), aggregated (Aggregation Framework) to calculate the Congestion Index (CI)
and analyzed (Analyser Framework) to evaluate the QoE impact in the end-user consuming
the video-stream.

In order to enable the Analyser Framework to evaluate the end-user QoE, the Aggregation
Framework must calculate and provide the CI for the video data path. The CI metric is
calculated based on information retrieved from the flows sensor (FMA, see Section 5.2.1.1)
and from the physical equipment sensors (e.g. SNMP, see Section 5.2.1.4).

Since it deals with congestion in video-streams, all the processing performed at the
aggregation-level must be made in real-time, therefore stimulating the real-time components

44

of the Aggregation Framework. Finally, but of crucial importance, this UC also requires
that large amounts of data (mainly network flows) are processed by the real-time aggregation
components.

Figure 4.6: Self-Optimization Use-Case

4.3.3 Self-Protection

The Self-Protection use case (SP-UC) aims to identify cyber-attacks in advance and pro-
actively take a set of countermeasures to isolate the attacker and the affected users (also
known as zombies). The UC foresees two main loops. In the first loop of the SP UC,
depicted in Figure 4.7, all the network flows in the data path are monitored through the
Flow Monitoring Agent (FMA, see Section 5.2.1.1) sensor and raw counters are reported
to the Monitor & Analyser Sublayer. Within the Monitor & Analyser Sublayer all flow
counters must be: persisted (Monitoring Framework), aggregated (Aggregation Framework)
and analysed (Analyser Framework) for the identification of a potentially suspicious network
communication pattern.

In what concerns the Aggregation Framework, this UC requires that a large amount of
network flows are aggregated in a non-real-time nature (e.g. 20 seconds) to identify suspicious
network communication patterns. The latter is identified by aggregating all network flows that
have the same source and destination nodes (e.g. using the IP address and communication
ports) within pre-defined time periods. The aggregated flows must be persisted within the

45

Aggregation Framework, and when a pre-defined set of consecutive suspicious communication
patterns between the same nodes is identified (e.g. frequency of and interval between sessions
within a certain period), the Analyser Framework must be notified. The rationale to adopt a
notification-based approach between the Aggregation and the Analyser Framework is to avoid
the permanent queries from the Analyser towards the Aggregation without any context and,
most probably, without any risky situation in place.

The persisted aggregated flows in the Aggregation Framework must be made available to
external components of SELFNET (e.g. Analyser and/or Autonomic Management Frame-
works) for further analysis. Moreover, and very importantly, the Aggregation Framework
must enable external SELFNET components (e.g. Analyser and/or Autonomic Management
Frameworks) to change the aggregation rules during runtime for taking advantage of the
Aggregation Framework capabilities to produce useful views and projections of the network
conditions/status.

Figure 4.7: 1st Loop of the Self-Protection Use-Case

When a suspicious network communication pattern is identified, a report is generated
towards the Autonomic Management Sublayer to be evaluated as symptom for further trig-
gering a reaction in terms of a request that is sent to the Orchestration Sublayer to activate a
Deep Packet Inspection (DPI) Virtual Network Function (VNF) (e.g. SNORT 5.2.1.2). The
latter will confirm that the identified suspicious network communication is in fact a cyber-
attack (also known as botnet). For the DPI function to be able to analyse the flows, the

46

Orchestration Sublayer also has to deploy a flow mirroring SDN application.

After SNORT and the flow mirroring are deployed and all the required configurations
are performed by the Orchestration Sublayer, the second loop of the SP UC, represented in
Figure 4.8, is initiated.

The DPI VNF sensor will trigger alert events towards the Monitor & Analyzer Sublayer
when the suspicious communications are confirmed that they involve certain packet content.
This information reaches the Aggregation Framework and must be correlated in real-time
with all the SNORT alert events that are under the control of the same attacker (Command
& Control Server). This will enable the identification of all the compromised user-equipment,
also known as zombies, by the Command & Control Server. As in the first loop, also in this
case it is under the responsibility of the Aggregation Framework to notify in real-time the
analysis procedures with the aggregated alerts, also known as meta-alerts.

Finally, dynamic configuration procedures for the real-time procedures of the Aggregation
Framework must also be provided to enable external SELFNET components to manage the
aggregation rules according to its needs (for example, creation of a new aggregation rule to
evaluate the performance of a deployed action coming from the machine-learning algorithms).

Figure 4.8: 2nd Loop of the Self-Protection Use-Case

47

4.4 Summary

This chapter started by introducing the three logical levels’ approach used to expose the
architecture with a progressive increase in detail. After having the approach in mind, the
SELFNET architecture (Section 4.1) was presented with the first two logical levels, laying
down the necessary information to understand the two upcoming sections.

In order to reach the next logic level, the Aggregation Detailed Architecture (Section
4.2) section further explored the Monitoring and Aggregation Frameworks components that
belong to this thesis objectives. To finish off, the last section (Section 4.3) covered the impact
which SELFNET use cases have on the presented architecture, thus making clear which
functionalities need to be supported.

48

Chapter 5

Interfaces, Data Sources and Data
Models

To better understand how data is produced, represented and how it is available to the
Aggregation Framework components to be discussed in the Implementation section 6, this
section dedicates its space to provide this information by firstly covering the entities producing
data i.e. data sources (Section 5.2), secondly, which interfaces (Section 5.1) exist and how
they are composed, and lastly, providing the data models (Section 5.3) used.

5.1 Aggregation Framework APIs

This section describes the interfaces exposed by Aggregation Framework towards external
components, enabling a programmatic interaction at three levels: Southbound - used for
data ingestion; Northbound - used for data to be outputted; Configuration - used to apply
configurations over the Aggregation Framework components.

5.1.1 Northbound

The API exposed towards external systems, it is located at the North side of the Ag-
gregation Layer. It is composed as a set of component specific APIs, due to the different
aggregation strategies used, as an example: streaming or real-time processing implies that
data is processed as it arrives, as a stream, making its output to also be provided in real-time,
in a queue like mechanism; in opposition, batch aggregation performs its tasks offline, using
a non-real-time cadence, aggregating data when it is available in the Raw Database to later
persist it the Aggregated Metrics Database, thus making the usage of queries to retrieve data
a natural process. These component specific APIs are described in the following subsections.

5.1.1.1 Aggregated Metrics Database API

This API is provided by the Monasca component present in the architecture revealed in
Section 4.2.2. All external interactions with the Monasca service are done via its REST API
[57]. The API supports storing and querying metrics measurements and statistics, CRUD
operations on compound alarm definitions and notifications methods as well as read/delete
operations on alarms.

49

The API authenticates all requests against the Keystone service, and all data is associated
with a tenant to support multi-tenancy.

Metrics are described by a name and dimensions, which consists of a dictionary of (key,
value) pairs, that allows a flexible, concise and self-describing representation.

When it comes to the Aggregation Framework, only a subset of the supported operations
are to be used externally while the remaining ones are used internally or not used at all. The
externally supported operations are presented in Table 5.1.

Metrics
List metrics [58]
List dimensions values [59]
List dimensions names [60]

Measurements List measurements [61]

Metrics names List names [62]

Statistics List statistics [63]

Table 5.1: Monasca API - Read-only operations

The remaining operations, not listed here, are either unused or not particularly relevant
regarding external interactions. In a general way we can state that all write operations (cre-
ating, updating, patching or deleting) are exclusively used within the Aggregation Framework
and do not need to be exposed for external usage.

5.1.1.2 Raw Database API

The Raw Database API exposes the raw data persisted in the Raw DB to the external and
internal components. The term API is used loosely in this case since there is no REST, CLI
interfaces or a message bus to retrieve data. Instead, accessing the values contained within
the database is made via the Cassandra Query Language (CQL), which is similar to the well
known Structured Query Language (SQL). All data stored in this database follows the model
defined in Section 5.3.2.

5.1.1.3 Alarm Notifications API

The Alarm Notifications API is represented in the Monasca Notification Engine, the
Monasca component responsible for publishing alarm notifications whenever an alarm is trig-
gered by the Monasca Threshold Engine. It supports several notification types such as Email,
Pagerduty and Webhook. These notifications are plugins of the Notification Engine which,
as the name suggests, is the core of the Monasca Notification component.

For the purpose of our solution, a new plugin was developed for SELFNET with the ob-
jective of publishing the alarm notifications to a Kafka topic exposing them to external con-
sumers. The alarm notifications published on Kafka are in JSON format and follow the struc-
ture specified by the Raw and Aggregation Data Model (RADM), detailed in Section 5.3.1.
Only the content of two specific fields of the model will be detailed here (resourceDescrip-
tion and dataDefinition), leaving out the remaining ones as they are explained in the RADM
section:

� resourceDescription:
- It is essentially composed by fields of several IDs which are self-explanatory, all of

them internal to all Monasca components (previously introduced in Figure 3.10);

50

� dataDefinition:
- severity: the severity of the alarm which is an integer value between 0 and 3 with

the following representation (mapped with the available Monasca severity levels):
– 0 - LOW;
– 1 - MEDIUM;
– 2 - HIGH;
– 3 - CRITICAL.

- newState: the current state of the alarm (the three possible states are OK,
ALARM or UNDETERMINED);

- oldState: the previous state of the alarm (OK, ALARM or UNDETERMINED);
- alarmDescription: the description of the alarm as set in the alarm definition;
- alarmTimestamp: the unix epoch timestamp of the alarm in milliseconds;
- metadata: an array of key value pairs of extra information;
- metrics: the metrics that triggered the alarm:

– name: the name of the metric associated with the alarm;
– dimensions: the dimensions of the metric, composed of key value pairs;
– id: the monasca internal ID of the alarm, if applicable.

- subAlarms: an array with the subAlarms that together triggered the alarm:
– subAlarmExpressions: a part of the overall expression of the threshold:

— function: statistical function of the expression which can be a min, max,
sum, count, avg or last;

— deterministic: boolean - deterministic alarms only have two possible
states, either OK or ALARM, while the nondeterministic ones can also
have the UNDETERMINED state;

— period: the period in seconds;
— periods: the number of periods taken into account;
— threshold: the threshold;
— operator: the relational operator which can be a less than (lt, also <),

greater than (gt, also >), less than equal (lte, also <=), greater than equal
(gte, also >=);

— metricDefinition: the metric used in the threshold expression:
—– dimensions: the dimensions of the metric, composed as key value pairs;
—– id: the monasca internal ID of the alarm, if applicable;
—– name: the name of the metric;

– currentValues: an array of the current values of the metric (one per period
if more than one period is specified);

– subAlarmState: the state of the subAlarm (OK, ALARM or UNDETER-
MINED).

5.1.1.4 Aggregation Events API

Similar to the Alarm Notifications API, as seen in Section 5.1.1.3, the Aggregation Events
API follows the same rationale about the usage of a messaging bus. It is a single Kafka
messaging bus topic, used by the CEPF, described in Section 6.2.1, to output aggregation
events. This outputted data is modelled using the RADM, detailed in Section 5.3.1, using its
model to model events and alarms.

51

5.1.2 Southbound

Southbound interface is comprised of a single API. It is used to input sensor reported
data into the Aggregation Layer. The API itself is a Kafka messaging bus, which follows a
publish/subscribe communication model and provides a multiple topic usage used to separate
different types of data, i.e. counters or events. In order to keep the reported input data
normalized, it must be modelled according to the Raw and Aggregation Data Model (RADM)
described in Section 5.3.1.

5.1.3 Configuration

The configuration interface of the Aggregation Framework will be provided by the Aggre-
gation Configuration Manager (ACM), which unfortunately is still yet not defined, and so,
it cannot be fully materialized here in this section, despite it has already been referenced in
Section 4.2. However, ACM will provide an internal API for the Aggregation Framework com-
ponents to propagate the externally received configurations. This API will be implemented
over the Zookeeper service, mentioned in Section 3.1.1.

5.2 Data Sources

5.2.1 Sensors

This subsection will cover the relevant sensors and other components that generate data
in the SELFNET environment.

5.2.1.1 Flow Monitoring Agent

Flow Monitoring Agent (FMA) is a piece of software categorized as a physical network
function (PNF), designed to monitor network flows, with a great focus on Ultra High Defi-
nition (UHD) video flows. It reports flow counters and metadata (classified as an event) to
a configurable message bus, thus being able to interact with the Southbound API (Section
5.1.2). This data is modelled after RADM (Section 5.3.1).

5.2.1.2 Snort

Snort is an open-source intrusion prevention system (IPS) that allows real-time traffic
analysis and deep packet inspection (DPI)[50]. In the SELFNET context, the DPI feature is
used to detect botnets and to identify users that were infected and turned into bots. Although
this sensor does not report directly in the RADM format (Section 5.3.1), the Monitoring
Framework supplies a SNORT data source, that translates the SNORT specific format into
RADM. This data is sent to the Aggregation Framework via message bus as an event.

5.2.1.3 Ceilometer

The previously presented Ceilometer in Section 3.5.3 can also be seen as a data source,
since it provides both counters and events originated from the virtualized environment (e.g.
virtual machine CPU usage, Openstack virtual router current incoming packets, etc). In
order for it to provide this data in the RADM model (Section 5.3.1), SELFNET provides a

52

modification to the publisher mechanism that Ceilometer possesses, thus being able to provide
raw data in the proposed RADM format and to a message bus.

5.2.1.4 LibreNMS

LibreNMS is a multi-platform open source network monitoring system that supports a
wide range of hardware and operating systems [51]. It is able to perform automatic devices
discovery over several protocols (e.g. Link Layer Discovery Protocol (LLDP), Cisco Discovery
Protocol (CDP), Border Gateway Protocol (BGP), amongst others) and monitor them by
mainly using Simple Network Management Protocol (SNMP). Like the other sensors presented
in this section, SELFNET also provides a data source that translates LibreNMS gathered data
into the RADM model (Section 5.3.1) and publishes it to a message bus.

5.3 Data Models

5.3.1 Raw and Aggregation Data Model

The Raw and Aggregation Data Model (RADM) is a model that seeks to unify data flowing
through the Aggregation Framework interfaces, representing statistical counters, events or
alarms. It is comprised of a generic model that can be used to report different resource types
using distinct reported data types. This is possible due to the model structure since it uses a
set of generic and mandatory fields that allow to model any kind of data related to this scope
(counters, events, alarms).

It envisions report data types as three different categories:

Category Description

Counters Any reported data that contains statistical fields, reported periodically or
not. A good example would be the data produced by the FMA sensor (see
Section 5.2.1.1), which can be reported periodically or only when anything
on a flow changes. Regardless of its periodicity, from the aggregation point
of view, it is statistical data comprised of a set of counters (e.g. outcomin-
gOctets, lostPackets, etc).

Events Event based reports regarding any change detected by sensors; it can range
from a zombie detected event produced by the SNORT DPI sensor (see
Section 5.2.1.2) to a simple VM instance created event originated from
Ceilometer (see Section 5.2.1.3).

Alarms A particular case of the event data type, where the data reported is relative
to an alarm state transition.

Table 5.2: RADM Report Data Types

Below you can find the generic model together with a brief explanation about its fields.

The following bulleted list depicts the model fields:

� Data:
- timestamp: report time in epoch milliseconds;
- dataType: type of data being reported, it can have one of three possible values:

statistics, event, alarm;

53

- reporterID: a full distinguished name that uniquely identifies a reporter, it is
built using fields and values from reporterDescription attribute;

- resourceType: an attribute that reflects the type of resource being reported, it
can be a flow (see Section 5.2.1.1), virtual machine network counter (see Section
5.2.1.3), a snort dpi event (see Section 5.2.1.2), etc;

- resourceID: a full distinguished name that uniquely identifies the resource being
reported, it is built using fields and values from resourceDescription attribute;

- resourceDescription: this attribute has a map as its value that represents all
attributes describing the resource being reported, it is a string to string map;

- dataDefinition: a map that assumes two different types of values, it comes as a
string to double map if the field dataType as the value statistics, or it comes as a
string to string map if dataType is different than statistics:

– severity: a field that must be included when dataType is alarm, it is expected
to have a numeric value in order to keep severity values normalized;

- reporterDescription: this attribute has a map as its value that represents all
attributes describing the reporter that reported this message, it is a string to string
map.

Examples about this model can be found in Annex A.1.

54

5.3.2 Raw Database Data Model

Since there is a clear distinction between counters and events, as previously stated in
Section 4.2, this section presents two tables that summarize how counters and events are
stored in Raw DB: Table 5.3 refers to counters and Table 5.4 refers to events.

Column Description

timestamp Identifies the time (in milliseconds) when the raw counter (sam-
ple) was collected.

timepartition Data partitioning column, derived from the timestamp of the
data.

resourcetype Identifies the type of resource from which the raw counters are
being collected.

resourceid Identifies the resource from which the raw counters are being
collected.

reporterid Identifies the sensor that is providing the data.

countertype Identifies the type of counters present in each table entry.

resourcedescription Describes the resource (and its hierarchy relationships, i.e., rela-
tion with other/underlying resources) from which data is being
collected. Consists of a list of one or more resources hierarchy
relationships. Each resource entry contains the following fields:

� Name:
- String that identifies the name of the resource;

� Value:
- Resource value.

datadefinition Describes the raw counters. Consists of a list of one or more
counters. Each counter entry contains the following fields:

� Name:
- String that identifies the name of the raw counter;

� Value:
- Raw counter numeric value.

reporterdescription Describes the sensor reporting the data. Consists of a list of one
or more attributes. Each entry contains the following fields:

� Name:
- String that identifies the name of the attribute;

� Value:
- Attribute value.

Table 5.3: Raw DB Counters structure

55

Column Description

timestamp Identifies the time (in milliseconds) when the raw event was col-
lected.

timepartition Data partitioning column, derived from the timestamp of the
data.

resourcetype Identifies the type of resource from which the raw events are
being collected.

resourceid Identifies the resource from which the raw events are being col-
lected.

reporterid Identifies the sensor that is providing the data.

dataType Identifies the type of event present in the table entry (i.e. if it is
an alarm or a normal event).

resourcedescription Describes the resource (and its hierarchy relationships, i.e., rela-
tion with other/underlying resources) from which data is being
collected. Consists of a list of one or more resources hierarchy
relationships. Each resource entry contains the following fields:

� Name:
- String that identifies the name of the resource;

� Value:
- Resource value.

datadefinition Describes the raw counters. Consists of a list of one or more
events. Each counter entry contains the following fields:

� Name:
- String that identifies the name of the raw event;

� Value:
- Raw event string value.

reporterdescription Describes the sensor reporting the data. Consists of a list of one
or more attributes. Each entry contains the following fields:

� Name:
- String that identifies the name of the attribute;

� Value:
- Attribute value.

Table 5.4: Raw DB Events structure

Both CQL Data Definition Language files (DDL) that create these models as Cassandra
tables are available at Annex B.1 (counters) and B.2 (events).

56

5.4 Summary

This chapter started by exposing the existing Aggregation Framework APIs: northbound,
southbound and configuration; and how they provide access to the gathered and aggregated
data. Moreover, the relevant SELFNET entities that produce sensing data were covered in
order to provide an overview of what data is available to collect and process. Lastly, but not
less important, the defined data models that provide a unified and standardized view over
both sensed and aggregated data were presented.

57

58

Chapter 6

Implementation

This chapter covers all implementation details about the Raw Data Loader and Com-
plex Event Processing Framework components, which respective architectures were already
introduced in Section 4.2.

To provide a logical link between the architecture presented beforehand (Chapter 4) and
this implementation chapter, the latter is organized in the following way: from the Monitoring
Framework, the Raw Data Loader implementation will be covered, and from the Aggregation
Framework, the Complex Event Processing Framework will be detailed.

6.1 Monitoring Framework

6.1.1 Raw Data Loader

Raw Data Loader (RDL) is the component within the Aggregation Layer responsible for
loading raw data that is published via Southbound API (Section 5.1.2) into the Raw Database.
This process implies that such data is parsed, validated and mapped in such a way that can
be persisted. The next subsections will cover the RDL’s internal architecture, what data is
valid as input, how such data is mapped and how can RDL be configured.

6.1.1.1 Internal Architecture

RDL was designed using a modular approach so it can be easily extended to support new
features or data models if necessary. As of the date, RDL works in a multi-threaded and
asynchronous way, making use of the modern computational resources available. Figure 6.1
represents its architecture.

59

Figure 6.1: Raw Data Loader Architecture

From the bottom to the upper parts of RDL:

1. Collectors: a set of collector threads that consume data records from the configured
Kafka topics and then append the consumed data to the Kafka Record Queue;

2. Kafka Record Queue: a concurrent data structure that is available to every collector
and persister;

3. Persisters: like the Collectors, it is a set of persister threads that fetch Kafka records
from the Kafka Record Queue and submits them to a transformation process so they
can be stored in Cassandra:
(a) firstly, they are parsed into JSON objects before being handed to the Parser that

validates and transforms those JSON objects into classes that represent either

60

counters or events;
(b) those classes are given to Mapper so it can persist them into Cassandra.

Although not explicit in the Figure 6.1, RDL is able to load its configuration via a YAML
file (see example in Annex C.1.1), specified at deployment time, allowing control over how
many Persister and Collector threads to be used, which Kafka message bus and topics to use,
where is Cassandra database located, amongst others.

6.2 Aggregation Framework

6.2.1 Complex Event Processing Framework

The Complex Event Processing Framework (CEPF) was designed as an alternative and
complement to the Batch Aggregation Framework (BAF), presented in Section 4.1. While
BAF is meant to process all available data, providing simple and complex metrics over multiple
counters aggregated by different time periods, it inevitably is a batch processing system. Its
priority is not fast extrapolation of data but reliable and extensive metric collection.

The concepts behind CEPF are the same of a real-time business intelligence (RTBI),
but in a networking context. These are the ability to deliver real-time (or near to zero
latency) access to information whenever it is required, and the ability to deliver intelligence
or information about operations as they occur. Thus, CEPF was developed to provide real-
time metrics over smaller segments of the network and data sources, according to demand and
with low latency. Apache Storm is a distributed stream processing computation framework
that targets exactly this scenario, meaning that data produced and collected continuously is
naturally processed in the same way, following the streaming concept. It relies on its easy, by
design, horizontal scalability to be a tool of many sizes, being able to deal with the different
traffic load of network events. On a Storm cluster different topologies can be deployed to
target different purposes and make use of optimized parallel computing capabilities. With
this in consideration, CEPF has been defined as a set of topologies that run over a Storm
cluster.

The main concept behind the developed topologies is a set of bolts that map simple
but effective functions for event processing, while keeping these bolts stateless. This way is
possible to generalize complex event aggregations into multiple sets of simple functions. The
main functionalities defined are:

� Kafka spouts: These are the sources of events in the topology. Individually they are
Kafka consumers threads that consume and track the topic partitions assigned to them.
They ensure that every event is successfully consumed and processed on the topology,
taking care of reproducing the event if necessary (e.g. in a failure situation). They
also ensure mechanisms for throttling and maintaining a healthy flow of events in the
topology. Finally, they also translate events from the Raw and Aggregation Data Model
JSON format to Storm Tuples;

� Filter bolts: these are bolts that actively allow or block/discard events on the topology.
From a filtering function, e.g. interface.id = xyz or avgBandwidth >500kbps, the events
are allowed or not to progress in the topology;

� Correlation/Aggregation bolts: are used to join information from multiple events
into a single one. They can be spatial and/or time aggregators in the sense that they
can gather events from different sources and locations in the network with distinct
time periods. These can be called aggregators bolts when they apply mathematical

61

formulae over the information contained in the events, as in calculating the average
bandwidth, or correlation bolts when they simply join events while maintaining their
relevant information, as in listing all IP addresses of a botnet from individual events.
These are the most relevant bolts since they are the ones that require memory to store
events over a short time period, and the ones that perform calculations over the events
data;

� Enrichment bolts: are responsible for retrieving information from external sources
and adding them to an event, e.g. collecting additional data from a database or enriching
an event with rule defined metadata;

� Thresholding bolts: are the bolts that apply rule based thresholds over the events
flowing through them. These can be effectively considered filtering bolts, however,
due to their specialized nature they are given a distinct category. They only output
threshold crossed events when the rule defined conditions are met;

� Routing bolts: as the name indicates, they are bolts that perform routing function-
alities within a topology. Normally, bolts are chained together in a sequential way, e.g.
a Kafka spout connected to a filter bolt and then connected to a publisher bolt, thus
always applying the bolts functionalities in the same order. These bolts allow a topology
to change this concept and guide the events following another logic;

� Publisher bolts: are responsible for outputting the events to the outside of the topol-
ogy. This can be done to a database or the Kafka bus.

In CEPF, a generic and dynamic topology was defined and implemented with seven el-
ements containing a kafka spout, a filtering bolt, an aggregation bolt, a routing bolt, a
thresholding bolt, an enriching bolt and a publisher bolt. This is observed in Figure 6.2 and
further detailed in Section 6.2.1.1.

This approach allows for more complex topologies, targeting the SELFNET use cases
in section 4.3, to be defined by combining additional bolts or a topology built using other
topologies.

6.2.1.1 Engine

CEP Engine is composed of the Apache Storm framework, used to run the developed
topologies. In a sense, the actual engine are the topologies themselves which provide the
computation capabilities needed to address the desired use cases. For this matter, the focus
here will be on the developed topology named Generic Topology.

6.2.1.1.1 Generic Topology

The Generic Topology as firstly been designed to address the Self-Protection use case
(Section 4.3.3) requirements. It was a topology that had a static behaviour, it would only
process data incoming from various SNORT data sources (Section 5.2.1.2) that were reporting
zombie detection events, supplying the topology with several reports about different source
IPs communicating with one destination IP (recognized as the command and control server
that issued attack vectors to zombie devices). These reports were grouped by their destination
IP, and an aggregation function would compile all source IPs under a common list, with a five
second periodicity. This same functionality is now addressed by making use of the Generic
Topology and its runtime dynamic configuration feature.

62

Figure 6.2: Generic Topology

Figure 6.2 presents the Generic Topology and its components, along with the Kafka mes-
sage bus interaction. These components are described as follows:

� Kafka Spout: consumes Kafka records, validates their content and parses them into
Storm Tuples, then it forwards the parsed data into the filtering bolt;

� Filtering Bolt: filters tuples based on a dynamic white-list, allowing only the tuples
that meet the criteria set by the filter. This white-list is rule based and, since every
rule has a unique identifier associated to it, data that successfully passed through the
filter is tagged with this ID, allowing other bolts that receive this data to correctly
identify the associated rule. At this stage, before data is emitted into the next bolt
(the Aggregation bolt), it is also tagged with a composite group by key, built from the
extracted value identified by the group by the condition specified in the rule and rule
ID. This composite group by key allows to isolate the tagged data from being processed
alongside with data associated to other rules that share the same group by key;

� Aggregation Bolt: is directly connected to the filtering bolt in a different way from
how other bolts are connected to each other; these are connected in a none-grouping

63

way, the Aggregation Bolt, on the other hand, is connected to the Filtering Bolt in a
fields-grouping way using the composite group by key, ensuring that multiple nodes of
this bolt always receive data with the same key, useful when a topology is deployed into
a cluster environment and configured to have multiple nodes (bolts and/or spouts) of
the same type.
At the moment, this bolt only allows a static aggregation periodicity that must be
defined at deployment time, forcing all data to be processed at the same rate, despite
belonging to different rules. With the current topology implementation it would require
a massive overhaul of this component in order to encompass a dynamic configuration of
the aggregation period; however, this has been identified as future work and will surely
be implemented when the opportunity arises.
By contrast, the aggregation functions to be applied to the arriving data are dynamic
and based on the supplied rules. This can happen since data was previously tagged with
the corresponding rule ID, therefore making the main functionality of this bolt actually
dynamic. Currently it supports six aggregation functions:

1. List (LIST);
2. Count (COUNT);
3. Sum (SUM);
4. Average (AVG);
5. Maximum (MAX);
6. Minimum (MIN).

Figure 6.3 exposes how this bolt works internally.

64

Figure 6.3: Aggregation process flowchart

It makes use of an underlying topology mechanism that sends a different kind of tuple
called tick. This tick tuple does not contain any actual data, it just indicates that
the aggregation period has passed. And so, given that bolts are stateless, this feature

65

sets the aggregation pace. An important note about tuples storage and their parallel
processing: tuples are temporarily stored before their are aggregated, and are isolated
by using the already mentioned composite group by key. That said, retrieving all saved
tuples in order to process them is also an isolated procedure, by using the same group
by approach. Therefore, several aggregation processes occur at the same time for each
distinct group. Finally, by the end of each process, the aggregated data is emitted
towards this topology’s router;

� Router Bolt: provides, as its name already states, a routing functionality to this
topology, allowing the data that has already been filtered and aggregated to be subjected
to the remaining optional processes before being published. There are four different
paths to follow that are directed by this router bolt, and that are decided upon the
inferred actions to take (publish, enrich or threshold) from the rule associated to the
incoming data tuples. These paths are:

1. Router → Publisher;
2. Router → Enricher → Publisher;
3. Router → Threshold → Publisher;
4. Router → Threshold → Enricher → Publisher.

To accomplish this, data leaving the router bolt is tagged with two new fields:
- Actions: the actions sequence to be performed after data leaves the router;
- Next Action: the next action to be apply to data. It is consumed from the Actions

sequence, allowing data to be correctly forwarded after being processed.
Up to now, the already presented bolts were using a default stream transport to carry
data from one bolt to another, and this practice was totally fine since each bolt was
consuming and emitting tuples in a one to one ratio. This scenario is slightly different, as
the router bolt receives data from the default stream but has to emit tuples to different
bolts, as seem in Figure 6.2, in to follow the actions to take. For this matter, three
streams were created to completely isolate tuples that need to be: enriched (Enrich
stream), applied a threshold (Threshold stream), published (Publish stream); making
this bolt able to emit tuples to the right streams;

� Thresholding Bolt: at the moment, the implementation for this bolt is just place-
holder due to the fact that there is not any combination of sensors, data sources, use
cases and catalogue rules that stimulate this functionality. Therefore, this bolt only
forwards tuples without applying any sort of functions over them. However, the topology
already has this module completely integrated and ready to be further developed in the
future, when concrete requirements arrive;

� Enrichment Bolt: complements the arriving data with more information. As of the
date, there is only one type of enrichment, metadata enrichment. By making use of a
metadata field present in the rule that defined the aggregation, it is possible to enhance
the previously processed data with static metadata specified in the rule. Tuples coming
out of this bolt are directly sent to the Publisher;

� Publisher Bolt: is the exit towards the external world around the topology. In this
case, it is represented by a Kafka messaging bus, where all results that can be metrics,
events and alarms, are published. This bolt is responsible for receiving all processed data
and parse it to the output model RADM (Section 5.3.1). Despite this implementation
only covering the Kafka producer scenario, the Publisher bolt was built with a plugin
like system, where various types of publishers can be used to better interface with other
systems.

66

Having in mind that an Apache Storm topology like this one can be deployed in a cluster
environment, precautions regarding rules synchronization over every bolt need to be taken.
For this matter, Figure 6.4 depicts the interaction between every bolt in the topology with
the CEP Manager component, responsible for deploying rules over the topology.

Figure 6.4: Generic Topology and CEP Manager Interaction

Despite Section 6.2.1.2 covered how aggregation rules are managed, it is of significant
importance to expose how a bolt interfaces with the CEP Manager before delving into further
implementation details. Figure 6.5 explores just that. Each bolt contains a local configuration
manager that registers a listener callback in a Zookeeper Service path, provided at deployment
time, in order to be notified for content changes on that certain path. Therefore, when the
content for that node changes, the bolt is notified and provided it the new data, that hopefully,
represents a set of rules. Here, bolts are to never write into Zookeeper, their role is to only
read configurations provided by CEP Manager.

67

Figure 6.5: A bolt and CEP Manager Interaction

6.2.1.2 Manager

CEP Manager is the component in the Complex Event Processing Framework responsible
for managing the topologies within the Framework, as well as their configuration that are
dynamically introduced by the Aggregation Configuration Manager (ACM).

Despite the fact of this component being oblivious of the aggregation rules life-cycle man-
agement, it exposes the functionalities that enable this management to happen. It makes
sure that the aggregation rules provided through the Aggregation Configuration Manager are
instantiated on the right topologies, if they are applicable. Although not yet implemented,
it is ready to be extended to support the control over the topologies that are running within
the Engine (start, stop, pause) and even the deployment of new ones.

The gap between this component and the Aggregation Configuration Manager is closed
using the coordination service Zookeeper. This ensures that any new data coming from ACM
is properly available in a distributed environment as the CEP Engine.

Since ACM has not been implemented yet, there is no actual usage of the interface provided
by CEP Manager, and so, in order to provide a way to test the aggregation rule deployment,
this component was outfitted with a command line interface that allows a user to provide an
JSON file containing a rule, so that it can be applied to the already running topology. An
example for this rule is provided in Annex D.1.1, it refers to the aggregation rule used for the
Self-Protection use case.

68

Figure 6.6: CEP Manager internal components

Figure 6.6 portraits CEP Manager internal components and how they communicate in
order to deploy new ACM incoming configurations/aggregation rules while providing a mech-
anism to synchronize rules across different topologies. Firstly, CEP Manager is composed of
a Configuration Manager that holds all logic in between the ACM interface up to the com-
munication with a topology. By subdividing CEP Manager in this way simplifies the task of
implementing a Topology Manager in the future, since the software is not tangled up in a
monolithic way. The Configuration Manager is composed of:

� ACM Configurations Zookeeper Manager: connects to the a Zookeeper service
in order to receive JSON strings over Zookeeper and to pass them into the internal
Configuration Manager logic, while keeping a local cache of those strings;

- Zookeeper Connector: effectively connects this manager to a Zookeeper service
(Zookeeper Service A) to a node that ACM should connect as well, in order to
exchange data. In this case, the /cep/acm interface/config path is used.

- Configs Map: is the local cache of the data available at the Zookeeper path, which
is kept in sync by using an automated mechanism of listener callback functions;

69

- API: exposes a way to make use of read, write and listen to data from Zookeeper
path nodes.

� CEP Configurations Zookeeper Manager: it is the same software module as the
ACM Configurations Zookeeper Manager, but explores its functionalities in a distinct
manner by connecting to different Zookeeper node paths and handling different data
than JSON strings. Its logic in centred in receiving write requests to push Scala objects,
representing configurations/rules into topologies;

- Zookeeper Connector: connects this manager to a Zookeeper service, in this
case represented by Zookeeper Service B, that in reality can be the same as
Zookeeper Service A, but connected to a different path. As an example, this
connector is used to connect to each topology root /cep/topology1, so that latter
it can be used to pass data into it;

- Configs Map: represents a local cache of data that was written to the topologies
Zookeeper path, for example /cep/topology1/config ;

- API: the same as the last manager.
� Listener Callback: Configuration Manager makes use of this callback to receive data

and notifications when the data in Zookeeper Service B (representing ACM interface, a
Zookeeper node path, for instance /cep/acm interface), by registering it on the ACM
Configurations Zookeeper Manager API;

� Parser: after the JSON strings, received via callback, are sent to this component, they
are validated and parsed into an internal object structure that must be recognized by
the topologies. The data is then forwarded into the applier;

� Configuration Applier: taking the objects given by the Parser, it is now a matter of
serializing them and deciding to which topologies they must be given to. At this mo-
ment, since there is no Topology Manager component, these configurations are applied
to the topologies indicated by their names, that are supplied during the CEP Man-
ager deployment, via command line. This is realized by using the CEP Configurations
Zookeeper Manager API.

All things considered, CEP Manager is implemented to run in a daemon-like mode, only
processing incoming ACM configurations when notified to do so, parsing and applying them
to the existing topologies, if applicable.

6.3 Summary

The implementation chapter exposed the developed software by this thesis work. It started
in exploring Raw Data Loader and its mechanisms that allow sensed data to be categorized
as counters and events, and then store it for historical data persistence purposes. At the same
level, the Complex Event Processing Framework was introduced in detail, providing insight
upon its Engine and Manager inner-working processes, showing a dynamic and rule-based
real-time aggregation system.

70

Chapter 7

Application and Results

Having presented and explored all previous chapters that covered details from the moti-
vation and objectives up to the implementation of the proof-of-concept, this chapter can now
focus down on what applications have emerged from this research and their results in terms
of performance and applicability to Altice Labs, SELFNET and their 5G network test-bed.

7.1 Applications

Here, applications refer to all software, models and tools that were developed throughout
the research and implementation of this thesis. Given that, this section will present the
achievements accomplished by this work and their impact on other entities.

7.1.1 Raw Data Loader

Raw Data Loader (RDL) was designed to be the data loader for SELFNET, that took
care of parsing data and enforcing a unified model on the project. As of the date, July 2017,
RDL is deployed in the test-bed for several months now, and has also been deployed in a
SELFNET partner test-bed, University of West Scotland.

7.1.2 Raw and Aggregation Data Model

The Raw and Aggregation Data Model (RADM) was specifically designed and built for
SELFNET’s needs. It was discussed and suffered many changes since when it was first
introduced in April 2017, and it has already reached a mature stage where SELFNET sensors
and data-sources comply with the model.

7.1.3 Complex Event Processing Framework

The Complex Event Processing Framework (CEPF) has been in place, in the test-bed and
in its last stable version, since June 2017, having been verified its functionalities in a SELF-
NET integration meeting in Aveiro, in July 2017, where it was integrated with the existing
components available at the test-bed (i.e. sensors and software that processed CEPF out-
put), and it has been also deployed over the University of West Scotland test-bed successfully.
The results presented here are also useful to Altice Labs ALTAIA team to understand if this
framework is a plausible strategy for dealing with events in a real-time fashion.

71

7.1.4 ASF Configurations over Zookeeper extension

This tool kit is a bi-product that emerged when developing CEP Manager, which is re-
ferred to as Configuration Manager in Section 6.2.1.2. It was born by extending and fusing
two separate components supplied by Altice Labs: the Asynchronous Framework static map
cache and their internal version of a Zookeeper watchdog. As briefly mentioned before, this
Configuration Manager synchronizes a local cache map through Zookeeper while giving a way
to register watchers and callbacks to further extract its functionality, and thus making this
software a tool kit. Given this, the main objective of this tool, apart from serving its pur-
pose in the software developed here, is to be integrated into Altice Labs tool set, after being
properly tested and evaluated.

72

7.2 Scenario

Before presenting the tests and results obtained (Section 7.3), it is paramount to provide
context about the testing environment and what use case was put in place to exercise the
functional capabilities of the software. In order to achieve this goal, this scenario section will
first introduce the underlying SELFNET test-bed (Section 7.2.1) and then the chosen use
case (Section 7.2.2).

7.2.1 Test-bed

The testing scenario is based on the SELFNET test-bed, which itself is provided by Altice
Labs and Instituto de Telecomunicações of Aveiro infrastructures. These are connected by
an optical fiber link, allowing the Altice Labs data center to communicate with the flexible
network environment, comprised of virtual and physical network elements such as: sensors,
actuators, traffic interceptors; as well as, a Long Term Evolution (LTE) radio network con-
nected to a virtualized Evolved Packeted Network (EPC) that has Internet connectivity, as
seen in Figure 7.1.

Figure 7.1: High Level Infrastructure Diagram

73

7.2.2 Use case

The chosen use case for this scenario’s testing purposes was the SELFNET Self-Protection
use case. The reason behind this choice lies in the fact that, out of the SELFNET use cases
(Self-Protection, Self-Optimization and Self-Healing), it is the one that at the moment is more
refined and mature with the current test-bed.

The main objectives of the use case, that was covered in Section 4.3.3, are to detect,
identify and isolate a bot-net that has managed to infiltrate the managed network domain.
For this matter there are two major steps in doing so:

1. Identify a bot-net communication pattern in the network by analysing network flows
and then:
(a) deploy a traffic mirroring virtual function that mirrors the suspicious traffic to a

deep packet inspection function;
(b) deploy a deep packet inspection virtual function to identify bots (also known as

zombies) in the bot-net.
2. Collect data reported by the DPI function so that it can be aggregated in order to

provide evidence of the entities that comprise the bot-net, to then be able to actuate in
the network by:
(a) deploying a honey-net, used to isolate all zombies and the server controlling them;
(b) configuring the existing traffic mirroring function to divert the same traffic over to

the deployed honey-net.

Illustrations of both step one and step two can be found in Section 4.3, referenced by Figure
4.7 and Figure 4.8, respectively.

7.3 Results

The Results section presents the performed load tests for RDL and CEP Engine Generic
Topology, which are inserted in the second loop of the use case referred in Section 7.2.2.
However, before presenting said results, a brief overview over the metrics and information
extracted from the use case first loop.

This first loop aims to identify possible zombies that are communicating with a command
& control server. To achieve this identification, the Batch Aggregation Framework periodically
takes all network flows reported by FMA (see Section 5.2.1.1) and calculates two metrics for
each unique combination of source IP, destination IP and destination port: average packet
count, as seen in Figure 7.2, and communication frequency, depicted in Figure 7.3. Afterwards,
the Analyser Framework would have previously configured a threshold rule in the Batch
Aggregation Threshold Engine in order to trigger alarms that reported the potential zombies
identification. Figure 7.4 depicts an example of the metrics values, together with the IPs and
ports that identify zombies, that would trigger the alarms.

In this particular case, the data used to populate the presented charts originate from real
sensing performed in the test-bed and with the presence of a real bot-net. Due to the vast
amount of data fitted in those charts, Figure 7.2 and Figure 7.3 do not provide a comprehensive
legend that lists all unique destination IP, destination port and source IP. On the other hand,
Figure 7.4 can provide said list since it is relatively short. A brief note must be made in order
to clarify the represented curves in Figures 7.2, 7.3 and 7.4. Each curve is a metric value over
time, referent to a unique combination of source IP, destination IP and destination port; for

74

instance, Figure 7.2 shows the average packet count metric where each curve is a value tied
to those three dimensions (source IP, destination IP and destination port).

Figure 7.2: Batch aggregation - Average packet count metric for each unique combination of
source IP, destination IP and destination port present in the network, with a sampling rate
of 120 seconds on a 30 minute time window

Figure 7.3: Batch aggregation - Communication frequency metric for each unique combination
of source IP, destination IP and destination port present in the network, with a sampling rate
of 120 seconds on a 30 minute time window

75

Figure 7.4: Average packet count and communication frequency metrics pairs for each unique
combination of source IP, destination IP and destination port that have been identified as
suspicious zombies

With this first loop zombie identification, SNORT can be deployed to inspect all packets
exchanged between the zombies and their command & control server, producing new data
to be sensed and processed of the Aggregation Layer. The next sections 7.3.1 and 7.3.2 will
cover the second loop of the use case, for RDL and CEPF respectively.

7.3.1 Raw Data Loader

RDL is deployed in VM with 8GB RAM and 2 VCPUs, that is also used to deploy a
Kafka broker, which serves all SELFNET test-bed components. RDL itself is configured to
have 5 collector threads with 20 seconds of polling time and a batch consume size of 10 million
records maximum, and 5 persister threads with 0 seconds of polling time (setting polling time
to 0 implies no time internal between each polling action, ensuring the highest possible CPU
usage), as seen in the Annex C.1.2.

To shed some light on RDL performance, two load test were performed, using a SNORT
emulator that aimed to report:

� Load 1: 4826 events per second with 254 zombies per 19 botnets, during 280 seconds;
� Load 2: 64262 events per second with 254 zombies per 253 botnets, during 180 seconds.

Programmatically, these events are published to a Kafka message bus in best effort mode,
thus making the actual data generation process to have different event publish rates. Another
import remark to make is that the two tests have different duration times, the reason being
the amount of data that they generate. Since RDL keeps records in-memory before storing
them in to the database, there is a maximum amount of records that RDL can hold before
crashing, therefore limiting the time duration of the data generation process. Having said
that, for both tests, the data generator was ran until it first reached, or crossed, the 500000
events in-memory mark. Then, RDL was left running until it managed to process all generated
events.

76

The event generator was located in a different VM than the RDL one for two main
reasons: RDL VM had already several other software running there, limiting resources usage;
the generator is CPU intensive and running it in the same VM as RDL would negatively
impact the measurements.

Measurements were made in two parallel parts, manually and by using both RDL and
the generator debug modes that output their statistics each second. That is to say, since
measurements were taken from two different VMs, in a manual fashion and both software
were Java Virtual Machines running on top of a VM, these measurements are not completely
accurate yet they provide a good notion about RDL performance.

77

7.3.1.1 Test Load 1

Figure 7.5 and Table 7.1 represent the first test load measured values from RDL and the
events generator. The test lasted 280 seconds, until the RAM safe limit was reached, having
recorded 528352 events in-memory, where 708660 events were generated in 90 seconds. Visu-
ally, and with the aid of Table 7.1, it is possible to see that RDL can almost consume records
at the same rate that they are published (87.457% ratio, 12,543% slower than the generator
rate); however most of its performance is lost when persisting them into the database, pre-
senting a storage ratio of 34.364% relative to the events consumed (65.636% slower than the
consume rate).

78

Figure 7.5: RDL Performance 1

79

Total
Generated

(event)

Average
Generated
(event/s)

Total
Consumed

(event)

Average
Consumed
(event/s)

Consume
Ratio

Total
Stored
(event)

Average
Stored

(event/s)

Storage
Ratio

Maximum
In-memory

(event)

708660 7874 592227 6886.4 87.457% 681536 2366.4 34.364% 528352

Table 7.1: RDL Performance Load 1, sample time 280 seconds

80

7.3.1.2 Test Load 2

Taking a look into Figure 7.6 and into Table 7.2 values, a big difference can be registered
between this test and the first one: the sample time is shorter, 180 seconds, and the generator
produced a similar amount of events, compared to the first test, but within a smaller time-
frame, 40 seconds, until the in-memory limit was reached. The results to be taken from this
experiment are analogous to the first one: RDL is able to consume records from the message
bus with a 94.666% speed ratio (only 5.334 slower than the generator rate), and there is a
huge performance drop when persisting data which is 75.297% slower than the consume rate.

81

Figure 7.6: RDL Performance 2

82

Total
Generated

(event)

Average
Generated
(event/s)

Total
Consumed

(event)

Average
Consumed
(event/s)

Consume
Ratio

Total
Stored
(event)

Average
Stored

(event/s)

Storage
Ratio

Maximum
In-memory

(event)

527812 13195 512149 12491 94.666% 555442 3085.8 24.703% 531678

Table 7.2: RDL Performance Load 2, sample time 180 seconds

7.3.1.3 Conclusion

Taking these results into account, it is clear to see that RDL can be improved regarding
its storing speed. From an implementation point of view, this slowed storage process can be
caused by: parsing, database persistence or a combination of both. Finding the actual cause
brings a new development required for this software, more accurate and complete measuring
functionalities that allow to register how much time parsing and persisting takes, something
that does not exist at the moment, enabling a way to analyse their performance and under-
stand where the bottleneck is, which can only be in the parser, the persister or both. If the
bottleneck is the parser, a possible solution would be reimplement it in a way that allows a
parallel and asynchronous parsing process, instead of the actual static utility. On the other
hand, if the bottleneck is the persister, the most likely solution to be applied is to discard the
current persisting process, which involves a database mapper that takes objects and stores
them in the database, to accommodate a new one where prepared statements are used to
directly send stored queries to the database. Both proposed solutions will require investiga-
tion on their impact on the RDL performance and code maintainability. Moreover, and not
invalidating the conclusion already drawn, RDL performance fits, for now, the dimension of
the test-bed which does not have sensors configured to output data in rates that expose the
revealed bottleneck.

7.3.2 Complex Event Processing Framework

Hereby it is presented the sole load test performed over the Complex Event Processing
Framework. The focus here is the CEP Engine’s Generic Topology, configured with an ag-
gregation rule that lists all source IPs belonging to the same destination IP reported from
SNORT (see Section 5.2.1.2). CEP Engine is deployed in a VM with very limited resources:
2GB RAM and 2 VCPUS; since Apache Storm (the framework used by CEP Engine) compo-
nents take 1GB of the available RAM, the topology is left with little more than 1GB of RAM
to use, which eliminates the possibility of having a thorough stress test on the topology.

Table 7.3 depicts the RAM occupied by the topology, alongside with the numbers of
workers, executors, tasks and replication count of processing nodes. It is important to note
that the amount workers is relative of configured RAM value for each one of them. In this
case, the configuration used assigns 1024MB for each worker; however, the system does not
possess these resources making it liberate only 832MB, and therefore limiting the workers
number. Also in the table there are the executors and tasks which are configured in a simple
way, one executor and tasks per processing node in the topology (any spout or bolt).

83

Workers Executors Tasks
Replication

count
Assigned Mem (MB)

1 8 8 1 832

Table 7.3: Topology summary

An indispensable remark to make is that the data shown and presented here, in this
section, has been retrieved using the Apache Storm UI, a component of Apache Storm that
gathers statistical data about its system (e.g. Storm Supervisor, etc) and deployed topologies.
The graph depicted in Figure 7.7 is the graphical view of the Generic Topology, where it
is depicted the processing nodes, referred in Section 6.2.1.1.1 and presented in Figure 6.2,
which are connected as follows: EventSpout-1 consumes records from a Kafka message bus,
parses them to the Storm internal model (tuples) to then emit them towards the Event-
FilteringBolt-1; there, tuples are filtered using a white-list and, if they pass the filter, they
are forwarded to the EventAggregationBolt-1, where data is aggregated and then sent to
the EventRoutingBolt-1 that decides the next operations to be performed over the tuples
(enriched on the EventEnrichmentBolt-1, applied to a threshold on the EventTresholdingBolt-
1, or published by the EventPublisherBolt-1); and some runtime statistics obtained via Storm
UI, data stream names and their load (depicted at each arrow), and the average processing
latency at each node. These statistical values are also available in Tables 7.4 and 7.5.

84

Figure 7.7: Generic Topology StormUI Load 1

85

7.3.2.1 Test Load 1

This test, as mentioned before, is a simple one. Its objective is to demonstrate a working
example driven by the Self-Protection use case and what performance impact it has. For
this matter, a SNORT emulator has been deployed and configured to report three zombie
detection events (i.e. three different zombies) each second and equally spaced in time within
the second, for 10 minutes. The only rule in place is the one referenced in Annex D.1.1, that
impacts the topology in the following way:

� FilteringBolt: its white-list is populated with the filter resourceType == snort-dpi-
alert, allowing only events reported by this type of resource to progress into the topology;

� AggregationBolt: it is supplied with the aggregation function LIST(srcIP, classifica-
tion) to produce a list of sets that contain the source IP and classification of a zombie;

� RoutingBolt: it is configured to forward the events tagged with this rule in a way
that they are enriched first and then published. This is achieved by looking into the
rule and find if there is any metadata to enrich events with, which is the case;

� Enrichment: it is provided with the metadata to enrich events passing through this
bolt;

� Publisher: it does the final arrangements to events before they are published: trans-
late dimensions names (e.g. dstIP to ccServerIP), name the aggregation values (e.g
listSrcIP), work out if the event is an alarm or just a normal event and provide the
severity that is needed.

Having now the spout and bolts loaded with this rule, they processed these events for 10
minutes starting from a clean state. Table 7.4 shows data regarding the spout that consumes
records from Kafka. In total it consumed and emitted 3157 events into the topology, and
shows that the complete latency, the average time from when an event is consumed until it
is acknowledged and outputted from the topology, is 2257,354 milliseconds, which is roughly
half of the aggregation period, 5 seconds, making it the expected value since the generated
data volume is constant throughout time. Furthermore, the emitted tuples match up with
the acknowledged ones, confirming that all incoming data fits the rule in place.

ID Executors Tasks Emitted Transferred
Complete
latency

(ms)
Acked

EventSpout-1 1 1 1590 1590 2257,354 1586

Table 7.4: Topology Spouts 10 minutes stats

Most of the processing latency arises from the Aggregation Bolt, as can be seen in Table
7.5, which has an average of 2,193 milliseconds. This is caused by, the already mentioned,
constant way that the generated events are produced and consumed. Moreover, with a glance
over the process latency values, it is possible to state that aggregation operations are the
ones that impact the most on the latency, something that is expected since the rule defines a
five second aggregation period, and that other bolts have a significantly low impact on this
metric.

Not only this metric is relevant from a testing point-of-view, but also, the amount of
tuples emitted at each bolt. Table 7.5 reveals that all generated events are allowed to flow
into the topology, by the filter, since the tuples emmited by EventFilteringBolt-1 match the
acknowledged ones by EventAggregationBolt-1 ; then the same bolt only emitted 120 tuples,

86

confirming that data is aggregated to then be routed, enriched with metadata and published.

A note should be made about the accuracy of the data presented here. Storm UI provides
statistic values about what is happening in the topology; however, while all topology compo-
nents can be clustered, which is not the case, the same components (i.e. spouts and bolts) are
running in separate threads. This detail affects the measurements made by Storm UI, as it is
a hard task to ensure that all measurements are made at the same exact time and that results
will also exactly match between different threads. This matter is clearly reflected on Tables
7.4 and 7.5: one example would be the number of emitted tuples by EventAggregationBolt-1
and the number of acknowledged tuples by the EventRoutingBolt-1, they do not match but
are fairly close.

ID Executors Tasks Emitted Transferred
Capacity

(last 10m)

Execute
latency

(ms)
Executed

Process
latency

(ms)
Acked

EventAggregationBolt-1 1 1 120 120 0,006 2,193 1669 2159,346 1684

EventEnrichementBolt-1 1 1 129 129 0,001 4,800 100 3,167 120

EventFilteringBolt-1 1 1 1677 1677 0,006 2,259 1570 2,136 1543

EventPublisherBolt-1 1 1 0 0 0,001 2,571 128 2,571 140

EventRoutingBolt-1 1 1 151 151 0,001 6,667 120 6,429 140

EventTresholdingBolt-1 1 1 0 0 0,000 0,000 0 0,000 0

Table 7.5: Topology Bolts 10 minutes stats

7.3.2.2 Conclusion

Above all, the results here presented showed that the Generic Topology correctly works
in this scenario, despite StormUI presenting slightly inaccurate values, and that in order to
be able to perform a more serious series of experiments on this platform, two key aspects
are required: better hardware, or VM resources, and a use case that uses sensors which are
capable of generating the load needed for such test.

Despite this, a valid point can be made when the matter of introducing a new use case to
the existing topology, which is: how can statistic data be collected from a topology that serves
different use cases or rules concurrently? Well, StormUI will not be able to provide this, since
it does not have notion about the rule isolation system running inside of the topology. A
possible solution might be the implementation of a data structure or an agent that provides
this from inside of the topology. While this would solve this problem, it would also further
make the topology more complex and harder to maintain in the long run.

A simple solution, that could be used as a first approach, is to deploy test topologies which
are configured to solely take data required from data sources defined by a certain use case,
much alike the case presented here, and still use StormUI to take measures. As a starting
point this definitively works, but the testing and deployment phases would slow down due to
this personalised way of testing.

A conclusion that one can take from these series of thoughts is that there is no optimal
way of testing CEP Framework, since the methodology is tied to the tests objective, to the
deployment type and the underlying infrastructure. That said, it is also clear that CEPF is
open to further improvements as the need for more complex scenarios arrive, like the Self-
Protection use case.

87

7.4 Summary

This chapter started by establishing the four contributions made to Altice Labs and to
the SELFNET project. Afterwards, and before displaying results, the scenario section was
explored, where the SELFNET test-bed was introduced, followed by a clarification on which
use case was to be exercised in the tests. After having provided context on the testing
environment, the results section covered the tests, to which RDL and CEPF were subjected,
while providing a critic vision about the extracted results. In a few words, RDL showed
promising results regarding data consumption rates while revealing a storage throughput
flaw, that has been identified and will be worked on. On the other hand, CEPF showed
that infrastructure limitations are currently affecting load tests results. Despite this, CEPF
showed that the proposed functionalities are in place and it still is open to new requirements.

88

Chapter 8

Conclusion and Future Work

All content presented here had the objective of not only presenting the work developed by
this thesis, but also its context and impact outside of the academia. This is not to diminish the
role that academia has in society and in the scientific world, but to enforce that opportunities
which bring common work platforms that are able of connecting the academia to the public
and private companies, must be seized in order to provide society and the market with more
complete and realistic solutions. Although it might be pretentious to claim that this thesis
work has managed to take a tiny step towards this vision, I think that there is evidence in
this sense and that more can be done in this aspect.

This evidence refers to the accomplishments depicted in Section 7.1 which include three
software pieces (Raw Data Loader, Complex Event Processing Framework and the ASF Con-
figurations over Zookeeper extension, also known as Configuration Manager) and one data
model (Raw and Aggregation Data Model). These were contributed to Altice Labs, SELF-
NET and SELFNET partners.

Results wise, both RDL and CEPF showed that their functionalities are in place and
already being applied to SELFNET test-bed. However, the performance tests indicate that
improvements are needed in both components. RDL tests assessed that consuming data
from a message bus is done at acceptable rates, but parsing and persisting that data are
not. These results reveal RDL’s weaknesses and aspects to improve. Regarding CEPF and
the tests performed to it expose that performance could not be properly assessed, due to
inappropriate hardware requirements and inaccurate measuring tools.

Solution wise, all software exposed here can and will be further improved to meet new
requirements and to fix known issues. In a future work point-of-view, Raw Data Loader will be
improved to upgrade its performance and will be further matured to provide a solid platform
that can take on new SELFNET requirements when they arrive, for instance, there might be
the need for it to perform some enrichment operations before storing data. Regarding CEP
Framework, this software is the one that has space for improvement, for several reasons: at the
moment, and although it provides a dynamically configurable topology, it was only designed
to support the Self-Protection use case. When the time comes to support the remaining use
cases, its performance will become a relevant topic to test and discuss; another reason would
be the pending integration with the Aggregation Configuration Manager, which will be a new
requirement to integrate with the CEP Framework and its Manager. And at last, but not of
lower importance, is the future work to be done over the Configuration Manager, the software
extension built on top Altice Labs Asynchronous Framework map cache and Zookeeper, that

89

has to be done in order for it to be approved into Altice Labs tool set.
More concretely, the planned future work will address:
� Raw Data Loader performance issues by:

- extending the Parser and Persister modules to provide performance indicators;
- analyse these performance indicators and identify the bottleneck of the system,

which can be the Parser, the Persister or both;
- reimplement the identified bottlenecks.

� Complex Event Processing Framework in two fields:
- Test coverage:

– current test coverage is not optimal and does not provide a complete insight
about the framework’s performance. To address this, better hardware will be
requested so that more complete tests can be written and used to assess the
system.

- New requirements:
– as the SELFNET project continues and with the Self-Protection scenario al-

ready implemented at the Aggregation Framework, the other two use cases will
be addressed. Due to the complex nature of the Self-Optimization use case
(i.e. calculate complex metrics in real-time, correlating data from network
flows and physical infrastructure network counters), a new topology will be
developed, extending the Generic Topology (presented in Section 6.2.1.1.1) in
order to address the use case. Regarding the Self-Healing use case, discussions
about its course are still in place; however, regardless of their outcome, the
minimum expected changes encompass new aggregation rules to be supported;

– a integration requirement will emerge when the Aggregation Configuration
Manager (ACM) is developed and introduced into the test-bed. For this mat-
ter, the CEP Manager component will need to be adjusted in order to correctly
interface with ACM. The interfacing means changes to the current CEP Man-
ager rule parser.

- Improvement of the Generic Topology existing features:
– aggregation functions are still relatively simple and will be extended to support

complex formulae;
– aggregation period is still static and a dynamic one will be implemented;
– thresholding capabilities have not yet been developed and will now be ad-

dressed for the Self-Optimization use case;
– enrichment functionalities will be further extended to not only support meta-

data enrichment, but to use Cassandra and InfluxDB as data sources as well,
since they hold raw and aggregated data, respectively.

� Configuration Manager acceptance as a valid tool to integrate the existing Altice Labs
tool set by subjecting it to their test procedures.

While the list above presented the future work relative to my participation in SELFNET, a
transition will be made to the European project SLICENET [64], where the machine learning
area will be researched and introduced to an environment similar to SELFNET’s. The main
difference between SELFNET and SLICENET participation is that, in SELFNET the data
aggregation tasks were prioritized in order to be able to contribute to the Altice Labs ALTAIA
project and to SELFNET itself; however, in SLICENET a different focus will be taken, the
main objective is to take on the challenge of developing a proof-of-concept framework for
inferring, diagnosing and solving potential anomalies in a 5G environment that supports

90

SDN and NFV, by using machine-learning concepts.
In a few words, and to summarize this last chapter, there is room for improvement and,

although this thesis comes to an end, its work only provides a starting point for future
work. Future work that will further contribute to Altice Labs, SELFNET, SLICENET and,
ultimately and hopefully, to the future of 5G networks.

91

92

Bibliography

[1] International Telecommunications Union ”ITU towards ”IMT for 2020 and beyond”
- IMT-2020 standards for 5G”, http://www.itu.int/en/ITU-R/study-groups/rsg5/
rwp5d/imt-2020/Pages/default.aspx, last visited July 2017

[2] Jo Best ”The race to 5G: Inside the fight for the future of mobile as we know it”, https://
www.techrepublic.com/article/does-the-world-really-need-5g, last visited July
2017

[3] NGMN 5G White Paper, https://www.ngmn.org/uploads/media/NGMN_5G_White_

Paper_V1_0.pdf, last visited July 2017

[4] The 5G-PPP/H2020 SELFNET project, ”Framework for Self-Organized Network Man-
agement in Virtualized and Software Defined Networks”, http://selfnet-5g.eu, last
visited July 2017

[5] T-NOVA website, http://www.t-nova.eu, last visited July 2017

[6] UNIFY website, http://www.fp7-unify.eu, last visited July 2017

[7] CROWD website, http://www.ict-crowd.eu, last visited July 2017

[8] 5G-NORMA website, https://5gnorma.5g-ppp.eu, last visited July 2017

[9] MYCOM OSI PrOptima�web page, http://www.mycom-osi.com/products/

proptima/service-and-network-performance-management, last visited July 2017

[10] ZTE Network Performance Management Service, http://www.zte.com.cn/global/

services/categories/unicare/products/413041, last visited July 2017

[11] Altice Labs Operation Support Systems, ”Altaia End-To-End Assurance Solution”,
http://www.alticelabs.com/content/products/BR_Altaia_ALB_EN.pdf, last visited
July 2017

[12] P. Demestichas, A.Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu,
C. Xiong, J. Yao 5G on the Horizon: Key Challenges for the Radio-Access Network,
IEEE Vehicular Technology Magazine, Volume: 8, Issue: 3, September 2013

[13] O. Awobuluyi, J. Nightingale, Q. Wang, J. Calero Video Quality in 5G Networks:
Context-Aware QoE Management in the SDN Control Plane, 2015 IEEE International
Conference on Computer and Information Technology; Ubiquitous Computing and Com-
munications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, October 2015

93

http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/default.aspx
http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/default.aspx
https://www.techrepublic.com/article/does-the-world-really-need-5g
https://www.techrepublic.com/article/does-the-world-really-need-5g
https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf
http://selfnet-5g.eu
http://www.t-nova.eu
http://www.fp7-unify.eu
http://www.ict-crowd.eu
https://5gnorma.5g-ppp.eu
http://www.mycom-osi.com/products/proptima/service-and-network-performance-management
http://www.mycom-osi.com/products/proptima/service-and-network-performance-management
http://www.zte.com.cn/global/services/categories/unicare/products/413041
http://www.zte.com.cn/global/services/categories/unicare/products/413041
http://www.alticelabs.com/content/products/BR_Altaia_ALB_EN.pdf

[14] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, J. Zhang What Will 5G
Be?, IEEE Journal on Selected Areas in Communications, Volume: 32, Issue: 6, June
2014

[15] A. Farshad, P. Georgopoulosy, M. Broadbent, M. Mu, N. Race Leveraging SDN to Pro-
vide an In-network QoE Measurement Framework, 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), May 2015

[16] L. Li. Z Mao, J. Rexford Toward Software-Defined Cellular Networks, 2012 European
Workshop on Software Defined Networking, October 2012

[17] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula DevoFlow: Scaling Flow Management
for High-Performance Networks, Proceeding SIGCOMM ’11 Proceedings of the ACM
SIGCOMM 2011 conference, August 2011

[18] M. Liyanage, J. Okwuibe, I. Ahmed, M. Ylianttila, O. Pérez, M. Itzazelaia, E. Oca
Software Defined Monitoring (SDM) for 5G Mobile Backhaul Networks, 2017 IEEE In-
ternational Symposium on Local and Metropolitan Area Networks (LANMAN), June
2017

[19] C. Ramirez-Perez, V. Ramos SDN Meets SDR in Self-Organizing Networks: Fitting the
Pieces of Network Management, IEEE Communications Magazine, Volume: 54, Issue: 1,
January 2016

[20] P. Patil, A. Hakiri, Y. Barve, A. Gokhale Enabling Software-Defined Networking for
Wireless Mesh Networks in Smart Environments, 2016 IEEE 15th International Sympo-
sium on Network Computing and Applications (NCA), November 2016

[21] G. Poulios, K. Tsagkaris, P. Demestichas, A. Tall, Z. Altman, C. Destr Autonomics
and SDN for Self-Organizing Networks, 2014 11th International Symposium on Wireless
Communications Systems (ISWCS), August 2014

[22] Zookeeper Web site, http://zookeeper.apache.org/, last accessed July 2017

[23] Zookeeper available at https://zookeeper.apache.org/doc/trunk/zookeeperOver.

html, last visited July 2017

[24] Flávio Junqueira and Benjamin Reed O’Reilly ZooKeeper: Distributed Process Coordi-
nation, November 2013.

[25] Zookeeper Data Model, https://www.dezyre.com/article/

zookeeper-and-oozie-hadoop-workflow-and-cluster-managers/216, last vis-
ited July 2017

[26] HashCorp Consul introduction, https://www.consul.io/intro/index.html, last vis-
ited July 2017

[27] Apache Kafka, ”A Distributed Streaming Platform”, http://kafka.apache.org, last
visited July 2017

94

http://zookeeper.apache.org/
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html
https://www.dezyre.com/article/zookeeper-and-oozie-hadoop-workflow-and-cluster-managers/216
https://www.dezyre.com/article/zookeeper-and-oozie-hadoop-workflow-and-cluster-managers/216
https://www.consul.io/intro/index.html
http://kafka.apache.org

[28] Linkedin, Benchmarking Apache Kafka: 2 Million Writes Per Second
(On Three Cheap Machines), https://engineering.linkedin.com/kafka/

benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines,
last visited July 2017

[29] Apache Kafka introduction, http://kafka.apache.org/intro.html, last visited July
2017

[30] Sean T. Allen, Matthew Jankowski, Peter Pathirana Manning Publications Company,
Storm applied: strategies for real-time event processing, 2015.

[31] Ankit Jain, Anand Nalya Packt Publishing Ltd Learning Storm, 2014.

[32] Apache Storm — Concepts, available in http://storm.apache.org/releases/1.1.0/

Concepts.html, last visited July 2017

[33] The Apache Software Foundation Blog, ”The Apache Software Foundation Announces
Apache Cassandra Release 0.6”, https://blogs.apache.org/foundation/entry/the_
apache_software_foundation_announces3, last visited July 2017

[34] Benchmarking Top NoSQL Databases, https://www.datastax.com/wp-content/

themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf, last visited July
2017

[35] InfluxData InfluxDB website, https://www.influxdata.com/time-series-platform/
influxdb/, last visited July 2017

[36] InfluxDB Tops Cassandra in Time-Series Data & Metrics Benchmark, https://www.
influxdata.com/influxdb-vs-cassandra-time-series, last visited June 2017

[37] Openstack Gnocchi website, https://wiki.openstack.org/wiki/Gnocchi, last visited
July 2017

[38] Ceilometer, available in http://docs.openstack.org/developer/ceilometer/index.

html, last visited July 2017

[39] Ceilometer Metrics, available in http://docs.openstack.org/admin-guide/

telemetry-measurements.html, last visited July 2017

[40] Monasca Architecture, https://wiki.openstack.org/wiki/Monasca#Architecture,
last visited July 2017

[41] About Monasca, http://monasca.io/about.html, last visited July 2017

[42] MongoDB Aggregation Framework, https://docs.mongodb.com/manual/

aggregation, last visited July 2017

[43] MongoDB Aggregation Framework Pipeline Operations, https://docs.mongodb.com/
manual/reference/operator/aggregation-pipeline, last visited July 2017

[44] MongoDB Aggregation Framework Pipeline results limitation, https://docs.mongodb.
com/manual/core/aggregation-pipeline-limits/#result-size-restrictions,
last visited July 2017

95

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://kafka.apache.org/intro.html
http://storm.apache.org/releases/1.1.0/Concepts.html
http://storm.apache.org/releases/1.1.0/Concepts.html
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/influxdb/
 https://www.influxdata.com/influxdb-vs-cassandra-time-series
 https://www.influxdata.com/influxdb-vs-cassandra-time-series
https://wiki.openstack.org/wiki/Gnocchi
http://docs.openstack.org/developer/ceilometer/index.html
http://docs.openstack.org/developer/ceilometer/index.html
http://docs.openstack.org/admin-guide/telemetry-measurements.html
http://docs.openstack.org/admin-guide/telemetry-measurements.html
https://wiki.openstack.org/wiki/Monasca#Architecture
http://monasca.io/about.html
https://docs.mongodb.com/manual/aggregation
https://docs.mongodb.com/manual/aggregation
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline
https://docs.mongodb.com/manual/core/aggregation-pipeline-limits/#result-size-restrictions
https://docs.mongodb.com/manual/core/aggregation-pipeline-limits/#result-size-restrictions

[45] MongoDB Aggregation Framework Pipeline RAM limitation, https://docs.mongodb.
com/manual/core/aggregation-pipeline-limits/#memory-restrictions, last vis-
ited July 2017

[46] Trifacta Wrangler homepage, https://www.trifacta.com/products/wrangler, last
visited July 2017

[47] Trifacta Wrangler Editions, https://www.trifacta.com/products/editions, last vis-
ited July 2017

[48] Trifacta Wrangler Editions, https://www.trifacta.com/start-wrangling, last visited
July 2017

[49] QoSient Argus Website, https://qosient.com/argus, last visited July 2017

[50] Snort Website, https://www.snort.org/, last visited July 2017

[51] LibreNMS Website, http://www.librenms.org/, last visited July 2017

[52] Apache Chukwa Website, http://chukwa.apache.org, last visited July 2017

[53] Pivotal Software, Inc., RabbitMQ: The Most Widely Deployed Open Source Message
Broker, http://rabbitmq.com, last visited July 2017

[54] Apache Kafka vs RabbitMQ, http://www.cloudhack.in/2016/02/29/

apache-kafka-vs-rabbitmq/, last visited July 2017

[55] Openstack Keystone Website https://docs.openstack.org/keystone/latest, last
visited July 2017

[56] MySQL Website https://www.mysql.com, last visited July 2017

[57] Monasca API Documentation, https://github.com/openstack/monascaapi/blob/

master/docs/monasca-api-spec.md, last visited July 2017

[58] Monasca API Spec List Metrics, https://github.com/openstack/monascaapi/blob/
master/docs/monasca-api-spec.md#list-metrics, last visited July 2017

[59] Monasca API Spec List Dimension Values, https://github.com/openstack/

monasca-api/blob/master/docs/monasca-apispec.md#list-dimension-values,
last visited July 2017

[60] Monasca API Spec List Dimension Names, https://github.com/openstack/

monasca-api/blob/master/docs/monasca-apispec.md#list-dimension-names, last
visited July 2017

[61] Monasca API Spec List Measurements, https://github.com/openstack/

monasca-api/blob/master/docs/monasca-apispec.md#list-measurements, last vis-
ited July 2017

[62] Monasca API Spec List Names, https://github.com/openstack/monascaapi/blob/
master/docs/monasca-api-spec.md#list-names, last visited July 2017

96

https://docs.mongodb.com/manual/core/aggregation-pipeline-limits/#memory-restrictions
https://docs.mongodb.com/manual/core/aggregation-pipeline-limits/#memory-restrictions
https://www.trifacta.com/products/wrangler
https://www.trifacta.com/products/editions
https://www.trifacta.com/start-wrangling
https://qosient.com/argus
https://www.snort.org/
http://www.librenms.org/
http://chukwa.apache.org
http://rabbitmq.com
http://www.cloudhack.in/2016/02/29/apache-kafka-vs-rabbitmq/
http://www.cloudhack.in/2016/02/29/apache-kafka-vs-rabbitmq/
https://docs.openstack.org/keystone/latest
https://www.mysql.com
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md#list-metrics
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md#list-metrics
https://github.com/openstack/monasca-api/blob/master/docs/monasca-apispec.md#list-dimension-values
https://github.com/openstack/monasca-api/blob/master/docs/monasca-apispec.md#list-dimension-values
https://github.com/openstack/monasca-api/blob/master/docs/monasca-apispec.md#list-dimension-names
https://github.com/openstack/monasca-api/blob/master/docs/monasca-apispec.md#list-dimension-names
https://github.com/openstack/monasca-api/blob/master/docs/monasca-apispec.md#list-measurements
https://github.com/openstack/monasca-api/blob/master/docs/monasca-apispec.md#list-measurements
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md#list-names
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md#list-names

[63] Monasca API Spec List Statistics, https://github.com/openstack/monascaapi/

blob/master/docs/monasca-api-spec.md#list-statistics, last visited July 2017

[64] SLICENET Website, https://5g-ppp.eu/slicenet, last visited July 2017

97

https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md#list-statistics
https://github.com/openstack/monascaapi/blob/master/docs/monasca-api-spec.md#list-statistics
https://5g-ppp.eu/slicenet

98

Appendix A

Data Models

A.1 Raw and Aggregation Data Model (RADM) examples for
Self-Protection UC: Loop 1

A.1.1 Input - Aggregation (batch) counters

1 {
2 ”Data” : [
3 {
4 ”timestamp” :1496149720665 ,
5 ”dataType” : ” event ” ,
6 ” reporte r ID ” : ” reporterHostName=fma2/ repor t e r IP =10 .10 .0 .11/

reporterAppType=FMA” ,
7 ” resourceType ” : ”FLOW” ,
8 ” resourceID ” : ” f lowLayer=0/flowHash=3BC05E59/ l3Proto=2048/ src IP

=192.168 .1 .17/ destIP =192.168 .1 .255/ l4Proto=17/ srcPort=58063/ destPort=1534/
encapsu lat ionLayer=0” ,

9 ” r e s ou r c eDe s c r i p t i on ” :{
10 ” f lowLayer ” : 0 ,
11 ” flowHash” : ”3BC05E59” ,
12 ” encapsu lat ionLayer ” : 0 ,
13 ” l3Proto ” : ”2048” ,
14 ” src IP ” : ” 192 . 1 68 . 1 . 1 7 ” ,
15 ” destIP ” : ” 192 . 168 . 1 . 2 55 ” ,
16 ” l4Proto ” : ”17” ,
17 ” s rcPort ” : ”58063” ,
18 ” destPort ” : ”1534” ,
19 ” packetSt ructure ” : ”/mac :14/ ip4 :20/ udp : 8 ” ,
20 ” completePacketStructure ” : ”” ,
21 ” f i r s tPacke tS e en ” :1496149720665
22 } ,
23 ” da taDe f i n i t i on ” :{
24 ” t o t a lOc t e t s ” :175148 ,
25 ” currentPktPerPer iod ” : 707 ,
26 ” currentOutterOctetsPerPer iod ” :175148 ,
27 ” totalpktCount ” : 707 ,
28 ” currentOctet sPerPer iod ” :175148 ,
29 ” timeLastPacketReceived ” :71964762173578 ,
30 ”sumInterPacketLagNS” : 0 ,
31 ” to ta lOcte t sOut te r ” :175148 ,
32 ” la s t In t e rPacke tRate ” : 0 ,

99

33 ” timeLastPacketReceivedMs” :1496149720665 ,
34 ” currentSumInterPacketLagNSPerPeriod” : 0
35 } ,
36 ” r epo r t e rDe s c r i p t i on ” :{
37 ” reporterHostName” : ”fma2” ,
38 ” repor t e r IP ” : ” 1 0 . 1 0 . 0 . 1 1 ” ,
39 ” reporterAppType” : ”FMA” ,
40 ” reporterEpochTime” :1496149720665
41 }
42 }
43]
44 }

A.1.2 Output - Aggregation (batch) - monasca threshold alarm

1 {
2 ”Data” :
3 [
4 {
5 ” r epo r t e rDe s c r i p t i on ” :{
6 ” reporterName” : ” aggregat ion−alarm−n o t i f i e r ”
7 } ,
8 ” r epo r t e r I d ” : ” reporterName=aggregat ion−alarm−n o t i f i e r ” ,
9 ”dataType” : ”alarm” ,

10 ”timestamp” :1493740126554 ,
11 ” da taDe f i n i t i on ” :{
12 ” s e v e r i t y ” : 3 ,
13 ”newState” : ”ALARM” ,
14 ” o ldSta t e ” : ”OK” ,
15 ” a larmDescr ipt ion ” : ” Po t en t i a l Zombie Detected ” ,
16 ”metadata” : {
17 ” th r e s h o l d i d ” : ” id7 ” ,
18 ” me t r i c s i d s ” : {
19 ” avg pkt count id ” : ” id2 ” ,
20 ” communicat ion frequency id ” : ” id3 ”
21 }
22 } ,
23 ”metr i c s ” : [
24 {
25 ” dimensions ” :{
26 ”SourceIP” : ” 192 . 168 . 12 . 203 ” ,
27 ”Dest inat ionPort ” : ”10850” ,
28 ”Dest inat ionIP ” : ” 192 . 168 . 12 . 223 ”
29 } ,
30 ” id ” : nu l l ,
31 ”name” : ” avg pkt count ”
32 } ,
33 {
34 ” dimensions ” :{
35 ”SourceIP” : ” 192 . 168 . 12 . 203 ” ,
36 ”Dest inat ionPort ” : ”10850” ,
37 ”Dest inat ionIP ” : ” 192 . 168 . 12 . 223 ”
38 } ,
39 ” id ” : nu l l ,
40 ”name” : ” communicat ion frequency ”
41 }
42] ,
43 ”alarm timestamp” :1493740126394 ,

100

44 ”subAlarms” : [
45 {
46 ” subAlarmExpression” :{
47 ” func t i on ” : ”AVG” ,
48 ” d e t e rm i n i s t i c ” : true ,
49 ” per iod ” : 180 ,
50 ” thr e sho ld ” : 6 . 0 ,
51 ” pe r i od s ” : 1 ,
52 ” operator ” : ”GTE” ,
53 ”me t r i cDe f i n i t i o n ” :{
54 ” dimensions ” :{
55

56 } ,
57 ” id ” : nu l l ,
58 ”name” : ” communicat ion frequency ”
59 }
60 } ,
61 ” currentValues ” : [
62 6 .0
63] ,
64 ” subAlarmState” : ”ALARM”
65 } ,
66 {
67 ” subAlarmExpression” :{
68 ” func t i on ” : ”AVG” ,
69 ” d e t e rm i n i s t i c ” : true ,
70 ” per iod ” : 180 ,
71 ” thr e sho ld ” : 2 . 0 ,
72 ” pe r i od s ” : 1 ,
73 ” operator ” : ”GTE” ,
74 ”me t r i cDe f i n i t i o n ” :{
75 ” dimensions ” :{
76

77 } ,
78 ” id ” : nu l l ,
79 ”name” : ” avg pkt count ”
80 }
81 } ,
82 ” currentValues ” : [
83 2 .0
84] ,
85 ” subAlarmState” : ”ALARM”
86 }
87]
88 } ,
89 ” resourceType ” : ” aggregat ion−alarm−n o t i f i c a t i o n ” ,
90 ” r e s ou r c eDe s c r i p t i on ” :{
91 ” n o t i f i c a t i o n I d ” : ”ba3e5225−7a72−45a1−95d2−8be2784dec18” ,
92 ” alarmDefinit ionName” : ”ZombieAlert ” ,
93 ”alarmId” : ”5 a26641f−98ae−4448−8 f e f−f c5a2d04f04d ” ,
94 ” a l a rmDe f in i t i on Id ” : ”391566de−7f71−497d−a015−4dc5722ec432 ” ,
95 ” tenantId ” : ”3d483b83620d49a6afa0a601183b2b2a”
96 } ,
97 ” r e sou r c e Id ” : ” tenantId=3d483b83620d49a6afa0a601183b2b2a/ a l a rmDe f in i t i on Id

=391566de−7f71−497d−a015−4dc5722ec432 /alarmId=5a26641f−98ae−4448−8 f e f−
f c5a2d04f04d ”

98 }

101

99]
100 }

A.2 Raw and Aggregation Data Model (RADM) examples for
Self-Protection UC: Loop 2

A.2.1 Input - aggregation (realtime) - two snort zombie detected event

1 {
2 ”Data” :
3 [
4 {
5 ”timestamp” : 1491487846000 ,
6 ”dataType” : ” event ” ,
7 ” reporte r ID ” : ” reporterName=SnortAgent/ r epor t e r IP =193.136 .93 .101/

reporterAppType=DPI” ,
8 ” resourceType ” : ” sno r t dp i e v en t ” ,
9 ” resourceID ” : ” s en so r Id=0/eventIdTimestamp=1490615204444/ s i gna tu r e Id

=10000001/ genera to r Id=1” ,
10 ” r e s ou r c eDe s c r i p t i on ” :
11 {
12 ” senso r Id ” : ”0” ,
13 ” s i gna tu r e Id ” : ”10000001” ,
14 ” s i gna tu r eRev i s i on ” : ”1” ,
15 ” genera to r Id ” : ”1” ,
16 ” c l a s s i f i c a t i o n I d ” : ”31” ,
17 ”eventType” : ” zomb i e a l e r t ”
18 } ,
19 ” da taDe f i n i t i on ” :
20 {
21 ” src IP ” : ” 155 . 5 4 . 2 05 . 1 ” ,
22 ”dstIP” : ” 155 . 5 4 . 2 05 . 4 ” ,
23 ”dstServiceName” : ” z e u s c c s e r v e r ” ,
24 ” c l a s s i f i c a t i o n ” : ” zombie detected ”
25 } ,
26 ” r epo r t e rDe s c r i p t i on ” :
27 {
28 ” reporterName” : ”SnortAgent” ,
29 ” repor t e r IP ” : ” 193 . 136 . 93 . 101 ” ,
30 ” reporterEpochTime” : ” 1491487846000” ,
31 ” reporterAppType” : ”DPI” ,
32 ”reporterMAC” : ” 00 : f f : 1 2 : 3 4 : 5 6 : 3 4 ”
33 }
34 } ,
35 {
36 ”timestamp” : 1491487846000 ,
37 ”dataType” : ” event ” ,
38 ” reporte r ID ” : ” reporterName=SnortAgent/ r epor t e r IP =193.136 .93 .101/

reporterAppType=DPI” ,
39 ” resourceType ” : ” sno r t dp i e v en t ” ,
40 ” resourceID ” : ” s en so r Id=0/eventIdTimestamp=1490615204444/ s i gna tu r e Id

=10000001/ genera to r Id=1” ,
41 ” r e s ou r c eDe s c r i p t i on ” :
42 {
43 ” senso r Id ” : ”0” ,
44 ” s i gna tu r e Id ” : ”10000001” ,

102

45 ” s i gna tu r eRev i s i on ” : ”1” ,
46 ” genera to r Id ” : ”1” ,
47 ” c l a s s i f i c a t i o n I d ” : ”31” ,
48 ”eventType” : ” zomb i e a l e r t ”
49 } ,
50 ” da taDe f i n i t i on ” :
51 {
52 ” src IP ” : ” 155 . 5 4 . 2 05 . 2 ” ,
53 ”dstIP” : ” 155 . 5 4 . 2 05 . 4 ” ,
54 ”dstServiceName” : ” z e u s c c s e r v e r ” ,
55 ” c l a s s i f i c a t i o n ” : ” zombie detected ”
56 } ,
57 ” r epo r t e rDe s c r i p t i on ” :
58 {
59 ” reporterName” : ”SnortAgent” ,
60 ” repor t e r IP ” : ” 193 . 136 . 93 . 101 ” ,
61 ” reporterEpochTime” : ” 1491487846000” ,
62 ” reporterAppType” : ”DPI” ,
63 ”reporterMAC” : ” 00 : f f : 1 2 : 3 4 : 5 6 : 3 4 ”
64 }
65 }
66]
67 }

A.2.2 Output - aggregation (realtime) - botnet detected alarm

1 {
2 ”Data” :
3 [
4 {
5 ”timestamp” : 1491492704000 ,
6 ”dataType” : ”alarm” ,
7 ” reporte r ID ” : ” reporterName=aggregat ion−cep−eng ine / reporterEpochTime

=1491492704000” ,
8 ” resourceType ” : ” thresho ld−alarm” ,
9 ” resourceID ” : ”alarmID=ed34cb9e−1ade−11e7−93ae−92361 f002671 / type=

rea l t ime−th r e sho ld ” ,
10 ” r e s ou r c eDe s c r i p t i on ” :
11 {
12 ”alarmID” : ”ed34cb9e−1ade−11e7−93ae−92361 f002671 ” ,
13 ” type” : ” rea l t ime−th r e sho ld ”
14 } ,
15 ” da taDe f i n i t i on ” :
16 {
17 ” s e v e r i t y ” : 2 ,
18 ”metadata” :{
19 ” r u l e i d ” : ” id6 ” ,
20 ” c l a s s i f i c a t i o n ” : ”unknown” ,
21 ” corre lat ionName ” : ” IPsweep in shor t time”
22 } ,
23 ” l i s t S r c I P ” : [
24 ” 155 . 5 4 . 2 05 . 1 ” ,
25 ” 155 . 5 4 . 2 05 . 2 ”
26] ,
27 ” ccServer IP ” : ” 155 . 5 4 . 2 05 . 4 ” ,
28 ”dstServiceName” : ” z e u s c c s e r v e r ”
29 } ,
30 ” r epo r t e rDe s c r i p t i on ” :

103

31 {
32 ” reporterName” : ” aggregat ion−cep−eng ine ” ,
33 ” reporterEpochTime” : ” 1491492704000”
34 }
35 }
36]
37 }

104

Appendix B

APIs

B.1 Raw Counters DB API

1 −−as dba :
2 grant ALL on keyspace s e l f n e t to s e l f n e t ;
3 grant SELECT on keyspace system to s e l f n e t ;
4 grant SELECT on keyspace sy s t em t race s to s e l f n e t ;
5

6 −−as user s e l f n e t , on keyspace s e l f n e t :
7 −−counter s t ab l e
8 c r e a t e t ab l e s e l f n e t c o u n t e r s
9 (

10 timestamp timestamp ,
11 t imepa r t i t i on timestamp ,
12 resourceType text ,
13 counterType text ,
14 r e s ou r c e Id text ,
15 r epo r t e r I d text ,
16 r e s ou r c eDe s c r i p t i on map<text , text >,
17 da taDe f i n i t i on map<text , double>,
18 r epo r t e rDe s c r i p t i on map<text , text >,
19 PRIMARY KEY ((resourceType , t imepa r t i t i on) , timestamp , counterType , r e source Id

, r epo r t e r I d)
20) ;

B.2 Raw Events DB API

1 −−as dba :
2 grant ALL on keyspace s e l f n e t to s e l f n e t ;
3 grant SELECT on keyspace system to s e l f n e t ;
4 grant SELECT on keyspace sy s t em t race s to s e l f n e t ;
5

6 −−as user s e l f n e t , on keyspace s e l f n e t :
7 −−events / alarms tab l e
8 c r e a t e t ab l e s e l f n e t e v e n t s
9 (

10 timestamp timestamp ,
11 t imepa r t i t i on timestamp ,
12 resourceType text ,
13 dataType text ,
14 r e s ou r c e Id text ,

105

15 r epo r t e r I d text ,
16 r e s ou r c eDe s c r i p t i on map<text , text >,
17 da taDe f i n i t i on map<text , text >,
18 r epo r t e rDe s c r i p t i on map<text , text >,
19 PRIMARY KEY ((dataType , resourceType , t imepa r t i t i on) , timestamp , re source Id ,

r epo r t e r I d)
20) ;

106

Appendix C

Configuration Files

C.1 Raw Data Loader Configuration

C.1.1 Yaml file example

1 ve r s i on : 0 . 2
2

3 #kafka consumer c on f i gu r a t i on
4 kafka :
5 #broker host : ip (d e f au l t=l o c a l h o s t : 9092)
6 boo t s t r ap s e rv e r : ” l o c a l h o s t :9092 ”
7 #top i c s l i s t (d e f au l t=t e s t)
8 t op i c s :
9 − ” t e s t ”

10 − ” c e i l ”
11 #autocommit (d e f au l t=true)
12 autocommit : t rue
13 #reco rd s (d e f au l t =10000000)
14 r e co rd s : 10000000
15 #groupID (d e f au l t=group 1)
16 groupID : ” group 1 ”
17 #commitInterval (d e f au l t =100)
18 commitInterval : 100
19 #poolTimeout (d e f au l t =1000)
20 poolTimeout : 1000
21

22 #cassandra mapper c on f i gu r a t i on
23 cassandra :
24 #tableCounters (d e f au l t=s e l f n e t c o u n t e r s)
25 tab leCounters : ” s e l f n e t c o u n t e r s ”
26 #tableEvents (d e f au l t=s e l f n e t e v e n t s)
27 tab leEvents : ” s e l f n e t e v e n t s ”
28 #keyspace (d e f au l t=s e l f n e t)
29 keyspace : ” s e l f n e t ”
30 #user (d e f au l t=s e l f n e t)
31 user : ” s e l f n e t ”
32 #password (d e f au l t=s e l f n e t)
33 password : ” s e l f n e t ”
34 #host (d e f au l t=l o c a l h o s t)
35 host : ” l o c a l h o s t ”
36 #port (d e f au l t =9042)

107

37 port : ”9042”
38

39 #raw data l oade r c on f i gu r a t i on
40 r d l :
41 #threads j o i n timeout (d e f au l t =1000)
42 j o in t imeout : 1000
43 #async boolean f l a g i n d i c a t e s i f cassandra db i n s e r t i o n s are async or not (

d e f au l t=true)
44 async : t rue
45 #ac t i v a t e s debugging mode (d e f au l t=true)
46 debug : t rue
47 #rdl−c o l l e c t o r c on f i g u r a t i on
48 c o l l e c t o r :
49 #threads p o l l i n g per iod (d e f au l t =5)
50 po l l i n g t ime : 5
51 #num of threads (d e f au l t =1)
52 threads : 1
53 #rdl−c o l l e c t o r c on f i g u r a t i on
54 p e r s i s t e r :
55 #threads p o l l i n g per iod (d e f au l t =100)
56 po l l i n g t ime : 100
57 #num of threads (d e f au l t =1)
58 threads : 1

C.1.2 Yaml file deployed

1 ve r s i on : 0 . 2
2

3 #kafka consumer c on f i gu r a t i on
4 kafka :
5 #broker host : ip (d e f au l t=l o c a l h o s t : 9092)
6 boo t s t r ap s e rv e r : ” 192 . 168 . 89 . 226 : 9092 ”
7 #top i c s l i s t (d e f au l t=t e s t)
8 t op i c s :
9 #Nix Cei lometer

10 − ” c e i l ”
11 #SNORT emulator
12 − ” snor t ”
13 #FMA metr i c s
14 − ”metr i c s ”
15 #FMA events
16 − ” events ”
17 #autocommit (d e f au l t=true)
18 autocommit : t rue
19 #reco rd s (d e f au l t =10000000)
20 r e co rd s : 10000000
21 #groupID (d e f au l t=group 1)
22 groupID : ” rd l2 consumer group ”
23 #commitInterval (d e f au l t =100)
24 commitInterval : 20
25 #poolTimeout (d e f au l t =1000)
26 poolTimeout : 100
27

28 #cassandra mapper c on f i gu r a t i on
29 cassandra :
30 #tableCounters (d e f au l t=s e l f n e t c o u n t e r s)
31 tab leCounters : ” s e l f n e t c o u n t e r s ”
32 #tableEvents (d e f au l t=s e l f n e t e v emt s)

108

33 tab leEvents : ” s e l f n e t e v e n t s ”
34 #keyspace (d e f au l t=s e l f n e t)
35 keyspace : ” s e l f n e t ”
36 #user (d e f au l t=s e l f n e t)
37 user : ” s e l f n e t ”
38 #password (d e f au l t=s e l f n e t)
39 password : ” s e l f n e t ”
40 #host (d e f au l t=l o c a l h o s t)
41 host : ” 192 . 168 . 89 . 225 ”
42 #port (d e f au l t =9042)
43 port : ”9042”
44

45 #raw data l oade r c on f i gu r a t i on
46 r d l :
47 #threads j o i n timeout (d e f au l t =1000)
48 j o in t imeout : 1000
49 #async boolean f l a g i n d i c a t e s i f cassandra db i n s e r t i o n s are async or not (

d e f au l t=true)
50 async : t rue
51 #ac t i v a t e s debugging mode (d e f au l t=true)
52 debug : t rue
53 #rdl−c o l l e c t o r c on f i g u r a t i on
54 c o l l e c t o r :
55 #threads p o l l i n g per iod (d e f au l t =5)
56 po l l i n g t ime : 20
57 #num of threads (d e f au l t =1)
58 threads : 5
59 #rdl−c o l l e c t o r c on f i g u r a t i on
60 p e r s i s t e r :
61 #threads p o l l i n g per iod (d e f au l t =100)
62 po l l i n g t ime : 0
63 #num of threads (d e f au l t =1)
64 threads : 5

109

Appendix D

Rules examples

D.1 Self-Protection use case

D.1.1 Botnet listing using SNORT

1 {
2 ” id ” : ”uuid3” ,
3 ”name” : ” Se l fP ro t e c t i on−CEP” ,
4 ” s e n s o r r e f l i s t ” : [
5 ”SNORT”
6] ,
7 ” dimensions ” : [
8 {
9 ”name” : ” ccServer IP ” ,

10 ” s o u r c e r e f ” : ”SNORT. sno r t dp i e v en t . dstIP”
11 } ,
12 {
13 ”name” : ”dstServiceName” ,
14 ” s o u r c e r e f ” : ”SNORT. sno r t dp i e v en t . dstServiceName”
15 }
16] ,
17 ” r u l e s ” : [
18 {
19 ” id ” : ” id6 ” ,
20 ”name” : ” l i s t S r c I P ” ,
21 ”group by” : [
22 ”SNORT. sno r t dp i e v en t . dstIP”
23] ,
24 ” f i l t e r s ” : [
25 {
26 ” cond i t i on ” : ”SNORT. sno r t dp i e v en t . resourceType == snort−dpi−a l e r t ”
27 }
28] ,
29 ” formula ” : ”LIST(Sensor .SNORT. sno r t dp i e v en t . s rc IP) ” ,
30 ” per iod ” : 5 ,
31 ” un i t ” : ”” ,
32 ”metadata” :{
33 ” corre lat ionName ” : ” IPsweep in shor t time” ,
34 ” c l a s s i f i c a t i o n ” : ”unknown” ,
35 ” r u l e i d ” : ”100”
36 }

110

37 }
38]
39 }

111

	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	5G Networks
	ALTAIA
	SELFNET
	Use Cases

	Motivation and Objectives
	Thesis Outline

	Related Work
	Research projects
	T-NOVA
	UNIFY
	CROWD
	5G-NORMA

	Products
	PrOptima™
	ZTE Network Performance Management
	ALTAIA

	Research papers
	Key Challenges for the Radio-Access Network
	Video Quality in 5G Networks
	What Will 5G Be?
	Leveraging SDN to Provide an In-network QoE Measurement Network
	Toward Software-Defined Cellular Networks
	DevoFlow: Scaling Flow Management for High-Performance Networks
	Software Defined Monitoring (SDM) for 5G Mobile Backhaul Networks
	SDN Meets SDR in Self-Organizing Networks: Fitting the Pieces of Network Management
	Enabling Software-Defined Networking for Mesh Networks in Smart Environments
	Autonomics and SDN for Self-Organizing Networks

	Discussion

	Technologies
	Service Coordination
	Apache Zookeeper
	HashiCorp Consul

	Message Bus
	Apache Kafka
	Pivotal RabbitMQ

	Aggregation Tools
	Trifacta Wrangler
	MongoDB Aggregation Framework
	Apache Storm

	Storage
	InfluxData InfluxDB
	Openstack Gnocchi
	Apache Cassandra

	Monitoring Tools
	QoSient Argus
	Openstack Monasca
	Openstack Ceilometer
	Apache Chukwa

	Discussion

	Architecture
	SELFNET Architecture
	Aggregation Detailed Architecture
	Monitoring Framework
	Aggregation Framework

	SELFNET Use cases impact on Aggregation Architecture
	Self-Healing
	Self-Optimization
	Self-Protection

	Summary

	Interfaces, Data Sources and Data Models
	Aggregation Framework APIs
	Northbound
	Southbound
	Configuration

	Data Sources
	Sensors

	Data Models
	Raw and Aggregation Data Model
	Raw Database Data Model

	Summary

	Implementation
	Monitoring Framework
	Raw Data Loader

	Aggregation Framework
	Complex Event Processing Framework

	Summary

	Application and Results
	Applications
	Raw Data Loader
	Raw and Aggregation Data Model
	Complex Event Processing Framework
	ASF Configurations over Zookeeper extension

	Scenario
	Test-bed
	Use case

	Results
	Raw Data Loader
	Complex Event Processing Framework

	Summary

	Conclusion and Future Work
	Bibliography
	Data Models
	Raw and Aggregation Data Model (RADM) examples for Self-Protection UC: Loop 1
	Input - Aggregation (batch) â•ﬁ counters
	Output - Aggregation (batch) - monasca threshold alarm

	Raw and Aggregation Data Model (RADM) examples for Self-Protection UC: Loop 2
	Input - aggregation (realtime) - two snort zombie detected event
	Output - aggregation (realtime) - botnet detected alarm

	APIs
	Raw Counters DB API
	Raw Events DB API

	Configuration Files
	Raw Data Loader Configuration
	Yaml file example
	Yaml file deployed

	Rules examples
	Self-Protection use case
	Botnet listing using SNORT

