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Dissertação apresentada à Universidade de Aveiro para cumprimento dos
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Resumo Nos dias de hoje, no qual o mundo está muito desenvolvido tecnologicamente,
é posśıvel efectuar várias tarefas em determinadas áreas que visam a ajudar a
população mundial. Uma das áreas onde se tem investido mais em recursos
tecnológicos é na área da bio informática. O crescimento desta área é sinal de
melhoria na qualidade de vida da população, e essa melhoria pode passar por
uma análise ao código genético, alertando-a de posśıveis alterações genéticas
ou até mesmo o aparecimento de doenças. Esta dissertação tem como
objectivo efectuar uma análise ao código genético a fim de saber se uma
alteração pode ser patogénica ou não. Numa primeira fase, são efectuados
testes com classificadores clássicos, para saber qual o seu comportamento.
De seguida, são efectuados novos testes mas desta vez usando modelos
diferentes baseados em redes neuronais convolucionais para obter uma melhor
previsão e resultados da mesma. Por fim, é feita a comparação entre cada
um dos modelos adoptados para no futuro serem aplicados os respectivos
modelos na área da bioinformática.





Keywords Pathogenicity prediction, Genetic mutation, Machine learning, Deep learning,
Codons, Desoxyribonucleic acid

Abstract Nowadays, in which the world is highly developed technologically, is possible
to perform several tasks in certain areas that aim to help the world’s
population. One of the areas where it has invested more in technological
resources is in bioinformatics area. The growth in this area is a signal of
improvement in quality of life of population, and this improvement may
pass through an analysis of genetic code, alerting her of possible genetic
changes or even the appearing of the diseases. This dissertation aims to
perform an analysis to genetic code in order to know if an change may be
pathogenic or not. In a first step, are performed tests with classical classifiers,
to know their behaviour. Then, are performed new tests but this time using
different models based on convolutional neural networks to get a better
prediction and results of the same. Lastly, is done a comparison between
each adopted classifier in order to be applied in the future the respective
models in bioinformatics area.
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1
Introduction

Beforetime, people lived without any hygienic conditions compared to those of today.
Throughout the ages, studies have been performed in all areas in order to improve the life’s
quality around the world. With these studies, began to emerge scientist, engineers, physicians,
medicals, which help us to have better conditions to live. Some of these people contributed
to the evolution of technology, which is applied increasingly in all areas. One of them is in
bioinformatics.

In this area we can study the human’s genetic code. It is important for us to know better
our genetic code, mainly if it has some mutations that might cause some diseases, that is, if a
mutation can be pathogenic. A mutation is a permanent change in DNA of a cell who can
changes the function of the protein. Proteins are essential molecules for the body’s behaviour.
So, a mutation can change its structure and originate drastic impacts. DNA is located in cell’s
nucleus and carries the genetic information used for the growth, reproduction and development.
In order to DNA make cells continuously work, there is the gene expression. Gene expression
uses the genetic information located on DNA, transfers this information and converts it into
protein. This is performed by transcription and translation processes. In the first process,
DNA molecules copy their information by directing the synthesis of Ribonucleic acid (RNA)
molecule [1] and in the second, RNA directs the synthesis of a protein. RNA is a molecule
that plays biological roles in coding, decoding and expression of genes. The transfer of this
information occur from DNA to RNA and then to Protein.

Relating to genetic mutations, they can be caused by an addition, subtraction or replace-
ment of bases. They modify the genetic code and may originate a new sequence, which
can modify the amino acid presented in the DNA. X-rays, substances present in the smoke,
ultraviolet rays, dyes present in foods may be the main causes of these mutations [1].

To perform predictions on genetic code, it is essential to know some biological concepts.
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As stated previously, genetic mutations occurs in cells. Cells are the basic and essential
components of all living things. They may differ in functionality, or in appearance. There
are prokaryotic and eukaryotic cells. Prokaryotic cells are very different from eukaryotic cells,
because prokaryotic cells have a simple internal organization and these cells do not have
nucleus. Eukaryotic cells have a more complicated internal organization including a defined
membrane-limited nucleus [1]. Humans, animals and plants have eukaryotic cells because all of
them have a nucleus. Below is shown the respective structures of eukaryotic and prokaryotic
cells.

Figure 1.1: Eukaryotic cell structure [2]

Figure 1.2: Prokaryotic cell structure [2]
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The genetic data is encoded in the base sequence of the DNA, which has four bases that
determines the sequence of amino acids encoded by the chain of nucleotides (organic molecules
that serve as subunits, of nucleic acids like DNA and RNA), and these are composed by
four organic basic types: cytosine, adenine, guanine and thymine [1]. A gene is the basic
physical and functional unit of heredity. A gene is like a segment of DNA with a base sequence
that encodes the amino acid sequence. In animals, genes are present on DNA molecules as
chromosomes which are a set of nucleic acid sequences encoded as DNA within 23 chromosome
pairs (Human Genome). The human’s chromosomes of male and female are similar, but what
distinguish them is the 23rd chromosome set. For males, the chromosome is XY and for females
the chromosome is XX.

The genetic code describes how base sequences are converted into amino acid sequences
during protein synthesis. The four organic basic types, previously mentioned, belong to the
sequence of amino acids. The DNA sequence is divided into units of three bases, in which
each set is a codon. A codon is a sequence of three DNA nucleotides that corresponds with an
amino acid or stop signal. This means that the four bases in DNA can combine as total 43,
i.e, 64 codons. The genetic code is composed by a full set of 61 codons, which 3 of them are
stop signals [1].

Figure 1.3: DNA structure [1]
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Figure 1.4: DNA sequence

1.1 Motivation

As mentioned in chapter 1, the evolution of technology allowed bioinformatics area to
develop methods and software tools to work with biological data. With these all data and
respective methods and tools, it is possible to perform an analysis on genetic code. This means
an improvement in health and life’s quality of a person, because these developed methods and
software tools will help people know their genetic data and the respective consequences of a
mutation occurred.

This is why this thematic is approached in this dissertation. A mutation in our genetic code
can cause an impact for the rest of our life, and then may affect the next generations. Once
these models developed, they can be integrated in a medical system to help doctors perform
an analysis of person’s genetic code, discover what disease may have, its origin, consequences,
and advise or perform the right treatments in order to heal it.

1.2 Objectives

The main goal of this dissertation is to implement models based on deep learning that
enables to predict if a certain mutation in genetic code will cause, or not, pathogenic effects.
Pathogenic is the ability of an organism to contract a disease, and this may be hereditary.
The probability to cause pathogenic effects performed by a genetic mutation may depend from
other factors. The models will be trained and validated using the available datasets, and then
compared with each other.

For training and validation of the models, will be considered different deep learning
frameworks, including Caffe and TensorFlow. Caffe has an extensible code, that promotes
active development, good speed for research experiments and an expressive architecture that
encourages application and innovation. TensorFlow is an open source deep learning framework
that uses numerical computation and data flow graphs.

In this dissertation it’s also performed an overview of prediction tools used in other works,
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in order to evaluate the performance of these tools in different datasets. It’s also performed an
analysis of the performance of each model, in order to know which is the most efficient. This
will contribute to know which are the best tools to perform predictions in a genetic sequence.

1.3 Contributions

Along with this dissertation, there is an article named “Analysis of classifiers for identi-
fication of pathogenic mutations” which describes the methods used in this dissertation to
perform pathogenicity predictions. This article was submitted to INForum.

1.4 Organization

This dissertation is splitted into 6 chapters. The remaining chapters are organized as
follows:

• chapter 2: presentation of the state of the art. In this chapter are presented some
concepts about genetic mutations, prediction tools and its evaluation, pathogenicity
prediction, datasets for prediction and a comparison about the results obtained from
some studies.

• chapter 3: introduction to machine learning and deep learning and the respective
frameworks. Some concepts of features extraction from genetic code and comparison
between deep learning frameworks.

• chapter 4: description of the each method developed to implement the solution. In
this chapter there’s an explanation of every step performed in the implementation of the
solution.

• chapter 5: in this chapter is presented the analysis of results obtained from the
implemented solution, and a description of each test methodology.

• chapter 6: final conclusions about the chosen methods for the implementation of the
solution, and obtained results of this work, also referring potential improvements or
other solutions for future work in this area.
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2
State of the art

In a world of constant technological growing, the resources to analyze cells, chromosomes,
body’s composition, DNA, genetic code and prediction of mutations, are rather extensive and
more accurate.

These resources may be some prediction tools, for example classifiers, which are described in
this chapter and the respective results applying each tool on the mutated genetic code. These
descriptions are based on the works [3] and [4]. The work [3] tells about two problems detected
when performing evaluation of some tools used to predict the impact of these mutations, and
the work [4] is based on a software prediction tool for predicting non-synonymous genetic
variants, that is, nucleotide mutations that may alter amino acid sequence of a protein, and
consequently, cause human diseases.

This chapter also mentions an unified platform, named PredictSNP2, for accurately
evaluating Single nucleotide polymorphism (SNP) effects, i.e., impacts on the simplest form
of DNA variation among all individuals. This is performed by exploiting the different
characteristics of variants in distinct genomic regions, based on work [5].
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2.1 Prediction tools and bias types

2.1.1 Tools for pathogenicity prediction

Missense mutation is a point mutation, which changes one DNA nucleotide that causes
the substitution of a different amino acid in a protein. This may cause a pathogenic mutation.

According to what was introduced in chapter 1, the genetic mutations are the focus of a
large number of studies. One of the aspects studied in these studies is the impact of mutations,
mainly the classification of pathogenicity. In this area, there are many studies which developed
many tools to perform prediction on the genetic code and improve the respective classification.
Some of these tools are PolyPhen-2 (PP2) [6], Sorting Intolerant From Tolerant (SIFT) [7],
Functional Analysis through Hidden Markov Models (FatHMM), MutationTaster-2 (MT2)
[8], MutationAssessor (MASS) [9], Combined Annotation Dependent Depletion (CADD) [10],
Likelihood Ratio Test (LRT) [11] and Genomic Evolutionary Rate Profiling (GERP++) [12].
These tools are used to predict possible impacts on an amino acid substitution on organism
structure. In the article [3] was demonstrated that in a study of ten tools on five datasets,
a comparative evaluation of these tools is hindered by two types of bias (in the article they
mentioned as ”circularity” types). The origin of these types of bias is due to the variants from
a protein occurring both in the datasets used for training and for evaluation of these tools [3].
With these types of bias, the results become more optimistic than without them.

In addition to these tools, there are others already available in order to perform also
pathogenicity prediction. These tools are the FatHMM weighted (FatHMM-W) and unweighted
(FatHMM-U) [13], and phyloP [14]. These tools are used to separate pathogenic variants from
neutral variants (neutral or non-pathogenic variants). The usage of this tools is important
because facilitates the prediction. Phylop and SIFT are used to measure sequence conservation,
PP2 is used to evaluate the impact of amino acid substitution on protein structure or function.
CADD is used to quantify the pathogenic potential of a variant, based on diverse types of
genomic information [3]. MT2 is a free web application to evaluate DNA sequence variants
which may cause a disease. MASS is based on a prediction of functional impacts of amino acid
substitutions in a protein, for example, mutations discovered in a cancer or some other disease.
LRT is based on a genomic dataset of some vertebrate species and applies a likelihood ratio
test to compare the null model that each amino acid is evolving to the alternative model of
evolution. GERP uses maximum likelihood evolutionary rate to produce position estimators
and GERP++ is a programming approach to define constrained elements.

Once there are different methods that can perform pathogenicity prediction, it is essential
to know if one or several tools outperform all others in prediction accuracy. Here, we talk
about the two problems when performing a comparative evaluation of these tools, mentioned
in the previous section. They are called as the two types of bias.
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2.1.2 Two types of bias and datasets

The term bias, in the article [3], is used to describe that predictors are evaluated on
variants that were used to train prediction models. The first type of bias is related to the
overlaps between datasets that were used to train and evaluate the models. Tools such as MT2
[8], PP2 [6], MASS [9] and CADD [10] require a training dataset to determine the features of
the model. These tools may take the risk of capture very own characteristics of their training
set and may become not generalized, i.e., the training set gets biased when applied on a new
data. To avoid this overfitting problem, the tools must be evaluated on variants that were not
used for the training of these tools.

The second type of bias is based on a property present on databases. Variants from the
same gene are classified as pathogenic or neutral. A classifier that predicts pathogenicity
based on known information about certain variants in the same gene gets better results. These
types of bias may be originated by the combination of these tools mentioned [3].

All of these tools mentioned require datasets which are composed by DNA sequences. In
all datasets, there are some variants that are not possible to determine nucleotide and amino
acid changes. So, they must be excluded, due to the fact that they could interfere in the final
results and execution time. This means that before performing predictions, the data must
be pre-processed, i.e., might be necessary to remove, insert, or even replace some variants.
Datasets can be different among each other. They can have different number of samples,
features and even its content, i.e., we can have a dataset which contains the values of each
feature that were calculated by mathematical formulas, or in the case of this dissertation, the
genetic sequence represented by the nucleotides.

There are some datasets used frequently when performing pathogenicity prediction. These
datasets are also used in this dissertation to perform the prediction of pathogenicity. They
are the HumVar [6], ExoVar [15], VariBench, predictSNP and SwissVar dataset. The
non-overlapping variants of Varibench dataset might originate VariBenchSelected dataset.
PredictSNP dataset was used to exclude all variants that overlap with HumVar, ExoVar and
VariBench and the resulting dataset was called predictSNPSelected. Swissvar may originate
SwissVarSelected, which consists into exclude all variants overlapping with the other datasets
(HumVar, ExoVar, VariBench and PredictSNP). This dataset should be the one that contains
the newest variants across all others datasets. The biggest dataset of this five is the Humvar.
In this dissertation, Humvar dataset contains more than 40 thousand sample, thus, this dataset
will be the one that takes more time to pre-process the data, train and classify a model. An
example of a dataset’s content is shown below in Figure 2.1:
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Figure 2.1: Exovar dataset

In dataset present in Figure 2.1, the characters before the first commas, represents the
gene’s identifier, position where a mutation occurs and the respective substitution of nucleotides.
Then, between the first and the second commas is the class of variant, in which 1 means that
is pathogenic and -1 is neutral. After these second commas until the last column are the
values of the data to be used to train and classify the tools.

2.1.3 Tools results

These tools were tested on all datasets and the results were discussed and compared. Has
been performed a comparison between the results obtained for each selected datasets, present
in the Figure 2.2. Then is performed the same but comparing the results of the tools on each
dataset present in Figure 2.3.
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Figure 2.2: Performance of prediction tools by AUC metric. [3]

The results displayed above in Figure 2.2 show that the tool FatHMM-W performs
well on pure proteins (proteins with only one class of variant) for VariBenchSelected and
PredictSNPSelected but not on the mixed proteins (proteins with pathogenic and neutral
variants), due to its weighting scheme, but this tool is outperformed by the other tools on
balanced proteins (50% of neutral and 50% of pathogenic variants). PP2 outperforms other
tools in mixed categories for PredictSNPSelected and SwissVarSelected datasets [3]. The
results are measured by the scoring metric Area under the receiver operating characteristic
curve (AUC) which will be explained in chapter 3. The evaluation of the weighting scheme
may generate biased subset, i.e., a subset that contains only variants of the same kind, but
this can be solved by applying cross-validation, which will be explained in detail in chapter 3.

Then, as mentioned previously, are obtained the results for all of these tools, but performing
a comparison on each of the five datasets.
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Figure 2.3: Evaluation results of pathogenicity prediction tools. [3]

Hatched bars in Figure 2.3 indicate that the evaluation data is to train the corresponding
tool, and these results may suffer from overfitting. The dotted bars indicate that the tools
are biased, because of type 2 of bias [3]. In the graphic above, on HumVar and ExoVar, the
four best performing methods were trained on these datasets. Across the first four datasets,
FatHMM-W outperforms all other tools. Then, MT2 performs well on Humvar and Exovar but
bad on VariBenchSelected and SwissVarSelected. The same happens for PP2 which performs
better than MT2 on VariBenchSelected and predictSNPSelected. MASS performs better than
these two tools on VariBenchSelected and predictSNPSelected, but worse on HumVar and
SwissVarSelected.

2.1.4 Conclusions

As we can see, has been performed a comparative evaluation of pathogenicity prediction
tools and demonstrated that there are two types of bias which harm comparison of pathogenicity
prediction tools. This was performed in order to know if there are differences in quality of
pathogenic prediction tools when evaluated on a large number of variant databases [3]. The
discovery of novel risk genes may become difficult if these two types of bias were ignored.

Type 1 bias is studied in Machine learning (explained in chapter 3), and is originated
from an overlap between training and evaluation datasets, performing worse on different
variants. The creation of Selected datasets avoids this type of bias. In type 2 bias, predicting
the pathogenicity of a variant based on the pathogenicity of all other variants may lead to
better results, but will fail to classify variants in proteins that contain neutral and pathogenic
variants. So, it is possible to conclude that is due to this type bias that the AUC results of
FatHMM-W on four out of five datasets are excellent.

The Figure 2.3 shows that the remaining tools get a better performance in Humvar and
Exovar due to its weighting scheme. The AUC metric results for Majority Vote (MV) with
type 2 bias are always the best for each dataset, because for each of the five evaluation datasets,
the data is splitted into 10 subsets, which nine of them are used as training data and one
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as test data. Then, in each iteration, another subset is determined as the test data and the
remaining are the training data (cross-validation). MT2, PP2 and MASS are one of the best
predictions tools, mainly when applied on Humvar and Exovar dataset, achieving an evaluation
nearly of 90%. Although these values are lower in Selected datasets than in Humvar and
Exovar, they are still good prediction tools.
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2.2 PredictSNP2 Web platform

PredictSNP2 is a web platform developed for evaluation of the SNP effects and to perform
predictions on some tools such as Deleterious Annotation of Genetic Variants using Neural Net-
works (DANN), FunSeq2 [16], Genome-Wide Annotation of Variants (GWAVA), PredictSNP2,
Multivariate Analysis of Protein Polymorphism (MAPP) [17], Predictor of human Deleteri-
ous Single Nucleotide Polymorphism (PhD-SNP) [18], PolyPhen-1 (PP1) [19], Screening for
NonAcceptable Polymorphisms (SNAP) [20], predictSNP1 [21], CADD [10], FatHMM and
Fitness Consequences of Functional Annotation (FitCons) (Fitness Consequences of Functional
Annotation). SNP is a variation in a nucleotide at a specific position in the genome. Predict-
SNP2 is a natural extension of previously published PredictSNP1 [21] tool. PredictSNP1 it is
used to analyse substitutions in an amino acid sequence. PredictSNP2 completes PredictSNP1
by evaluating the effects of nucleotide variants, stored in any region of the genome [5]. This
web platform may be like a continuation of what was previously mentioned relating to the
results of prediction tools and is available at http://loschmidt.chemi.muni.cz/predictsnp2.

2.2.1 Prediction tools, datasets and databases

Obviously that to perform predictions is necessary to use datasets. The data on the datasets
for the web platform, was splitted into five subsets by classifying the variants according to
their consequences determined by ANNOVAR [22] software [5].

The prediction tools mentioned previously were used for evaluation, optimization and
integration into the PredictSNP2 web portal. CADD is a tool for scoring the deleteriousness
of single nucleotide variants. Its predictions are based on a logistic regression model. Also, it
is trained on a constructed dataset of mutations obtained from differences between the human
and chimpanzee genome [5]. DANN is a deep neural network-based classifier that enables
capture non-linear relationships among features. FatHMM-MKL [23] uses an Support Vector
Machine (SVM) model to evaluate the functional impact of variants, which was trained on
Human Gene Mutation Database (HGMD) [23]. GWAVA [24] tool is based on a random forest
classifier, which is used for the analysis of regulatory variants [5]. FunSeq2 uses a scoring
system to assess the impact of variants. FitCons estimates functional impact of variants, using
fingerprints [5]. The databases used on the web platform are the ClinVar [25], dbSNP [26],
Ensembl Genome Browser [27], GenBank [28], HaploReg [29], OMIM [30], RegulomeDB [31]
and UCSC Genome Browser [32].
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2.2.2 Performance Evaluation

The performance evaluation of these tools is done using statistical metrics used and
mentioned previously in the evaluation of performance with the two types of bias already
approached in this dissertation (specificity, accuracy, precision, recall/sensivity will be ex-
plained further ahead). This evaluation is performed on the datasets mentioned previously
(such as OMIM, GenBank, RegulomeDB, etc). The performance of selected nucleotide based
prediction tools were compared with some protein-level tools. The protein-level tools chosen to
perform the comparison were MAPP, PhD-SNP, PP1, PP2, SIFT, SNAP and PredictSNP1.
To perform the comparison was used ANNOVAR [22] software to convert nucleotide variants
into amino acid format.

The results of the respective performance comparison are shown in the following image:

Figure 2.4: Performance of nucleotide-based and protein-based prediction tools. [5]

Blue bars represent the values for nucleotide-based tools, and the red bars represents the
values for protein-based tools. The graphic A shows the accuracy obtained for each tool, and
the graphic B shows the AUC for each tool. The horizontal dashed lines represent average
performance for each tool.

For nucleotide-based prediction tools, FatHMM and predictSNP2 are those that have the
best Accuracy due, as already said previously, its weighting scheme (nearly 80%). CADD,
DANN and FatHMM are the nucleotide-based prediction tools that have the best accuracy of
all. Relatively to FunSeq2 and GWAVA, these are not good nucleotide-based prediction tools
because its accuracy is below average performance values. As we can see in Figure 2.4, this
analysis can be performed also for AUC. For protein-based prediction, PhD-SNP, SIFT and
PredictSNP1 have an accuracy higher than 70% and its accuracy values are bigger than the
average performance values. For AUC, happens the same situation, which PhD-SNP, SIFT
and PredictSNP1 have its accuracy values bigger than the average performance values. From
all of this, we can conclude that predictSN1 and predictSNP2 are the best protein-based and
nucleotide-based prediction tools, respectively.
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2.2.3 Conclusions

Taking into account the tools mentioned previously, some of them could be also considered
to be use by this web platform, because they achieved great results on pathogenicity prediction.
Besides that, these results obtained from tools used in this web platform are not so good,
because even that some of them are above of the average, the respective scores of each metric
are below of 0.7. The fact that these results are not so good may be also due to the datasets
used by each tool. In the study [3] the tools are trained and classified on Exovar, Humvar,
predictSNP, Varibench and Swissvar. This web platform uses some tools that are also used in
the study [3], thus this could be considered the usage of these datasets on the web platform.
This results will be later compared to those obtained in this dissertation in order to know if
the models that will be created, trained and classified are better than some of these studied.
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Machine Learning

Machine Learning is a method of data analysis, which automates the building of the models
using algorithms to learn from the data. Machine learning emerged from studies about pattern
recognition and theory of computational learning in artificial intelligence, in which were the
first areas where this are was applied. Machine Learning has experienced a great growth and it
is commonly used in data mining, natural language processing, image recognition, and expert
system. Nowadays, this area is being used by Google autonomous cars, Amazon and NetFlix
use it on online recommendations, fraud detection, comments on Twitter and in many other
applications. One of the reasons that Machine learning has being grown is because exists more
data variety and quantity available. Other is the computational processing, which is more
powerful, and the storage of the data in an accessible way. All of these facts make possible
to develop models able to analyse more quantity and complex data, thus provide faster and
precise results.

Machine Learning workflow can be broken down into 4 steps: pre-processing, feature
extraction, training and testing. First step (pre-processing) aims to transform the info into
a dataset, in order to step two (feature extraction) perform an extraction of the relevant
features to training the model (training step). After the model is well trained, we can
perform the last step, which is testing the model. There are four important types of Machine
learning: Supervised Machine learning, Unsupervised Machine learning, Semi-supervised
Machine learning, and Reinforcement Machine learning. Each one is described in detail in the
following headings.

Supervised Machine learning

Supervised Machine learning is the most used type by Machine learning models and
classifiers. In this type, we have input variables (x) and an output variable (y) and it is used
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an algorithm to learn the mapping function from the input to the output like:

y = f(x)

The main goal of this type of Machine learning is to get closer the mapping functions so
well that when we have new input data (x), we can predict the output variables (y) for that
data. The process of an algorithm learning has a supervisor, in order to assure and supervise
the learning process. The algorithm makes predictions on the training data, which is corrected
by the supervisor, until it reaches the optimal level performance. The supervised learning
problems can be aggregated into two problems: classification and regression. Classification
problem is when the output variable represents a category, such as “disease” and “no disease”
(which is the focus of this dissertation). Regression problem is when the output variable
represents a real value, such as “dollars” or “height”. Some examples of popular Supervised
Machine learning algorithms are:

• Linear regression, for classification and regression problems

• Random forest, for classification and regression problems

• Support vector machines, for classification problems

Unsupervised Machine learning

Unsupervised learning is where we only have input data (x) and no corresponding output
variables, i.e., there is no labeled data, but only unlabeled. There are no training or tested
examples used in this process. The main goal of this type of Machine learning is to discover
some similar groups within the data (clustering).

Unlike Supervised Machine learning, this type of Machine learning has no correct answers
and there is no teacher. Algorithms and models must discover and present the interesting
structure in the data. Unsupervised learning problems can be aggregated into clustering and
association problems. Clustering problem is where it is pretended to discover the inherited
groupings in the data, i.e., it is like grouping customers by purchasing behavior. Association
problem is where it is pretended to discover rules that describe large amounts of the data, such
as people that perform X also tend to perform Y. Some examples of popular Unsupervised
Machine learning algorithms are:

• k-means, for clustering problems

• Apriori algorithm, for association rule learning problems
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Semi-supervised Machine learning

Semi-supervised Machine learning is a class of Supervised Machine learning, which uses
both labeled and unlabeled data for training. This Machine learning type can be considered
as the center of Supervised Machine learning, which uses completely labeled training data,
and Unsupervised Machine learning, which not contains any labeled training data.

It is due to the fact that this type of Machine learning uses unlabeled data that enables to
improve learning accuracy, because the unlabeled data does not have any cost to be generated.
This means that labeled data require human skills in some areas, such as image processing,
audio transcription, etc, and this requires cost of the resources used in data labeling. This
type of Machine learning works better when using small amounts of labeled data and a large
amount of unlabeled data.

The main goal of Semi-supervised Machine learning is to understand how a combination
of labeled and unlabeled data may change the learning behaviour. Then, according to this, is
possible to design the models that take advantage of the combination. This type of Machine
learning can be in human category learning, because almost all inputs are unlabeled.

Reinforcement Machine learning

Reinforcement Machine learning that bases in behaviour psychology. This type of Machine
learning concerns with how software agents take decisions in an environment. This problem
is studied in games theory, control theory, operations research, genetic algorithms, etc. The
environment in this Machine learning problem is formulated as a Markov decision process,
in which for this context uses dynamic programming techniques. Also, this type of Machine
learning allows to determine automatically the behaviour of the machine or software agent
based on feedback from the environment, in order to maximize its performance.

Unlike classical techniques, Reinforcement Machine learning does not need knowledge
about the Markov decision processes. This Machine learning problem differs from Supervised
Machine learning problem in that input/output pairs are never presented. Furthermore, on
reinforcement learning exists more focus on performance, which involves a balance between
exploration and exploitation.

3.1 Features extraction and classification

As we stated previously, it is necessary to create algorithms or predictive models in order
to predict if a mutation in genetic code is pathogenic. This means that is essential to have
a dataset only with relevant data, which is possible with feature extraction. A feature is a
measurable property of an animal, human, object being observed. For example, if we are
trying to predict the type of a pet, the input features might be home region, family, age,
animal’s breed, etc. Its labels (outputs) might be dog, cat, horse, etc. Feature extraction is
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the process of automatically extract the features in the data that are most useful or relevant
to the predictive modeling problem.

In the context of this dissertation, can be considered some features which are present in
the study [33]. This study relates that a total of 152 features (variant, gene, and protein
characteristics) were extracted from 55 thousand variants. For gene features, several char-
acteristics are calculated considering the codon usage, codon context, stop codon, nucleotide
repeats, variant position in gene and codon, GC-content (guanine-cytosine content), proximity
to splicing sites, variations of nucleotide, etc. Relative Synonymous Codon usages and codon
pair scores for all codon pairs are calculated using human genome. From human genome, are
also considered some features, such as length of chromosome, its base pairs, variations, etc.
Stop codons were calculated with TGA, TAG and TAA codons present in all possible codons.
Nucleotide repeats were calculated as the number of consecutive repeated nucleotides in a
sequence of seven codons. The proximity of splicing sites is performed by the retrieving of
exon positions for the affected transcript, in order to get the distance to the nearest splicing
site. The presence of exon splicing regulatory sequences were obtained using two lists of exon
splicing enhancers and silencers [34]. This is done in order to get a score that represents
the amount matches between the affected region and a splicing regulation sequence, and this
score is obtained by measuring the difference between the affected region and every splicing
regulatory sequence on the lists [33].

For protein features, are taken into account some changes in chemical properties of amino
acid. These chemical properties are hydropathy, polarity, mass, volume, acidity, net charge,
and isoelectric point (these properties will be used further ahead in chapter 4). Also, are taken
into account the evaluations of the changes performed in the affected region, and structural
changes by predicting the protein secondary structure [35].

Feature extraction gives the ability of choosing features that will give good or better
accuracy requiring less data. It can improve the accuracy and reduce the execution time
by using extraction methods to identify and removed irrelevant and redundant attributes
from the data. These redundant data decreases the accuracy of a predictive model. A good
predictive model must have a simple complexity, i.e., simple to explain, understand and use.
This is why it is important to perform feature extraction. Feature selection is also used in
some works when it is pretended to measure the results only using a certain features. After
features extraction process, it is essential to perform the respective classification of these
features, in order to predict if a mutation on these genetic features is pathogenic or neutral.
To achieve this, is needed to build a classification model to perform the respective predictions.
To perform this prediction, was used Machine learning classifiers to know the one that better
matches prediction needs. Classifiers such as Decision Trees, Linear regression, Naive Bayes,
NN, Logistic regression, SVM, etc, will be used and explained in detail in this chapter further
ahead.
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In the study [33], the data was divided into 5 parts: 4 for training and 1 for testing. In
the final tests, the data was divided into 20 parts, in order to improve the assessment of
predictive power. To avoid loss of information between instances of dataset and between
training and testing, the pre-processing was included within the cross-validation process. Then,
a pre-processing model was saved to be used later to pre-process the test data and also to
avoid the loss of information, as mentioned previously.

3.2 Classical classifiers

In this section are present the classical classifiers used in a first phase of the dissertation.
The description of each classifier is based on scikit-learn’s page.

AdaBoost

AdaBoost fits a classifier on the original dataset and then fits some copies of the classifier
on the same dataset. Boosting is an ensemble technique that creates a strong classifier from a
number of weak classifiers (models that are better than a random guessing).

The main principle of AdaBoost is to fit a sequence of models on different versions of
the data. The predictions are then combined through a weighted sum to produce the final
prediction. The production of this prediction is performed taking into account the application
of different weights to each of the training samples, which initially they are initialized as Wi
= 1/N. The first step is training a weak learner on the original data, then for each iteration,
the sample weights are individually modified. During this process, those training examples
that are incorrectly predicted at the previous step have their weights increased and for those
whose the prediction was performed correctly, the weights are decreased. AdaBoost was the
first boosting algorithm developed for binary classification.

The number of weak learners is defined by the number of estimators (n estimators, de-
fault=50) and their contributions in the final result are controlled by the learning rate
(learning rate, default=1). Base estimators (base estimators), maximum depth (max depth)
and a minimum samples per leaf required (min samples leaf ) in decision trees are the main
parameters responsible for the final results obtained with this classifier. The higher the number
of minimum samples per leaf, the longer the time required for the classification process.

Snippet 3.1: Example of AdaBoost classifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score
n_estimators = 100
...
ada = AdaBoostClassifier(n_estimators=n_estimators)
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DecisionTree

DecisionTree is a supervised learning method used for classification and regression. The
main goal of decision trees is to create a model that performs a prediction of certain value of
a target variable, learning simple decision rules according to the data features.

DecisionTree is a good classifier for visualization of the trees, which are simple to interpret
and not requires a lot of data preparation. Unlike other techniques that are specialized in
analyzing datasets of one type of variable, decision trees can handle numerical and categorical
data and this enables to handle multi-output problems. The models can be validated using
statistical tests, which may increase the reliability of the model. One of the main advantages of
this classifier is its versatility, i.e., its logistic form can be used by programmers and engineers
to diagnose medical failures in equipment.

Although the reliability of decision trees, its learners can create complex trees that may not
generalize the data well, in other words, may originate overfitting. Hence, decision trees can
be unstable due to the small variations in the data. The algorithms of this classical classifier
are based on heuristic algorithms, but they may not guarantee to return the globally optimal
decision tree. To solve this problem, features and samples can be randomly sampled with
replacement and then the overfitting problem may disappear quickly.

X and Y are the inputs of this classifier. Array X of size [number of samples, number of
features] holding the training samples, and array Y is of size [number of samples].

Snippet 3.2: Example of Decision Tree classifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
...

dt = DecisionTreeClassifier()

Nearest Neighbors

Nearest Neighbors classification is a type of non-generalizing learning. This type of
classification stores instances of the training data and its classification is computed from a
single majority vote of the Nearest Neighbors of each point.

Scikit learn has two types of Nearest Neighbors classifiers: KNeighborsClassifier and
RadiusNeighborsClassifier. In the first one, the learning method is based on k (integer
value specified by the user) nearest neighbors of each query point. The choice of k is important,
because a larger k suppresses the effects of noise, but otherwise makes the classification
boundaries less distinct. In the second, the learning method is based on the number of neighbors
within a fixed radius r (floating-point value specified by the user) of each training point. For
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the initial phase of this dissertation, has been decided to use the technique KNeighborsClassifier
because is more commonly used than RadiusNeighborsClassifier technique.

The classification of Nearest Neighbors uses uniform weights. The value of query point is
computed based on majority vote of the nearest neighbors. The default value for weights is
”uniform”, which assigns uniforms weights to each neighbor.

Snippet 3.3: Example of K Nearest Neighbors classifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score

num_neighbors = 10 # 5 is default
weight = ’uniform’
...
neigh = KNeighborsClassifier(n_neighbors=num_neighbors, weights=weight)

Logistic Regression

Although has ”Regression” in its name, Logistic Regression is a linear model for classifica-
tion, not for regression. The probabilities of this model describes the possible outcomes of a
single trial that are modeled by an logistic function. The implementation of Logistic Regression
can fit binary or multinomial logistic regression with optional L2 or L1 regularization. L2 is a
binary class. L1 regularization helps in feature extraction process in sparse feature spaces.
This is why L1 regularization is used in some cases. Using L2 on the remaining variables can
give better results in some scenarios than L1 by itself.

Logistic Regression is used in various fields, such as machine learning, medical field and
social sciences. In Logistic Regression there are solvers. A solver is an optimization method
to find the optimum of the objective function. There are four types of solvers: ’liblinear’,
’newton-cg’, ’lbfgs’ and ’sag’.

The first one uses a coordinate descent (CD) algorithm. This algorithm implemented in
liblinear cannot learn a true multinomial model, but its optimization problem is decomposed
in a ”one-vs-rest” model. Hence, separate binary classifiers are trained for all classes. This
type of solver is used in small datasets.

The remaining types of solvers only support L2 penalization and converge faster for high
dimensional data. These solvers learns a true multinomial logistic regression model, i.e., its
probability estimates may become better calibrated than ”one-vs-rest” model, which consists
into fitting one classifier per class. The solvers ”lbfgs”, ”sag” and ”newton-cg” are used on
large dataset, and for very large dataset only ”sag” is used.
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Snippet 3.4: Example of Logistic Regression classifier
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
...
lr = linear_model.LogisticRegression()

SVM

Support Vector Machines is a machine learning model, which is used for classification and
regression. This model represents the samples as points in space, which are mapped into one
side of a gap. This gap separates the categories attributed to each training sample by an SVM
training algorithm. Then, the new samples are mapped into the same space and predicted to
belong to a category, based on the side of the gap they are.

SVMs can be used in text and hypertext categorization, image classification and segmen-
tation (SVMs achieve good search accuracy), recognition of hand-written characters, and in
biological and science areas, mainly in protein’s classification. In these areas, SVMs can also
be used to identify features to perform predictions in some genetic datasets (such as performed
in this dissertation).

SVMs are effective in high dimensional spaces, and in cases where the number of dimensions
is greater then the number of samples in some datasets, but if the number of features is greater
than the number of samples, the performance may be low. SVMs are also memory efficient,
because they use a subset of training points in the decision function.

As the other classifiers, X and Y are the inputs of this classifier too. Array X of size
[number of samples, number of features] holding the training samples, and array Y is of size
[number of samples].

Snippet 3.5: Example of SVMs classifier
from sklearn import svm
from sklearn.model_selection import cross_val_score
...
clf = svm.SVC(kernel=’linear’)

Naive Bayes

Naive Bayes is a machine learning model, which its algorithms are based on Bayes’ theorem
with the ”naive” assumption of independence between pair of features. In the past, Naive
Bayes worked well in many real-world situations, mainly in document classification (sport,
politic, etc) and spam filtering. Naive Bayes require small amount of training data to estimate
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the needed parameters, and so this makes the classifier extremely faster compared to more
sophisticated methods.

Naive Bayes can be considered as a simple technique for constructing classifiers. A family
of algorithms is used, based on the assumption that the value of a particular feature is
independent of the value of any other feature to train such classifiers. For the first phase of this
dissertation it is used the Gaussian Naive Bayes algorithm, because for the type of classification
intended (DNA classification), this algorithm gets more accuracy than the Multinomial and
Bernoulli Naive Bayes algorithm.

X and Y are the inputs of this classifier. Array X of size [number of samples, number of
features] holding the training samples, and array Y is of size [number of samples].

Snippet 3.6: Example of Gaussian Naive Bayes classifier
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
...
nb = GaussianNB()

Random Forest

Random Forest is a learning method for classification and clustering. Also, is an estimator
that fits certain decision trees classifiers on several sub-samples of dataset. This classifier
performs the averaging, which is a method to prevent the overfitting and hence improve the
accuracy.

In this classifier, each tree is built from a sample from the training set. During the
construction phase of the tree, the nodes are splitted and the split that is chosen is no longer
the best split among the features.

Due to the randomness of this classifier, the bias of the forest may increase but considering
the averaging, its variance also decrease. The bias is the error from wrong assumptions in the
machine learning algorithms. A high bias can cause underfitting, which is the miss of relevant
relations between features and target outputs.

The number of trees in the forest is determined by the number of estimators (n estimators,
default = 10) which each one of them have a maximum depth determined (if equals to None,
the nodes are expanded until all leaves are pure, i.e., until it is not possible to expand further)
and also have a maximum numbers of features (max features), that determines the number of
features to consider when looking for the best split (the tests performed with this classifier
used a maximum features equal to None, which means that the max number of features is
equal to the number of features of the dataset). As well as the other classifiers, X and Y are
inputs of this classifier. X is size of [number of samples, num of features] holding the training
samples, and Y is size of [number of samples].
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Snippet 3.7: Example of Random Forest classifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score

num_trees = 10
...
model = RandomForestClassifier(max_depth=None, n_estimators=num_trees,

max_features=None, random_state=0)

Neural Network

Multi-layer Percepton (MLP) is a supervised machine learning classifier based on NNs.
The algorithm of this classifier learns a function by training on a dataset and given numbers
for input and output dimensions. Between the input and output layer, there can be one or
more layers. This type of layers are called hidden layers. Each layer has also neurons inside
them. Using this classifier, is possible to determine the number of hidden layers and neurons
per layer.

The first layer, i.e, the input layer, consists of a set of neurons that represent the input
features. Each neuron inside of a hidden layer performs the transformation of these values
from the previous layer with a weighted linear summation (w1*x1 + w2*x2 + w3*x3+ ....
+wn*xn), followed by a non-linear activation function. The last layer, i.e, the output layer,
receives the values from the last hidden layer and transforms them into output values.

This classifier has the capability to learn non-linear models and learn them in real-time. Its
hidden layers have a non-convex loss function, and so, different random weight initializations
may lead to different validation accuracy. This classifier is also sensitive to feature scaling and
requires certain parameters such the number of hidden neurons, hidden layers and iterations
(Figure 3.1 is based on [36]) .
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Figure 3.1: Structure of a simple neural network

In the input layer, the number of neurons corresponds to the number of inputs, which can
be as many as needed. Then, each neuron of this layer performs a connection to each neuron
inside the first hidden layer. The hidden layers can have neurons as many as needed too. After
hidden layers, each neuron of the last one performs a connection to the output layer, which
can have one or more outputs (depending on what we need to get). In this dissertation, neural
networks have only one output, because it is pretended to get a score value between 0 and
1. MLP trains on two arrays: array X and array Y. Array X of size [n samples, n features],
which holds the training samples and array Y of size [number of samples], which holds the
class values for the training samples.

Snippet 3.8: Example of Multi-layer Percepton classifier

from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import cross_val_score

num_neurons_layer = 100
num_layers = 6

...
mlp = MLPClassifier(hidden_layer_sizes=(num_neurons_layer, num_layers),

random_state=0)
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3.3 Deep Learning

Deep Learning is a branch of machine learning based on a set of algorithms that modules
high level abstractions in data. Deep learning provides the ability to derive predictive models
without the need to know the underlying mechanisms and how they interact with each other,
i.e., allows an abstraction of complexity. In biology’s area, deep learning can be applied to
predict if a genetic mutation may cause pathogenic effect or not, which is the main focus of
this dissertation.

A recent advance in machine learning is the representation of the data with deep learning
neural networks. Deep Learning NNs take the raw data at the lowest layer and transform
them into feature representations by combining outputs with each other from the precedent
layer in a data-driven manner, encapsulating all functions needed in the process [37]. NN is a
supervised machine learning algorithm, which their training and classification tasks consist
into use hidden layers and the respective nodes (will be explained in detail in chapter 4).
Deep Learning has been increased significantly in the field of machine learning and has been
used to improve speech recognition, image’s performance and computational biology. In
biology, the potential of deep learning is allowing to better exploit the availability of datasets
(DNA sequencing, RNA measurements, etc.) by training complex networks composed by
multiple layers. These networks discover high level features, improve performance, increase
interpretability and provide understanding about the structure of the biological data [37].
In chapter 4 is performed and explained in detail one of these complex networks. To better
understand Deep Learning, is essential to have some knowledge about Artificial Neural
Network (ANN) and CNN, which will be explained below.

Artificial Neural Networks

Artificial Neural Networks consist of mathematical constructs, designed to approximate
biological neurons, i.e., layers of interconnected neurons. The number of hidden layers
corresponds to the depth and the maximum number of neurons in one of its layers corresponds
to the width of neural network.

In configuration, presented in Figure 3.2, the network receives data in an input layer, and
then are transformed through multiple hidden layers.
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Figure 3.2: Workflow of artificial neural network [37]

The outputs are computed in the output layer after the network receives the data. A
neuron computes the weighted sum of its inputs and uses an activation function to get the
respective output f(x), as shown in the panel B of figure 2.8. This activation function is
the ReLU, which offers faster learning. This function limits negative signals to 0 and passes
through positive signal [37] (explained further ahead). The weight w1,2...,n are parameters that
capture the model’s representation of the data. The loss function L(w) measures the fit of the
model output to the true label of the sample (panel A). This function is minimized by the
learning process. In each step of this function, the current weight vector (represented as red
dot in graphic C) is moved along the graph in direction of the steepest descent ∆w (direction
arrows) by learning rate η (length of vector). During learning process, is possible to see in the
panel A that the labels (predicted and true) are compared to compute a loss for the current
set of model weights. The loss obtained is immediately backward propagated (represented
with the blue arrow) to compute the gradients of the loss function. It is possible to jump over
valleys at the beginning of the training and adjust parameters with smaller learning rates,
only if the learning rates begin to decline over time [37].

Fully Connected Network

FCNN is a type of NN which has hidden layers that contain neurons and each neuron is
connected to every neuron in the previous layer. Each connection has its own weight and may
influence the learning process. FCNN makes no assumptions about the features in the data.
FCNN is very expensive in terms of memory and computation, because of the large amount of
connections and, such as stated previously, each connection has its own weight. Thus, this is
why that generally do not exist a model composed only by a FCNN. FCNN is common used
with convolutional layers in order to build a CNN model. In chapter 4 is explained in more
detail the layers used by this type of NN.
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Figure 3.3: Fully Connected Neural Network [38]

Convolutional Neural Network

CNN was inspired by Hubel and Wiesel’s work on the cat’s visual cortex. They found that
the cat had simple neurons that responds to simple motifs in the visual field. CNN is a type
of artificial neural network in which the connectivity pattern between its neurons is based in
animal visual cortex. A CNN consists of multiple convolutional and pooling layers. It allows
learning more abstract features from small details, to object parts, and then the entire object.

CNNs began to be used in image pre-processing. In this area, it models input data in the
form of multidimensional arrays: two-dimensional images with three color channels (RGB)
or, in biology area, genomic sequences with one channel per nucleotide [37]. Due to high
dimensionality of these data, the training is transformed into a FCNN as the number of
parameters of such a model would exceed the number of training data to fit them. In order
to solve this, CNNs make additional adjustments on the structure of the network. With this
approach, the number of parameters are reduced.
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Figure 3.4: Workflow of convolutional neural network [37]

A convolutional layer consists of multiple maps of neurons, with their size equal to the
dimension of the input image shown in panel A of Figure 3.4. The additional adjustments
that can be performed on the structure of the CNN’s network in order to reduce the number
of parameters, can be based on two concepts, such as local connectivity and parameter sharing.
First, each neuron within a feature map is only connected to a local set of neurons in the
previous layer. Second, only the neurons within a feature map share the same parameters.
These parameters are useful to compute a discrete convolution (panel B) of a neuron’s receptive
field, as represented in panel A of Figure 3.4, and then is computed the weighted sum of input
neurons using an activation function, which is shown in panel B of Figure 3.4 [37].

In most applications using CNNs, some features such as position of objects and its format
are irrelevant for the final prediction, i.e., the pooling layer aggregates adjacent neurons by
computing the maximum over their activity (panel C). This results in a representation of
feature activities and consequently a reduction on the number of parameters. Figure 3.4 shows
the workflow of a CNN. All details of these networks and respective parameters are explained
further ahead on chapter 4.
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Deep Learning data

Every machine learning application requires pre-processing, feature extraction, training
(only supervised machine learning) and testing data. Most applications of deep learning
have been performed in supervised learning settings, because have labelled training samples
available to fit several complex models. The number of training samples should be more than
the number of model parameters [37].

When performing prediction molecular traits from genotype, the number of training
instances are limited. One solution to circumvent this problem is considering sequence
windows centred on the trait of interest [37]. This strategy is used in chapter 4 when our
dataset is composed by the genetic sequence. An example in image analysis, labelled training
examples may be difficult to obtain. In such instances, the training set can be augmented
performing some operations (scaling, rotating). It is also possible to reuse a pre-trained
network on a dataset for image recognition and adjust its parameters. In this approach,
different datasets share important features (such as edges or curves).

All machine learning models must be trained, selected and tested on independent datasets,
in order to avoid over-fitting and make the model generalizable to different data. The training
set is essential to learn models with different parameters, assessed on the validation set. The
selection of the model is based on its performance. The model with the best performance (for
example prediction accuracy) is selected and evaluated on the test set, in order to compare
with other methods. Tipically, 60% of dataset is for training, 30% is for validation and 10% is
for model testing [37].

To predict molecular traits from DNA sequence, it is important to train models that use
variation between regions within a genome. This is essential mainly because the prediction of
the effects of rare mutations requires a large dataset. Even with these datasets, it is difficult
to predict molecular traits from DNA sequence due to multiple layers of abstraction between
the effect of DNA variants and the trait of interest [37]. In this context, deep neural network
has two values. First, machine learning methods cannot operate on the sequence directly and
require pre-defined features to be extracted from DNA sequence known a priori (features
like conservation, motif occurrence, etc.). With deep neural networks is possible to avoid the
extraction of features manually by learning them from data. Second, deep neural networks
can get nonlinear dependencies in the sequence and interaction effects. Deep neural networks
have been applied to specify DNA and RNA binding proteins [39] and to study the effect of
DNA sequence mutations [40].

The first applications based on neural networks in this area replaced machine learning
approach with a deep model with the same input features [37]. This model was trained using
more than 1,000 features extracted from data. This method achieves a higher prediction
accuracy of splicing activity compared with other approaches and identifies rare mutations
with better accuracy.
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First applications in computational biology

One of the early applications of deep neural networks had been related to pixel-level tasks
using models on the network outputs. In the study [41] was trained a CNN on a 40 x 40 pixel
matrix to classify the centre pixel to cell wall, cytoplasm and nucleus membrane using a CNN
with three convolutional and pooling layers (explained in chapter 4), and a fully connected
output layer. CNN obtained better results than other standard methods, such as Markov
random fields. While CNN was trained, additional post-processing was required to get class
probabilities from output images [37].

The addition of layers allows creating more abstract images, removing the noise of pixels.
In the study [42] was performed an analysis of breast histology images in order to find mitosis
in these images. This model used five convolutional and pooling layers that are followed by
two fully connected layers, and with this won the mitosis detection challenge at International
Conference of Pattern Recognition 2012 [37]. This approach was also to segment neuronal
structures of microscopy images, performing a classification of each pixel as membrane or
non-membrane. All models based in image classification, object detection, image retrieval and
semantic segmentation use neural networks.

Deep learning frameworks: brief comparison

In order to perform pathogenicity prediction, it is essential to run the models over a deep
learning framework. The most used deep learning frameworks are Theano (with Keras), Caffe,
Torch, TensorFlow and DeepLearning4j. A good deep learning frameworks has good training
and prediction speed (performance) and gets good classification accuracy. Based on work
[43], is performed a comparison between these frameworks in terms of speed and classification
accuracy.

The respective comparison is performed on a very used dataset in deep learning area. This
dataset is called MNIST, which is a dataset of handwritten digits and is used for training
image classification approaches. Below are shown examples of MNIST digit images.
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Figure 3.5: MNIST digit images [43]

The digit images were inputted to the FCNN (explained in chapter 3). In the work [43] they
used nearly 60 000 digit images as training set, and nearly 10 000 digit images as test set. The
testing of NN was done using two activation functions: ReLU and Hyperbolic tangent (Tanh)
(these functions are explained in chapter 4). An activation function is a function that maps
input nodes to output nodes in a certain way, in order to make the training process faster.

To perform the respective assessment and comparison between these frameworks, has been
used different methods. One of them is varying the number of hidden layers (”depth”) of
network with fixed numbers of neurons per layer. In this method, the number of hidden layers
vary from 1 to 4 and the number of neurons is 100. The other method is varying the ”width”
(number of neurons) of network with fixed number of layers, which the number of neurons per
layer has the following values: 64, 126, 512 and 1024. The Figure 3.6 and Figure 3.7 show the
architecture of each method.
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Figure 3.6: ”Depth” changes of NN architecture [43]

Figure 3.7: ”Width” changes of NN architecture [43]

Comparison results

Below are present the final results of comparison of all five frameworks by the FCNN
training and prediction, and classification accuracy with ”Width” and ”Depth” architectures.
Also, the number of epochs (the times that a model is trained) in all experiments is set to 10.

In first, is performed a comparison of training time between FCNN ”Depth” and ”Width”
architectures:
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Figure 3.8: Training time for FCNN ”Depth” with ReLU function [43]

Figure 3.9: Training time for FCNN ”Width” with ReLU function [43]

The ”Depth” architecture training time for the frameworks start below from 20 seconds
(1 hidden layer) and going up to nearly 30 seconds, except for DeepLearning4j which starts
nearly with 110 seconds (1 hidden layer) and going up to 160 seconds (4 hidden layers).
Relating to the ”Width” architecture, the training time for Theano (with Keras wrapper),
Torch, TensorFlow and Caffe is always below of 100 seconds for 64, 128, 512 and 1024 neurons
per layer. For DeepLearning4j framework, the training time starts with nearly 90 seconds and
grows up to 700 seconds for 1024 neurons. These results are similar when using Tanh activation
function. After all of these analysis about the training time results, we can conclude that the
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”Width” architecture takes more time in the training process. It is possible to conclude that
the testing time is similar between each architecture.

Relating to the testing time, the respective comparison is performed and present in
Figure 3.10 and in Figure 3.11:

Figure 3.10: Testing time for FCNN ”Depth” with ReLU function [43]

Figure 3.11: Testing time for FCNN ”Width” with ReLU function [43]

For ”Depth” architecture, the Torch framework takes nearly 0.2 seconds to test, Caffe
often takes 0.1 seconds and the remaining frameworks have a testing time below 0.1 seconds
except DeepLearning4j, which varies between 0.65 and 0.75 seconds. For ”Width” architecture,
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DeepLearning4j starts with nearly 0.6 seconds (with 64 neurons) and grows up to 0.9 seconds
with 1024 neurons. Torch starts with nearly 0.2 seconds for 64 neurons and grows up to 0.4
seconds for 1024 neurons. The remaining frameworks start with nearly 0.1 seconds for 64
neurons and grows up 0.2 seconds for 1024 neurons.

Finally, is performed a comparison of accuracy score between both architectures present
below in Figure 3.12 and Figure 3.13:

Figure 3.12: Accuracy classification for FCNN ”Depth” with ReLU function [43]

Figure 3.13: Classification accuracy for FCNN ”Width” with ReLU function [43]

For ”Depth” architecture, Torch framework starts with 85% (1 hidden layer) and goes to
98%. TensorFlow decreases from 95% (1 hidden layer) to 89%. Caffe grows up from 95% (1
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hidden layer) to 96% (4 hidden layers) and the remaining frameworks are between 94% and
96%. Relating to ”Width” architecture, Torch starts to getting nearly 70% for 64 neurons,
and then as the number of neurons increases, the accuracy increases too until more than 95%
for 1024 neurons. The remaining frameworks obtained always more than 95% for 64, 128, 512
and 1024 neurons, such as the Figure 3.13 shows. It is possible to conclude that the accuracy
score is similar between each architecture except for TensorFlow framework, which decreases
when the number of hidden layers increase.

Frameworks Number of lines Language
Theano 62 Python

TensorFlow 80 Python
Caffe 110 Protobuf

DeepLearning4j 130 Java
Torch 165 Lua

Table 3.1: Framework complexity

Comparison conclusions

Increasing the number of hidden layers on a FCNN in order to improve the quality of
classification increases the training time of the network, as well as increasing the number of
neurons per layer. ReLU activation function increases network training speed and classification
accuracy, unlike Tanh activation function.

In Torch and TensorFlow frameworks, the incorrect computation of its gradients during
the network training led to the drop down of its classification accuracy, even the increasing of
network depth. Other reason for this strange behavior might be the need of more sophisticated
initialization of weighting coefficients [43]. The classification accuracy for these frameworks
increased with increasing the number of neurons per layer. Increasing the number of neurons
per layer, the accuracy of Caffe and DeepLearning4j frameworks dropped down. Accuracy of
Caffe and DeepLearning frameworks dropped down, and the accuracy of Theano has been
stable even with few neurons per layer.

It is important to note that DeepLearning4j was the lowest framework in the network
training and prediction. The reason behind this is the fact that this framework is currently
under development, and the training time, prediction time and accuracy may change in the
future [43]. Considering the results obtained and the respective features, we could have a
ranking list with the following order: Theano, TensorFlow, Caffe, Torch and DeepLearning4j,
but has been chosen for this dissertation the TensorFlow framework due to have Google
support.
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3.4 Evaluation

To perform the evaluation, is required a collection of statistics derived from a confusion
matrix. In the field of machine learning, a confusion matrix is a specific table that allows
the visualization of the performance of an algorithm, in this case, the performance of a tool.
A correctly classified test point is counted as a True Positive (TP) only if the test point
corresponds to the positive class (pathogenic or damaging) and as a True Negative (TN) only if
the test point corresponds to the negative class (neutral or benign). Thus, False Positive (FP)
is a negative test point that is classified to be positive, and a False Negative (FN) is a positive
test point classified as a negative one [3]. These datasets are unbalanced, thus the performance
of single tools was assessed by computing Receiver Operating Characteristics (ROC) curves
and Precision-Recall curves (ROC-PR-curves) [3]. The first one is the fraction of the TP over
all positives TP+FN against the fraction of the FP over all negatives TN+FP (1-specificity
or FP rate), and the second (ROC-PR-curves) is the fraction of the TP over all positives
TP+FN (sensitivity or recall) against the fraction of the TP over all TP+FP (precision) [3]. To
obtain the performance, is computed the area under ROC-curves and ROC-PR-curves (AUC
- Area Under Curves and Area under the receiver operating characteristic curve Precision-
Recall (AUC-PR) - Area Under Curves Precision Recall), in which the last one takes values
between 0 and 1 [3]. Perfect classifiers have an AUC and AUC-PR equal to 1, and random
classifiers have an AUC and AUC-PR equal to 0.5 [3].

To help realize better what was said previously, are shown the fractions previously mentioned
[3]:

Accuracy = TP + TN

TP + FP + TN + FN

Precision = TP

TP + FP

Recall/Sensivity = TP

TP + FN

Specificity = TN

FP + TN

NegativePredictV alue = TN

TN + FN

These formulas are used to obtain the results for each metric used in deep learning models
on the datasets. For this dissertation, are used 3 metrics: Accuracy, AUC (ROC Area under
curve) and MCC (Matthews correlation coefficient). These are the metrics used, because they
work well in binary classification, which is the type of classification pretended. The metrics
are used to measure classification performance and accuracy of classification model. Below is
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shown a description of each one:

• Accuracy: the accuracy is computed by accuracy score function, either the fraction or
the count of correct predictions. It is the number of correct predictions divided by the
total number of predictions made (multiplied by 100 to turn it into percentage). When
performing multilabel classification, accuracy score returns the subset accuracy. If the
set of predicted labels for a sample exactly matches with the true set of labels, then the
subset accuracy is 1, otherwise is 0.

• AUC: ROC Area under curve is computed by roc auc score function, which as the
name states, computes the area under the curve from prediction scores. This metric is
applied also in binary and multilabel problems. This metric uses a confusion matrix
which contains a count of TP, FN, FP and TN. Then, is performed a briefing in order
to know how many data points was correctly and not correctly classified. Once these
values are acquired, is computed the True Positive Rate (TPR) and the False Positive
Rate (FPR), because these values are then combined into one single metric with many
different thresholds for the logistic regression. The resulting curve is called ROC curve
and the metric considered is the AUC of this curve, as the Figure 3.14 shows:

Figure 3.14: Graphic representation of ROC AUC metric [44]

The blue area in Figure 3.14 corresponds to the Area Under the curve of Receiver
Operating characteristics (ROC curve and the dashed line in the diagonal presents the
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ROC curve of a random predictor which has a ROC curve of 0.5).

• Matthews correlation coefficient (MCC): Matthews correlation coefficient is com-
puted by matthews corrcoef function for binary classes. This function is used in niary
classifications and also takes into account the true and false positives and negatives, and
is considered as a balanced measure which can be used even if the classes have different
sizes. The correlation coefficient value is between -1 and 1, which 1 represents a perfect
prediction, 0 represents an average prediction, and -1 represents an inverse prediction.

3.4.1 Train and test

This project is focused on classification, in order to predict if an mutation in a genetic
sequence can cause pathogenicity or not. Scikit-learn’s (described in chapter 4) classical
classifiers (stated previously) performs this prediction but before is necessary to train and test
the model. Initially, the data is splitted into two sets: train and test. Tipically, 70% of the
data is for training and the other 30% is for testings, but this can be modified in function
train test split by the parameter test size before applying the respective classifier.

Snippet 3.9: Definition of train and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
random_state=0)

In the snippet above, the variable X represents the training samples, y holds the class
labels for the training samples, the test size represents the percentage of the data to test
(evaluate, testing set) and the variable random state represents the randomness of the final
result, i.e, if the test is equal to some number, then the split will be always the same, thus the
result will be always the same too.

After training the model on the dataset, is performed the respective classification (test).
The classification process uses metrics, which are functions that assesses prediction error
for some purposes. They are used to measure classification performance and accuracy of
classification model (as already seen previously).

One mistake that is usually performed is learning the parameters of a prediction function
and testing it on the same data. A model to which repeats the labels of the samples gets a
perfect accuracy, but fails to predict anything useful on yet-unseen data. This situation is
called overfitting. To prevent it, it is a common practice to hold out part of the available as a
test set X test, Y test (used in the snippet above). Other way to avoid this situation is to use
cross-validation, which is explained below.
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3.4.2 Cross-validation

Cross-validation is a model validation technique, which is used to know how the results of
statistical analysis on the dataset will generalize to an independent dataset. The main goal is
define a dataset to test the model in the training process, in order to avoid the situation of
overfitting. Other reason to use cross-validation instead of using is that there is not enough
data available to partition it into training and test sets without losing testing capability.

Initially in this dissertation, cross-validation was used to improve the final accuracy, using
strategies from one type of cross-validation. The type used is non-exhaustive, because the
methods of this type do not compute all ways of splitting the original sample, hence, the final
result is better than exhaustive type.

In this cross-validation type there is a method that splits the data randomly into K equal
sized subsamples. The method is called k-fold cross-validation. Of these K subsamples,
a single subsample is chosen as the validation data to test the model, and the other K-1
subsamples are the training data. The process is then repeated K times (K is the number of
the folds chosen), which each one of the K subsamples are used once as validation data (test).

Figure 3.15: Application of 10-fold cross-validation

In the end of this process, the K results from the folds are averaged to produce a single
estimation of the accuracy. The main advantage of this method, and that explains why this
method is the most used by researchers, is that all observations are used to training and
validation (as the figure above shows), which each of them is used once as validation data.
Tipically, the most used value for K is 10, i.e, 10-fold cross validation, which means that 9
subsamples are the training data and the remaining are the validation data. As said before,
the process is repeated, in this case, 10 times which each subsample is used once as validation
(testing) data.

This method allows to apply model selection, in order to improve the accuracy. In this
dissertation, it is applied two of the most used models selection:
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• Stratified K-fold: is a variation of K-fold which each set has the same percentage
of samples of each target class. This type of model selection is helpful when we have
large imbalance in the distribution of the target class, i.e, there might be more negative
than positive samples. The relative class frequencies are preserved in each train and
validation fold. As the name states, this model selection returns stratified folds (the
snippet below is based from scikit-learn’s page.

Snippet 3.10: Application of Stratified K Fold model selection

from sklearn.model_selection import cross_val_score, Stratified K-fold

x = np.array(1.3, 4.5, 2.3, 6.7, 5.6, 7.8, 9.2, 3.4, 2.1, 5.1)
y = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
skf = StratifiedKFold(n_splits=3) #n_splits specifies the number of folds
for train, test in skf.split(x, y):

print("%s %s" % (train, test))

#print the indexes of training and testing data
[2 3 6 7 8 9] [0 1 4 5]
[0 1 3 4 5 8 9] [2 6 7]
[0 1 2 4 5 6 7] [3 8 9]

• Group K-fold: is a variation of K-fold which states that the same group is not present
in both training and testing sets. This can be applied for instance when we have medical
data from multiple patients, in which these data have multiple samples collected from
each one, and such data is dependent from individual group. In this case, the identifier
(ID) of the patient for each sample will be its group identifier (in this dissertation, the
identifier is the first column of the dataset, i.e., the gene ID from an individual). From
here, the model will train on a particular set of groups, in order to generalize well to
the unseen groups, but it is essential to ensure that all the samples in the validation
(testing) fold come from groups are not represented in the training fold. Note that the
resulting folds do not have the same size, due to the imbalance of the data, as it occurs
in Stratified K-fold model selection (the snippet below based on scikit-learn’s page).

Snippet 3.11: Application of Group K Fold model selection

from sklearn.model_selection import cross_val_score, Group K-fold
x = np.array(1.3, 4.5, 2.3, 6.7, 5.6, 7.8, 9.2, 3.4, 2.1, 5.1)
y = ["gene1", "gene2", "gene2", "gene2", "gene3", "gene3", "gene3",

"gene4", "gene4", "gene4"]
groups = [1,1,2,2,3,3,3,3,3,3]
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groupKf = GroupKFold(n_splits=3) #n_splits specifies the number of folds
for train, test in groupKf.split(x, y, groups=groups):

print("%s %s" % (train, test))
#print the indexes of training and testing data
[0 1 2 3] [4 5 6 7 8 9]
[0 1 4 5 6 7 8 9] [2 3]
[2 3 4 5 6 7 8 9] [0 1]
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4
Pathogenicity prediction

The chapter 3 presents the machine learning concept, its methods, models used to perform
predictions, its sub-field Deep Learning, which contains deep models to perform pre-processing,
feature extraction, training and classification on the datasets. This chapter’s objective is
implement models that perform a training and classification on the created models using the
DNA sequence, in order to perform a prediction and finds out if an mutation occurred in the
sequence is pathogenic or not. Each step performed in the implementation and the reasoning
behind each decision will be explained in detail, taking into account all machine learning
concepts approached in chapter 3. For this purpose, some diagrams, tables and code snippets
will be used to show some examples of using some tools/classifiers.

The chapter starts by defining the objectives to be accomplished in section 4.1. Then, a
description of each technology and library adopted is performed in section 4.2, with Scikit-learn
and its classifiers, Keras NN, deep learning framework and respective reason of choose. After
that, we start to explain what was done step by step in each phase of this dissertation.

In section 4.3 are defined the datasets used in this dissertation. Then, in section 4.4 are
explained the steps performed when using the scikit classical classifiers and the reasons of each
decision. In section 4.5 are explained the different encoding strategies used on the data from
the used datasets to perform the training and classification on the models. Also, in this chapter,
in section 4.6 are present the models built to perform the training and classification, taking
into account the scoring metrics used (AUC, Accuracy and Matthews Correlation Coefficient).
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4.1 Objectives

As was stated in this dissertation, the main goal is to create models based on deep learning
that allow to define if a given mutation in genetic code can or cannot cause pathogenic effects.
Another goal is to know what are the best models for prediction, based on the results of scoring
metrics (Accuracy, ROC AUC and Matthews correlation coefficient) and the performance.

To perform this work, it is required to know which classifiers are available to perform the
classification and testing on the available datasets. In the chapter 2 have been mentioned
some datasets, which five of them will be used to perform data pre-processing, classification
and testing. The datasets are Exovar, Humvar, PredictSNP, Swissvar and Varibench. A brief
definition of their format is explained in section 4.3.

Then, in section 4.4 is explained the steps to perform predictions on the five used datasets,
which have a lot number of samples and features obtained by mathematical functions using
the scikit classical classifiers (explained in section 3.2). After that, is explained the encoding
strategies used to encode the data that is in string format.

Lastly, in section 4.6 is explained all steps performed in the building of the models based on
deep networks. All the data, using each encoding strategy, will train these models to perform
the respective pathogenicity prediction, by classifying the data.
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4.2 Technologies and libraries

4.2.1 Scikit-learn

Scikit-learn is a python free machine learning Application Programming Interface (API)
that features a lot of classification, regression and clustering algorithms. This library has a
lot of classifiers such as SVM, Random Forest, AdaBoost, DecisionTree, etc, which they are
designed to incorporate with Numpy and SciPy libraries. Scikit-learn emerged in the Google
Summer of Code project, which was written using Python, Cython and C++.

Scikit-learn started to be used with small datasets, which were created to illustrate the
behaviour of the various algorithms implemented by the Scikit-learn. These datasets were also
created by Scikit-learn and the main goal is to get an accuracy, applying different techniques
of classification, regression and clustering on the data. Some datasets available by Scikit-learn
and most used are: iris (classification), diabetes (regression), and digits (classification).

Scikit-learn can be accessed and installed in the following link: http://scikit-learn.

org/stable/install.html

4.2.2 TensorFlow

TensorFlow is an open-source software library, developed by Google for Machine Learning,
for systems capable of building and training neural networks, using several different datasets.
Initially, the main goal of this open-source software library was to detect and decipher patterns
and correlations, similarly to the learning and reasoning of humans.

TensorFlow was released in November, 2015. As opposed to the reference implementation,
TensorFlow can run on multiple Central Processing Unit (CPU) and Graphics Processing
Unit (GPU), and also with optional Compute Unified Device Architecture (CUDA) extensions.
TensorFlow is available on 64-bit Linux, Mac OS and mobile computing platforms such as
Android and iOS. The name of this open-source software library derived from the operations
that neural networks perform on ”tensors”, that are multidimensional data arrays.

TensorFlow uses nodes and graph edges, due to the fact that is designed for numerical
computation. The nodes represent mathematical operations and the graph edges represent
the tensors communicated between them. Also, this framework improves efficiency and
modularisation in distributed computation. As mentioned before, TensorFlow allows to build
graph-based models, such as those used in machine learning and artificial intelligence, and
those models may run on a distributed computing systems. Nowadays, TensorFlow is used by
a lot of know companies, such as DropBox, ebay, Google, Intel, Snapchat, Twitter, etc.

Despite of there are other frameworks to work with deep learning such as Theano and
Torch, TensorFlow was chosen to work in this dissertation because companies as Google
offers support to TensorFlow. Google is offering less support for Theano and Torch libraries.
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Thus, Google will migrate Deep Mind away from Torch and Theano. This is the reason why
deep learning users have been using more the TensorFlow’s framework. In this dissertation,
TensorFlow runs in backend of Keras (explained further on) when the pre-processing, train,
and classification (test) are performed.
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4.2.3 Keras

Keras is an high-level and open source neural network API, written in Python that can
run on top of TensorFlow and Theano. Enables fast execution with deep neural networks,
focusing on being modular and extensible.

Keras allows easy and fast prototyping, i.e, it is a user friendliness API. Keras offers
consistent and simple API, minimizes the number of user actions required for some common
tasks, because it is an high-level API that runs on top of TensorFlow, i.e, to perform an action
in TensorFlow, is required to perform some other tasks before the execution of the action, and
in Keras these tasks can be performed with a simple line of code. This is main reason that in
this dissertation it was used Keras instead TensorFlow directly. Keras may also provide error
feedback to the user.

In Keras, the modules can be combined with few little restrictions. Neural layers, cost
functions, optimizers, initializations schemes and activation functions are standalone
modules that can be combined to create new models. This is why Keras has the principle of
modularity. These new modules are simple to add, hence, builds up easily a model that makes
Keras suitable for advanced research. Models are described in Python, which is compact,
extensible, easier to debug and quick construction.

As we can see, the model is a way to organize and create layers. The simplest type (and
used mostly in this dissertation) is the Sequential model, that is an organized set of linear
layers (Keras also has models which result in a combination of other models with other types
of layers, resulting in a complex deep neural network). With this model, is possible to make
a Fully Connected Network with Fully Connected layers, and a Convolutional Neural
Network with Convolutional and Fully Connected Layers. The following headings are a bit
based on Keras web page.

Fully Connected layers

Fully Connected layers enable the construction of a Fully Connected Network. In this
network, a neuron of each layer is connected to every neuron in the previous and next layer,
and each connection has a given weight. This network makes no assumptions about the
features in the data, and it is very expensive in terms of weights (too much used memory) and
connections (computation tasks).

Snippet 4.1: Example of an simple Fully Connected Network
from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(32, input_shape=(64, )))
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model.add(Activation(’relu’)) # equivalent to model.add(Dense(32, input_shape(64,
), activation=’relu’))

model.add(Dense(32))
model.add(Activation(’softmax’))

In the snippet above, it is created a Sequential model which will take as input arrays of
shape (*, 64) and output arrays of shape (*, 32). It is common to use a kernel initializer
parameter, which is the initializer for the kernel weights matrix. The initialization defines
the way to set the initial random weights of Keras layers. After this, is necessary to add an
activation function, because it turns the train more faster and is not necessary add more
parameters to the model. There are several kinds of activation function, such as softmax, relu,
sigmoid, tanh, etc. Considering the main purpose of this dissertation, it will be used the relu
activation function, because it is faster to train the network even without pre-training than
the other activation functions, and does not face with vanishing gradient problem (it is a
difficulty found in training certain Neural Networks with gradient based methods) as with
sigmoid and tanh functions. Then, after the first layer is no need to specify the size of input
anymore, because the neural network knows it already. The most used types of activation
functions are softmax, relu, sigmoid and tanh:

• softmax: Is a function that squashes the outputs of each unit between 0 and 1 and it
is used in multi-class classification problems (for example on MNIST dataset). Each
output is divided such that the total sum of the outputs is equal to 1.

• ReLU: The ReLU activation function is defined as f(x) = max(0, x), where x is the
input to a neuron. It is the most popular activation function for deep neural networks,
due to its capacity to train faster (six times than tanh function) than the other functions.
This function has efficient gradient propagation, i.e, has no vanishing gradient problems,
has efficient computation because only has comparison, addition and multiplication
operations and it is faster to train even in large and complex datasets. ReLU has also
soft plus units superseded from soft plus function because it turns the computation
faster and linear.
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Figure 4.1: ReLU function and softplus [45]

• sigmoid: Sigmoid function is defined as S(x) = 1 / (1 + e−x) and returns values in
range [0, 1]. This activation function is mostly used in binary classification (as we
pretend to do in this dissertation). Sigmoid is an exponential function and this is one of
the main reasons that is one of the most used, because generally are similar to handle
mathematically, and computationally is simple, which offers better performance for
learning algorithms. In this dissertation, this function is used in the last layer of fully
connected network, which receives some inputs and has only one neuron (output), in
order to know the final classification that is a value in range [0, 1].

Figure 4.2: Sigmoid function [36]
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• tanh: Tanh function is a sigmoid re-scaled function, because its output range is [-1,1],
instead [0, 1]. Is the hyperbolic tangent function, which is similar to the Tan circular
function used throughout trigonometry. This activation function is expensive to compute
on most architectures and most of time is quickly converge than sigmoid and performs
better accuracy.

Figure 4.3: Tanh function [36]

Keras has also wrappers for the Scikit-learn API, which allow to use sequential Keras
models as part of our Scikit-learn workflow. There are two wrappers for the Scikit-learn API:
KerasClassifier and KerasRegressor, but we only pretend to perform classification, so it will
used KerasClassifier. KerasClassifier commonly uses a class instance to construct, compile and
run the Keras model (build fn) and also takes the model and fitting parameters (sk params).
This parameter accepts parameters for calling fit, predict, predict proba and score methods
such as epochs, which separates training into distinct phases, and batch size, which is a set
of N samples that are processed independently in parallel. The larger the batch, the better
the approximation, but may take longer to process. To beyond these parameters, model and
fitting parameters accepts also a verbose, which may show or not the progress bar logging for
epochs (0 for no logging, 1 for progress bar logging and 2 for one log line per epoch).

Convolutional Neural Network and layers

In this section, is discussed pratical concepts of a CNN based on Keras API. As was
already stated in chapter 3, CNN is based on animal visual cortex.

These type of NN uses Convolutional layers, which are the essential pillar for CNNs.
These layers are the core building block of a CNN and creates a convolution kernel that is
involved with the layer input over a spatial dimension in order to produce a tensor of outputs.
The first convolutional layer on the model requires the specification of an input shape argument
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which generally is a tuple of integers. There are several types Convolutional layers, but the 3
most common are (one of them is used in this dissertation) Conv1D, Conv2D and Conv3D.

Conv1D layers are mostly used in problems like text classification and, for the purpose of this
dissertation, DNA sequence classification. These layers receives a certain number of samples
from a dataset, which has a defined number of features and each one are multidimensional.

Snippet 4.2: Convolutional 1D layer
from keras.layers import Conv1D
from keras.models import Sequential

kernel_size = 3

model = Sequential()
model.add(Conv1D(filters=32, kernel_size=kernel_size, input_shape=(16, 256),

padding=’same’, activation=’relu’))

The snippet above shows the creation of the model and then it added an Convolutional
layer. The argument filters is the dimensionality of the output space, i.e, the number output
of filters in the convolution. The kernel size argument in Conv1D layer is an integer which
specifies the length of the 1D Convolution window. The input shape argument defines the
shape of the input, i.e., the number of vectors and its dimension. In the case of this snippet
we have can have any number of samples, and specified in the argument, sequences of 16
vectors (features) of 256-dimensional vectors. The padding is also important because it is
easier to design networks, preserving the height and width (no need to worry about tensor
dimensions), and then the network can easily become a deep network, which improves the
performance by keeping the information in the borders. In the snippet, padding = ”same”
means that there is no changes tensor dimensions and in height and width. Finally, we have
the activation function applied to this layer. The activation function applied is ReLU, which
was already explained.

Such as the Conv1D layers, Conv2D layers are also essential to build a CNN, but these
layers are used mostly in image pre-processing. In the early days, deep learning started to
work with images. Images have dimensions (height and width), pixels and channels (such as
Red Green and Blue (RGB), grayscale), so is needed to add an additional value for the shape
of input.

Snippet 4.3: Convolutional 2D layer
from keras.layers import Conv2D
from keras.models import Sequential

model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3,3) input_shape=(128, 128, 3),
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padding=’same’, activation=’relu’))

In the snippet above, the convolutional layer accepts image with the dimension 128x128 in
RGB format (the value 3 specifies each channel of the images). The kernel size is now a tuple,
because in addition to having the number of channels, we have width and height.

Conv3D layers are also used to create an CNN. These layers are little used because it
makes the network slower and there are a few datasets with 3 dimensions. In this layer, the
shape of input is for 128x128x128 volumes with 3 channels.

Snippet 4.4: Convolutional 3D layer
from keras.layers import Conv3D
from keras.models import Sequential

model = Sequential()
model.add(Conv3D(filters=32, kernel_size=(3, 3, 3) input_shape=(128, 128, 128, 3),

padding=’same’, activation=’relu’))

In a CNN is usual to add periodically a Pooling layer between successive Convolutional
layers in a Convolutional Network, in order to reduce the spatial size of the representation,
which reduces the amount of parameters and computation in a network. Basically, it is an
essential layer to control the overfitting problem. This layer works in each depth slice of the
input and resizes it spatially, using the MAX function. That’s why in this dissertation is
used the MaxPooling1D layer.

Snippet 4.5: MaxPooling 1D layer
from keras.layers import MaxPooling1D
from keras.models import Sequential

model = Sequential()
model.add(MaxPooling1D(pool_size=2))

The snippet shows the application of the size of maximum pooling windows in a Con-
volutional 1D Neural Network (pool size=2). The figure below explains how a MaxPooling
layer 2D works in each slice depth. The value of the size of pooling is the factor by which to
downscale. In this case, a size of pool equal to (2,2) will halve the input in both dimensions.
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Figure 4.4: MaxPooling layer operation [36]

The most usual form is a pooling layer with 2x2 filters, which are applied with a stride of
2 downsamples, such as represented in Figure 4.4.

Snippet 4.6: MaxPooling 2D layer
from keras.layers import MaxPooling2D
from keras.models import Sequential

model = Sequential()
model.add(MaxPooling2D(pool_size=(2,2))

Snippet 4.7: MaxPooling 3D layer
from keras.layers import MaxPooling3D
from keras.models import Sequential

model = Sequential()
model.add(MaxPooling3D(pool_size=(2,2,2))

Such as MaxPooling1D and MaxPooling2D layers, MaxPooling3D layers have also have
the size of pooling. As shown in the snippet above, a size of pool equal to (2,2,2) will halve
the size of input in each dimension.

After inserting a MaxPooling or a Convolutional layer, is possible to add a Dropout.
Dropout is used to help in the prevention of overfitting by setting a fraction rate of input
units to 0 at each update in training process.
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Snippet 4.8: Application of a Dropout with a rate of 0.2
from keras.layers Dropout, Conv1D, MaxPooling1D
from keras.models import Sequential

kernel_size = 3

model = Sequential()
model.add(Conv1D(filters=32, kernel_size=kernel_size, input_shape=(16, 256),

padding=’same’, activation=’relu’))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))

We can insert Convolutional, MaxPooling and Dropout layers how many we want, but in
order to perform a complete Convolutional Neural Network is needed to connect all these layers
with a Fully Connected Network. This important connection is performed by the Flatten
layer.

Snippet 4.9: Application of Flatten layer
from keras.layers Dropout, Conv1D, MaxPooling1D, Flatten
from keras.models import Sequential

kernel_size = 3

model = Sequential()
model.add(Conv1D(filters=32, kernel_size=kernel_size, input_shape=(16, 256),

padding=’same’, activation=’relu’))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))
model.add(Flatten())
#fully connected layer
model.add(Dense(32, input_shape=(64, )))
model.add(Activation(’relu’))
...

After inserting the Flatten layer, we can add the Fully Connected Network in order to
create the Convolutional Neural Network. But before training the model, it is essential to
configure the learning process. This is done by the method .compile().

Snippet 4.10: A complete Convolutional Neural Network
from keras.layers Dropout, Conv1D, MaxPooling1D, Dense, Flatten
from keras.models import Sequential

kernel_size = 3
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model = Sequential()
model.add(Conv1D(filters=32, kernel_size=kernel_size, input_shape=(16, 256),

padding=’same’, activation=’relu’))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))
model.add(Flatten())
#fully connected layer
model.add(Dense(32, input_shape=(64, )))
model.add(Activation(’relu’))
model.add(Dropout(0.2))
model.add(Dense(1, kernel_initializer=’normal’, activation=’sigmoid’))
model.add(Dropout(0.2))
model.compile(loss=’binary_crossentropy’, optimizer=’rmsprop’, metrics=[’accuracy’])

Optimizers are required for compiling a Keras model. Keras has a lot of optimizers, but
the most used are the AdaDelta, SGD, Adam and RMSprop. In the scope of this dissertation,
it is used Adam and RMSprop because are the ideal for classification problems. In Keras, for
binary classification it is used the RMSprop, which is what is intended in this dissertation
because we have one output that will be between 0 and 1.

Other argument when configuring the learning process is the loss function. This function
is essential because quantifies the amount by which the prediction deviates from the actual
values. The model tries to minimize this function, in order to prediction be practically equal to
the true values. Lastly, compile method has metrics, which is a function that is used to judge
the performance of the model. Typically is used the Accuracy metric to assess the model’s
performance, because in the new version of Keras were removed some legacy metric functions
such as Matthews coefficient correlation and Recall. In this dissertation, the fact that will be
used cross-validation enables to use some metrics that were removed in new Keras version.
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4.3 Datasets adopted

To perform a prediction from a genetic mutation is required to have a dataset that contains
values from the features, or the DNA sequence with the respective nucleotides, which can be
already in codon’s format. In chapter 2 were stated some datasets, but in this dissertation,
will be used five: HumVar, ExoVar, PredictSNP, Swissvar and Varibench.

Datasets Deleterious variants Neutral variants Total
Exovar 5156 3694 8850
Humvar 21090 19299 40389

PredictSNP 10000 6098 16098
Swissvar 4526 8203 12729

Varibench 4309 5957 10266

Table 4.1: Variants of each dataset

The table above shows the number of deleterious, neutral and total variants. Deleterious
means the variants who are harmful or injurious, neutral means the opposite meaning of
deleterious variants, and the total are the number of deleterious plus the neutral variants.
These datasets were chosen to be used in this dissertation, because we have already available
data from these five datasets. For an initial phase of this dissertation, the five datasets have
feature values, which were calculated by mathematical formulas. ExoVar is the smallest
dataset and HumVar is the biggest one. In these five datasets, the first column represents
the gene’s identifier, the position where the mutation occurs and the respective mutation
performed in the sequence:

Figure 4.5: Representation of geneID, mutation’s position and mutation

The second column is the class labels, i.e, -1 if the mutation is pathogenic and 1 if is
non-pathogenic before training and classification. The remaining columns are represented by
its decimal values, obtained with mathematical formulas. The section 4.4 mentions the steps
that should be performed when using this dataset format.

In the next phase of this dissertation, the datasets content are simplified, and now we
have only four columns with original sequence and mutated sequence represented with the
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nucleotides (letters). Such as the previous format of the dataset approached later, the first
column represents the gene’s identifier, the position of the mutation and the respective mu-
tation. The second represents the class labels (positive 1, -1 negative) and now, the third
column is represented by the original DNA sequence composed by the sequence of nucleotides,
in which the middle position of the sequence is the nucleotide that will suffer the mutation,
such as the fourth and last column. This column contains the mutated DNA sequence, and a
different nucleotide from the original sequence, which represents the mutation performed. The
deployment of this task is performed in section 4.5.

Figure 4.6: Mutation performed from Guanine (G) to Adenine (A)

Another composition of the datasets (and the last used) is similar to the second, men-
tioned previously. As was stated in chapter 1, DNA sequence is composed by nucleotides
which groups of three nucleotides generate codons. So, this means that the DNA sequence
in the dataset is now displayed in codons, as the Figure 4.7 shows below. Also, this time
the position where the mutation occurs is different, because we have a window with less codons.

Figure 4.7: Mutation performed from Guanine (G) to Adenine (A) in codon sequence

4.4 Predictions using classical classifiers

As stated previously, in an initial phase of the dissertation was performed predictions with
the scikit-learn’s classical classifiers, in order to know the results obtained applying these
classifiers in all datasets with and without cross-validation. The application of these classifiers
in the datasets will help to understand how each classifier behaves, taking into account its
performance and its scoring metrics such as AUC, Accuracy and MCC.

61



The first thing to do was to read the dataset, using the Numpy library. After reading the
dataset it is essential to pre-process the data, in order to specify what data will be used by
the classifier (class labels). Then, is specified the classifier to be used by the data for training
and test, but in order to get the final score, taking into account the metric used, the model
must be fitted to specify the training data and the target values (or class labels). The method
that performs this operation is called fit(). Once the data is fitted, it is time to compute the
score, based on each metric mentioned. To get the score, using accuracy or MCC as metrics, is
required to predict the class labels for the provided data. The method used for this is predict(),
which predicts if the mutation is pathogenic or not (the method uses -1 to non-pathogenic and
1 to pathogenic). Then, these predictions are used in accuracy score and matthews corrcoef
methods to get the final score. The AUC metric receives the input data and the target score,
i.e, the probability estimates of the training data. To obtain these probability estimates, is
used the method predict proba() on the training data, and then is possible to get the result
using AUC metric with roc auc score method.

Snippet 4.11: Decision Tree with accuracy scoring metric

from sklearn.tree import DecisionTreeClassifier
import numpy as np
from sklearn.metrics import accuracy_score

cv = 10
dataset_file = "exovar_features.txt"

def read_and_preprocessing_data(file):
file_data = np.genfromtxt(file, delimiter=’,’, skip_header=0) # delimiter ->

because features are separated by commas
# skip_header -> skip no line in the beginning of the file
true_class = np.ravel(file_data[:, 1]) # get target class
positive_fraction = (sum(true_class) * 100.0) / len(true_class)
return file_data[:, 2:], true_class # return training data and class target

def training_and_test(inputX, inputY):
dt = DecisionTreeClassifier(random_state=0)
dt.fit(inputX, inputY)
score = accuracy_score(inputY, dt.predict(inputX))
mean = score.mean()

With cross-validation there is no need to specify the fit() and predict() methods, because
it is possible to use the Pipeline module. This module has the purpose of assembling several
steps that can be cross-validated together, and its intermediate steps execute fit and transform
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methods. The method make pipeline constructs the pipeline from the given estimators and it is
a shorthand for the Pipeline constructor. Typically, this method receives a StandardScaler,
which unify features by removing the mean and then scale to unit variance. The StandardScaler
makes the centering and scaling happen on each feature of the training set. Then, mean
and standard deviation are stored to be used on later data using the transform method.
Standardization is a common requirement for machine learning estimators, because many
elements used in the objective function of a learning method consider that all features and its
variance are around 0.

Snippet 4.12: Decision Tree using cross-validation with accuracy scoring metric
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from sklearn import preprocessing
from sklearn.pipeline import make_pipeline
import numpy as np

cv = 10
dataset_file = "exovar_features.txt"

def read_and_preprocessing_data(file):
file_data = np.genfromtxt(file, delimiter=’,’, skip_header=0)
true_class = np.ravel(file_data[:, 1]) # get target class
positive_fraction = (sum(true_class) * 100.0) / len(true_class)
return file_data[:, 2:], true_class

def training_and_test(inputX, inputY):
dt = DecisionTreeClassifier(random_state=0)
mkp = make_pipeline(preprocessing.StandardScaler(), dt)
score = cross_val_score(mkp, inputX, inputY, cv=cv, scoring=’accuracy’)
mean = score.mean()

Lastly, it was performed classification using the cross-validation models selection: Stratified
K-fold and Group K-fold. The implementation is similar for each model selection, being that
the Group K-fold needs the groups, which will be the gene identifier (geneID).

Snippet 4.13: Decision Tree using Stratified K-fold model selection
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn import preprocessing
from sklearn.pipeline import make_pipeline
import numpy as np
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n_splits = 10
dataset_file = "exovar_features.txt"

def read_and_preprocessing_data(file):
file_data = np.genfromtxt(file, delimiter=’,’, skip_header=0)
true_class = np.ravel(file_data[:, 1]) # get target class
positive_fraction = (sum(true_class) * 100.0) / len(true_class)
return file_data[:, 2:], true_class

def training_and_test(inputX, inputY):
dt = DecisionTreeClassifier(random_state=0)
skf = StratifiedKFold(n_splits=n_splits)
mkp = make_pipeline(preprocessing.StandardScaler(), dt)
score = cross_val_score(mkp, inputX, inputY, cv=skf, scoring=’roc_auc’)
mean = score.mean()

Snippet 4.14: Decision Tree using Group K-fold model selection

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score, GroupKFold
from sklearn import preprocessing
from sklearn.pipeline import make_pipeline
import numpy as np

n_splits = 10
dataset_file = "exovar_features.txt"

def read_and_preprocessing_data(file):
file_data = np.genfromtxt(file, delimiter=’,’, skip_header=0)
true_class = np.ravel(file_data[:, 1]) # get target class
groups = np.genfromtxt(file, delimiter=’,’, skip_header=0, dtype=’str’)
file_data_gene = np.ravel(groups[:, 0])

positive_fraction = (sum(true_class) * 100.0) / len(true_class)
return file_data[:, 2:], true_class, geneID

def training_and_test(inputX, inputY):
dt = DecisionTreeClassifier(random_state=0)
skf = GroupKFold(n_splits=n_splits)
mkp = make_pipeline(preprocessing.StandardScaler(), dt)
score = cross_val_score(mkp, inputX, inputY, cv=skf, scoring=’roc_auc’)
mean = score.mean()
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4.5 Predictions in nucleotide and codon sequence

In this part of the dissertation will be present the different encoding strategies used to
perform pre-processing, training and classification. It is necessary to encode the data because
it is present as a nucleotide sequence (or DNA sequence) in string format, and obviously we
cannot ”work” over this type of data. Another reason for encoding is the type of data used by
the prediction models, which not accept data string format. Thus, taking these statements into
account, is necessary to use different encoding strategies not only for training and classification
but also to know what is the best encoding strategy.

So, the strategies used were One-Hot DNA sequence, 65 One-Hot vector encode,
One-Hot vector amino acid encode, Amino acid properties vector, Amino acid
physical-chemical properties, Amino acid properties based on a Venn diagram.

4.5.1 One-Hot DNA sequence

For this encoding strategy, the data is pre-processed as a nucleotide sequence. So, each
letter must have a special encoding that differentiates from the other letters. The following
Figure 4.8 illustrates this:

Figure 4.8: One-Hot Vector encode for each nucleotide

65



Most examples performed with machine learning use a Numpy array to encode the data,
because is an effective technique to use. The codification presented in Figure 4.8 was used
in work [46] and it is called One-Hot vector encode. This is a group of bits in which all
combinations are encoded in a vector with a single 1 and the remaining bits are 0.

Taking into account the codification of each nucleotide represented in Figure 4.8, then
a dictionary was used in which each nucleotide is the key and the respective vector is a
numpy array value, i.e, each nucleotide is replaced by the its vector. Due to the fact that the
codification of the sequence is performed by One-Hot vector, this strategy could be called as
One-Hot vector encode.

Snippet 4.15: Dictionary used to encode the DNA sequence
import numpy as np

dictionary = {
’A’: np.array([1, 0, 0, 0, 0]),
’C’: np.array([0, 1, 0, 0, 0]),
’G’: np.array([0, 0, 1, 0, 0]),
’T’: np.array([0, 0, 0, 1, 0]),
’X’: np.array([0, 0, 0, 0, 1])

}

Once we have a dictionary to replace each nucleotide, it is time to perform the reading and
pre-processing of the data. This operation is done similarly to the previous one in section 4.4,
but this time the dataset has the original sequence, i.e, the sequence without any mutation,
and the mutated sequence which contains a single mutation. Some samples have ’X’ as a
nucleotide. This letter is used just to adjust the window of genetic code, i.e, for instance the
mutation could be occur in the first five, ten positions of the genetic code. Using this letter,
the mutations occur in the same position for all samples of the dataset. Another reason to use
this letter is the emergence of sequencing errors. As the section 4.3 mentions, the dataset has
100 nucleotides before the position where the mutation occurs, and 100 after this position,
which means that we have 201 nucleotides in the original and mutated sequence.

In the pre-processing of the data, is specified what is the original and mutated sequence,
as well as the different techniques that be used in data to perform classification, using k-fold
cross-validation. One of the techniques used was subtract, which consists into subtract the
original sequence with the mutated sequence. Numpy library performs this operation with
subtract() method and it is like a subtraction between two matrices, so it is not necessary
to perform a reshape of the data. This technique facilitates the classification and improves
the performance of the model, because only one index will have number 1, one -1, and the
remaining data will have only zeros.
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Figure 4.9: Mutation performed from Guanine to Adenine represented in vectors.

The other technique used was vstack, which consists into taking a sequence of arrays and
stack them vertically to make a single array. In the concept of this dissertation, this function
handles the mutation sequence and puts it below the original mutation, causing a change in
the shape of the data which will have the double of the samples. The performance of this
model with this shape of the dataset is very low, so it is essential to perform a reshape of the
dataset, which can be performed by the method reshape().

Figure 4.10: Example of reshape and vstack with the respective sequences.
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After pre-processing the data with the strategies approached, it is performed the training
and classification. With the datasets in a format of nucleotide sequences, the models used to
perform training and classification were the Convolutional Neural Network (approached in
chapter 2 and studied in work [37]) and Complex Network models, which will be explained
further ahead in section 4.6.

4.5.2 65 One-Hot vector encode

In this strategy, the data is in codon format. So, it is assigned to each codon a one-hot
vector with a length corresponding to the number of existing codons in the datasets, i.e, we
have 64 codons and the codon ”XXX”. These vectors are different from each other. This
strategy is similar to the one who was developed previously, as the Figure 4.11 shows.

Figure 4.11: 65 One-Hot Vector encode for each codon.

As stated in section 4.3, we have 30 codons before and after the codon mutated. This
means that we have 61 codons. The pre-processing is performed as in section 4.5 being able to
modify the data window, i.e, instead we have 30 codons before and after the mutated codon,
we can have less than 30 codons, specifying the amount desired from the mutated position.
Performing this modification reduces the amount of data to analyze and improves the final
performance of the model. Over the five datasets with this format, it was applied subtract
and vstack operations between original and mutated sequence. Applying subtract operation,
the first Convolutional layer of the model will have a input shape variable of (61, 65), because
we still have 61 codons in the sequences and each codon vector have a length of 65, as shown
in Figure 4.11. Using vstack operation, input shape variable will be equal to (122, 65) because,
as shown in Figure 4.10, we have to perform the reshape operation to keep the number of
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dataset samples.
Classification is performed such as the last chapter, using the same model and its parameters,

differentiating only the shape of input. It is used the KerasClassifier with the same epochs
and batch size, pipeline module to perform predict and fit with KerasClassifier and are also
used the two k-fold cross-validation variants StratifiedKFold and GroupKFold.
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4.5.3 One-Hot vector amino acid encode

This strategy consists into assign an One-Hot vector to a codon, according to the resulting
amino acid, i.e, the codons which encode the same amino acid have the same vector value, as
shown in Figure 4.13. As stated in chapter 1, the amino acids result during protein synthesis.
In order to understand how codification process will be performed, it is essential to present
in first all amino acids and their abbreviations that will be used in this dissertation. This
information is shown in Figure 4.121 helps to know what is the resulting amino acid, and
which codons encode the same amino acid.

Figure 4.12: Codons and amino acids

1http://www.hgvs.org/mutnomen/codon.html
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As we can see in the table above, for instance the codons ”TTT” and ”TTC” result in
the same amino acid called Phenylalanine (phe). ”CCT”, ”CCC”, ”CCA” and ”CCG” result
in the same amino acid called Proline, and other many examples. According to the codon
table, we have a total of 20 amino acids, 3 codons are STOP signals, and the codon ”XXX” is
considered to result in an another amino acid. So, taking into account what was said, the
codons in the sequence will be encoded using One-Hot vector, but this time the length of the
vectors will be 22 due to the fact that we have 20 amino acids, STOP codons and a different
amino acid from codon ”XXX”.

Figure 4.13: One-Hot vector encode for amino acids

This time, the shape of input from the first Convolutional layer will be equal to (61, 22)
for subtract and (122, 22) for vstack followed by reshape operation. It is used the same model,
with the same parameters, so the classification process is executed in the same way using the
two k-fold cross-validation variants Stratified K-fold and Group K-fold.
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4.5.4 Amino acid properties as a vector with ones and zeros

This encode strategy is based on a list of amino acid properties. Each codon is replaced
by a vector (numpy.array) with zeros and ones, which are assigned according to the table2

present below.

Property Amino Acids
Acidic / amide Asp, Glu, Asn, Gln
Charged negative Asp, Glu
Charged positive Lys, Arg
Polar Ala, Gly, Ser, Thr, Pro
Hydrophobic Val, Leu, Ile, Met
Size big Glu, Gln, His, Ile, Lys, Leu, Met, Phe, Trp, Tyr
Size small Ala, Asn, Asp, Cys, Gly, Pro, Ser, Thr, Val
Aliphatic Ile, Leu, Val
Aromatic His, Phe, Tyr, Trp

Table 4.2: Properties of amino acids

Taking into account the table above, we have 9 properties and the amino acids which owns
these properties. As we can see, an amino acid can have one or more properties, so this means
that the encoding of the data is similar to One-Hot vector. The Figure 4.14 explains in detail
how the encoding process is performed.

Figure 4.14: Encoding with properties of amino acid
2http://www.hgvs.org/mutnomen/codon.html#aaprops
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In Figure 4.14, the codons are replaced by the respective vectors, which are made according
to the properties of the resulting amino acids. Codons ”TTT” and ”TTC” result in amino acid
Phenylalanine which is an aromatic and big size amino acid. The STOP signals are replaced
by vectors with all indexes equal to 0, because they do not contain any of the properties
presented. The extra codon ”XXX” has the encoding that is in the figure because it was
decided to add an index only for this codon in order to differentiate from the other codons.

After this data pre-processing, the training of the model is executed with the shape of
input equal to (61, 10) for the first Convolutional layer using subtract operation, and are used
vstack and reshape operations when the shape of input is equal to (122, 10). It is used the
same model from the previous sections and the classification is performed using the two k-fold
cross-validation variants.

4.5.5 Venn diagram with amino acid properties

Similarly to the last strategy approached, in this section the codons are encoded in vectors
too. These vectors have ones and zeros too, but these are assigned according to the Venn’s
diagram, displayed in Figure 4.153, which is based on a work present in the footnote. The
amino acid properties are the same as the previous strategy with the difference that here is
present one more amino acid property.

Figure 4.15: Venn’s diagram for properties of amino acids.

In pre-processing data, the codons are encoded according the figure above. For example,
the amino acid Alanine has ”Tiny”, ”Small” and ”Hydrophobic” properties because it is within
the 3 circles, Lysine (represented by letter ”K”) has ”Positive (Basic)”, ”Charged”, ”Polar”
and ”Hydrophobic” properties. Here, we have 11 properties, which means that the encoding

3https://amit1b.wordpress.com/the-molecules-of-life/about/amino-acids/
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vectors will have a length of 11, and the respective encoding is performed similarly to the
previous sections, which is shown in Figure 4.16 below.

Figure 4.16: Encoding according to Venn’s diagram.

The codon ”XXX” is encoded in vector which all indexes are 1, because it is a way to
differentiate from the other codons (the same reason mentioned in the previous sections) and
the STOP signals have their all indexes equal to zero. Once the encoding is now finished,
we can train the model (the same as the previous sections) with the shape of input equal to
(61, 11) for the first convolutional layer using subtract operation, and equal to (122, 11) using
vstack and reshape operations. Then it is performed the classification using the two K-fold
cross-validation variants.
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4.5.6 Amino acid physical-chemical properties

Another technique similar to the previous is approached in this section, but instead to
encode the codons into the properties of the resulting amino acids as vectors with zeros and
ones, the data is encoded using the physical-chemical properties of amino acids, which are
based on work [47], but the figure is retrieved from article [33].

Figure 4.17: Amino acid physical-chemical properties [47]

The letters present as columns in the table above represent each amino acid (see Figure 4.12),
which are pre-processed into a dictionary that encode the data. For the STOP signals are
given a random value for its properties and it is performed the same for the codon ”XXX”.

In the pre-processing data, the original and mutated sequence are separated from each other
into numpy arrays, as in other techniques. Then, it is only performed a subtract operation
between each sequence array in order to simplify the training and classification, and it is the
best method to get better results (see chapter 5). Some of these values are used in the initial
phase of this dissertation when is performed the training and test of each classical classifier
on the datasets, and these values are also obtained by mathematical formulas from another
works.
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4.6 Models developed

In order to perform training and classification, it is necessary to build some classifiers/-
models. In this section are explained in detail all procedures performed in the buiding of these
models. One of them is a CNN and the other is a Complex Network.

4.6.1 Convolutional Neural Network

As stated previously, CNN is a sequential model. So, this model has Convolutional layers,
Dropout layers, Max Pooling layers and then a FCNN with Dense (hidden) layers and neurons
per layer. The beginning of this implementation starts to create a sequential model. Then,
are added the convolutional layers specifying the parameters such as filters, the size of the
kernel, the shape of the input, activation function and number of strides (the respective role
of each parameter is explained in subsection 4.2.3). After each convolution layer, it was then
added a single MaxPooling layer and a Dropout with a rate of 0.2 (20%), in order to reduce
the amount of parameters and overfitting problem. In general were added two convolutional
layers, as well as two MaxPooling layers and two Dropout (both with a rate of 0.2), because it
helps to improve the final score and train the model better.

After adding the Convolutional, MaxPooling and Dropout layers, we can add the Fully
Connected layers to complete the model. In order to achieve this, is essential to add a Flatten
layer to perform the connection between the Convolutional, MaxPooling and Dropout layers
and the Fully Connected layers. Fully Connected layers compose a FCNN, which may contain
Dropout layers between each layer, such as happen in Convolutional Neural Networks. In
this case, was added 3 Fully Connected layers with each one has 100 neurons and a ReLU
activation function, 3 Dropout layers with a rate of 0.2 and one Output layer with 1 neuron
and a sigmoid as activation function, because it is pretended to have an output between 0 and
1. The reason to have this amount of layers and the values for each parameter is due to the
fact that we can get better results, taking also into account the performance of each model,
i.e, the time of pre-processing data and time of training and classification. So, the chosen
model and its parameters is like an optimization between the final result (score) and the
performance of the model. It is important to refer that in model.compile(), the loss function
is equal to ”binary crossentropy”, because we pretend to perform a binary classification, i.e,
classify if a mutation is pathogenic or not (values 0 for non-pathogenic and 1 for pathogenic),
and the optimizer used is the rmsProp because is recommended by Keras to perform binary
classification. The snippet below shows the deployment of the model. Each parameter is
explained in subsection 4.2.3 and the other values attributed are the ones who can get better
results and most used in some other works.
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Snippet 4.16: Implementation of Convolutional Neural Network model

from keras.layers import Dense, Conv1D, MaxPooling1D, Dropout, Flatten
from keras.models import Sequential

filters = 32
kernel_size = 3
n_chars = 201
num_of_nucleotides = 5
num_strides = 1

def baseLineModel():
model = Sequential()
model.add(Conv1D(filters=filters, kernel_size=kernel_size,

input_shape=(n_chars, num_of_nucleotides), padding=’same’,
activation=’relu’, strides=num_strides))

model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))
model.add(Conv1D(filters=filters, kernel_size=kernel_size, padding=’same’,

activation=’relu’))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(100, kernel_initializer=’normal’, activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(100, kernel_initializer=’normal’, activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(100, kernel_initializer=’normal’, activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(1, kernel_initializer=’normal’, activation=’sigmoid’))
model.compile(loss=’binary_crossentropy’, optimizer=’rmsprop’,

metrics=[’accuracy’])
return model

Once the model is built, it is time to perform training and classification. As we pretend
to use k-fold cross-validation and Scikit-learn API to achieve the goal, it was used the Keras
wrapper KerasClassifier. As stated in subsection 4.2.3, this wrapper has a parameter that
builds, compiles and returns a Keras model, so, taking into account the snippet above we
have the following statement: KerasClassifier(build fn = baseLineModel). In this dissertation,
the epochs was assigned the value 15, and for batch size 128 for this model, because when
tests were carried out, these values were the ones who can get the best results in terms of
performance and score. Then, it was applied the Pipeline to the KerasClassifier and used
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Group-K fold and Stratified-K fold cross-validation to get the final classification score. The
snippet below considers the model built in the last snippet.

Snippet 4.17: Classification of the model using k-fold cross-validation

from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score, StratifiedKFold, GroupKFold
from sklearn.pipeline import Pipeline

estimators = [(’cnn’,KerasClassifier(build_fn=baseLineModel, epochs=15,
batch_size=128, verbose=0))]

pipeline = Pipeline(estimators)
kfold = StratifiedKFold(n_splits=10, random_state=0)
results = cross_val_score(pipeline, sequence, class_y, cv=kfold, scoring=’accuracy’)

Below is shown the respective model described in these snippets:

Figure 4.18: Convolutional Neural Network model [37]
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4.6.2 Complex Network

In this section, the model used to be trained is not a sequential model but is a Complex Net-
work model, which is based on the Network referenced in work [37]. This network is composed
by 2 inputs, 2 Convolutional Neural Network, a Neural Network and 1 output. One of the
Convolutional Neural Network receives as input the original sequence and the other receives
the mutated sequence. Then, the respective outputs are merged as inputs of the Neural Net-
work (MLP), which in the last layer contains an output that gives a value score between 0 and 1.

Figure 4.19: Complex Network model [37]

As Figure 4.19 shows, the output of each Convolutional Network is an input of the Neural
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Network. The creation of this model is similar to the previous ones. It starts by creating two
sequential models individually with the same parameter values as the previous models and
then, instead of to compile the two models, their outputs are concatenated in order to make
them as inputs of the Neural Network. The result of the concatenation is then connected to
the first Neural Network layer which connects with its hidden layers and then to the final
output layer. The diagram represented in Figure 4.20 explains better the steps that were
performed to build this model.

Figure 4.20: Diagram of the Complex Network model
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The model is compiled in the same way as the models of previous sections, i.e, uses the
loss function binary crossentropy, and the optimizer rmsProp. Then, it is used the method
fit() in order to the estimator learn from the model, with 20 epochs and a batch size equal to
32. The reason to use these values is due to the fact that it obtains (in average) better score.
The performance of the model and the final result will be discussed in chapter 5. Below are
the code snippets of each block of the diagram and its explanation.

Snippet 4.18: Convolutional Neural Network model

from keras.layers import Dense, Conv1D, MaxPooling1D, Dropout, Flatten
from keras.models import Sequential

num_codons = 61
vector_length = 22 # used amino acid property codification

#the same is performed for mutated sequence (model2)
model1 = Sequential()
model1.add(Conv1D(filters=32, kernel_size=3, input_shape=(num_codons,

vector_length), padding=’same’, activation=’relu’))
model1.add(MaxPooling1D(pool_size=2))
model1.add(Dropout(0.2))
model1.add(Conv1D(filters=filters, kernel_size=kernel_size, padding=’same’,

activation=’relu’))
model1.add(MaxPooling1D(pool_size=2))
model1.add(Dropout(0.2))
model1.add(Flatten())
model1.add(Dense(100, kernel_initializer=’uniform’, activation=’relu’))
model1.add(Dropout(0.2))
model1.add(Dense(100, kernel_initializer=’uniform’, activation=’relu’))
model1.add(Dropout(0.2))
model1.add(Dense(100, kernel_initializer=’uniform’, activation=’relu’))

Snippet 4.19: Input layer for original sequence
from keras.layers import Dense, Conv1D, MaxPooling1D, Dropout, Flatten
from keras.models import Sequential
from keras.engine import Input

num_codons = 61
vector_length = 22 # used amino acid property codification
# the same is performed for mutated sequence
input1 = Input(shape=(num_codons, vector_length))
seq1 = model1(input1)
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This snippet means that the Input engine has the dimensions of (61,22), that is, accepts
2D arrays with 61 elements (number of codons) with a length of 22 (number of digits used
in encoding). The variable seq1 is defined as one of inputs of the Convolutional Neural Network.

Snippet 4.20: Concatenation of the sequences

from keras.layers import Dense, Conv1D, MaxPooling1D, Dropout, Flatten, concatenate
from keras.models import Sequential
from keras.engine import Input

merged = concatenate([seq1, seq2])

Considering that we have already implemented the two Convolutional Neural Networks, it
is time to merge the outputs of each Network, using the method concatenate().

Snippet 4.21: Implementation of Neural Network

from keras.layers import Dense, Conv1D, MaxPooling1D, Dropout, Flatten, concatenate
from keras.models import Sequential
from keras.engine import Input, Model

merged = concatenate([seq1, seq2])
x = Dense(2, activation=’relu’)(merged)
x = Dense(32, activation=’relu’)(x)
x = Dense(1, activation=’sigmoid’)(x)
model = Model(inputs=[input1, input2], output=x)
model.compile(loss=’binary_crossentropy’, optimizer=’rmsprop’, metrics=[’accuracy’])
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After deploying the Merge layer, there are gathered all conditions to deploy the Neural
Network using the Dense layers. The code of the first Dense layer, which have ”(merged)”
in the end of the line, means that the concatenation connects to the first layer, that is, the
Neural Network receives its respective inputs. The last Dense layer is the output of the model
with ”sigmoid” as activation function (explained in subsection 4.2.3) and the engine ”Model”
specifies the inputs of the model and the respective output. As we can see, the inputs are seq1
and seq2 such as mentioned in the snippets below. The output is the variable ”x” because the
last block of the model is the Neural Network, which is represented by the variable ”x”.

The model is now completed but still was not specified which sequence data is trained
on one and the other Convolutional Neural Network. This specification is performed by the
method .fit() which contains as arguments input ”[orig seq, mut seq]”. This means that the
original sequence is trained in the first Convolution Neural Network and the mutated sequence
is trained in the other, because the inputs of engine Model are equal to [input1, input2]. Thus,
the original sequence is the input1 and the mutated sequence is the input2.
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5
Discussion and Results

In this chapter, it is performed a discussion and an analysis of the results obtained from the
solutions implemented in chapter 4. It begins to analyze the results obtained from the Scikit-
learn classical classifiers with k-fold cross-validation only for all datasets, such as performed in
the initial phase of this dissertation. The measuring of this results is taking into account the 3
scoring metrics: AUC, MCC and Accuracy. These results are then compared to each other.

Then, it is shown the results of the predictions performed in all five datasets, which this
time are coded as a DNA sequence, that is, the letters of each nucleotide. After these results,
are shown the tables with the results obtained from different prediction strategies applied
with the two k-fold cross-validation variants using the datasets. The performance obtained is
also measured and compared between them, and as well as was performed in the initial phase
of the dissertation, the final results are measured taking into account the 3 scoring metrics.
Before moving forward to the tests, it is essential to know the machine hardware specifications
where all models were run and tested. The models were run and tested in a machine with a
CPU Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz and a Memory of 8GB.
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5.1 Classical classifiers results

In this section is shown the graphics with the results obtained from the Scikit-learn classical
classifiers (in the first phase of the dissertation), using 10-fold cross-validation and taking into
account the three scoring metrics. These classifiers are applied on the initial datasets, those
who its features are represented as numerical format. The performance for each classifier and
the respective results are shown in the graphics. Finally, a comparison is then made between
the scoring results and the respective results.

Each classifier uses Group k-fold and Stratified k-fold cross-validation techniques, but only
the results for Group k-fold are shown. In Group k-fold, a group cannot be at the same time
in training and testing set, which makes the probability of the data becoming less biased than
when using Stratified k-fold cross-validation. So, this is why Group k-fold is the chosen one.

Before the analysis of the results, is important to know in what conditions they have been
obtained, i.e., the values of the arguments used by each classifier. AdaBoost classifier uses
100 estimators due to the fact that the results are better with this value. For Decision Tree
classifier, the score results may differ according to certain variables, mainly the minimum
number of samples per leaf. The number of splits is equal to 5 only for KNeighbors classifier,
because 10-fold cross-validation takes so long time. For the remaining classifiers, the variable
is equal to 10. Another reason to use this number of folds is due to the fact that we have 10
neighbors, which will take more time to train and test the model. The weights are ”uniform”
because the results are better when all points in each neighborhood are weighted equally. For
Logistic Regression, the default values were maintained. If is pretended to improve the
performance, we can use all cores available. As mentioned previously in chapter 4, Naive
Bayes uses the Gaussian Naive Bayes, because performs better for binary classification. The
results, for Neural Network (using MLP), were obtained using 10 hidden layers, which each
one has 300 neurons. Random Forest classifier uses the default value for all parameters.
So, this means that the trees do not have a maximum depth, i.e., the number of features to
consider when looking for the best split is equal to the number of samples of the dataset, and
the forest contains 10 trees. Finally, for SVM classifier, the tests were performed only using
the a kernel used in this classifier is the ”linear”, because tends to perform very well when the
dataset is large.

So, below is shown the table with the respective results for Group k-fold cross-validation:
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Figure 5.1: Average on dataset of Group k-fold score

The Figure 5.1 above shows the average scores on all datasets. As we can see, Logistic
regression is one of the best classifiers. In AdaBoost classifier, the result of each scoring metric
is nearly the same for all datasets as well as in DecisionTree classifier, except for Swissvar
and Varibench dataset. For KNeighbors classifier, the analysis of the results is the same that
has been made for the AdaBoost classifier, because the results are nearly the same for both
datasets. If we increase the number of neighbors, the results improve, but only until a defined
number of neighbors (nearly 35 or 40 neighbors on dataset). This happens because if we have
few neighbors, the overfitting problem may be a reality, and if we have a lot of neighbors the
data may be not trained well. Relatively to Naive Bayes, there are great differences for all
scoring metrics on between all datasets. The results for NN are similar between the scoring
metrics Accuracy and AUC on PredictSNP, Swissvar and Varibench datasets. The results of
this classifier may variate according to the number of hidden layers and neurons per layer.
If we have a lot of layers but few neurons per layer, than the data may become not well
trained and then the final result decreases. On the other hand, if we have few layers and a
lot of neurons per layer, we may originate the overfitting problem. Random Forest classifier
results have also great differences for Accuracy and MCC metric between the datasets, but
the results for AUC are almost the same for Exovar, Humvar and PredictSNP. The number of
trees influences the final result, i.e., the increase of this number make the results better, but
increases the training and classification time. On the other hand, the decrease of this number
obtains lower results but may decreases the traning and classification time. SVM classifier is
the one that gets the best results for AUC metric on all datasets. As many articles stated
(one of them is [48], which compares SVM with MLP), SVM is one of the best classifiers and
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probably the most used. The reason of this classifier gets great results is due to its kernel and
it is more robust.

In the table below is present the comparison of these AUC scoring metric results with
those obtained on [3] work, taking into account the Figure 2.3. The comparison is between
AUC because is the metric with the best results:

State of the art
Dataset Best AUC Best AUC Non-biased
Exovar 0,87 0,92 0,83
Humvar 0,89 0,93 0,88

PredictSNP 0,89 0,93 0,80
Swissvar 0,75 0,73 0,73

Varibench 0,90 0,94 0,70

Table 5.1: Comparison of AUC with the State of the Art

The table shows that the best result is obtained on Varibench dataset for AUC scoring
metric. The results on Swissvar dataset are far below those obtained in the remaining datasets,
such as Figure 2.2 and Figure 2.3 show us. The ”Non-biased” results are obtained without the
bias types mentioned in chapter 2.

Once performed the analysis about scoring metric results, then is performed the same
analysis, but this time for training and classification time. All initials conditions of the
classifiers are maintained, i.e., the values of the respective arguments are the same. The
following graphics are represented in logarithmic scale in order to observe better the training
and classification time, and also they are sorted by training time. It is important to note that
the training and classification time are obtained by splitting the data into 50% for training
and 50% for testing and each split runs 10 times.
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Figure 5.2: Training and classification time for classical classifiers (average for 10 folds).
Pre-processing time is between 2 and 11 seconds

The results of performance presented in Figure 5.2 shows that Naive Bayes is the fastest
classifier. The time of pre-processing is nearly the same among each other. Naive Bayes is a
fast classifier, because all it needs are prior probability values, calculated with basic operations,
and can be stored ahead of time. Then, same values calculated are reused in order to calculate
the posterior. Obviously that for all classifiers, the execution time is better when using the
Exovar dataset, because has less samples than the others. As stated previously, Group-k fold
cross-validation takes more time to perform than the Stratified k-fold cross-validation, because
Group k-fold needs to collect the groups of genes available to perform its operation.

KNeighbors classifier takes a long time in classification because uses 10 nearest neighbors
on each query point. In fact, this number of nearest neighbors contributes greatly to the
performance of the mode. The higher the number of neighbors, the longer the execution
time. Logistic Regression is also one of the fastest classifiers because is a simple classifier
with low variance. NN (MLP) also takes a long time to perform. With the number of hidden
layers and neurons per layer defined previously, the training and classification takes a little
time. If the number of hidden layers and neurons per layer increase, the time of training and
classification increases too. But the increase of hidden layers and neurons can make the score
better. For instance it was tested this classifier with the same number of hidden layers, but
instead to have 300 neurons per layer, we have 100 neurons per layer. The tests showed that
with these values, the score decreased nearly by 1%. The training and classification time of
Random Forest classifier depends on the number of trees, as well as the number of maximum
features per tree and the maximum depth of trees. Increasing the number of trees, maximum
features and maximum depth, the model’s execution time increases too, but the score may be
better. SVM classifier solves an optimization problem of quadratic order, so it takes a long
time to execute with large datasets. Actually, we can say that the performance presented in
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the table for Humvar is greater than the values presented. This is worst classifier in terms of
performance using the conditions specified previously.
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5.2 Nucleotide and codon sequence results

As well as in the previous section, in this section is also shown the tables with the results
obtained from applying different techniques over the datasets, which contain a DNA sequence
format. In first is shown the results from DNA sequence without the division of the datasets
by codons (One-Hot DNA sequence). Each letter (nucleotide) of the dataset is represented by
One-Hot vector, which has its own vector. Then are shown the results of the datasets composed
by codons, using different encoding strategies. In this section, pre-processing, training and
classification are performed with 15 epochs, 10 splits, a batch size of 32, a kernel size of 3
and 32 filters (see subsection 4.2.3 for more details about these variables). In this section, all
strategies are used by NNs and one Complex network. Only for Complex Network it is used 20
epochs and a batch size equal to 32, because the results are better with these values. Also, for
this model has been obtained the results on all datasets but without cross-validation, as well
as performed in [37]. Then, the model has been tested with all strategies of encoding used.

The remaining strategies are based on the codons, present in the datasets. In the first
strategy, each codon is encoded with a 65 One-Hot vector encode. So, all vectors are
different from each other. The second strategy is called One-Hot vector amino acid
encode and is similar to the previous one, but contains only 20 different vectors due to
the number of amino acids that exist, one vector for Stop Signals and the other for the
codon ”XXX”. The third strategy is called Amino Acid properties and uses vectors with a
length equal to 10, because each vector index corresponds to a property of amino acid (these
properties are stated in chapter 4). Then, the fourth strategy also used amino acid properties,
but this time is based on a Venn’s diagram properties distribution. In this strategy almost
all properties are the same and has one more property than the last mentioned strategy,
which makes the usage of 11-length vectors. The strategy Amino acid physical-chemical
properties, as the name states, use physical-chemical properties with the respective values in
decimal format, as well as used by classical classifiers.

Lastly, has been used a different model. Instead to use only a CNN, the strategies
mentioned run on a Complex Network, which contains two CNNs that connect to a NN. This
model has been built, based on a model present in work [37] and gets better results than the
other strategies, but without using cross-validation.

Thus, the following graphics show the results of scoring metrics and performance of encoding
strategy. This procedure is performed for all scoring metrics, training and classification time,
in order to perform a comparison of these results with the ones obtained in Figure 2.3 and in
Figure 2.4.
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The graphic on Figure 5.4 makes a comparison of the results obtained on CNN model and
Complex Network model. There are some tables related to these results present in Appendix
section. The graphic states that the best strategy is the 65 One-Hot vector. On almost all
datasets is the best strategy too. The reason for this encoding strategy gets the best results
may be to have an ideal amount of data and maybe the fact that all vectors are different from
each other. The other strategies, such as One-Hot Amino Acid vector, Venn diagram and
Amino Acid properties obtained a score close to the 65 One-Hot vector encode. Relatively to
the strategy that uses the genetic sequence without codon format (One-Hot DNA sequence)
the results obtained are a little low, because we have too much data pre-processed and then
may be not well-trained.

The training and classification time results are obtained by the same way of score results,
i.e., it is performed the mean of training and classification time on all datasets, and then in
the graphic below is present the average of these results for each strategy.

Figure 5.3: Training and classification time for adopted encoding strategies (average for 10
folds). Pre-processing time is between 2 and 11 seconds

In the strategy One-Hot DNA sequence, the training time is bigger than the other strategies,
because contains more amount of data than the others. Relating to Physical-chemical properties
strategy, the fact that this strategy does not consist in vector encoding contributes to a low
training time. Its data is composed by decimal values. All the remaining strategies have an
encoding strategy based on vectors, which takes the time for training and classification bigger
than the Physical-chemical properties strategy.

Another important note to take into account in these results is the size of the datasets.
As we know, Humvar dataset has 40000 samples, and obviously takes much longer time in
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training and classification. These results have been obtained by splitting the data in this way:
50% for training and the remaining 50% for testing, and then each split runs 10 times, because
it is hard to determine the time of training and classification when using the scikit learn’s
cross-validation function cross val score.

In Complex Network results, the best score has been obtained for 65 One-Hot vector
encode strategy. Results nearly 0.8 or more may be considered as good results, because the
probability to perform well a prediction is high, i.e., the model that gets this result can be
applied in pathogenicity prediction. In Figure A (in Appendix section) are present the results
obtained from Complex Network on each dataset. The application of this Complex Network
model using these strategies contributes a lot on getting good results. We can say that these
model may be applied in the bioinformatics area to perform pathogenicity predictions.

In the Figure A, the best results are obtained on Varibench dataset. The drop of AUC
happens mainly because of the dataset Swissvar and the strategy Physical-chemical properties.
We can say that the strategy Amino acid physical-chemical properties is not a good
strategy.

Then, are present a graphic and a table. The graphic presents the comparison between
the AUC score obtained on CNN model and on Complex Network model. The table presents
the comparison of best AUC scoring metric obtained on this dissertation with the obtained on
the State of the Art (chapter 2).

Figure 5.4: Accuracy score comparison between CNN and Complex Network model
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State of the art
Dataset Best AUC Best AUC Non-biased
Exovar 0,83 0,92 0,83
Humvar 0,83 0,93 0,88

PredictSNP 0,78 0,93 0,80
Swissvar 0,74 0,73 0,73

Varibench 0,92 0,94 0,70

Table 5.2: Comparison of AUC between CNN and Complex Network models with the State of
the Art

Taking into account the radar graphic, we can say that the results are better when using
the Complex Network model than the CNN. The reason behind this may be the number of
hidden layers, neurons per layer, filters, the kernel size and batch size. It is also possible to see
that 65 One-Hot vector and One-Hot Amino Acid vector strategies are those that get better
results. Relating to the table, the best AUC obtained is on Varibench dataset, but these
results are a little below comparing with those obtained on the State of the Art. Comparing
with the ”Non-biased” AUC results, they are better on two datasets.

Once analyzed these results, we can say that they were a little below of expectations, but
interesting to be explored and applied in bioninformatics future work.

After this comparison, is present the training and classification time of the Complex
Network model taking into account these results:

Figure 5.5: Training and classification time for Complex Network model (average for 10 folds).
Pre-processing time is between 2 and 11 seconds

In this graphic are present the training and classification time results obtained by the
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average of these times on each dataset. The strategy One-Hot DNA sequence is the strategy
which takes more time to perform training and classification on all datasets, due to the amount
of data. As stated in chapter 4, in this strategy each nucleotide present on the sequence is
encoded by 5 One-Hot vector, i.e., each letter (nucleotide) is represented by One-Hot vector
different among of them.

Obviously that these results are influenced by the size of the datasets. Humvar dataset
takes a long time to train the model due to its amount of data. Amino acid physical-chemical
properties strategy is the fastest one because of its encoding, i.e., does not use any vectors
to encode the data. The remaining strategies takes more time on the datasets, because they
use vectors to encode the data. The pre-processing time in Humvar takes nearly 11 seconds
and in the remaining datasets takes between 2 and 4 seconds. Relating to the classification
time, in Humvar dataset it takes nearly 5 seconds and in the remaining datasets between 1
and 2 seconds. There’s an important fact to taking into account about classification time.
Unlike the other training and classification time graphics, these results are obtained without
cross-validation.
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6
Conclusions and Future Work

Technology area has been the area that obtained a great evolution in the past 20, 30 years.
Nowadays, people can connect with each other easily, know where they are, even if they are
far away from each other. This evolution has been verifying in several areas too, mainly in
bioinformatics area. This area aims to improve people’s quality of life collecting the respective
biological data and then performing the analysis on genetic code, allowing people to know
if a mutation or change detected in the human genetic code may cause a change in DNA
sequence, or even cause an disease which may be transmitted for the next generations. This is
an important situation for people’s life because with a good prediction, the people will take
care more about yourself in order to reduce the probability to contract a disease and avoid
that the next generations from suffering the consequences.

So, this document presents an overview in machine learning and its sub area deep learning,
creating models and use some classifiers in order to perform predictions on the human genetic
code. These predictions are performed in order to know if a mutation in the genetic code may
be pathogenic (cause a disease) or not. Based on recent studies performed in bio informatics
area using some tools, this document starts by talking about these tools and in machine
learning and deep learning contents. There are provided five datasets containing feature
values about the genes, and then these datasets are used to perform the respective prediction,
starting to use the classical classifiers in order to know if they perform well on the datasets.
These tests are performed using k-fold cross-validation in order to avoid over-fitting, and only
with this approach it is possible to know what are the classifiers that performs well. Also, are
calculated the score for each scoring metric to help in evaluation of the classifier.

In the next phase, the format of datasets is different, that is, instead of having gene’s
feature values, we have the format presented in DNA sequence with the letters representing
each nucleotide. They are encoded by using a strategy called One-Hot vector encode, in which
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each letter is a 5 One-Hot vector. This approach is also used when the content of the datasets
are in codons format. With this format, are applied different strategies to encode the data in
order to perform the predictions and obtain results of scoring and performance (training and
classification time).

Lastly is performed an analysis of the results obtained for scoring metrics and for the
performance of each classifier and models that use some strategies. These results and analysis
are present in chapter 5. Once this analysis is done, we can compare the results presented on
this document with the results obtained in some works stated in chapter 2. Has been used
five datasets on this dissertation (Exovar, Humvar, Swissvar, PredictSNP and Varibench).
Comparing the results obtained on this dissertation with the Figure 2.3 and Figure 2.4
(chapter 2), we can say that the Complex Network model is better than the tools used in
Figure 2.4 (CADD, GWAVA, FatHMM, etc) and is also better than some other tools used on
Figure 2.3. Relating to the results obtained on the CNN model with cross-validation, they are
similar to those on Figure 2.4 and none of them are better than the tools used on Figure 2.3.
This means that some of them used in chapter 2 are better than the models created in this
dissertation, but these models are better than a lot of tools used in some works performed in
bioinformatics area, mainly the Complex Network model.

Relating to the score and performance results obtained, we can say that the score may
depend from the size of the dataset, type of the data and on the values of the arguments used
by each model. For training and classification time, the results may depend on the number of
samples of a dataset and its type of content, i.e, in this case the encoding strategy.

Although the results stayed a little below expectations, these models can be improved in
the near future to perform predictions and originate new prediction models.

This analysis can prove that the models created and the strategies adopted are interesting
to apply them in bioinformatics area and in a web tool, where could perform an upload of
a script containing the selected dataset and then the script with the models and respective
strategies run on a simulator to perform the predictions. Due to time constraints, the creation
of this web platform could not be implemented. This also happened because over the work, we
focused more on get better results of pathogenicity prediction. To aim this, the focus turned
to the creation of several models and strategies adopted over the models, and on the training
and classification time obtained on these models.

Finally, as already stated, an incorporation of these models and strategies approached in
this dissertation in a web tool similar to the one mentioned in chapter 2, using Representational
State Transfer (REST) services, is a good target to future work.
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Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics
of Variants in Distinct Genomic Regions”, PLoS Computational Biology, vol. 12, no. 5, 2016,
issn: 15537358. doi: 10.1371/journal.pcbi.1004962.

[6] I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova, P. Bork, A. S.
Kondrashov, and S. R. Sunyaev, “A method and server for predicting damaging missense
mutations”, Nature Methods, vol. 7, no. 4, pp. 248–249, 2010, issn: 1548-7091. doi: 10.1038/
nmeth0410-248. arXiv: 0601019 [q-bio]. [Online]. Available: http://dx.doi.org/10.1038/
nmeth0410-248.

[7] P. C. Ng and S. Henikoff, “SIFT: Predicting amino acid changes that affect protein function”,
Nucleic Acids Research, vol. 31, no. 13, pp. 3812–3814, 2003, issn: 03051048. doi: 10.1093/nar/
gkg509.

[8] E. Lubeck, A. F. Coskun, T. Zhiyentayev, M. Ahmad, and L. Cai, “MutationTaster2: mutation
prediction for the deep-sequencing age”, Nat. Methods Nat. Methods Nat. Methods, vol. 9,
no. 10, pp. 743–748, 2012, issn: 1548-7091. doi: 10.1038/nmeth.2892. [Online]. Available:
http://dx.doi.org/10.1038/nmeth.2890.

[9] B. Reva, Y. Antipin, and C. Sander, “Predicting the functional impact of protein mutations:
Application to cancer genomics”, Nucleic Acids Research, vol. 39, no. 17, 2011, issn: 03051048.
doi: 10.1093/nar/gkr407.

99

https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
https://www.ascb.org/wp-content/uploads/2015/12/FawcettTheCellChapter4.pdf
https://www.ascb.org/wp-content/uploads/2015/12/FawcettTheCellChapter4.pdf
https://doi.org/10.1002/humu.22768
https://doi.org/10.1093/bioinformatics/btw222
https://doi.org/10.1371/journal.pcbi.1004962
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://arxiv.org/abs/0601019
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1038/nmeth0410-248
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1038/nmeth.2892
http://dx.doi.org/10.1038/nmeth.2890
https://doi.org/10.1093/nar/gkr407


[10] M. Kircher, D. M. Witten, P. Jain, B. J. O’Roak, G. M. Cooper, J. Shendure, B. J. O. Roak,
G. M. Cooper, and J. Shendure, “A general framework for estimating the relative pathogenicity of
human genetic variants.”, Nature Genetics, vol. 46, no. 3, pp. 310–315, 2014, issn: 1546-1718. doi:
10.1038/ng.2892. arXiv: NIHMS150003. [Online]. Available: http://dx.doi.org/10.1038/ng.
2892%7B%5C%%7D5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/24487276.

[11] S. Chun and J. C. Fay, “Identification of deleterious mutations within three human genomes”,
Genome Research, vol. 19, no. 9, pp. 1553–1561, 2009, issn: 10889051. doi: 10.1101/gr.092619.
109.

[12] E. V. Davydov, D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow, and S. Batzoglou, “Identifying
a high fraction of the human genome to be under selective constraint using GERP++”, PLoS
Computational Biology, vol. 6, no. 12, 2010, issn: 1553734X. doi: 10.1371/journal.pcbi.
1001025.

[13] H. A. Shihab, J. Gough, D. N. Cooper, P. D. Stenson, G. L. A. Barker, K. J. Edwards, I. N. M.
Day, and T. R. Gaunt, “Predicting the Functional, Molecular, and Phenotypic Consequences
of Amino Acid Substitutions using Hidden Markov Models”, Human Mutation, vol. 34, no. 1,
pp. 57–65, 2013, issn: 10597794. doi: 10.1002/humu.22225.

[14] G. M. Cooper and J. Shendure, “Needles in stacks of needles: finding disease-causal variants
in a wealth of genomic data.”, Nature reviews. Genetics, vol. 12, no. 9, pp. 628–40, 2011, issn:
1471-0064. doi: 10.1038/nrg3046. [Online]. Available: http://www.ncbi.nlm.nih.gov/
pubmed/21850043.

[15] M. X. Li, J. S. H. Kwan, S. Y. Bao, W. Yang, S. L. Ho, Y. Q. Song, and P. C. Sham, “Predicting
Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing
Studies”, PLoS Genetics, vol. 9, no. 1, 2013, issn: 15537390. doi: 10.1371/journal.pgen.
1003143.

[16] Y. Fu, Z. Liu, S. Lou, J. Bedford, X. J. Mu, K. Y. Yip, E. Khurana, M. Gerstein, T. P. Pdf, G.
Biology, Y. Fu, Z. Liu, S. Lou, J. Bedford, X. J. Mu, E. Khurana, M. Gerstein, I. Article, A. Url,
P. Central, and B. Central, “FunSeq2: A framework for prioritizing noncoding regulatory variants
in cancer”, Genome Biology, vol. 15, no. 10, p. 480, 2014, issn: 1465-6906. doi: 10.1186/s13059-
014-0480-5. [Online]. Available: http://genomebiology.com/2014/15/10/480.

[17] E. A. Stone and A. Sidow, “Physicochemical constraint violation by missense substitutions
mediates impairment of protein function and disease severity”, Genome Research, vol. 15, no. 7,
pp. 978–986, 2005, issn: 10889051. doi: 10.1101/gr.3804205.

[18] E. Capriotti, R. Calabrese, and R. Casadio, “Predicting the insurgence of human genetic diseases
associated to single point protein mutations with support vector machines and evolutionary
information”, Bioinformatics, vol. 22, no. 22, pp. 2729–2734, 2006, issn: 13674803. doi: 10.1093/
bioinformatics/btl423.

[19] V. Ramensky, P. Bork, and S. Sunyaev, “Human non-synonymous SNPs: server and survey.”,
Nucleic acids research, vol. 30, no. 17, pp. 3894–3900, 2002, issn: 1362-4962. doi: 10.1093/nar/
gkf493.

100

https://doi.org/10.1038/ng.2892
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1038/ng.2892%7B%5C%%7D5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/24487276
http://dx.doi.org/10.1038/ng.2892%7B%5C%%7D5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/24487276
https://doi.org/10.1101/gr.092619.109
https://doi.org/10.1101/gr.092619.109
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1002/humu.22225
https://doi.org/10.1038/nrg3046
http://www.ncbi.nlm.nih.gov/pubmed/21850043
http://www.ncbi.nlm.nih.gov/pubmed/21850043
https://doi.org/10.1371/journal.pgen.1003143
https://doi.org/10.1371/journal.pgen.1003143
https://doi.org/10.1186/s13059-014-0480-5
https://doi.org/10.1186/s13059-014-0480-5
http://genomebiology.com/2014/15/10/480
https://doi.org/10.1101/gr.3804205
https://doi.org/10.1093/bioinformatics/btl423
https://doi.org/10.1093/bioinformatics/btl423
https://doi.org/10.1093/nar/gkf493
https://doi.org/10.1093/nar/gkf493


[20] Y. Bromberg and B. Rost, “SNAP: Predict effect of non-synonymous polymorphisms on function”,
Nucleic Acids Research, vol. 35, no. 11, pp. 3823–3835, 2007, issn: 03051048. doi: 10.1093/nar/
gkm238. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920242/.

[21] J. Bendl, J. Stourac, O. Salanda, A. Pavelka, E. D. Wieben, J. Zendulka, J. Brezovsky, and
J. Damborsky, “PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-
Related Mutations”, PLoS Computational Biology, vol. 10, no. 1, 2014, issn: 1553734X. doi:
10.1371/journal.pcbi.1003440.

[22] K. Wang, M. Li, and H. Hakonarson, “ANNOVAR: functional annotation of genetic variants
from high-throughput sequencing data”, Nucleic acids research, vol. 38, no. 16, e164, 2010, issn:
13624962. doi: 10.1093/nar/gkq603.

[23] H. a. Shihab, M. F. Rogers, J. Gough, M. Mort, D. N. Cooper, I. N. M. Day, T. R. Gaunt, and
C. Campbell, “An integrative approach to predicting the functional effects of non-coding and
coding sequence variation.”, Bioinformatics (Oxford, England), vol. 31, no. January, pp. 1536–
1543, 2015, issn: 1367-4811. doi: 10.1093/bioinformatics/btv009. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/25583119.

[24] G. R. S. Ritchie, I. Dunham, E. Zeggini, and P. Flicek, “Functional annotation of noncoding
sequence variants.”, Nature methods, vol. 11, no. 3, pp. 294–6, 2014, issn: 1548-7105. doi:
10.1038/nmeth.2832. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24487584.

[25] M. J. Landrum, J. M. Lee, G. R. Riley, W. Jang, W. S. Rubinstein, D. M. Church, and
D. R. Maglott, “ClinVar: Public archive of relationships among sequence variation and human
phenotype”, Nucleic Acids Research, vol. 42, no. D1, 2014, issn: 03051048. doi: 10.1093/nar/
gkt1113.

[26] S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin,
“dbSNP: the NCBI database of genetic variation.”, Nucleic acids research, vol. 29, no. 1, pp. 308–
311, 2001, issn: 1362-4962. doi: 10.1093/nar/29.1.308. arXiv: /www.pubmedcentral.nih.gov/
articlerender.fc. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/11125122.

[27] F. Cunningham, M. R. Amode, D. Barrell, K. Beal, K. Billis, S. Brent, D. Carvalho-Silva, P.
Clapham, G. Coates, S. Fitzgerald, L. Gil, C. G. Girón, L. Gordon, T. Hourlier, S. E. Hunt,
S. H. Janacek, N. Johnson, T. Juettemann, A. K. Kähäri, S. Keenan, F. J. Martin, T. Maurel,
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Classical classifiers results

ExoVar HumVar
Classifiers Accuracy AUC MCC Accuracy AUC MCC
AdaBoost 0.7942 0.8628 0.5782 0.7847 0.8615 0.5688

Decision Tree 0.6770 0.6886 0.3736 0.6511 0.6577 0.3282
KNeighbors 0.7683 0.8337 0.5216 0.7607 0.8410 0.5246

Log Regression 0.8032 0.8708 0.5952 0.7888 0.8645 0.5768
Naive Bayes 0.7126 0.8086 0.4253 0.6284 0.7955 0.3168

Neural Network 0.7763 0.8553 0.4253 0.7325 0.8124 0.4818
Random Forest 0.7331 0.8232 0.4860 0.6844 0.8118 0.4161

SVM 0.8065 0.8731 0.6002 0.8132 0.8982 0.6198

Table A.1: Exovar and Humvar results

PredictSNP Swissvar
Classifiers Accuracy AUC MCC Accuracy AUC MCC
AdaBoost 0.7954 0.8566 0.5622 0.6717 0.6667 0.2149

Decision Tree 0.6844 0.6966 0.3814 0.5885 0.5471 0.0943
KNeighbors 0.7748 0.8329 0.5191 0.6491 0.6345 0.1362

Log Regression 0.8096 0.8744 0.5901 0.6716 0.6874 0.2279
Naive Bayes 0.6293 0.6078 0.068 0.3688 0.5202 0.0338

Neural Network 0.7483 0.7483 0.4957 0.6347 0.636 0.1818
Random Forest 0.7176 0.8219 0.46 0.6451 0.625 0.1413

SVM 0.8242 0.8963 0.6234 0.7429 0.7532 0.4451

Table A.2: PredictSNP and Swissvar results
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Varibench
Strategies Accuracy AUC MCC
AdaBoost 0.8289 0.8244 0.4796

DecisionTree 0.776 0.7617 0.3294
KNeighbors 0.8381 0.8921 0.6225

Log Regression 0.8481 0.8446 0.5371
Naive Bayes 0.4781 0.5723 0.1661

Neural Network 0.8395 0.8295 0.5092
Random Forest 0.8013 0.7798 0,4077

SVM 0.8315 0.9021 0.6632

Table A.3: Varibench results

Exovar Humvar
Classifiers training classification training classification
AdaBoost 4.42s 0.13s 22.67s 0.63s

DecisionTree 2.91s 0.01s 14.94s 0.07s
KNeighbors 0.17s 30.29s 1.41s 5m 5s

Logistic Regression 10.54s 0.008s 2m 11s 0.04s
Naive Bayes 0.08s 0.07s 0.39s 0.36s

Neural Network 18.41s 0,47s 1m 4s 2,02s
Random Forest 17.50s 0.07s 96.23s 0.39s

SVM 1m 53s 1.83s 4m 20s 3.45s

Table A.4: Exovar and Humvar execution time
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PredictSNP Swissvar
Classifiers training classification training classification
AdaBoost 7.72s 0.22s 6.68s 0.21s

DecisionTree 4.71s 0.02s 3.78s 0.03s
KNeighbors 0.36s 49.43s 0.26s 36.73s

Logistic Regression 24.09s 0.02s 19.71s 0.014s
Naive Bayes 0.17s 0.15s 0.11s 0.12s

Neural Network 26.50s 0.76s 22.46s 0.67s
Random Forest 30.83s 0.33s 23.58s 0.11s

SVM 2m 25s 2.35s 2m 10s 2.12s

Table A.5: PredictSNP and Swissvar execution time

Varibench
Classifiers training classification
AdaBoost 5.07s 0.16s

DecisionTree 2.84s 0.01s
KNeighbors 0.23s 22.91s

Logistic Regression 14.42s 0.01s
Naive Bayes 0.09s 1,09s

Neural Network 20.98s 0.52s
Random Forest 16.46s 0.07s

SVM 2m 1.96s

Table A.6: Varibench execution time

CNN with AUC and execution time results

Strategies Exovar Humvar PredictSNP Swissvar Varibench
One-Hot DNA sequence 0.5837 0.6932 0.7283 0.6145 0.6742

65 One-Hot vector 0.6856 0.7118 0.7346 0.6017 0.642
One-Hot amino acid 0.6955 0.7127 0.7379 0.6013 0.6732

Amino acid properties 0.6693 0.685 0.7175 0.5869 0.6523
Venn diagram 0.6898 0.7071 0.735 0.5988 0.6374

Physical-chemical properties 0.6862 0.7069 0.5566 0.5005 0.5066

Table A.7: AUC score of Convolutional Neural Network
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Exovar Humvar
Strategies training classification training classification

One-Hot DNA seq 3m 58s 5.73s 14m 4s 23.33s
65 One-Hot vec 2m 2s 4.67s 9m 28s 17.64s

One-Hot amino acid 1m 52s 2.49s 7m 18s 11.37s
Amino acid prop 1m 45s 1.99s 7m 49s 9.74s

Venn diagram 1m 45s 2.76s 7m 51s 9.19s
Physical-chemical 40.88s 0.88s 3m 4s 3.82s

Table A.8: Exovar and Humvar DNA sequence execution time

PredictSNP Swissvar
Strategies training classification training classification

One-Hot DNA seq 5m 4s 8.36s 4m 21s 6.17s
65 One-Hot vec 3m 40s 6.70s 3m 44s 5.61s

One-Hot amino acid 2m 45s 3.97s 2m 21s 3.39s
Amino acid prop 2m 58s 3.39s 2m 25s 3.05s

Venn diagram 2m 52s 3.78s 2m 24s 3.04s
Physical-chemical 1m 9s 1.48s 59.68s 1.37s

Table A.9: PredictSNP and Swissvar DNA sequence execution time

Varibench
Strategies training classification

One-Hot DNA seq 3m 42s 4.84s
65 One-Hot vec 2m 50s 5.38s

One-Hot amino acid 2m 18s 2.88s
Amino acid prop 1m 51s 2.36s

Venn diagram 2m 3s 2.41s
Physical-chemical 59.98s 1.07s

Table A.10: Varibench DNA sequence execution time
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Complex Network with AUC and execution time results

Strategies Exovar Humvar PredictSNP Swissvar Varibench
One-Hot DNA sequence 0.6856 0.7397 0.6542 0.5424 0.695

65 One-Hot vector 0.832 0.8267 0.7818 0.6431 0.9168
One-Hot amino acid 0.804 0.7686 0.7558 0.7375 0.8814

Amino acid properties 0.7012 0.6929 0.6965 0.6173 0.797
Venn diagram 0.748 0.7449 0.7125 0.5871 0.835

Physical-chemical properties 0.5815 0.5032 0.5032 0.5312 0.5811

Table A.11: AUC score of Complex Network

Exovar Humvar
Strategies training classification training classification

One-Hot DNA sequence 1m 10s 0.83s 5m 12s 3.62s
65 One-Hot vector 46.55s 0.79s 3m 33s 4.55s

One-Hot amino acid 37.01s 0.49s 2m 50s 2.13s
Amino acid properties 34.36s 0.41s 2m 40s 1.75s

Venn diagram 32.09s 0.01s 2m 41s 1.89s
Physical-chemical properties 14.81s 0.19s 1m 4s 0.68s

Table A.12: Exovar and Humvar execution time results for Complex Network

PredictSNP Swissvar
Strategies training classification training classification

One-Hot DNA sequence 1m 56s 1.39s 1m 37s 0.04s
65 One-Hot vector 1m 21s 1.32s 1m 9s 1.12s

One-Hot amino acid 1m 3s 0.86s 51.62s 0.69s
Amino acid properties 56.22s 0.68s 48.97s 0.56s

Venn diagram 57.41s 0.69s 48.79s 0.62s
Physical-chemical properties 26.88s 0.62s 16.78s 0.29s

Table A.13: PredictSNP and Swissvar execution time results for Complex Network

108



Varibench
Strategies training classification

One-Hot DNA sequence 1m 19s 0.96s
65 One-Hot vector 48.58s 0.92s

One-Hot amino acid 39.90s 0.59s
Amino acid properties 37.43s 0.47s

Venn diagram 35.39s 0.50s
Physical-chemical properties 13.65s 0.22s

Table A.14: Varibench execution time results for Complex Network
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AUC score comparison between CNN and Complex Network

Figure A.1: Results for CNN and Complex Network model on Exovar dataset

Figure A.2: Results for CNN and Complex Network model on Humvar dataset
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Figure A.3: Results for CNN and Complex Network model on PredictSNP dataset

Figure A.4: Results for CNN and Complex Network model on Swissvar dataset
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Figure A.5: Results for CNN and Complex Network model on Varibench dataset
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