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resumo 

 

 

Em escavações arqueológicas é comum recuperarem-se restos osteológicos 
humanos fragmentados, nomeadamente os crânios. É o principal objetivo desta 
dissertação estudar métodos para criar uma reconstrução usando modelos 
tridimensionais (3D) que permita o estudo antropológico de crânios 
fragmentados. Este trabalho pretende também melhorar a aplicação CraMs, 
Craniometric Measurements, integrando funcionalidades para reconstrução de 
crânios fragmentados e novos métodos de classificação da ancestralidade 
baseados em análise estatística. Esta aplicação foi inicialmente desenvolvida 
com o objetivo de auxiliar o trabalho dos antropólogos na realização de medidas 
craniométricas e, com base em modelos 3D dos espécimes, permite reduzir a 
variabilidade nas medidas obtidas pelos diferentes especialistas ajudando 
simultaneamente na preservação dos espécimes. O trabalho desenvolvido 
nesta dissertação está focado na reconstrução de espécimes que estão num 
estado fragmentado para serem posteriormente analisados na aplicação CraMs, 
o que era previamente não era possível. Foram também desenvolvidos métodos 
que permitem o armazenamento centralizado de análises feitas pelos 
antropólogos e a sua utilização para estimar a ancestralidade de um indivíduo 
usando análise estatística.    
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abstract 

 

In archaeological sites, it is common to find fragmented human osteological 
remains, namely skulls. The main goal of this dissertation is to investigate 
processes to create reconstructions using three dimensional models(3D) in 
order to allow the study of fragmented skulls. This work also aims to improve 
the application CraMs, Craniometric Measurements, by adding new functionality 
to reassemble skull fragments and expanding the ancestry classification using 
statistical analysis. This application was initially developed in the context of a 
Master dissertation with the goal of assisting the anthropologist’s work in 
performing craniometric measurements and by using 3D models of the 
individuals reduce the variability in the measurements obtained by the different 
specialists while at the same time contributing to the preservation of the 
specimens. The work developed in this dissertation is focused on the 
reconstruction of specimens that are in a fragmented state to be later analyzed 
with CraMs, something which was not previously possible. Methods were also 
developed to allow for a centralized storage of previous analysis by 
anthropologists and use them to estimate the ancestry of an individual using 
statistical analysis. 
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  INTRODUCTION 

1.1 Motivation and Objectives 

The CraMs, Craniometric Measures, application is a tool developed to enable digital craniometric 

analysis of skulls using their acquired three-dimensional (3D) models. This application has been 

constantly evolving in recent years with its development done in the context of three Master 

dissertations between 2012-2016 (Andrade, 2016; Neves, 2014; Santos, 2013). The CraMs 

application focuses on emulating the craniometric analysis that was traditionally done by hand 

using 3D models in a computer system and enhancing it by reducing the inaccuracy and lack of 

repeatability associated with human interaction. The work presented here aims to expand the 

CraMs’s capabilities by enabling the ability to reconstruct fragmented skulls and adding a new type 

of Ancestry Estimation process using comparisons with a large dataset.    

An initial meeting was held with the anthropologists to evaluate the current state of CraMs and the 

ways in which it could be enhanced. During this meeting the experts expressed that the large 

majority of cranial remains recovered are fragmented into multiple pieces and are often difficult or 

even impossible to reconstruct, which poses difficulties in obtaining craniometric measures. A 

process to digitally reconstruct these fragments, making them then able to take advantage of the 

full CraMs toolset (calculating craniometric measures, structures, etc.) was to be prioritized. 

Additionally, the anthropologists wanted to expand the Ancestry Estimation tool in the application 

to use multivariate analysis methods on a craniometric point database, in a process similar to that 
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of 3D-ID1, a tool they regularly use. After reading through the previous dissertations and examining 

the feedback received from the anthropologist team during the meeting it also was evident that 

some components of the application required some improvement and modifications to be better 

suited for everyday usage. 

 

1.2 Dissertation Structure 

This dissertation is organized in seven chapters, starting with this chapter that contains a brief 

introduction to the work developed. 

Chapter 2 presents a description of traditional Craniometry, geometric Morphometrics, the data 

sets that were used as well as the 3D scanning acquisition process 

Chapter 3 provides some information about the evolution of the CraMs application, its current state 

and the functional and interface issues that were addressed. 

Chapter 4 describes the concepts and methods implemented in the Ancestry Estimation process. 

Chapter 5 focuses on the skull fragment reconstruction and the processes used to achieve it. 

Chapter 6 presents the main results obtained and their discussion. 

Finally, Chapter 7 presents the conclusion as well as possible future work.  

  

                                                           

1 http://www.3d-id.org/ 
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  CRANIOMETRY 

This chapter presents the concepts and tools used by anthropologists in the field of Craniometry 

and Geometric Morphometrics. Additionality the data set is presented as well as a brief description 

of 3D scanning acquisition processes used. Further detail on these topics can be found in the 

previous Master dissertations (Andrade, 2016; Neves, 2014; Santos, 2013).   

 

2.1 Traditional Craniometry 

Craniometry is the study of human cranial measurements to establish anthropological comparisons 

and classifications between multiple individuals (Stephens, 2000). Craniometry is widely used in 

Anthropology to evaluate ancestry, sex and human evolution in populations (Buck & Vidarsdottir, 

2004; Howells, 1973; Stephens, 2000).  

Traditional Craniometry is done by measuring distances between a pair of landmark points, points 

on the skull of anatomical importance, through the use of specialized tools and the physical 

manipulation of the skulls (Stephens, 2000). The exact location of these landmark points however, 

relies on visual and tactile assessments, which can result in slight variations between different 

anthropologists (Inter-Observer error), or even the same anthropologist at different moments 

(Intra- Observer Error) due to their subjective nature.  These landmark points can also be used to 

classify and unknown individual’s ancestry and sex, by observing the relations between them. This 

can be achieved by taking a set points from an individual and comparing them to point sets 
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representative of an ancestry/sex group and find the closest match, a process that will be explained 

later on in this dissertation.    

2.2 Geometric Morphometrics 

The analysis of the shape and size of a cranial remains, a concept that encompasses size and shape 

is called Geometric Morphometrics. When analyzing the geometry of a morphological structure, 

landmarks can be defined, not only by points but by shape, volume or even curvature. These 

concepts have various application like performing ancestry classifications by determining the 

closest template shapes (Hefner, 2009) or gender classification based on the shape of the 

neurocranium like the one used by (Andrade, 2016). In the context of this dissertation 

morphometric analysis is used to identify and match correspondent fracture regions on fragmented 

individuals, the areas on each piece created by the fragmentation, based on curvature values to 

produce the geometric optimal transformation for a subsequent reconstruction.  

 

2.3 Data Set 

The data set is composed by two collections. The first one is the same used by Santos (2013) from 

an excavation performed at the Vale da Gafaria (Leprosarium Valley), outside the city of Lagos in 

Portugal (Wasterlain SN, Neves MJ, 2016) by the iDryas team. The excavation site, active between 

the 15th and 17th centuries revealed two occupations.  

The second collection come through a collaboration between Department of Life Sciences, 

University of Coimbra, and the City Council of Santarém established in 2009 enabling the acquisition 

of non-claimed skeletal remains from the Capuchos cemetery (Ferreira et al., 2014) . This set of 

remains, called 21st Century Identified Skeletal Collection (CEI/XXI), is composed of skeletons 

originated from the sampling of modern Portuguese unclaimed or abandoned beyond the legal 

time frame. This collection consists of 240 sets of skeletal remains. All the individuals are 

Portuguese nationals, of both sexes, with the age at death fluctuating between 29 and 99 years. 

The male sample set is composed of 74 individuals with ages between 25 and 95. The female sample 

set on the other hand has 85 individuals with a lower age at the time death distribution, the younger 

being 50 and the oldest 99 years old. This collection also contains the individuals whose skulls are 

in multiple pieces used to in the Fragment Reconstruction process. These later individuals were 
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subjected to autopsies and as such their skulls are divided into two pieces with the cut angle varying 

between them. There are 9 individuals total, 4 being females and 5 males. An example of these 

individuals can be seen in Figure 1. 

 

Figure 1 – Acquired 3D models of the two fragments from an autopsied individual used in the 
Fragment Reconstruction Process. 

    

2.4 3D Scanning and Skull Acquisition 

Traditionally archeological and biological anthropology studies were performed by hand on the 

physical specimens themselves. This approach had the drawbacks that the examined specimens 

could be damaged or even lost during transit. With the advent of digital technologies in recent years 

the advantages of integrating these technologies in these fields became apparent (Balzeau et al., 

2010; Wachowiak & Karas, 2009; Weber, 2013).  There are various techniques for high precision 

three-dimensional and color information acquisition available. Although some of the techniques 

involve the manual handling of the specimens being scanned the scanning process itself doesn’t 

involve any physical contact as not to damage the fragile human osteoarcheological remains. 

The specimens of the collection obtained in the Vale de Gafaria excavation were acquired by the 

iDryas team using a structured light scanner, called Breuckmann SmartSCAN2, seen in  Figure 2.   

 

                                                           

2 http://aicon3d.com/products/aicon-scanner/smartscan/at-a-glance.html 
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Figure 2 - Breuckmann SmartSCAN 3D Scanner. Image taken from (Santos, 2014). 

When the collaboration with iDryas ended access to the Breuckmann scanner was no longer a 

possibility and so subsequent acquisition was done with the NextEngine 3D Laser Scanner3, shown 

in Figure 3, acquired by the Science and Technology Department of the University of Coimbra. This 

scanner uses laser triangulation, where a series laser beams are projected onto the object and then 

captured by a camera to obtain depth information. The object rests on a rotating plate with the 

purpose of obtaining information from multiple angles which is subsequently blended together to 

create a 3D model. 

 

 

Figure 3 – NextEngine 3D Laser Scanner during operation. Image taken from (Andrade, 2016). 

  
                                                           

3 http://www.nextengine.com/ 
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  CRAMS – CRANIOMETRIC 

MEASUREMENTS 

This chapter presents the description of the application CraMs split into two main sections. The first 

describes the evolution of the CraMs application through its three iterations while the latter details 

the modifications and improvements implemented.  

3.1 Evolution of CraMs 

This section provides an overview of the different iterations of the CraMs application, presenting 

the main lines of the works by Santos (2013), Neves (2014) and Andrade (2016). The details of the 

various features added in each iteration and a brief overview of their inner workings are shown in 

the following sections. 

3.1.1 Initial Version 

The CraMs application was initially developed by (Santos, 2013) in the C++ programming language 

and using the 3rd party frameworks: Visual Toolkit (VTK)4, an open-source 3D graphics, visualization 

                                                           

4 http://www.vtk.org/ 
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and image processing library,  to visualize and manipulate the acquired 3D models and Qt5, a 

framework for graphical application development, to create and manage the graphical user 

interface. The CraMs application, whose workflow can be seen in Figure 4, was divided into four 

different modules:  

 GUI to manage the user interface and the window lifecycle. 

 Interface to handle the manipulation of the 3D models.  

 Tools encompassing the different methods of alignment and structure/point calculation.  

 Utils containing the data structures used internally and additional assistant functions.  

 

Figure 4 - Application Workflow. Adapted  from (Santos, 2013). 

 

To correctly calculate the craniometric measurements a consistent reference frame must be 

established through an alignment process. Two alignment methods are available:  

 Manual:  the alignment calculated by setting the position of seven craniometric points. 

 Semi-Automatic: the alignment is calculated by applying the Iterative Closest Points (ICP) 

algorithm (Besl, P. J., & McKay, 1992) between the loaded model and a pre-alignment 

template model. 

The landmark points, used to compute craniometric measurements, are obtained using one of 

three methods: 

                                                           

5 https://www.qt.io/ 
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 Manual: the point is defined completely by the user, using an interactive procedure. 

 Semi-Automatic: the point is determined a combination of user input and analysis 

performed by the application on the neighborhood/curvature/coordinate. 

 Automatic: the point is determined automatically based on pre-defined rules of 

minimum/maximum points on the anatomical planes (description of these planes available 

in (Santos, 2013)). 

 

3.1.2  Detection of Morphological Structures 

The second iteration of CraMs by (Neves, 2014) extended CraMs functionality by adding support 

for morphological structures. These structures are defined through the analysis of curvature value 

and type on neighboring point using a method called Region Growing (Vieira & Shimada, 2005). 

Given a set of reference points, manually defined by the user, the structure is created by creating 

a closed loop of Sharp Edges, groups of points with large values of convex curvature. The detection 

of two types of morphological structures was added to CraMs: Orbits and Sutures. 

To detect the Orbit structure, four reference points in the orbital cavity region need to be defined 

by the user. The neighborhood of these points is then iteratively analyzed and points that form a 

sharp edge are added to the structure. Finally, the structure is filtered to select the shortest path 

between the reference points, with the final structure being like the one seen in Figure 5. Two 

additional 3rd-party libraries were added: the mathematics libraries Wild Magic6 and Boost7 to 

assist in projecting the orbit structure into a plane.  

                                                           

6 https://www.geometrictools.com/ 
7 http://www.boost.org/ 
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Figure 5 -  Orbit Structure represented with pink spheres and the corresponding reference points 
represented with green spheres. Taken from (Neves, 2014).   

For Sutures, only two reference points are required, one at each end of the structure. An initial 

structure is defined by the sharp edges path connecting the reference points. Subsequently, the 

directly connected points are analyzed repeatedly to find additional sharp edges. When no more 

sharp edges found or the neighborhood size maximum threshold is met, the region is cleaned up 

by dividing it by the number of points in the model. The resulting structure can be seen in Figure 6. 

 

Figure 6 – Detection of Sagital Structure. Before(top) and after (bottom) the detection process, with 
the initial structure represented with dark blue spheres and the points subsequently added with teal 

spheres. Taken from (Neves, 2014). 
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3.1.3 Geometric Analysis 

The contributions made by (Andrade, 2016) focused on adding tools to perform morphological 

analysis to classify the skulls by ancestry group and sex. The foundation for this analysis was a study 

conducted by (Hefner, 2009) which defined eleven morphological characteristics and their 

correlation with population groups. Hefner created multiple templates for each characteristic that 

can be used to identify individuals. Some of templates for these traits can be somewhat ambiguous 

and so could not be automated. Support for three traits was added into CraMs: Nasal Aperture 

Width (NAW), PostBregmatic Depression (PBD) and Anterior Nasal Spine (ANS). 

To calculate the Nasal Aperture Width nasal structure must first be defined. This is done with the 

same Region Growing algorithm used in the previous structures while using only two reference 

points. The outline is then extracted by projecting the nasal structure to a plane as can be seen in 

Figure 7 which is then compared to the three Hefner templates using Euclidian distance between 

them.   

   

Figure 7 - Calculated Nasal Structure and its resulting projection. Taken from (Andrade, 2016). 

 

The PostBregmatic Depression is computed by extracting a lateral projection of the skull and 

observing the segment between Bregma and the point with the highest y value. If this segment is 

bellow a straight line between these points, then the PostBregmatic depression Is classified as 

present. 

The Anterior Nasal Spine is classified by observing the points within five millimeters of the 

Nasospinale in a plane parallel to the z-axis and passing through it. The classification is set to slight 
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if the points have a more pronounced projection than the Nasospinale and differentiated from 

intermediate to marked base on the outcome of an equation created by (Andrade, 2016). The three 

types of ANS are show in Figure 8. 

 

Figure 8 - Three different types of Anterior Nasal Spine. Taken from (Andrade, 2016). 

 

For sex classification (Andrade, 2016) developed a method to divide the neurocranium into 

equidistant parts based on input by the user. The segments are then uniformly sampled so that the 

resulting points can be entered into 3rd party machine learning system that provides an estimate of 

the individual’s sex. This process is shown in Figure 9.  

 

 

Figure 9 - Neurocranium divisions and sampling. Taken from (Andrade, 2016).~ 
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3.2 Limitations 

While using the latest version of the CraMs application the anthropologist team identified a few 

software and usability issues: 

Software Issues: 

 The automatic points are sometimes not correctly detected.  

 The application would start with the same window size regardless of the monitor 

resolution. 

Usability Issues: 

 Left and Right Alares are not set automatically after calculation of the nasal structure and 

nasal_limit points that were calculated instead were redundant.   

 When marking pair of points that are Left/Right symmetrical there were no way to 

guarantee the symmetry relative to the Sagittal plane between them which is required by 

definition. 

 

3.3 Modifications and Improvements 

3.3.1 Software Issues 

The automatic points would occasionally be incorrectly marked. This was caused by artifacts from 

the acquisition process in the form of isolated vertices away from the main model. Since the 

calculation of the automatic points is based on minimum/maximum values of axis or anatomic 

planes these points are erroneously chosen. This was fixed by limiting the ranges of values allowed 

to be within the range of normal skulls size to exclude these extreme values.   

The window size of the CraMs application was always the same regardless of the resolution of the 

computer screen. This slight inconvenience was corrected by starting the CraMs window maximized 

and setting the interface element’s size to be relative to the window size.  
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3.3.2 Usability Issues 

When detecting, the nasal structure using the method developed by Andrade (2016) the Left and 

Right Alares points are calculated in the form of the temporary points left_nasal_limit and 

right_nasal_limit respectively. This redundancy was eliminated by automatically setting the Alares 

value after the calculation of the nasal structure is done and removing the temporary points 

completely from CraMs.   

Some cranial points have left/right symmetrical pairs. In the previous version of CraMs these points 

were marked independently meaning that there was no guarantee that they were correctly aligned 

relative to the sagittal plane. This could produce measurements that differ from those obtained 

with traditional methods because the nature of the tools used guarantee symmetry between these 

points. The solution to this problem was to only allow to mark these types of craniometric points in 

pairs. The user identifies either left or right point and the corresponding point in the pair is 

calculated and set automatically by finding the closest point to its symmetric relative to the Sagittal 

Plane. 

 

3.3.3 Additional Features Implemented 

Craniometric Database 

Previously the measurements taken with CraMs could be saved but they were stored in regular text 

files. This was not very practical because it required many files to be stored. Even worse, the 

anthropologists had to copy and manually maintain all these files if they wanted to keep a common 

pool of measurements between multiple machines. Given that one of the goals was to create an 

Ancestry Estimation solution based on the multivariate analysis of large amounts of point data it 

was imperative to organize all the point information produced with CraMs. For this reason, a 

craniometric point database was created integrated into the application. A system to allow users 

to import data from 3rd party datasets to increase the dataset and allow the Ancestry Estimation 

to function properly even without any data from CraMs. This database also enables an organized 

and condensed storage of point that could eventually be stored remotely on a server if such feature 

was desired. 
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This craniometric database was constructed using the MySQL framework. This is mainly because of 

its popularity throughout the industry, long standing support and ease of use. It contains only one 

table called “Craniometric Data” that stores point and classification data for each individual. The 

created table contains entries for all the cranial points used in CraMs and eleven additional points 

that were later added to accommodate data from the 3D-ID (see section 4.2). The points data is 

organized as three double precision floating point for each point as can be seen in Figure 10. 

  

Figure 10 – Smal segment of the craniometric database. 

 

 As for classification, each individual has sex and ancestry group and super-group data field as text 

strings. The ancestry group is the most specific ancestry classification pertaining to a small region 

or nationality (Portuguese, Mexican, etc.) and super-group corresponds to the broader 

classification (European, East-Asian, African, etc.). The ancestry groups and super-groups are 

dynamically added with no pre-defined limitation as to accommodate the adoption of any 3rd party 

databases.  

 

Configuration Improvements 

Initially the application developed by (Santos, 2013) fully supported both Windows and Linux-based 

operating systems. However, during the two following iterations that ability was lost by the addition 

feature with no concern for cross-platform support. The portability was restored replacing 

Windows specific functions that control the flow of execution such as sleeps and the PDF viewer 

module with native C++ equivalents as these are platform independent. Additionally, the previous 

versions of CraMs were using outdated versions of VTK and QT libraries and could only be compiled 

on Visual Studio 2010. CraMs was then ported to VTK version 7.0 and QT version 5.7 by updating 

some functions structure following the official migration guide8. The appropriate dependency files 

                                                           

8 http://www.vtk.org/Wiki/VTK/VTK_6_Migration_Guide 
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needed to be added manually into Visual Studio one by one. This was very inconvenient and created 

unnecessary problems resolving eventual dependency problems for something that could be done 

automatically. Since the project generated already used CMake changes were made to the 

configuration file to link the necessary binary files using system environment variables or set the 

path manually as seen in Annex B.  
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  ANCESTRY ESTIMATION 

This chapter presents the solution created in CraMs to provide an ancestry estimation of an 

unknown individual: the group with similar physical and genetic characteristics to which a set of 

cranial remains being analyzed have a significant probability to belong to. The motivation for such 

process originates from the discussion with the anthropologists where it was suggested that a 

system to estimate the ancestry of cranial remains through statistical analysis using a large dataset 

could be of value to the application. The anthropologists already used a tool with this kind of 

functionality called 3D-ID, developed by the NCSU Forensic Laboratory in 2014. The feedback given 

by anthropologist was that this was a very useful tool, providing a good estimate given only a 

handful of craniometrics points and so would be very beneficial for their workflow to have such 

functionality natively within CraMS. In this chapter, the inner working of the Ancestry Estimation 

process used by 3D-ID will be presented as well as all the details of its implementation in the CraMs 

application.      

4.1 3D-ID 

The 3D-ID Ancestry Estimation process, as described in (Slice & Ross, 2009) assigns an ancestry and 

sex classification of an unknown individual by comparing the average distance between 

craniometric points with those of each ancestry and group. To establish this comparison, 3D-ID 

takes advantage of a large forensic database of already classified individuals to determine the mean 

individual for each group with at least same set craniometric points. This forensic database stores 
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the coordinate values for 34 cranial points and the ancestry and sex classification assigned. It 

contains data from the cranial remains of 1089 individuals gathered from various forensic 

laboratories and museums. The majority of the individuals in the database is from African American 

and European American ancestry. Only a subset of this database is publicly available totaling 889 

individuals.  

The first step in the 3D-ID process is to validate the 3D coordinates of cranial points of the unknown 

subject. Since these point coordinates are entered by the user this validation serves to ignore points 

that don’t have numeric values for each of the three coordinate components. Additionally, for a 

direct comparison to be established the forensic database must be filtered to obtain only the 

individuals that have at least all the same points as the Unknown.  

Several factors can interfere with the results of a comparison based on geometric similarity namely 

differences in size, orientations and coordinate. To mitigate this 3D-ID applies a superimposing 

algorithm called Generalized Procrustes Analysis (Gower, 1975). This algorithm iteratively attempts 

to align sets of points to their mean until convergence is achieved. This is necessary to establish a 

common reference frame so that a correct comparison can be made between the Unknown and all 

the different groups. 

Finally, the difference between the sets of craniometric points from the unknown subject and the 

average of each of the ancestry and sex groups is computed using the Mahalanobis Distance (Orlov, 

2011), an algorithm to calculate the geometric distance between an element and a distribution. The 

ancestry group with the lowest distance is used as the classification attributed to the unknown 

individual. Since the distances between the Unknown and multiple groups might be very similar, 

two additional metrics are calculated to increase the reliability of the classification process: 

Posterior Probability and a custom created “typicality” measure.  

The method for ancestry estimation implemented in the CraMs application was identical to the one 

used in 3D-ID. It is divided into three phases: an initial preprocessing where the database is filtered 

for individuals with the required cranial points, the superposition of the groups using Generalized 

Procrustes Analysis and finally the tested skull is classified and the additional metrics are calculated.  
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4.2 Initial Preprocessing 

As mentioned in section 3.3.3 a database was created to store the point data and classifications 

from analysis done using CraMs and data from obtained external sources. The publicly available 

database used by 3D-ID was then imported to attempt to obtain similar accuracy, and to function 

as staring point to be expanded upon with data added using CraMs. This database contains all 

cranial points that were already being used within CraMs as well as the 11 cranial points that 3D-ID 

uses but were not present, as seen in Table 1. 

 

Table 1 – Craniometric points not used in CraMs added to acccomodate the 3D-ID database and 
their definition. Adapted from (Slice & Ross, 2009). 

Craniometric Point  Definition 

Left Asterion 
Intersection of left parietal, left temporal, and occipital 
bones. If sutures are indistinct or include wormian bones, project suture 
lines until they intersect. 

Right Asterion 
Intersection of right parietal, right temporal, and occipital 
bones. If sutures are indistinct or include wormian bones, project suture 
lines until they intersect. 

Left Frontomalare Anterior 
Left side of skull: most anterior projecting point on the 
frontomalare suture (different from the Frontomalare orbitale and 
temporale). 

Right Frontomalare Anterior 
Right side of the skull: most anterior projecting point on 
the fronto-malare suture (different from the Frontomalare orbitale and 
temporale). 

Left Mastoidale Left mastoid process: point is located on the inferior end. 

Right Mastoidale Right mastoid process: point is located on the inferior end. 

Left Nasomaxillary Suture Pinch 
Narrowest portion of the midline of the face to the left 
naso-maxillary suture. The minimum distance between wnbl-wnbr 
forms the simotic chord. 

Left Nasomaxillary Suture Pinch 
Narrowest portion of the midline of the face to the right 
naso-maxillary suture. The minimum distance betweenwnbl-wnbr 
forms the simotic chord. 

Supspinale 
The deepest point of the profile below the anterior nasal spine. 

Left Zygoorbitale Left eye orbit: point of intersection between zygomaxillary suture and 
eye orbit. 

Right Zygoorbitale 
Right eye orbit: point of intersection betweenzygomaxillary suture and 
orbit border. 
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 Additionally, each entry also contains the following data fields: 

  Origin of the data, whether it came from CraMs or was imported from a third-party source. 

  Sex of the individual. 

 Ancestry group.  

To begin the Ancestry Estimation process it is necessary to gather all the elements from the 

database that contain data for at least the same cranial points as the Unknown, the individual being 

analyzed, to establish a direct comparison. First, the Unknown’s points are filtered by identifying 

the those that have valid coordinates. A subsequent filtering is done to select only points present 

in many database entries as to maximize the number of shapes thus improving the overall accuracy. 

Finally, the resulting data is filtered for entries that have valid data for all those points and possess 

a valid ancestry and sex classification. If an entry doesn’t have an ancestry or sex classification, 

having the respective data fields set to “Unknown”, it can’t be used for comparisons as so is 

discarded.  

 

4.3 Generalized Procrustes Analysis 

To mitigate the effects of difference in scale, and rotation components between the sets of cranial 

points during the classification process all the shapes (the shapes from the database and the 

unknown shape) must be aligned. To this end the Generalized Procrustes Analysis algorithm, a 

statistical analysis method designed to superimpose a population of shapes, is applied. This 

algorithm works by performing the Procrustes Analysis (Kendall, 1989) to a population of shapes as 

opposed to only two. Procrustes Analysis superimposes two shapes by applying transformations to 

one as to remove the translational, rotational and uniform scaling components. This is 

accomplished by respectively translating the centroid to the origin, rotate one of the shapes so that 

their orientation matches and applying a uniform scale so that the root mean square distance to 

the origin is set to one. The difference between the resulting shapes can be then quantified by 

calculating the Procrustes Distance which is defined by the sum of square distances between 

corresponding points of both shapes. The Generalized Procrustes Analysis applies these principles 

to process a set of shapes by iteratively superimposing all the shapes to the mean shape calculated 

each iteration until convergence is achieved, determined by the difference between consecutive 
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Procrustes Distance between the reference and mean shape being below a predetermined 

threshold. If, however, convergence is not achieved, the mean shape is used in the next iteration 

as the reference shape and the Procrustes Analysis process restarts. The flowchart for this process 

can be seen in Figure 11.  

 

 

Figure 11 -  Flowchart of the Generalized Procustes Anlysing algortihm used in the Ancestry 
Estimation process. 

 

The following subsections detail each of the algorithms used to achieve convergence: translation, 

uniform scaling and rotation as well as the metric to evaluate it, the Mahalanobis distance. 
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4.3.1 Translation 

All shapes are translated so that their centroid is translated to the origin of the coordinate system. 

To this effect the centroid is calculated by computing the average value of each coordinate 

component for all the points in that entry. The translation itself is applied by subtracting each point 

with the centroid calculated. This process is detailed in Equation 1 below.  

  〈𝒙𝒊, 𝒚𝒊, 𝒛𝒊〉 → 〈𝒙𝒊 − 𝒙, 𝒚𝒊 − 𝒚, 𝒛𝒊 − 𝒛〉       𝒙 =
𝒙𝟏 ⋯ 𝒙𝒌

𝒌
, 𝒚 =

𝒚𝟏 ⋯ 𝒚𝒌

𝒌
, 𝒛 =

𝒛𝟏 ⋯ 𝒛𝒌

𝒌
         (1) 

 
Where i = point index, 
           (𝑥 , 𝑦 , 𝑧 ) = coordinates of the point being translated, 
           (�̅�, 𝑦, 𝑧̅)  = averages of each of the coordinate component, 
            𝑘 = total number of points. 
 

4.3.2 Uniform Scaling 

The shapes are then scaled so that the root mean squared distance of all the points to the origin is 

one. This is achieved by using the component average calculated during the translation process to 

obtain the scaling factor 𝑠 through the square root of the sum of the squares of the difference of 

each coordinate and its respective mean divided by the number of points, show in Equation 2. 

                     〈𝒙𝒊, 𝒚𝒊, 𝒛𝒊〉 → 〈𝒙𝒊
𝒔 ,

𝒚𝒊
𝒔 ,

𝒛𝒊
𝒔〉            𝒔 =

(𝒙𝒊 𝒙)𝟐 (𝒚𝒊 𝒚)𝟐 (𝒛𝒊 𝒛)𝟐

𝒌
                           (2)    

Where i = point index, 
           (𝑥 , 𝑦 , 𝑧 ) = coordinates of the point being translated, 
           (�̅�, 𝑦, 𝑧̅) = averages of each of the coordinate component,  
            𝑘 = total number of points, 
            s = scale factor. 
 

4.3.3 Rotation to Reference 

To remove the rotation component every shape must be rotated, using the rotation matrix R, so 

that it matches the rotation of the reference shape. The optimal 3 by 3 rotation matrix R is 

calculated as the solution to the Orthogonal Procrustes Problem (Everson, 1997). This problem can 

be solved by computing  the Singular Value Decomposition (Schönemann, 1966) of the product of 

the matrix of the shape being rotated and the translated matrix of the reference shape. The rotation 

matrix is then defined by the product of the resulting V and U transposed matrices. All these steps 

are presented in Equation 3 below. 
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𝑪 = 𝑩𝑨𝑻 

𝑪 = 𝑼𝑺𝑽𝑻  (𝑺𝒊𝒏𝒈𝒖𝒍𝒂𝒓 𝑽𝒂𝒍𝒖𝒆 𝑫𝒆𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒐𝒇 𝑪) 

                              𝑹 = 𝑽𝑼𝑻                                                                                                   (3) 

Where A = reference matrix, 
            U, S and V = resulting matrices from the Singular Value Decomposition, 
            R = resulting rotation matrix. 
 

4.3.4 Procrustes Distance 

At the end of each iteration of the rotation to the current reference shape, the convergence is 

evaluated by firstly computing the mean shape calculating the Procrustes Distance, the sum of the 

squared distances between corresponding points, to the current reference shape. Equation 4 

defines the Procrustes Distance. 

                                   𝒅𝒊 = (𝒖𝒊 − 𝒙𝒊)
𝟐 + (𝒗𝒊 − 𝒚𝒊)

𝟐 + (𝒘𝒊 − 𝒛𝒊)
𝟐                (4) 

Where i = point index, 
           𝑑  = Procrustes Distance, 
           (𝑥 , 𝑦 , 𝑧 ) and (𝑢𝑖, 𝑣 , 𝑤 ) = coordinates of ith point of both individuals. 

The obtained value is then compared with the previous value and if the difference is below the 

threshold (considered empirically during optimization to be 1×10 ), the superposition is deemed 

as optimal and so the Generalized Procrustes Analysis is terminated. If on the other hand the 

difference is above the threshold it means the maximum convergence has not been achieved, the 

new reference shape is set to the mean shape calculated and another iteration of rotations to 

reference is performed and subsequently the convergence is tested in the same manner.  

 

4.4 Classification 

After all the database shapes, have been superimposed the next step is to compare them with the 

unknown individual to assign a classification. Initially, the Grand Mean matrix is determined by 

calculating the mean of all the previously superimposed shapes. The next step it is to fit the 

Unknown to the mean of all individuals. This alignment is done using the same process previously 

described: the unknown shape is modified to have the same scale, position and orientation as all 

the Grand Mean (translating centroid to origin, uniform scale so that root mean square distance of 

all the points is one and rotation with the Grand Mean matrix as a reference). Next all the database 
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and the Unknown shapes are mean corrected by subtracting the Grand Mean matrix. Finally, an 

average shape matrix is calculated for each group by computing the mean values of each point for 

all the shapes that are members of each ancestry group.   

4.5 Mahalanobis Distance 

The assignment of the Unknown to a group of shapes is done by calculating the Mahalanobis 

Distance between the mean shape of each group and the Unknown, being assigned to the group 

with the lowest value. The Mahalanobis Distance of a group, as shown in equation 5, is defined by 

the product of the transposed delta matrix, the inverse pooled covariance matrix and the delta 

matrix. The delta matrix is defined by the difference between the unknown shape matrix and the 

mean matrix of the group being analyzed. 

                                             𝑫𝒊
𝟐 = (𝒙𝒖𝒏𝒌𝒏𝒐𝒘𝒏 − 𝒙𝒊)

𝑻𝑺𝒑𝒐𝒐𝒍𝒆𝒅
𝟏 (𝒙𝒖𝒏𝒌𝒏𝒐𝒘𝒏 − 𝒙𝒊)                                   (5) 

Where i = point index, 
           𝐷  = squared Mahalanobis Distance for the ith group, 
           𝑆  = inverse of the pooled covariance matrix 
           𝑔 = number of groups  

           𝑋𝑖 = matrix containing the shapes from the ith group. 
 

The general formula for the Mahalanobis Distance uses a regular Covariance Matrix but, instead, a 

Pooled Covariance was used to further approximate the results given by the 3D-ID tool as the same 

type of matrix is used. The Pooled Covariance Matrix is calculated by first computing the Covariance 

Matrix for each shape group 𝐶  and obtaining a weighted mean as shown in Equation 6.  

                                               𝑺𝒑𝒐𝒐𝒍𝒆𝒅 =  
𝟏

𝒏
∑ 𝒏𝒊𝑪𝒊

𝒈
𝒊 𝟎    𝒘𝒉𝒆𝒓𝒆   𝑪𝒊 =

𝑿𝒊
𝑻𝑿𝒊 

𝒏𝒊
                                  (6) 

Where 𝑆  = pooled covariance matrix, 
            𝑛 = total number of shapes, 

            𝑛𝑖 = number of shapes in the ith group, 
            𝑔 = number of groups,  
            𝑋𝑖 = matrix containing the shapes from the ith group. 

 

4.6 Additional Metrics  

Assigning a classification solely based on the lowest Mahalanobis Distance may not be sufficient 

because the low variability in the shapes caused by the superimposition process that may result in 

similar values between several classification groups. With this in mind additional metrics are used 
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to further support the classification process (van Vark and Howells, 1984). The metrics chosen were 

the ones originally used by the 3D-ID tool: the posterior probability and the “typicality” measure.  

The posterior probability, defined in Equation 7 indicates the relative closeness of the unknown 

shape to each group mean being that the ideal case would be high value for one group and zero for 

all the others, is calculated using the probability density function described in Equation 8.  

                                                      𝐏𝐫(𝒙𝒖𝒏𝒌𝒐𝒘𝒏)𝒊 =
𝒇(𝒙𝒖𝒏𝒌𝒐𝒘𝒏)𝒊

∑ 𝒇(𝒙𝒖𝒏𝒌𝒐𝒘𝒏)𝒋
𝒈
𝒋 𝟏

                                             (7) 

 

          𝒇(𝒙𝒖𝒏𝒌𝒏𝒐𝒘𝒏)𝒊 = 𝝅
𝒗

𝟐
𝚪((𝒏𝒇 𝟏) 𝟐⁄ )

𝚪((𝒏𝒇 𝒗 𝟏) 𝟐⁄ )

(𝒏𝒊 𝟏)𝒏𝒇

𝒏𝒊
𝑺𝒑𝒐𝒐𝒍𝒆𝒅

𝟏 𝟐⁄

𝟏 +
𝒏𝒊𝑫𝒊

𝟐

𝒏𝒇(𝒏𝒊 𝟏)

(𝒏𝒇 𝟏) 𝟐⁄

           (8) 

Where i = point index, 
           Pr = posterior probability, 
           𝑓 = probability density function, 

           𝑛𝑖 = number of shapes in ith group, 
           𝑛  = total number of shapes minus the number of groups,  
           Γ  = gamma function,  
           𝐷  = Mahalanobis Distance for ith group. 

 

The “typicality” measure helps gauge how likely the unknown shape came from a particular group 

despite the results for other groups. The “typicality” is calculated by finding the probability of the 

value defined in Equation 9 in a distribution 𝐹(𝑣, 𝑛 − 𝑣 + 1). 

                                                                                 
(𝒏𝒇 𝒗 𝟏)𝒏𝒊

𝒗𝒏𝒇(𝒏𝒊 𝟏)
𝑫𝒊

𝟐                                                                            (9)  

Where i = point index, 
         𝑛𝑖 = number of shapes in ith group, 
           𝑛  = total number of shapes minus the number of groups, 
           𝐷  = Mahalanobis Distance for ith group. 
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  FRAGMENT RECONSTRUCTION 

A significant number of the cranial remains recovered by the anthropologists are fragmented. These 

fragments vary wildly in number and size and can be damaged or even destroyed due to cadaver 

intrinsic and/or extrinsic factors. Reconstructing these fragments to take measurements present 

many difficulties. Setting the correct alignment for all the fragments can prove to be an extremely 

problematic task and is very susceptible to observer errors. When there are many fragments of a 

reduced size or when large portions are missing, the reconstruction cannot be done. Additionally, 

the reconstruction process itself is irreversible as the fragments are glued to each other which can 

be undesirable. Because of these reasons, the feature to be added to CraMs that was prioritized by 

the anthropologists was a semi-automated reconstruction system based on three-dimensional 

models from the scanned fragments. The idea is to allow to reconstruct the skull from the fragments 

to further process the reconstructed skull with the full range of tools available in CraMs Application.  

 

5.1 Fragment Reconstruction Algorithms 

Most computer assisted methods of reconstruction of archaeological fragments have three 

different stages: classification, reassembly and completion (Du et al., 2016). In the classification 

phase fragments are grouped based on similarities in curvature or texture color as to make sure 

that the fragments analyzed in the following stages belong to a single individual. During the 

fragment reassembly phase the fragments are subject to position and orientation changes to make 

them match, as close as possible, those of their original complete form. This can be done in one of 

two ways depending on the type of alignment:  template-based or fracture-based. Finally, in the 
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completion phase, any incomplete regions caused by missing fragments, material subtracted during 

the fracturing process or erosion, of the produced skull are filled in with an estimated geometry. In 

the following subsections, these phases will be addressed in detail.   

 

5.1.1 Fragment Classification 

To create an automated process for fragment reconstruction using individuals that originated from 

archeological sites it is imperative to establish a classification system to group them based on the 

individual they belong to. Most classification methods can be divided into two categories based on 

the classifying criteria: texture and geometric. Texture classification attempts to find similarities 

between the fragment’s texture RGB values (Kampel, Sablatnig, 2000). Geometric Classification 

compare fragments by using the profile information which is the section of the fragment in the 

direction of the rotational axis (Sablatnig, Menard, Kropatsch, 1998). There are challenges 

associated with both classification methods: erosion causes a reduction of profile information and 

a great number of fragments may have textures that don’t have significant differences.       

 

5.1.2 Template-Based Reassembly 

The goal of template-based reassembly is to find partial correspondences between fragments and 

a pre-selected complete template model. The alignment of each of the fragments with the template 

can be done in several ways with the simplest being using an Iterative Closest Point (ICP) on both 

models (Yin, Wei, Li, and Manhein, 2011). This method is not very reliable as this algorithm is very 

susceptible to local minimums.  Since the template model may differ from the fragmented model 

due to variably between individuals a direct comparison of geometry would not be suitable. This is 

the reason why many methods rely on keypoints. Keypoints are points in a 3D model with unique 

features and have the advantages of being scale and transformation invariant as well as providing 

better comparison performance as can be seen in Figure 12.  
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Figure 12- Keypoint detection and matching for Template Based Reassembly. Taken from (Zhang, 
2015). 

There are two main ways of obtaining the model keypoints: uniform sampling or calculation with a 

detector. With Uniform sampling the keypoints are spread out evenly throughout all the model. 

This method although simple is prone to error because the keypoints may not represent unique 

features.  Alternatively, keypoint detection can be used. A possible algorithm used for keypoint 

selection is the Intrinsic Shape Signatures Algorithm (ISS) (Yu, 2009). ISS selects keypoints in regions 

of high curvature variance to ensure regions with very distinct geometry are used. For each keypoint 

a point descriptor is computed (a structure that characterize the point neighborhood with a goal of 

mitigating scale, orientation and noise). Among the most popular descriptors are Spin Images 

(Johnson & Hebert, 1999) that create 2D histograms of the accumulation of points when spinning 

around an axis,  Point Feature Histogram (PFH) (Rusu, Blodow, & Beetz, 2009) which computes 

three values for each point pair based on the normal vectors and finally, the SHOT descriptor 

(Signatures of Histograms of Orientations) (Salti, Tombari, & Di Stefano, 2014) which creates a 

histogram of the cosine of normal vectors of the keypoint and each of the neighboring points in a 

sphere of customizable radius. 

In real world situations, however some ambiguity between keypoints will inevitable produce a 

considerable number of false positive matches, namely because possible deformation of skull 

fragments due to deposition conditions. To mitigate this it is common to use some sort of consensus 

algorithm such as Random Sample Consensus (RANSAC) (Fischler & Bolles, 1981) to filter out the 

correspondences that diverge from the majority. 
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5.1.3 Fracture-Based Reassembly 

Fracture-based reassembly analyses only a portion of the fragments: the fracture region, as 

opposed to the intact region, and finds geometric similarities between fragments to place them in 

the correct position and orientation so that the reassembly can be performed. Most fracture 

matching implementations use curvature to identify the fracture region. Multi-scale classification 

of the models is used to compute the feature curves (Pauly et al., 2003), the Minimum Spanning 

Tree (MST) of the identified high curvature points seen in Figure 13, which are then compared with 

the ones from other fragments to optimize their alignment. This solution presents several 

limitations as it was designed for small fragments where the biggest feature curves are the ones in 

the fracture region. 

 

 

Figure 13 – On the left curvature information, on the right the resulting MST. Taken from (Pauly et 
al, 2003). 

 

 With of the two larger fragments from autopsies this is not the case as the feature lines would 

trigger false positives on intact regions or even the interior portions of the models and as such an 

alternative solution was put in place. 
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5.1.4 Hybrid Reassembly 

The most effective approach however seems to be using the best of both worlds: applying a 

template based alignment to get a rough estimate of the fragments position relative to the 

complete template and improving the alignment by applying a fracture based alignment to make 

sure the fragments have the correct orientation and a flush against each other. An approach of this 

type (Zhang et al., 2015) was used as a starting point as it tackled the same problem, skull fragment 

reconstruction and showed good results with a completely automatic process. This method used 

both template based alignment (using ISS keypoint detector and SHOT descriptors) and a 

subsequent refinement using fracture region matching (using feature curves).  

 

5.1.5 Skull Completion 

Most of the individuals uncovered in archaeological sites are not complete and so the 

reconstruction will inevitably result in missing region in the newly formed skull. A possible solution 

to this problem is to fill these empty regions by exploiting symmetries in the human skull. The 

method proposed by (Yin et al., 2011) starts by determining the individual’s symmetry plane and 

subsequently completes missing regions with data from the corresponding region relative to it.  An 

alternative solution is to complete the missing regions using information from equivalent regions 

of a pre-selected template as can be seen in Figure 14. 

 

Figure 14– Template-based skull completion. Taken from (Wei, 2011). 
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5.2 Fragment Reconstruction within CraMs  

The primary goal of the CraMs fragment reconstruction method is to reconstruct individuals from 

the CEIXXI collection that were cut into two pieces to separate the calvarium from the rest of the 

skull during autopsy. Since the fragments were already grouped into corresponding pairs by the 

anthropologists the first reconstruction phase, the classification, does not apply and was not 

included into the solution design. Additionally, the last phase, the skull completion is not necessary 

because there are no missing fragments and a loss of material from the cutting process. The 

alignment process follow the hybrid approach, a rough pre-alignment using a template 

subsequently refined by a fracture-based alignment as this provided the upsides of both methods 

while only resulting in a negligible loss in performance. In the following sections the entire Fragment 

Reconstruction process, in all its iterations, is described detail as well as the reasoning supporting 

the choices made during its construction.  

 

5.3 Rough Pre-Alignment 

5.3.1 Early Attempts with Automatic Template Alignment 

In the early stages of development, the solution for the rough pre-alignment used keypoint 

matching between each fragment and a template. This initial design used the ISS algorithm to 

calculate the keypoint for each of the models while creating descriptors for them using SHOT. 

Finally, the correspondences found by comparing descriptors are filtered the RANSAC algorithm. 

The solutions in the literature that use this type of approach are built using the Point Cloud Library 

(PCL) as it provides a wide range of different tools for manipulation of 3D point clouds as well as 

implementations for most of algorithms for keypoints detection and descriptors referred in the 

previous sections including ISS, SHOT and RANSAC. For to this reason PCL was also integrated in 

CraMs to perform the background calculations while keeping VTK to handle the visualization and 

manipulation of the models.      

However, despite several different variations of parameters on each of the algorithms in the 

alignment process, the obtained results were not satisfactory. Either the comparison was lenient 

and produced a very large number of incorrect correspondences, as seen in Figure 15, or was 
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stricter and it would allow limited variation with the models and thus produced very little 

correspondences. In both cases, causing the resulting alignment to be unusable. These errors were 

most likely due to the models used being double sided as opposed the thin-shelled models used in 

most solutions found in the literature. This caused the selection of keypoints on the inside geometry 

of the fragment’s models and their subsequent incorrect matching with vertices on the template 

compromising the whole process. Due to these results, this approach was and a simpler semi-

automatic solution had to be implemented in its place. PCL was also abandoned as a framework as 

its implementation of previously stated algorithms was no longer necessary.   

 

Figure 15 – Problems with excessive false positive correspondences using Template-Based 
alignment. 

 

5.3.2 Semi-Automatic Alignment 

An initial system was created to align the fragments based on point correspondences between 

fragments. The user would be prompted to click on the corresponding vertices of the fracture in 

different fragments. The resulting transformation matrix was computed using the Rigid Body 

Transformation algorithm using these correspondences, with a proper result being produced if 

there are three or more, as input. This solution produced good results but it was quickly apparent 

that it was not viable for situations where there is a large number of small fragments as it would 

prove difficult and time consuming for a user to determine correspondences in a large and 
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ambiguous pool of fragments. The alignment method was repurposed to a system where the 

alignment would still be made through manual point correspondences between models but using 

a template model as basis instead. This solution has similar alignment result as the previous but it 

proves much more easy and efficient to use when it comes to smaller fragments as it is easier to 

identify known cranial points, especially for domain specialist. Both methods are represented in 

Figure 16. 

 

  

Figure 16 - The pair-wise alignment processes with green spheres representing the points selected 
on each and the light blue lines joining corresponding points. On the left is the alignment between 

fragments and a template and on the right the alignment solely between fragments.   

 

 

5.4 Pair-wise Refinement 

With fragments now pre-aligned the next step is to refine their alignment to assure neighboring 

fragments perfectly match each other. As discussed in section 5.1.3 most solutions accomplish this 

by using curvature information to define the fractures of each fragment and so a similar approach 

was used in CraMs. The implemented solution relies on the fact that fracture is compose of regions 

with the same orientation and low curvature variation. The whole fracture could be defined using 

a handful of points on the fractures, called seed points, and a region growing mechanisms using 
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those conditions. Subsequently the transformation matrix can be derived from these fractures 

producing a more precise alignment between fragment pairs thus improving the reconstruction’s 

overall accuracy.  

There are some assumptions that can be made when calculating seed points between neighboring 

points. Firstly, since the fractures by definition are on the fragment’s edges facing each other, we 

can safely say that on equivalent regions the closest pairs of vertices are in their respective 

fractures. Secondly, we can be sure that the orientation of point pairs in the fragment is inverted 

within a margin to account for different orientations and fracture erosion.  

Now that these conditions have been established to filter the seed points the simplest solution is 

to filter every pair of points. This presents a problem since a fragment model could have more than 

a million vertices resulting in very time consuming brute force algorithm if pairwise comparison 

were performed on the whole datasets. A different approach, computationally less costly, by 

restricting the points to those in the region in between fragments. To define this region some points 

are calculated, called probe points, that are then used as reference when calculating seed points. 

Finally, the computed regions are used as input for an ICP algorithm to align them, producing a 

transformation matrix which can then be applied to the whole fragments. These four steps in this 

process, from obtaining the seed points to computing the resulting transformation matrix, can be 

seen in Figure 17.  

 

 

Figure 17 - Workflow for the Pair-wise Alignment refinement. 

 

5.4.1 Probe Point Determination 

The first step is to slightly separate fragments. This is done to remove any intersections between 

the fragments to add robustness in case of a poor pre-alignment. Since the relative orientation 

between fragments must be preserved the separation vector must correspond to the vector 

between them. To approximate this, the separation vector is computed using the fragment’s 
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centers of mass obtained using the VTK tool vtkCenterOfMass. The length of the separation vector 

is set to 50% of the original vector between the centers of mass considering that clipping from the 

template alignment is very mild 

The next step is to find the points in between the fragments, the probe points, that will serve as the 

basis for the calculation of the seed points in the fracture region. First, the new centers of mass are 

calculated, as they change after the initial separation, and with those it is possible to define an 

intermediary plane between the fragments defined as the plane perpendicular to the vector formed 

by the two centers of mass and centered on the midpoint between them. Since the overwhelming 

majority of the vertices belonging to the fracture region are on regions of the model further away 

from its center of mass, the probe points are distributed in a rectangle formation. This rectangle is 

calculated from the intersection of a cuboid with the same dimension’s average of the two 

bounding boxes and the intermediary plane obtained previously. The number of probe points, 

interpolated in the resulting rectangle, can be set by the user to any number larger than four. The 

default value being sixteen as seen in Figure 18. 

 

Figure 18- On the left is a side view of two neighboring fragments with their centers of mass 
represented by red spheres, the middle plane perpendicular to line between them in orange and 

the probe points in yellow. On the right is a top down view of the probe point represented as yellow 
sphere organized as a rectangle with its center as a green sphere. 

 



 

37 

5.4.2 Seed Point Calculation 

Now after determining the probe points have been determined it is possible to calculate the seed 

point of the fracture region for each fragment. Initially, a group of candidate points for each probe 

point are obtained by computing the 150 closest vertices to each of the fragments using a K-d Tree. 

Then from both candidate groups the same number of probe point a seed point is selected, for each 

of the fragments, based on two criteria: minimal distance and closest to symmetrical normal vectors 

as can be seen in Figure 19. The minimal distance criteria have the purpose to select only points 

from the border of fragments thus removing unwanted points from either side of the intact region. 

The normal symmetry criteria find the points whose normal vectors are closest to the inverse of 

one another filtering out unwanted regions from either the sides of the interior of the model. 

Additionally, a restriction on the low point curvature is also applied to ensure that the seed point 

selected is not on a sharp edge as not to disturb the fracture region expansion explained below.  

 

Figure 19 - View of the 150 candidate vertices for each probe point on each fragment (green 
spheres) with the selected seed points (blue spheres) and the corresponding seed points joined by 

a light blue line.   
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5.4.3 Fracture Region Expansion 

The final step in this process is to compute the points in the fracture region using the seed points. 

A queue of points is created, starting with the seed points, and each connected point is iteratively 

tested for curvature. If a point has a curvature similar to that of the seed point it corresponds to 

the fracture region and is added to the queue to be processed. Otherwise if the point has a high 

absolute curvature value so it then corresponds to the edge of the fracture region and so it is not 

inserted into the queue stopping the search in that direction. The curvature threshold must be kept 

low as not to “spill” the fracture region onto the sides since a single point could compromise the 

whole region. The inserted points in the queue are tested for duplication to avoid the expansion of 

the same points multiple times and a subsequent cleanup of these overlapping regions. The 

resulting fracture regions can be seen in Figure 20.   

  

Figure 20 - Expanded fracture region in purple generated from the seed points seen as blue 
spheres. The red sphere represents the center of mass of the fragment. 

 

5.4.4 Computing and Applying Transformation 

To complete the reconstruction the Iterative Closest Point algorithm (ICP) is applied to the resulting 

fracture regions from each of the fragments. This algorithm superimposed both fragment regions, 

minimizing the distance between for a maximum of 150 iterations, a number that was determined 

empirically during testing to produce proper alignment. The resulting matrix is then applied to the 

fragment model whose fracture region was used as a source in the ICP process. The resulting model 

and the original fragments are shown in Figure 21. 
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Figure 21 – On the left the fragments before the recosntruction and on the right the resulting 
reconstructed skull. 

 

5.4.5 Semi-Automatic Region Expansion 

Since the CraMs application’s target users are professionals a semi-automatic solution was required 

as an alternative to correct eventual misalignments. This solution used the same principles of 

fracture region growing detailed in the previous sections but with manual user defined seed points. 

The semi-automatic solution for fragment reconstruction works on a single fragment at a time. The 

user chooses a seed point by selecting the point on the model. The fracture region is then calculated 

as in the automatic solution, finding connected points with low curvature. The user can mark as 

many seed points as he/she wants, until the fracture region is deemed to be covering the entire 

fracture and so ready to be reconstructed.  
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  RESULTS 

This chapter presents the results obtained for both the Ancestry Estimation and the fragment 

reconstruction processes. In the first section the Ancestry Estimation algorithm is applied to 

nineteen individuals with varying numbers of point data defined by the experts. The classification 

results are compared to the classification assigned by the anthropologists using the methodology 

defined by (Hefner, 2009) as well as the classification produced by the 3D-ID in order to validate 

the solution. The second section presents the reconstruction of nine fragmented individuals from 

autopsies reconstructed with the system developed in CraMs. To assess the validity of this solution 

the results are compared with the physical reconstruction using a craniometric measurement the 

Basion-Bregma Height, a visual evaluation performed by the anthropologists and the average 

distance between fracture distances  

6.1 Ancestry Estimation 

To evaluate the accuracy of the Ancestry Estimation solution implemented we must compare the 

classification results obtained with those assigned by the anthropologists for each set of cranial 

remains. The effectiveness of the classification process increases with the more points used 

because the differences between groups are more defined. Due to this fact, the PAV 09 collection, 

a collection of remains from African slaves, was used as these had 19 individuals with a large 

amount of points marked by the anthropologists while other collections would have had to be used 

with automatic points generated by CraMs. These points are subsequently filtered during the 

Ancestry Estimation process as described in section 4.2, selecting those that are common in the 
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database resulting in even fewer points being used. Table 2 shows which points were used in the 

Ancestry Estimation process for every individual marked by the anthropologists. 

Table 2 – Points used to test the Ancestry Estimation process for each indivual. The abreaviations 
of the point names follow the rules described in Annex 1.  

ID Points Count 

PAVd09_I21 B, N, Pr, Right Ekm, Left Ekm, L, Left Inferior Orbit, Left Superior Orbit, Right Ek, Left Ek 11 

PAVd09_I25 B, Ba, Right Zy, Left Zy, G, N, Pr, Right Ekm, Left Ekm, L, O, Left Inferior Orbit, Left Superior 

Orbit, Right Ek, Left Ek  

15 

PAVd09_I38 B, Ba, G, N, Pr, Right Ekm, Left Ekm, L, O, Right D, Left D 11 

PAVd09_I39 B, G, N, Pr, Right Ekm, Left Ekm, L, Right D, Left D 11 

PAVd09_I57 B, G, N, Pr, Right Ekm, Left Ekm, L, Right D, Left D 9 

PAVd09_I65 B, Ba, Right Zy, Left Zy, G, N, Pr, Right Ekm, Left Ekm, L, O, Left Inferior Orbit, Right Superior 

Orbit, Right Ek, Left Ek 

15 

PAVd09_I66 B, Ba, G, N, Pr, Right Ekm, Left Ekm, L, O, Right D, Left D 11 

PAVd09_I67 B, Ba, Right Zy, Left Zy, G, N, Pr, Right Ekm, Left Ekm, L, O, Right D, Left D 13 

PAVd09_I75 B, G, N, Pr, Right Ekm, Left Ekm, L 7 

PAVd09_I77 B, Right Zy, Left Zy, G, N, Pr, Right Ekm, Left Ekm, L, O 10 

PAVd09_I78 B, Ba, G, N, L, O 6 

PAVd09_I81 B, G, N, Pr, Right Ekm, Left Ekm, L, Right D, Left D 9 

PAVd09_I82 B, Ba, Right Zy, Left Zy, G, N, Pr, L, O, Right D, Left D 13 

PAVd09_I93 B, Ba, Right Zy, Left Zy, G, N, O 7 

PAVd09_I96 B, Ba, G, N, L, O 6 

PAVd09_I110 B, Ba, Right Zy, Left Zy, G, N, Pr, L, O 6 

PAVd09_I133 B, Ba, Right Zy, Left Zy, G, Right Ekm, Left Ekm, O 8 

PAVd09_I163 B, Ba, G, N, Pr, Right Ekm, Left Ekm, L, O, Right D, Left D 11 

PAVd09_I169 B, Ba, G, N, Pr, Right Ekm, Left Ekm, L, O, Right D, Left D 11 

The individuals along with their point marking files were loaded into CraMs to generate its 

classification. Subsequently the point coordinates were manually inputted into 3D-ID to obtain its 

classification results for comparison. The results for each of the individuals tested using CraMs and 
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3D-ID can be seen in Table 3.  From the results of the two solutions the four output values were 

collected:  

 Classification: the ancestry group assigned. 

 D2: the squared Mahalanobis Distance between the individual and said group. 

 P: the posterior probability. 

 T: the “typicality” measure. 

Table 3 - Results of Ancestry Estimation applied to the indivuals with points marked by the 
antropologists using CraMs and 3D-ID marked with green when correctly identified and red 

when otherwise. 

 CraMs 3D-ID 

ID Classification D2 P T Classification D2 P T 

PAVd09_I21 African F 32.94 0.92 0.67 African F 42.29 0.96 0.27 

PAVd09_I25 African F 90.07 0.69 1.27 African M 92.02 0.66 0.01 

PAVd09_I38 African M 21.16 0.47 0.46 African M 22.37 0.59 0.90 

PAVd09_I39 African American F 3032 0 0 African American M 1291 0 0 

PAVd09_I57 African F 20.90 0.08 0.53 Mesoamerican F 25.23 0.39 0.44 

PAVd09_I65 African F 69.95 0.38 0.99 African M 77.81 0.98 0.03 

PAVd09_I66 African F 33.83 0.28 0.69 African F 40.38 0.52 0.33 

PAVd09_I67 CircumCaribbean M 25.52 0.09 0.49 African M 28.3 0.61 0.92 

PAVd09_I75 South American M 19.77 0.23 0.59 South American F 18.59 0.79 0.38 

PAVd09_I77 CircumCaribbean M 22.86 0.05 0.59 Mesoamerican M 22.62 0.64 0.61 

PAVd09_I78 CircumCaribbean F 9.72 0.09 0.42 African American F 9.01 0.22 0.64 

PAVd09_I81 African M 8.89 0.23 0.24 African M 9.16 0.42 0.99 

PAVd09_I82 MesoAmerican F 26.75 0.31 0.45 MesoAmerican F 30.43 0.25 0.88 

PAVd09_I93 African F 11.27 0.11 0.43 African F 10.60 0.37 0.85 

PAVd09_I96 African F 12.91 0.06 0.58 African American F 11.60 0.23 0.41 

PAVd09_I110 CircumCaribbean F 13.74 0.09 0.59 East Asian M 9.05 0.65 0.72 

PAVd09_I133 African F 17.14 0.11 0.45 African American F 15.53 0.60 0.78 

PAVd09_I163 African M 12.77 0.12 0.43 African M 15.89 0.52 0.72 
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The Ancestry Estimation solution developed in CraMs correctly classified the individuals as African 

in 13 out of the 19 cases or 68.4% with the remaining individuals being classified as South and 

Central American. This contrasts with the results obtained using 3D-ID that produced a correct 

classification in 14 individuals or 73.7%. This difference can be attributed to the use of a significantly 

larger dataset with 3D-ID compared to the Crams solution. Additionally, we can confirm that a larger 

number of points contributes greatly to the success rate of the Ancestry Estimation within CraMs, 

as expected, with 9 of the total 19 individuals used less than 10 points and had a success rate of 

55.6% while the remaining 10 individuals used between more than 10 points and had a success rate 

of 70%.    

  

6.2 Fragment Reconstruction 

The Fragment Reconstruction solution implement in CraMs was applied to all the fragmented 

models available, eight autopsied individuals with their calvarium removed, from the CEIXXI 

collection to evaluate its effectiveness. Initially the plan was to evaluate the reconstruction by 

comparing the resulting 3D model with the one obtained from acquisition of the fragments 

reconstructed manually by the anthropologists. During testing, however, it was concluded that due 

to the very high sensitivity of the 3D Scanner, in the order of microns, obtain accurate readings of 

the reconstructed model was impossible without permanently fusing the fragments. Since direct 

comparison was not feasible two alternatives metrics had to be devised: comparing craniometric 

measurements between the physical and digital reconstruction and a visual evaluation done by the 

anthropologists.  

Getting accurate craniometric measurements from a manually reconstructed skull poses difficulties 

as the direct comparison with measurement inaccuracies or even missing landmark points. Due to 

this only one measurement could be reliably obtained, the Basion-Bregma Height (BBH). The 

measurement was obtained by the anthropologists on the physically reconstructed specimens to 

be subsequently compared to the one calculated on the digital reconstructed using CraMs. Table 4 

show the values obtained from both reconstructions, for each of the autopsied individuals.   

PAVd09_I169 African M 29.23 0.11 0.64 African M 28.08 0.71 0.72 
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Table 4– Results of the Reconstruction comparison between the physical reconstruction and the 
one done using CraMs using  Basion-Bregma Height measurements. 

 

The results indicated that the digital reconstruction was very similar to its physical counterpart with 

the difference between Basion-Bregma Heights not exceeding 2mm and with a 1.02mm average. 

To further validate this solution the technical error of measurements (TEM), defined by (Perini, 

Oliveira, Ornellas, & Oliveira, 2005), must be calculated. The TEM represents the standard deviation 

between repeated measurements and is a common way of expression error margin having been 

used in (Andrade, 2016; Neves, 2014; Santos, 2013) for validation. It is defined by equation 10 and 

equation 11.   

                                                      𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝐸𝑀 =
∑                                                 (10) 

                                                 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝐸𝑀 =  
 

∗ 100                                       (11) 

Where ∑ d   = summation of measure deviations squared 
            𝑛 = number to total measures 
            𝑖  = index of the measure 
            𝑉𝐴𝑉  = variable average value (arithmetic mean between the measurements). 
         
 
            

ID Physical 

BBH (mm) 

CraMs 

BBH (mm) 

ΔBBH Observations 

CEIXXI_CRN_025_F 127 127.29 0.29  

CEIXXI_CRN_030_M 135 133.20 1.8  

CEIXXI_CRN_074_M ----------------- ---------------- -------- Impossible to measure on physical specimen. 

CEIXXI_CRN_083_M 140 141.62 1.62  

CEIXXI_CRN_107_F 131 130.13 0.87  

CEIXXI_CRN_114_F 145 144.49 0.51 Sutures on model not clear. Unsure on the position 

of the Bregma. 

CEIXXI_CRN_141_M 140 141.22 1.22  

CEIXXI_CRN_146_F 137 135.80 1.2  

CEIXXI_CRN_165_M 140 139.39 0.61  
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The TEM is expressed in percentage and typically a value above 10% means the measure is 

unacceptable. Applying the TEM formula to the results presented in Table 3 results in a TEM value 

of 0.59% being well below the threshold. 

To complement this metric a method was devised using grading based on visual inspection. Visual 

inspection was done by the experts using a scale between 1 and 5, with 1 being a unacceptable 

reconstruction of the fragments and a 5 being a perfect alignment. The anthropologists were also 

asked to complement this evaluation with observations about the digital and physical 

reconstruction. Additionally, the average distance between the points in the fracture regions of the 

fragments (AFD) after the ICP transformation is applied was also calculated.   

Below the results of the digital reconstructions applied to the 9 individuals is presented with three 

images of the resulting model, the evaluation done by the anthropologists and the average distance 

between the fracture regions calculated. The classification and AFD results for all the individuals 

are also shown in Table 5.  

 

ID: CEIXXI_CRN_025_F 

 

Physical Reconstruction Observations:  Doesn’t fit well due to Post-Mortem deformation. 

Digital Reconstruction Observations: Is in accordance with the real individual. 

Classification: 5 

Average Fracture Distance: 1.09 mm 
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ID: CEIXXI_CRN_030_M 

 

Physical Reconstruction Observations:  Doesn’t fit well due to Post-Mortem deformation. 

Digital Reconstruction Observations: Is in accordance with the real individual. 

Classification: 5 

Average Fracture Distance: 2.12 mm 

 

ID: CEIXXI_CRN_074_M 

 

Physical Reconstruction Observations:  Fits well with no Post-Mortem deformation. 

Digital Reconstruction Observations: Doesn’t fit well and appear to have Post-Mortem 
deformation. 

Classification: 1 

Average Fracture Distance: 15.36 mm 

 



 

48 

 

ID: CEIXXI_CRN_083_M 

 

Physical Reconstruction Observations:  Fits well. Missing portion of Occipital bone. Isn’t stable 
due to the nature of the autopsy incision. 

Digital Reconstruction Observations: Is in accordance with the real individual. 

Classification: 5 

Average Fracture Distance: 0.95 mm 

ID: CEIXXI_CRN_107_F 

 

Physical Reconstruction Observations:  As low Post-Mortem deformation. Missing left parietal 
bone and right temporal bone. 

Digital Reconstruction Observations: Is in accordance with the real individual. 

Classification: 5 

Average Fracture Distance: 0.76 mm 
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ID: CEIXXI_CRN_114_F 

 

Physical Reconstruction Observations:  Fits perfectly with no Post-Mortem deformation. 

Digital Reconstruction Observations: Is in accordance with the real individual. 

Classification: 5 

Average Fracture Distance: 0.63 mm 

 

ID: CEIXXI_CRN_141_M 

 

Physical Reconstruction Observations:  Fits well. Missing bone in the Frontal bone. 

Digital Reconstruction Observations: Scalp should be shifted towards the orbits. 

Classification: 3 

Average Fracture Distance: 1.57 mm 
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ID: CEIXXI_CRN_146_F 

 

Physical Reconstruction Observations:  Fits well. Reconstruction is stable. 

Digital Reconstruction Observations: Doesn’t fit completely. 

Classification: 4 

Average Fracture Distance: 0.63 mm 

 

ID: CEIXXI_CRN_165_M 

 

Physical Reconstruction Observations:  Fits well. Missing bone in the right Temporal bone. 

Digital Reconstruction Observations: Is in accordance with the real individual. 

Classification: 5 

Average Fracture Distance: 3.41 mm 

 

 

 



 

51 

Table 5 – Results of visual classification done by the antropologists and average fracture distance 
of the reconstruction done using CraMs. 

 

The evaluation of the reconstructions by the anthropologists is very positive as can be seen in Figure 

22. Two thirds of the reconstructions were assessed by the experts as perfect, a “5”, and produced 

similar results to the physical reconstruction. Two individuals, number 146 and 141, were evaluated 

with “4” and “3” respectively.  These reconstructions are mostly correct and only require a slight 

shift in position and orientation.  

ID Classification Average Fracture Distance(mm) 

CEIXXI_CRN_025_F 5 1.09 

CEIXXI_CRN_030_M 5 2.12 

CEIXXI_CRN_074_M 1 15.36 

CEIXXI_CRN_083_M 5 0.95 

CEIXXI_CRN_107_F 5 0.75 

CEIXXI_CRN_114_F 5 0.63 

CEIXXI_CRN_141_M 3 1.53 

CEIXXI_CRN_146_F 4 0.63 

CEIXXI_CRN_165_M 5 3.41 
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Figure 22 – Representation of the distribution of reconstructions by classification given by the 
anthropologists. 

 

One individual, number 74, was completely misaligned by the experts (evaluated with a one). This 

is cause by the limitations in the methods used to calculate the fracture region. Since the calculation 

of the search points described in section 5.4 follows the abstraction of a rectangle projected to a 

plane between the fragments points in the fractures perpendicular to this plane are not correctly 

detected as show in Figure 23. The ICP alignment is then applied to fracture regions that are 

potentially very different thus causing the misalignment.    

 

Figure 23 - Problems detecting the fracture region in calvarium areas perpendicular to the probe 
planes on individual 74. 
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The average fracture distance is the distance calculated between the fracture regions.  This is done 

by averaging the distance obtained by iterating through every point in one of the fragment’s model  

and  closest point in the oposing fragment using K-D trees. This value can be correlated with the 

sucess of the reconstruction to only some degree, clearing diferienciating very poor 

reconstructions, those evaluated with “1”, but not providing a large enough distinction for 

classifications between “3” and “5”, as can be seen in Figure 24.  

 

Figure 24 - Average Fracture Distance of the individual of each classification value. 

 

The anthropologists also mentioned in their observation that most of the models were deformed 

post-mortem causing an imperfect fit. This could be reversed on the adquired 3D models in order 

to obtain an even better reconstruction, howerver this is a very complex process and thus beyond 

the scope of this project. 
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 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The CraMs application’s goal is to provide a better alternative to the traditional methods used by 

the anthropologists. CraMs improvements upon these methods by reducing measurement errors, 

allowing for analysis to be done remotely without physically manipulating the skull reducing the 

risk of damage, improving overall speed of the anthropologist’s workflow and providing types of 

analysis that could be done otherwise. 

The fragment reconstruction method even though it went through significant evolutions during 

development was hampered by not being able to use more traditional solutions found in literature 

still produced great results. The initial rough alignment created could not be fully automated but 

the three different solutions (using pairs of points with just the fragments, with a template or direct 

manipulation of the fragments) provide good alignments with little work while being optimized for 

different types of situations. The fracture matching method was the main advancement. It provided 

an innovative solution that calculated transformation matrix while remaining very fast which would 

allow room for the process to be enhanced in and tackling new types of fragments in the future. 

The solution works perfectly with large fragments and was not tested with smaller ones because 

none were available. Theoretically there should be no problem with other because the underlying 

fundamentals are still the same: fracture has a mostly constant curvature is distributed on the 

outside edges of each fragment.  
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The Ancestry Estimation process started very much as an improvement on speed/convince. The 

anthropologists desired a way for to quickly and accurately estimate the ancestry of the individual 

being analyzed. The solution implemented showed very positive results like the one provided by 

3D-ID, the application whose features were desired by the experts. Additionality with the dataset 

used in process being an ever-growing resource with each use of the application the effectiveness 

of this solution will only increase. The contributions made here can also be repurposed in different 

area of morphologic analysis using the centralized database as a source. 

 

7.2 Future Work 

CraMs, as every other application can always be improved upon. Some of the relevant 

improvements we devised are:  

 Replace the ICP based solution for the initial skull alignment with a method using keypoint 

and descriptor scheme, like the one described in section 5.1.1. This method is superior in 

performance and much more robust and since were dealing with complete models that are 

“thin-shelled”, isn’t subject to the same problems as those faced in the fragment 

reconstruction. 

 Create new system to estimate the position of every point by taking advantage of the 

craniometric database. With the large set of point data points can be estimated roughly 

based on the average position on an aligned skull. The anthropologists would then only 

need to correct the position of these points, massively speeding up the point marking 

process which is the time-consuming part of the process. 

 The acquisition of skulls fragments can vary from difficult to outright impossible depending 

on their size. A solution to create 3D models using MRI scans as an acquisition method 

would be a step in the right direction to reconstruct skulls with more numerous fragments 

and would allow more skulls to be added, enrichening the data set. 

 The reconstruction process was somewhat hindered by having the rough pre-alignment 

needing a lot of user input. This could be improved by calculating color or pattern 

similarities between fragments textures to deduce the preliminary alignment.  
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 Streamlining the CraMs code base by simplifying the messy code that is added in every 

iteration and removing redundancies that make it very hard to read for someone getting 

started with this project. Additionally, documentation should be created in conjunction 

with a style guide for future work.  

 Calculate craniometric measurements by manipulating the Phantom Omni tool on a 

physical skull to analyze it with the need to 3D Scanner acquisition. 
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ANNEX A – CRAMS USER MANUAL 

This annex serves as a manual for the usage CraMs with incidence on the features created during 

dissertation. The manual for other CraMs tools can be view in the previous dissertations (Andrade, 

2016; Neves, 2014; Santos, 2013). 

Ancestry Menu  

This menu, shown in Figure 1 contains the Ancestry Estimation tools and database management. 

 
Figure 1 – Ancestry Menu. 

 The previous Ancestry Estimation process created by (Andrade, 2016) was moved here 
from the Structures menu and renamed Hefner. 

 “Statistical” contains the Ancestry Estimation process developed in this dissertation. 

 “Import Data” allows the addition of new data to the Craniometric Point Database from 
a .csv file. 

 “Clear Database” deletes all the data in the Point Database. 
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Statistical Ancestry Estimation 

1. Load a model. 

2. Align the model using any of the tools available. 

3. Mark the craniometric points on the model. 

4. Select Statistical from the Ancestry menu. 

5. The resulting classification and auxiliary metrics are displayed in a window as shown in 
Figure 2. 

 
Figure 2 – Statistical Ancestry Estiamtion results. 

 

Load Multiple Fragments 

To accommodate the Fragment Reconstruction, process an option to load multiple model with the 

title “Load Fragments” as shown in Figure 3.  

 
Figure 3 – Load Fragments option in the File Menu. 
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Fragments Menu 

The fragment menu, seen in Figure 4 and Figure 5, holds the methods to perform a reconstruction. 

It contains too sub-menus for each of the two phases outlined in Chapter 5: “Pre-Alignment” and 

“Refinement”.   

 
Figure 4 – Pre-Alignment sub-menu. 

The “Pre-Alignment” sub-menu contains three options: 

 “Template Alignment” which contains the alignment through point pairs with the 

fragments and a template. 

 “Pair Alignment” which contains the alignment through point pairs with the pairs of 

fragments. 

 “Manipulation” which contains the manual alignment done by moving the fragments 

directly.  

 
Figure 5 – Pre-Alignment sub-menu. 

 
 

The “Refinement” sub-menu contains two options: 

 “Automatic” which contains the fracture region based alignment refinement where this 

region is calculated automatically. 
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 “Manual” which the same alignment refinement process but the fracture region is obtained 

with human interaction. 

Fragment Reconstruction 

1. Load the Fragment Models into Crams 

2. Align the fragments using one of the option in the “Pre-Alignment” sub-menu. 

a. Template Alignment as seen in Figure 6:   

i. Select the template model file to load it. 

ii. Use the ‘P’ hotkey or press the “Pick Points” button. 

iii. Select equivalent points between the fragments and the template. 

iv. Click the “Validate” button to generate the alignment. 

 

 

Figure 6 – Template Pre-Alignment. 
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b. Par Alignment: 

i. Use the ‘P’ hotkey or press the “Pick Points” button. 

ii. Select equivalent points between the fragments. 

iii. Click the “Validate” button to generate the alignment. 

c. Manipulation 

i. Move the fragments to position by clicking and dragging with the middle 

mouse button and rotating it with left mouse button. 

ii. Click the “Validate” button to generate the alignment. 

3. Perform a higher precision alignment using one of the option in the “Refinement” sub-

menu. 

a. Automatic Refinement, as seen in Figure 7. 

i. Inspect the generated fracture region. 

ii. Click the “Validate” button to complete the reconstruction. 

 
Figure 7 – Automatic Fracture region. 
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b. Manual Refinement as seen in Figure 8 

i. Use the ‘P’ hotkey or press the “Pick Points” button. 

ii. Click on a point in the fracture region to be expanded.  

iii. When the fracture regions of the fragments are covered click the 

“Validate” button  or used the “v” keyboard shortcut to complete the 

reconstruction. 

 

 
Figure 8 – Manual Fracture region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

69 

 
 
 
 
 
 

ANNEX B – INSTALATION GUIDE 

In this annex, the installation process for the necessary dependencies required by CraMs project is 

described. 

The CraMs project was developed using Visual Studio 2015 and used the following libraries: 

 VTK 7.0.0 

 Qt 5.7.0 

 OpenCV 3.1.0 

 WildMagic 5.14 

 Boost 1.55.0 

 CMake 3.6.2 

However, any other versions of these libraries can be used by configuring the file paths during the 
CMake generation process. In the following section the installation process for windows will be 
described. Note that all the libraries must be built with the same mode to be used with CraMs, 
DEBUG or RELEASE and the code generation must set to “Multi-thread MT”. 

Windows Installation Process 

1. Install CMake minimum version 2.6. 

2. Install Qt minimum version 4.8. 

3. Create a system environment variable named “QTDIR” and set it to the QT installation 

folder. Edit the “Path” variable and add the path to the “bin”, “lib”,” include” folders inside 

the QT folder. 



 

70 

4. Extract OpenCV files and open both “build” and “sources” in CMake. 

5. Add “OPENCV_DIR” environment variable and set the value to the OpenCV “build” folder.  

Edit the “Path” variable and add the path to the “build” and the “bin” for your Visual Studio 

version and CPU architecture as seen in Figure 1.  

Figure 1 – Windows Enviroment Variables for OpenCV. 
 

6. On CMake Click configure, select your Visual Studio compiler and generate. 

7. Build the resulting OpenCV solution with Visual Studio. 

8. Extract VTK source files and create a build folder. 

9. Open both folders with CMake and configure it for your compiler. 

10. Make sure VTK_Group_Qt, VTK_Group_Rendering and VTK_Group_View are ticked and 

select your Qt and OpenGL versions as shown in Figure 2. 
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Figure 2 – VTK options in CMake. 

 

11. Select Advanced Setup and then enable the options Module_vtkGUISupportQtOpenGL and 

Module_vtkGUISupportQtWebKit as shown in Figure 3.  

 

 

Figure 3 – VTK GUI advanced options in CMake. 
 

 

12. Generate in CMake. 

13. In Visual Studio set all the library’s code generation to “Multi-thread MT” and build it. 

14. Add VTK “bin” sub folder to system “Path” variable. 

15. Extract WildMagic and build it with Visual Studio. 

16. Extract Boost and build it with Visual Studio. 

17. Create a CraMs project folder with a “build” and “source” sub-folder. 

18. Run CMake and set build and source folders for the project. 

19. Click configure and select your compiler. 

20. Set paths for the BOOST_DIR, WM5_CORE_LIB and WM5_MATH_LIB entries. 

21. Generate and build resulting solution. 

22. Add the sqlite3.dll to the Release/Debug folder. 
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All the required dependencies should now by linked in the Visual Studio project. The configuration 

must be set to the same setting as the dependencies (DEBUG/RELEASE). Additionally, the code 

Generation mode should be set to the same option used in the dependencies, “Multi-thread MT”.   
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ANNEX C – POINTS OF INTEREST 

The figures present in this annex were taken from (Pereira & Mello e Alvim, 1979). The following 

section described the feature points used, their abbreviation and how they are defined: 

1 Alveolon (alv): intersection point of the mid line of the palate with the perpendicular 

tangent to the posterior border of the alveolar arch; 

 

 
Figure 1 – Palatal Arch. 

 

2 Basion (ba): the point is situated on middle border of the anterior margin of the foramen 

magnum. This feature point is defined as the point with minimum Y coordinate in the Z axis 

(considering a threshold of ±0.01 mm in X and ±10 mm in Z coordinates); 

3 Bregma (b): intersection point between the sagittal suture and the coronal suture. The 

algorithm selects a starting point as the coordinate with greater Y value on the region of 

points of X and Z within a ±0.01 mm threshold. Then, it analyses neighbour points in order 

to find a discontinuity in the Y values, i.e., sudden smaller followed by higher Y values with 

the aim of finding the coronal suture. Once the suture region is found, the Bregma is 

selected as point in the region with smaller Y coordinate;  



 

74 

 
Figure 2 - Skull back view. 

 

4 Dakyon (d): point located at the apex of the angle formed by the frontolacrimal suture and 

lacrimomaxilar suture;  

5 Ektokonchion (ek): Point located on the outer edge of the orbit and the furthest possible of 

the maxillofrontale point; 

6 Ektomalare (ekm): Point situated in the palatal surface of the alveolar arch, in the middle 

portion of the second molar; 

7 Eurion (eu): Most lateral point of the neurocranium. Has no fixed location and varies from 

one individual to another and from one population to another;  

8 Frontotemporale (ft): most anterior point of the temporal line, located approximately at 

the root of the zygomatic apophysis of the frontal bone; 

9 Frontomolare-Temporale (fmt): point most posterior and lateral of the frontomalar suture, 

in the temporal region; 

10 Glabella (g): Point located just above the frontonasal suture, between the superciliary 

arches. Commonly is the most salient point of the front, in the sagittal plane. It may, 

however, constitute or form a depression, with the superciliary arch (a single continuous 

elevation); 
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Figure 3 - Skull bottom view. 

 

11 Lambda (l): Intersection point between the sagittal and lambdoid sutures; 

12 Mastoidale (ms): Lowest point of the mastoid process of the temporal; 

13 Nasion (n): Intersection point of the frontonasal suture and suture internasal. Corresponds 

to the root of the nose; 

14 Nasospinale (ns): Lowest point in the inferior edge of the piriform aperture at the base of 

the nasal spine, designed in the Sagittal Plane. This point is called by some authors Sub-

nasale or Nasale; 

15 Opisthion (o): Middle point of the posterior edge of the occipital hole; 

16 Opisthokranion (op): Point that is the furthest from the glabella in sagittal plane of the 

occipital. Sometimes coincides with the inion. There are cases where this occipital region is 

more or less flat; 
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Figure 4 - Skull side view. 

 

17 Porion (po): Point on the upper and outer border of the external auditory canal; 

18 Prosthion (pr): Most anterior point of the alveolar ridge between the central incisors. 

Corresponds to the lower end and anterior interalveolar septum in the sagittal plane; 

19 Vertex (v): Highest point of the skull located in the sagittal suture and in the Frankfurt plane; 

20 Zygion (zy): Most lateral point of the zygomatic arch, on each side. Given the aligned skull 

both Zygion are defined as the points with maximum and minimum X coordinates, 

respectively to the right and left points. Since the zygomatic arch might not be the largest 

zone of the skull, we only consider the portion of the skull with negative Y values; 

21 Zygomaxillare (zm): Lowest point of the maxilomalar suture. 
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Figure 5 - Skull front view. 

 

 
Figure 6 - Skull top view. 
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Figure 7 - Skull side cut view. 
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ANNEX D – CRANIOMETRIC MEASURES 

The iDryas team used 24 measures to classify the skulls. In this annex the these measures are listed, 

along with their definition and representative images taken from the master thesis of Catarina Coelho 

(Coelho, 2012), one of the team's specialists. 

1 ZYB (bizygomatic width): the distance between both Zygion points; 

 

 

 

2 BBH (Basion-Bregma height): distance between Basion and Bregma; 

 

 

 

3 XCB (maximum skull width): maximum width perpendicular to the 

sagittal plane; 

 

 

4 GOL (maximum skull length): distance (straight line) between 

Glabella and Opisthokranion; 

 

 

 

5 BNL (Nasion-Basion length): distance between Basion and Nasion;  
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6 FRC (frontal line): distance, in the sagittal plane, between the Nasion 

and Bregma;  

 

 

7 BPL (Basion-Prosthion length): the distance (strait line) between 

Basion and Prosthion;  

 

 

8 UFHT (superior facial height): distance between Nasion and 

Prosthion;  

 

 
9 MAB (maxillo-alveolar width): is the maximum width of the alveolar 

arch on the outer surface (the distance between both Ektomalare 

points);  

 

 

 

10 AUB (Biauricular width): the minimum exterior width measured in 

the root of the zygomatic processes;  

 

 

11 NLH (nasal height): distance between the Nasion and Nasospinale;  

 
 

 

 



 

81 

12 UFBR (superior facial width): distance between both Frontomolare-

Temporale points;  

 

 

 

13 PAC (parietal line): distance, in the sagittal plane, between Bregma 

and Lambda;  

 

 

 

14 FOL (length of the Foramen Magnum): distance between Basion and 

Opisthion;  

 

 

15 WFB (minimum facial width): distance between both 

Frontotemporale points;  

 

 

16 NLB (nasal width): maximum width of the nasal aperture;  

 

 
17 OBB (orbital width): distance between Dakyon and Ektokonchion;  
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18 EKB (bi-orbital width): distance between both Ektokonchion points;  

 

 

 

19 DKB (inter-orbital width): distance between both Dakyon points;  

 

 
20 OCC (occipital line): distance, in the sagittal plane, between Lambda 

and Opisthion;  

 

 

21 FOB (width of the Foramen Magnum): distance between the lateral 

margins of the Foramen Magnum, in the lateral point with biggest 

curvature;  

 
 

22 MAL (maxillo-alveolar length): distance between the Prosthion and 

Alveolon;  

 

 

23 MDH (height of the Mastoid process): distance, in projection, 

between the Frankfurt plane and the nadir point of the Mastoid 

process;  
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24 OBH (orbital height): distance between the border of the inferior and 

superior orbit.  

 

 

 

 

 


