
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

André Ribeiro Lopes Interfaces seguras para uma infraestrutura de
exploração de serviços pessoa-pessoa
Secure interfaces for a person-to-person service
exploitation Infrastructure

“Arguing that you don’t care
about the right to privacy be-
cause you have nothing to
hide is no different than say-
ing you don’t care about free
speech because you have noth-
ing to say. ”

— Edward Snowden

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

André Ribeiro Lopes Interfaces seguras para uma infraestrutura de
exploração de serviços pessoa-pessoa
Secure interfaces for a person-to-person service
exploitation Infrastructure

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

André Ribeiro Lopes Interfaces seguras para uma infraestrutura de
exploração de serviços pessoa-pessoa
Secure interfaces for a person-to-person service
exploitation Infrastructure

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requesitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação cient́ıfica de André
Ventura da Cruz Marnoto Zúquete, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e
de Fábio José Reis Lúıs Marques, Professor Adjunto da Escola Superior de
Tecnologia e Gestão de Águeda

o júri / the jury

presidente / president Professor Doutor João Paulo Silva Barraca
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Professor Doutor José Carlos Coelho Martins da Fonseca
Professor Adjunto do Instituto Politécnico da Guarda (Arguente)

Professor Doutor Fábio José Reis Lúıs Marques
Professor Adjunto da Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

Special thanks to everyone who supported me during these five years,
my family, friends and everyone that I met along the way who con-
tributed in some way to my evolution as a person and as a computer
engineer. My acquired interest for cybersecurity and privacy is thanks
to some people that crossed my way during my time as a student,
without them this dissertation would almost certainly not be a reality.

Resumo Com o surgimento de aplicações Web interativas a Web mudou para
sempre. Web sites passaram a ser mais que as páginas estáticas, sem
vida dos tempos da Web 1.0. Graças à linguagem Javascript estas
páginas tornaram-se aplicações interativas capazes de competir com
os seus equivalentes em desktop. Faz sentido, portanto, numa ar-
quitetura orientada a privacidade para partilha de serviços que estes
sejam aplicações Web, naturalmente usando Javascript. No entanto
esta linguagem apresenta alguns sérios riscos de segurança, e como
esta arquitetura proposta deverá tolerar a inclusão de aplicações Web
third-party, permitir o uso de Javascript sem restrições é impraticável.
Como remover todo o Javascript não é aceitável quando se pretende
construir aplicações Web modernas e interativas, deverá ser usado, de
alguma forma, Javascript controlado.

Muitas soluções desenvolvidas no passado tentam isolar Javascript
confiável e informação senśıvel numa página Web com Javascript não
confiável. A nossa abordagem é diferente no sentido em que não há
uma análise do código Javascript na aplicação Web em si, como outras
soluções fizeram. Em vez disso, é feita uma filtragem completa de todo
o Javascript usado nas nossas aplicações e usamos anotações especiais
em páginas Web para injetar o nosso próprio Javascript seguro. As-
sim, desenhámos e desenvolvemos um sistema capaz de efetuar parsing
de certas palavras-chave (ou anotações) que se traduzem em código
Javascript seguro, que permite o controlo completo de todo o código
Javascript a correr numa aplicação acoplada nesta arquitetura.

Para acessar o número ḿınimo de anotações necessárias de forma a
construir uma aplicação Web apelativa e reativa, desenvolvemos três
aplicações diferentes que as usam: uma galeria de fotos, um chat por
texto e um chat por voz.

Abstract With the dawn of interactive Web Applications the face of the Web
was changed forever. Web sites are no longer the lifeless, static pages
of the past, thanks to Javascript they became full-fledged interactive
applications, now competing with their desktop counterparts. Thus,
for a privacy-oriented architecture proposed for service sharing, it was
decided to design them as Web applications, naturally using Javascript.
However, this language presents some serious security issues, and since
the architecture should tolerate the inclusion of untrusted third-party
Web applications, allowing an unconstrained use of Javascript in those
applications is unacceptable. Since removing all Javascript is not an
option when it comes to build interactive, modern, Web applications,
we need somehow to use controlled Javascript.

Many solutions were developed in the past that try to isolate trusted
Javascript and sensitive information on a Web page with unstrusted
Javascript. Our approach is different because we do not analyse exist-
ing Javascript code deployed within Web Applications, as others did.
Instead, we completely filter out any Javascript used by our applica-
tions, and we use special annotations in Web pages to inject our own,
risk-free Javascript code. Thus, we designed and developed a system
able to parse certain keywords (or annotations) that translate into safe
Javascript code, which allows us to have a complete control over the
Javascript code running on an application plugged into this architec-
ture.

For asserting a minimum set of annotations necessary to build an ap-
pealing and reactive Web application, we developed three different
applications that use them: a photo sharing gallery, a text chat and a
voice chat.

Contents

Contents i

List of Figures iii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem . 2
1.3 Contribution . 3

2 Javascript-based attacks 5
2.1 Cross-Site Scripting (XSS) . 5
2.2 Cross-Site Request Forgery (CSRF) . 6
2.3 Drive-by downloads . 7
2.4 Other . 8

3 State of The Art 9
3.1 Blockstack . 9
3.2 Preventing Web based attacks . 10

3.2.1 Chrome Extensions . 10
3.2.2 Google Caja . 11
3.2.3 Facebook Javascript (FBJS) . 14
3.2.4 Yahoo!ADSafe . 14
3.2.5 BrowserShield . 15

3.3 Drive-by download attacks’ prevention . 17
3.3.1 CUJO . 17
3.3.2 Emulation-Based Mitigation Technique 17

3.4 Overall problems . 17

4 Architecture Description 19
4.1 Personal Services . 19
4.2 Proposed solution . 20

4.2.1 Parser . 21
4.2.2 Service . 22

i

4.2.3 Cradle . 23
4.3 Initial features available . 23

5 Implementation 25
5.1 Begone Javascript! . 25
5.2 Parser . 26
5.3 Dashboard . 26

5.3.1 Using the Dashboard . 28
5.3.2 Mobile user terminals . 28

5.4 Demos . 35
5.4.1 Photo Gallery . 35
5.4.2 Text Chat . 37
5.4.3 Voice Chat . 38

5.5 Discussion . 40
5.5.1 Preventing Common Attacks . 41
5.5.2 Shortcomings . 42

6 Conclusions 44
6.1 Future Work . 45

Bibliography 47

ii

List of Figures

2.1 driveby . 7

3.1 General architecture of a Chrome extension [1] containing its main compo-
nents: the content script that has direct access to the DOM, the core which
has restricted access to the DOM and the optional binaries that can interact
with the operating system. 11

3.2 The Caja System. 12

3.3 Caja . 13

3.4 BrowserShield injects its own API to the HTML+JS webpage received and
replaces vulnerable code with safe alternatives using calls to the Browser-
Shield API according to the supplied policies (from [2]). 15

3.5 Example of the translation THTML being used. bshield.js is injected on
the DOM and the alert() call is replaced with safe bshield.js equivalent
call (from [2]). 16

3.6 Example of the translation TScript being used (from [2]). 16

4.1 Proposed architecture and its components 20

4.2 Simple use case for the proposed Parser: ”onclick” event’s keyword ”refresh”
is replaced with an API call that performs a page refresh. API calls with
parameters are also supported. 21

5.1 Dashboard Overview . 27

5.2 Inputting a new user name ”antonio” for registration. 29

5.3 Inputting ”jose” as user name to pair up with this user. 30

5.4 Since ”jose” has not requested to pair up with current user ”antonio” a
notification is sent. 30

5.5 From the point of view of ”jose”, he has received a notification informing
that ”antonio” wants to pair up with him. 31

5.6 These notifications are also stored on a persistent menu. 31

5.7 Since ”jose” is interested in pairing up with ”antonio”, he pairs up with him
back, the green colored notification confirms the establishment of the pair. 32

5.8 The Dashboard interface is automatically updated showing the current pair. 33

iii

5.9 Choosing the ”Online Users” tab on the side menu brings up a table with
the users currently active. 33

5.10 (a) Dashboard Overview on mobile; (b) Pressing the menu icon brings up
the side menu; (c) All elements, including dropdown menus, are adapted to
mobile. 34

5.11 General architecture and use flow of a Photo Gallery P2PApp. All of the
interaction with the photo album P2PApp is done through the parser and
all of the communication outside of the home network is done through the
Cradle application. 35

5.12 Photo Gallery interface on a Chrome browser (left) and on an iphone 6 plus
(right). Clicking on a thumbnail will feature the selected photo in a bigger
resolution bellow. Uploading a photo from the user’s own device is also
possible, a new uploaded photo will show up as a new thumbnail. 36

5.13 General architecture and use flow of a Text Chat P2PApp. All of the in-
teraction with the chat application is done through the parser and all of
the communication outside of the home network is done through the Cradle
application. 37

5.14 Text Chat interface on a Chrome browser (left) and on an iphone 6 plus
(right). Writing a message on the input box below and pressing the enter
key will send it to the paired user. Periodically the application will fetch
new messages and display them. 38

5.15 General architecture and use flow of a Voice Chat P2PApp. All of the
interaction with the application is done through the parser and all of the
communication outside of the home network is done through the Cradle
application. 39

5.16 Voice Chat interface on a Chrome browser (left) and on an iphone 6 plus
(right). The red circle within the ”Record” button indicates that recording
is taking place, which can be activated by pressing the ”Record” button . 40

5.17 Malicious user ”Stranger” on the Chat service attempts to perform an XSS
attack using the command \><<script>alert(document.cookie);//<</script>.
However, the parser is able to detect the attempt and clean it not showing
the alert. 41

5.18 A malicious version of the Chat service is deployed, if the access is done
without the Parser, the code included in <script> tags is run. 42

iv

Chapter 1

Introduction

In the beginning of the Internet, Web pages were lifeless static pages meant to present
information, and not full-fledged applications like today. Information mainly flowed in only
one direction: from the server to the client. The Web mainly functioned through requests
from the browser on the client to the server, the server then returned an entire HTML
Web page. Any change to the current HTML page being shown on the browser window
would require a completely new Web page to be sent from the server with the updated
information.

In order to provide an interactive interface for Web applications and sites, active client-
side content started being supported back in 1995, together with Flash and Java applets.
However, Javascript is today the most widely used to this effect; Flash is not supported in
some systems (notably, Android) and Java applets are deprecated.

The introduction of Javascript as a technology of the World Wide Web (WWW), along-
side with HTML (HyperText Markup Language) and CSS (Cascading Style Sheets), pro-
vided Web pages with a much bigger degree of interaction, allowing the development of
sophisticated applications that made browsers quasi-Operating Systems. In fact, browsers
became increasingly complex pieces of software, and a typical computer user spends most
of its time using them.

The modern Web encourages users to use the browser and Web applications for almost
anything, from communication using text, voice and video and file storage to the use of
numerous Web applications, such as online office suits, which were previously used only as
traditional desktop applications. Web applications are increasingly serious competitors to
their desktop counterparts since they are extremely practical: there is no need to install
software on our hard-drive, software is always up-to-date and all of our work and personal
settings are stored online, being available on any device. This is very appealing and
practical on an age where the access to the internet is being increasingly done through
several personal mobile devices1.

1http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-
worldwide - accessed on 6/07/2017

1

1.1 Motivation

The research described in this paper was motivated by a new service sharing infrastruc-
ture. The goal of this infrastructure is to enable people to interact between each other, in
a private, person-to-person fashion, instead of using a central service for each kind of in-
teraction (e.g. Twitter for instant messaging, Skype for voice calls, etc.). The applications
ran by participants can be produced by anyone (thus, they are not trustworthy, nor they
came from trustworthy sources). Such applications, hereafter referred simply as P2PApps,
are fundamentally service-oriented, peer-to-peer Web applications, and each person (user)
interacts with their Web application (i.e. with the one they own) with browser.

In our trust model we do not want to trust on the P2PApps to behave correctly, thus
we need to prevent P2PApps from misbehaving, i.e. from stealing personal information
or destroying personal information accessible from where they run. In other words, we
need to provide a sandbox, i.e., a secure confinement solution, for preventing malicious
P2PApps from engaging in forbidden actions. But, for that, we do not want to trust on
security features deployed by browsers, because those are fallible. In fact, an estimated
18% of Chrome users, 34% of FireFox users, 42% of Edge users and 51% Safari users
still use an outdated version of their browser [3] which make them vulnerable to several
attacks that circumvent browser built-in security. In 2015, Symantec reported 876 of these
vulnerabilities on the most used browsers [4]. Finally, In the recent years browsers became
capable of supporting third-party plug-ins that extend the original browser’s features.
Those plug-ins are frequently the target of many security exploits, Symantec reported 679
vulnerabilities on third-party browser plug-ins, Adobe plugins being the biggest culprit
mostly because of Adobe Flash Player [4].

1.2 Problem

As previously referred, HTML, Javascript and CSS are nowadays the fundamental
building blocks for developing an appealing and effective Web application interface. Thus,
they are the natural choice for developing the Web interface of the P2PApps. Unfor-
tunately, Javascript introduces a number of security issues that need to be tackled. In
fact, Javascript is extremely powerful to manipulate the browser DOM (Document Object
Model), thus it is fundamental to have a reasonably good degree of trust in Web sites pro-
viding Javascript code. Javascript has some specific problems due to the way this language
is built, some of these issues can be avoided using defensive programming conventions [5]:

• All Javascript code is executed within the same global environment using the same
engine and, as such, it is not possible to isolate objects from each other.

• Any Javascript object is freely mutated by any other object with access to it. Even
though this language specifies the constraints Internal, ReadOnly, DontEnum, and
DontDelete in Javascript object’s properties, there is no way to express those con-
straints in the language.

2

Browsers’ built-in security mechanisms often protect users from the most nefarious
Javascript-based attacks. The same-origin policy is one of the main security mechanisms
designed to prevent malicious Web sites from reading confidential information from another
Web site. Same-origin policy restricts the access of a certain script or document to a Web
page or resource from a different origin [6]. If two pages have the same hostname, port
number and protocol, then they have the same origin [7]. This mechanism is the first line
of defense when it comes to preventing cookie stealing and similar attacks. However, since
much of the Web relies on shared resources between different Web sites, this policy may
be relaxed in some conditions.

Concluding, our problem is the following: how can we allow P2PApps to use Javascript
while, at the same time, preventing Javascript-based abuses independently of the mecha-
nisms deployed or not by a Web browser?

1.3 Contribution

This dissertation describes a solution that we adopted to deploy secure Web interfaces
for our P2PApps. Such security is independent from browsers’ protection features and
it relies on the total removal of all sources of problems in the Web contents delivered by
P2PApps to browsers. This means removing from those contents all the elements that could
trigger (i) unwanted access to the DOM and (ii) unwanted accesses to Internet locations
other than the correct P2PApp.

The solution that we adopted was to reject all the Javascript code provided by P2PApps,
as well as non-local references to resources (i.e., URI’s using hostnames). However, since
Javascript is critical for having reacting and appealing interfaces, we allow P2PApps to
request the usage of safe Javacript libraries, which are provided by the sandboxing envi-
ronment that encapsulates P2PApps. Those libraries are not directly invoked by Javascript
code of P2PApps (because it is totally removed); instead, they are indirectly called by an-
notating the HTML contents with special tags. Those tags are processed by a mediator
that stands between the browser and the P2PApp, which replaces them by the apropriate
call to the Javascript libraries. This mediator is also the architectural component that san-
itizes the interface contents provided by P2PApps, by removing from them all Javascript
and non-local URI’s.

For a proof of concept we developed 3 P2PApps for assessing their feasability: a photo
gallery, a message chat and a voice chat. For deploying those P2PApps we also build a
minimum runtime environment for them, allowing them to communicate with each other,
emulating a future environment interconnecting two people.

3

Chapter 2

Javascript-based attacks

With the increased dependency on Web Applications, the motivation for ill-intentioned
people to find and exploit weaknesses on those increases as well. Those attacks can often
be done with very simple tools, sometimes a Web browser is just the tool it is needed. On
top of that, the development of Web applications has increased greatly in the past few
years, which led to the increase of developers, and not all of them are aware to the Web
security-related issues that should be addressed from the start [8].

Javascript is a very flexible language that can be used to manipulate the DOM of a
Web site and pull sensitive information such as cookies, user location, browser history and
even track user’s behavior through mouse movements, mouse clicks, mouse scrolling and
clipboard content [9].

In the following sections we will briefly describe some attacks that can be performed
with the help of Javascript code running on the victims’ Web browser.

2.1 Cross-Site Scripting (XSS)

A Web site vulnerable to an XSS attack would put their users at risk of getting cookies
or other sensitive information stolen, and possibly used by an attacker to impersonate the
victim. The way this attack works is by tricking the victim to click a carefully crafted link
with malicious code, or a link to a Web site that contains the malicious code [10], taking
advantage of the confidence a user has in that site.

As an example, suppose that a Web site is vulnerable to cross-site scripting attacks.
The site can be accessed by the following address:

http :// regularwebsite.com/hello/name?=John

which would return a Web page with the HTML presented next:

5

<HTML>

<Title > Hello John</Title >

</HTML>

An attacker could supply the victim with the following link:

http :// regularwebsite.com/hello?name

=<script >alert(document.cookie)</script >

This would return:

<HTML>

<Title > Hello <script >alert(document.cookie)</script ></Title>

</HTML>

From an attacker’s perspective this is not very useful, since the alert window would pop-up
on the victim’s browser and the attacker would not acquire the information displayed on it.
A more interesting, and perhaps lucrative, alternative would be to send this information
to an attacker-owned Web site as follows:

http :// regularwebsite.com/hello/name?

=<script >window.open("http ://www.evilsite.com/collect.cgi?

cookie="document.cookie)</script >

The HTML which would be returned:

<HTML>

<Title > Hello <script >window.open("http :// www.evilsite.com/

collect.cgi?cookie="document.cookie)</script ></Title>

</HTML>

The code inside the <script> tag would run on the victim’s browser, prompting it to
access the attacker’s Web site sending the cookie stored for regularwebsite.com.

2.2 Cross-Site Request Forgery (CSRF)

This attack exploits a service to which the user is currently authenticated by performing
unrequested actions on behalf of the user. In a sense, this type of attack explores the trust
a Web site has in the user’s browser. Consider, for example, a banking Web site called
verysafebank.com, which uses this API for money transfers:

http :// verysafebank.com/transfer?to=x&ammount=y

A malicious programmer named John Doe could develop a service containing the following
piece of code:

document.write("<img

src=’http :// verysafebank.com/transfer?to=johndoe&ammount =100’/>");

6

A user loading the service currently logged on verysafebank.com would execute the code
above and make, unknowingly, a money transfer to John Doe.

2.3 Drive-by downloads

Despite security mechanisms employed by browsers, frequently these are the target of
attacks that aim to exploit specific security fragilities. Since, as explained on Chapter 1,
many users are negligent when it comes to updating their browsers, because of this, these
security weaknesses are kept on their browsers for far longer than expected.

Drive-by download attacks are downloads that occur without the knowledge or consent
of a user. In Figure 2.1 we can observe the lifecycle of a drive-by download. If a user
accesses a malicious Web site, a Javascript code snippet, exploiting the user’s browsers or
plug-ins, downloads malware which infects the user’s machine. Then, the infected machine
may be used to supply a botnet or other nefarious purposes, including installing a rootkit.

Figure 2.1: Life cycle of a drive-by download attack [11]

7

To perform this attack either one of two situations must happen: A malicious service
is written by an attacker or a legitimate one is compromised.

The attacker’s code usually targets specific operating systems, browsers or plug-ins,
looking for a known vulnerability that can be exploited. The exploitation of a known vul-
nerability usually leads to the injection of a payload on the victim’s system containing code
that will execute malicious activities. This can include stealing information or connecting
to the Internet and download malware from an attacker’s owned Web site [11].

2.4 Other

There are many other ways to develop a Web page using Javascript that can be seen
as less serious but will, at least, degrade the experience on the end-user. Javascript may
be used to develop difficult-to-avoid pop-up advertising. More seriously, using Javascript
it is possible to tamper with browser configurations [12] and write a malicious script that
hijacks the browser’s saved favorites and change them, possibly to a link crafted to perform
an XSS attack. Other types of attacks may include having flashing colors on the screen
that might be troublesome for users prone to seizures.

8

Chapter 3

State of The Art

With the inherent security problems of Javascript [12] many attempts were done in the
past to mitigate some of those problems. Particularly, this became a huge necessity with
the rise of paid advertisement services, as Javascript ads became a majority of online ad-
vertisement, with many of these ads being written by third-party, untrusted organizations
or developers.

Browser’s plug-ins or extensions also attempt to deal with this problem, once being
typically connected to a Web page DOM which may contain harmful Javascript code.

3.1 Blockstack

The decentralization of traditionally centralized networks or services is a great area of
interest with the increased awareness of the privacy issues related to centralized architec-
tures.

The work in this area aims to provide a safe, private environment to the development
and use of Web applications.

Blockstack is a concept for a new decentralized Internet that aims to remove the tra-
ditional problem of blind trust on centralized services [13]. Blockstack’s applications run
locally using a secure domain name system instead of running on a remote server, making
the user independent from third parties. The Blockstack is composed by three components:

1. Blockchain – Used to bind digital data to a public key, this way a new node on the
network can independently assert all data bindings.

2. Decentralized Storage - Stores data values which are signed using a owner key. The
user does not need to trust on the storage as they can verify its integrity indepen-
dently.

3. Peer Network – Uses zone files, similar to DNS, to store routing information. Data
storage is independent from discovering resources on the network, this way it is
possible to integrate various storage services, both cloud storage services and P2P.

9

This concept for a decentralized Internet pushes the logic and complexity away from
centralized servers to the end-user devices. Blockstack re-uses existing infrastructure to
store encrypted data. The main idea is for the storage providers, such as Dropbox, to not
have visibility into the user’s data.

This way, Blockstack implements a decentralized person-to-person infrastructure using
decentralized web applications with an interface written in HTML and Javascript.

3.2 Preventing Web based attacks

As discussed earlier, attacks to Web clients are a very common occurrence on the
Internet. These attacks often result in theft of information or malfunction of these Web
applications. Disruption on Web applications can often directly lead to the malfunction
of a business or public service. With this in mind, preventing these kinds of attacks
has increased relevance with the increased dependency of the society on the Web. Many
solutions were put forward in the past to mitigate or completely eliminate Javascript threats
or general Web-based attacks. Nevertheless, no silver bullet has yet been found, thus
research on this area is still active.

3.2.1 Chrome Extensions

Google Chrome allows the inclusion of third-party software to enhance and customize
the user experience in the form of extensions. Since Chrome is a browser with security as a
priority on its design [14] Google developed a new extension platform with security in mind.
A Chrome extension comprises multiple components, including content scripts, an exten-
sion core, and optional native binary. To mitigate and prevent extension vulnerabilities,
Chrome employs the following mechanisms:

• Privilege separation – Chrome extensions adhere to a privilege-separated architec-
ture. Extensions are made of two isolated components: content scripts and core
extensions [15]. The core extension is ran on a separate process from the browser
process, it contains most of the privileges, however it can only communicate with
content scripts and any interaction with a Web page is done via XMLHttpRequest.
This component does not have direct access to the host machine. A content script is
written in JavaScript, it has direct access to the DOM of a Web page, and, therefore,
may be exposed to malicious content. Because of this, the content script has the least
privileges so it cannot access any object out of its renderer process space. All commu-
nication with the core extension is done via Chrome’s interprocess communication
(IPC) [1]. This separation of components can clearly be seen on the architecture
diagram shown on Figure 3.1.

• Isolated worlds – While content scripts have access to the DOM of a Web page, the
page’s program heap is different from the content script’s program heap. This way,
a Web page cannot access variables or functions within the content script.

10

Figure 3.1: General architecture of a Chrome extension [1] containing its main components:
the content script that has direct access to the DOM, the core which has restricted access
to the DOM and the optional binaries that can interact with the operating system.

• Permissions – An extension is supplied with a list of permissions that restrict access
to the browser’s API and Web domains. In case a core extension is compromised,
the attacker only gets the privileges supplied to the extension beforehand.

Optionally, an extension can have binary code [14]. These executables have direct
access to the host machine, and, as such, are not protected by the security mechanisms
discussed earlier and, therefore, represent a potential danger. However, their usage is very
sparse and subject to previous manual review before being submitted to the Chrome Web
Store [15].

3.2.2 Google Caja

Caja (from the spanish word for box, also short for capabilities javascript), is a tool
to safely embed third-party HTML and Javascript code onto a trusted Web page. It is
a subset of Javascript designed to make as little impact as possible on regular Javascript
programming [5]. However, Caja programming differs from regular Javascript in a few
ways:

• Forbidden names : Caja does not allow names using double underscore, this is re-
served for internal use by Caja itself.

• Frozen Objects : A frozen object is immutable, its properties cannot be changed in
any way, an attempt to do so will result on an exception being thrown. Prototypes
and functions are frozen by default, this is the way to deal with Javascript’s common
attacks that involve rewriting functions at runtime.

11

• No shared global environment : Each module is isolated, preventing any abusive and
dangerous access of each other’s properties.

• Internal names : Property names ending on a single underscore are protected instance
variables that can only be used with this. Like in Java or C++, protected variables
are only accessible within the same chain of inheritance.

• No method stealing : Caja defines functions as simple, which do not need further safety
measures, constructors (named functions that mention this) or methods (anonymous
functions that mention this). Constructors or methods cannot be stored in variables
or passed down as arguments.

• eval and with removed : Caja comes bundled with a JSON library that allows the
most common uses of eval, avoiding all the possible risks of dangerous commands
being passed to eval.

When embedding third-party untrusted software, like a game, on a trusted Web page
using Caja, each game is embedded on a <div> and interaction between the game and
the trusted Web page is done using regular Javascript objects (see Figure 3.2). Caja also
supports the enforcement of certain policies, such as limiting how many notifications a
game sends.

Figure 3.2: The Caja System.1

On Caja the following vocabulary is frequently used:

• Host Page: The container for the third party untrusted content.

1http://developers.google.com/caja/docs/about/ - accessed on 29/01/2017

12

• Host code: Code running on the Host Page.

• Guest code: Third-Party untrusted code that is embedded on the Host Page.

• Guest Page: If the Guest Code is a Web page containing code then it is called Guest
Page.

• Policy: Developer decisions about what should or should not be allowed to be done
by the guest code.

• Defensive Object: An object in the host page that is constructed with caution to
provide only a limited authority to its clients. The host page grants limited authority
to guest code by supplying it with the appropriate defensive objects.

• Taming: Current JavaScript objects are not able to make themselves tamper-proof.
Taming is the process of registering defensive objects with Caja as provided them to
guest code. Caja ensures that only the published API of objects is available to guest
code and guest code cannot modify the object in ways not intended.

• Cajoling: The processing of making guest code safe to execute on the host page.
This is done by including inline checks that make sure that invariants supplied to
Caja are not broken and that the guest code does not refer to variables that it has
no permission to use.

In Figure 3.3 the main flow of the Caja system is presented. To use Caja, first a <div>

must be prepared to receive guest code(1). Caja must be included on the host page. The

Figure 3.3: Main flow of the Caja system 2

Caja script offers a connection to the Caja server, which can be the one that is publicly
available or a custom one deployed by the developer.

2http://developers.google.com/caja/docs/about/ - accessed on 29/01/2017

13

The host code asks Caja to tame the defensive objects, and uses Caja to construct a
DOM boundary within the <div> it as chosen (2).The host page then asks Caja to run
the guest code within the <div> supplied. To make this code safe to execute it has to be
cajoled (4) first, which is done via an HTTP GET to the Caja server defined previously
(3), this GET returns the transformed code, deemed safe to run (5). Caja then runs this
transformed safe code with the defensive objects defined earlier.

3.2.3 Facebook Javascript (FBJS)

The Facebook platform allows the development of third-party apps and games embed-
ded within the Facebook enviroment [16]. Since this is a social network Web site, some
sensitive information may be found on a personal page. It would be deeply problematic
if third-party code could get this information by having direct access to the DOM. It was
with this motivation in mind that Facebook Javascript (FBJS) was developed.

FBJS is a subset of the Javascript language. Facebook applications are written in
FBML, a subset of HTML. FBJS is served from Facebook, after filtering and rewriting. To
ensure that third-party code (or applications) has no direct access to the DOM, Facebook
libraries mediate access to it. This mediation is done via adding application-specific prefixes
to all top-level identifiers in the code, isolating the effective namespace of an application
from the namespace of the host page, in this case, a page that is part of a personal
Facebook profile. For example, the statement document.domain may be rewritten to
a12345_document.domain, where a12345 is the application’s specific prefix. Adding this
prefix will prevent guest code from directly access the main document content. To access
it, the guest application must use the provided Facebook libraries that mediate and control
the access and interaction to the main document [17].

3.2.4 Yahoo!ADSafe

Third-party advertising providers are now common on the Web. While on the past
advertising was just a static image loaded on a Web page, nowadays an ad ranges from
a simple image to mini-games embedded on a Web page. Due to the nature of the ad-
vertising, ads aim to be as appealing as possible to the public. This often means, in the
realm of electronic advertising, increasingly complex pieces of software. This high level of
interaction provided by this advertising paradigm is powered by the heavy use of languages
like Javascript.

Having content written in Javascript dynamically pulled from remote servers comes at
the cost of having serious security risks since, if not properly isolated, a malicious ad could
have access to the surrounding Web page, which could harbor sensitive information.

ADSafe is a subset of Javascript that allows the inclusion of advertising code directly
on the host page. Interaction between unstrusted code and the host page is very limited,
mediated through an ADSafe object, provided as a library that offers an API to safely
interact with the DOM of the host page. As an example, the following code [17]:

14

var location = document.location

would be rewritten by the developer as:

var location = ADSAFE.get(document ,"location")

3.2.5 BrowserShield

BrowserShield [2] is a javascript library that allows vulnerability-driven static and dy-
namic HTML inspection and cleansing, rewriting it to a safe equivalent using a set of poli-
cies, see the architecture diagram on 3.4. Being vulnerability-driven, BrowserShield trans-
forms pages according to known vulnerabilities. This system does not alter the browser
itself, so the logic injector could be used on a number of different contexts like client or edge
firewalls, browser extensions, or third-party content providers, such as advertising compa-
nies. To safely transform any input into a safe equivalent, two separate translations are
used along with policies enforced at run time in order to filtering any known vulnerabilities.

Figure 3.4: BrowserShield injects its own API to the HTML+JS webpage received and re-
places vulnerable code with safe alternatives using calls to the BrowserShield API according
to the supplied policies (from [2]).

In the first translation THTML tokenizes the HTML, modifying the page according
to the policies enforced and wraps the script elements (see Figure 3.5). In the second
translation Tscript is applied while the page is rendering, parses and rewrites Javascript to
access the HTML through a Interposition Layer that acts as a middleware, mediating all
access between javascript and the DOM tree (see Figure 3.6). It recursively calls THTML

to any dynamically generated HTML and Tscript to any dynamically generated javascript
code.

15

Figure 3.5: Example of the translation THTML being used. bshield.js is injected on the
DOM and the alert() call is replaced with safe bshield.js equivalent call (from [2]).

Figure 3.6: Example of the translation TScript being used (from [2]).

BrowserShield adheres to four principles for protecting systems:

• Complete interposition: All of the javascript code’s access to the HTML is mediated
through the deployed middleware.

• Tamper-proof : Web pages must not be able to modify or tamper with the Browser-
Shield framework in unintended ways.

• Transparency : Web page’s behavior should not change due to the BrowserShield’s
framework action, apart from a slight increase on resource usage. The exception
being policy enforcement, as if a known vulnerability is found on the Web page and
its behavior is changed due to its detection.

16

• Flexible policies : One of BrowserShield’s goals is to offer a flexible system that allows
its deployment on a number of cases. To facilitate that, there is a clear separation
between mechanisms and policies.

3.3 Drive-by download attacks’ prevention

3.3.1 CUJO

CUJO (Classification of Unknown Javascript Code) is a system for detection and pre-
vention of drive-by downloads. It is presented as a Web proxy that analyses incoming
Javascript code and asserts if the code is malicious; if it is, then CUJO can block the
access by the client software to the alleged dangerous Web page [18]. CUJO employs both
static and dynamic analysis. Static analysis obeys to the basic principles of a compiler
and the original code is decomposed into tokens and analysed. Dynamic analysis is done
using a modified version of ADSandbox and executed using the SPIDERMONKEY Javascript
interpreter.

3.3.2 Emulation-Based Mitigation Technique

Another possible solution would be applying emulation techniques similar to those
employed to detected shellcode in network streams [19]. Many drive-by download attacks
use Javascript to load shellcode into the memory [20], thus preventing this kind of attack
would require examining the data retrieved from a Web site and loaded into memory; if
shellcode is detected, then there is a good chance that a drive-by download attack is in
course.

3.4 Overall problems

The solutions presented that aim to provide a safe environment to run untrusted
Javascript are effective at isolating untrusted Javascript code from trusted code, but they
cannot prevent drive-by downloads or CSRF attacks by themselves. Any attack done via,
unknowingly, accessing a malicious link cannot be prevented by just using the presented so-
lutions. A vulnerability-driven approach would require developing a blacklist of untrusted
links or domains, which is impractical and near impossible to be effective, since all it would
be needed to go around this blockage was the deployment of a new, unlisted malicious Web
site.

The solutions to prevent drive-by download attacks are not 100% effective and cannot
ensure complete elimination of this threat [18].

The deployment of an intentionally harmful P2PApp is not the only concern when ideal-
izing our architecture for service sharing. A well-intentioned developer could, unknowingly
(i.e., by negligence), leave room on their application for a malicious user to exploit a vul-

17

nerability and perform, as an example, a XSS attack to other user in direct contact using
the same P2PApp.

18

Chapter 4

Architecture Description

In this chapter we describe the architecture of the proposed solution, as well as its
context and the used language.

4.1 Personal Services

The main scope of this dissertation is the definition and development of secure interfaces
for Person-to-Person services. A Person-to-Person service enables the direct communication
between two users, which are on different home networks, using a Web application that is
running on a browser and does not require centralized control.

The development and deployment of the network backbone, as well as the interface
with the supporting network and all of the backend, that is not directly involved with the
Web interface, is out of the scope of this dissertation. Despite this, three sample Web
applications using the proposed architecture were developed, as a proof of concept, to
demonstrate how the final product might behave and look like.

The services can be developed by a third-party, not related to any of the users, and
shared within this network. Sharing and using services not developed by known entities
is a core concept of this architecture. Since the origin and developer of these services can
be completely anonymous, this means that they are intrinsically untrusted and potentially
insecure.

Following the analysis of the existing solutions described in the previous chapter, a new
solution for safe Web applications should enforce tight control on the Internet connections.
In other words, arbitrary links must not work, since these are the main attack vector used
on attacks such as drive-by downloads. Although browsers offer a sandboxed environment
where Javascript runs, users, as discussed on Chapter 1, often use outdated browsers that
might contain known vulnerabilities that, when explored, may allow accesses outside of
the browser’s sandbox. Because of this, the browser’s sandbox cannot be trusted.

19

4.2 Proposed solution

Since Web applications development became so dependent on the inclusion of Javascript
in order to give a fresh look and feel and a high level of interaction, it is notoriously difficult
to remove this element without the resulting Web applications becoming outdated and
without interactivity. As can be observed in Figure 4.1, to mitigate this effect, instead of

Figure 4.1: Proposed architecture and its components

outright removing all Javascript, the adopted solution uses controlled Javascript. P2PApp
developers, instead of using their own arbitrary Javascript code or libraries, write a label or
instruction that corresponds to an API call to our own authorized Javascript library. When
a Web page is requested by the client, this request is forwarded to a parser that removes

20

these labels and inserts the corresponding API calls. This mechanism works similarly to
BrowserShield, described in the previous chapter.

This way, the service developer never directly writes any Javascript, but the resulting
applications still use it to provide interactivity and client-side logic.This solution follows the
principle of privilege separation. The architecture is broken down in multiple components,
each component has its own function, set of privileges and responsibilities, as illustrated
in Figure 4.1:

• Parser: The only component directly exposed to the user, responsible for receiving a
Web page from the P2PApp, parsing it, replacing the labels with secure Javascript
code and sending it to the user. Further details about this component will be given
on Section 4.2.1

• Service: The service contains the P2PApp itself, it generates the HTML pages that
contain the labels. The Service is technologically agnostic, the demos presented here
were written using Java Server Pages, however, any other equivalent technology is
valid. Further details on about this component will be given on Section 4.2.2

• Cradle: The only component in direct contact with external networks. All commu-
nication to the outside world goes through this component. Further details on about
this component will be given on Section 4.2.3

The components on this architecture can be deployed in different machines or can be
collocated at will. Mobile users only need to have access to the Parser to access the
P2PApps, therefore only this service needs to be accessible to its end user.

4.2.1 Parser

The parser is the element that is in direct contact with the user. Any request to the
service goes through it. This parser acts as a proxy Web server to the service backend,
it reads HTML with tags and replaces the tags with calls to the internal API written
in Javascript (see Figure 4.2). This way, the user’s browser never contacts directly with
the HTML provided by the P2PApp. Any arbitrary Javascript code is removed before

Figure 4.2: Simple use case for the proposed Parser: ”onclick” event’s keyword ”refresh”
is replaced with an API call that performs a page refresh. API calls with parameters are
also supported.

sending the sanitized P2PApp to the client, as well as any inclusion of external Javascript

21

files (.js) and function calls on event triggers. Only tags that correspond to internal API
calls are allowed. Parameters can be supplied to these tags, but since these parameters are
considered untrusted, they are properly parsed and escaped removing, all possible attempts
to inject code.

This parser is deployed on a Web server. To use it, a client sends an HTTP GET request
to the endpoint parser/access/port/url where URL is the relative path to the page or
file the client wishes to get parsed. The parser then downloads the HTML or file that this
URL returns, parses it, and sends the resulting Web page to the client. For instance, if
a service is deployed on the URL http://localhost:8080/service, the appropriate call
to the parser in order to clean the HTML describing the interface of this service would be
parser/access/8080/service.

While parsing an HTML file, if a href attribute is found, the link contained on this
attribute will be replaced with a call to the parser using the /access endpoint. This way,
any CSS file included in the service has to be parsed as well. The resulting webpage that
the parser delivers to the user will be always a page devoid of any external links, arbitrary
Javascript code or non-authorized libraries.

An alternative solution would be to include the parser within the Service. This would
have a performance advantage since, with the adopted solution, two HTTP requests are
done for each request on the client, which adds to overhead. However, making the parser
an internal element of the Service would compromise on the ability to have the Service a
technologically agnostic piece on the architecture.

The parser is also responsible for the injection of the trusted .js files, this includes our
API and respective auxiliary files.

4.2.2 Service

This element contains the P2PApp itself. The scope of this dissertation does not set
how this service is written, however, for a proof of concept the purposed demos are written
using Java Server Pages (JSP) and deployed using Apache Tomcat.

JSP allows the generation of dynamic HTML, similar to PHP or ASP, on the server side.
The services run locally on localhost using a port defined by the P2PApp programmer
and require enough storage to deal with multimedia content. The service is the element
that is developed independently and the main origin of security concerns, since all its code
is provided by a potentially unknown entity and, therefore, is inherently untrusted.

When a new P2PApp is received from the external network this is the element that is
swapped on the architecture.

One important idea when deploying the P2PApp has to be present: the code being
run has to be sandboxed. Using the Java programming language, this sandbox is easily
achievable by tweaking the Java Virtual Machine with security in mind.

22

4.2.3 Cradle

This is the only element in the whole system in direct contact with the Internet, outside
of the home network. Since this application receives and stores content coming from and
going to the external network, there has to be enough available persistent storage for this
content. This element of the architecture acts as a software router that receives content
from the network and routes content generated from a local P2PApp to a target user
running a copy of this same service.

All contacts from the local P2PApp and the remaining components of this architecture
with the Internet and any external network is mediated through this component.

This component has to be able to provide an API that allows searching avaliable
P2PApps, sharing them and downloading them.

4.3 Initial features available

To develop the API used on the P2PApps it was required to find out what functions
were mandatory to be present on that API. A minimal API has to be feature rich enough to
provide a dynamic environment for modern Web application development, however, with
the least amount of necessary features, code and third party libraries, in order to minimize
the risk of security hazards. Bellow, we list the main operations identified, included on the
API, that allow the implementation of basic P2PApps. These features are not static, they
are merely the absolute minimum required to implement very straight-forward, simple, web
applications. Writing the following labels on a HTML page within the service will inform
the parser to swap these same labels with ”real” javascript code calling functions on the
begone.js API:

• refresh: Performs a simple page refresh;

• redirect(URL): Redirects to page on a URL relative to the current page. If, for
instance, the current page is on http://localhost:8080, calling redirect(?id=2)

will redirect the browser to http://localhost:8080?id=2.

• uploadPhoto(): Uploads a photo from the file system and makes it available to
everyone using this P2PApp.

• periodicCall(url, time, function, function arguments): Every given time interval in
seconds performs a HTTP GET request to a supplied relative URL. Upon success on
this HTTP GET request, its result is passed as an argument to the callback function

argument. Optionally, if the callback function requires it, extra arguments can be
supplied, separated by a comma, which will be passed down as arguments on the
callback function;

• updateContent(msg, id): Updates a HTML element with a certain id, appending
text contained in the msg argument;

23

• triggerOnKey(key, function, functionarguments): When the supplied key is pressed,
the function given on the function argument is called with the arguments given on
the functionarguments parameter.

• recordAndSend(link) : This function toggles the recording mode and sends it to the
location provided on link. When associated with a button or key press, pressing this
button or key press starts sound recording using the installed microphone, pressing it
again stops the recording and sends the resulting WAV blob to the location on link.

• recordAndDownload(): This function has a similar behavior to the previous function,
however, instead of uploading the resulting WAV blob, the function downloads it as
a WAV file.

• setStorage(key, value): saves the data on value on the key in the key argument on
the browser’s localstorage.

• getStorage(key): returns the data corresponding to the key on the key argument on
localstorage.

24

Chapter 5

Implementation

In this chapter we describe the way the architecture is used to implement the demos
that illustrate the usage of the architecture to develop P2PApps. We also describe the
proposed internal API, its methods and the dashboard, the frontend component to the
parser.

5.1 Begone Javascript!

Begone.js is the Javascript file that contains the API calls for all Javascript code that
the services use. This file is injected in the Web page when it is being parsed.

The methods contained in this file were conceived with reutilization in mind. The code
in this API has to be flexible enough to allow the development of a vast array of different
interactive Web applications.

In addition to begone.js, three auxiliary javascript files are included to provide multi-
media recording and encoding support, JQuery and Bootstrap are also included. JQuery
provides our applications with the ability to perform AJAX requests, it also simplifies our
API when it comes to selecting HTML elements. Bootstrap is a widely used framework
for front-end development that eases the consistency between the desktop and mobile in-
terfaces. It also provides a modern look and feel to our applications. A P2PApp developer
will never use these libraries directly, they will only call internal API methods that use
these libraries mitigating eventual nefarious uses that these libraries may provide. One
apparent issue with these frameworks is the possibility of these not being secure due to
their nature of third party libraries. The complete elimination of this distrust would re-
quire the development of a spin-off library written after auditing and removing potential
threats. Alternatively, these third-party libraries could be downloaded using their official
repositories or Content Distribution Networks. On this last case, there would be a certain
degree of trust on code not directly controlled by us, what could constitute a security
hazard.

All of these files are injected in the Web page at the parser when a request is made.
This way, only these libraries are allowed when developing a service.

25

5.2 Parser

The parser was implemented as a Java application running on a Web server. Upon
receiving a request for a page on a P2PApp from a user’s browser it proxies the request
through itself to the Service component, where the P2PApp is running, also on a Web
server. As stated on the previous chapter, the endpoint to access the parser contains
the information required to establish a connection to the P2PApp, the relative link from
localhost where it is hosted and its respective port. Using different ports to different
P2PApps allows, easily, to deploy multiple P2PApps on the same home network using a
single Parser and Cradle.

P2PApp responses to HTTP requests are processed by the parser with JSoup to remove
potentially harmful code. All of the HTML is processed as a Document object, a data
type provided by JSoup, which allows us to treat an HTML page as Java Object. This
Document object contains Element objects which will correspond to HTML tags, from
these Elements we can extract, modify or remove attributes related to the HTML tag
these elements correspond to.

The parser will crawl this Document object containing all the Elements forming the
HTML page looking for <script> tags, which are removed, href and src attributes, which
are processed to just include references inside the localhost scope. Also, the parser has
access to a list (on a text file) containing all the available event handlers on HTML5, the
Parser looks for these event handlers on the Element objects, the attributes on these event
handlers must correspond to a tag that can be swapped for a begone.js call. To perform
this substitution, a dictionary contains a correspondence between tag and the respective
API call. If the attribute on an event handler is not recognized as a tag on the begone.js

API it is deemed untrusted and is removed.

The Parser will recursively parse the arguments on a tag, if that tag has arguments,
looking for another possible swap for another internal API call, since it is possible to have
nested begone.js calls.

If a <BegoneScript> tag is found, all of the text between the opening and closure of
that tag is swapped to internal begone.js calls, if the text inside cannot be recognized
as an authorized tag, it is removed. The <BegoneScript> has the exact same end as the
<script> tag in regular HTML, however,only internal API calls are allowed within.

After the document being parsed, cleaned of dangerous <script> tags, swapped tags
with internal API calls and the arguments of these internal API calls also parsed, the
authorized Javascript libraries are injected on the HTML page.

Finally, the resulting page is forwarded to the user’s browser, now devoid of dangerous
arbitrary javascript.

5.3 Dashboard

As a front-end to the whole architecture, a Web-based dashboard was implemented
(see Figure 5.1 for a general view). The main features on this dashboard include launching

26

services, providing a graphical interface to the Parser, registering new users, pairing them
and keeping track of their status (if they are online or offline). For demonstration purposes,
all the applications developed as use cases of this architecture work in pairs, only one-to-
one interactions are allowed. The dashboard is, in practice, part of the parser, and contains
methods to interact with it. Since the dashboard is the front-end to the parser, it is the
sole element in direct contact with the users.

Figure 5.1: Dashboard Overview

When opening the dashboard for the first time a user name must be registered, this
registration stores the chosen user name on local storage under the key ”username”.
This user name registration is also done on the cradle, where not only the user name is
stored, but also a timestamp with the time of the registration. The storage is done on
a HashMap that is then serialized and written on a file using MapDB. This timestamp is
updated when the user interacts with the system such as clicking on a button. A Java
program running on the same machine as the cradle periodically crawls this HashMap
where user names and timestamps are stored looking for a user name which timestamp is
older than a certain threshold. If, for instance, this threshold is set to 30 minutes, any user
name with a timestamp older than 30 minutes is deleted from the HashMap. The tracking

27

of active users is performed this way.
When a user wants to get paired with another registered user they types the user name

corresponding to the person he wants to get paired with. The person that was chosen is
notified of the pairing request, unless they was the one that started the pairing process.
When both users request a pairing to each other, the pairing is confirmed and registered
on the cradle and on local storage using the key ”pair”. After the registration of the
pair on local storage, the pair is made available within the service and it is possible to
use the API provided.

5.3.1 Using the Dashboard

The dashboard loads the latest user registration if possible. The parser status is visible
allowing the user to check which of the services are available.

Selecting the ”More Options” (see Figure 5.2) menu brings up the form that allows to
register a user. If a new registration is done as a different user name, the current identity
is swapped to the new name provided in the input box.

The ”More options” menu is also used to pair with other users (Figure 5.3).
If a user requests to be paired with another user that did not reciprocated the request,

at least at that time, the receiver of the request is notified of that request (see Figures 5.4
and 5.5).

These notifications not only show up momentarily in the interface, they are also stored
on a menu, much like on a modern social media Web site (see Figure 5.6).

If a pairing request is reciprocated by the target user, both are notified of their pairing,
and the dashboard is updated, showing the new pair’s user names (see Figure 5.7 and 5.8).

To check who is available to be paired up, we can navigate to the ”Online Users” tab,
seen on the side menu (see Figure 5.9).

5.3.2 Mobile user terminals

The dashboard is mobile-ready, adapting to mobile devices. The side-bar is by default
hidden; to show it, a user must press the menu icon, this way the interface isn’t cluttered
with the menu, making for a better experience on small screens (see Figures 5.10).

28

Figure 5.2: Inputting a new user name ”antonio” for registration.

29

Figure 5.3: Inputting ”jose” as user name to pair up with this user.

Figure 5.4: Since ”jose” has not requested to pair up with current user ”antonio” a notifi-
cation is sent.

30

Figure 5.5: From the point of view of ”jose”, he has received a notification informing that
”antonio” wants to pair up with him.

Figure 5.6: These notifications are also stored on a persistent menu.

31

Figure 5.7: Since ”jose” is interested in pairing up with ”antonio”, he pairs up with him
back, the green colored notification confirms the establishment of the pair.

32

Figure 5.8: The Dashboard interface is automatically updated showing the current pair.

Figure 5.9: Choosing the ”Online Users” tab on the side menu brings up a table with the
users currently active.

33

(a) (b) (c)

Figure 5.10: (a) Dashboard Overview on mobile; (b) Pressing the menu icon brings up the
side menu; (c) All elements, including dropdown menus, are adapted to mobile.

34

5.4 Demos

In this subsection we will detail our demos, namely their architecture, their GUI, the
API methods used and their general flow of use.

5.4.1 Photo Gallery

This first demo shows how the architecture can be used to develop a simple interac-
tive photo sharing service where users can upload their own photos as well as see photos
uploaded by other users. Current Web sites like flickr, imgur or devianart offer a
Web application capable of receiving uploaded photos from other users and show our own.
Figure 5.11 lays out the diagram of a possible architecture for a service of this kind.

Using a browser, a user can upload photos from his own machine using the provided
interface. The Parser will receive these photos and redirect them to the P2PApp itself.
The P2PApp has its own storage, where the image files are kept. The final destination of
the uploaded images is the Cradle, from there, they are forwarded to the external network,
ultimately, to another Cradle who will download them and, in practice, do the reverse
process. The cradle stores images temporarily until the user requests a page refresh, which
will, in turn, request new images from the Cradle.

Figure 5.11: General architecture and use flow of a Photo Gallery P2PApp. All of the
interaction with the photo album P2PApp is done through the parser and all of the com-
munication outside of the home network is done through the Cradle application.

The service backend is written using Java Server Pages. Each time the page is reloaded,
the service crawls its storage looking for new photos, anytime a new photo is found it is
shown on the Web interface as a thumbnail. Clicking on a thumbnail will show a full sized
version of the selected photo below.

It is also possible to upload our own photos, when selecting the browse button, the file
explorer is opened prompting the user to select a photo stored on their own machine, by
hitting upload the selected photo is sent to the cradle. The cradle then uses its interface
with the external network to send it to another user connected to this external network,
a copy of the uploaded photo is stored on the persistent storage of the service allowing

35

the viewing of this photo on the gallery. This service is very light on Javascript usage,
mainly using it to perform XMLHttpRequests, redirects and forced page refreshes. The
logic used to update the Web page’s DOM when a new photo is sent to the virtual album
is done using JSP. This approach has an immediate shortcoming: every time a new photo
is uploaded, for it to be visible on the interface a page refresh is required.

To implement this service, the following API endpoints were used:

• refresh

• redirect

• uploadPhoto

In Figure 5.12 we can observe the proposed interface for a photo gallery P2PApp on a
desktop computer and on a mobile device.

Figure 5.12: Photo Gallery interface on a Chrome browser (left) and on an iphone 6 plus
(right). Clicking on a thumbnail will feature the selected photo in a bigger resolution
bellow. Uploading a photo from the user’s own device is also possible, a new uploaded
photo will show up as a new thumbnail.

36

5.4.2 Text Chat

Going beyond simple Web applications, Javascript is heavily used to perform real-time
communication. The ability to text in real time using only a browser, without the need to
install a dedicated client application is one of the flagship features of the modern Web. Web
applications like What’s App or Facebook Messenger are widely used nowadays, instead
of dedicated chat clients such as MSN Messenger (now deprecated). Given this, it seemed
logical to make the development of a text chat a milestone to prove the feasibility and
flexibility of this architecture. In Figure 5.13 we can observe a possible architecture for a
P2PApp with this goal.

Figure 5.13: General architecture and use flow of a Text Chat P2PApp. All of the inter-
action with the chat application is done through the parser and all of the communication
outside of the home network is done through the Cradle application.

This demo is heavier on the use of Javascript, not relying on page refreshes to update
content.

To send a message, a user types it on an input box element in the interface; then,
hits the enter key to send it. This message is sent to the cradle, that transmits it to
the external network. As expected from a typical text messaging Web application, the
chat box containing all messages exchanged has to be updated. To do this, one begone.js
function allows the controlled addition of new information to an HTML element. This is
done when a user is sending a message or receiving new messages.

To receive new messages, a periodic XMLHttpRequest is done, polling the cradle for new
messages. If a new message is available, the HTML element containing the chat box with
the message history is updated. To achieve a better illusion of real time communication,
the polling interval is set to a low value, around one second.

In this demo, Javascript is used to perform the periodic HTTP Requests using jquery’s
AJAX, to trigger events on a key press and to update HTML elements. Since what is
displayed on the updated HTML element is user supplied, this API end-point, like all API
end-points that deal with user content, sanitize all input preventing XSS attacks.

Like on the previous demo, the parser redirects the inputs of the user to the Cradle,

37

The Cradle stores messages from the Internet and sends them to the interface when the
API function periodicCall is triggered.

To implement this service, the following API endpoints were used:

• periodicCall

• updateContent

• triggerOnKey

Figure 5.14 shows the proposed interface for this P2PApp on a desktop device and on
a mobile device.

Figure 5.14: Text Chat interface on a Chrome browser (left) and on an iphone 6 plus
(right). Writing a message on the input box below and pressing the enter key will send it
to the paired user. Periodically the application will fetch new messages and display them.

5.4.3 Voice Chat

The capture of audio and video on the Web has been, for years, dependent on browsers’
plug-ins or the use of Flash or Microsoft’s Silverlight. Javascript allows the access
to peripherals and the capture of multimedia. The increasing popularity of the video
and audio chat features on applications such as Discord or Facebook Messenger, implies
that this architecture must also provide room for more advanced and cutting edge Web
applications. This demo was developed for this purpose.

This voice chat application does not work like the audio chat on the Web applications
mentioned above, where real-time audio communication works a lot like a regular phone
with a persistent connection that enables both ends of the connection to always hear one
another. To keep the architecture straight-forward and simpler to implement, we adopted

38

a model more akin to how a handheld transceiver, more commonly known as a ”Walkie-
Talkie”, works. A button is pressed to start and stop recording, when the recording is
stopped the resulting audio is sent to the target user on the other end of the network.

This demo is meant to show how this architecture works when dealing with communi-
cation using multimedia, audio in this case, and access to peripherals. Figure 5.15 shows
the proposed architecture for this demo.

Figure 5.15: General architecture and use flow of a Voice Chat P2PApp. All of the interac-
tion with the application is done through the parser and all of the communication outside
of the home network is done through the Cradle application.

Upon finishing a recording, the resulting WAV blob is sent to the Parser and redirected
to the Cradle, from there, it is routed to its destination through the Internet. When a
WAV blob is received from the Internet, the Cradle stores it and, when requested, it is
made avaliable on the interface.

This demo relies heavily on the getUserMedia API, which regulates the access of
Javascript code to peripherals able to capture multimedia content, such as cameras and
microphones.

The access to the microphone and camera is only allowed on HTTPS and localhost
connections. Since this service is deployed on the localhost, this is not an issue.

To start a recording, the user presses the button ”record”, a red circle on the button
provides visual feedback that tells that is recording, when the user is done he must press
again the ”record” button. The resulting recording is encoded as a WAV blob and then
sent to the other user we are communicating with using an HTTP POST request to the
cradle, which forwards it to the other end of the network.

The <audio> HTML element is loaded with the most recent received recording. To
update this element with the most up-to-date recording a page refresh is required.

To implement this service, the following API endpoints were used:

• recordAndSend

• recordAndDownload

• refresh

39

• periodicCall

Figure 5.16 shows the proposed interface on a desktop and mobile device.

Figure 5.16: Voice Chat interface on a Chrome browser (left) and on an iphone 6 plus
(right). The red circle within the ”Record” button indicates that recording is taking place,
which can be activated by pressing the ”Record” button

5.5 Discussion

All of the demos are functional, work and perform as expected. They were deployed on
a test implementation of the proposed architecture. The implementation includes a single
Cradle that communicates with all peers on the network instead of the real world solution
that entails a Cradle for each home network. Only one-to-one communication is allowed,
users are paired and communicate with each other. All the elements of the architecture
are deployed on a single machine that provides a Web interface to users on the same home
network as this machine. Access to the P2PApps can be done through a desktop or a
mobile device.

40

5.5.1 Preventing Common Attacks

Accessing external links from the Internet is not possible through the developed service
interface. Any href link is only called through the parser. The parser accesses links using
a relative path from localhost. This way, any link that the parser accesses always begins
with localhost, and any link included on an HTML file is replaced with a parser call. This
makes it impossible to access resources outside of localhost scope. Since CSRF attacks
mostly rely on the ability of a Web page to access an external link, this type of attack is
also prevented.

All of the API functions are written in a way that any content is, by default, untrusted,
regardless of the user. With that in mind, any text coming from a user is escaped and
cleaned.

Typical attempts to bypass <script> tag filtering do not work such as:

"><s"%2b"cript >alert(document.cookie)</script >

"><ScRiPt >alert(document.cookie)</script >

"><<script >alert(document.cookie);//<</script >

Using JSoup on the parser to escape malicious text on the HTML pages, as well as
filtering <script> tabs, it is possible to deny any attempt to send carefully crafted text
containing malicious code, such as the attack seen on Figure 5.17. Using the parser to
clean arbitrary Javascript will avoid situations such as the one shown on Figure 5.18.
Despite an alert window, by itself, not being a critical security hazard, the ability to show
an undesired alert shows that potentially any Javascript code can be run, including code
capable of performing more serious attacks such as the ones described on Chapter 2.

Figure 5.17: Malicious user ”Stranger” on the Chat service attempts to perform an XSS
attack using the command \><<script>alert(document.cookie);//<</script>. How-
ever, the parser is able to detect the attempt and clean it not showing the alert.

On all of the demos developed, attempts to embed and run arbitrary javascript code on
the user side are prevented. Deploying a malicious version of these demos with malicious
Javascript code on the HTML describing the interface result in no damage on the user
side, with the parser successfully filtering <script> tags.

The text chat demo features the possibility of receiving and sending user originated
text. Since the author of this text is unknown it is inherently insecure and it is treated as
such: all text is escaped and cleaned.

41

Initially we identified two scenarios that could lead to security issues: a malicious
user misusing a service or a malicious developer deploying an intentional harmful applica-
tion. The results obtained imply that these scenarios are correctly prevented. Contents
from users or P2PApp developeres is untrusted and never directly presented on the user’s
browser.

Figure 5.18: A malicious version of the Chat service is deployed, if the access is done
without the Parser, the code included in <script> tags is run.

Since all images src attribute entries are cleaned on parsing, the classical approach to
inject code using this attribute does not work.

5.5.2 Shortcomings

The development of P2PApps to this architecture is inherently limited. Developeres
are not allowed to use any Javascript library they may want to, denying one of the most
attractive sides to the development with Javascript: the sheer amount of third party li-
braries available. Developing P2PApps for this architecture requires a higher degree of
effort on the developers’ part since they have to make the best out of the available func-
tions and can’t use any third-party libraries that may solve certain problems in a more
straight-forward way.

Along the development of the demos presented on this dissertation, some difficulties
were felt organizing the API with functions that were both useful and highly reusable.
There is a clear trade-off between usability, ease of development and security. Offering
more features and support to more Javascript powered technologies implies a higher volume
of code that need to be micromanaged in order to keep a completely secure, exploit-proof
API. Therefore, we predict that the adoption of this solution will produce simpler, less
feature-rich applications with very defined purposes.

Drive-by download based attacks are not directly prevented using this architecture.
The way these attacks are mitigated is by not allowing the download of arbitrary content
(WAV blobs generated using the microphone, for example, is allowed). Effective prevention
of this threat, while allowing the development of services that enable the upload of arbitrary
content (such as an hypothetical P2PApp that enables version control) would require the
analysis of the content being uploaded. In the case of executable files, it would imply the
analysis of its behavior or memory inspection. However, the solution here presented can
be integrated with a third-party anti-malware solution that would tackle the analysis of
binary files.

42

Although this architecture aims to demand as little trust as possible, such thing is
impossible since any developers using this architecture to deploy applications need to trust
the provided API and remaining elements on the architecture.

43

Chapter 6

Conclusions

On this dissertation we designed and implemented a system to develop secure Web
interfaces for a person-to-person service infrastructure. These interfaces are written using
HTML and Javascript and, as our research revealed, Javascript is a language with a great
potential for a variety of Web based attacks that were overcome with our approach.

Following the analysis of the existing solutions we reached the conclusion that none of
them, by themselves, at least, can solve the problem of having a completely secure Web
interface. Some of those solutions attempt to isolate untrusted Javascript from HTML
pages containing sensitive information, such as private information on a social media Web
sites. Those solutions, however, do not directly deal with the problem of the untrusted
Javascript itself making unsolicited remote requests that may lead to the exploitation of a
specific browser security issue and compromising the whole system. Although the same-
origin policy should prevent to a great degree remote access to Web sites and services owned
by malicious users, this policy is very frequently relaxed to ease the development of Web
applications that fetch content from all over the Internet. Furthermore, if a benign service
is compromised by an attacker, this can upload malicious payloads containing nefarious
code on the (previously) benign service’s machine, which would make the uploaded malware
to have the same origin has the now compromised service. In this case, the same-origin
policy is unable to prevent a user from getting infected by visiting this Web site.

Our solution contains a parser that proxies requests to an untrusted Web application,
effectively cleaning arbitrary Javascript code. The usage of Javascript is heavily regulated,
using only code contained on a provided internal API. This API is called using special tags
that are swapped with real Javascript code containing a call to the correspondent internal
API call.

This parser sits on an architecture that has the Web applications (P2PApps) running
locally, and all communication with the Internet is highly regulated through a Java program
that routes information between home networks. Communication using arbitrary links is
not allowed. Since the communication with the Internet is highly regulated, attacks that
entail accessing remote links are prevented.

Although not directly prevented, downloading arbitrary executable, binary files from
these P2PApps is not allowed thus preventing drive-by download attacks.

44

The defined internal API proved to be enough to develop simple, straight-forward useful
web applications using a combination of simple API calls and the usage of Java Server Pages
to generate dynamic HTML.

6.1 Future Work

As already mentioned, the provided API is very limited and to support more complex
Web applications it would be required to implement more features. Which means that the
base API is always subject to change, addition of new features, removal of obsolete ones
and edition of code that can be regarded as dangerous.

The parser itself can be developed to process more complex actions, making this parser
more than just swapping keywords with API calls, which, given enough complexity, can
become a full-fledged programming language. A possibility is the usage of a tool such
ANTLR to develop a grammar able to parse commands or the usage of an already existing
grammar, such as JSON. Any command written could be described as a JSON or as a set of
nested JSONs.

For testing purposes only one-to-one interactions were implemented. As is usual on the
Web, most text and multimedia chats allow many-to-many interactions. To do this, it is
required the definition of concepts such as rooms.

Since the scope of this dissertation was mostly the development of a secure interface
for person-to-person services, the implementation of the suggested architecture, with the
exception of the Parser, is not strictly defined. The services can be written and deployed
with any technology, as long as they return HTML interfaces. In all of the tests performed,
the architecture deployed is not the same as idealized: there is only one Cradle that
mediates all of the interaction between all of the registered users and paired users. Ideally,
this architecture would allow the interaction of multiple cradles among themselves. To
achieve this, it is required to develop an API for external network access.

45

46

Bibliography

[1] A. Barth, A. P. Felt, P. Saxena, A. Boodman, N. Baum, E. Kay, C. Jackson, M. Perry,
D. Song, and D. Wagner, “Protecting Browsers from Extension Vulnerabilities,”
in Proceedings of the 17th ACM Conference on Computer and Communications
Security. Chicago, Illinois, USA: ACM, 2009, pp. 73–84. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.html

[2] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir, “BrowserShield:
Vulnerability-Driven Filtering of Dynamic HTML,” in Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation, Seattle, Washington, 2006,
pp. 61–74.

[3] “The 2016 Duo Trusted Access Report - The Current State of Device Security,” 2016.

[4] W. Paul, N. Ben, C. Kavitha, W. Scott, and H. Kevin, “Internet Security Threat
Report 2016,” vol. 21, 2016.

[5] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, “Caja Safe active content
in sanitized JavaScript,” Tech. Rep., 2007.

[6] “Google Code Archive - Long-term storage for Google Code Project Hosting.”
accessed: 2017-03-30. [Online]. Available: https://code.google.com/archive/p/
browsersec/wikis/Part2.wiki#Same-origin policy

[7] J. Ruderman, “Same-origin policy - Web security — MDN,” accessed: 2017-
03-30. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin policy

[8] S. Nurja, M. Hymavathi, and S. A. Haq, “Evaluation of Web Security Mechanisms
using Vulnerability & Attack Injection,” International Journal of Scientific
Engineering and Technology Research, vol. 5, no. 34, pp. 7035–7038, 2016. [Online].
Available: http://ijsetr.com/uploads/143625IJSETR11835-1232.pdf

[9] N. Bielova, “Survey on JavaScript Security Policies and their Enforcement
Mechanisms in a Web Browser,” The Journal of Logic and Algebraic Programming,
vol. 82, no. 8, pp. 243–262, 2013. [Online]. Available: https://pdfs.semanticscholar.
org/700f/f67023a87d4a7ee0363559780209544cd448.pdf

47

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.html
https://code.google.com/archive/p/browsersec/wikis/Part2.wiki#Same-origin_policy
https://code.google.com/archive/p/browsersec/wikis/Part2.wiki#Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://ijsetr.com/uploads/143625IJSETR11835-1232.pdf
https://pdfs.semanticscholar.org/700f/f67023a87d4a7ee0363559780209544cd448.pdf
https://pdfs.semanticscholar.org/700f/f67023a87d4a7ee0363559780209544cd448.pdf

[10] A. Klein, “Cross Site Scripting Explained,” 2002. [Online]. Available: www.
SanctumInc.com

[11] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Anatomy of drive-by download
attack,” in Proceedings of the Eleventh Australasian Information Security Conference
- Volume 138. Adelaide, Australia: Australian Computer Society, Inc., 2013, pp.
49–58. [Online]. Available: http://dl.acm.org/citation.cfm?id=2525483.2525489

[12] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript Instrumentation for Browser
Security,” SIGPLAN Not., vol. 42, no. January 2007, pp. 237–249, 2007.

[13] M. Ali, R. Shea, J. Nelson, and M. J. Freedman, “Blockstack: A New Decentralized
Internet,” 2017. [Online]. Available: http://blockstack.org

[14] L. Liu and G. Yan, “Chrome Extensions: Threat Analysis and Countermeasures,” in
In Proceedings of the Network and Distributed System Security Symposium (NDSS),
2012.

[15] N. Carlini, A. P. Felt, and D. Wagner, “An Evaluation of the Google Chrome Extension
Security Architecture,” in Proceedings of the 21st USENIX Conference on Security
Symposium. Bellevue, WA: USENIX Association, 2012, pp. 7–7.

[16] A. Felt and D. Evans, “Privacy Protection for Social Networking APIs,”
2008 Web 2.0 Security and Privacy (W2SP’08), 2008. [Online]. Available:
http://www.cs.virginia.edu/felt/privacybyproxy.pdf

[17] S. Maffeis and A. Taly, “Language-Based Isolation of Untrusted JavaScript,” in 2009
22nd IEEE Computer Security Foundations Symposium. IEEE, 7 2009, pp. 77–91.
[Online]. Available: http://ieeexplore.ieee.org/document/5230484/

[18] K. Rieck, T. Krueger, and A. Dewald, “Cujo,” in Proceedings of the
26th Annual Computer Security Applications Conference on - ACSAC ’10.
New York, New York, USA: ACM Press, 2010, p. 31. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1920261.1920267

[19] M. Egele, E. Kirda, and C. Kruegel, “Mitigating Drive-By Download Attacks:
Challenges and Open Problems.” Springer, Berlin, Heidelberg, 2009, pp. 52–62.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-05437-2 5

[20] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending Browsers Against Drive-
by Downloads: Mitigating Heap-Spraying Code Injection Attacks,” in Proceedings
of the 6th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, ser. DIMVA ’09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 88–106. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02918-9 6

48

www.SanctumInc.com
www.SanctumInc.com
http://dl.acm.org/citation.cfm?id=2525483.2525489
http://blockstack.org
http://www.cs.virginia.edu/felt/privacybyproxy.pdf
http://ieeexplore.ieee.org/document/5230484/
http://portal.acm.org/citation.cfm?doid=1920261.1920267
http://link.springer.com/10.1007/978-3-642-05437-2_5
http://dx.doi.org/10.1007/978-3-642-02918-9_6

	Contents
	List of Figures
	Introduction
	Motivation
	Problem
	Contribution

	Javascript-based attacks
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)
	Drive-by downloads
	Other

	State of The Art
	Blockstack
	Preventing Web based attacks
	Chrome Extensions
	Google Caja
	Facebook Javascript (FBJS)
	Yahoo!ADSafe
	BrowserShield

	Drive-by download attacks' prevention
	CUJO
	Emulation-Based Mitigation Technique

	Overall problems

	Architecture Description
	Personal Services
	Proposed solution
	Parser
	Service
	Cradle

	Initial features available

	Implementation
	Begone Javascript!
	Parser
	Dashboard
	Using the Dashboard
	Mobile user terminals

	Demos
	Photo Gallery
	Text Chat
	Voice Chat

	Discussion
	Preventing Common Attacks
	Shortcomings

	Conclusions
	Future Work

	Bibliography

