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Abstract. Osteoarthritis is a degenerative joint disease characterized by cartilage degenera-

tion, which affects more people than any other joint disease. To overcome this problem, tissue 

engineering has been improving to restore tissue functionality developing new implantable 

cartilage. Bioreactors can provide an adequate nutrient transport to cells in the scaffold, a 

good mechanical stimuli and a hydrodynamic environment, which imposes a fluid flow to 

promote the cell proliferation. Finite element analysis of cartilage growth can be used to 

guide these tissue engineering experiments in order to produce cell scaffold constructs with 

specific biomechanical properties. In this work, a 3D finite element model was developed to 

simulate the diffusion and transport of nutrients and the cell growth kinetics in a porous scaf-

fold when it is subject to different mechanical stimuli. The mass transport was defined by con-

vection-diffusion equation, where the nutrient uptake was represented through the 

Michaelis-Menten kinetics and the fluid dynamics within the construct was modelled by 

Brinkman’s equation. Cell growth kinetics was modelled by the Contois equation, which in-

cludes the effect of glucose concentration and the cell density saturation. The objective of this 

study was to understand the effect of mechanical loading in nutrition and cell growth during 

culture. Different mechanical stimuli (5%, 10% and 15% of compressive strain with frequen-

cies of 0.5Hz, 1Hz and 2Hz) were performed during a period of 48 hours of cell culture. The 

spatial-temporal evolution of the local glucose, oxygen and lactate concentrations, the pH 

level and the cell density within the scaffold was analysed. The numerical simulations of so-

lutes concentrations and cell growth show a good agreement with experimental results. These 

results show that fluid shear stress promoted by fluid dynamics inside the scaffold is influ-

enced by compression and consequently the solute transport and the chondrocyte activity is 

affected for altered levels of stimulation. 
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1 INTRODUCTION 

In tissue engineering, development of cartilage depends on the exchange of a suitable 

amount of nutrients, including oxygen and glucose, to cells during the culture process [1-3]. 

The chondrocytes during the culture process produces a large amount of lactate and its pro-

duction rate is related to the glucose and oxygen metabolism [4]. The diffusion process and 

metabolism of cells develop concentration gradients of metabolites that affect the cell viabil-

ity [2, 5-7].  

The culture process under dynamic flow conditions has shown significant potential for the 

development of cartilage tissue [8]. In this culture process, cells are seeded into three-

dimensional scaffolds that are placed inside the bioreactor to provide nutrients and mechani-

cal stimuli. When compared with the control constructs kept in a loading-free culture, the dy-

namic stimulation culture not only improves the mass exchange between cells and medium, 

but also exposes cells to physical stimulations [9]. The effects of dynamic compression may 

be due to fluid flow, tissue and cell deformation or hydrostatic pressurization. Compression-

induced fluid flow increases the shear stress, the rate of transport of nutrients and the biomass 

production inside the scaffold [10]. 

 Applying dynamic compression loading at moderate levels as 2-15% strains [8,11,12], 

0.5-2.5 MPa stresses [13] and physiological frequencies between 0.001 to 1.0 Hz can stimu-

late the cell differentiation and the development of a functional tissue [9].  

Despite the loading parameters to maximize the development of tissues in culture, other 

factors should be taken into account in tissue engineering, such as the type of the scaffold, the 

nutrient medium, and cellular factors, such as initial cell seeding density [14]. 

In this study, the effects of dynamic compression on metabolites transport and cellular bio-

synthesis in a chondrocyte-seeded agarose scaffold were investigated. This numerical model 

includes the consumption of glucose and oxygen, the production of lactate by cells, and the 

pH and shear stress effects on the cellular differentiation. 

2 METHODOLY 

2.1 Nutrient transport formulation 

A mathematical formulation to describe the supply of metabolites to cells is presented. The 

time varying evolution of metabolites content in the three-dimensional scaffold is represented 

by diffusion-reaction and cell kinetics equations.  

This numerical modelling assumes the diffusion of nutrients from a culture medium 

boundary condition and a consumption by cells within the scaffold matrix. The constitutive 

equations for each domain are follow detailed. Equations are written in the generic form for 

each metabolite i  (oxygen, glucose and lactate). The concentration in time for each specie is 

governed by the Fick’s law of diffusion: 
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where iC  is the concentration of the solute i  in the fluid phase, iD the diffusion effective ten-

sor, iVmax the maximum uptake rate, i

mK the half-maximum rate concentration and cellρ  the cel-

lular density. 

Glucose and oxygen are consumed by cells, which synthesizes lactate into the scaffold. 

The content of lactate produced by chondrocytes is twice the number of moles of glucose con-

sumption and a third of the number of moles of oxygen consumption [4] given by the follow-

ing equation: 

 oxglulact qqq &&&
3

1
2 +−=  (3) 

 

The pH is linearly dependent on the concentration of lactate and its control can reduces the 

factor of two between the absorption of glucose and the lactate production. The pH less than 7 

becomes a more acidic medium, causing an adverse effect on cell viability. 

 

2.2 Cell balance 

The cell kinetics includes cell migration, growth and death, and it is modelled by the 

Monod growth equation [15]. In this paper, the glucose concentration is used as the only lim-

iting factor for cell growth, where a glucose concentration of 3.0×10-10 mol/mm3 is considered 

critical for chondrocyte viability [7].  

To incorporate the influence of the shear stress acting on the chondrocytes, a modulation 

function ( )τg  was assumed, as described by the following relation [16]:  
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where τ  is the normalized fluid shear stress.  

In this model, only the beneficial effect of shear stress on cell growth has been included. 

As the cell growth can influences the porosity due to increase of the solid volume fraction, the 

Mackie-Meares equation is used to include the porosity effect on the diffusion coefficients 

[15]. As consequence, the metabolites diffusion will be affected by the porosity of the scaf-

fold. The decrease of the scaffold permeability with an increase of solid volume fraction was 

modelled by the Carman-Kozeny equation [10,17] as: 

 ( )2

3

0
1 f

f

n

n
kk

−
=  (5) 

where fn is the fluid volume fraction and  0k  the initial permeability of the scaffold. 

3 FINITE ELEMENT IMPLEMENTATION 

The governing equations subject to initial boundary conditions were implemented using a 

computation tool (V-Biomech) [18] based on a finite element method (FEM) to solve the dis-

tribution of glucose, oxygen and lactate, and the cell differentiation in the scaffold in relation 
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to time. A quarter of a 3D disc with 10 mm diameter and 3 mm height was meshed with 512 

hexahedral finite elements. (Fig.1). 
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Figure 1: 3D mesh of the agarose disc submerged into a culture medium. Boundaries 1 and 2 are the surfaces in 

contact with the fluid. The cells are seeded into scaffold. 

The model was based on a scaffold disc of 4% w/w agarose (nf = 0.96 and k0=0.661 mm4 

N-1s-1) with a uniform cell seeding of 40 000 cells/mm3 and an initial oxygen, glucose and lac-

tate concentration of 2.05×10-10 mol/mm3, 5.10×10-9 mol/mm3 and 1.20×10-9 mol/mm3, re-

spectively. The initial pH value of the scaffold was set at 7.4 and the diffusivity coefficients 

for each species are presented in Table 1.  

The cell-seeded scaffold was considered to be submerged in a standard culturing environ-

ment of 5% CO2 and 37ºC, with a boundary oxygen, glucose and lactate concentration of 

2.05×10-10 mol/mm3, 2.50×10-8 mol/mm3 and 2.30×10-9 mol/mm3, respectively. At the inter-

face of the medium and the scaffold (boundaries 1 and 2), the concentrations are assumed to 

be continuous during the simulation and cells are not able to move out of the scaffold. Due to 

double symmetry about the centre line, only one quarter of the domain was computed. 

 

Parameters Value Units  Reference 
ox

mediumD  2.10×10-3 mm2/s [19] 

glu

mediumD  1.00×10-3 mm2/s [20] 

lact

mediumD  1.40×10-3 mm2/s [20] 

cellD  1.70×10-8 mm2/s [17] 

ox

mK  6.00×10-12 mol/mm3 [4] 

glu

mK  3.50×10-10 mol/mm3 [6] 

oxVmax  1.18×10-18 mol/(cell·s) [4] 

gluVmax  1.70×10-17 mol/(cell·s) [4] 

Table 1: Diffusion parameters values used in the simulations. 
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In this study, two simulations were performed: (i) free-swelling culture simulation and (ii) 

dynamic compressive loading simulation, with compressive strains of 5%, 10% and 15% for 

frequencies of 0.5 Hz, 1 Hz and 2 Hz. Both simulations were tested during a period of 48 

hours of cell culture. In the cyclic dynamic simulation, the displacement was applied on the 

top surface (boundary 1) of the construct during 2 hours and then a free-swelling was pre-

served during the next 22 hours. After this time, the stimulation was repeated during 2 hours 

and again, the free-swelling state was kept until reaches the 48 hours of the culture process. 

The average evolution within the scaffold of the local glucose, oxygen and lactate concentra-

tions and the influence of the shear stress on cell kinetics was studied. 

4 RESULTS AND DISCUSSION 

A free-swelling (static) experiment and a dynamic compression with different combina-

tions of strain (5%, 10% and 15%) and frequency (0.5 Hz, 1 Hz and 2 Hz) were simulated for 

a time culture of 48 hours and the evolution in time of the average glucose, oxygen and lactate 

concentrations and the cell density within the scaffold was analysed. 

4.1 Influence on nutrient transport 

The average oxygen concentration versus time curves at frequencies of 0.5 Hz, 1.0 Hz and 

2 Hz are illustrated in Figure 2a, b and c, respectively. For each case, three different compres-

sive strains, as 5%, 10% and 15% of the scaffold height were applied.  
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Figure 2: Average oxygen concentration for free-swelling conditions and for different dynamic compressive 

stimulations (5%, 10% and 15%) with frequencies of (a) 0.5 Hz, (b) 1 Hz and (c) 2 Hz. 

All the three plots show a decrease on the average oxygen concentration inside the scaffold 

during the culture time, associated with the consumption of the oxygen inside the scaffold by 

chondrocytes. These results follow the expected trend showed in [2,4,6]. As in all simulations 
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the medium is constantly updated, the oxygen diffuses into the scaffold and tends to reach a 

steady state. The minimum value of oxygen concentration was 1.32×10-10 mol/mm3. However, 

in cyclic compression stimulations the equilibrium of the oxygen concentration is reached 

faster (after 2 hours of incubation) than unloaded case, which can be associated with fluid ve-

locities. After 24 hours of culture time, the chondrocytes consume oxygen at a slower rate. 

The 15% compression stimulations show to influence the oxygen concentrations due to the 

oxygen replacement rate induced by compression is larger than consumption rate by cells and 

consequently, the oxygen diffuses faster into the scaffold. At frequencies of 0.5 Hz and 1 Hz 

(Figure 2a and b), the 15% compression stimulation showed to be slightly higher than the re-

sults for 2 Hz cyclic compression simulation. Low frequencies results in low velocities and 

consequently a higher fluid flow infiltration depth.  

 

Figure 3 shows the evolution of the total glucose content in the scaffold during the cultiva-

tion time of 48 hours. The average glucose concentration under the 0.5 Hz, 1.0 Hz and 2 Hz 

frequency is illustrated in Figure 3a, b and c, respectively.  
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Figure 3: Average glucose concentration for free-swelling conditions and for different dynamic compressive 

stimulations (5%, 10% and 15%) with frequencies of (a) 0.5 Hz, (b) 1 Hz and (c) 2 Hz. 

As the initial concentration inside the scaffold is lower than the medium, during the incu-

bation time the glucose diffuses into the scaffold. As consequence, a softly increase trend of 

the average glucose concentration is observed for the unloaded simulation (free-swelling). 

Contrary to what occurs in oxygen plots, after 2 hours of cultivation the amount of glucose 

into the scaffold is higher in the stimulated case than for load-free simulation. Here, the steady 

state of glucose concentration is reached faster due to the fluid velocities imposed by com-

pression. During the time, the glucose remained well above 1.0×10-8 mol/mm3 reaching a 

maximum value of 2.29×10-8 mol/mm3 at 26 hours. However, this value decreases slightly to 
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2.27×10-8 mol/mm3 at the end of the culture period due to the cell consumption. Even at high 

cell densities when the consumption is higher, glucose remains constant due medium update 

(e.g., at 48 hours). Despite 15% compression stimulation showed to improve the glucose dif-

fusion depth, the trend under different compressive stimulations remains identical. For this 

metabolite transport, frequency was not significant. 

 

Figure 4a, b and c shows the average lactate concentration produced inside the scaffold 

under the 0.5 Hz, 1.0 Hz and 2 Hz frequency, respectively. Lactate is produced by cells and 

then diffuses to the medium. Its content increases gradually during incubation time as com-

puted using Equation 3. The obtained results agree well with experimental data showed in 

some studies [2,4,6]. For the first two hours, the lactate content much higher in cyclic com-

pression simulations than free-swelling case. It is associated with the cell density and the glu-

cose inside the scaffold, which is higher for compressive stimulation. When incubation time 

reaches 24 hours, lactate secretion slows down. As glucose in the culture environment is 

mostly consumed and reaches an equilibrium state (Figure 3), the rate of lactate production 

gradually decrease on time. 
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Figure 4: Average lactate concentration for free-swelling conditions and for different dynamic compressive 

stimulations (5%, 10% and 15%) with frequencies of (a) 0.5 Hz, (b) 1 Hz and (c) 2 Hz. 

In cyclic compression simulations, when the compressive strain increases, the glucose con-

tent decreases. This phenomenon is associated with the increase of fluid velocities necessary 

to expel the lactate from the scaffold to the medium. The lactate removal is largest for 15% 

compression when the fluid velocity is higher.  
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4.2 Influence on cell proliferation 

Figure 5a, b and c shows the average cell density inside the scaffold under the 0.5 Hz, 1.0 

Hz and 2 Hz frequency, respectively. In all stimulation regimes of 5%, 10% and 15% com-

pression loading, there is a higher proliferation of cells [2,4,6] comparing with the cell density 

obtained by free-swelling simulation. Observing Figure 2, the high cell growth complies with 

the low oxygen concentration. 

When the scaffold is under compression, fluid culture medium is forced into the construct 

promoting the transport of nutrients to the cells but also generating a shear stress, which influ-

ence the cell kinetics. Compared to free-swelling culture outcome in Figure 4, more cells are 

resulted from dynamic loading cases, indicating the important roles of shear in promoting cell 

proliferation when nutrient supply is relatively constant. 

The comparison between the simulations under the three different cyclic compressions 

shows that the fluid shear effect on cell growth is more significant at higher strains. For lower 

frequencies (Figure 4a and b) the 15% compressive stimulation significantly enhanced the 

proliferation of cells. However, the maximum value of 47379 cell/mm3 was reached by 1 Hz 

frequency simulation. For a high frequency of 2 Hz (Figure 5c) the average cell density was 

almost the same for all stimulations.  
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Figure 5: Average cell density for free-swelling conditions and for different dynamic compressive stimulations 

(5%, 10% and 15%) with frequencies of (a) 0.5 Hz, (b) 1 Hz and (c) 2 Hz. 

Accompanying lactate accumulation in the scaffold, the culture environment becomes 

more acidic and the average pH decreases from 7.4. However, as the simulation time is too 

short (only 48 hours) a higher cell density was not achieved and the lactate production inside 

the scaffold was not sufficient to see the pH inhibition cell proliferation effects (when the pH 

is lower than 6.8). 
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5 CONCLUSIONS 

In summary, this work numerically analysed the effects of dynamic compression on nutri-

ent transport and cellular proliferation in a chondrocyte-seeded agarose scaffold. The results 

show that fluid shear stress promoted by fluid velocities inside the scaffold is influenced by 

compression and consequently the solute transport and the chondrocyte activity is affected for 

altered levels of stimulation. In this study, the simulation of 15% compressive strain with 1 

Hz compressive loading for 2 days seemed to be beneficial for chondrocytes proliferation. 

The present numerical model is a helpful tool to clarify experimental studies of cell viabil-

ity and transport of nutrients over the development of tissue-engineered constructs during bio-

reactor culture under nutrition and mechanical loading conditions. 
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