
A SHORT OVERVIEW OF HIDDEN LOGIC

ISABEL FERREIRIM AND MANUEL A. MARTINS

Abstract. In this paper we review a hidden (sorted) generalization of k-
deductive systems - hidden k-logics. They encompass deductive systems as

well as hidden equational logics and inequational logics. The special case of

hidden equational logics has been used to specify and to verify properties in
program development of behavioral systems within the dichotomy visible vs.

hidden data. We recall one of the main applications of this work - the study
of behavioral equivalence. Related results are obtained through combinatorial

properties of the Leibniz congruence relation.

In addition we obtain a few new developments concerning hidden equational
logic, namely we present a new characterization of the behavioral consequences

of a theory.

1. introduction

This paper is intended in part as a survey of results which have been developed
in a series of papers in a broader context - the hidden k-logics. These logics are
a generalization of k-deductive systems and their study originated in a series of
lectures on Abstract Algebraic Logic - Application to Computer Science, during
Don Pigozzi’s visit to CAUL, Lisbon, in 1999 ([45]).

When we refer to a deductive system we usually mean a 1-dimensional deductive
system such as the deductive system of the classical, the intuitionistic and modal
propositional calculi. The notion of deductive system, as an abstract consequence
operator, is due to Tarski (see [51]). In their groundbreaking work [7], Blok and
Pigozzi introduced and studied the notion of Leibniz congruence in the context of 1-
deductive systems. These systems have been studied for years by several logicians,
for example Blok and Pigozzi [8], Czelakowski [12] and [13], the Barcelona group
led by Font and Jansana [20], and also Hermann [30], Pigozzi [46] and Wójcicki
[55].

The higher dimensional systems, called k-deductive systems, constitute a natural
generalization including many logical systems, e.g., equational and inequational

Date: March 24, 2018.
Accepted authors’ manuscript published as: Ferreirim I., Martins M.A. (2018) A short overview

of Hidden Logic. In: Czelakowski J. (eds) Don Pigozzi on Abstract Algebraic Logic, Univer-

sal Algebra, and Computer Science. Outstanding Contributions to Logic, vol 16, pp. 167-201,

Springer, Cham [DOI:10.1007/978-3-319-74772-9 6]. The final publication is available at Springer
via https://link.springer.com/chapter/10.1007/978-3-319-74772-9_6.

Acknowledgments. This work was funded by ERDF - European Regional Development
Fund through the COMPETE Programme (operational programme for competitiveness) and by
National Funds through the FCT (Portuguese Foundation for Science and Technology) within

project UID/MAT/04106/2013 at CIDMA. The second author also acknowledges the financial
assistance by the EU FP7 Marie Curie PIRSES-GA-2012-318986 project GeTFun: Generalizing
Truth-Functionality.

1

https://link.springer.com/chapter/10.1007/978-3-319-74772-9_6

2 ISABEL FERREIRIM AND MANUEL A. MARTINS

logics. k-deductive systems were introduced by Blok and Pigozzi in [9]; other
important references are [15] and [43]. For these higher dimension deductive systems
Blok and Pigozzi developed a theory similar to the theory of 1-deductive systems.
The notion of Leibniz congruence still plays the central role in the study of k-
deductive systems. There is another generalization of k-deductive systems, called
K-deductive systems, that includes Gentzen systems. This theory was developed
by Pa lasińska and presented in her PhD thesis [43].

We also should call attention to the work by Voutsadakis on the study of de-
ductive systems within category theory. Voutsadakis has done extensive work on
categorical abstract algebraic logic of π-institutions ([52]).

Abstract algebraic logic (AAL) is an area of algebraic logic that focuses on the
study of the relationship between logical equivalence and logical truth. Moreover,
AAL is centered on the process of associating a class of algebras to a logical system.
This approach contrasts with the usual treatment given in algebraic logic where the
emphasis is on the study of the class of algebras obtained by this process. A logical
system, a deductive system as it has been called, is taken to be a pair formed by
a signature Σ and a substitution-invariant closure relation on the set of terms over
Σ in a countably infinite fixed set of variables X, TeΣ(X) (we will use the word
‘formula’ as a synonym for ‘term’). By a closure relation on TeΣ(X) we mean
a binary relation `, where ` ⊆ P(TeΣ(X)) × TeΣ(X), between subsets of terms
and individual terms satisfying the following conditions: (1) Γ ` γ for each γ ∈ Γ
and (2) Γ ` ϕ and ∆ ` γ for each γ ∈ Γ imply ∆ ` ϕ. The relation ` is said
to be substitution-invariant if Γ ` ϕ implies σ(Γ) ` σ(ϕ) for every substitution
σ : X → TeΣ(X). Moreover, ` is said to be finitary if Γ ` ϕ implies ∆ ` ϕ for
some finite subset ∆ of Γ.

The main paradigm in AAL is the representation of the classical propositional
calculus in the equational theory of Boolean algebras by means of the Lindenbaum-
Tarski process. In its traditional form, the Lindenbaum-Tarski process relies on the
fact that the classical propositional calculus has a biconditional “↔” that defines
logical equivalence. The set of all formulas is partitioned into logical equivalence
classes and then abstracted by the familiar algebraic process of forming the quotient
algebra. This algebra is called the Lindenbaum-Tarski algebra. There are many
deductive systems that do not have a biconditional, and hence the Lindenbaum-
Tarski process cannot be applied directly. However, there is an abstract notion
of logical equivalence in every deductive system called the Leibniz congruence. In
this way the Lindenbaum-Tarski process can be generalized so as to apply to many
deductive systems.

The Leibniz congruence Ω(T) on the term algebra over a theory T is characterized
in the following way: for any pair of terms α, β, α ≡ β (Ω(T)) if for every term
ϕ and any variable p occurring in ϕ, ϕ(p/α) ∈ T if and only if ϕ(p/β) ∈ T . The
Leibniz congruence is extended in a natural way to the power set of an arbitrary
algebra. Given a Σ-algebra A and a designated subset F of A, the pair 〈A, F 〉 is
called a matrix. The relation Ω(F) identifies any two elements which cannot be
distinguished by any property defined by a formula. More precisely, for any pair
of elements a, b of A, a ≡ b (Ω(F)) if for each formula ϕ(x, u0, · · · , uk−1), and all
parameters c̄ ∈ Ak, ϕA(a, c̄) ∈ F if and only if ϕA(b, c̄) ∈ F . Moreover, Ω(F) is
a congruence on A. A matrix 〈A, F 〉 is said to be reduced if Ω(F) is the identity
relation. The congruence Ω(F) is called the Leibniz congruence since it may be seen

A SHORT OVERVIEW OF HIDDEN LOGIC 3

as the sentential version of the second order definition of equality given by Leibniz.
He defined two objects to be equal if they have exactly the same properties. In the
model of a world given by the matrix 〈A, F 〉, a property is determined by a formula
ϕ(x, ū) and parameters c̄ ∈ Ak. Thus two elements are equal, in the Leibniz sense,
if the condition above holds.

Equational logic serves as the underlying logic in many formal approaches to
program specification. The algebraic data types specified in this formal way may be
viewed as abstract machines on which the programs are to be run. This is one way
of giving a precise algebraic semantics for programs, against which the correctness
of a program can be tested. Equational logic can be seen as a 2-deductive system
and then the tools and results of AAL can be applied to it.

However, object oriented (OO) programs present a special challenge for equa-
tional methods. This is due to properties inherent to the OO programs. A more
appropriate model for the abstract machine in the case of an OO program is, ar-
guably, a state transition system: as in the case of a state of such a system, a state
of an OO program can be viewed as encapsulating all pertinent information about
the abstract machine when it reaches the state during execution of the program.
As a way of meeting the aforementioned challenge the standard equality predicate
can be augmented by behavioral equivalence; in this way many of the characteristic
properties of state transition systems can be grafted onto equational logic.

Two terms are said to be behaviorally equivalent if and only if they cannot be
distinguished by any visible context. This is the primitive notion of behavioral
equivalence due to Reichel ([48]). The idea of looking at the satisfaction relation
of hidden terms as behavioral equivalence was also introduced by Reichel in the
80’s [48] and it seems to be the correct way of interpreting equality between hidden
terms. Since then, it has been adopted and generalized by many people. The most
significant contributions have been given by Goguen and Malcolm [25], Bidoit and
Hennicker [4] and their coworkers.

Generalizations of the notion of behavioral equivalence have been considered in
the literature. Goguen et al. consider Γ-behavioral equivalence, where Γ is a subset
of the set of all operation symbols in the signature (see, e.g., [26]). Γ-behavioral
equivalence is defined in a manner analogous to ordinary behavioral equivalence,
but making use only of the contexts built from the operation symbols in Γ. It can
be proved that the Γ-behavioral equivalence is the largest Γ-congruence with the
identity as the visible part. Thus, coinduction methods, based on this fact, may
still be formulated for this more general notion. Other interesting questions con-
cerning Γ-behavioral equivalence may arise, such as the study of the compatibility
of some operation symbols outside of Γ with respect to Γ-behavioral equivalence.
This problem has been studied by Diaconescu and Futatsugui [19] and Bidoit and
Hennicker [5].

On the other hand, Bidoit and Hennicker [4] generalize this notion by endowing
the hidden algebras with a binary relation that may be partial. As a particular
case we can apply their algebraic approach to the behavioral setting by considering
algebras endowed with the Γ-behavioral equivalence.

One important feature of behavioral equivalence in computer science is that it
is the largest congruence that is the identity on the visible part. This is, in some
way, similar to the property of the Leibniz congruence being the largest congruence
compatible with the filter. To apply AAL to the theory of the specification of

4 ISABEL FERREIRIM AND MANUEL A. MARTINS

abstract data types, we have to view specification logic as a deductive system (i.e.,
as a substitution-invariant closure relation on an appropriate set of formulas) and
behavioral equivalence as a generalized notion of Leibniz congruence. The class
of deductive systems has to be expanded so as to include multisorted as well as
one-sorted systems. The notion of Leibniz congruence has to be considered in
the context of the dichotomy of visible vs. hidden; namely, the formulas used
in the characterization of the Leibniz congruence also have to be restricted to an
appropriate proper subset of all formulas, namely the visible formulas, which are
called contexts. Therefore, the notion of k-deductive systems has to be generalized
by considering the data to be heterogeneous in the sense that the data elements may
be of different kinds. Specifically, there are the basic data, like integers, reals and
Boolean, whose properties are well-known and for which well-defined and easily
manipulated representations are available; and there are the auxiliary data such
as arrays, lists, stacks, whose properties are specified by their behavior under the
programs with visible output, and hence ultimately in terms of the basic data.
Thus, we use distinct representations for each kind of data elements.

This leads to the notion of hidden k-logics. They are a natural generalization
of k-deductive systems. They encompass deductive systems as well as equational
logics and inequational logics and their respective hidden versions. Hidden k-logics
are used to specify systems whose data may be heterogeneous, i.e., split in different
kinds, usually called sorts. Moreover, in hidden k-logics we are also able to distin-
guish internal data (hidden data) and the real data (visible data). This advantage
is central in the specification of OO systems.

Hidden k-logics, as a natural generalization of k-deductive systems, were intro-
duced by Martins and Pigozzi in [39]. Preliminary work on applications of AAL
to the specification of abstract data types had been discussed in Lisbon, CAUL, in
a series of lectures given by Don Pigozzi in 1999. The theory was then developed
in [35], where improvements concerning specification and verification of programs
were established using tools from abstract algebraic logic (AAL). A generalization
of the AAL theory to the hidden setting has been successfully explored and sev-
eral applications to the OO paradigm have been developed using AAL methods
(cf. [35, 36, 37, 38, 39]). This generalization is not straightforward. The multisort
aspect is present for example in the following: in the one-sorted case one can show
that a hidden k-logic is protoalgebraic (an important semantic property) if and only
if it admits a protoequivalence system without parameters; however, in the broader
context of multi-sorted logics, a generic protoequivalence system contains parame-
ters (cf. [37]). This new bridge between AAL and the specification and verification
theory of software systems has yet to be further developed. On the other hand, it
must be mentioned that behavioral specification theory has also influenced the de-
velopment of AAL, namely the recent theory of behavioral algebraization of logics
(cf. [11] and [53]).

For the purposes of this paper, it is useful to define a hidden k-logic as an
abstract closure relation on the set of k-formulas. That is, a hidden k-logic is a
pair L = 〈Σ,`L〉, where Σ is a hidden signature and `L is a substitution-invariant
closure relation on the set of visible k-formulas, called the consequence relation of
L. This consequence relation may be finitary or not. It is finitary just in case it
admits a presentation by axioms and inference rules, in the usual Hilbert style. In
this case, `L is said to be specifiable. An L-theory of a hidden k-logic L is a set of

A SHORT OVERVIEW OF HIDDEN LOGIC 5

visible k-formulas that are closed under the consequence relation `L. The set of all
L-theories is denoted by Th(L).

Hidden k-logics are useful mainly because they encompass not only the 2-di-
mensional hidden and standard equational logics, but also Boolean logics; these are
1-dimensional multisorted logics with Boolean as the only visible sort, and with
equality-test operations for some of the hidden sorts in place of equality predicates.
They also include all assertional logics, the purview of AAL. In this way we obtain
a unified theory for a variety of logical systems. We give special attention to a
special hidden 2-logic, the hidden equational logic. In the hidden equational case
we only consider a primitive notion of equality between visible data. It is defined as
a sorted equational logic, using reflexivity, symmetry, transitivity and congruence
rules, but only on the visible part. The expression “hidden equational logic” comes
from the fact that the equality predicate is restricted so as to apply only to visible
data elements. There is no primitive notion of equality for hidden data elements in
the logic.

There is an important assumption about the syntax of hidden k-logics, as we
define them, that arises from the fact that they are intended to serve as the un-
derlying logic in the specification of object oriented systems. The assumption is
that the specification can use only visible axioms since we only have access to the
internal behavior by programs with visible output, i.e., the equality between two
hidden data elements of the same sort is not specifiable by abstract equality axioms
as in the standard equational logic. This assumption follows the work of Leavens
and Pigozzi [32, 33]. The restriction to axioms of visible type is natural from the
perspective of operational semantics. That is, in operational terms, one views the
axioms as specifying the output of programs, which indirectly determine the be-
havior of the hidden data objects the programs manipulate. Hence, only the visible
part of the system is specified. This does not follow some approaches in the area
(see, e.g., [26] and [50]) but it does not restrict the power of specifications in prac-
tice. On the contrary, it endows the underlying theory with even richer modes of
specification. Indeed, we may also specify internal properties of the system after
checking that they do not produce unexpected behavioral changes on the system,
i.e., that by adding those properties to the specification we do not obtain a different
set of behavioral consequences. In the hidden equational case, we show that if a
conditional equation is behaviorally valid, then it may be added as a new axiom
without any undesired consequences ([39]).

The semantics of hidden k-logics reflects all the special features of these logics
that have been discussed. A k-data structure is a collection of data items of different
sorts, such as lists, Booleans, numbers, and operations involving them, together
with a set of k-tuples of elements, called a filter, that serves as a set of generalized
truth values (the term filter comes from the one-sorted case in AAL). Moreover, the
universe, which is a sorted algebra, is split into two disjoint sets, namely the hidden
part, which corresponds to the states of a state transition system, and the visible
part. There are also two different interpretations of the operation symbols: the
attributes return visible data and are used to observe the state of the system while
the methods may change the state. As in AAL, the main object is to understand
and clarify the relationship between logical truth and logical equivalence, which
for hidden k-logics correspond, respectively, to the visible properties of states, as
specified by the axioms of the logic, and their behavioral equivalence.

6 ISABEL FERREIRIM AND MANUEL A. MARTINS

Since the consequence relation ` is a closure relation on the set of visible k-
formulas, the filter consists exclusively of k-tuples of visible elements of the k-data
structure. The designated filter F of a k-data structure A = 〈A, F 〉 is considered
as the set of “truth values” in A. Thus, we say that A = 〈A, F 〉 is a model of a
hidden k-logic L if every consequence Γ ` ϕ of L is a semantic consequence of A,
in the sense that for every assignment h : X → A, h(ϕ) ∈ F whenever h(Γ) ⊆ F .
In this case, we say that F is an L-filter. The L-filters on the term algebra are
the theories of L and consequently 〈TeΣ(X), T 〉, with T a theory of L, is always a
model of L.

1.1. Related work. Many computer scientists have studied behavioral equivalence
for the last 20 years. Here we present some approaches which are important to
contextualize our work.

1.1.1. Hidden algebras. Hidden algebras were introduced by Goguen in [22] and
further developed in [25, 26, 50], in order to generalize many-sorted algebras and
give an algebraic semantics for the object oriented paradigm.

When they first appeared, hidden algebras were considered over restricted sig-
natures. These were assumed to have the visible part fixed, in the sense that all
sorted algebras over it have the same visible part. Usually, this visible part was a
standard algebra such as the natural numbers or the two-element Boolean algebra.
This is called fixed-data semantics. Another restriction which is sometimes assumed
in order to apply coalgebraic methods and results to the study of behavioral equiv-
alence is the requirement that the methods and the attributes must have exactly
one hidden argument. In this case it is called monadic semantics.

The behavioral aspects of modern software make hidden algebras more suitable
than standard algebras for abstract machine implementations. Consequently, there
has been an increasing development in this field. In the last fifteen years the theory
on hidden algebras has been further developed and applied to more general settings,
first by Goguen and Malcolm [25] and more recently by his former collaborators [27,
41]. Currently, almost all of the results may be established for polyadic loose-data
semantics. Polyadic loose-data semantics allows any kind of operation symbols.
Furthermore, in order to have more freedom to choose an adequate implementation,
the visible part of the algebras is no longer fixed: it may be any sorted algebra in
which the requirements (axioms) of the given specification are valid. Moreover,
some authors are interested in applying coalgebraic methods, and then they have
to restrict their signatures to the monadic fixed-data semantics. Malcolm [34] has
shown that behavioral equivalence may be formulated in the context of coalgebra
(see also [49]).

1.1.2. Behavioral equivalence and behavioral validity. Two terms are said to be
behaviorally equivalent if and only if they cannot be distinguished by any visible
context. This is the primitive notion of behavioral equivalence due to Reichel ([48]).

The idea of looking at the satisfaction relation of hidden terms as behavioral
equivalence was also introduced by Reichel in the 80’s [48] and it seems to be the
correct way of interpreting equality between hidden terms. Since then, it has been
adopted and generalized by many authors. The most significant contributions have
been given by Goguen, Bidoit, Bouhoula and their co-authors (e.g., [24, 4, 10]).

Generalizations of the notion of behavioral equivalence have also been consid-
ered in the literature. Goguen and Roşu [26] introduced and studied Γ-behavioral

A SHORT OVERVIEW OF HIDDEN LOGIC 7

equivalence, where Γ is a subset of the set of all operation symbols in the signature.
Γ-behavioral equivalence is defined analogously to ordinary behavioral equivalence,
but making use only of the contexts built from the operation symbols in Γ. It can
be proved that the Γ-behavioral equivalence is the largest Γ-congruence with the
identity as the visible part. Thus, coinduction methods, based on this fact, may
still be formulated for this more general notion. Other interesting questions con-
cerning Γ-behavioral equivalence may arise, such as the study of the compatibility
of some operation symbols outside of Γ with respect to Γ-behavioral equivalence.
This problem has been studied by Diaconescu and Futatsugi [19] and Bidoit and
Hennicker [5].

On the other hand, Bidoit et al. [6] generalize this notion by endowing the
hidden algebras with a binary relation. As a particular case we can apply their
algebraic approach to the behavioral setting by considering the algebras together
with the Γ-behavioral equivalence.

1.1.3. Hidden logics. Many behavioral logics have been defined and studied in the
literature. The most relevant versions are hidden logic [24, 25] and observational
logic [29, 4]. There is also another observational logic due to Padawitz ([42]), called
swinging types logic, but it is similar to the observational logic of Bidoit and his
coworkers (see http://ls5-www.cs.uni-dort mund.de/~peter/ Swinging.html

for more details).
Hidden logic is a variant of the equational logic in which some part of the spec-

ification is visible and another is hidden. The formulas are just equations and the
satisfaction relation is taken behaviorally.

Observational logic is different from hidden logic but both are based on behav-
ioral equivalence, which means indistinguishability under contexts. Observational
logic was introduced by Bidoit and Hennicker (see [4], [29] and [28]) to formalize be-
havioral validity (correctness). Tarski’s satisfaction relation of first-order formulas
(with equality) is considered as a “behavioral satisfaction relation” which is deter-
mined, in a natural way, by the family of congruence relations (possibly partial)
with which each algebra is endowed. This relation is called behavioral equality. The
behavioral satisfaction relation is just defined by considering the equality symbol
interpreted as the behavioral equality. First-order theories are generalized to the
so-called behavioral theories where the equality symbol is interpreted as the behav-
ioral equality. In [4] Bidoit and Hennicker develop a method for proving behavioral
theorems whenever an axiomatization of the behavioral equality is provided. This
is based on reducing behavioral satisfaction to ordinary satisfaction. Consequently
any proof system for first-order logic can be used to prove the behavioral validity,
with respect to a given behavioral equality, of first-order formulas.

1.1.4. Automatic methods for behavioral reasoning in hidden logics. As far as we
know, the languages that support automated behavioral reasoning are Spike [3],
CafeOBJ [18] and BOBJ [31].

In [10], Bouhoula and Rusinowitch set forth an automatic method for proving
behavioral validity of conditional equations in conditional specifications. They use
the fact that there are specifications for which a smaller set of contexts is enough to
know what the outputs of the remaining ones are. They call them critical contexts.
The work of Bouhoula and Rusinowitch was the genesis of the SPIKE language
which is based on context induction.

8 ISABEL FERREIRIM AND MANUEL A. MARTINS

The CafeOBJ language was developed by Diaconescu and Futatsugi [18]. It
implements behavioral rewriting to make behaviorally sound reductions of terms.
It is based on a behavioral version of the well known efficient method of rewriting
for automated theorem proving (see http://www.ldl.jaist.ac.jp/Research/

CafeOBJ/).
Goguen et al. have been developing algorithms for automating behavioral reason-

ing based on their techniques of coinduction and have been making use of cobases.
Coinduction in its pure form requires human intervention in the choice of the coba-
sis. A cobasis is just a set of operation symbols that generates a relation on the
set of terms which is a subset of the behavioral equivalence. A good choice of a
cobasis can simplify the proof enormously. Those algorithms have been improved
in order to be applied to more general situations and have been implemented in
the BOBJ language. In [31] Goguen et al. presented a new technique which com-
bines behavioral rewriting and coinduction. The most recent version is CCCRW,
called conditional circular coinductive rewriting with case analysis. The authors
claim that it is in fact the most powerful automated proof technique available at
present [23] (see also [27, 41]). Besides the fact that this new algorithm uses condi-
tional circular coinductive rewriting to prove behavioral validity, it also allows for
case analysis (see http://www-cse.ucsd.edu/groups/tatami/bobj). This theo-
retical result supports the automated behavioral prover Circ based on the circular-
ity principle (http://fsl.cs.illinois.edu/index.php/Circ), which generalizes
both circular coinduction and structural induction.

1.1.5. AAL approach to behavioral equivalence. As mentioned earlier, Pigozzi gave
a series of lectures on the application of AAL to Computer Science. These lec-
tures marked the starting point of Martins’ investigations on the algebraic theory
of hidden k-logics, which led to his PhD thesis [35]. In an introductory paper with
Pigozzi [39] the instantiation to hidden equational logic was studied in depth. Clo-
sure properties of the class of behavioral models (reduced models) are studied in
[37]. Refinement and institutions for behavioral logics in the context of our approach
were discussed in [36]. A natural generalization of the Nerode equivalence of finite
automata to k-data structures concerning this general notion of behavioral equiva-
lence of a k-data structure can be found in [38]. Recently, a deduction-detachment
theorem for hidden k-logics was presented in [1] and the behavioral equivalence
between hidden k-logics is investigated in [2] by Babenyshev and Martins.

Outline of the paper. This paper is organized in two main sections. In section
2 we give an overview of basic concepts and recent results pertaining to hidden
k-logic. The Leibniz congruence is one of the tools developed in this context. As
in standard AAL, it plays a crucial role in the theory. Section 3 is devoted to
behavioral equivalence. Theorem 3.3 shows the adequacy of this approach: the
behavioral equivalence is, in fact, the (generalized) Leibniz congruence. In Sections
3.1 and 3.2 we present new characterizations for an equation to be a behavioral
consequence of a theory of a HEL. In Section 3.2 we get a simpler characterization
for the case of strict equational HEL’s.

2. Hidden k-logic

A hidden (sorted) signature is a triple Σ =
〈
SORT,VIS, 〈OPτ | τ ∈ TYPE〉

〉
,

where: SORT is a nonempty, countable set whose elements are called sorts; VIS is a

A SHORT OVERVIEW OF HIDDEN LOGIC 9

subset of SORT, called the set of visible sorts; TYPE is a set of nonempty sequences
S0, . . . , Sn of sorts, called types and usually written as S0, . . . , Sn−1 → Sn; and, for
each τ ∈ TYPE, OPτ is a countable set; the elements of OPτ are called operation
symbols of type τ . Operation symbols of type → S are said to be constants. We
will denote 〈OPτ | τ ∈ TYPE〉 by OP.

The sorts in SORT \ VIS, that are not visible, are called hidden sorts. The set
of hidden sorts is denoted by HID. For simplicity, we require the sets of operation
symbols to be pairwise disjoint in order to avoid overloading of names (i.e., for any
distinct τ, τ ′ ∈ TYPE, OPτ ∩OPτ ′ = ∅).

From each hidden signature Σ we obtain the associated un-hidden signature Σuh

by making all sorts of Σ visible.
A Σ-algebra is a pair

〈
A, 〈OA | τ ∈ TYPE, O ∈ OPτ 〉

〉
, where A is a SORT-

sorted set, such that AS 6= ∅, for all S ∈ SORT, and for any τ ∈ TYPE and
O ∈ OPτ , OA is an operation on A of type τ (i.e., if τ = S0, . . . , Sn−1 → Sn then
OA : AS0

× · · · × ASn−1
→ ASn

). As usual, we use the same symbol to denote an
algebra and the carrier of the algebra.

We assume for carrier sets A of data structures that AS 6= ∅ for all S ∈ SORT,
a condition similar to one used to define regular universal algebras. With this
assumption we exclude some data structures of practical interest. However, the
mathematics is simpler in this case and most results of universal algebra hold in
their usual form.

A (sorted) congruence on a Σ-algebra A is a sorted binary relation Θ ⊆ A2

such that: (i) for each S ∈ SORT, ΘS is an equivalence relation on AS and (ii)
Θ satisfies the congruence condition: for every operation symbol O ∈ OPτ with
τ = S0, . . . , Sn−1 → Sn, and all a0, a

′
0 ∈ AS0 , . . . , an−1, a

′
n−1 ∈ ASn−1 such that

aiΘSia
′
i, O

A(a0, . . . , an−1)ΘSnO
A(a′0, . . . , a

′
n−1) holds. The set of all congruences

over A is denoted by Con(A).
The sorted notions of subalgebra, homomorphism, isomorphism, etc. are defined

in a natural way (see [40] for the formal definitions).
For each set of sorts SORT we fix a locally countably infinite sorted set X =

〈XS : S ∈ SORT〉 of (propositional sorted) variables. We assume the components
of the sorted set of variables are pairwise disjoint. The elements in XS are called
S-variables. To denote that a variable x is of sort S (i.e., that x ∈ XS) we write
x :S.

We say that a term O(t0, . . . , tn−1), where O ∈ OPτ with τ = S0, . . . , Sn−1 →
Sn, has type Sn. Given a signature Σ we define the SORT-sorted set TeΣ(X) of
terms over the signature Σ with variables in X as usual. Note that, since the
components of the family TeΣ(X) are pairwise disjoint, a SORT-sorted subset Γ of
TeΣ(X) can be identified with the unsorted set

⋃
S∈SORT ΓS . A hidden signature

Σ is said to be standard if there is a ground term (i.e., a term without variables)
of every sort. We use the lower case Greek letters ϕ,ψ, ϑ, . . . to represent terms,
possibly with annotations to indicate sorts of terms and variables. Specifically,
writing ϕ in the form

(1) ϕ(x0 :S0, . . . , xn−1 :Sn−1):S

indicates that ϕ is of sort S and that the variables that actually occur in ϕ are
included in the list x0, . . . , xn−1 of variables of sorts S0, . . . , Sn−1, respectively.

We define, in the usual way, operations over TeΣ(X) to obtain the term algebra
over the signature Σ. It is well known that TeΣ(X) has the universal mapping

10 ISABEL FERREIRIM AND MANUEL A. MARTINS

property over X in the sense that, for every Σ-algebra A and every sorted map
h : X → A, called an assignment, there is a unique sorted homomorphism h∗ :
TeΣ(X) → A that extends h. In the sequel, we will not distinguish between these
two maps. If ϕ is the term (1), and ai ∈ ASi

, i < n, we write ϕA(a0, . . . , an−1) for
the image h(ϕ) under any homomorphism h : TeΣ(X) → A such that h(xi) = ai
for all i < n. A map from X to the set of terms, and its unique extension to an
endomorphism of TeΣ(X), is called a substitution.

To provide a context that allows us to deal simultaneously with specification
logics that are assertional (for example the ones with a Boolean sort but no equal-
ity) and equational, we introduce the notion of a k-term for any nonzero natu-
ral number k. In the sequel k denotes a fixed nonzero natural number. A k-
variable of sort S is a sequence of k variables all of the same sort S. A k-term
(k-formula in logical context) of sort S over Σ is a sequence of k Σ-terms all
of the same sort S. We indicate k-terms by overlining, so ϕ̄(x1, · · · , xn):S =
〈ϕ0(x1, · · · , xn):S, . . . , ϕk−1(x1, · · · , xn):S〉. When we do not need to make the

common sort S of each term of ϕ̄ :S explicit, we simply write it as ϕ̄. TekΣ(X) is the

sorted set of all k-terms over Σ. Thus TekΣ(X) = 〈(TeΣ(X))kS : S ∈ SORT〉. The

set of all visible k-terms (TekΣ(X))VIS is the VIS-sorted set 〈(TeΣ(X))kV : V ∈ VIS〉.

2.1. Data structures and Leibniz congruence. Let Σ be a hidden signature.
A visible k-data structure (a k-data structure for short) over Σ is a pair A = 〈A,F 〉,
where A is a Σ-algebra and F ⊆ AkVIS; A is called the underlying algebra and F the
designated filter of A (see [39] for examples in the hidden equational case).

Let A = 〈A,F 〉 be a k-data structure. A congruence relation Θ on A is VIS-
compatible (or simply compatible) with F if for all V ∈ VIS and for all ā, ā′ ∈ AkV
the following condition holds.

if ai ≡ a′i(ΘV) for all i ≤ k then, ā ∈ FV iff ā′ ∈ FV ;

that is, each FV is the union of a cartesian product of ΘV -classes i.e.,

FV =
⋃
ā∈FV

(a1/ΘV)× (a2/ΘV)× · · · × (ak/ΘV).

Lemma 2.1. Let A = 〈A,F 〉 be a k-data structure. There is a largest congruence
relation on A compatible with F .

Proof. Let Φ and Ψ be two congruences on A compatible with F . The relational
product Φ ◦Ψ, defined for each S ∈ SORT by

(Φ ◦Ψ)S :=
{
〈a, b〉 ∈ A2

S : ∃c ∈ AS
(
〈a, c〉 ∈ ΦS and 〈c, b〉 ∈ ΨS

)}
,

is also compatible with F . Since the join Φ ∨ Ψ, in the lattice of congruences, is
given by

⋃
i<ω Φ◦iΨ, where Φ◦0 Ψ = ∆A and Φ◦i+1 Ψ = (Φ◦iΨ)◦ (Φ◦Ψ), we have

that Φ ∨ Ψ is also compatible with F . Hence, the set of all congruence relations
on A compatible with F is directed in the sense that, for any pair of congruences
compatible with F , there is a third congruence with the same property that in-
cludes both of them. We can conclude from this that the union of all compatible
congruences is again a compatible congruence. Therefore, the largest congruence
compatible with F always exists. �

Definition 2.2. Let A = 〈A,F 〉 be a k-data structure. The largest congruence
relation on A compatible with F is called the Leibniz congruence of F on A and is
denoted by ΩA(F).

A SHORT OVERVIEW OF HIDDEN LOGIC 11

The Leibniz congruence plays a central role in abstract algebraic logic when
restricted to single-sorted, k-data structures; see for example [46] and [21]. The
term was introduced in [8], but the concept appeared much earlier. The motivation
behind the choice of the term Leibniz will become clear after Theorem 3.3. A
systematic study of the Leibniz congruence in hidden k-logics can be found in [35],
in particular a proof of its characterization is given in Theorem 3.3. In the case
of single-sorted 1-data structures, this result was well known in the literature of
sentential logic; see for example [8].

An interesting property of the Leibniz congruence is its preservation under in-
verse images of surjective homomorphisms, i.e., given a k-data structure A = 〈A,F 〉
over Σ, a Σ-algebra B and a surjective homomorphism h : B → A, we have that
h−1(ΩA(F)) = ΩB(h−1(F)).

2.2. Hidden k-logic. For each nonzero natural number k, a hidden k-logic is con-
sidered to be a consequence relation on the set of visible k-terms of some hidden
signature, independently of any specific choice of axioms and rules of inference.
More precisely, it is defined as a substitution invariant consequence relation on the
set of visible k-terms.

Definition 2.3. A hidden k-logical system (hidden k-logic for short) is a pair
L = 〈Σ,`L〉, where Σ is a hidden signature with VIS as its set of visible sorts, and

`L⊆ P((TekΣ(X))VIS)× (TekΣ(X))VIS is an (unsorted) relation that satisfies for all

Γ ∪∆ ∪ {γ̄, ϕ̄} ⊆ (TekΣ(X))VIS the following conditions:

(i) Γ `L γ̄ for each γ̄ ∈ Γ;
(ii) if Γ `L ϕ̄, and ∆ `L γ̄ for each γ̄ ∈ Γ, then ∆ `L ϕ̄;
(iii) if Γ `L ϕ̄, then σ(Γ) `L σ(ϕ̄) for every substitution σ.

Note, that being unsorted, `L can relate premises and consequences of different
visible sorts.

A hidden k-logic is specifiable if `L is finitary (or compact), i.e., if Γ `L ϕ̄
implies ∆ `L ϕ̄ for some globally finite subset ∆ of Γ (recall that a set Γ is said to
be globally finite if for every S ∈ SORT AS is a finite set and AS is empty except
for a finite number of sorts). The relation `L is called the consequence relation
of L; when L is clear from the context we simply write `. A hidden k-logic with
VIS = SORT will be called a visible k-logic, or simply a k-logic.

As it is usual in a sentential logic framework, we treat formulas (k-formulas)
as synonymous to terms (k-terms, respectively). Moreover, for a given hidden k-

logic L = 〈Σ,`L〉 we denote TekΣ(X) and (TekΣ(X))VIS by Fm(L) and FmVIS(L),
respectively.

Hidden k-logics were introduced by Martins and Pigozzi (cf. [39]) in the context
of the algebraic specification and verification of software systems. The basic theory
of hidden k-logics was presented in [35]. The class of hidden k-logics includes such
well-known logical systems as the 2-dimensional hidden and standard equational
logics, as well as the Boolean logic (for more examples see [35]).

Every consequence relation ` has a natural extension to a relation, also denoted
by `, between sets of visible k-terms; it is defined by Γ ` ∆ if Γ ` ϕ̄ for each ϕ̄ ∈ ∆.
We define the relation of interderivability between sorted sets in the following way:
Γ a` ∆ if, Γ ` ∆ and ∆ ` Γ. We will abbreviate {ψ̄} ` ϕ̄, Γ ∪ {ϕ̄0, . . . , ϕ̄n−1} ` ϕ̄
and Γ0 ∪ · · · ∪ Γn−1 ` ϕ̄ by ψ̄ ` ϕ̄, Γ, ϕ̄0, . . . , ϕ̄n−1 ` ϕ̄ and Γ0, . . . ,Γn−1 ` ϕ̄,
respectively.

12 ISABEL FERREIRIM AND MANUEL A. MARTINS

Let L be a (not necessarily specifiable) hidden k-logic. By a theorem of L we
mean a visible k-term ϕ̄ such that `L ϕ̄, i.e., ∅ `L ϕ̄. The set of all theorems is
denoted by Thm(L). A rule such as

(2)
ϕ̄0 :V0, . . . , ϕ̄n−1 :Vn−1

ϕ̄n :Vn
,

where ϕ̄0, . . . , ϕ̄n are all visible k-terms, is said to be a derivable rule of L if
{ϕ̄0, . . . , ϕ̄n−1} `L ϕ̄n. A set of visible k-terms T closed under the consequence
relation, i.e., T `L ϕ̄ implies ϕ̄ ∈ T , is called a theory of L or L-theory. The set
of all theories is denoted by Th(L); it forms a complete lattice under set-theoretic
inclusion, which is algebraic if L is specifiable. Let Ti ∈ Th(L), for i ∈ I. Their
meet is

⋂
i∈I Ti and their joint is the intersection of all theories that contain each

Ti, i.e.,
∨L
i∈I Ti =

⋂
{T ∈ Th(L) : Ti ⊆ T for all i ∈ I}. Given any set Γ of visible

k-terms, the set ConL(Γ) is the smallest L-theory containing Γ. It is easy to see

that ConL(Γ) = { ϕ̄ ∈ (TekΣ(X))VIS : Γ `L ϕ̄}, i.e., the set of all consequences of Γ.
Very often, a specifiable hidden k-logic has a Hilbert style presentation, i.e., it

is given by a set of axioms (visible k-terms) and inference rules of the general form
(2). We say that a visible k-term ψ̄ is directly derivable from a set Γ of visible
k-terms by a rule such as (2) if there is a substitution h : X → TeΣ(X) such that
h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . , h(ϕ̄n−1) ∈ Γ.

Given a set AX of visible k-terms and a set IR of inference rules, we say that ψ̄
is derivable from Γ by the set AX and the set IR, in symbols Γ `AX,IR ψ̄, if there is
a finite sequence of k-terms, ψ̄0, . . . , ψ̄n−1 such that ψ̄n−1 = ψ̄, and for each i < n
one of the following conditions hold:

(a) ψ̄i ∈ Γ,
(b) ψ̄i is a substitution instance of a k-term in AX
(c) ψ̄i is directly derivable from {ψ̄j}j<i by one of the inference rules in IR.

It is clear that 〈Σ,`AX,IR〉 is a specifiable hidden k-logic. Moreover, a hidden k-
logic L is specifiable iff there exist (possibly infinite) sets AX and IR, of axioms and
inference rules, respectively, such that, for any visible k-terms ψ̄ and any set Γ of
visible k-terms, Γ `L ψ̄ iff Γ `AX,IR ψ̄. The pair 〈AX, IR〉 is called a presentation of
L by axioms and inference rules. Hence we can present our examples of specifiable
logics by exhibiting their set of axioms and of inference rules. If L = 〈Σ,`AX,IR〉,
for some AX and IR with |AX ∪ IR| < ω, we say that L is finitely axiomatizable.

2.2.1. Semantics. Let A = 〈A,F 〉 be a k-data structure. A visible k-term ϕ̄ :V is
said to be a semantic consequence of a set of visible k-terms Γ in A, in symbols
Γ |=A ϕ̄, if, for every assignment h : X → A, h(ϕ̄) ∈ FV whenever h(ψ̄) ∈ FW for
every ψ̄ :W ∈ Γ. A visible k-term ϕ̄ is a validity of A, and conversely A is a model
of ϕ̄, if ∅ |=A ϕ̄. A rule such as (2) is a valid rule of A, and conversely A is a model
of the rule, if {ϕ̄0, . . . , ϕ̄n−1} |=A ϕ̄n. A visible formula ϕ̄ is a semantic consequence
of a set of visible k-terms Γ for an arbitrary classM of k-data structures over Σ, in
symbols Γ |=M ϕ̄, if Γ |=A ϕ̄ for each A ∈M. It can be proved that |=M is always
a k-logic, however it may not be specifiable. A visible k-term or rule such as (2) is
a valid rule of M if it is a validity of each member of M.

A k-data structure A is a model of a hidden k-logic L if Γ `L ϕ̄ implies Γ |=A ϕ̄,

for every Γ∪{ϕ̄} ⊆ (TekΣ(X))VIS. When A is a model of L the designated filter of A
is called an L-filter over A. The set of all L-filters over an algebra A is denoted by

A SHORT OVERVIEW OF HIDDEN LOGIC 13

FiL(A). The special models whose underlying algebra is the formula algebra, i.e., of
the form 〈TeΣ(X), T 〉, with T ∈ Th(L) are called Lindenbaum-Tarski models. The
class of all models of L is denoted by Mod(L). If L is a specifiable hidden k-logic,
then A is a model of L iff every axiom and rule of inference is a validity of A. The
class of all reduced models of L, i.e., all models 〈A,F 〉 such that ΩA(F) = idA, is
denoted by Mod∗(L). A class of k-data structuresM is a data structure semantics
for L if `L = |=M. The Completeness Theorem holds for hidden k-logics (cf. [39]),

i.e., for every Γ ∪ {ϕ̄} ⊆ (TekΣ(X))VIS,

Γ `L ϕ̄ iff Γ |=Mod(L) ϕ̄ iff Γ |=Mod∗(L) ϕ̄.

An important class of hidden 2-logics is the class of hidden equational logics,
where the notion of equality is only considered for visible data. It is defined (using
the reflexivity, symmetry, transitivity and congruence rules) as a sorted equational
logic, restricted to the visible part (cf. [39]).

In an equational logic framework, a pair of terms of the same sort 〈s, t〉 is called
an equation and it is denoted by s ≈ t.

Definition 2.4 (Free hidden equational logic, cf. [35]). Let Σ be a hidden signature
and VIS its set of visible sorts.

(1) The free hidden equational logic over Σ (free HELΣ for short) is the speci-
fiable hidden 2-logic presented as follows:

Axioms: for all V ∈ VIS
x :V ≈ x :V

Inference rules: for each V,W ∈ VIS,

(IR1)
x :V ≈ y :V

y :V ≈ x :V
;

(IR2)
x :V ≈ y :V, y :V ≈ z :V

x :V ≈ z :V
;

(IR3)
ϕ :V ≈ ψ :V

ϑ(x/ϕ):W ≈ ϑ(x/ψ):W
for each ϑ ∈ TeW and each x ∈ XV .

(2) The free un-hidden equational logic over Σ (free UHELΣ, for short) contains
an equality predicate for each sort, visible and hidden. The axioms and
inference rules are the same as those of the free HELΣ, except that V and
W are now allowed to range over all sorts. Thus UHELΣ = HELΣuh .

An applied hidden equational logic over Σ (or simply a HELΣ) is any hidden
2-logic L over Σ that satisfies all axioms and rules of inference of the free HELΣ.
An applied un-hidden equational logic over Σ (UHELΣ) is defined similarly; the
subscript Σ may be omitted if it is clear from the context. We say that a specified
applied hidden or unhidden equational logic is strict equational if it does not have
extra-logical inference rules.

Definition 2.5. Let L be a HELΣ and E a set of equations of arbitrary, possibly
un-hidden, sort. We define Luh[E] as the natural extension of L by E to a UHEL
over the same signature (when E is empty we just write Luh).

The standard model of the free HELΣ is of the form 〈A, idAVIS〉, where A is
a Σ-algebra and idAVIS

is the identity relation on the visible part of A, but one
gets more general 2-data structures as models by taking any congruence relation

14 ISABEL FERREIRIM AND MANUEL A. MARTINS

on the visible part of A in place of idAVIS
. By a congruence relation on the visible

part of A, or simply a VIS-congruence, we mean a VIS-sorted set 〈FV : V ∈ VIS 〉
such that, for every V ∈ VIS, FV is an equivalence relation on AV , and for every
term ϕ(x0 :V0, . . . , xn−1 :Vn−1, y0 :H0, . . . , ym−1 :Hm−1):V with V0, . . . , Vn−1, V ∈
VIS and H0, . . . ,Hm−1,∈ HID, if 〈ai, bi〉 ∈ FVi

for all i < n, then for all cj ∈ AHj

j < m,
〈ϕA(a0, . . . , an−1, c0, . . . , cm−1), ϕA(b0, . . . , bn−1, c0, . . . , cm−1)〉 ∈ FV .

The basic notions and results about hidden k-logics, as well as many examples
of HELs may be found in [35] and [39]. An interesting fact about HELs is that the
visible consequences of any set of visible equations are the same either for LUH or
for L, i.e., for any Γ ∪ {t ≈ t′} ⊆ Te2

Σ(X)VIS, Γ `LUH t ≈ t′ iff Γ `L t ≈ t′.

2.3. Concrete examples. We give several examples of specifiable hidden logics.
We have purposely chosen simple, well-known ones that allow us to illustrate the
basic ideas without burdening the reader with irrelevant detail. The first two illus-
trate how the logic of a particular data structure can be alternatively formalized as
a Boolean 1-logic and as an equational 2-logic, a HEL. The flag logics provide two
different ways of specifying semaphores, which are commonly used in scheduling
resources [24].

Example 2.6. (Flags as a Boolean 1-logic)
Consider the hidden signature Σflag:

SORT = {flag,bool}, with bool the unique visible sort, and the following oper-
ation symbols:

up : flag→ flag; rev : flag→ flag;
dn : flag→ flag; up? : flag→ bool,

and the operation symbols for the Boolean part: ¬,∧,∨, true and false. The Boolean
biconditional ϕ ↔ ψ is an abbreviation for the compound operation (¬ϕ ∨ ψ) ∧
(¬ψ ∨ ϕ).

The Boolean logic of flags, Lbflag, is the 1-logic with the following extra-logical
axioms:

up?(up(F)) up?(rev(F))↔ ¬(up?(F))
¬up?(dn(F))

and including usual logical axioms for the classical propositional logic. There are
no extra-logical rules of inference. ♦

Example 2.7. (Flags as a HEL) The signature is the same as above.
The equational logic of flags, Leflag, is the HELΣflag

with the following extra-
logical axioms:

up?(up(F)) ≈ true up?(rev(F)) ≈ ¬(up?(F))
up?(dn(F)) ≈ false

and including the usual logical axioms for Boolean algebra. There are no extra-
logical rules of inference. ♦

As expected, Lbflag and Leflag are equivalent. Precisely,
ϕ1 ↔ ϕ′1, . . . , ϕn ↔ ϕ′n

ψ ↔ ψ′

is a derivable rule of Lbflag iff
ϕ1 ≈ ϕ′1, . . . , ϕn ≈ ϕ′n

ψ ≈ ψ′
is a derivable rule of Leflag.

A SHORT OVERVIEW OF HIDDEN LOGIC 15

Example 2.8. (Stacks of Natural Numbers as a HEL) As in the standard
specification of the logic of stacks, only the natural numbers are visible. Conse-
quently, the axioms and rules of inference can only reference “numerical behavior”
of stacks rather than the stacks themselves. In particular there can be no axiom or
rule involving equality between stacks. Because of this we get an infinite number of
axioms, while in the standard formalizations, where assertions about the equality
of stacks are allowed, the axiomatization is finite and conceptually simpler.

The specification differs from the usual one in another regard. The top of the
empty stack is zero and pushing zero on the empty stack gives the empty stack.
This is done to simplify the specification logic and agrees with what is done in [25].

Consider the hidden signature Σstacks:

SORT = {nat, stack}, with nat the unique visible sort and the following opera-
tion symbols:

empty : → stack top : stack→ nat
zero : → nat pop : stack→ stack
push : nat, stack→ stack s : nat→ nat

The specification logic of stacks, Lstacks, is the logic with hidden signature Σstacks

and the following axioms and inference rules:

Extra-logical axioms:

top(popn(empty)) ≈ zero, for all n;

top(push(x, y)) ≈ x;

top(popn+1(push(x, y))) ≈ top(popn(y)), for all n.

Extra-logical inference rule:

s(x) ≈ s(y)→ x ≈ y. ♦

2.3.1. Other hidden k-logics.

Example 2.9 (Free inequational logic). Let Σ be any one-sorted signature. The
free inequational logic is the one-sorted 2-logic over Σ defined by the axioms and
inference rules in Fig. 1. As in the equational case, we use a special symbol
to denote the 2-formula 〈ϕ,ψ〉; namely we write ϕ � ψ for 〈ϕ,ψ〉. This logic is

Axioms:
x � x;
Inference rules:
x � y , y � z

x � z
;

x0 � y0, . . . , xn−1 � yn−1

O(x0, . . . , xn−1) � O(y0, . . . , yn−1)
,

for every operation symbol O.

Figure 1. Free inequational logic.

relevant in the context of ordered (universal) algebra (see [54]) and abstract algebra.
We can generalize the inequational logic to the sorted case and, more generally, to
the hidden sorted case in the same way we generalized the equational logic to the

16 ISABEL FERREIRIM AND MANUEL A. MARTINS

hidden equational logic. A more general notion of inequational logic can be found
in [2]. ♦

Example 2.10 (Stacks of natural numbers with Booleans). The signature is ob-
tained from the signature of stacks of natural numbers by adjoining a new sort bool,
for the Boolean operation symbols, and one new attribute eq : nat,nat→ bool, the
equality test for natural numbers. The sort bool is the only visible sort. Informally,
we can say that the axioms and inference rules are obtained by applying eq to each
of the axioms and inference rules of the specification of stacks (see Fig. 2). The
operation symbol eq is called an equational test function and the models are called
generalized equality test models. These models have been studied in [44].

Axioms:
eq(x, x)
eq(top(popn(empty)), zero), for all n;
eq(top(push(x, y)), x);
eq(top(popn+1(push(x, y))), top(popn(y))), for all n;

Inference rules:
eq(x, y)

eq(y, x)

eq(x, y), eq(y, z)

eq(x, z)

eq(x, y)

eq(s(x), s(y))

eq(s(x), s(y))

eq(x, y)

Figure 2. Stacks of natural numbers with Booleans.

♦

3. Behavioral equivalence

In hidden equational logic, we may say that two hidden data elements of the
same sort are behaviorally equivalent if any visible procedure returns the same value
when executed with either of the two objects as input. The notion arises from the
alternative view of a data structure as a transition system in which the hidden data
elements represent states of the system and the operations (i.e., the methods) that
return hidden, as opposed to visible, elements induce transitions between states.

In the formalism of HEL, the concept of procedure takes the form of a context.
Formally, a S-context over a hidden signature Σ is a term

(3) ϕ(z :S, u1 :T1, . . . , um :Tm):U

with a distinguished variable z of sort S and parametric variables u1, . . . , um of
arbitrary (visible or hidden) sort. It is a visible context if the sort U of ϕ is visible.

Definition 3.1. Let A be a Σ-algebra and let S be a arbitrary sort. Then, a, a′ ∈
AS are behaviorally equivalent in A, in symbols a ≡beh

A a′, if for every visible S-
context ϕ(z :S, u1 :T1, . . . , um :Tm) and for all b1 ∈ AT1

, . . . , bm ∈ ATm
,

ϕA(a, b1, . . . , bm) = ϕA(a′, b1, . . . , bm).

Variants of this notion of behavioral equivalence have occurred in the literature.
For example, Goguen and Malcolm [25] restrict the set of contexts to the ones built
from a predefined set of observational operational symbols.

A SHORT OVERVIEW OF HIDDEN LOGIC 17

In order to generalize the notion of behavioral equivalence to hidden k-logics we
first generalize the notion of context. A (k, S)-context over a hidden signature Σ is
a k-term

(4) ϕ̄(z :S, u1 :T1, . . . , um :Tm):U

=
〈
ϕ1(z :S, u1 :T1, . . . , um :Tm), . . . , ϕk(z :S, u1 :T1, . . . , um :Tm)

〉
:U

with a distinguished variable z of sort S and parametric variables u1, . . . , um. It is
a visible context if the sort U of ϕ̄ is visible.

Definition 3.2. Let A = 〈A,F 〉 be a k-data structure over a hidden signature Σ.
Two elements a, a′ of A of arbitrary sort S are said to be behaviorally equivalent in
A, in symbols a ≡beh

A a′, if for every visible (k, S)-context ϕ̄(z :S, u1 :T1, . . . , um :Tm):V
and for all b1 ∈ AT1

, . . . , bm ∈ ATm
,

(5) ϕ̄A(a, b1, . . . , bm) ∈ FV iff ϕ̄A(a′, b1, . . . , bm) ∈ FV .

This notion does indeed generalize behavioral equivalence in equational logic,
since, as a consequence of Theorem 3.4 below, we have that a and a′ are behaviorally
equivalent in a Σ-algebra A iff they are behaviorally equivalent in the 2-dimensional
equality data structure 〈A, idAVIS〉 in the sense of Definition 3.2.

Behavioral equivalence over a k-data structure turns out to be a congruence
relation on the underlying algebra of the data structure with special properties.
In the 1-sorted, 1-data structures (called matrices) which constitute the natural
models of sentential logic, the detailed combinatorial analysis of this congruence
constitutes the basis of a branch of mathematical logic called abstract algebraic
logic (cf. [46]). Our intention here is to extend this analysis to the behavioral
congruences of arbitrary multi-sorted k-data structures and in particular to the
models of hidden equational logic. The following two theorems constitute the basis
of this approach. They are due to Manuel Martins and Don Pigozzi in [39]. We
include their proofs here since this paper is intended also as a survey.

Theorem 3.3. Let Σ be a hidden signature and let A = 〈A,F 〉 be a k-data structure
over Σ. Then, ≡beh

A = ΩA(F), i.e., for every S ∈ SORT and for all a, a′ ∈ AS,
a ≡beh
A a′ iff a ≡ a′ (ΩA(F)S).

Proof. It is easy to see that ≡beh
A is an equivalence relation on A. To see that it is

a congruence relation, let O be an operation symbol of type T1, . . . , Tn → S and
suppose ai ≡beh

A a′i, 1 ≤ i ≤ n. We must show that, for any visible (k, S)-context
ϕ̄(z :S, ū:Q̄):V , with the designated variable z :S, and for all parameters b̄ ∈ AQ̄,
we have

(6) ϕ̄A
(
OA(ā), b̄

)
∈ FV iff ϕ̄A

(
OA(ā′), b̄

)
∈ FV .

Consider any i ≤ n. Using the assumption ai ≡beh
A a′i, and taking xi as the

designated variable, x1, . . . , xi−1, xi+1, . . . , xn, u1, . . . , un as parametric variables,
and a1, . . . , ai−1, a

′
i+1, . . . , a

′
n, b1, . . . , bm as parameters we have

ϕ̄A
(
OA(a1, . . . , ai−1, ai, a

′
i+1, . . . , a

′
n), b̄

)
∈ FV

iff ϕ̄A
(
OA(a1, . . . , ai−1, a

′
i, a
′
i+1, . . . , a

′
n), b̄

)
∈ FV .

Since this equivalence holds for all i ≤ n, (6) holds, and hence ≡beh
A is a congruence

on A.

18 ISABEL FERREIRIM AND MANUEL A. MARTINS

To see that≡beh
A is compatible with F , consider ā, ā′ ∈ AkV such that ā

(
≡beh
A
)k
V
ā′.

Consider the k-sequence of pairwise distinct variables x̄ = 〈x1 :V, . . . , xk :V 〉 (called
a k-variable, a special k-formula). For each i, 1 ≤ i ≤ k, view x1, · · · , xn as a
(k, V)-context with designated variable xi and treat a1, . . . , ai−1, a

′
i+1, . . . , a

′
k as

parameters. Then from the assumption ai
(
≡beh
A
)
V
a′i we conclude that

〈a1, . . . , ai−1, ai, a
′
i+1, . . . , a

′
n〉 ∈ FV iff 〈a1, . . . , ai−1, a

′
i, a
′
i+1, . . . , a

′
n〉 ∈ FV .

So ā ∈ FV iff ā′ ∈ FV . Thus ≡beh
A is compatible with F .

Finally, we must show that ≡beh
A is the largest congruence on A compatible with

F . Let Θ be any congruence on A that is compatible with F . Assume a ≡ a′ (ΘS).
Let ϕ̄(z :S, ū :Q̄):V be a visible (k, S)-formula with designated variable z :S, and
let b̄ ∈ AQ̄ be a system of parameters. By the congruence property, ϕ̄A(a, b̄) ≡
ϕ̄A(a′, b̄)

(
Θk
V

)
. So by the compatibility of Θ with F we have ϕ̄A(a, b̄) ∈ FV iff

ϕ̄A(a′, b̄) ∈ FV . Thus Θ ⊆ ≡beh
A . �

This theorem shows the adequacy of using the Leibniz congruence to study be-
havioral equivalence. Moreover, when applied to hidden equational logics, Theo-
rem 3.3 takes a more natural form in terms of 1-dimensional contexts as we now
see.

Theorem 3.4. Let Σ be a hidden signature and let A = 〈A,F 〉 be a model of the
free HELΣ, i.e., F is a VIS-congruence on A. Then, for every S ∈ SORT and all
a, a′ ∈ AS, a ≡Ω(F)S a

′ iff, for every visible S-context ϕ(z :S, u1 :Q1, . . . , um :Qm):V
and for all b1 ∈ AQ1

, . . . , bm ∈ AQm
,

(7) ϕA(a, b1, . . . , bm) ≡ ϕA(a′, b1, . . . , bm) (FV).

Proof. By Theorem 3.3, a ≡Ω(F)S a
′ iff, for every (2, S)-context 〈ϕ(z :S, ū:Q̄), ψ(z :S,

ū:Q̄)〉 of sort V , and every b̄ ∈ AQ̄,

(8) ϕA(a, b̄) ≡ ψA(a, b̄) (FV) iff ϕA(a′, b̄) ≡ ψA(a′, b̄) (FV).

Suppose (7) holds for every S-context ϕ(z, ū) and every b̄ ∈ AQ̄. If ϕA(a, b̄) ≡FV

ψA(a, b̄), then

ϕA(a′, b̄) ≡ ϕA(a, b̄) ≡ ψA(a, b̄) ≡ ψA(a′, b̄) (FV)

(the first and third equivalences hold because F is a VIS-congruence). Thus (8)
holds for every pair of S-contexts and every sequence of parameters b̄, hence,
a ≡Ω(F)V a′.

Conversely, assume a ≡Ω(F)V a′. Let ϕ(z :S, ū :Q̄):V be an arbitrary visible

S-context, where ū:Q̄ = 〈u1 :Q1, . . . , un :Qn〉. Let un+1 be a new parametric vari-
able of sort V ; the single term un+1 can be viewed as a visible S-context with
designated variable z (which does not actually occur) and parametric variables
ū+ := 〈u1, . . . , un, un+1〉. ϕ can also be viewed as an S-context with the same
parametric variables. Let 〈b1, . . . , bn〉 be any system of parameters of sort Q̄,
and extend it to a system b̄+ := 〈b1, . . . , bn, bn+1〉, where bn+1 = ϕA(a, b̄). Thus
ϕA(a, b̄+) = bn+1 = uAn+1(a, b̄+). So by (8), ϕA(a′, b̄+) ≡FV

uAn+1(a′, b̄+). But

uAn+1(a′, b̄+) also equals bn+1. So ϕA(a, b̄) ≡FV
ϕA(a′, b̄). Thus (7) holds for every

S context ϕ(z, ū) and every b̄ ∈ AQ̄. �

Applying this result to equality models (i.e., models whose filter is the identity),
we get that a and a′ are behaviorally equivalent, in the sense of Definition 3.1,

A SHORT OVERVIEW OF HIDDEN LOGIC 19

iff a ≡ a′
(
ΩA(idAVIS

)
)
; hence behavioral equivalence over k-data structures does

indeed generalize the familiar notion of behavioral equivalence over a sorted algebra.
This result was obtained independently by Goguen and Malcolm [25].

For hidden equational logics the Leibniz relation has the following useful prop-
erty; this can also be found in [24, 25] for the case of equality models.

Corollary 3.5. Let A = 〈A,F 〉 be a model of the free HELΣ. Then ΩA(F) is the
largest congruence on A whose visible part is F .

Proof. Suppose a ≡ a′
(
ΩA(F)V

)
with V ∈ VIS. Let z be a variable of sort V .

Then z is a visible V -context and hence a = zA(a) ≡ zA(a′) = a′ mod FV .
Thus ΩA(F)VIS ⊆ F . Conversely, assume a ≡ a′ mod FV . Then for every V -
context ϕ(z, ū) and every choice of parameters b̄ ∈ AQ̄, we have ϕA(a, b̄) ≡ ϕA(a′, b̄)
mod FV . Thus a ≡ a′ (ΩA(F)V) and hence ΩA(F)VIS = F . If Θ is any congruence
on A such that ΘVIS = F , then Θ is compatible with F , and hence Θ ⊆ ΩA(F). �

As a special case (for equality models) we have that ΩA(idAVIS
)VIS = idAVIS

, i.e.,
two visible elements of a Σ-algebra are behaviorally equivalent iff they are equal.
However, in computer science it is important to establish procedures to check if two
elements are behaviorally equivalent. The last result allows the following method
of coinduction.

Given a data structure 〈A,F 〉 we want to know if a pair 〈a, a′〉 ∈ A2
S is in Ω(F)S .

Our method consists of the following three steps:

1 - Define a suitable relation R on A, such that the visible part is F ;
2 - Show that this relation is a congruence on A;
3 - Finally show that a and a′ are equivalent modulo R.

At first glance, step 1 of this method seems to be a very hard task, however it
works very well in many concrete examples. In Example 2.7, we can use this method
to prove that rev(rev(F)) ≈ rev(F) is behaviorally equivalent in any equality model
A of Leflag. It is enough to consider R :=

{
(a, a′) ∈ A2

flag : up?A(a) = up?A(a′)
}

.
When applied to Lindenbaum models, Corollary 3.5 gives rise to the following

results.

Corollary 3.6. Let L be a HEL and G an LUH-theory. Then G ⊆ Ω(GVIS) and
GVIS = Ω(GVIS)VIS.

We can also conclude from Theorem 3.4 that for every sorted algebra A, the
operator ΩA : FiL(A)→ Con(A) defined by mapping each F ∈ FiL(A) into ΩA(F)
is injective and monotonic.

Corollary 3.7. Let L be a HEL. Then for every sorted algebra A, ΩA is injective
and monotonic.

Proof. The proof of injectivity is obvious.
Let F,G ∈ FiL(A) such that F ⊆ G. Suppose that a ≡ a′(Ω(F)S). Then for

every S-context ϕ(z :S, x):V and for all b ∈ Ak, ϕA(a, b) ≡ ϕA(a′, b) (FV). Hence,
for every S-context ϕ(z :S, x):V and for all b ∈ Ak, ϕA(a, b) ≡ ϕA(a′, b) (GV).
Therefore, a ≡ a′(Ω(G)S). �

For arbitrary hidden logics this result is false, even in the one-sorted case. The
class of logics for which Ω is injective and monotonic is called Weakly Algebraizable

20 ISABEL FERREIRIM AND MANUEL A. MARTINS

Logics. (This class was investigated by Czelakowski and Jansana in [14]). Injectivity
and monotonicity are independent properties in sense that neither one of them
implies the other (see [16] for an example of a non monotonic injective logic).

For some specifications, certain intuitive properties are not satisfied in the usual
sense. This is the case, for instance, of the usual specification of Flags (see [24]),
where equation rev(rev(F)) ≈ F should be a property of the specification of Flags
but is not a theorem of the LUH

eflag. Therefore, we consider, next, a weaker notion
of satisfaction, called behavioral satisfaction. The perspective according to which
satisfaction is to be considered behaviorally is called behavioral approach (see, e.g.,
[50]).

Definition 3.8. Let t ≈ t′ be an equation of arbitrary sort, and A = 〈A,F 〉 a
k-data structure. We say that the equation t ≈ t′ is behaviorally satisfied in A, in
symbols |=beh

A t ≈ t′, if for all h : X → A, h(t) ≡beh〈A,F 〉 h(t′). Let L be a HEL and

let Mod(L)= denote {A : 〈A, idAVIS〉 ∈ Mod(L)}. We say that t ≈ t′ is behaviorally
valid over L, in symbols |=beh

L t ≈ t′, if for every A ∈ Mod(L)=, |=beh
〈A,idAVIS

〉 t ≈ t′.

If L is clear from the context we simply write, |=beh t ≈ t′.

In the example of Leflag, we have just sketched the proof that equation rev(rev(F)) ≈
F is behaviorally satisfied in each algebra in Mod(Leflag)=.

Lemma 3.9. Let A = 〈A,F 〉 be a data structure over a hidden signature Σ and S
be an arbitrary sort. Then, |=beh

A t ≈ t′ iff for every h : X → A and every visible
S-context ϕ(z :S, x1, . . . , xn):V ,

h(ϕ(t, x1, . . . , xn)) ≡ h(ϕ(t′, x1, . . . , xn)) (FV)

We are going to introduce some notation.

Definition 3.10. Let t ≈ t′ be an equation of type S. We define ∆[t ≈ t′] to
be the set

{
t ≈ t′

}
, if S ∈ VIS; and ∆[t ≈ t′] to be the set

{
ϕ(t, x1, . . . , xn) ≈

ϕ(t′, x1, . . . , xn)|ϕ(z :S, x1, . . . , xn) ∈ (TeΣ(X))VIS

}
, if S /∈ VIS.

The following lemma is a useful characterization for an equation to be behav-
iorally satisfied in an algebra A (the version for equality models was proved by Roşu
in [50]).

Lemma 3.11. Let A = 〈A,F 〉 be a data structure over a hidden signature Σ and
S be an arbitrary sort. Then the following conditions are equivalent:

(i) |=beh
A t ≈ t′;

(ii) |=A ∆[t ≈ t′].

In the special case of data structures of form 〈TeΣ(X), T 〉, with T a theory, we
call the equations in Ω(T), behavioral consequences of T . Behavioral consequences
of a substitution invariant theory T may be characterized in the following way.

Corollary 3.12. Let L be a HEL, T a substitution invariant theory of L and
t, t′ ∈ (TeΣ(X))S. Then the following are equivalent:

(i) t ≡ t′ (Ω(T)S);
(ii) for every visible S-context ϕ(z :S, x1, . . . , xn),

T `L ϕ(t, x1, . . . , xn) ≈ ϕ(t′, x1, . . . , xn).

A detailed study of the properties of Ω(T) can be found in [39].

A SHORT OVERVIEW OF HIDDEN LOGIC 21

3.1. Formal Behavioral Consequence Relation. In this section we present a
characterization of the Leibniz congruence in terms of the consequence relation of
LUH. This characterization justifies the name we have been using for the elements
in Ω(T) - behavioral consequences of T .

This result generalizes, in two directions, the work of Leavens and Pigozzi in [33].
On the one hand, we allow conditional equations as axioms (instead of equations
only); on the other hand, we characterize Ω(T) for all theories (instead of just
Ω(Thm(L))).

In the second part of this section, we present a simpler characterization for the
special case of strict HEL, by dropping the condition that G has to range over all
theories.

Now we consider the following generalization of the definition of formal behav-
ioral consequence (introduced in [33]).

Definition 3.13. Let L be a HEL, T ∈ Th(L) and F a set of equations over Σ.
Then we say that F is a global formal behavioral consequence of T , in symbols
T `GFBL F , if for every G ∈ Th(LUH), such that T ⊆ G, and every visible equation
s ≈ s′, G ∪ F `LUH s ≈ s′ implies that G `LUH s ≈ s′. If F = {t ≈ t′}, then
we say that t ≈ t′ is a global formal behavioral consequence of T and we write
T `GFBL t ≈ t′.

Let L be a HEL and T ∈ Th(L). We define the following relation on the term
algebra. For each sort S, GFB(T)S is the set of all pairs (t, t′) of formulas of type
S, such that T `GFBL t ≈ t′. Thus, GFB(T) = 〈GFB(T)S : S ∈ SORT〉.

The global formal behavioral consequence relation, as a property of a set, can
actually be reduced to a property of its individual members.

Theorem 3.14. Let L be a specifiable HEL and F be a set of equations. Then for
every T ∈ Th(L),

(9) T `GFBL F ⇔ (T `GFBL t ≈ t′, for all t ≈ t′ ∈ F)

Proof. The implication from left to right is obvious. To prove the converse we first
show that it holds for any finite F , using induction on the number of elements in
F .

Let G ∈ Th(LUH) such that T ⊆ G and s, s′ ∈ (TeΣ(X))VIS. Suppose that
G ∪ F `LUH s ≈ s′.

If F has only one equation, we have, by hypothesis, that G `LUH s ≈ s′.
Let now F be the union of F ′ with {t ≈ t′}. Suppose that G∪F ′∪{t ≈ t′} `LUH

s ≈ s′. Hence, CnLUH(G ∪ F ′) ∪ {t ≈ t′} `LUH s ≈ s′. Since, T `GFBL t ≈ t′, we
have that CnLUH(G ∪ F ′) `LUH s ≈ s′. Hence, G ∪ F ′ `LUH s ≈ s′. Finally, by the
induction hypothesis, G `LUH s ≈ s′. So, we have just proved that T `GFBL F .

Let now F be any set of equations. Let G ∈ Th(LUH) such that T ⊆ G and
s, s′ ∈ (TeΣ(X))VIS. Suppose that G∪F `LUH s ≈ s′. Then, there is a finite subset
F0 of F such that G ∪ F0 `LUH s ≈ s′. From the discussion above, G `LUH s ≈
s′. �

The following lemma shows that the global formal behavioral consequence is
closed under ordinary equational deduction.

Lemma 3.15. Let L be a specifiable HEL, T ∈ Th(L) and F a set of equations.
Then T `GFBL F and F `LUH t ≈ t′ implies that T `GFBL t ≈ t′.

22 ISABEL FERREIRIM AND MANUEL A. MARTINS

Proof. Let G ∈ Th(LUH), such that T ⊆ G, and s ≈ s′ be a visible equation.
Suppose that G∪{t ≈ t′} `LUH s ≈ s′. Then, G∪F `LUH s ≈ s′. Since T `GFBL F ,
we have that G `LUH s ≈ s′. Therefore, T `GFBL t ≈ t′. �

Corollary 3.16. Let L be a specifiable HEL and T ∈ Th(L). Then GFB(T) is a
theory of LUH.

Theorem 3.17. Let L be a specifiable HEL and T ∈ Th(L). Then

(1) GFB(T)V = TV , for all V ∈ VIS.
(2) GFB(T) ⊆ Ω(T).

Proof. Obviously, T ⊆ GFB(T)VIS. To prove the other inclusion, suppose that
(t, t′) ∈ GFB(T) ∩ Te2

Σ(X)VIS. Since T ∪ {t ≈ t′} `LUH t ≈ t′, then by definition
of GFB(T), T `LUH t ≈ t′. Therefore, since T `L t ≈ t′ iff T `LUH t ≈ t′, for any
t, t′ ∈ TeΣ(X)VIS, we have T `L t ≈ t′, i.e. t ≈ t′ ∈ T .

Since GFB(T) is a congruence which coincides with T in the visible part and Ω(T)
is the largest congruence with this property, we have that GFB(T) ⊆ Ω(T). �

The following theorem is one of the main results of this section.

Theorem 3.18. Let L be a specifiable HEL and T ∈ Th(L). Then

Ω(T) = GFB(T)

Proof. Suppose that t ≡ t′ (Ω(T)). Let s, s′ ∈ TeΣ(X)VIS and G ∈ Th(LUH), such
that T ⊆ G. Suppose that

(10) G ∪ {t ≈ t′} `LUH s ≈ s′

Since T ⊆ GVIS and the HEL logics are monotonic (see Corollary 3.7), Ω(T) ⊆
Ω(GVIS). Hence, t ≡ t′ (Ω(GVIS)). Since G ⊆ Ω(GVIS) (see Corollary 3.6), (10)
implies s ≡ s′ (Ω(GVIS)). Moreover, as s ≈ s′ is visible, s ≈ s′ ∈ GVIS. So,
GVIS `LUH s ≈ s′. Since the visible L-consequences and the LUH-consequences of a
set of visible equations are the same, we have G `L s ≈ s′. That is, T `GFBL t ≈ t′.

The other inclusion is Part 2 of Theorem 3.17. �

3.2. Strict equational HEL. In this section we define a simpler notion of behav-
ioral consequence of a theory -formal behavioral consequence of T . It considers only
the theory T instead of considering all theories of LUH that contain T . For strict
equational HEL’s, we obtain simpler results.

First we define a relation on the term algebra that will play an important role
in the sequel. A similar relation was already considered by Leavens and Pigozzi
in the context of equational reasoning with subtyping (cf. [33]). The difference is
that here we do not restrict the type of the arguments of the term r and we do not
consider the substitution instances of the axioms.

Definition 3.19. Let E be a set of equations and Ẽ = {t′ ≈ t : t ≈ t′ ∈ E}. We
define the SORT-sorted relation ≡E in the following way:

for each sort S, t (≡E)S t
′ iff there is a term r(z :S, y1 :T1, . . . , ym :Tm) and an

equation e(x1 :S1, . . . , xn :Sn) ≈ e′(x1 :S1, . . . , xn :Sn) ∈ E ∪ Ẽ of type S such that
t = r(e(x1, · · · , xn), y1, . . . , ym) and t′ = r(e′(x1, . . . , xn), y1, . . . , ym).

Finally, we define ≡∗E as the reflexive, transitive closure of ≡E .

A SHORT OVERVIEW OF HIDDEN LOGIC 23

In the sequel we will use the following immediate consequence of the definition
of ≡∗E :

Lemma 3.20. t ≡∗E t′ iff there are terms s1, . . . , sn such that t = s1 ≡E · · · ≡E
si ≡E si+1 ≡E · · · ≡E sn = t′.

By reformulating Lemma 2.21 of [33] we obtain the following characterization of
equational consequence:

Lemma 3.21. Let L be a strict equational HEL with set of equations E. Let F be
a set of equations and t ≈ t′ an equation. Then

(11) F `LUH t ≈ t′ ⇔ t (≡F ∪EL)∗ t′,

where EL is the set of all substitution instances of equations in E.

Proof. [⇐] Suppose that t (≡F ∪EL)∗ t′. Then, there are terms s0, . . . sn such that
t = s0 ≡F ∪EL s1 ≡F ∪EL · · · si ≡F ∪EL si+1 · · · ≡F ∪EL sn = t′. So, for each
i ≤ n, there is a S-context r(z :S, y1, . . . , ym) and an equation e(x1, . . . , xn) ≈
e′(x1, . . . , xn) ∈ (F ∪ EL) ∪ (F̃ ∪ ẼL) such that:

• si = r(e(x1, . . . , xn), y1, . . . , ym) and
• si+1 = r(e′(x1, · · · , xn), y1, . . . , ym).

If e ≈ e′ ∈ EL∪ẼL then obviously F `LUH si ≈ si+1. Otherwise, by the congruence
inference rule, F `LUH si ≈ si+1. Therefore, by transitivity, we obtain F `LUH t ≈
t′.

[⇒] We are going to prove that all equations in F and all substitution instances
of the extralogical axioms are in (≡F ∪EL)∗ and (≡F ∪EL)∗ is closed under equation
deduction. It is clear that all substitution instances of the equations in E and all
equations in F , considered as ordered pairs, are in (≡F ∪EL)∗ (by considering the
context r = z :S). By definition, (≡F ∪EL)∗ is obviously closed under the rules of
reflexivity, symmetry and transitivity. To show that ≡F ∪EL is closed under the
congruence rule, let g be an operation symbol of type S1, . . . , Sn → S and t1, . . . , tn
and t′1, . . . , t

′
n of type S1, . . . , Sn respectively. Suppose that ti ≡F ∪EL t′i, for all

i ≤ n. To prove that g(t′1, · · · , t′i−1, t
′
i, . . . , t

′
n) ≡F ∪EL g(t1, . . . , ti, ti+1, . . . , tn) it is

enough to prove that
g(t′1, . . . , t

′
i−1, ti, . . . , tn) ≡F ∪EL g(t′1, . . . , t

′
i, ti+1, . . . , tn), for i ≤ n.

We know that ti = r(e(x1, . . . , xn), y1, . . . , ym) and t′i = r(e′(x1, . . . , xn), y1, . . . , ym),

for some Si-context r and some e(x1, . . . , xn) ≈ e′(x1, . . . , xn) ∈ (F∪EL)∪(F̃∪ẼL).
So,

g(t′1, . . . , t
′
i−1, ti, . . . , tn) = g(t′1, . . . , t

′
i−1, r(e(x1, . . . , xn), y1, . . . , ym), ti+1, . . . , tn)

and
g(t′1, . . . , t

′
i, ti+1, . . . , tn) = g(t′1, . . . , t

′
i−1, r(e

′(x1, . . . , xn), y1, . . . , ym), ti+1, . . . , tn).
Hence,
g(t′1, . . . , t

′
i−1, r(e(x1, . . . , xn), y1, . . . , ym), ti+1, . . . , tn) =

ϕ(r(e(x1, . . . , xn), y1, . . . , ym), y1, . . . , ym)
and
g(t′1, . . . , t

′
i−1, r(e

′(x1, . . . , xn), y1, . . . , ym), ti+1, . . . , tn) =
ϕ(r(e′(x1, . . . , xn), y1, . . . , ym), y1, . . . , ym),

where ϕ(z, y1, . . . , ym) = g(t′1, . . . , t
′
i−1, z :Ti, ti+1, . . . , tn).

24 ISABEL FERREIRIM AND MANUEL A. MARTINS

Therefore, by the definition of ≡F ∪EL ,

g(t′1, . . . , t
′
i−1, ti, . . . , tn) ≡F ∪EL g(t′1, . . . , t

′
i, ti+1, . . . , tn).

Now, we show that (≡F ∪EL)∗ is also closed under the congruence rule.
Suppose now that ti (≡F ∪EL)∗t′i, for all i ≤ n. By definition of (≡F ∪EL)∗ and
reflexivity, for all i ≤ n, there are terms s1

i , . . . , s
m
i such that

ti = s1
i ≡F ∪EL · · · ≡F ∪EL smi = t′i.

Hence, by the previous discussion,

g(s1
1, . . . , s

1
n) ≡F ∪EL · · · ≡F ∪EL g(sm1 , . . . , s

m
n).

Finally, by transitivity we get g(t1, . . . , tn) (≡F ∪EL)∗ g(t′1, . . . , t
′
n). �

Definition 3.22. Let L be a HEL, T ∈ Th(L) and F a set of equations. We say
that F is a formal behavioral consequence of T , in symbols T `FBEL F , if for every
visible equation s ≈ s′, T ∪ F `LUH s ≈ s′ implies that T `LUH s ≈ s′. We say
that an equation t ≈ t′ is a formal behavioral consequence of T , if {t ≈ t′} is and
we write T `FBEL t ≈ t′.

Similarly to the global behavioral consequence relation, the formal behavioral
consequence relation, as a property of a set, is actually a local property.

Theorem 3.23. Let L be a strict equational HEL and F be a set of equations.
Then for every T ∈ Th(L),

(12) T `FBEL F ⇔ (T `FBEL t ≈ t′, for all t ≈ t′ ∈ F)

Proof. The implication from right to left is straightforward. To prove the other
implication, let s, s′ ∈ (TeΣ(X))VIS and assume that T ∪ F `LUH s ≈ s′. Since
EL ⊆ T , by Lemma 3.21, s ≡∗T∪F s′. Hence, there are s1, · · · , sn ∈ TeΣ(X) such
that
s = s1 ≡T∪F · · · ≡T∪F sm = s′. Then, for every i ≤ n, si = r(e(x1, . . . , xn), y1, . . . , ym)
and si+1 = r(e′(x1, . . . , xn), y1, . . . , ym) for some r(z, y1, . . . , ym) and e(x1, . . . , xn) ≈
e′(x1, . . . , xn) ∈ T ∪ F ∪ F̃ .

If e(x1, . . . , xn) ≈ e′(x1, . . . , xn) ∈ T then, by the congruence rule,
T `LUH r(e(x1, . . . , xn), y1, . . . , ym) ≈ r(e′(x1, . . . , xn), y1, . . . , ym). I.e., T `LUH

si ≈ si+1. Otherwise, e(x1, . . . , xn) ≈ e′(x1, . . . , xn) ∈ F ∪ F̃ . Then, by the
congruence rule,
{e ≈ e′} `LUH si ≈ si+1. So, T ∪ {e ≈ e′} `LUH si ≈ si+1. Since T `FBEL e ≈ e′,
we get T `LUH si ≈ si+1.

So, for every i ≤ n, T `LUH si ≈ si+1. Hence, by transitivity rule,
T `LUH s ≈ s′. Therefore T `FBEL F �

Let L be a HEL and T ∈ Th(L). We define a relation FB(T) on the term algebra
in the following way: for each sort S, FB(T)S is the set of all pairs (t, t′) of formulas
of type S, such that T `FBEL t ≈ t′. Thus, FB(T) = 〈FB(T)S : S ∈ SORT〉.

Lemma 3.24. Let L be a strict HEL. Then for every T ∈ Th(L), GFB(T) ⊆
FB(T).

A SHORT OVERVIEW OF HIDDEN LOGIC 25

Proof. Let T ∈ Th(L). Suppose that t ≈ t′ ∈ GFB(T). Let s ≈ s′ be a visible
equation. Suppose that T ∪ {t ≈ t′} `LUH s ≈ s′. Then, CnLUH(T) ∪ {t ≈ t′} `LUH

s ≈ s′. Hence, by hypothesis, CnLUH(T) `LUH s ≈ s′. So, T `LUH s ≈ s′. I.e.,
(t, t′) ∈ FB(T). �

The following corollary is a consequence of the previous Lemma and Theorem
3.18. It provides a necessary condition for an equation to be a behavioral conse-
quence of a theory.

Corollary 3.25. Let L be a strict equational HEL and t ≈ t′ an equation. Then,
for every T ∈ Th(L)

(13) t ≡ t′ (Ω(T))⇒ T `FBEL t ≈ t′.

An important result of this paper is the converse of (13). First we show that,
similarly to the global behavioral consequence, the formal behavioral consequence
relation is closed under LUH-consequences.

Lemma 3.26. Let L be a strict equational HEL, T ∈ Th(L) and F a set of
equations. Then T `FBEL F and F `LUH t ≈ t′ implies that T `FBEL t ≈ t′.

Proof. Let s ≈ s′ be a visible equation such that T ∪ {t ≈ t′} `LUH s ≈ s′. Then,
T ∪ F `LUH s ≈ s′. Since T `FBEL F , we have that T `LUH s ≈ s′. Therefore,
T `FBEL t ≈ t′. �

Therefore,

Corollary 3.27. Let L be a strict equational HEL and T ∈ Th(L). Then FB(T)
is a theory of LUH.

Theorem 3.28. Let L be a strict equational HEL and T ∈ Th(L). Then

(1) FB(T)V = TV , for all V ∈ VIS.
(2) FB(T) ⊆ Ω(T).

Proof. Clearly TV ⊆ FB(T)V for all V ∈ VIS. Let t ≈ t′ ∈ FB(T)V . Then,
by definition, for every visible equation s ≈ s′, T ∪ {t ≈ t′} `LUH s ≈ s′ implies
T `LUH s ≈ s′. In particular, T `LUH t ≈ t′, i.e., T `L t ≈ t′. Since T is a theory,
t ≈ t′ ∈ T .
FB(T) ⊆ Ω(T) is a consequence of Corollary 3.27 and the fact that Ω(T) is the

largest congruence equal to T on the visible part. �

We now have gathered all the necessary results to prove the following character-
ization of the behavioral consequences of a theory.

Theorem 3.29. Let L be a strict equational HEL and T ∈ Th(L). Then, for every
t, t′ ∈ TeΣ(X),

(14) t ≡ t′ (Ω(T))⇔ T `FBEL t ≈ t′.

Proof. The direct implication is just Corollary 3.25, and the converse follows from
Part (2) of Theorem 3.28. �

26 ISABEL FERREIRIM AND MANUEL A. MARTINS

4. Conclusion

The discussion of AAL in the many sorted case started in the early nineties. In
[9, Section 15] Blok and Pigozzi presented some results for equality-test algebras,
where notions such as reduced matrix are dealt with. However, one can credit
Don Pigozzi with the seminal ideas presented in 1999 in a course at University of
Lisbon, that opened this new area of research. This application of AAL to computer
science, namely to behavioral equivalence, produced several results, based on the
theory of hidden k-logic. We believe that there is space for further developments.
Actually, we are currently trying to use tools from AAL to deal with behavioral
transitions, another topic in computer science. Preordered algebra is the natural
algebraic framework to specify and reason about transitions. In [17] Diaconescu
studies a combination of preordered algebra and hidden algebra, which he calls
hidden preordered algebra. A new concept appears in this context - behavioral
transition. Behavioral transitions are already presented in CafeOBJ, however there
are still several aspects that need more attention. For instance its methodological
aspects remain unexplored. As shown in [17], the coinduction proof method for
behavioral equivalence can be extended to proving behavioral transitions. This
method is based on the fact that the behavioral preordered algebra congruence on
an ordered algebra (A,≤) is the largest hidden preordered algebra congruence on
(A,≤). This is similar to the case of hidden congruence (behavioral equivalence)
vs. Leibniz congruence. Hence, we believe that a model with two filters, one for
equations and another for transitions might prove a good fit as a semantics for this
computer science paradigm. Raftery’s work [47] on ordered algebraizable logics will
probably play an important role in our intended application.

References

[1] S. Babenyshev and M. A. Martins. Deduction detachment theorem in hidden k-logics. J. Log.
Comput., 24(1): 233-255, 2014.

[2] S. Babenyshev and M. A. Martins. Behavioral equivalence of hidden logics: an abstract

algebraic approach. Accepted in Journal of Applied Logic.
[3] N. Berreged, A. Bouhoula, and M. Rusinowitch. Observational proofs with critical contexts.

In Fundamental Approaches to Software Engineering, volume 1382 of LNCS, Springer, pages

38–53. 1998.
[4] M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural properties.

Theor. Comput. Sci., 165(1):3–55, 1996.

[5] M. Bidoit and R. Hennicker. Observer complete definitions are behaviourally coherent. In
Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods’99, Toulouse, France, Sep., pages

83–94. 1999. Preliminary long version available as Report LSV 99-4.
[6] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifications. Sci.

Comput. Program., 25(2-3):149–186, 1995.
[7] W. J. Blok and D. Pigozzi. Protoalgebraic logics. Stud. Logica, 45:337–369, 1986.
[8] W. J. Blok and D. Pigozzi. Algebraizable logics, Memoirs of the American Mathematical

Society, vol. 77, 396, 1989.

[9] W. J. Blok and D. Pigozzi. Algebraic semantics for universal Horn logic without equality,
Universal algebra and quasigroup theory, Lect. Conf., Jadwisin/Pol. 1989, Res. Expo. Math.

19, 1-56 , 1992.
[10] A. Bouhoula and M. Rusinowitch.Observational proofs by rewriting, Theor. Comput. Sci.,

275, (2002), no. 1-2, 675–698.
[11] C. Caleiro, R. Gonçalves and M. A. Martins. Behavioral Algebraization of Logics, Studia

Logica, 91(1): 63–111, 2009.
[12] J. Czelakowski. Equivalential logics. (I,II). Stud. Logica, 40:227–236 and 355–372, 1981.

A SHORT OVERVIEW OF HIDDEN LOGIC 27

[13] J. Czelakowski. Protoalgebraic logics. Trends in Logic–Studia Logica Library. 10. Dordrecht:

Kluwer Academic Publishers, 2001.

[14] J. Czelakowski and R. Jansana. Weakly algebraizable logics, J. Symb. Log., 65, (2000), no. 2,
641–668.

[15] J. Czelakowski and D. Pigozzi. Amalgamation and interpolation in abstract algebraic logic.

In Caicedo, Xavier et al. (ed.), Models, algebras, and proofs. Selected papers of the X Latin
American symposium on mathematical logic, Bogotá, Colombia, June 24–29, 1995. New

York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 203, pages 187–265. 1999.

[16] L. Descalço and M. A. Martins. On the injectivity of the Leibniz operator. Bull. Sect. of
Logic, 34(4): 203–211, 2005.

[17] R. Diaconescu. Coinduction for preordered algebra. Inf. Comput., 209(2): 108–117, 2011.

[18] R. Diaconescu and K. Futatsugi. CafeOBJ report: The language, proof techniques, and
methodologies for object-oriented algebraic specification. In A. series in Computing, editor,

World Scientific, volume 6, 1998.
[19] R. Diaconescu and K. Futatsugi. Behavioural coherence in object-oriented algebraic specifi-

cation. J. UCS, 6(1):74–96, 2000.

[20] J. Font and R. Jansana. A general algebraic semantics for sentential logics. Lecture Notes in
Logic, 7. Berlin: Springer, 1996.

[21] J. Font, R. Jansana and D. Pigozzi. A survey of abstract algebraic logic, Studia Logica, 74,

(2003), 13–97.
[22] J. Goguen. Types as theories. In Topology and category theory in computer science, Oxford

Sci. Publ., pages 357–390. Oxford Univ. Press, New York, 1989.

[23] J. Goguen, K. Lin, and G. Roşu. Conditional circular coinductive rewriting with case analysis,
Recent Trends in Algebraic Development Techniques, 16th International Workshop, WADT

2002, Revised Selected Papers, 216–232, 2002.

[24] J. Goguen and G. Malcolm. Hidden coinduction: Behavioural correctness proofs for objects,
Math. Struct. in Comp. Science, 9, (1999), no. 3, 287–319.

[25] J. Goguen and G. Malcolm. A hidden agenda, Theor. Comput. Sci., 245, (2000), no. 1,
55–101.

[26] J. Goguen and G. Roşu. Hiding more of hidden algebra., Wing, Jeannette M. (ed.) et al., FM

’99. Formal methods.World congress on Formal methods in the development of computing
systems. Toulouse, France, September 20-24, 1999. Proceedings. In 2 vols. Berlin: Springer;

3-540-66588-9 (vol. 2)). Lect. Notes Comput. Sci. 1708; 1709, 1704-1719 (1999).

[27] E. Goriac, D. Lucanu, and G. Roşu. Automating coinduction with case analysis. In Formal
Methods and Software Engineering - 12th International Conference on Formal Engineering

Methods, ICFEM 2010, Shanghai, China, November 17-19, 2010. Proceedings, pages 220–

236, 2010.
[28] R. Hennicker. Structural specifications with behavioural operators: semantics, proof methods

and applications, Habilitationsschrift, 1997.

[29] R. Hennicker and M. Bidoit. Observational logic. In Proc. AMAST ’98, 7th International
Conference on Algebraic Methodology and Software Technology. Lecture Notes in Computer

Science, Berlin: Springer, pag. 263–277. 1999.
[30] B. Herrmann. Equivalential and algebraizable logic. Stud. Log., 57(2-3):419–436, 1996.

[31] J. Goguen, K. Lin and G. Roşu. Circular coinductive rewriting. In Proceedings, Automated

Software Engineering ’00 (Grenoble France), IEEE Press, pages 123–131. September 2000.
[32] G. T. Leavens and D. Pigozzi. A complete algebraic characterization of behavioral subtyping.

Acta Inf., 36(8):617–663, 2000.
[33] G. T. Leavens and D. Pigozzi. Equational reasoning with subtypes. Technical Report

TR #02-07, Iowa State University, July 2002. Available at ftp://ftp.cs.iastate.edu/

pub/techreports/ TR02-07/TR.pdf.

[34] G. Malcolm. Behavioural equivalence, bisimulation, and minimal realisation. In Magne Haver-
aaen and Olaf Owe and Ole-Johan Dahl (eds.), Recent Trends in Data Type Specifications.

11th Workshop on Specification of Abstract Data Types. Springer-Verlag Lecture Notes in
Computer Science, 1996.

[35] M. A. Martins. Behavioral reasoning in generalized hidden logics. PhD thesis, University of

Lisbon, 2004.

[36] M. A. Martins. Behavioral institutions and refinements in generalized hidden logics, J.
Univers. Comput. Sci., 12(8): 1020–1049, 2006.

28 ISABEL FERREIRIM AND MANUEL A. MARTINS

[37] M. A. Martins. Closure properties for the class of behavioral models. Theor. Comput. Sci.,

379(1–2): 53–83, 2007.

[38] M. A. Martins. On the behavioral equivalence between k-data structures. Computer Journal,
51(2): 181–191, 2008.

[39] M. A. Martins and D. Pigozzi. Behavioural reasoning for conditonal equations. Math. Struct.

Comput. Sci., 17(5): 1075–1113, 2007.
[40] K. Meinke and J. V. Tucker. Universal algebra, Handbook of logic in computer science, Vol.

1, Handb. Log. Comput. Sci., vol. 1, Oxford Univ. Press, New York, 1992, pp. 189–411.

[41] B. Moore and G. Roşu. Program verification by coinduction. Technical Report. Available at
http://hdl.handle.net/2142/73177, University of Illinois, February 2015.

[42] P. Padawitz. Swinging types=functions+relations+transition systems. Theor. Comput. Sci.,

243 (2000), no. 1-2, 93–165.
[43] K. M. Pa lasińska. Deductive systems and finite axiomatization properties. PhD thesis, Iowa

State University, 1994.
[44] D. Pigozzi. Equality-test and if-then-else algebras: Axiomatization and specification. SIAM

J. Comput., 20(4):766–805, 1991.

[45] D. Pigozzi. Abstract algebraic logic and the specification of abstract data types, Preprint, June
1999.

[46] D. Pigozzi. Abstract algebraic logic, Encyclopedia of Mathematics, Supplement III

(M. Hazewinkel, ed.), Kluwer Academic Publishers, Dordrecht, December 2001, pp. 2–13.
[47] J.G. Raftery. Order algebraizable logics, Annals of Pure and Applied Logic. 164 (3), 251–283,

2013.

[48] H. Reichel. Behavioural validity of conditional equations in abstract data types. In Proceedings
of the Viena Conference (1984).

[49] H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct.

Comput. Sci., 5(2):129–152, 1995.
[50] G. Roşu. Hidden Logic. PhD thesis, University of California, San Diego, 2000.

[51] A. Tarski. Fundamentale begriffe der methodologie der deduktiven wissenschaften. i. Monat-
shefte für Mathematik and Physik. 37:361–404, 1930. English translaction in: Fundamental

concepts of the methodology of the deductive systems.

[52] G. Voutsadakis. Categorical Abstract Algebraic Logic: Categorical Algebraization of Equa-
tional Logic. Logic Journal of the IGPL, 12(4), 313–333, 2004.

[53] G. Voutsadakis. Categorical Abstract Algebraic Logic: Behavioral π-Institutions. Studia Log-

ica, 102 (3), 617-646, 2014.
[54] W. Wechler. Universal algebra for computer scientists. EATCS Monographs on Theoretical

Computer Science. 25. Berlin: Springer-Verlag, 1992.

[55] R. Wójcicki. Theory of logical caculi. Basic theory of consequence operations. Synthese Li-
brary, 199. Dordrecht: Kluwer Academic Publishers, 1988.

Department of Mathematics, University of Lisbon, Portugal

E-mail address, I. Ferreirim: imferreirim@ciencias.ulisboa.pt

CIDMA- Center for R&D in Mathematics and Applications, Department of Mathe-
matics, University of Aveiro, Portugal

E-mail address, M. Martins: martins@ua.pt

	1. introduction
	1.1. Related work
	Outline of the paper

	2. Hidden k-logic
	2.1. Data structures and Leibniz congruence
	2.2. Hidden k-logic
	2.3. Concrete examples

	3. Behavioral equivalence
	3.1. Formal Behavioral Consequence Relation
	3.2. Strict equational HEL.

	4. Conclusion
	References

