Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Respiratory Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>RC-02765.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Review Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Marques, Alda; University of Aveiro, Escola Superior de Saúde Oliveira, Ana; University of Aveiro, School of Health Sciences Jácome, Cristina; University of Aveiro, School of Health Sciences</td>
</tr>
<tr>
<td>Categories:</td>
<td>Airway clearance/secrection management, Bronchodilators, Outcome measures</td>
</tr>
</tbody>
</table>
TITLE:

Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review

ARS as outcome measures for respiratory therapy

Alda S. P. D. Marques, PhD¹,², Ana L. A. Oliveira¹, PT, Cristina I. O. Jácome, MSc¹,³

¹ School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
² Unidade de Investigação e Formação sobre Adultos e Idosos (UniFAI), Porto, Portugal
³ Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, University of Porto, Portugal

Funding

This work was funded by Fundação para a Ciência e a Tecnologia (FCT), Portugal (Project: Adventitious lung sounds as indicators of severity and recovery of lung pathology and sputum location- PTDC/SAU-BEB/101943/2008).

Conflict-of-interest statement

The authors report no conflict of interests.

Contributors

AO conducted the literature search. AM, AO and CJ decided the articles inclusion. AM and AO assessed the studies quality. AM and CJ extracted the data from studies. AM, CJ and AO drafted the manuscript and revised it critically for important intellectual content.

Corresponding author: Alda Marques, School of Health Sciences, University of Aveiro (ESSUA), Agras do Crasto - Campus Universitário de Santiago, Edifício 30, 3810-193 Aveiro, Portugal. Telephone: 00351 234 372 462. Email: amarques@ua.pt
1 Abstract

2 Introduction: There is a need to develop simple, non-invasive and sensitive outcome measures for respiratory therapy. Adventitious respiratory sounds (i.e., crackles and wheezes) can be objectively characterized with computerized respiratory sound analysis and have been shown to contribute for diagnosis purposes however; their potential to be used as outcome measures is unknown. Thus, this systematic review synthetizes the evidence on the use of computerized adventitious respiratory sounds as outcome measures.

3 Methods: The Web of knowledge, MEDLINE, EMBASE and SCOPUS databases were searched. Reviewers independently selected studies according to the eligibility criteria. Effect sizes and 95% confidence intervals were computed.

4 Results: Twelve studies with different designs (observational (n=3), quasi-experimental (n=7) and randomized controlled trial (n=2)) were included. Eight studies were conducted with adults and four with children. Most studies explored only one type of adventitious respiratory sound. For wheezes, the occupation rate seemed to be the most promising parameter to be used as an outcome measure, with high/medium effect sizes (from 0.62 to 1.82). For crackles, the largest deflection width showed high effect sizes (1.31 and 1.04) however, it was only explored in one study. Crackle number and two cycle duration presented conflicting information, with high/poor effect sizes depending on the study.

5 Conclusion: Specific variables of each adventitious respiratory sound detected and characterized by computerized respiratory sound analysis showed high effect sizes and thus, potential to be used as outcome measures. Further research with robust study designs, larger samples, both of children and adult populations, and following CORSA guidelines are needed to build evidence base knowledge on this topic.

6 Key words: computerized respiratory sound analysis; respiratory sounds; adventitious respiratory sounds; wheezes; crackles; outcome measure
Introduction

Respiratory diseases are a major cause of societal, health and economic burden worldwide\(^1\). Therefore, in the last decade, significant research efforts have been dedicated to improve early diagnosis and routine monitoring of patients with respiratory diseases to allow timely interventions. However, this has been found to be highly challenging with the available respiratory measures (e.g., spirometry, blood gas analysis, imaging techniques), since they are commonly affected by patient’s motivation and cooperation, are not always available in all clinical settings and are expensive\(^2,3\).

Computerized respiratory sound analysis, which consists of recording patients’ respiratory sounds with an electronic device and analyzing them based on specific signal characteristics\(^4\) is a simple, objective and non-invasive method to detect and characterize adventitious respiratory sounds (ARS), i.e., crackle (CR) and wheeze (WH). ARS provide crucial information on respiratory dysfunction\(^4\) and changes in their characteristics (intensity, duration, timing, etc.) might inform the clinical course of respiratory diseases and treatments\(^5,6\). Through the use of computerized respiratory sound analysis, ARS have been found to be a more sensitive indicator, detecting and characterizing the severity of the respiratory disease before any other measure\(^7\). Thus, this approach through the objective data collection and management, generation of permanent records of the measurements made with easy retrievability and through graphical representations, assists the diagnosis and monitoring of patients with respiratory diseases\(^6,11\).

However, research on this topic has been focusing on the use of computerized respiratory sound analysis as a diagnostic aid\(^12\) and the findings reporting its potential to be used as an outcome measure, i.e., to monitor respiratory treatments, are widespread in the literature. Thus, this systematic review synthetizes the evidence on the use of computerized ARS as outcome measures.

Methods

Search strategy
An electronic literature search was performed from December 2012 to January 2013 in Web of knowledge (1970-2012), MEDLINE (1948-2012), EMBASE (1974-2012) and SCOPUS (1960-2013) databases. Search terms were based on a combination of the following keywords: monitor* OR "computerized analyses" OR "digital auscultation" OR "electronic auscultation" OR "automatic auscultation" OR "acoustic signal processing" AND "added lung sounds" OR "abnormal lung sounds" OR "adventitious lung sounds" OR "adventitious respiratory sounds" OR crackle* OR wheez*. The search terms were limited to titles and abstracts. The reference lists of the selected articles were scanned for other potential eligible studies. Additionally, a weekly update was conducted until June 2013. This systematic review is reported according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines.

Eligibility criteria

Articles were included if 1) they detected and characterized ARS with computerized respiratory sound analysis before and after an intervention on adults or children; 2) were experimental, quasi-experimental or observational studies; 3) were full papers published as original articles or in conference proceedings and 4) were written in English, Portuguese, Spanish or French. Articles were excluded if the study was conducted with animals or assessed ARS with computerized respiratory sound analysis only at one specific moment in time. Book chapters, review papers, abstracts of communications or meetings, letters to the editor, commentaries to articles, unpublished work and study protocols were not considered suitable and, therefore, were also excluded from this review.

Study selection

Duplicates were first removed. Then, the title, abstract and keywords were analyzed to assess the type and relevance of the publication for the scope of the review. Finally, the full-text of potentially relevant articles was independently screened for content by the three reviewers to decide its inclusion in the review. Reviewers resolved disagreements by consensus.

Data extraction
Data from the included articles were extracted in a structured table format, i.e., first author’s last name and year of publication, type of study, participants, intervention, data collection protocol, recording device, data analyses, ARS outcome and findings.

Quality assessment

The quality of the included studies was assessed with the checklist created by Downs and Black. The checklist provides a list of 27 questions to measure study quality, split into five sections: reporting (ten items); external validity (three items); internal validity – bias (seven items); internal validity – confounding (seven items) and power (one item). Similarly to previous systematic reviews, the scoring for question 27 - dealing with statistical power, was simplified to a choice of awarding either 1 point or 0 points, depending on whether there was sufficient power to detect a clinically important effect. Downs and Black score ranges were grouped into the following 4 quality levels: excellent (26–28), good (20–25), fair (15–19), and poor (≤14). The risk of bias assessment was carried out by two independent reviewers. Disagreements between reviewers were resolved by reaching a consensus through discussion.

Data analysis

To determine the consistency of the quality assessment performed by the two reviewers, an inter-rater agreement analysis using the Cohen’s kappa was performed. The value of Cohen’s kappa ranges from 0 to 1 and can be categorized as slight (0.0–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80) or almost perfect (≥0.81) agreement. This statistical analysis was performed using PASW Statistics (version 18.0, SPSS Inc., Chicago, IL). When quantitative pooling was appropriate the effect sizes together with the 95% confidence intervals (95% CI) were computed for the outcomes of interest. The effect sizes (ES) were interpreted as low (0.20), medium (0.50) and high (0.80) effect magnitudes. This quantitative data analyses were performed using the meta-analysis software Comprehensive Meta-Analysis (CMA) version 2 (Biostat, Englewood, New Jersey).

Results

Study selection
The database search identified 1224 records. After duplicates removal, 900 records were screened for relevant content. During the title, abstract and keyword screening, 876 articles were excluded. The full-text of the 24 potentially relevant articles was assessed and 18 articles were excluded due to the following reasons: ARS detection was performed with standard auscultation (n=2) or manual annotation (n=4), ARS automatic detection occurred only in one specific time-point to validate algorithms (n=5), did not provide data on ARS (n=3) and an intervention was absent (n=4). Six original articles were included in the review. The search for relevant articles within the reference list of the selected articles retrieved 6 studies which were also included.

(insert figure 1 about here)

Quality assessment

The articles included in this review scored 10 to 21 on the Downs and Black checklist, with a mean of 14.42±0.93 (Table 1). Results of the risk of bias assessment indicated that seven (64%) studies had poor quality, four had fair quality and one good quality. Studies scored particularly poor on the following items: description of confounders, sample representativeness, patient blinding, outcome assessor blinding, recruitment, randomization, adjust for confounding factors in the analysis and power to detect outcomes that are clinically important. The agreement between two authors was almost perfect (k=0.825; 95% CI 0.758-0.885; p=0.001).

(insert table 1 about here)

Study characteristics

The majority of the included studies were quasi-experimental\(^5, 20-25\), three were observational\(^26-28\) and two were randomized controlled trials\(^29, 30\). Ten studies recruited patients receiving specialized care and two during hospital admission\(^24, 27\). A total of 275 subjects (n=126; 45.8% male) participated in the included studies, 47 were healthy subjects and 208 had respiratory conditions (Asthma (n=84), Pneumonia (n=11), Cystic fibrosis (n=23), Chronic Obstructive Pulmonary Disease (COPD) (n=6), prolonged cough (n=28), Bronchiolitis (n=27), Bronchiectasis (n=23) and Lower Respiratory Tract Infection (LRTI) (n=26)). Eight studies were
conducted with adults (n=167; 60.7%; age range 21-73 years old)\(^5, 21, 24-29\) and four with children (n=108; 39.3%; age range 4 months - 18 years old)\(^20, 22, 23, 30\).

The interventions of most studies consisted of pharmacotherapy\(^20-30\), only two studies combined pharmacotherapy with respiratory physical therapy\(^5, 29\). The respiratory physical therapy consisted mainly in active cycle of breathing techniques\(^5, 29\), but also breathing retraining techniques; incentive spirometry; thoracic mobility, expansion and flexibility exercises and aerobic training\(^29\). In almost all studies, the respiratory sounds were recorded in more than one chest location however, in three studies recordings were performed exclusively in the trachea\(^21, 25, 26\). Only the three more recent studies, acquired the respiratory sounds following the Computerized Respiratory Sound Analysis (CORSA) guidelines for short-term acquisition\(^5, 28, 29\).

The recording devices used varied among studies: microphones\(^21, 24, 25, 27, 29\), piezoelectric sensors\(^20, 22, 23, 26, 30\) and electronic stethoscopes\(^5, 28\).

Algorithms based on Fast Fourier Transformation were the most used to automatically detect ARS. Two studies used an algorithm based on Short-Time Fourier transformation\(^28, 29\) and one used a modification of the algorithm proposed by Shabtai-Musih et al.\(^31\) and Homs-Corbera et al.\(^25, 32\). A total of nine studies analyzed WHs (3 were conducted in children), two analyzed CRs\(^5, 27\) and one both WHs and CRs in children\(^30\). Two studies detected breathing cycles automatically, one used an analogous method reported by Qiu et al.\(^5, 33\) and the other used the Huq and Moussavi algorithm\(^30, 34\). Only three studies considered the breathing phases (inspiration and expiration) in the analysis of the ARS\(^26, 27, 29\).

(insert table 2 about here)

Synthesis of the results

Wheezes

Presence

The presence of WHs was used to identify a bronchial response during bronchial provocation tests in two studies conducted with children\(^20, 22\). Sanchez et al. (1993) used concentrations of
methacholine and found that WHs had 50% sensitivity and 100% specificity to detect bronchial hyperreactivity20. Bentur et al. (2004) observed that WHs were detected after a mean adenosine concentration of 15.6mg/ml22. Both studies verified that WHs were feasible to assess bronchial reactivity.

Number

Two studies investigated the number of WHs in adults. Oliveira et al. (2013) found a significant increase in the number of WHs after 3 weeks of standard medical treatment (6 vs. 14.8; p=0.03; ES=4.38) in patients with LRTI28. A similar result, but not significant, was found in subjects with stable asthma after terbutaline inhalation (ES=0.34), however in healthy subjects and subjects with non-stable asthma a non-significant decrease was observed (ES=-0.10 and ES=-0.012, respectively)26.

Frequency

The frequency of WHs was investigated in four studies conducted with adults21, 25, 28, 29. After terbutaline inhalation, the frequency of WHs significantly decreased in patients with asthma (ES=-0.15), COPD (ES=-0.21) and in healthy subjects (ES=-0.28)21. Similar, however non-significant, results were found with the same intervention in healthy subjects (ES=-0.18) and subjects with non-stable asthma (ES=-0.24)25. In subjects with stable asthma (ES=0.01)25 and LRTI (ES=-0.06)28 the frequency remained approximately the same. Dinis et al. (2013) investigated the effect of respiratory physical therapy in subjects with LRTI and observed a non-significant increase in the frequency of inspiratory and expiratory WHs in both experimental (ES=0.73 and ES=0.04, respectively) and control groups (ES=0.97 and ES=0.97, respectively)29.

Occupation rate

This parameter, which is the proportion of the respiratory cycle occupied by WHs, was explored in studies conducted with children and adults. In three studies the wheeze occupation rate (WH\%) was used to analyze the effect of pharmacotherapy24, 25, 30. A non-significant reduction in WH\% during the night in the group of subjects administered with long-acting sympathomimetic
agent (ES=-1.9) was found; whereas in the placebo group, a significant increase was observed (ES=1.15). In a study conducted with infant viral bronchiolitis, WH% also decreased 10 minutes after the administration of epinephrine (ES=-1.09); however it increased in the group of children administered with albuterol (ES=1.27). Nevertheless, no significant differences were found between or within groups. When exploring monophonic and polyphonic WH% significant change was also not found however, low effect sizes in non-stable and healthy subjects and medium effect sizes in subjects with stable asthma (ES=-0.54) were found. A significant decrease in inspiratory and expiratory WH% was found after 3 weeks of pharmacotherapy plus respiratory physical therapy (ES=-0.66 (inspiratory); ES=-0.64 (expiratory)) or pharmacotherapy alone (ES=-0.69 (inspiratory); ES=-0.62 (expiratory)). A similar result was found for the nocturnal WH index, calculated from the WH% (after 2 days (ES=-0.61) and after 6 weeks (ES=-0.80)), when monitoring respiratory sounds overnight to assess the effects of montelukast in nocturnal asthma.

Duration

Two studies explored this variable when assessing the impacts of pharmacotherapy with adult subjects. In both studies WH duration remained approximately the same pre/post intervention. Only in subjects with moderate and severe obstruction, changes in the duration of WHs after medication were observed.

Crackles

Three studies analyzed the number of CRs before and after intervention and no significant differences were found. In two studies, this variable remained approximately the same, with effect sizes ranging from 0.02 to 0.22. In the study of Beck et al., the number of CRs increased (ES=0.58) with albuterol and decreased with epinephrine (ES=-1.65).

Frequency
The CR frequency was analyzed only in one study27. The peak frequency increased during inspiration (ES=0.11) and decreased during expiration (ES=-0.47) whereas the upper frequency at -20-dB level decreased in both inspiration (ES=-0.12) and expiration (ES=-0.35). No significant differences were found.

\begin{itemize}
\item Two cycle duration (2CD), Largest deflection width (LDW) and Initial deflection width (IDW)
\end{itemize}

Two studies analyzed the 2CD variable; Marques et al. did not show any change from pre to post intervention (ES=0.07)5 and Piirila showed a non-significant reduction post intervention both in inspiratory (ES=-0.85) and expiratory (ES=-0.83) phases27. In the study of Piirila, both LDW and IDW of inspiratory (ES=-1.25 and -0.38) and expiratory (ES=-1 and -0.76) CRs were shorter after the intervention27.

\begin{itemize}
\item Timing
\end{itemize}

Only Piirila explored timing parameters of the CRs related to inspiratory tidal volume and inspiratory and expiratory phases. These parameters were significantly different post intervention (ES from 0.5 to 1.14).

Due to the heterogeneity of the outcome measures used across studies, a meta-analysis was not possible to compute.

\begin{itemize}
\item Discussion
\end{itemize}

The main finding of this systematic review was that ARS detected and characterized by computerized respiratory sound analysis show potential to be used as outcome measures in children and adults, as specific variables of each ARS presented high effect sizes. However, the most appropriate variable(s) or variables are yet to be explored.

Most studies (11/12) explored WH presence and characteristics before/after an intervention. Wheeze occupation rate seemed to be the most promising parameter to be used as an outcome measure in children and adults, with medium to high effect sizes varying from 0.62 to 1.924, 29. A strong association between the proportion of the respiratory cycle occupied by WHs and the degree of bronchial obstruction has been widely demonstrated21-23, 35. This WH parameter, even
when identified with standard auscultation, has shown to be sensitive to assess the effectiveness of respiratory interventions in children. The WH complexity may also be a variable of interest as the presence of polyphonic WHs indicates a more serious obstruction than monophonic WHs, however, this was only explored in one study (ES from 0.24 to 0.54). Wheeze monitoring has been found to provide more information on the changes of airway obstruction than measurements of pulmonary function, such as the percentage predicted of FEV₁ in people with asthma. Thus, WHs and their variables seem to be a promising objective outcome measure for all populations with a special emphasis on non-collaborative populations such as children, people with dementia and people in the intensive care. However, it should be noticed that WHs only occur when there is a flow limitation (but flow limitation is not necessarily accompanied by WHs), that reaches a critical value, called flutter velocity. Thus, when there is not enough flow to generate WHs, WHs parameters will not be useful despite the presence of the respiratory problem. The complementary information provided by CRs is therefore, crucial.

Crackles are assumed to be caused by the sudden opening of abnormally closed airways, and their parameters provide essential information about the function and structure of the tracheobronchial tree, e.g., CR recording during mechanical ventilation has been considered a simple method to monitor lung recruitment-derecruitment. However, CR variables have been explored as outcome measures in only three studies. From the limited evidence available, LDW seemed to be the most valuable parameter to be used as an outcome measure due to its high effect sizes (1 and 1.25). Hoevers and Loudon (1990) had already found that LDW seemed to be a better measure than IDW or 2CD when differentiating between coarse and fine CRs. However, LDW was also the variable less explored among studies. Conflicting information was found for the number of CRs and 2CD. The number of CRs had low effect sizes reported in Piirila (0.14 and 0.22) and in Marques et al. (0.02) studies, and medium/high effect sizes in Beck et al. (0.74 and 1.65). High (0.83 and 0.85) and low (0.07) effect sizes were also found for the variable 2CD. The timing of CRs (ES 0.5 to 1.14) also showed to be sensitive to the clinical course of pneumonia and has been described as a sensitive parameter to discriminate respiratory diseases. However, similarly to LDW limited research has been conducted considering this parameter as an outcome measure. At this point in time it is difficult to provide any recommendations on which CR's variable(s) are more adequate to be
used as an outcome measure to monitor respiratory interventions. These limited and conflicting data may be a result of the different respiratory sound acquisition sensors (which differ in their acoustic sensitivity to capture CRs waveforms), filtering and analysis methods used across studies. Since CRs show potential for diagnosis purposes but also as an outcome measure for respiratory treatments in different clinical/research contexts, these procedures need to be standardized. This will allow comparisons among different studies and improve the understanding of CRs’ mechanisms and acoustic characteristics.

The study of both main types of ARS is essential to gather complementary information about the tracheobronchial tree. This information may help health professionals to conduct more accurate diagnosis and enhance their understanding about the respiratory system responses to treatments. However, only one study analyzed both types of ARS as an outcome measure in a study conducted with children. Thus, the study of computerized ARS is an exciting area where much research is needed to develop knowledge for diagnosis and monitoring of patients but also to be used as a non-invasive, objective and reliable outcome measure for treatments.

The level of evidence that can be drawn at this moment in time from this systematic review is considerably weak due to the 1) small sample sizes; 2) distinct respiratory therapies and doses implemented and 3) different ARS variables used in the included studies. The large variety of acquisition methods used is an issue added to the list of difficulties when comparing results across studies. A BIOMED 1 Concerted Action project entitled CORSA, funded by the European Community, developed guidelines for research and clinical practice in the field of respiratory sound acquisition and analysis. The CORSA project group produced guidelines on the definitions of medical/technical terms used in pulmonary acoustics; environmental conditions; patient management procedures; acquisition, pre-processing, digitization and analysis of respiratory sounds; and also about publishing the results of research. These international guidelines have been available since 2000, however from the 9 studies conducted after this year, only 3 followed the acquisition procedures recommended by CORSA. Regarding the analysis methods, algorithms based on Fast Fourier Transformation were the most used, which is in accordance with the CORSA recommendations. Future research, with improved study designs, larger samples, both of children and adult populations, and following the CORSA
guidelines, should be conducted to explore the ARS response to respiratory therapies. This will facilitate the comparison of results from different studies, promote research into the development of standardized respiratory sound acquisition equipment and analysis and finally enhance the understanding of computerized ARS as well as their use as an outcome measure.

Conclusion

Specific variables of each ARS detected and characterized with computerized respiratory sound analysis showed high effect sizes and thus may have potential to be an objective, reliable and non-invasive outcome measure for respiratory therapy in children and adults. Further research exploring the ARS response to different respiratory therapies are needed to enhance the understanding of computerized ARS and their clinical use not only for the diagnosis purposes but also for monitoring patients and treatments.

References

37. Gomes EL, Postiaux G, Medeiros DR, Monteiro KK, Sampaio LM, Costa D. Chest physical therapy is effective in reducing the clinical score in bronchiolitis: randomized controlled trial. Revista brasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil)) 2012;16(3):241-247.

1 Figure captions

2 Figure 1 - PRISMA Flowchart of the included studies.
TITLE:

Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review

ARS as outcome measures for respiratory therapy

Alda S. P. D. Marques, PhD1,2, Ana L. A. Oliveira1, PT, Cristina I. O. Jácome, MSc1,3

1 School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
2 Unidade de Investigação e Formação sobre Adultos e Idosos (UniFAI), Porto, Portugal
3 Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, University of Porto, Portugal

Funding
This work was funded by Fundação para a Ciência e a Tecnologia (FCT), Portugal (Project: Adventitious lung sounds as indicators of severity and recovery of lung pathology and sputum location- PTDC/SAU-BEB/101943/2008).

Conflict-of-interest statement
The authors report no conflict of interests.

Contributors
AO conducted the literature search. AM, AO and CJ decided the articles inclusion. AM and AO assessed the studies quality. AM and CJ extracted the data from studies. AM, CJ and AO drafted the manuscript and revised it critically for important intellectual content.

Corresponding author: Alda Marques, School of Health Sciences, University of Aveiro (ESSUA), Agras do Crasto - Campus Universitário de Santiago, Edifício 30, 3810-193 Aveiro, Portugal. Telephone: 00351 234 372 462. Email: amarques@ua.pt
Abstract

Introduction: There is a need to develop simple, non-invasive and sensitive outcome measures for respiratory therapy. Adventitious respiratory sounds (i.e., crackles and wheezes) can be objectively characterized with computerized respiratory sound analysis and have been shown to contribute for diagnosis purposes however; their potential to be used as outcome measures is unknown. Thus, this systematic review synthetizes the evidence on the use of computerized adventitious respiratory sounds as outcome measures.

Methods: The Web of knowledge, MEDLINE, EMBASE and SCOPUS databases were searched. Reviewers independently selected studies according to the eligibility criteria. Effect sizes and 95% confidence intervals were computed.

Results: Twelve studies with different designs (observational (n=3), quasi-experimental (n=7) and randomized controlled trial (n=2)) were included. Eight studies were conducted with adults and four with children. Most studies explored only one type of adventitious respiratory sound. For wheezes, the occupation rate seemed to be the most promising parameter to be used as an outcome measure, with high/medium effect sizes (from 0.62 to 1.82). For crackles, the largest deflection width showed high effect sizes (1.31 and 1.04) however, it was only explored in one study. Crackle number and two cycle duration presented conflicting information, with high/poor effect sizes depending on the study.

Conclusion: Specific variables of each adventitious respiratory sound detected and characterized by computerized respiratory sound analysis showed high effect sizes and thus, potential to be used as outcome measures. Further research with robust study designs, larger samples, both of children and adult populations, and following CORSA guidelines are needed to build evidence base knowledge on this topic.

Key words: computerized respiratory sound analysis; respiratory sounds; adventitious respiratory sounds; wheezes; crackles; outcome measure
Introduction

Respiratory diseases are a major cause of societal, health and economic burden worldwide. Therefore, in the last decade, significant research efforts have been dedicated to improve early diagnosis and routine monitoring of patients with respiratory diseases to allow timely interventions. However, this has been found to be highly challenging with the available respiratory measures (e.g., spirometry, blood gas analysis, imaging techniques), since they are commonly affected by patient’s motivation and cooperation, are not always available in all clinical settings and are expensive.

Computerized respiratory sound analysis, which consists of recording patients’ respiratory sounds with an electronic device and analyzing them based on specific signal characteristics: is a simple, objective and non-invasive method to detect and characterize adventitious respiratory sounds (ARS), i.e., crackle (CR) and wheeze (WH). ARS provide crucial information on respiratory dysfunction and changes in their characteristics (intensity, duration, timing, etc.) might inform the clinical course of respiratory diseases and treatments. Through the use of computerized respiratory sound analysis, ARS have been found to be a more sensitive indicator, detecting and characterizing the severity of the respiratory disease before any other measure. Thus, this approach through the objective data collection and management, generation of permanent records of the measurements made with easy retrievability and through graphical representations, assists the diagnosis and monitoring of patients with respiratory diseases.

However, research on this topic has been focusing on the use of computerized respiratory sound analysis as a diagnostic aid and the findings reporting its potential to be used as an outcome measure, i.e., to monitor respiratory treatments, are widespread in the literature. Thus, this systematic review synthetizes the evidence on the use of computerized ARS as outcome measures.

Methods

Search strategy
An electronic literature search was performed from December 2012 to January 2013 in Web of knowledge (1970-2012), MEDLINE (1948-2012), EMBASE (1974-2012) and SCOPUS (1960-2013) databases. Search terms were based on a combination of the following keywords: monitor* OR "computerized analyses" OR "digital auscultation" OR "electronic auscultation" OR "automatic auscultation" OR "acoustic signal processing" AND "added lung sounds" OR "abnormal lung sounds" OR "adventitious lung sounds" OR "adventitious respiratory sounds" OR crackle* OR wheez*. The search terms were limited to titles and abstracts. The reference lists of the selected articles were scanned for other potential eligible studies. Additionally, a weekly update was conducted until June 2013. This systematic review is reported according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines

Eligibility criteria

Articles were included if 1) they detected and characterized ARS with computerized respiratory sound analysis before and after an intervention on adults or children; 2) were experimental, quasi-experimental or observational studies; 3) were full papers published as original articles or in conference proceedings and 4) were written in English, Portuguese, Spanish or French. Articles were excluded if the study was conducted with animals or assessed ARS with computerized respiratory sound analysis only at one specific moment in time. Book chapters, review papers, abstracts of communications or meetings, letters to the editor, commentaries to articles, unpublished work and study protocols were not considered suitable and, therefore, were also excluded from this review.

Study selection

Duplicates were first removed. Then, the title, abstract and keywords were analyzed to assess the type and relevance of the publication for the scope of the review. Finally, the full-text of potentially relevant articles was independently screened for content by the three reviewers to decide its inclusion in the review. Reviewers resolved disagreements by consensus.

Data extraction
Data from the included articles were extracted in a structured table-format, i.e.: first author's last name and year of publication, type of study, participants, intervention, data collection protocol, recording device, data analyses, ARS outcome and findings.

Quality assessment

The quality of the included studies was assessed with the checklist created by Downs and Black. The checklist provides a list of 27 questions to measure study quality, split into five sections: reporting (ten items); external validity (three items); internal validity – bias (seven items); internal validity – confounding (seven items) and power (one item). Similarly to previous systematic reviews, the scoring for question 27 - dealing with statistical power, was simplified to a choice of awarding either 1 point or 0 points, depending on whether there was sufficient power to detect a clinically important effect. Downs and Black score ranges were grouped into the following 4 quality levels: excellent (26–28), good (20–25), fair (15–19), and poor (≤14). The risk of bias assessment was carried out by two independent reviewers. Disagreements between reviewers were resolved by reaching a consensus through discussion.

Data analysis

To determine the consistency of the quality assessment performed by the two reviewers, an inter-rater agreement analysis using the Cohen’s kappa was performed. The value of Cohen’s kappa ranges from 0 to 1 and can be categorized as slight (0.0–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80) or almost perfect (≥0.81) agreement. This statistical analysis was performed using PASW Statistics (version 18.0, SPSS Inc., Chicago, IL). When quantitative pooling was appropriate the effect sizes together with the 95% confidence intervals (95% CI) were computed for the outcomes of interest. The effect sizes (ES) were interpreted as low (0.20), medium (0.50) and high (0.80) effect magnitudes. This quantitative data analyses were performed using the meta-analysis software Comprehensive Meta-Analysis (CMA) version 2 (Biostat, Englewood, New Jersey).

Results

Study selection
The database search identified 1224 records. After duplicates removal, 900 records were screened for relevant content. During the title, abstract and keyword screening, 876 articles were excluded. The full-text of the 24 potentially relevant articles was assessed and 18 articles were excluded due to the following reasons: ARS detection was performed with standard auscultation (n=2) or manual annotation (n=4), ARS automatic detection occurred only in one specific time-point to validate algorithms (n=5), did not provide data on ARS (n=3) and an intervention was absent (n=4). Six original articles were included in the review. The search for relevant articles within the reference list of the selected articles retrieved 6 studies which were also included.

Quality assessment

The articles included in this review scored 10 to 21 on the Downs and Black checklist, with a mean of 14.42±0.93 (Table 1). Results of the risk of bias assessment indicated that seven (64%) studies had poor quality, four had fair quality and one good quality. Studies scored particularly poor on the following items: description of confounders, sample representativeness, patient blinding, outcome assessor blinding, recruitment, randomization, adjust for confounding factors in the analysis and power to detect outcomes that are clinically important. The agreement between two authors was almost perfect (k=0.825; 95% CI 0.758-0.885; p=0.001).

Study characteristics

The majority of the included studies were quasi-experimental, three were observational and two were randomized controlled trials. Ten studies recruited patients receiving specialized care and two during hospital admission. A total of 275 subjects (n=126; 45.8% male) participated in the included studies, 47 were healthy subjects and 208 had respiratory conditions (Asthma (n=84), Pneumonia (n=11), Cystic fibrosis (n=23), Chronic Obstructive Pulmonary Disease (COPD) (n=6), prolonged cough (n=28), Bronchiolitis (n=27), Bronchiectasis (n=23) and Lower Respiratory Tract Infection (LRTI) (n=26)). Eight studies were...
conducted with adults (n=167; 60.7%; age range 21-73 years old)5, 21-24, 29 and four with children (n=108; 39.3%; age range 4 months - 18 years old)20, 22, 23, 30.

The interventions of most studies consisted of pharmacotherapy20-30, only two studies combined pharmacotherapy with respiratory physical therapy5, 29. The respiratory physical therapy consisted mainly in active cycle of breathing techniques5, 29, but also breathing retraining techniques; incentive spirometry; thoracic mobility, expansion and flexibility exercises and aerobic training29. In almost all studies, the respiratory sounds were recorded in more than one chest location however, in three studies recordings were performed exclusively in the trachea21, 25, 26. Only the three more recent studies, acquired the respiratory sounds following the Computerized Respiratory Sound Analysis (CORSA) guidelines for short-term acquisition5, 28, 29.

The recording devices used varied among studies: microphones21, 24, 25, 27, 29, piezoelectric sensors20, 22, 23, 26, 30 and electronic stethoscopes5, 28.

Algorithms based on Fast Fourier Transformation were the most used to automatically detect ARS. Two studies used an algorithm based on Short-Time Fourier transformation28, 29 and one used a modification of the algorithm proposed by Shabtai-Musih et al.31 and Homs-Corbera et al.25, 32. A total of nine studies analyzed WHs (3 were conducted in children), two analyzed CRs5, 27 and one both WHs and CRs in children30. Two studies detected breathing cycles automatically, one used an analogous method reported by Qiu et al.5, 33 and the other used the Huq and Moussavi algorithm30, 34. Only three studies considered the breathing phases (inspiration and expiration) in the analysis of the ARS26, 27, 29.

\textit{(insert table 2 about here)}

Synthesis of the results

Wheeze presence

The presence of WHs was used to identify a bronchial response during bronchial provocation tests in two studies conducted with children20, 22. Sanchez et al. (1993) used concentrations of
methacholine and found that WHs had 50% sensitivity and 100% specificity to detect bronchial hyperreactivity. Bentur et al. (2004) observed that WHs were detected after a mean adenosine concentration of 15.6mg/ml. Both studies verified that WHs were feasible to assess bronchial reactivity.

Number

Two studies investigated the number of WHs in adults. Oliveira et al. (2013) found a significant increase in the number of WHs after 3 weeks of standard medical treatment (6 vs. 14.8; p=0.03; ES=4.38) in patients with LRTI. A similar result, but not significant, was found in subjects with stable asthma after terbutaline inhalation (ES=0.34), however in healthy subjects and subjects with non-stable asthma a non-significant decrease was observed (ES=-0.10 and ES=-0.012, respectively).

Frequency

The frequency of WHs was investigated in four studies conducted with adults. After terbutaline inhalation, the frequency of WHs significantly decreased in patients with asthma (ES=-0.15), COPD (ES=-0.21) and in healthy subjects (ES=-0.28). Similar, however non-significant, results were found with the same intervention in healthy subjects (ES=-0.18) and subjects with non-stable asthma (ES=-0.24). In subjects with stable asthma (ES=0.01) and LRTI (ES=-0.06) the frequency remained approximately the same. Dinis et al. (2013) investigated the effect of respiratory physical therapy in subjects with LRTI and observed a non-significant increase in the frequency of inspiratory and expiratory WHs in both experimental (ES=0.73 and ES=0.04, respectively) and control groups (ES=0.97 and ES=0.97, respectively).

Occupation rate

This parameter, which is the proportion of the respiratory cycle occupied by WHs, was explored in studies conducted with children and adults. In three studies the wheeze occupation rate (WH%) was used to analyze the effect of pharmacotherapy. A non-significant reduction in WH% during the night in the group of subjects administered with long-acting sympathomimetic
agent (ES=-1.9) was found; whereas in the placebo group, a significant increase was observed (ES=1.15)24. In a study conducted with infant viral bronchiolitis, WH% also decreased 10 minutes after the administration of epinephrine (ES=-1.09); however it increased in the group of children administered with albuterol (ES=1.27)30. Nevertheless, no significant differences were found between or within groups. When exploring monophonic and polyphonic WH% significant change was also not found however, low effect sizes in non-stable and healthy subjects and medium effect sizes in subjects with stable asthma (ES=-0.54) were found25. A significant decrease in inspiratory and expiratory WH% was found after 3 weeks of pharmacotherapy plus respiratory physical therapy (ES=-0.66 (inspiratory); ES=-0.64 (expiratory)) or pharmacotherapy alone (ES=-0.69 (inspiratory); ES=-0.62 (expiratory))29. A similar result was found for the nocturnal WH index, calculated from the WH% (after 2 days (ES=-0.61) and after 6 weeks (ES=-0.80)), when monitoring respiratory sounds overnight to assess the effects of montelukast in nocturnal asthma23.

Duration

Two studies explored this variable when assessing the impacts of pharmacotherapy with adult subjects26, 28. In both studies WH duration remained approximately the same pre/post intervention. Only in subjects with moderate and severe obstruction, changes in the duration of WHs after medication were observed26.

Crackles

Number

Three studies analyzed the number of CRs before and after intervention and no significant differences were found. In two studies, this variable remained approximately the same, with effect sizes ranging from 0.02 to 0.225, 27. In the study of Beck et al., the number of CRs increased (ES=0.58) with albuterol and decreased with epinephrine (ES=-1.65)30.

Frequency
The CR frequency was analyzed only in one study27. The peak frequency increased during inspiration (ES=0.11) and decreased during expiration (ES=-0.47) whereas the upper frequency at -20-dB level decreased in both inspiration (ES=-0.12) and expiration (ES=-0.35). No significant differences were found.

\textit{Two cycle duration (2CD), Largest deflection width (LDW) and Initial deflection width (IDW)}

Two studies analyzed the 2CD variable; Marques et al. did not show any change from pre to post intervention (ES=0.07)5 and Piirila showed a non-significant reduction post intervention both in inspiratory (ES=-0.85) and expiratory (ES=-0.83) phases27. In the study of Piirila, both LDW and IDW of inspiratory (ES=-1.25 and -0.38) and expiratory (ES=-1 and -0.76) CRs were shorter after the intervention27.

\textit{Timing}

Only Piirila explored timing parameters of the CRs related to inspiratory tidal volume and inspiratory and expiratory phases. These parameters were significantly different post intervention (ES from 0.5 to 1.14)

Due to the heterogeneity of the outcome measures used across studies, a meta-analysis was not possible to compute.

\textbf{Discussion}

The main finding of this systematic review was that ARS detected and characterized by computerized respiratory sound analysis show potential to be used as outcome measures in children and adults, as specific variables of each ARS presented high effect sizes. However, the most appropriate variable(s) or variables are yet to be explored.

Most studies (11/12) explored WH presence and characteristics before/after an intervention. Wheeze occupation rate seemed to be the most promising parameter to be used as an outcome measure in children and adults, with medium to high effect sizes varying from 0.62 to 1.924, 29. A strong association between the proportion of the respiratory cycle occupied by WHs and the degree of bronchial obstruction has been widely demonstrated21-23, 35. This WH parameter, even
when identified with standard auscultation, has shown to be sensitive to assess the
effectiveness of respiratory interventions in children36, 37. The WH complexity may also be a
variable of interest as the presence of polyphonic WHs indicates a more serious obstruction
than monophonic WHs25 however, this was only explored in one study (ES from 0.24 to 0.54)25. Wheeze monitoring has been found to provide more information on the changes of airway
obstruction than measurements of pulmonary function24, such as the percentage predicted of
FEV\textsubscript{1} in people with asthma26. Thus, WHs and their variables seem to be a promising objective
outcome measure for all populations with a special emphasis on non-collaborative populations
such as children, people with dementia and people in the intensive care. However, it should be
noticed that WHs only occur when there is a flow limitation (but flow limitation is not necessarily
accompanied by WHs), that reaches a critical value, called flutter velocity38. Thus, when there is
not enough flow to generate WHs, WHs parameters will not be useful despite the presence of
the respiratory problem. The complementary information provided by CRs is therefore, crucial.

Crackles are assumed to be caused by the sudden opening of abnormally closed airways39-42,
and their parameters provide essential information about the function and structure of the
tracheobronchial tree41, e.g., CR recording during mechanical ventilation has been considered a
simple method to monitor lung recruitment-derecruitment43. However, CR variables have been
explored as outcome measures in only three studies5, 27, 30. From the limited evidence available,
LDW seemed to be the most valuable parameter to be used as an outcome measure due to its
high effect sizes (1 and 1.25)27. Hoevers and Loudon (1990) had already found that LDW
seemed to be a better measure than IDW or 2CD when differentiating between coarse and fine
CRs44. However, LDW was also the variable less explored among studies. Conflicting
information was found for the number of CRs and 2CD. The number of CRs had low effect sizes
reported in Piirila (0.14 and 0.22)27 and in Marques et al. (0.02)5 studies, and medium/high
effect sizes in Beck et al. (0.74 and 1.65)30. High (0.83 and 0.85)27 and low (0.07)5 effect sizes
were also found for the variable 2CD. The timing of CRs (ES 0.5 to 1.14) also showed to be
sensitive to the clinical course of pneumonia27 and has been described as a sensitive
parameter to discriminate respiratory diseases45. However, similarly to LDW limited research
has been conducted considering this parameter as an outcome measure. At this point in time it
is difficult to provide any recommendations on which CR’s variable(s) are more adequate to be
used as an outcome measure to monitor respiratory interventions. These limited and conflicting data may be a result of the different respiratory sound acquisition sensors (which differ in their acoustic sensitivity to capture CRs waveforms), filtering and analysis methods used across studies46, 47. Since CRs show potential for diagnosis purposes but also as an outcome measure for respiratory treatments in different clinical/research contexts, these procedures need to be standardized. This will allow comparisons among different studies and improve the understanding of CRs’ mechanisms and acoustic characteristics.

The study of both main types of ARS is essential to gather complementary information about the tracheobronchial tree. This information may help health professionals to conduct more accurate diagnosis and enhance their understanding about the respiratory system responses to treatments. However, only one study analyzed both types of ARS as an outcome measure in a study conducted with children30. Thus, the study of computerized ARS is an exciting area where much research is needed to develop knowledge for diagnosis and monitoring of patients but also to be used as a non-invasive, objective and reliable outcome measure for treatments.

The level of evidence that can be drawn at this moment in time from this systematic review is considerably weak due to the 1) small sample sizes; 2) distinct respiratory therapies and doses implemented and 3) different ARS variables used in the included studies. The large variety of acquisition methods used is an issue added to the list of difficulties when comparing results across studies. A BIOMED 1 Concerted Action project entitled CORSA, funded by the European Community, developed guidelines for research and clinical practice in the field of respiratory sound acquisition and analysis4, 9, 48. The CORSA project group produced guidelines on the definitions of medical/technical terms used in pulmonary acoustics; environmental conditions; patient management procedures; acquisition, pre-processing, digitization and analysis of respiratory sounds; and also about publishing the results of research4, 9, 48. These international guidelines have been available since 2000, however from the 9 studies conducted after this year, only 3 followed the acquisition procedures recommended by CORSA. Regarding the analysis methods, algorithms based on Fast Fourier Transformation were the most used, which is in accordance with the CORSA recommendations. Future research, with improved study designs, larger samples, both of children and adult populations, and following the CORSA
guidelines, should be conducted to explore the ARS response to respiratory therapies. This will facilitate the comparison of results from different studies, promote research into the development of standardized respiratory sound acquisition equipment and analysis and finally enhance the understanding of computerized ARS as well as their use as an outcome measure.

Conclusion

Specific variables of each ARS detected and characterized with computerized respiratory sound analysis showed high effect sizes and thus may have potential to be an objective, reliable and non-invasive outcome measure for respiratory therapy in children and adults. Further research exploring the ARS response to different respiratory therapies are needed to enhance the understanding of computerized ARS and their clinical use not only for the diagnosis purposes but also for monitoring patients and treatments.

References

37. Gomes EL, Postiaux G, Medeiros DR, Monteiro KK, Sampaio LM, Costa D. Chest physical therapy is effective in reducing the clinical score in bronchiolitis: randomized controlled trial. Revista brasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil)) 2012;16(3):241-247.

1 Figure captions

2 Figure 1 - PRISMA Flowchart of the included studies.
PRISMA Flowchart of the included studies.
300x300mm (96 x 96 DPI)
Table 1 - Quality assessment score for selected studies based on the Downs and Black checklist.

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Reporting</th>
<th>External validity</th>
<th>Internal validity – bias</th>
<th>Internal validity - confounding</th>
<th>Power</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MS=11</td>
<td>MS=3</td>
<td>MS=7</td>
<td>MS=6</td>
<td>MS=1</td>
<td></td>
</tr>
<tr>
<td>Baughman & Loudon (1988)</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Piirila (1992)</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Sanchez et al. (1993)</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Fiz et al. (2002)</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Bentur et al. (2003)</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Bentur et al. (2004)</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Cortes et al. (2005)</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Fiz et al. (2006)</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Beck et al. (2007)</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Marques et al. (2012)</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Oliveira et al. (2013)</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Dinis et al. (2013)</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>

MS, maximum score.
<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Type of study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Data collection protocol</th>
<th>Recording Device</th>
<th>Data Analyses</th>
<th>ALS outcomes</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baughman & Loudon (1988)</td>
<td>Quasi-Experimental</td>
<td>10 subjects with nocturnal asthma</td>
<td>One night Placebo</td>
<td>Respiratory sound recordings: - night monitoring of wheezing after intervention at 12am and 4am; - 6 segments of 5 minutes recordings at each assessment; - microphone of an accelerometer placed over the cricopharynx; - stethoscope over the right anterior chest.</td>
<td>Modified</td>
<td>WHs detection:</td>
<td>WH%</td>
<td>Placebo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>One night Long-acting β2-sympathomimetic agent – procaterol (0.1mg)</td>
<td></td>
<td></td>
<td>stethoscope air-coupled to a microphone.</td>
<td>FFT</td>
<td>Analyses for the presence/absence of a peak at a frequency 150-1,000Hz.</td>
</tr>
<tr>
<td>Piirila (1992)</td>
<td>Observational</td>
<td>11 subjects with pneumonia</td>
<td>Standard medical treatment</td>
<td>Respiratory sound recordings: - 2.2±1.1 days after hospital presentation and then after 2.7±1.0 days; - subjects in a sitting position, breathing with a maximum flow of 1L/s; - 5 complete respiratory cycles; - basal regions of both lungs.</td>
<td>Air-coupled</td>
<td>CR detection:</td>
<td>CR: Inspiratory CR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21±71yrs; 6M:5F</td>
<td></td>
<td></td>
<td>condenser microphones</td>
<td>Phonopneumograph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FFT IDW</td>
<td>LDW</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N: Pre 5±1.9; Post 6± 5.3 (ES=0.22)</td>
<td>IDW: Pre 1.5±0.2ms; Post 1.4±0.3ms (ES=0.38)</td>
<td>2CD: Pre 10.1±1.3ms; Post 8.6±2ms (ES=0.85)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2CD</td>
<td>2CD: Pre 8.6±2ms (ES=0.38)</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDW</td>
<td>IDW: Pre 2.6±0.4ms; Post 2.1±0.4ms; p<0.05 (ES=0.38)</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration</td>
<td>Beginning: Pre 35±16%VT; Post 53±19%VT; p<0.01 (ES=1.02)</td>
<td>Duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End point</td>
<td>Pre 35±13%Ti; Post 36±8%Ti (ES=0.09)</td>
<td>End point: Pre 72±13%VT; Post 83±14%VT (ES=0.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PF</td>
<td>End point: Pre 69±11%VT; Post 81±10%Ti; p<0.05 (ES=1.14)</td>
<td>PF: Pre 156±46Hz; Post 161±42Hz (ES=0.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fu</td>
<td>Fu: Pre 437±71Hz; Post 426±106Hz (ES=0.12)</td>
<td>Fu: Pre 437±71Hz; Post 426±106Hz (ES=0.12)</td>
</tr>
</tbody>
</table>
Sanchez et al. (1993)

Experimental

<table>
<thead>
<tr>
<th>EG</th>
<th>Quasi-Experimental</th>
<th>Methacholine challenge: doubling concentrations of methacholine nebulized for 2 min (start 0.03mg/ml)</th>
<th>Respiratory sound recordings: - 1min after each dose; - spontaneous breathing; - sounds at trachea and posterior right lower lobe recorded simultaneously.</th>
<th>Piezoelectric accelerometers</th>
<th>Presence of WHs</th>
<th>WHs detection: FFT Based on PF (auditory verification on digital-to-analog playback)</th>
<th>Presence of WHs as an indicator of bronchial hyperreactivity: Se:50% Sp:100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 children with cystic fibrosis 4-18yrs 14M:9F</td>
<td>4-18yrs 14M:9F</td>
<td>1min after each dose; spontaneous breathing; sounds at trachea and posterior right lower lobe recorded simultaneously.</td>
<td>1.7±0.4ms; Post 1.3±0.6ms (ES=-0.76) 2CD: Pre 11.9±2.4ms; Post 8.1±5.3ms (ES=-0.83) LDW: Pre 3±0.6ms; Post 2.4±0.6ms (ES=-1) Beginning: Pre 56±14%Te; Post 63±14%Te (ES=0.5) Duration: Pre 46±39%Te; Post 22±0%Te (ES=-0.62) End point: Pre 79±23%Te; Post 95±0%Te (ES=0.7)</td>
<td>Pre 0.64±0.34V; Post 0.50±0.23V (ES=-0.47)</td>
<td>Pre 0.8±0.8; Post 0.7±0.14 (ES=-0.14)</td>
<td>Fu: Pre 365±127Hz; Post 327±69Hz (ES=-0.35)</td>
<td></td>
</tr>
</tbody>
</table>

Fiz et al. (2002)

Experimental

<table>
<thead>
<tr>
<th>EG</th>
<th>Quasi-Experimental</th>
<th>Inhalation of terbutaline (1mg)</th>
<th>Respiratory sound recordings: - acquired before and 20min after the intervention; - FVC maneuvers; - at the trachea.</th>
<th>Contact microphone</th>
<th>WHs detection: FFT Modified version of the Shabtai-Musih et al. algorithm</th>
<th>WH frequency</th>
<th>EG1 F: Pre 560.9±140.8Hz; Post 538.4±160.5Hz; p<0.01 (ES=0.15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 subjects with asthma 53.6±16.3yrs 9M:7F</td>
<td>53.6±16.3yrs 9M:7F</td>
<td>53.6±16.3yrs 9M:7F</td>
<td>53.6±16.3yrs 9M:7F</td>
<td>EG1 F: Pre 669.4±250.1Hz; Post 620.6±208.9Hz; p<0.01</td>
<td>EG2 F: Pre 669.4±250.1Hz; Post 620.6±208.9Hz; p<0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bentur et al. (2003)

Quasi-Experimental

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Subjects</th>
<th>Methodology</th>
<th>Intervention</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG2:6</td>
<td>COPD 58.8±4.9yrs, 6M:0F</td>
<td>Montelukast daily (5mg)</td>
<td></td>
<td>WHs detection: FFT based algorithm</td>
</tr>
<tr>
<td>CG</td>
<td>Healthy 45.8±12.5yrs, 7M:8F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bentur et al. (2004)

Quasi-Experimental

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Subjects</th>
<th>Methodology</th>
<th>Intervention</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Asthma 6-14yrs, 6M:6F</td>
<td>Acoustic Bronchial Provocation tests: Nebulized adenosine solutions (start 0.39 mg/ml) inhaled for 2 min; dose doubled at 5min intervals</td>
<td></td>
<td>Presence of WHs: - at 15.6±25.2(0.78-100)mg/mL of adenosine concentration; - at an adenosine concentration ≤25mg/mL in 85% of the subjects with positive BPT</td>
</tr>
</tbody>
</table>

Cortes et al. (2004)

Observational

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Subjects</th>
<th>Methodology</th>
<th>Intervention</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1:10</td>
<td>Bronchodilator inhalation drug</td>
<td></td>
<td></td>
<td>WHs detection: WH</td>
</tr>
</tbody>
</table>
Respiratory Care

<table>
<thead>
<tr>
<th>(2005)</th>
<th>asthma</th>
<th>the intervention;</th>
<th>sensor</th>
<th>Expiration: Post duration similar to Pre duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEV1<50%)</td>
<td>42±17yrs</td>
<td>- spontaneous breathing;</td>
<td>- 2 records of 120s;</td>
<td>G2 Inspiration: Post duration < Pre duration</td>
</tr>
<tr>
<td>G2: 11 subjects with asthma</td>
<td>42.2±9.7yrs</td>
<td>- at the trachea.</td>
<td></td>
<td>G3 Inspiration: Post duration similar to Pre duration</td>
</tr>
<tr>
<td>(50%<FEV1<80%)</td>
<td>29.2±8.7yrs</td>
<td></td>
<td></td>
<td>Expiration: Post duration > Pre duration</td>
</tr>
</tbody>
</table>

Fiz et al. (2006)

<table>
<thead>
<tr>
<th>Quasi-Experimental</th>
<th>G1: 11 subjects with non-stable asthma</th>
<th>Bronchodilator inhalation drug (terbutaline - 1mg)</th>
<th>Respiratory sound recordings: - acquired before and after 20 minutes of the intervention; - FVC maneuvers; - at the trachea.</th>
<th>Phonopneumography WHs detection: WH% polyphonic: Pre 38.2±25.4%; Post 29.9±23.5% (ES=0.34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2: 9 subjects with stable asthma</td>
<td>46±12.6yrs</td>
<td>8M:3F</td>
<td>WH% monophonic: Pre 13.6±13.3; Post 13.4±19.6 (ES=-0.01)</td>
<td></td>
</tr>
<tr>
<td>CG3: 14 healthy</td>
<td>29.2±8.7yrs</td>
<td>6M:3F</td>
<td>Pre 54.2±185.3Hz; Post 52±62Hz (ES=-0.1)</td>
<td></td>
</tr>
</tbody>
</table>

WHs detection: modification of the algorithm proposed by Shabtai-Musih et al. and Homs-Corbera et al. for monophonic and polyphonic sounds.

WH%

- **N** Pre 13.6±13.3; Post 13.4±19.6 (ES=-0.01)
- **F** Pre 54.2±185.3Hz; Post 52±62Hz (ES=-0.1)
- **WH%** monophonic: Pre 52.5±21.6%; Post 47.7±19% (ES=-0.24)
- **WH%** polyphonic: Pre 38.2±25.4%; Post 29.9±23.5% (ES=0.34)

N Pre 3.5±3; Post 5.5±6.8 (ES=0.34)

F Pre 582.2±226.9Hz; Post 583.3±216.5Hz (ES=0.01)

WH% monophonic: Pre 27.0±13.4%; Post 19.4±14.9% (ES=0.54)

WH% polyphonic: Pre 16±21.4%; Post 25.2±30.1%
<table>
<thead>
<tr>
<th>Subjects</th>
<th>Mean Age ± SD</th>
<th>Gender Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.4±12.9 yrs</td>
<td>8M:6F</td>
<td></td>
</tr>
</tbody>
</table>

G3

- N: Pre 2.5±2.1; Post 2.3±1.8 (ES=-0.1)
- F: Pre 732.6±172.2 Hz; Post 701.6±170.1 Hz (ES=-0.18)
- WH% monophonic: Pre 37.1±28.7%; Post 48.2±31.6% (ES=0.37)
- WH% polyphonic: Pre 15.2±18.9%; Post 10.4±10.9% (ES=-0.29)

Beck et al. (2007)

<table>
<thead>
<tr>
<th>Group</th>
<th>Experimental Group</th>
<th>Subjects</th>
<th>Respiratory Sound Recordings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1: 12</td>
<td>Children with infant viral bronchiolitis</td>
<td>4.9±0.8 months</td>
<td>Performed 5 min prior to (pre), 10 min and 30 min post treatment (post1 and post2); spontaneous breathing; 5 complete respiratory cycles; at the right and left axillae and posterior bases of the lungs.</td>
</tr>
<tr>
<td>G2: 15</td>
<td>Children with infant viral bronchiolitis</td>
<td>4±1.35 months</td>
<td></td>
</tr>
</tbody>
</table>

Phonopneumography

- Piezoelectric contact sensors connected to an automatic WH detection device
- FFT based algorithm
- CRs detection: CR counter
- WH% detection: WH% monophonic

WH% detection

- Pre 9.1±3.4%; Post1 5.4±3.26% (ES=-1.09); Post2 7.1±3.63% (ES=-0.57)
- Pre 5.5±3.08%; Post1 9.11±2.52% (ES=1.27); Post2 11.9±4.5% (ES=1.61)

CRs detection

- Pre 4.14±2.31; Post 4.18±2.25 (ES=0.02)
<table>
<thead>
<tr>
<th>Study Authors</th>
<th>Design Type</th>
<th>Sample Details</th>
<th>Respiratory Sounds Recordings:</th>
<th>Electronic Stethoscope</th>
<th>WHs Detection:</th>
<th>WHs:</th>
<th>BC Detection:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vannucci et al.</td>
<td>Experimental</td>
<td>therapy treatment - before and after the treatment; - spontaneous breathing; - 3 recordings of 25s over each chest location - following the CORSA guidelines for short-term acquisition.</td>
<td>stethoscope connected to a laptop</td>
<td>Vannucci et al. algorithm</td>
<td>nBC 2CD</td>
<td>Pre 11.8±1.5ms; Post 11.9±1.54ms (ES=0.07)</td>
<td>Analogous method to that by Que et al. plus manual adjustment of the detection thresholds</td>
</tr>
<tr>
<td>Oliveira et al.</td>
<td>Observational</td>
<td>6 subjects with LRTI 33-63yrs</td>
<td>Respiratory sounds recordings: -within 24 hours of hospital presentation and after treatment; - spontaneous breathing; -3 recordings of 25s over each chest location</td>
<td>Electronic stethoscope connected to a laptop</td>
<td>Taplidou and Hadjileontiadis algorithm based on Short-time FFT</td>
<td>WHs:</td>
<td>Duration: Pre 0.21±0s; Post 0.22±0s (ES=0.11)</td>
</tr>
<tr>
<td>Dinis et al.</td>
<td>Experimental</td>
<td>CG: 11 subjects with LTRI 52.9±18.3yrs</td>
<td>Respiratory sounds recordings: - within 24 hours of hospital presentation and after treatment; - spontaneous breathing; -3 recordings of 20s; -following the CORSA guidelines for short-term acquisition.</td>
<td>Modified analogue stethoscopes connected to a laptop</td>
<td>Taplidou and Hadjileontiadis algorithm based on Short-time FFT</td>
<td>Inspiration WHs: Pre 11.1±14.8%; Post 2.2±6.2%; p<0.001 (ES=0.69)</td>
<td>BC detection: Huq and Moussavi automatic</td>
</tr>
</tbody>
</table>
6M:3F
retraining; incentive
spirometry; thoracic
mobility, expansion
and flexibility
exercises; aerobic
training)

respiratory phase
detector
using tracheal
sounds

0.62)

F: Pre 221.2±85.6Hz; Post 396.8±208.1; p=0.243 (ES=0.97)

EG
Inspiration

WH%: Pre 9.2±14.1%; Post 0.4±1.9%; p<0.001 (ES=-0.66)

F: Pre 360.3±221.1Hz; Post 140.2±153.1Hz; p=0.555 (ES=0.73)

Expiration

WH%: Pre 10.5±15.3%; Post 1.9±5.4%; p<0.001 (ES=-0.64)

F: Pre 423.2±168.6Hz; Post 432.8±269.1Hz; p=0.915 (ES=0.04)

Post CG vs Post EG
Inspiration

WH%: 2.2±6.2%; 0.4±1.9%; p=0.019 (ES=0.37)

Expiration

WH%: 4.1±7.7%; 1.9±5.4%; p=0.061 (ES=0.33)

Data are presented as mean±standard deviation

2CD - two cycle duration; ACBT – active cycle of breathing techniques; BC – breathing cycle; BPT – bronchial provocation test; CG – control group; CORSA - computerized respiratory sound analysis; CR – crackle; EG – experimental group; ES – effect size; FFT – fast fourier transformation analysis; F- frequency; Fu - upper frequency at - 20-dB level; FVC- forced vital capacity; IDW - initial deflection width ; Ie - effective intensity; N – number; nBC – number per breathing cycle; NWI - nocturnal wheeze index; PF – peak frequency, Se – sensitivity; Sp – specificity; TEW - time-expanded waveform; WH - wheeze; WH% - wheeze occupation rate.