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resumo 
 

 

A aquisição e manutenção da mobilidade do espermatozoide é fundamental 
para a fertilização do oócito e consequentemente conceção. Durante décadas, 
as vias de sinalização necessárias à aquisição de mobilidade por parte do 
espermatozoide foram alvo de intensos estudos. Contudo, este processo ainda 
não é inteiramente conhecido. Ademais, as limitadas opções disponíveis para 
contraceção masculina (preservativo, vasectomia e coito interrompido) refletem 
a necessidade de desenvolver um contracetivo masculino baseado na 
modulação da mobilidade do espermatozoide. A via de sinalização 
GSK3/PPP1R2/PPP1 está envolvida na aquisição de mobilidade do 
espermatozoide ao longo do transito do epidídimo. O objetivo principal deste 
trabalho é enriquecer o conhecimento dos eventos celulares necessários na 
mobilidade do espermatozoide através da caracterização e modulação da via 
de sinalização GSK3/PPP1R2/PPP1 em espermatozoides humanos. 
Desenhámos, sintetizámos e caracterizámos um bioportide que quebra 
interações proteicas baseado em tecnologia de cell penetrating peptides. 
Estudos in vitro revelaram que o bioportide de ruptura interfere com a interação 
PPP1R2/PPP1CC2 e é capaz de restabelecer a atividade da PPP1CC2. 
Também demonstramos que o bioportide reduz significativamente a mobilidade 
do espermatozoide. Com o objetivo de identificar interacções proteína-proteína 
adequadas à intervenção farmacológica, focámos a nossa atenção na proteína 
GSK3, um modulador da interação PPP1R2/PPP1CC2 em espermatozoides. 
Descrevemos pela primeira vez o interactoma da GSK3 no testículo e 
espermatozoide humanos e reportamos um papel específico da isoforma 

GSK3 na mobilidade do espermatozoide. Uma análise in silico revelou 

interatores da GSK3 e GSK3 que estão envolvidos na mobilidade do 
espermatozoide e potencialmente poderão ser alvos de intervenção 
farmacológica para um novo contraceptivo masculino. Em conclusão, 
demonstramos que é possível provocar a quebra de interações proteína-
proteína e modular a mobilidade do espermatozoide usando de bioportides. 
Também identificamos potenciais novas interações proteicas envolvidas na 
mobilidade do espermatozoide. Finalmente, mostramos que é possível 
idealizar um novo tipo de contracepção masculina baseado na inibição da 
mobilidade do espermatozoide.  
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abstract 

 
Sperm motility acquisition and maintenance is a fundamental process for 
oocyte fertilization and consequently conception. The signaling events 
underling sperm motility acquisition have been studied for decades. However, 
many questions are still unanswered. Also, the limited options currently 
available for male contraception (condom, vasectomy and withdrawal) reflect 
the necessity of a new group of male contraceptives based on sperm motility 
modulation. GSK3/PPP1R2/PPP1 signaling pathway is involved in sperm 
motility acquisition during epididymis transit. The main goal for this work was to 
deepen the knowledge on the signaling events involved in human sperm 
motility by focusing on the characterization and modulation of the signaling 
pathway GSK3/PPP1R2/PPP1. We first designed, synthetized and 
characterized a disruptive bioportide based on cell penetrating peptide 
technology. In vitro studies revealed that the disruptive bioportide interferes 
with PPP1R2/PPP1CC2 interaction and restores PPP1CC2 activity. We also 
demonstrated that when exposed to the disruptive bioportide, sperm motility is 
significantly reduced. Aiming to identify sperm protein-protein interactions 
suitable for pharmacological intervention, we turn our attention to GSK3, a 
modulator of PPP1R2/PPP1CC2 interactions in sperm. We provide for the first 
time GSK3 human testis and sperm interactomes. We reported an isoforms 

specific role for GSK3 in human sperm motility and an in silico analysis 

revealed GSK3 and GSK3 interactions involved in sperm motility and 
potential targets for pharmacological intervention. In conclusion, we 
demonstrated that it is possible to target protein-protein interactions and 
modulate sperm complexes involved in motility using bioportides. Moreover, we 
identified new potential protein interactions involved in sperm motility and 
showed that the development of new type of male contraceptive based on 
inhibiting sperm motility is now achievable.  
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A1. Male Reproductive System 

A1. Male reproductive System  

The male reproductive system has the purpose of producing, maturate and deliver the male 

gametes to the female reproductive tract. Anatomically, the male reproductive system is composed 

of two testes, a system of genital ducts (tubuli recti; efferent ducts; epididymis, deferent ducts; 

ejaculatory ducts and urethra), accessory glands (seminal vesicle, prostate and bulbourethral 

glands) and the penis. Functionally, spermatozoa or sperm must be produced (spermatogenesis) in 

the testis, matured in the epididymis and delivered to the female reproductive system by the penis. 

Moreover, the production of sexual hormones, specifically testosterone, occurs in the testis. In the 

next section, the morphological and functional characteristics of the Homo sapiens male 

reproductive system will be briefly described [1]. In Figure A1.1 an overview of the male 

reproductive system is presented.  

 

A1.1. Testis – Where everything begins 

Human testes are ovoid shape organs, localized outside the abdominal cavity and accommodated 

within the scrotum. This localization maintains the testes at an average temperature of 32ºC, 

optimal for its function. Within each lobule, there are 1 to 3 seminiferous tubules, the functional 

unit of the testis, and Leydig cells, which are responsible for the production of testosterone [2,3]. 

Seminal vesicle

Ductus deferens

Epididymis

Testis

Bladder

Ureter

Penis

Bulbourethral glands

Prostate

Seminiferous 
tubule

Sertoli cell

Germ cells

Blood vessel

Leydig cell

Sertoli cell nucleus

A B

Figure A1.1. Overview of the male reproductive system. A. Components of the male reproductive system. The 
bladder and the ureter are not part of the male reproductive system. B. Schematic cross-section of a testicular tubule, 
showing germ cells inserted in Sertoli cells. In the interstitium there are Leydig cells and blood vessels. Figures were 
produced using Servier Medical Art. 
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The seminiferous tubules are composed of germ cells line and Sertoli cells. Figure A1.1, describes 

the morphological structure of the seminiferous tubule. Germ cells will originate mature sperm 

through spermatogenesis. In Homo sapiens more than 200 million sperm are produced every day. 

Spermatogenesis can be divided in two distinct phases: (i) proliferative and meiotic phase; and (ii) 

haploid phase. The proliferative phase ensures the continuum of sperm production through a 

constant renewal of spermatogonia (the least mature germ cells). Consequently, spermatogonia 

can either undergo mitosis and duplicate itself or enter meiosis. By mitosis, spermatogonia yields 

primary spermatocytes and the latter, divides meiotically into two secondary spermatocytes. 

Finally, secondary spermatocytes divide into spermatids. Meiosis will reduce the chromosomal 

information into half. The haploid phase is characterized by the acquisition of crucial morphological 

structures necessary for fertilizing potential. It is divided in two sub-phases: spermiogenesis and 

spermiation. Spermiogenesis is defined as the process of transforming a round haploid spermatid 

into a highly specialized spermatozoon. At the organelle level, the Golgi complex will originate the 

acrosome [4]; the spermatid cytosol is merged into sperm head skeleton and, sperm axoneme is 

formed by outer dense fibers and fibrous sheath [5–9]. To accomplish such metamorphosis, 

transcription, translational and prost-translational modification increase drastically. Yet, by the end 

of spermiogenesis, transcription is ceased due to replacement of histones for protamines in sperm 

DNA, which results in highly packed DNA [10]. From this point on, sperm must rely on existing 

proteins to control its function. Spermiation refers to the detachment of fully differentiated sperm 

from the seminiferous epithelium and the journey through the lumen of the seminiferous tubules 

[11]. Also, during spermiation, the remnants of germ cells cytoplasm are rejected.  

Sertoli cells provide structural support and nourishment of germ cells; perform phagocytosis of 

degenerating germ cells; allow spermiation of fully mature sperm, control germ cell proliferation 

and differentiation by paracrine secretion of regulatory proteins and create a unique 

microenvironment for the germ cell line (blood-testis barrier) [12–14]. Morphologically, Sertoli cells 

are pyrimid-like cells that involve partially the germ cell line. Around 18% of the seminiferous tubule 

is composed of Sertoli cells and the number of Sertoli cells positively correlates with sperm output. 

Adjacent Sertoli cells form tights junctions, creating a unique environment, isolating germ cells from 

the rest of the body. This is particularly important to isolate germ cells form the immune system 

[13]. 

The last type of cells present in testis are the Leydig cells. These cells lay between seminiferous 

tubules and contact directly with blood vessels. Beginning in puberty, Leydig cells increase the 

production of testosterone, in response to luteinizing hormone [15]. This stimulates the beginning 
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of spermatogenesis, through Sertoli cell signaling. Through the entire adulthood, spermatogenesis 

is controlled by constant feedback with the nervous system (hypothalamus and pituitary) [16].  

 

A1.2. Epididymis – where everything starts to function 

By the end of spermatogenesis, sperm is morphological complete but functionally immature. To be 

able to fertilize an oocyte, sperm must journey through the epididymis [17]. Epididymis is a highly-

convoluted duct that connects the efferent ducts to the deferent ducts. It is localized in the 

posterior surface of the testis and in primates can have a length range from 1-7 meters [18]. 

Estimates of the time necessary for sperm to migrate through human epididymis are inconsistent. 

Rowley et al suggested a range of 1 to 21 days and Amann and Howards between 3-4 days [19,20]. 

The epididymis has five main roles: (i) transport of testicular sperm out of the testis; (ii) create a 

suitable environment for sperm maturation; (iii) promote progressive spermatozoa motility; (iv) 

prepare sperm for fertilization; (v) and sperm storage. Sperm goes through morphological and 

functional maturation in the epididymis.  

Since testicular sperm are transcriptionally silent cells, the maturation of sperm through the 

epididymis depends on post-translational modification of pre-existing proteins and protein 

exchanges between the epididymal lumen and the sperm. Phosphorylation, glycosylation and 

proteolysis of sperm proteins are among the most common post-translational modification. Most 

proteins that suffer this process are linked to interaction between sperm and oocyte (zona pellucida 

and oocyte membrane) and acrosome reaction [21–23]. The role of phosphorylation on sperm 

maturation, particularly motility acquisition, is discussed further on section A2. 

Epididymosomes, small extracellular vesicles secreted by the epididymis´s epithelial cells are the 

major players in the interchange of proteins between sperm and epididymal lumen. It was 

suggested by Cornwall that epididymosomes allow the safe delivery of proteins to sperm, escaping 

the proteolytic activity in the epididymal fluid [17]. Within the proteins delivered by 

epididymosomes, proteins involved in sperm motility, immunological protection and inhibition of 

capacitation are the more abundant [23].  
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A1.3. The spermatozoa – the final result 

Sperm can be divided in two main structures: head and flagellum. These structures are surrounded 

by a unique plasma membrane. In the next section, we will focus on the morphological features of 

sperm head, connecting piece and plasma membrane composition (Figure A1.2). An extensive 

description of sperm flagellum can be consulted in section A2. 

 

 

 

 

 

 

 

 

 
 

 

The human sperm head is spatula-shaped and its main components are the nucleus and the 

acrosome. These two structures are surrounded by a small amount of cytoplasm and cytoskeleton 

structures [24]. The acrosome lies anteriorly to the nucleus, and the cytoplasm lies in the narrow 

space between both structures and the plasma membrane. Within the nucleus, the DNA is highly 

compacted and its volume is considerably less than in somatic cells [24]. These results from: 

protamines highly compacted DNA and sperm only having half the genetic information of somatic 

cells. Still, approximately 4% of DNA is  bound to histones and has been proved that the expression 

of such DNA is essential for early embryo development [25]. Surrounding the nucleus is the nuclear 

envelope. The unique feature of sperm nuclear envelope is that, contrary to somatic cells, it does 

not present nuclear pore complex [26]. Furthermore, the sperm nucleus is protected by a rigid 

structure formed by bonding of structural proteins, the perinuclear theca [5]. These features result 

in an optimal shaped nucleus for mobility and better protection of the genetic information. The 

acrosome covers half to two thirds of the sperm head. This organelle is derived from the Golgi 

Figure A1.2. Schematic representation of the human sperm head and connecting piece. Human sperm head contains 
anteriorly the acrosome and posteriorly the nucleus. The nucleus is surrounded by the nuclear envelope and the 
perinuclear theca. The connecting piece is composed by the capitulum and the segmented columns and connects the 
head to the flagellum. 
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complex and presents an inner acrosomal membrane adjacent to the nucleus and an outer 

acrosomal membrane adjacent to the plasma membrane. The acrosome houses several proteases, 

hidroglycolases and esterases, some which are sperm-specific (e.g acrosin), that upon specific zona 

pellucida signaling are released by exocytosis (acrosome reaction). These proteases will create a 

path for sperm penetration into the zona pellucida [27]. After acrosome reaction, the equatorial 

region of these organelle is exposed and is involved in the initial interaction between sperm and 

oocyte membrane [28].  

Immediately behind the sperm head is the connecting piece. This structure functions as an anchor 

between the head and the tail. Consequently, it must be somewhat flexible. The connecting piece 

is formed by two main structures: the capitulum and the segmented columns. The capitulum inserts 

into the head and distally interacts with the segmented columns. Distally, the segment columns 

fuse with the other dense fibers of the flagellum [29,30]. 

In general, the sperm plasma membrane contains 70% phospholipids, 25% neutral lipids and 5% 

glycolipids [31]. The most abundant phospholipid of the plasma membrane is sphingomyelin. This 

lipid confers rigidity to bilayer membranes. Regarding neutral lipids, human sperm membrane 

contains very high amounts of cholesterol. Cholesterol is a plasma membrane stabilizer with the 

particularity of maintaining membrane fluidity [32]. Consequently, cholesterol is a key lipid for 

sperm permeability and motility. In human sperm plasma membrane, the only glycolipid is 

seminolipid [33], which is present only in mammalian sperm and Schwann cells [34]. It is believed 

that this molecule participates in maintenance of lipid diffusion barriers (see bellow) [33]. After 

epididymis transit, plasma membrane presents high cholesterol/phospholipid ratio. This results in 

plasma membrane stabilization which is beneficial to the journey in the female reproductive 

system.  

Mammalian sperm plasma membrane is divided into five macrodomains: acrosome; postacrosome, 

equatorial segment; midpiece and principal piece. Each domain appears to have a unique 

composition and organization which reflects different properties and functions [35,36]. For 

example, the acrosomal macrodomain is highly fusogenic compared with the post acrosomal 

macrodomain. One hypothesis for this is that the acrosomal macrodomain is rich in phospholipids 

that form “cone shape holes” into the membrane, resulting in an unstable membrane [33]. Another 

question that arises is how these macrodomains are confined to a specific part of the sperm. Lipid 

diffusing barriers have been described in sperm, specifically in the posterior ring and annulus. The 
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posterior ring segregates the content of sperm plasma membrane of the head and tail and the 

annulus between the midpiece and principal piece [36].  

 

A1.4. Accessory glands  

After epididymal transit, sperm are pushed to the deferent ducts, ejaculatory ducts and finally 

urethra, upon stimulation. During this journey, the accessory glands (Figure A1.1) secret several 

fluids that will form the seminal plasma. Please note that the epididymal fluid and sperm cells 

represent around 3-5% of all semen volume [37]. Altogether, sperm and seminal plasma form the 

semen.  

Secretion from the seminal vesicle is responsible for around 50% of the seminal plasma content and 

is alkaline and very rich in fructose. Fructose will be consumed by sperm cells producing energy and 

the alkaline environment will balance the acidic female reproductive tract fluids.  This will result in 

stimulation of sperm motility. Fructose quantification is widely used as a marker for seminal vesicle 

function. However, some question have arisen regarding the fidelity of such marker. Since fructose 

is consumed by sperm, fructose concentration also depends on the rate of fructose consumption 

sperm and not exclusively on seminal vesicle function. Several roles for seminal vesicle secretion 

have been described. Promotion of sperm motility; increase stability of sperm DNA and suppression 

the immune system activity in the female reproductive system are some [38]. 

The next contribution to the seminal plasma are the secretions from the prostate which represent  

around 20-30% [37]. Prostatic fluid is rich in zinc (Zn2+), citric acid and prostate specific antigen 

(PSA). Moreover, it presents a slightly acidic pH [39]. It appears that Zn2+ stabilizes spermatic DNA 

and prevents DNA fragmentation, specifically by stabilizing chromatin [40] It  further presents anti-

microbial activity [39,41]. Citric acid maintains an acidic environment and since it is 100x more 

secreted by the prostate than by other accessory glands, it may be used as a prostate activity 

function biomarker. Finally, the PSA promotes liquefaction of semen and consequently stimulates 

sperm motility [39,42]. Similarly, to the epididymis, the prostate also secretes small vesicles, the 

prosteosomes, which may fuse with the sperm cell. Theses vesicles are rich in proteins and will 

transfer such proteins to sperm, by membrane fusing.  

The last accessory glands are the bulbourethral glands which, upon sexual stimulation, secrete, to 

the urethra, an alkaline mucus-like fluid rich in glycoproteins. This fluid neutralizes the acidity of 
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pre-existing urine residues and provides lubrication for the penis during intercourse [43]. The 

bulbourethral contribution to the seminal plasma is very small (around 1%)[37].  

Finally, the last step to accomplish fertilization is releasing the semen into the female reproductive 

system by ejaculation. Ejaculation is defined by the expulsion of the semen through the penis. Upon 

stimulation, the sympathetic nervous system activates the contraction of muscle in the epididymis, 

seminal vesicle, prostate and deferent ducts. Consequently, the semen is released to the urethra. 

The accumulation of semen in the urethra stimulates the contraction of muscles within the penis 

(bulbospongiosus and ischiocavernosus muscles) resulting in the release of semen [44].  

 

A1.5. Male Fertility: infertility and contraceptives 

Infertility is defined as the incapability of conceive after 12 months of unprotected intercourse [45]. 

In a recent study, Agarwal estimated that 15% couple’s worldwide are infertile, from which 50% 

have a male contribution and 20-30% are exclusively due to male factors [46]. Furthermore, 

idiopathic male infertility predominates as the major cause of infertility (50% of all male infertility 

cases) [47]. The fact that key mechanisms responsible for several sperm processes, such motility, 

are still not fully understood, may be the key to understand idiopathic cases of male infertility. 

Understanding sperm physiology is a step towards unveil and more important diagnose and treat 

idiopathic male infertility.  

On the other hand, male contraceptives have not evolved as much as female contraceptives in the 

last decades. They fall in three main categories: vasectomy, male condom and withdrawal. In 2015, 

all together, male contraceptives represented 21% of contraceptive practice worldwide [48]. 

Vasectomy, is the blockage of the vas deferens and consequently passage of sperm. It is an invasive 

procedure that until recently was irreversible and has a very high effectiveness (97%-98%). Male 

condom is a physical barrier that prevents sperm cells to meet the oocyte. Most men refer 

discomfort using a condom. However, it is the only contraceptive that prevents sexual transmitted 

diseases and has an effectiveness of 85%. Finally, withdrawal, the pulling out of the penis from the 

vagina prior to ejaculation,  is the least effective contraceptive (73%) [49]. 

Considering that the period of male contraceptive usage is increasing (earlier sexual initiation and 

latter fatherhood) and the choices available for men are limited, we believe that a new male 

contraceptive is necessary. Targeting the signaling pathways involved in sperm motility acquisition 

may be the future of male contraceptives. Using this approach, spermatogenesis is not disturbed, 
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ensuring that it is reversible, but keeps sperm from encountering the oocyte. Therefore, 

understanding the mechanism involved in sperm motility acquisition is key. 



A2. Signaling mechanisms in mammalian sperm motility 

A2. Signaling mechanisms in mammalian sperm motilitya 

Human spermatozoon is one of the most differentiated cell types and must leave the male body 

where is produced and achieve its goal in the female reproductive system [50]. In order to fertilize 

an egg, the sperm is formed in the testes, in a process called spermatogenesis. At the end of 

spermatogenesis, sperm are morphologically complete but functionally immature and incapable of 

fertilizing an egg. To be functional, sperm cells must undergo: (i) maturation in the epididymis; (ii) 

capacitation and (iii) acrosome reaction in the female reproductive system [51]. These events are 

co-dependent, since acrosome reaction does not occur if capacitation is impaired and capacitation 

depends on functional maturation of sperm in the epididymis. Motility acquisition is essential for 

human sperm function and ultimately male fertility. In 2011, Paoli defined sperm motility as a 

propagation of transverse waves along the flagellum in a proximal- distal direction producing an 

impulse that pushes the spermatozoon through the female genital tract [52]. 

Severe asthenozoospermia is one of the causes of male infertility which arises from the inability of 

the sperm cell to reach the oocyte [53]. Primary or activated motility is acquired throughout the 

journey in the epididymis. Although the exact mechanism behind motility acquisition is still far from 

being fully understood, specific signaling events are described in the literature as essential for this 

process [51,54]. Low-amplitude symmetrical tail movements characterize sperm activated motility 

and drive sperm in a straight line in a non-viscous media (seminal plasma) [55]. However, in 

fallopian tubes, sperm must acquire a specific type of motility, hyperactivated motility, which is 

characterized by high amplitude and asymmetric flagellar bends. Only this type of flagellar 

movement allows sperm to overcome dense mucus, detach from the oviductal epithelium and 

penetrate the egg’s protective vestments [56]. Curiously, in the viscous media hyperactivated 

sperm swim in a circular or figure-8 pattern [55,57]. Alterations in pH, specific molecules, and ion 

concentration changes are a few of the crucial events for stimulation of hyperactivated motility 

[58,59]. However, the cellular mechanism and signaling pathways responsible for this type of 

motility are not fully described.  

To be motile, human sperm need a morphologically complete flagellum; be able to produce energy 
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to power flagellar movement; and functional signaling pathways (to transduce external signals into 

internal signals). This review will discuss these three topics, but will mainly focus on the signaling 

pathways involved in human sperm motility regulation. For an in-depth review on sperm 

bioenergetics please see du Plessis et al. [60] 

 

A2.1. Sperm flagellum - structure and function 

The human sperm are composed of two main structures: head and flagellum (Figure A2.1). The 

head comprises the nucleus and the acrosome. The nucleus houses the genetic information to be 

delivered to the oocyte. Upon acrosome reaction, the acrosome integrity is disrupted and its 

content is released digesting the oocyte’s zona pelucida [61]. The flagellum contains the motile 

apparatus necessary for sperm motility [55,62] and is divided into four ultrastructures: connecting 

piece; midpiece; principal piece and end piece [55]. The connecting piece attaches the flagellum to 

the sperm head; the midpiece contains the sperm mitochondria; the principal piece and the end 

piece generate the flagellar waveform pattern motility [55,62,63]. The main structure of the 

flagellum is the axoneme, which is the sperm motility motor. This structure is well conserved 

throughout evolution, present in flagella from protozoans to humans [50,62]. The axoneme 

originates in the connecting piece and terminates in the end piece. Typically, the axoneme is 

composed of nine microtubules doublets and a central pair, designated a 9+2 structure. The nine 

microtubules doublets connect to each other by nexin links and connect to the central pair by 

projections, the radial spokes. The latter are responsible for positioning and spacing the 

microtubules doublets in a perfect circle around the central pair microtubule. Projecting from the 

microtubules doublets are the inner and outer axonemal dynein arms (classified according to their 

position in relation to the doublet microtubule). These proteins are key for motility, by promoting 

sliding of a microtubule doublet in relation to the adjacent. The flagellar beating pattern begins 

with a dynein from one doublet transiently interacting with the following doublet. In the presence 

of ATP, axonemal dynein “walks” towards the base of the flagellum, forcing the adjacent 

microtubule doublet to slide down. Since microtubules are attached to the connecting piece, this 

movement encounters resistance, leading to the bending of the flagellum. At the end, the dynein 

detaches from the adjacent microtubule. To obtain a flagellum waveform movement and 

consequently motility, this process has to occur on one side of the axoneme and be inactive on the 

opposite site. Hence, the flagellar beat appears to be based on an “on-and-off” switch of the 

axonemal dynein arms, in specific points in the axoneme [50,55,62,63].  
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Figure A2.1. Schematic representation of human spermatozoon and flagellum structure. Human sperm is divided into 
two parts: head and flagellum. The flagellum is further divided into four structures: connecting piece; midpiece; principal 
piece and endpiece. A cross-section shows that the flagellum structure differs between midpiece and principal piece. In 
midpiece, plasma membrane and mitochondrial sheath surround the outer dense fibers. Within outer dense fibers, is the 
axoneme, composed of the microtubule doublets associated with the dyneins arms (inner and outer), radial spoke and 
microtubule central pair. Nexin connects adjacent microtubule doublet. In the principal piece, plasma membrane and 
fibrous sheath surround the outer dense fibers. In two opposing microtubule doublets, the outer dense fibers are replaced 
by to longitudinal columns of fibrous sheath. 

 
In mammalian sperm, between the axoneme and the plasma membrane there are several accessory 

structures, such as the mitochondrial sheath, outer dense fibers and fibrous sheath [50,55]. In the 

midpiece, the axoneme is surrounded by outer dense fibers and the mitochondrial sheath, while in 

the principal piece the axoneme is surrounded by outer dense fibers and fibrous sheath. The end 

piece has no accessory structures between the axoneme and the plasma membrane [62]. The 

mitochondrial sheath is composed of individual mitochondria coiled helically around the axoneme. 

In humans, the midpiece length is about a dozen mitochondrial turns [64]. The outer dense fibers 

have a petal-like shape, are directly above the axoneme microtubules doublets and diminish in 

diameter from base to tip of the principal piece [65]. The outer dense fibers appear to be 

responsible for maintaining the passive elastic structure and recoil of the flagellum and to protect 

the axoneme against shearing forces [66]. In the principal piece, the fibrous sheath confers 
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flexibility, shape and plane to the flagellar beat [67]. It also supports and ensures 

compartmentalization of signaling proteins that regulate motility, capacitation, and 

hyperactivation. In the principal piece, two opposing outer dense fibers are replaced by fibrous 

sheath projections [65] (Figure A2.1).  

The regulation and propagation of this “on-and-off” signal and the conversion into flagellar bending 

appears to reside in the control of the ATPase activity of axonemal dynein arms. Although this 

process is not fully understood, alterations in pH, ATP availability, calcium concentration and 

phosphorylation of key proteins appears to modulate axonemal dynein arms activity and 

consequently sperm motility. The process of ATP production and the signal pathways that control 

axonemal dynein activity will be discussed in the next topics [68].  

 

A2.2. Energy for motility - Oxidative phosphorylation vs glycolysis 

One of the key requirements for sperm motility is energy availability. ATP is the fuel used by 

axonemal dynein ATPases within the flagellum [69], and active protein modifications, such as 

phosphorylation, also depend on ATP. Thus, it is not surprising that sperm requires exceptionally 

high amounts of ATP when compared to somatic cells [70]. Consequently, a constant and adequate 

supply of ATP is crucial [69]. In spite of the efforts [69,71,72], a long-standing debate exists on the 

metabolic pathway responsible for sperm motility bioenergetics: oxidative phosphorylation in 

mitochondria, glycolysis in the flagellum and head, or both.  

In mammalian sperm, oxidative phosphorylation occurs in mitochondria, which are exclusively 

located in the midpiece. A mature mammalian spermatozoon contains approximately 72-80 

mitochondria [73] and in theory can produce more than 30 ATP molecules per glucose molecule 

[74]. Since midpiece is localized at the anterior end of the flagellum the transport of ATP to the all 

length of the flagellum must be efficient. Ford et al believe that the model of flux transfer chains 

proposed by Dzeja and Terzic in 2003, is able to transport the ATP produced in mitochondria 

through the entire flagellum [72,75].  It was indeed shown that an increase in human sperm motility 

requires a parallel increase in mitochondrial activity [52,71,76]. Also, the use of specific inhibitors 

for the mitochondrial electron transport chain and ATP synthase decreases drastically human 

sperm motility [74]. Moreover, high mitochondrial activity levels increase the success of in vitro 

fertilization rate [69]. These studies suggest that human sperm motility correlates with 
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mitochondrial functional status. Further, mitochondrial activity is negatively correlated with 

morphological alterations in the midpiece, which appears to reinforce the role of mitochondrial ATP 

production in sperm motility [71]. 

In spite of the reports supporting the role of mitochondria in sperm motility, its contribution to 

flagellar beat can be questioned. Since mitochondria are localized in the midpiece, it has been 

argued if ATP diffusion and carrier systems are able to supply ATP throughout the entire length of 

the flagellum (about 50µm in humans) [72,74]. Also, some authors argued that if ATP produced in 

the mitochondria fuels motility, the levels of reactive oxygen species produced during the electron 

transport chain would be harmful to DNA integrity [77]. However, both enzymatic (e.g. superoxide 

dismutase and glutathione peroxidases) and non-enzymatic antioxidants (e.g. glutathione and 

ascorbic acid) present in human sperm and seminal plasma appear to control the levels of ROS 

activity [77–79]. 

A growing hypothesis for the source of ATP (or at least part of the ATP) in sperm is the glycolytic 

pathway. Glycolysis is the process by which glucose is converted into pyruvate. During this process, 

energy is released in the form of ATP and NADH, with a rate of 2 ATP molecules per glucose. When 

human sperm are deprived of glucose (the starting unit of glycolysis) or when glycolysis is blocked, 

ATP content and protein tyrosine phosphorylation decreases. Consequently, sperm exhibits 

decreased motility [74,80–83]. Mukai and Okuno proved that even when mitochondria function is 

conserved, mouse sperm motility decreases when glycolysis is impaired. Moreover, a sperm-

specific lactate dehydrogenase (LDHC) accounts for 80-100% of the LDHC activity in human sperm 

and is anchored to the fibrous sheath along the length of the flagellum, representing a local ATP 

production closer to the site of ATP consumption [83]. Also, Odet et al showed that a disruption in 

mouse sperm-specific Ldhc resulted in impaired fertility due to immotile sperm [84]. Furthermore, 

sperm-specific LDHC presents a low Km for pyruvate and a high Km for lactate, suggesting a higher 

affinity of LDHC for pyruvate and consequently a preference for the glycolytic energy pathway. It is 

noteworthy to mention that although most mammals rely, at least partially, on glycolysis for 

motility, the bull seems to be an exception. Oxidative phosphorylation in bull sperm appears to be 

the only source of ATP [85].  

A third possibility for ATP availability in human sperm is a cooperation and dependence between 

oxidative phosphorylation in mitochondria and glycolysis in the flagellum. This hypothesis is 

supported by the different energetic subtracts of the reproductive tract fluids [60,70]. It appears 
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that mammalian sperm switch between metabolic pathways depending on oxygen availability and 

glucose, pyruvate, lactate, sorbitol, glycerol, and fructose concentration in the fluid [74,81,86–89].  

For example, in the human female reproductive tract, glucose, pyruvate and lactate are found in 

the range of 0.5-3.2mM, 0.1-0.2-mM and 4.9-10.5mM, respectively. Sperm must adapt its 

bioenergetic metabolism according to the metabolites available from the epididymis until the 

fallopian tubes [90]. 

 

A2.3. Signaling pathways in sperm motility 

Sperm leaving the testes are immotile and acquire motility throughout the epididymis journey. 

Sperm is virtually devoid of transcription and translation due to highly condensed DNA and lack of 

endoplasmatic reticulum [91]. Since gene expression cannot be accounted for functional alterations 

in sperm, activation or inhibition of specific signaling pathways and protein post-translational 

modifications must be involved. The interaction between sperm and the environment created by 

the epididymis and the female reproductive tract are essential to trigger sperm motility.  

Several signaling pathways have been described as having a role in mammalian sperm motility. In 

the next section, the most relevant signaling pathways and messengers involved in sperm motility 

acquisition in the epididymis and hyperactivated motility in the female reproductive tract will be 

described. 

A2.3.1. Sperm motility in the male reproductive system – A journey through the epididymis  

After spermatogenesis, sperm is morphologically complete but functionally immature. When 

entering the epididymis, a long convoluted tubule that connects the testis to the vas deferens, 

human sperm is incapable of fertilizing an oocyte. The epididymis is roughly divided into three 

regions: caput, corpus, and cauda. The caput is adjacent to the testis and the caudal portion 

adjacent to the vas deferens [12]. Only during the journey through the epididymis the sperm 

acquire fertilization ability. Epididymal maturation involves the interaction of sperm with proteins 

that are synthesized and secreted into the epididymis in a region-dependent manner [17]. Most of 

studies concerning epididymis function are carried out in rodent models, due to the limited 

availability of human epididymal tissues at reproductive ages, the impossibility of mimicking the 

epididymis environment in vitro and the difficulty to manipulate the human epididymis 

experimentally. The exact mechanism behind sperm motility acquisition in the epididymis is still 
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unknown [55].  

One of the first described signaling events responsible for sperm motility acquisition within the 

epididymis is the control of Phosphoprotein Phosphatase 1 (PPP1, also known as PP1) activity in 

sperm (Figure A2.2). PPP1CC2 (also known as PP12), a testis-enriched sperm-specific PPP1 isoform 

is distributed throughout the flagellum, midpiece and posterior region of the head [92] suggesting 

a role in motility and acrosome reaction [93,94]. In 1996 Smith et al described, for the first time, 

the association between PPP1 activity and sperm motility. In caput sperm PPP1 activity is high and 

sperm is immotile. Conversely, in caudal sperm PPP1 is inactive and sperm are motile [95,96]. In 

the following years, several studies attempted to unveil the signaling pathways responsible for PPP1 

activity modulation in sperm, through the epididymis journey. PPP1 regulatory subunit 2, PPP1R2 

(also known as Inhibitor-2) is a PPP1 inhibitor [97]. In sperm, PPP1R2 localizes throughout the 

principal piece, midpiece and posterior and equatorial regions of the head. Former studies 

described PPP1R2 activity in human sperm and that some of the sperm PPP1 population is bound 

to PPP1R2 and therefore inactive [98]. When phosphorylated at threonine 73, human PPP1R2 is 

unable to bind to PPP1, rendering its activity [99]. Glycogen synthase kinase 3 (GSK3) is the kinase 

responsible for PPP1R2 phosphorylation. Interestingly, GSK3 activity has been extensible correlated 

with sperm motility regulation both in cauda and caput (bovine, mouse and macaque models) [100–

102]. GSK3 is 6 times more active in caput than in caudal sperm and its activity is correlated 

negatively with sperm motility [100,102]. Moreover, GSK3 appears to have an isoform-specific 

function on sperm motility. When GSK3alpha is knockout there is a decrease in sperm motility and 

metabolism, while GSK3beta conditional knockout is fertile [103].  

Recently, Koch et al showed that the Wnt signaling can be partially responsible for GSK3 activity 

regulation in epididymal sperm. In corpus and caudal epididymis, Wnt signaling proteins are 

released in epididymosomes from epididymal principal cells. In the epididymis lumen Wnt proteins 

bind to Low-density lipoprotein receptor-related protein 6 receptor (LRP6), activating it. In turn, 

LRP6 induces GSK3 inhibition, which leads to decreased PPP1R2 phosphorylation [104]. 

Synergistically, GSK3 activity can be modulated by Phosphoprotein phosphatase 2A (PPP2 also 

known as PP2A). Dudiki et al demonstrated that in caput sperm demethylated and phosphorylated 

PPP2 isoform alpha (PPP2CA) is active. Consequently, it dephosphorylates GSK3 in serine residues 

rendering active. Subsequently, PPP1R2 threonine 73 is phosphorylated and the inhibitor becomes 

inactive, resulting in active PPP1 and immotile sperm. On, caput sperm, methylation of PPP2CA 

increases due to a decrease in Protein phosphatase methylesterase 1 (PPME1) activity. In these 
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conditions, PPP2CA becomes inactive resulting in increased GSK3 serine phosphorylation and thus, 

its inactivation. Subsequently, PPP1R2 is active and inhibits PPP1, leading to motile sperm [105] 

(Figure A2.2).   

 

Figure A2.2. Schematic representation of the signaling events required for sperm motility acquisition in the epididymis. 
In caput epididymis, PPP2CA is phosphorylated and consequently active, which in turn dephosphorylates GSK3 at serine 
residues, rendering it active. GSK3 phosphorylates PPP1R2 at thr73 which inhibits the interaction between PPP1R2 and 
PPP1 resulting in active PPP1. PPP1R7 is bound to p17, which leads to free and active PPP1. Active PPP1 results in 
dephosphorylation of key residues and consequently immotile sperm. In cauda epididymis, PPME1 activity decreases 
increasing PPP2CA methylation, resulting in inhibition of PPP2CA. Consequently, GSK3 serine phosphorylation increases 
leading to GSK3 inhibition. Also, Wnt binds to LRP6 receptor which promotes GSK3 inhibition by an unknown mechanism. 
Moreover, ATP binds to purinergic receptors (PR), resulting in calcium influx. Calcium activates sAC, which produces cAMP 
activating Rap guanine nucleotide exchange factor (RAPGEFs). The latter activates AKT that phosphorylates GSK3 at serine 
residues inactivating it[106]. GSK3 is inhibited, which leads to decrease Thr73 PPP1R2 phosphorylation (the phosphatase 
responsible is unknown). Consequently, PPP1R2 binds PPP1. Also, PPP1 is bound to PPPP1R2P3 and in a complex with 
PPP1R7, actin and PPP1R11. Thus, PPP1 activity is inhibited and ser/thr phosphorylation of key residues increases leading 
to motile sperm. P: Phosphorylation; M: Methylation. Green arrows: activation. Red arrows: inhibition. Yellow arrows: 

phosphorylation. In yellow: phosphorylated proteins. In pink: methylated proteins.  

 
Moreover, in 2013, Korrodi-Gregório et al identified a new PPP1R2 isoform in human sperm,  

PPP1R2P3 (also known as inhibitor 2-like) [98]. This isoform has the unique feature of threonine 73 

being replaced by proline avoiding GSK3 phosphorylation. Korrodi-Gregório et al hypothesized that 

PPP1R2P3 is only present in caudal motile sperm, representing a constitutively inhibitor of PPP1, 

and therefore responsible for the process of sperm motility acquisition along the epididymis 

journey [98] (Figure A2.2). 
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Besides PPP1R2, PPP1 regulatory subunit 7 (PPP1R7) and PPP1 regulatory subunit 11 (PPP1R11), 

other two PPP1 inhibitors are present in sperm, suggesting a synergetic mechanism for PPP1 activity 

control [107]. PPP1R11 (also known as I3) is a human homolog of the mouse Tctex5, a protein 

associated with male infertility due to impaired sperm motility. On mouse sperm, PPP1R11 is 

localized in the head and principal piece of the flagellum, the same subcellular localization of PPP1 

[108]. In rat liver cells, PPP1R7 (also known as sds22) inhibits PPP1, and in rat testis, it associates 

with PPP1CC2. In caput, bovine sperm PPP1R7 and PPP1CC2 do not interact. Instead, PPP1R7 is 

associated with a 17kDa protein (p17) [109], resulting in active PPP1. Conversely, in mouse caudal 

sperm, PPP1R7, PPP1R11, actin and PPP1 form a complex catalytically inactive [107] (Figure A2.2). 

Although PPP1 plays a crucial role in keeping motility at check in caput sperm, its substrates are still 

unknown. Besides PPP1, a sperm-specific isoform of calcineurin (PPP3CC) appears to be involved in 

epididymal maturation. Upon ablation of PPP3 and regulatory subunit PPP3R2, male mice are 

infertile due to impaired hyperactivation and penetration of zona pelucida. Phenotypically, sperm 

without PPP3CC presents an inflexible midpiece. When sperm is hyperactivated, the bending 

capacity of the midpiece increases, however, PPP3CC null sperm are incapable of exhibiting this 

increase.  Interestingly, inhibition of PPP3CC with specific inhibitors, results in a quick phenotype (5 

days) alteration from normal to inflexible midpieces. After one week of halting drug administration, 

the sperm are completely recovered and fertility is restored [110]. 

Since for sperm motility dephosphorylation must be shut down, it is not surprising that 

phosphorylation must increase. It is well known that the soluble adenylyl cyclase/Cyclic adenosine 

monophosphate/cAMP-dependent protein kinase (sAC/cAMP/PRKA; cAC/cAMP/PKA) signaling 

pathway affects positively sperm motility. Although the sAC/cAMP/PRKA signaling is mostly 

associated with hyperactivated motility [58], its involvement in sperm motility acquisition is 

unquestionable (see below) [111,112].  In 2013, Vadnais et al, proposed a cross talk between the 

GSK3/PPP1R2/PPP1 and sAC/cAMP/PRKA pathways during motility acquisition in the epididymis 

[106] (Figure A2.2). In Figure A.2. the main signaling pathways involved in motility acquisition in the 

epididymis are represented.  

A2.3.2. Sperm motility in the female reproductive system 

During unprotected intercourse, millions of sperm are deposited in the female reproductive tract, 

more specifically in the vagina. From there on sperm must swim until they reach the oocyte in the 

fallopian tube. Although sperm is already motile when ejaculated, hyperactivated motility must be 

acquired to overcome all the filters and traps imposed by the female reproductive tract. 
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Interestingly, it is the unique female enviroment that triggers the signaling pathways essential for 

sperm hyperactivated motility [113]. In the past years, many efforts have been made to unravel the 

role of key messengers and signaling pathways involved in hyperactivated motility.  

Firsts messengers -  Calcium, bicarbonate, and progesterone 

In sperm, calcium (Ca2+) plays a central role in events preceding fertilization, specifically, motility, 

chemotaxis and acrosome reaction. The relevance of Ca2+ on eukaryotic cell physiology is reflected 

in the several Ca2+-depended enzymes, intracellular Ca2+ stores and Ca2+ channels [114] . Human 

sperm is no exception. The most described role of Ca2+ in human sperm motility is the activation of 

the soluble adenylyl cyclase (sAC). Moreover, inhibition of Ca2+ signaling is associated with male 

subfertility [115] 

In human sperm, mean basal Ca2+ is kept around 100nM-200nM, while in the extracellular medium 

varies between 1-2mM [116]. This gradient concentration is accomplished by a Ca2+-ATPase pump, 

which promotes Ca2+ efflux with ATP consumption [117,118]. A low resting Ca2+ concentration is 

what keeps human sperm in a basal motility state in the caudal portion of the epididymis and vas 

deferens. However, in the female reproductive tract, Ca2+ concentration must increase to induce 

hyperactivated motility. The female reproductive system controls the increase in Ca2+ concentration 

in the sperm through clues in specific places, and menstrual cycle phase [119]. 

 The influx of Ca2+ into human sperm is promoted by several mechanisms: increase in membrane 

permeability [120]; depolarization [121]; inhibition of the Ca2+-ATPase pump; activation of voltage-

dependent calcium channel (VOCCs). Yet the main known mechanism for Ca2+ influx into sperm is 

the CatSper (cation channel of sperm), identified in 2001 by Ren et al [122]. This channel, located 

at the principal piece of the flagellum, is the only constitutively active Ca2+ conductance present in 

human sperm, responds weakly to voltage alterations and is pH-sensitive [122,123]. Moreover, null 

mice for CatSper1 are infertile [122]. Human CatSper activation is triggered mainly by extracellular 

progesterone (see below), prostaglandins [124] and an alkaline environment (created by increasing 

HCO3
- concentrations) [125]. Curiously, mouse CatSper is activated by neither progesterone nor 

prostaglandins. This suggests a species-specific Ca2+ influx process, possibly to avoid cross-species 

fertilization [124]. Although it is not located to the sperm’s head, CatSper appears also to be 

involved in the acrosome reaction by increasing Ca2+ concentration [126]. Further, Brenker et al 

concluded that a range of small odorant molecules present in the female reproductive tract 

activates CatSper, resulting in chemotaxis of the sperm towards the oocyte [127].  
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Although the process of Ca2+ influx is essential for sperm motility, it is established that the human 

sperm has Ca2+ stores. The most promising candidates for Ca2+ stores in human sperm are the 

acrosome, the nuclear membrane and the cytoplasmic droplet [128]. Interestingly, it appears that 

in the sperm flagellum there are no Ca2+ stores, suggesting that the stores are important on 

processes such as acrosome reaction, rather than in motility. Moreover, the presence in human 

sperm of sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCAs), channels that transport 

Ca2+ from the intracellular medium to Ca2+ stores in somatic cells, further reinforces the presence 

and functional importance of Ca2+ stores [128,129].  

Progesterone is probably the most potent activator of capacitation of human sperm [130]. It is 

produced by the cumulus oophorus cells that surround the oocyte. At nanomolar concentration 

range, progesterone induces Ca2+ influx and promotes extensive phosphorylation through the 

activation of several kinases, such as PRKA [131], Protein kinase C (PRKC), Mitogen-activated 

protein kinases (MAPKs) and Phosphatidylinositol 4,5-bisphosphate 3-kinase (PIK3C, PI3K) 

[132,133]. Phenotypically, progesterone increases the number of motile sperm, induces 

hyperactivated motility and acrosome reaction, and appears to be involved in sperm chemotaxis 

towards the oocyte [133–138]. 

In somatic cells, progesterone acts through classic nuclear progesterone receptor and regulates 

gene expression. Conversely, sperm is transcriptionally silent and the effect of progesterone on 

sperm physiology is far too quick to be explained by gene expression [139]. In 2011, Strünker et al 

and Lishko and et al concluded that progesterone activates the CatSper channel [124,125]. As sperm 

leave the epididymis and mixes with the prostatic seminal vesicle fluid, the bicarbonate (HCO3
-) 

content increases [140]. Reaching the female reproductive system, sperm encounters an acidic 

environment, which should reduce motility.  Yet, the basic pH of the seminal plasma neutralizes the 

acidic pH and allows sperm motility [141] and the semen is deposited closely to the uterus cervix 

so that sperm can quickly move out of the vagina [56,142]. Within the uterus, the rich HCO3
– alkaline 

environment is essential for sperm hyperactivated motility [143]. Curiously, throughout the 

menstrual cycle, HCO3
– concentrations vary from 35nM at the follicular phase to at least 90nM at 

ovulation, potentiating fecundation [142]. Sperm-specific Na+/ HCO3
- co-transporters mediate the 

influx of HCO3
- and, as a result, there is an increase on sperm pH and depolarization [144]. Though, 

to achieve complete depolarization, there must be a Na+ and K+ influx, Na+ is transported by the 

Na+/ HCO3
- co-transporters and K+ influx is mediated by Calcium-activated potassium channels and 

the ion transporter Na,K-ATPase. Calcium-activated potassium channels are regulated by 
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intracellular alkalinization and cAMP, which hints a HCO3
- indirect regulation of K+ [141]. Within the 

sperm, HCO3
- activates factors that exchange phospholipids within the bilayer plasma membrane. 

Consequently, cholesterol is vulnerable to albumin, which is the most abundant protein on the 

female reproductive system, and the main cholesterol acceptor. Albumin can decrease up to 40% 

of the sperm cholesterol content and this leads to an increase on membrane fluidity [145,146]. 

Depolarization, intracellular alkalinization and increased membrane fluidity promote influx of Ca2+.  

The Na,K-ATPase pump is a membrane protein found in all eukaryotes [147]. By using the energy 

released from ATP hydrolysis the Na, K-ATPase pump promotes the efflux of three molecules of Na+ 

and influx of two molecules of K+ [148]. Two subunits compose the Na,K-ATPase protein, the alpha 

and beta subunits. In several species, including human, the alpha4 sbunit presents the most 

restricted expression. It is present in sperm principal piece only in mature sperm of males in sexual 

maturity. Besides the Na,K-ATPase alpha4 subunit, only subunit alpha1 is present in sperm [147]. 

Knockout studies revealed that the Na,K-ATPase alpha4 subunit is crucial for sperm physiology, 

since alpha4 subunit KO is completely sterile. Knockout sperm presents reduced primary and 

hyperactivated motility, bent flagellum, increased intracellular Na+ and cell plasma membrane 

depolarization [149]). Mcdermott et al reinforce the role of Na,K-ATPase alpha4 subunit on human 

male fertility by showing that an overexpression of this protein in mouse testis results in an 

increased total motility (among other parameters of sperm movement) [150]. Although the exact 

mechanism underlying the role of Na,K-ATPase in sperm physiology is not fully characterized, Na,K-

ATPase alpha4 isoform appears to  regulate intracellular H+. Since is unlikely that the Na,K-ATPase 

transports H+, its ability to regulate intracellular H+ arises from its effect on the activity of a Na+/H+ 

exchanger (NHE). NHE uses the Na+ gradient established by the Na,K-ATPase to extrude H+ in 

exchange for the influx of Na+ [151] and, consequently there is an increase in the intracellular pH 

[151] (Figure A2.3). In bovine sperm, Jimenez et al demonstrate that Na,K-ATPase activity is up-

regulated during capacitation. Also, when Na,K-ATPase activity is impaired, the intracellular 

decrease in Na+ and plasma membrane depolarization that typically accompany sperm capacitation 

are inhibited [152]. Ouabain, a cardiac glycoside produced in adrenal glands, is a Na,K-ATPase 

inhibitor which may have a physiological role in fertilization.[153–155]. 

Signaling pathways in hyperactivated motility 

It appears that all the processes that occur in the female reproductive system increase the Ca2+ and 

HCO3
- concentrations in the sperm. This raises the question: within the sperm, what signaling 
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pathways Ca2+ and HCO3
- modulate in order to promote hyperactivated motility? 

The most well-known pathway that controls hyperactivity and is highly dependent on Ca2+ and 

HCO3
- concentrations is the sAC/cAMP/PRKA pathway.  The sAC is specific to sperm, does not 

interact with Guanosine-5'-triphosphate and for its activation, it needs to bind to HCO3
- and Ca2+ 

[144]. Upon activation, sAC converts adenosine monophosphate into 3´.5´- Cyclic adenosine 

monophosphate (cAMP). The increase of cAMP activates PRKA, a serine/threonine kinase that is 

dependent on cAMP [54,156]. The fact that when sAC or Calpha2 sperm-specific PRKA subunit are 

knockout, sperm does not acquire motility reinforcing the necessity of such signaling pathway in 

sperm motility [157,158]. PRKA appears to target and activate tyrosine kinases since inhibition of 

PRKA is correlated with a decrease in tyrosine phosphorylation [159].  

 

Figure A2.3. Schematic representation of the signaling events required for sperm hyperactivated motility in the female 
reproductive system. Several mechanisms are responsible for intracelullar Ca2+ increase in sperm. Progesterone binding 
to CatSper; activate VOCCs and inhibition of Ca2+-ATPase pump promote Ca2+ influx. In sperm, HCO3

-  and Na+ increase 
due to activation of Na+/HCO3

- co-transporter. Potassium enters through a calcium-activated potassium channels (CAPC) 
and Na,K-ATPase. The Na+ gradient created by the Na,K-ATPase, activates the Na+/H+ exchanger that promotes the influx 
of Na+ and de efflux of H+. HCO3

- activates exchange factors (EF) that promote cholesterol externalization, becoming 
vulnerable to albumin.  HCO3

- and Ca2+ activate sAC, which converts AMP to cAMP and activates PRKA. PRKA activates 
tyrosine kinases, by phosphorylation. Also, Ca2+ activates PIK3C, which forms PIP3, that in turn activates PDPK1 and PDPK1 
and PDPK2 activate AKT by phosphorylation. AKT activates tyrosine kinases by phosphorylation. At the same time, DAG 
activates PRKC which phosphorylates RAF-1; RAF-1 activates MAP2K2 and MAP2K2 activates MAPK3/1. Again, MAPK3/1 
activates tyrosine kinases by phosphorylation. MAPK3/1 phosphorylates ARHGAP6 which may be involved in 



A2. Signaling mechanisms in mammalian sperm motility 

hyperactivated motility. MAPK14/11/12/13 inhibits hyperactivated motility.  Src inhibits PPP1, which allows an increase 
of tyrosine kinases phosphorylation. Tyrosines kinases phosphorylate key proteins inducing hyperactivated motility. P: 
Phosphorylation; Prg: Progesterone. Green arrows: activation. Red arrows: inhibition. Dashed arrow: predicted function. 
In yellow: phosphorylated proteins. 

PRKA activity control and its subcellular localization are crucial for compartmentalization of its 

effect. In sperm, PRKA is typically tethered to A-kinase anchor proteins (AKAPs), which in turn 

targets PRKA to specific subcellular sites and provides a mechanism for defining its substrates [131]. 

Besides anchoring PRKA, it has been showed that AKAPs can also scaffold phosphatases and other 

kinases from macromolecular complexes essential for signaling cascades within the sperm [131]. In 

flagellum sperm, AKAPs have a prominent role and AKAP4 is the main component of the fibrous 

sheath. Moreover, when AKAP4 is knockout sperm numbers are normal but sperm is incapable of 

progressive motility and proteins usually associated with the fibrous sheath, such as PRKA, are 

absent or significantly reduced [117].   

Besides increasing PRKA activity, Battistone et. al proved that serine/threonine phosphatases must 

be inactivated to allow the increase in serine/threonine phosphorylation. Members of the Src family 

kinase (SFK) inactivate members of the serine/threonine phosphatases family possible by tyrosine 

phosphorylation.  In human sperm, PPP1CC2 is the most promising candidate since it exhibits 

predicted tyrosine phosphorylation sites and only high okadaic acid concentrations overcome the 

SKI606 effect (an SFK inhibitor) [160]. Nevertheless, the involvement of other serine/threonine 

phosphatases, such PPP2CA or PPP4C cannot be ruled out [160]. 

Although sAC/cAMP/PRKA plays a central role in hyperactivated motility, it is not the only signaling 

pathway involved in this process. The involvement of the PIK3C-AKT pathway in sperm 

hyperactivated motility was described by Sagare-Patil et al.  Progesterone promotes the influx of 

Ca2+ through the CatSper channel. Within the sperm, Ca2+ activates PIK3C (unknown mechanism) 

converting PIP2 into PIP3. The latter binds and activates 3-phosphoinositide-dependent protein 

kinase 1 (PDPK1), which phosphorylates RAC-alpha serine/threonine-protein kinase (AKT or PKB) in 

threonine 308. Consequently, AKT serine 473 becomes exposed and vulnerable to phosphorylation 

by PDPK2. Both phosphorylations render an active AKT, that phosphorylates serine residues on key 

proteins in sperm motility [133]. 

The Mitogen-activated protein kinase (MAPK) signaling is also involved in human sperm 

hyperactivated motility, although its role is controversial. In 2005, a study in human sperm stated 

that tryptase, a product of mast cells in the female reproductive system, activates MAPK3/1 (also 

known as ERK1/2), which in turn inhibits motility [161]. However, in 2008, Almog et al 
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demonstrated the existence of the MAPK cascade elements, more specifically, MAPK3/1, SOS, RAF-

1, MAP2K1 and MAPK14/11/12/13 (also know as p38 proteins) in the tail of mature ejaculated 

human sperm and revealed a positive correlation between MAPK3/1 and motility. Upon activation 

by diacylglycerol (DAG), Protein kinase C (PRKC, PKC) becomes active and phosphorylates RAF-1, 

which in turn phosphorylates and activates MAP2K1. MAP2K1 activates MAPK3/1 by 

phosphorylation. One of the identified substrates of MAPK3/1 was Rho GTPase-activating protein 

6 (ARHGAP6). This protein may control the active slide of microtubules in sperm flagellum since it 

has already been described as being involved in cell motility and actin remodeling [162]. On the 

other hand, active MAPK14/11/12/13 inhibits sperm motility [163]. Again in 2015, Silva et al also 

showed a negative correlation between MAPK14/11/12/13  activation and human sperm motility 

[164]. In Figure A2.3 the signaling pathways involved in sperm hyperactivated motility in the female 

reproductive system are represented.  

A2.3.3. Correlation between sperm motility and tyrosine phosphorylation 

In 1989, Leyton and Saling described for the first time the presence of tyrosine phosphorylation in 

mammalian sperm (mouse) [165]. Twenty-six years later, the importance of tyrosine 

phosphorylation in capacitation and motility is unquestionable. The increase of proteins tyrosine 

phosphorylated in the human sperm is a hallmark of capacitation and has been positively associated 

with acquired and hyperactivated motility [159,166,167]. Most of the signaling pathways involved 

in human motility, including the ones described previously, culminate in activation of tyrosine 

kinases. The identity of most tyrosine kinases is  unknown, still, the tyrosine kinases Scr [168],  

FGFR1 [169] and ABL1 [170] are already associated with tyrosine phosphorylation in mammalian 

sperm.  

Several studies proved that dozens of proteins undergo tyrosine phosphorylation during 

capacitation in the sperm, mainly proteins localized in the flagellum [102,171–174]. In fact, human 

AKAP4 (see above), was one of the first proteins to be identified as a substrate for tyrosine 

phosphorylation[175]. Fibrous sheath protein of 95 kDa [176]; CABYR [177] and HSP90 [178] are 

other targets of tyrosine kinases [144]. Also, it has been hypothesized that dyneins are tyrosine 

phosphorylated and that this post translation modification controls the sliding of microtubules and 

therefore motility. The challenge for the next years is to identify new tyrosine phosphorylation 

targets and their relationship with sperm motility [159]. 
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A2.4. Concluding remarks 

This review attempts to summarize the current knowledge on the signaling pathways involved in 

sperm motility regulation.  Since the first observation of the sperm by Anton van Leeuwenhoek´s in 

1677, the knowledge concerning the sperm cell grew exponentially. The sperm structure, energy 

metabolism, epididymal maturation, and capacitation are indispensable for fertilization. 

Nevertheless, the road to unraveling the molecular players involved in the regulation of this 

processes is still long. Specifically, the molecular basis of sperm motility is not fully understood. 

Nowadays, we believe that the major setback to fully comprehend the molecular basis of human 

sperm motility is a technical one. Animal models and in vitro experiments are the only options to 

study epididymal maturation and capacitation.  Understanding the mechanism responsible for 

human sperm motility is of great value. Sperm motility is the perfect target for male contraception 

since it does not disturb spermatogenesis and hormone production. Also, decreased sperm motility 

is increasing in developed countries, resulting in an escalation in male infertility rates. 

Understanding the signaling pathways behind sperm motility can help pinpoint the cause of male 

infertility and contribute to the development of new therapies. 
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A3. Interactomics and Bioinformatics: making sense of a big 

mess 

Proteins are the “working force” of cells, having roles that go from structural support, enzymatic 

activity, production of other proteins, extracellular signals reception, etc. Protein-protein 

interactions (PPIs) control all biological processes within a cell and sperm cells are not an exception. 

After spermiogenesis, human sperm cells are virtually transcriptionally silent. This implies that 

sperm cannot rely on production of new proteins to respond to environment changes and 

orchestrate cellular processes. For that reason, two questions arise: what proteins are present in 

the human sperm and what interactions they stablish? Two scientific fields try to answer these 

questions, Proteomics and Interactomics. Proteome is the entire set of proteins being expressed in 

a given cell at a given time. Interactomics is the entire set of interactions occurring in a given cell at 

a given time [179]. Note that interactions can occur between every molecule within a cell, for 

example protein-protein; protein-DNA, Protein-RNA, DNA-RNA, etc. In the next section, we will 

focus on PPIs and those will be referred as the interactome, for simplification.  

How big is the sperm proteome? In 2009, Baker estimated that the human sperm proteome would 

comprise around 2000-2500 proteins [180]. Several attempts have been made to decipher human 

sperm proteome. These studies not only aimed to establish the normospermic human proteome 

[181–185], but also depicted the proteomes of different stages of sperm maturation (e.g. ejaculated 

and capacitated) [186–189]; specific fertility/infertility conditions (asthenozoospermic; normal but 

IVF failure) [190–197]; specific subcellular compartments of spermatozoa (head or flagellum) 

[198,199]; post-translational protein modifications (phosphoproteome, nitrosylations, 

glycosilation) [186,200,201] and associated pathologies (diabetes, obesity, epididymitis) [202–204]. 

As far as our knowledge goes, more than 50 studies unveil a small portion of the human sperm 

proteome. The disparities between normospermic and asthenozoospermic samples have been 

extensively analyzed. This reflects the merging need to understand sperm motility mechanisms. 

Regarding human testis proteome, much has already been revealed. In 2015, the Human Protein 

Atlas project released the human tissues proteome, which included the testis-specific proteome. 

Eighty-two percent of all human transcripts analyzed are expressed in testis and around 11% 

present an elevated/restricted expression in testis. As expected, the elevated/restricted proteins 

are mainly involved in spermatogenesis [205]. Previously, Guo and colleagues and Djureinovic and 

colleagues characterized the human testis proteome [206,207].  
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By contrast, there are few interactomic studies on both testis and sperm, but none aimed to unveil 

the complete interactome of testis and sperm. Still, specific protein interactomes have been 

characterized in human testis. In 2011, Fardilha et al identified the interactome of PPP1CC1 and 

PPP1CC2 in human testis [92]. Among others, the testis interactome of APP, TCTEX1D4 and BRAP2 

have been identified and characterized [208–210]. In human sperm, interactomes appear to be 

restricted to sperm-egg interactions [211]. Still, several PPIs have been identified in both testis and 

human sperm, but not resorting to an “Omic” approach.  

Taking this into account, revealing the interactome of already known proteins involved in sperm 

motility will deepen our knowledge on motility mechanisms and may contribute to the 

identification of potential targets for a new male contraceptive. 

 

A3.1. All or nothing: high-throughput techniques for protein-protein 

interactions identification 

The term “Interactome” was first created by Sanchez in 1999 and intended to describe all binary 

PPIs in an organism [212]. Since the human genome was sequenced in 2001 [213], revealing the 

proteome and interactome of Homo Sapiens has been set as the next goal. However, it has been 

estimated that the human interactome contains a range of 130,000–650,000 binary interactions, 

far too complex to currently map [214,215].  

Interactomes can be identified using two approaches: in silico through prediction algorithms or 

experimentally via high-throughput techniques [216]. In silico techniques will not be discussed 

further. The biggest attraction of high-throughput techniques is that in a single experiment 

hundreds of PPIs can be identified. There are several high-throughput techniques available that 

allow PPIs identification. However, we consider that two stand out: Yeast two-hybrid (YTH) and Co-

immunoprecipitation followed by Mass spectrometry (co-IP/MS). In the next section, both 

techniques will be briefly described as well as their advantages and disadvantages. 

A3.1.1. Yeast two-hybrid 

Yeast two-hybrid was the father of all high-throughput techniques for PPIs identification. In 1989, 

Fields and Song, idealized the YTH system by taking advantage of two properties of eukaryotic 

transcription factors: (i) gene transcription only occurs in the presence of the DNA binding domain 
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(DBD) and the activation domain (AD) of a transcription factor; (ii) the two domains only need to be 

in close proximity and no covalent bond is necessary. In the original YTH, one protein of interest 

(bait) was fused into the DBD of GAL4 transcription factor and another protein to the AD (prey). If 

both proteins interact, the GAL4 transcription factor was resembled and the LacZ reporter gene 

was transcribed. This resulted in yeast colonies turning-blue in the presence of the substrate X-gal 

[217]. Quickly the YTH gained popularity mainly because it offered significant advantages compared 

to biochemical methods of PPIs identification (for example in vivo vs in vitro) [215]. Figure A3.1 is a 

schematic representation of the YTH principle.  

 

 

 

 

 

 
 

 

In its almost 30 years of existence, YTH has evolved, modified and improved. One of the biggest 

modification of this method is the possibility of high-throughput screening. The usage of cDNA 

libraries as preys, allows the identification of complete interactomes of a specific protein in one 

single experiment [218,219]. To further improve the method, several modifications were 

introduced to increase the number of interactions identified; decrease the rate of false positives; 

perform the screen in mammalian cells; identify protein-DNA and protein-RNA interactions and in 

different subcellular compartments [220,221]. 

The contribution of YTH to unveil interactomes is indisputable. In fact, the YTH became one of the 

most popular tools in molecular biology and thousands of PPIs have been identified with this 

method. Several interactomes have been characterized by YTH, ranging from complete organisms 
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Figure A3.1. Schematic representation of YTH principle. The cDNA of a protein of interest (bait) is cloned into a vector 
with the DNA binding domain (DBD) of a transcription factor. A cDNA library or a cDNA of a protein (bait) is cloned 
into a vector with an activating domain (AD) of a transcription factor. Both vectors are transformed into yeast. Within 
the yeast, two hybrid proteins are produced and if bait and prey protein interact the DBD and AD come into close 
proximity in the nucleus and transcription of reporter genes is activated. 
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to disease-specific interactomes [222–224]. The significant contribution of YTH to PPIs databases 

reflects the utmost importance of this technique. Around 50% of the interactions reported in 

PubMed resulted from YTH screenings and from 1990 to 2007 the number of high confidence binary 

interaction described by YTH increased exponentially [223,225]. We believe that even 30 years 

later, the YTH is probably the most commonly used technique for the detection of PPIs [215,226]. 

In 2005, two separated YTH experiments tried to characterize the human interactome. Rual et al 

identified around 2800 interactions (300 new) and Stelzl et al identified 3186 interactions (mostly 

new ones) [227,228]. Although both interactomes were obtained using the YTH, the experimental 

procedures were distinct. This may explain the low percentage overlap between both interactomes 

datasets (16% of common proteins and from those only 15% of the interactions were common) 

[229]. 

A3.1.2. Co-immunoprecipitation and Mass spectrometry 

Co-immunoprecipitation was first coupled with Western blot allowing small-scale PPI identification. 

Yet, coupling co-IP with mass spectrometry (co-IP/MS), transformed this technique in a high-

throughput approach for detection and identification of PPIs [230,231]. As the name suggests, co-

IP isolates PPIs from cells or tissues by using an antibody that specifically recognizes a protein. Since 

it is typically performed in non-denaturing conditions, the antibody will not only “pull-down” its 

antigen but all proteins bond to it [232–234]. The biggest advantages of co-IP are that physiological 

conditions are kept (protein concentration, protein tridimensional structure, post-translational 

modifications, etc) and it is very specific and compatible with several downstream applications. 

Mass spectrometry is capable of identifying thousands of proteins in a single experiment. Thus, it 

seems wise to use mass spectrometry as the technique to identify PPIs after a co-IP in a high 

throughput manner (Figure A3.2 shows a schematic representation of co-IP/MS). Still, co-IP does 

not prove a direct interaction, since, protein complexes are often identified by co-

immunoprecipitation. 
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Mass spectrometry measures the mass-to-charge ration of ions, originated by breaking a complex 

mixture of proteins. The major advantages of mass spectrometry it is sensitivity; quantity of 

information obtained and its ability to identify the peptide sequence of the interactors. Still, the 

high cost, challenging optimization, not only of the mass spectrometry itself, but also for the 

combination of this technique with for example co-immunoprecipitation, and the complex analysis 

of the results can be discouraging to the researchers [235]. In sperm, co-immunoprecipitation is 

particularly significant, since it is one of the only techniques that allows interactome identification. 

Any technique for PPI identification that relies on expression of exogenous DNA (e.g. tag based pull-

down) or construction of a sperm cDNA library (e.g. yeast two-hybrid) cannot be employed to unveil 

the sperm interactome.  

A key aspect that must be considered when choosing and analyzing results from high-throughput 

PPIs techniques is the type of interactions detected. PPIs can be classified as transient or stable, 

according to the temporal range of interaction. Transient PPIs have a higher probability of complex 

dissociation while stable PPIs have a higher temporal stability. Note that, a transient interaction can 

have high values of affinity and consequently be a strong interaction that last short period of time 

[236,237]. Focusing on YTH and Co-IP/MS, the PPIs identified are from distinct nature. YTH is able 

to detect transient and stable interactions due to the genetic reporter gene approach (amplifies the 

signal). Consequently, YTH must be used when, for example, signaling interactions are the goal of 

the study [233,238]. Co-IP/MS often detects stable and strong interactions. These result in the 

enrichment of PPIs from protein complexes such, the proteasome and cytoskeleton structures, or 

Figure A3.2. Schematic representation of a co-immunoprecipitation followed by mass spectrometry. Protein-
protein interactions are isolated by using antibody specific to a protein of interest and eluted for Mass spectrometry 
analysis. For mass spectrometry, isolated proteins are cleaved and analyzed according to their mass to charge ratio. 
The peptide mass fingerprint is compared with repositories of mass fingerprints in publicly available databases. 
Finally, interactors of a protein of interest are identified. 



A3. Interactomics and Bioinformatics: making sense of a big mess 

strong interactions, such PPIs from anchoring proteins. The use of strong detergent in the lysis 

buffer and the multiple washing steps is the main reason for the loss of transient and weak 

interactions [216].  

 

A3.2. And now what? In silico analysis of interactomes 

High-throughput techniques for PPIs detection are the best option for interatomes identification. 

Yet, the fact that these techniques provide a great amount of information can be overwhelming. 

What are the key binary interactions in testis and sperm? Have these interactions already been 

described elsewhere? What is the biological meaning of such interaction? The challenge is to extract 

meaningful information from an immense amount of data and ultimately provide answer to one 

biological question. In silico analysis of interactome data can help answer such questions and 

decipher the biological relevance of the identified interactome.  

Typically, bioinformatics analysis is based on extracting information from databases, enrichment 

and information visualization tools. In the next section, we provide a rough guide on how to perform 

an in silico analysis of interactomics data. To a more detailed guide please consult [242]. 

A3.2.1. Protein-protein interactions databases 

To complement data obtained by experimental approaches, PPIs from public accessible databases 

can be retrieved. Currently, there are more than 200 PPIs publicly accessible databases [243]. Thus, 

it can be very difficult to choose the best option to retrieved PPIs data. Databases can range from 

PPIs, gene expression patterns, protein subcellular localization, among many others. There are two 

main types of databases: primary or secondary. Primary databases are repositories of experimental 

results submitted directly into the database. These data can be curated by database-associated 

researchers to ensure accuracy of the information. Secondary databases collect information from 

primary, other secondary databases and scientific literature and manually or computationally 

analyze this data to create new knowledge [239] 

First, it is crucial to understand the origin of PPIs data in each database. PPIs can either be 

experimentally proved by small-scale or high-throughput techniques or predicted by extrapolation 

based on genomic context, structural information, network topology, text mining or machine 

learning algorithms. Although predict PPIs information can be suitable for an initial approach on a 
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specific protein interaction, high confident experimentally PPIs data must be used in an in silico 

analysis approach. To achieve high confident PPIs, each database classifies PPIs using quantitative 

or qualitative scores and different levels of curation. Typically, scores take into account the type of 

interaction, the number and quality of the experimental techniques used, the number of times the 

PPI is described in the literature and if the interaction is described in several non-human organisms 

[244]. Curation relates to constant update and confirmation of PPIs by a great human effort. 

Specifically, curators review publications and extract PPIs information. The type of information is 

vast, from identity of the interactions partners; experimental technology used; organism where 

PPIs was detected, among others [245]. Each PPIs database has a different curation policy (deep or 

shallow), which results in low overlap between repositories. Consequently, a choice must be made 

between recovering only PPIs information (shallow) or recovering as much detail about PPIs as 

possible (deep) [179,246].  

In 2012, the International Molecular Exchange (IMEx) consortium established common curation 

rules and a central registry to manage article incorporation into databases [247]. Several PPIs 

databases were encouraged to incorporate the IMEx curation rules and became members of the 

IMEx consortium. The consortium aims to coordinate curation to avoid redundant work, increase 

curation coverage by pre-establishing scientific publication to each database and synchronize 

curation to ensure data consistency across all IMEx databases. Table A3.1 lists the publicly available 

PPIs databases that present human PPI data (data obtained on 18 July 2017). 

Besides the quality and origin of the PPIs data in each database, the way PPIs information is 

reported must be considered. Due to the individual data report formats of each database, merging 

and comparing information could be challenging. In 2004, several databases united efforts and 

created the PSI-MI XML format which has been supplemented by a tabular format (PSI-MITAB). 

Currently, these table puts together 15 types of information from each binary and uses a controlled 

vocabulary (standardization of terms). These allows an easiest way to interchange, download, 

combine, visualize and analyze data in a single format from multiple resources [247,248]. 

A3.2.2. Adding biological meaning to protein-protein interactions 

High-throughput PPIs identification techniques pushed the interactomic area forward. However, 

PPI biological context is partial lost when using high-throughput techniques. To circumvent this 

problem, biological information can be added to PPIs. Biological enrichment tools are defined as 

bioinformatics methods that take advantage of biological knowledge accumulated in databases and 
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apply these knowledge into raw data. [240]. Enriching PPIs with information such as tissue 

expression, gene ontology, cell signaling involvement and association with mammalian phenotypes, 

will allow to pinpoint biological important interactions in the overwhelming number of PPIs 

identified. In the next section, we will describe how to add biological context to PPIs. 



A3. Interactomics and Bioinformatics: making sense of a big mess 

Table A3.1. Protein-protein interactions databases. Publicly PPIs available that present human PPIs information. Name, type of database, curation level, latest update, reference and some 
features are described. Data retrieved on 18 July 2017. 

Database Type of database Curation level Features Last Update Reference 

IntAct Primary (self-curation) and 
secondary (data curated by 
other platforms) 
Only experimental data 

IMEx (manually 
curated) 

Around 750 000 interactions  
Scoring system relies on type of interaction 
and interaction detection method 
Binary interactions (protein-protein and 
protein-other molecules) data for several 
organisms besides Homo Sapiens 

February 2016 [245,249] 
 

DIP Primary  IMEx (manually and 
computer approaches 
curated) 

More than 81.000 binary interactions for 10 
different organisms 
It is possible to search PPIs by interactions 
motifs or protein domains. 

February 2017 [250] 
 

HPIDB Primary (self-curation) and 
secondary (curation of 12 
external databases) 
 

IMEx (manually 
curated) 

Host-pathogen PPIs 
More than 55.000 interactions between 55 
host (animal and plant) and 523 pathogen 
species (virus, bacteria, fungi, etc) 

March 2017 [251,252] 
  

MINT Primary  IMEx (manually 
curated) 

Around 125.000 binary interactions (PPIs and 
proteins-other molecules) in more than 600 
organisms or in vitro assays. 
Association with human disease is stablished 

Currently being 
update by IntAct 

[245,253,254]  

MatrixDB Primary (experimental only) IMEX (manually 
curated) 

Binary interactions established by 
extracellular matrix proteins, proteoglycans 
and polysaccharides 
More than 15.000 molecular interactions 
(IMEx extended). However, the core of 
MatrixDB is composed by 789 interactions 

2015 [245,255] 
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I2D Secondary (experimental and 
predicted) 

IMEx PPIs for five model organisms and Homo 
Sapiens 
More than 1 million PPIs 

October 2015 [256,257] 
 

InnateDB Primary (experimental) and 
secondary 

IMEX (manually) Genes and proteins interactions and signaling 
pathways involved in the immune system of 
humans, mice and bovine to microbial 
infection. 
18,780 described interactions. 

Junes 2017  [258] 
 

UniProt Secondary IMEx Data drives from multiple databases Updated monthly [259] 
  
 

HIPPIE Secondary Manually curated More than 300 000 experimental PPIs 
retrieved form 7 primary databases 
Scoring system is based on the nr of studies 
reporting an interaction; the nr and quality of 
the experimental techniques used to detect 
the interactions and the nr of non-human 
organism in which the interaction is reported 

July 2017 [260,261]  

PSICQUIC 
View 

Web Service - Search web service that allows retrieval of 
PPIs and protein-molecules interactions from 
36 primary and secondary databases.  
Access to more than 151 million binary 
interactions 
Results are reported in a controlled 
vocabulary in a specific format (PSI-MITAB).  

-  [262] 
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A3.2.3. Gene Expression databases: Where are proteins being expressed?  

PPIs are constantly changing to adapt to the biological context. Furthermore, interactomes are 

unique to cell types, tissues, development stage, etc. Consequently, adding expression data to PPIs 

offers a better understanding of binary interactions in a tissue-specific context. Mapping proteins 

in a given tissue is typically based on measuring its mRNA levels. High-throughput techniques for 

mRNA quantification includes RNA sequencing and expressed sequence tags (ESTs). ESTs are short 

sequence reads generated from 5´and 3´ends of tissue cDNA library (immobilized in a microarray). 

Since these sequences are fluorescently tagged, it is possible to measure the amount of cDNA. So, 

the higher abundance of a gene, the higher abundance of the EST derived from its transcripts and 

consequently the higher the signal [263,264]. RNA sequencing (RNA-seq) is an update of ESTs 

technique. Instead of generating short sequences of RNA only from 5´and 3´end, RNA-seq generates 

random cDNA fragments. This is particularly useful, to distinguish between isoforms [265].There 

are several options of tissue gene expression databases and repositories available. The main freely 

available databases are listed in Table A3.2. 

Table A3.2. Tissue gene expression databases and repositories. Name, gene expression technique, latest update 
reference and some features are described. Data retrieved on 18 of July 2017. 

Database Gene 
expression 
detection 
technique 

Features Last 
Update 

Reference 

Human 
Protein Atlas 
(HPA) 

RNA-seq and 
Cap Analysis of 
Gene 
Expression 
(CAGE)  
 
 

Human protein-coding genes, 
expression and localization of the 
corresponding proteins based on 
both mRNA and protein data. 
Coverage of 100% mRNA data and 
87% of protein data of the 
predictive human genes  
Presents several tissue-specific 
and cancer proteomes.  

January 
2017 

[205,266] 
 

BioGPS Affymetrix 
chips 
(microarray) 
and imported 
data. 

Expression data for Homo 
Sapiens, Mus musculus, Rattus 
novergicus; Sus scrofa and others 
Expression data for cancer tissues 
Based on submission of 
expression datasets by the users 

May 2017 [267,268] 
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PaGenBase Affymetrix 
chips 
(microarray), 
next 
generation 
sequencing 
(NGS) and 
curated data-
mining  

Expression of specific, selective 
and housekeeping genes of 
tissues of Homo Sapiens and 10 
model organisms 
Tissue/cell, time/development 
/differentiation specific data 

May 2013 [269]  

Expression 
Atlas 

RNA-seq and 
Affymetrix 
chips 
(microarray). 

Data results from more than 
manually curated 3.000 
independent studies. 
One third of the data is mRNA 
expression for Homo Sapiens. 
Other species, like chicken, pig 
and 17 plant species are also 
represented. 

May 2017 [270] 
  
 

UniGene ESTs For Homo Sapiens, there are more 
than 130.000 mRNA expression 
data 
Data for more than 100 other 
organisms (plants, fungi, bacteria, 
virus, etc.) 
Tissue/pathology/development 
specific data. 

Updated 
monthly 

 
[271]  

Human 
Protein 
Reference 
Database 
(HPRD) 

 Data restricted to normal human 
tissues 
 

April 2010 [272] 
 

 

Since different methodologies for gene expression quantification are used by different databases, 

merging and comparing data can be challenging. If the goal is to retrieve data from two or more 

databases, normalization of the expression must be performed. Besides retrieving gene expression 

data, pin-pointing proteins that are specific or enriched into a particular tissue can be of 

importance. Some databases either provide a subset of tissue-specific proteins (such as HPA) or 

classify proteins as tissue-specific. However, there is no uniformed rules to classify a protein as 

tissue-specific. For example, HPA databases considers tissue-specific proteins as requiring an 

expression in one tissue at least five-fold higher than all other tissues [205]. On the other hand, 

UniGene considers a restricted expression when at least 75% of the detected gene expression is 

clustered in a single tissue [271]. 
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A3.2.4. Gene phenotype and disease associated databases 

In medicine, phenotype refers to relevant abnormalities (symptoms, behavioral anomalies, etc) 

that have an impact on quality of life. Typically, genetic abnormalities of multiple genes result in 

protein deregulation at cellular level and consequently a malfunction of the tissue, resulting in a 

phenotype. By analyzing the phenotype produced, we can infer the protein role within a cell [273]. 

Studying gene-phenotype association is based on two approaches: human gene-disease association 

and animal model gene-phenotype association. Although the ultimate goal is to unravel human 

gene-disease association, human sample shortage and ethical issues make it challenging. Using 

animals to create gene-phenotype model, more specifically mice, help complement the human 

based knowledge. In Table A3.3, most human gene-disease association databases and animal model 

gene-phenotype databases are listed. Most databases allow a phenotype based search (e.g male 

infertility) or a gene based search (e.g. PGK2) and data can be retrieved in a singular tabular format. 

Again, the lack of uniformed rules to classify phenotypes is the biggest challenge when unifying and 

comparing data between distinct databases.  

Table A3.3. Gene-disease association and animal model gene-phenotype databases. Name, lasts update, reference 
and type of data presented are described. Data retrieved on 18 of July 2017 

Database Type of data Last Update Reference 

Mouse Genome 
Informatics (MGI) 

Freely available gene-
phenotype data derived 
from knock out mice  

June 2107 [274] 

Online Mendelian 
Inheritance in Man 
(OMIM) 

Human gene-disease 
and gene-phenotype on 
all known mendelian 
disorders and over 
15.000 genes. 
 

Update daily [275] 
 

Phenopedia/Genopedia Human gene-disease 
and gene-phenotype 
data derived from 
manually curated data-
mining. Disease 
(phenopedia) and genes 
(genopedia) query is 
possible.  

July 2017  [276] 
  
 

DisGeNet Human gene/variants-
diseases data curated 
from repositories; 
genome wide 

May 2017 [277,278]  
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associated studies 
catalogs, animal models 
and scientific literature.  

DISEASES Gene-disease data 
obtained from 
automatic text mining, 
manually curated 
literature, cancer 
mutation data and 
genome wide 
associated studies 
catalogs 

No information [279] 
 

 

A3.2.5. Enrichment analysis tools 

So far, the databases presented provide information for individual proteins. However, can we 

analyze PPIs as a group of proteins? Enrichment analysis tools systematically analyze large protein 

lists and assemble a summary of the most enriched and pertinent biological processes [240]. The 

degree of enrichment is only significant when calculated by comparing the PPIs list against a specific 

background. Depending on the purpose of the study, the background is either the complete human 

genome; tissue-specific background; a control condition etc. Currently, more than 60 enrichment 

tools are available [240]. Most of these tools perform Gene Ontology annotations (enrichment of 

molecular function, biological process and cellular component). The Gene Ontology (GO) project is 

a major bioinformatics initiative to develop a computational representation of our evolving 

knowledge of how genes encode biological functions at the molecular, cellular and tissue system 

levels. The project has developed formal ontologies that represent over 40,000 biological concepts, 

and are constantly being revised to reflect new discoveries. To date, these concepts have been used 

to "annotate" gene functions based on experiments reported in over 100,000 peer-reviewed 

scientific papers. 

Nevertheless, there are enrichment tools for signaling pathway, protein feature (e.g. domains, 

secondary structures) and gene expression profiles, among others. Database for Annotation, 

Visualization and Integrated Discovery, best known as DAVID, is a secondary enrichment tool. It 

collects information from multiple annotations sources (e.g. GO, KEGG pathway) and presents a 

broader enrichment analysis (DAVID was updated in 2016 [280]).  

The main reason for such diversity in enrichment analysis tools relates to the statistical methods 

employed to determined enrichment. Consequently, even when analyzing the same set of PPIs, 
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results vary among tools (for a more comprehensive knowledge about enrichment statistical 

methods please consult [281]) [282]. Other differences, reported between tools are: organism 

supported; user friendly interface and results presentation.  

A3.2.6. Visualization tools: building protein-protein networks 

Information visualization tools transform crude data into structured and visually representations to 

simplify the analysis and interpretation of biological data, tipicaly networks [241]. The latter are a 

visual representation of how two or more entities influence each other. The first report of network 

based solution dates to 1735, when Euler used graph theory to solve the seven bridges question 

[283]. In PPIs networks (PPIN), proteins are typically represented as nodes and interactions as edges 

connecting the proteins. More than visually representing PPIs and interactomes, PPIN topology 

(space arrangement of edges and nodes) can uncover crucial biological information [284]. 

Topological properties include connectivity degree, which is the number of interactions for each 

protein and node, betweenness centrality, which is the number of shortest paths that go through 

a protein among all shortest paths between all possible pairs of nodes [285]. Edge properties 

include types of relationships (inhibition; phosphorylation, etc) and edge betweenness centrality, 

which is the number of shortest paths that go through an edge among all possible shortest paths 

between all the pairs of proteins [286]. Analysis of such properties allows to identify, among other, 

hub proteins, bottleneck proteins and clustering sub-networks [287].  

Cytoscape is the most widely used tool to create and analyze PPINs. Its popularity is reflected in the 

almost 1 million downloads and more than 300 plug-ins, accessible through the Cytoscape app store 

or directly on the software (information from 16 July of 2017) [288]. Also, numerous biological 

databases and repositories (e.g PSIQUIC VIEW; DisGeNet; String; Reactome) can be directly 

accessed using Cytoscape and enabling integration of PPIs; gene expression; gene phenotype and 

disease association; enrichment and many others. Nevertheless, all these data can be imported by 

the user as attributes given to each protein/node. After building a network, the user can visually 

represent biological information by using nodes an edges characteristics, such color, shape, name, 

etc; choose the best layout to stress a topological feature, among many other features (consult 

[289]). Although a bit rough, Cytoscape can analyze the PPIN topological features and find clusters 

(groups of highly connected nodes). Clusters are of particular important, since is expected that 

highly connected proteins share the same biological role [290]. Nevertheless, there are several apps 

that can perform an intense topological analysis [291]. 
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A3.3. Concluding remarks 

In silico analysis of interactomes is key to pinpoint crucial interactions and it is a starting point to 

narrow vast lists to a promising set of interactions. However, keep in mind that in bioinformatics 

approaches have its setbacks. Conclusion cannot be drawn without further experimental evidence; 

the rate of false positives reported in databases are still an issue and the fact that proteins 

exhaustive studied are overrepresented in databases, while other proteins are underrepresented.  
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A4. Available techniques for sperm internalization of 

exogenous material  

Sperm is a unique cell which besides being the only haploid cell in the male body and fulfil its goal 

in the female reproductive system, it does not have the necessary machinery to produce new 

proteins, new lipids and other molecules, and its plasma membrane constitution is one of a kind 

[31]. Sperm plasma membrane is stable and metabolically inert [31]. Consequently, working with 

this type of cell can be challenging. Also, contrary to other type of cells, in which upon a few genetic 

alterations, can be grown and cultured in vitro (cell culture), full mature sperm cannot. In 2011, 

Sato et all reported producing spermatids and sperm using primitive spermatogonia from neonatal 

mouse testis. However, the process is long and intricate [292]. Moreover, human sperm samples 

are typically obtained in fertility clinics, resulting in a bias towards samples with fertility issues. Even 

more difficult is to obtain human epididymal sperm, which results in most motility acquisition 

studies to be performed in animal models.  

Studying signaling mechanisms in somatic cells, is based on overexpression or deletion of a protein 

and evaluation of the phenotype produced. This is accomplished by either, transfection of foreign 

DNA into cultured cells or producing knock out (KO) or knock in (KI) mice. Testis-specific KO or KI 

has been successfully accomplished for several proteins [293,294]. This allows the study of the role 

of such protein in testis and spermatozoa. Yet, transgenic mice are an expensive, laborious and 

time-consuming technique. Regarding overexpression (transfection of gene copy) or deletion 

(siRNA) of proteins using foreign DNA, in sperm these techniques are useless, since sperm does not 

transcribe and translate DNA into proteins [10]. Another approach to studying signaling proteins is 

the use of inhibitor or activation drugs/molecules. However, some of these drugs cannot penetrate 

sperm plasma membrane [295,296]. 

Considering all the sperm peculiarities, working with this type of cell can be frustrating. Yet, in the 

past decades, several alternative methodologies have been developed and applied on studying 

signaling proteins, interactions and pathways in sperm. Most studies aimed to incorporate 

exogenous DNA material into spermatozoa for oocyte deliver (sperm-mediated gene transfer) 

[297]. Little effort has been put towards incorporating other molecules, such as proteins, into 

human sperm. In the next section, we will describe and discuss some methodologies to study sperm 

pathophysiology. 
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A4.1. Streptolysin-O 

One of the first approaches to translocate impermeable molecules into mammalian cells involved 

using non-ionic detergents such as Triton-X (normally in immunocytochemistry studies) [298]. 

Although these reagents successfully expose the intracellular environment, since lipids and 

membrane proteins are removed, signaling pathways that depend on extracellular factors to be 

triggered are impaired. To circumvent these problem, in 1996, Dominguez used a bacterial toxin, 

streptolysin-O, to form large pores (26nm) that allowed entry of large molecules into mouse 

spermatozoa [299]. The use of streptolysin-O did not affect acrosomal reaction but only when pre-

incubated with Ca2+sperm motility was kept. Yet, the pattern of sperm motility changes when 

permeabilized with streptolysin-O. Since most plasma membrane is kept intact, signal transduction 

events initiated with cell surface components are kept intact. Nevertheless, since sperm cannot 

synthetize new lipids, disrupting the plasma membrane can cause sperm physiological alterations, 

for example motility and membrane dynamics [299,300]. Streptolysin-O has been used in human 

spermatozoa to transfer proteins [301], antibodies [302] and ions [303], among others.  

 

A4.2. Lipossomes 

Another strategy employed to transfer exogenous impermeant molecules into mammalian cells is 

the use pf liposomes. Liposomes are small vesicles that can occur naturally or are artificially 

produced from cholesterol and phospholipids. Due to the nature of these molecules (both 

hydrophobic and hydrophilic) they form spherical macromolecules, in which aqueous units ate 

enclosed and isolated from the outside. Depending on the lipid composition, liposomes differ 

considerable in surface charge, size, fluidity and rigidity [304]. Considering all properties, liposomes 

were developed as delivery system, by enclosing impermeant material into liposomes. They work 

by fusing with the plasma membrane and introduction of the enclosed material into the 

intracellular environment of mammalian cells [305]. Liposomes present low toxicity and high 

efficiency.  

Specifically, in the male reproductive system, they occur naturally as epididymosomes and 

prostasomes (see section A1). Artificial liposomes already have been used in sperm, for  protection 

after cryopreservation; incorporation of foreign material; trigger capacitation, acrosome reaction 

and gamete interaction by lipid membrane alteration [306,307]. Most of the material introduced 

into mammalian sperm was foreign DNA with the goal of being delivered to the oocyte [308,309]. 
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Although the incorporation of DNA into the sperm is successful, no transgenic animals were 

obtained [310,311]. The first report of offspring obtained from liposome-transfected sperm are in 

silver sear bream [312]. Regarding, the usage of liposomes to modulate signaling events in sperm, 

the effect of inositol 1,5,5-triphosphate and bindin on sperm activation was assessed by deliver of 

both molecules into sperm [305,313].  

A common laboratory reagent used for transfection of cultured cells, lipofectamine, is based on 

creating liposomes that incorporated foreign DNA and translocated into the cultured cells. 

Lipofectamine was already used in sperm (bovine) and did not improve either the transfection rate 

compared with detergent based permeabilization and in some cases sperm motility was affected 

after lipofectamine usage [314,315]. This may reflect the lack of compatibility between a general 

liposome composition (more suitable for somatic cells) and the uniqueness of sperm plasma 

membrane composition (see section A1). Moreover, this general liposome-delivery approach was 

mainly performed in poultry and cattle sperm to delivery exogenous DNA [314,315]  

 

A4.3. Nanoparticles 

Nanomaterials have been applied in several fields, from medical devices, food products, cosmetic 

and drug delivery systems [316]. Specifically, nanoparticles are advantageous to medical 

application since their surface to mass ratio is high and their ability to adsorb and carry several 

molecules, such proteins, drugs and DNA. Typically, nanoparticles present a dimension below 

100nm, although in drug delivery larger particles may be needed to ensure sufficient amount of 

drug [317]. The nature of the nanoparticle can vary greatly, from metallic to magnetic nanoparticles 

[318]. From a biomedical point of view, the ability to customize nanoparticles is particularly 

advantageous. This allows large loading capacity, stability and specificity towards a selected cell 

population [319,320]. 

In sperm, most reports focus on using nanoparticle to deliver DNA into the spermatozoa or in the 

effects of nanoparticles used in medical applications on testis and sperm [319]. In 2008, Makhluf et 

al, successfully used nanoparticles to deliver anti-protein kinase C alpha antibody into bovine sperm 

cells [321]. In 2012, Feugang labeled sperm by fusing the protein Renilla luciferase with 

nanoparticles [322]. These reports proved that is possible to use nanoparticles as a delivery system 

for molecular research tools into sperm. However, a great concern is the fact that most 

nanoparticles tested for safety in spermatozoa are non-biodegradable which raises the question 

about reversibility and in a medical perspective their potential long-term effect [319].  
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A4.4. Cell penetrating peptides  

Cell penetrating peptides (CPPs) are short peptide sequences (less than 40 aminoacids) that have 

the ability to rapid translocate into most mammalian cells [323]. The discovery of CPPs arouse from 

the observation that certain proteins could cross the plasma membrane. Tat transactivator of HIV 

virus type 1 could enter cells and target the nucleus. This observation resulted in Tat, and several 

structural variants of this protein, to originate the first CPP. Moreover, further studies identified 

the specific sequence of Tat necessary for translocation across the plasma membrane [324]. Since 

Tat, dozens of CPPs were either identified in proteins or designed and have been successfully used 

to transport proteins, peptides, oligonucleotides, plasmids and large particles, like liposomes, into 

cells [325–334].  

Typically, CPPs are polybasic and/or amphipatic molecules and their cell-penetrating properties 

arise from positively charged aminoacids [335,336]. Besides, the importance of positively charged 

aminoacids, there is still much debate on how CPPs are uptake into cells. Several models for CPPs 

internalization, from energy-depended endocytosis mechanisms to direct plasma translocation 

(e.g. carpet and pore formation model) have been suggested and proved [337,338]. Moreover, 

distinct CPPs may have different uptake methods [336]. Also, within the cell, CPPs target specific 

intracellular organelles or compartments [339]. 

The CPPs were first developed to exclusively deliver bioactive cargo to cells, by covalent binding 

cargo and CPPs (message-address hypothesis). Consequently, they were required to be relatively 

inert. Yet, the report of adverse effects such as toxicity or inhibition of key signaling pathways, 

proved that CPPs with favorable bioactive properties could be a useful strategy in both research 

tools and diagnostic agents. So recently the term bioportide was introduced. Bioportides are 

peptides that can translocate the mammalian plasma membrane and at the same time have a 

biological role within the cell (bioactive) [340,341]. Bioportides designed to mimic proteins domains 

appear to be more efficient, as they are able to directly modulate cellular events, such as protein-

protein interactions. One of the first examples of a bioportide is int-H1-S6A, F8A. This bioportide 

results from a variation of 14 aminoacid sequence of c-Myc extended with CPP penetratin and 

demonstrated anti-proliferative and apoptogenic properties towards cancer cell lines [342]. Since 

int-H1-S6A, F8A many others were developed, from bioportides with anti-apoptotic effects; cAMP 

modulation; promotion of blood vessel contraction; anti-adrenergic to stimulation of inflammatory 

mediators secretion [340,343–347]. 
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The use of CPPs or bioportides in the male reproductive system is still a new field. Due to the 

reduced cytoplasm and lack of energy dependent endocytosis mechanism, sperm cells are a 

suitable model for the study of CPP or bioportide translocation and accretion [339]. The preference 

accumulation of several CPPs was evaluated in bovine sperm. Tat accumulates in the head; MitP in 

midpiece and C105Y is absent from interior head and acrosome. Also, since bovine sperm is 

incapable of clathrin-mediated endocytosis and micropinocytosis, neither CPP tested were 

internalized using these routes. The advantages of using CPPs and bioportide in sperm are clear: 

targeted delivery of bioactive cargos into subcellular compartments; any CPP effect in gene 

expression is irrelevant in sperm; CPP can be altered to the unique plasma membrane sperm 

composition and certain CPPs do not alter sperm physiology (viability and motility) [348]. Even 

more, since sperm rely on protein-protein interactions to mature in the epididymis and to adapt to 

new environments, the use of bioportides targeting such protein-proteins is a promising field. 

 

A4.5. Concluding remarks 

The singularity of the sperm cell make it also unique to work with. The distinct plasma membrane 

composition, the fact that it is a transcriptional silent cell and highly compartmentalization rises 

problems on using common molecular research tools. Over several decades, alternative methods 

to work with spermatozoa have been developed, from reagents to demembrane sperm cells to 

using cell penetrating peptides to target sperm proteins. Regardless, we believe that much is still 

to be overcome. The biggest obstacle is the lack of sperm samples, particularly testicular and 

epididymal sperm. Although animal models are of great value, transposing knowledge acquired in 

animal models to human physiology has its setbacks. A great example is the role of glucose in 

capacitation. In hamster [349] and macaque [350] sperm, glucose is essential for capacitation, while 

in bovine [351] and dog sperm [352] glucose inhibits capacitation.  

Studying human sperm motility is of great value, since poorly motility samples account for 15% of 

male related infertile phenotypes. 
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Aims 

 
Sperm motility is a crucial event for oocyte fertilization by the sperm. Thus, modulation of sperm 

motility, specifically inhibition represents a perfect target for a reversible male contraceptive. 

Moreover, since sperm motility it is a post-testicular process, targeting does not affect sperm 

production. To achieve such goal, we need to understand how sperm motility is acquired during 

sperm epididymis transit. This work aimed to enrich the knowledge on the signaling events involved 

in human sperm motility with the final goal of identify potential targets for male contraception. We 

approached this general goal by focusing on the characterization and modulation of the signaling 

pathway GSK3/PPP1R2/PPP1 in human sperm.  

 

To this end the following aims were proposed: 

 

Aim 1: Modulate protein-protein interactions in human spermatozoa involved in human 

spermatozoa motility 

Results: Sperm motility modulation by using a bioportide based on PPP1/PPP1R2 

interaction interface (Chapter B1) 

Aim 2: Identify and characterize protein-protein interactions involved in human sperm motility as 

potential targets for male contraceptives  

Results: Identification and characterization of GSK3 human testis and spermatozoa 

interactome 
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B1.1. Abstract 

The limited options available for male contraception reflect the necessity of a new group of male 

contraceptives. The sperm motility acquisition mechanism is an optimal target for a new male 

contraceptive since is essential for fertilization and a post-testicular sperm maturation process. 

Sperm motility relies on phosphorylation of key proteins. Phosphoprotein phosphatase 1 catalytic 

subunit gamma 2 (PPP1CC2) is a central player on controlling the phosphorylation state of proteins 

and consequently sperm motility. On human sperm, PPP1CC2 activity is partially controlled by PPP1 

regulatory subunit 2 (PPP1R2). We hypothesized that disruption of PPP1R2/PPP1CC2 interaction 

would have a deleterious effect on sperm motility. In order to modulate sperm motility, we 

designed peptides sequences capable of disrupting PPP1R2/PPP1CC2 interactions based on 

PPP1R2/PPP1CC2 interaction interference. To insure sperm intracellular delivery, the peptides 

were coupled with cell penetrating peptides (CPPs) originating bioportides. We demonstrated that 

the disruptive bioportide was able to interfere with PPP1R2/PPP1CC2 interaction, translocate to 

human sperm and significantly reduced sperm motility. In conclusion, we proved that rationally 

designed peptides can target protein-protein interactions in spermatozoa and development of a 

new type of male contraceptive based on sperm motility modulations is possible.  
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B1.2. Introduction 

Currently, contraception is mainly limited to female contraceptives. Condom and vasectomy are 

the foremost methods used by males [1,2]. Although research on hormonal male contraceptives 

has been reported, severe secondary side effects have discouraged further investment. [3]. Since 

sperm motility is a post-testicular acquisition process and it appears to be hormonal independent, 

we consider that targeting the mechanism of sperm motility acquisition may be the future on male 

contraceptives. 

Sperm motility is acquired in the epidydimis and relies mostly on intracellular signaling events, since 

sperm cells are transcriptionally silent. Reversible phosphorylation is essential to motility 

acquisition and Phosphoprotein phosphatase 1 (PPP1) is a key player in this process [4]. In 

mammalian sperm PPP1CC2, a testis-enriched PPP1 isoform, appears to be the sole responsible for 

PPP1 activity [5,6]. Furthermore, PPP1CC2 is distributed along the entire flagellum [7,8] and 

inhibition of PPP1 by phosphatase inhibitors (calyculin A and okadaic acid) induces caput sperm 

motility [5]. Smith et al showed that in epidydimis caput, bovine immotile sperm present a two-fold 

higher activity of PPP1 compared with fully mature sperm [5,9]. Control of PPP1 catalytic activity is 

achieved through binding to regulatory subunits, the PPP1 interacting proteins. In mammalian 

sperm, Phosphoprotein phosphatase 1 regulatory subunit 2 (PPP1R2), a PPP1 inhibitor, is central in 

controlling PPP1 activity. PPP1R2 is a highly intrinsically disordered protein that only acquires a 

defined structure when associated with PPP1 [7,10,11]. In human sperm, Korrodi-Gregório et al 

demonstrated that part of PPP1 population is bound to PPP1R2 and within these complex PPP1 is 

inactive [10].  

The interaction between PPP1 and PPP1R2 has been solved by crystallography. PPP1R2 interacts 

with PPP1 in 3 regions: between residues 12-17 (site 1); 44-56 (site 2) and 130-169 (site 3) of 

PPP1R2. PPP1R2 contains two degenerated RVxF motifs, the most common motif among PPP1 

interactors. The first RVxF motif, 44KSQKW48 sites on top of PPP1 RVxF pocket, far away from the 

catalytic center, while the 145KLHY148 motif sites on top of PPP1 catalytic center. PPP1R2 site 3 of 

interaction is unique, since it extends on top of the active site of PPP1 resulting in complete 

inhibition of PPP1, by displacement of metal ions (Mn2+ and Fe2+) crucial for phosphatase activity 

[12,14].  

The interface between PPP1 and PPP1R2 present an opportunity for pharmacological interventions, 

specifically to modulate sperm motility. However, target intracellular complexes can be challenging 

due to cells bilayred lipid membrane. Cell penetrating peptides (CPPs) are short peptide sequences 
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that are able to rapid translocate into mammalian cells and deliver biological active molecules [15]. 

In 2015, Jones and colleagues proved that CPPs translocate into human and bovine sperm without 

affecting viability and motility [16].  

The goal of this study was to design and synthetize peptides capable of translocating the sperm 

membrane and disrupting PPP1/PPP1R2 complex, as well as, evaluate their ability to modulate 

sperm motility. 
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B1.3. Methods 

B1.3.1. Bioportide design 

With the goal of disrupting the complex PPP1/PPP1R2 in human sperm, the following bioportides 

were designed (Table B1.1):  

Table B1.1. Peptide sequence, peptide designation and length of the bioportides (BP) used in this study. To enable 
quantitative and qualitative uptake studies, TAMRA fluorophore was added. Underline, C105Y (CPP); Red PPP1 binding 
motif; Bold, PPP1R2 RVxF flanking sequence. 

Peptide Designation Sequence Length 

BP-PPP1R2 RVxF H-36VDEELSK44KSQKW48DEMNILA54CSIPPEVKFNKPFVYLI-NH2 36 

BP-PPP1R2 RVxF SC H-36VDEELSK44QWKKS48DEMNILA54CSIPPEVKFNKPFVYLI-NH2 36 

 

The BP-PPP1R2 RVxF bioportide was designed by coupling the PPP1R2 RVxF motif- 44KSQKW48-  and 

the adjacent 7 aminoacids with C105Y CPP. The BP-PPP1R2 RVxF SC is similar to the BP-PPP1R2 

RVxF peptide, yet the RVxF was scrambled to QWKKS to prevent disruption of PPP1/PPP1R2 

complex. 

 

B1.3.2. Microwave-assisted solid phase peptide synthesis  

Fmoc-protected aminoacids were purchased from Novabiochem (Beeston, UK). Microwave-

assisted solid phase peptide syntheses were performed using a Discover SPS Microwave Peptide 

Synthsizer (CEM Microwave Technology Ltd, Buckingham, UK) with fibre optic temperature control. 

Peptides were synthesized (0.1 mmol scale) using Rink amide MBHA resins pre-loaded with the first 

amino acid (AnaSpec, Inc., Cambridge Bioscience Ltd, Cam- bridge, UK) and employed an N-a-Fmoc 

protection strategy with HCTU activation. Deprotection with 7 mL of 20% piperidine was performed 

for 3 min at 50 W/75ºC. A majority of AA coupling reactions were accomplished with a 4-fold molar 

excess of Fmoc-protected AA with HCTU and diisopropylethylamine (DIPEA), molar ratio of 1:1:2 

(AA/HCTU/ DIPEA), in 4 mL for 10 min at 25 W/75ºC. Arg coupling was performed in two stages: 30 

min 0W/25ºC followed by 5 min at 17 W/75ºC. To reduce racemization of Cys and His, coupling 

conditions were 5 min at 0 W/25ºC followed by 6 min at 17 W/50ºC with the hindered base 

collidine (TMP) at a molar ratio of 1:1:2 (AA/HCTU/TMP) [17]. Aspartimide formation was reduced 

by the substitution of piperidine for 5% piperazine and 0.1 M 1-hydroxybenztriazole hydrate (HOBt) 

in the deprotection solution [17]. Fluorescent peptides, to be used in cell imaging and quantitative 
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uptake analyses, were synthesized by amino-terminal acylation with 6-carboxy-

tetramethylrhodamine (TAMRA) (Novabiochem, Beeston, UK) as previously described. Peptides 

were purified by semi-preparative scale high-performance liquid chromatography, and the 

predicted masses of all peptides were confirmed by matrix-assisted laser desorption ionization 

(MALDI) time of flight mass spectrometry.  

 

B1.3.3. In vitro effect of Bioportides 

A concentration range of commercial PPP1R2 (New England Biolabs, Herts, UK) was incubated with 

purified PPP1CC2 (1:20; 1:200 and 1:2000) and either BP-PPP1R2 RVxF or BP-PPP1R2 RVxF SC for 

30 min (ratio of 1:200:0.5 of PPP1R2, PPP1CC2 and bioportides). PPP1CC2 activity was measured 

during 30 min, in 5 min breaks, using the SensoLyte® pNPP Protein Phosphatase Assay Kit 

*Colorimetric*(AnaSpec, Inc., Cambridge Bioscience Ltd, Cambridge, UK) and a PPP1 specific assay 

buffer according to manufactures instructions. Negative control (only assay buffer) was included. 

Four replicas were performed. 

 

B1.3.4. Sperm cells preparation 

This study was approved by the Ethics and Internal Review Board of the Hospital Infante D. Pedro 

E.P.E. (Aveiro, Portugal) (Process number: 36/AO) and was conducted in accordance with the ethical 

standards of the Helsinki Declaration. All donors signed an informed consent allowing the samples 

to be used for scientific purposes. Human semen samples were obtained from a randomized group 

of donors and collected by masturbation into a sterile container. Basic semen analysis was 

conducted in accordance with World Health Organization (WHO) guidelines [18] and only 

normospermic samples were further used. Fresh semen from Holstein Friesian bulls was obtained 

from LusoGenes, LDA, Aveiro, Portugal. Semen was collected by artificial vagina and assessed by a 

certified veterinarian. Human and bovine sperm were isolated and washed three times in PBS 1x 

(Fisher Scientific, Loures, Portugal) from seminal plasma by centrifugation (600 g for 10 min at RT) 

using AllGrade Wash medium (LifeGlobal, Brussels, Belgium). Pellet was resuspended in medium to 

a final concentration of 40x106 sperm cells/mL and incubated at 37 ºC with 5% CO2 until further 

treatment. 

 

B1.3.5. Microscopy evaluation of intracellular accumulation of bioportides 
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Washed bovine and human sperm cells (40x106) were resuspended and incubated with 10 M 

TAMRA-labeled bioportides for 1 h at 37 ºC in a humidified atmosphere of 5% CO2. After, cells were 

washed 3 times in PBS 1x (800 g for 5 min) in AllGrade Wash medium (LifeGlobal, Brussels, Belgium). 

To confirm that the fluorescently labeled peptides were not merely surface associated, sperm cell 

were treated with trypsin. Briefly, sperm cells were divided into two populations and half of the 

cells were fixed in 4% of paraformaldehyde (PFA) (Fisher Scientific, Loures, Portugal) for 20 min. 

The other half was incubated with 1% of trypsin (wt/vol) (Promega, Madison, Wisconsin, USA) at 

37 ºC, centrifuged at 3000 g, washed in AllGrade Wash medium (LifeGlobal, Brussels, Belgium) and 

resuspended in 4% of PFA for 20min. Fixed cells from both populations were spread into coverslips, 

allowed to air dry and mounted. Negative controls (only cells) were processed in parallel. Slides 

were assessed using an Imager Z1, Axio-Cam HRm camera and AxioVision software (Zeiss, Jena, 

Germany). 

 

B1.3.6. Quantitative evaluation of intracellular accumulation of bioportides 

Quantitative assessment of bioportide translocation into sperm was based on a previously 

described method [19]. Washed bovine and human sperm cells were incubated with 10 M TAMRA-

labeled bioportide for 1 h 37 ºC in a humidified atmosphere of 5% CO2. Cells were then washed 3 

times with PBS 1x, incubated with 1% trypsin (Promega, Madison, Wisconsin, USA) at 37 ºC and 

collected by centrifugation at 3000 g. Next, cells were lysed in 300 L 0.1 M NaOH (Fisher Scientific, 

Loures, Portugal) for 2 h on ice. The lysate (250 L) was placed into a black 96-well plate and 

analyzed using an Infinite® 200 PRO plate reader (Tecan, Switzerland) (λAbs 544 nm/ λEm 590 nm). 

 

B1.3.7. Sperm viability assays  

Bovine sperm was incubated for 1 min in a 1:1 proportion of Trypan Blue (Fisher Scientific, Loures, 

Portugal) and 10 L spread in a slide and left to dry. Dead sperm present a compromised plasma 

membrane, enabling the Trypan Blue to stain the cell. Live sperm have intact plasma membrane 

and appear translucid. Two hundred sperm cells were counted per condition using a Zeiss Primo 

Star microscope (Zeiss, Jena, Germany). Experiments were performed on samples form 3 individual 

bulls. 

 

B1.3.8. Motility assays 
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Bioportides were prepared in AllGrade Wash medium (LifeGlobal, Brussels, Belgium) in individual 

volumes. Washed bovine sperm cells (20x106) were added to the medium to a final volume of 500 

L. Control samples included sperm cells in medium. All samples were incubated at 37 ºC for 1 or 2 

h in a humidified atmosphere of 5%CO2. Sperm motility, was evaluated using the Sperm Class 

Analyzer CASA System (Microptic S L, Barcelona, Spain) with SCA® v5.4 software. Briefly, 2 L of 

samples were loaded into individual chambers of Leja Standart Count 8 chamber slide 20 μm depth 

(Leja Products B. V., The Netherlands) pre-heated to 37 ºC. This temperature was kept while at least 

500 sperm/condition were evaluated. Experiments were performed on samples form 3 individual 

bulls and all the conditions were performed in triplicate.   

 

B1.3.9. Molecular modelling and dynamic studies 

Computer simulation studies of PPP1R2 RVxF and scrambled RVxF and the 7 flanking aminoacids 

were performed by the MD (molecular dynamics) simulation package Amber v14 applying Amber-

ff14SB force field [20]. The two systems were solvated, in a simulation octahedral box of explicit 

water molecules (TIP3P model) [21], counter ions were added to neutralize the system and periodic 

boundary conditions imposed in the three dimensions (12 Aº). After minimizations, systems were 

subjected to an equilibration phase where water molecules position were restrained, then 

unrestrained systems were simulated for a total of 5 microseconds, in a NPT ensemble; Langevin 

equilibration scheme and Berendsen thermostat were used to keep constant temperature (300 K) 

and pressure (1 atm), respectively. Electrostatic forces were evaluated by Particle Mesh Ewald 

method and Lennard-Jones forces by a cutoff of 10 Å. All bonds involving hydrogen atoms were 

constrained using the SHAKE algorithm. Figures were extracted using VMD and prepared in Maestro 

[22]. Simulation was run for 200 ns in each system. 

To perform the trajectory analysis, GROMACS [23], more specifically g_cluster command, was used 

.For each system, a conformational cluster analysis using gromos algorithm was carried out using a 

cut-off of 0.2 nm. Using a threshold, the algorithm finds the neighbouring structure and forms 

clusters with the structure with the largest number of neighbours. The cluster is removed from the 

frames and the process repeated for the remaining frames. Each of the cluster centroids is used as 

a representative structure. Change in binding affinity or stability toward PPP1CC2 caused by 

mutations to alanine or residues within the RVxF motif were calculated using the Residue Scanning 

functionality in BioLuminate [22] which incorporates the Prime MM-GBSA approach [24]. 

The PDB format file of rat PPP1CC complexed with mouse PPP1R2 (ref:2O8A) [12] freely available 
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at protein data bank [25] was modified in MacPymolEdu software to create Figure B1.5. 

 

B1.3.10. Biostatistics analysis 

In vitro effect of the CPP: To characterize the sample statistical measures, line graphs and bars 

graphs were used. For each condition (11 conditions), a Pos Hoc analysis of the Friedman test to 

detect differences over time (pairwise comparisons) was performed. For each time (0 m, 5 m, 15 

m, 20 m, 25 m and 30 m), the Kruskall Wallis test was used to detect differences between the 

conditions (independent groups). Finally, a pairwise comparisons of conditions test was applied to 

identify between differences (Mann-Whitney U test).  

CPPs impact on sperm motility: To summarize the information contained in the sample a descriptive 

analysis was performed (central tendency, dispersion measures and bar graph). To decide between 

parametric or non-parametric methods, a Shapiro-Will test analyzed the existence of outliers. 

Finally, the differences between the means of two independent groups were tested. In the 

parametric case, after the Levene’s test for equality of variances, the Student’s T test was 

performed to assess for equality of means. 

For all tests, the significance level was set at 0.05. Statistical analysis was conducted using IBM SPSS 

Statistics Software 22.
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B1.4. Results 

A bioportide was synthesized by coupling a peptide with the potential of disrupting the 

PPP1/PPP1R2 complex was with a CPPs, with the goal of translocating to sperm cells and affecting 

their motility. The peptide sequence mimics the PPP1 binding motif of human PPP1R2 (44KSQKW48), 

which is conserved among bovine, mouse and rat. A bioportide presenting a scrambled PPP1R2 

RVxF motif (QWKKS) was used as a control in all experiments.  

 

B1.4.1. Bioportides can disrupt PPP1/PPP1R2 complex in vitro 

To assess the disruptive capacity of the bioportides, PPP1 activity was evaluated in the presence of 

the BP--PPP1R2 RVxF and BP--PPP1R2 RVxF SC. The results show that PPP1R2 inhibited PPP1CC2 in 

a concentration dependent manner [increasing amounts of PPP1R2 led to higher PPP1CC2 

inhibition (Supplementary Figure B1.1)]. After 15 min and until 30 min, PPP1R2 inhibited 

significantly around 50% of PPP1CC2 activity (ratio of 1:200) (Figure B1.1 A and D). Upon adding BP-

PPP1R2 RVxF (1:200:0.5), PPP1CC2 activity is restored to original values starting at 15 min (Figure 

B1.1 B and D) showing that the bioportide that mimics the RVxF PPP1R2 motif was able to disrupt, 

in vitro, the PPP1CC2/PPP1R2 complex. Also, when BP-PPP1R2 RVxF SC was added, PPP1CC2 activity 

was also restored (time point 25 min and 30 min) (Figure B1.1 C and D). PPP1R2 alone does not 

present any phosphatase activity (Supplementary Figure B1.1). Descriptive and statistical analysis 

can be consulted in Supplementary Table B1.1 and Supplementary Table B1.2, respectively. 

 

B1.4.2. Bioportides translocate into human and bovine spermatozoa 

Fluorescent cell imaging analysis revealed that fluorescently labeled BP-PPP1R2 RVxF and BP-

PPP1R2 RVxF SC (10 M) were able to translocate and accumulate in human and bovine sperm 

(Figure B1.2 A and B). In human and bovine sperm, both CPPs accumulated preferentially at the 

midpiece (* in Figure B1.2 A and B) and, occasionally, in sperm´s head (+ in Figure B1.2 A and B) and 

along the length of the flagellum. Quantitative uptake comparisons demonstrated that BP-PPP1R2 

presented a higher cellular uptake, when compared with BP-PPP1R2 RVxF SC (human 2.9 times; 

bovine 10.7 times) (Figure B1.2 C). In contrast, bioportides accumulation was similar between 

species. Higher concentrations were also analyzed (20 M and 50 M) and the pattern of 

bioportides distribution was similar (data not showed). 
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Figure B1.1. Effect of bioportides on PPP1 activity. Effect of BP-PPP1R2 RVxF SC and BP-PPP1R2 RVxF SC on PPP1 
activity during 30min A. PPP1CC2 and PPP1R2/PPP1CC2 (1:200) phosphatase activity. B. PPP1CC2 and 
PPP1R2/PPP1CC2/BP-PPP1R2 RVxF (1:200:0.5) phosphatase activity. C. PPP1CC2 and PPP1R2/PPP1CC2/BP-PPP1R2 
RVxF SC (1:200:0.5) phosphatase activity. D. Comparison of phosphatase activity mean of PPP1CC2; PPP1R2/PPP1CC2 
(1:200); PPP1R2/PPP1CC2/BP-PPP1R2 RVxF and PPP1R2/PPP1CC2/BP-PPP1R2 RVxF SC (1:200:0.5). Data is expressed 
as arbitrary units of phosphatase activity (minus negative control). Graph bars and lines represent the mean values 
of 4 replicas. Error bars represent the SEM (standard error of the mean). Statistically significant findings are indicated 
with a (*). * P<0.05. 
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B1.4.3. Bioportides decrease sperm motility  

Bovine sperm were exposed to a range of bioportides concentration (20, 50 and 100 M) and 

motility parameters were evaluated at 1 h and 2 h. Negative controls were performed in the 

absence of bioportides. Sperm viability was evaluated after bioportides exposure (100 M, 1 and 2 

h) and no significant changes were observed for both bioportides (Supplementary Figure B1.2).  

To assess the effect of the bioportides on sperm physiology, bovine sperm were exposed to 20 M, 

50 M and 100 M of both peptides. Exposure of bovine sperm to 20 and 50 M of both bioportides 

did not induce any significant alterations in the motility parameters (data not shown). Yet, exposure 

of bovine sperm to 100 μM BP-PPP1R2 RVxF reduced significantly the percentage of progressive 

fast motile sperm at 1 h and 2 h (mean decrease of 36.3%, p=0.007 for 1 h and 47.6% p=0.001 for 

2 h) compared with the negative control (Figure B1.3 A). In contrast, the percentage of immotile 

sperm increased significantly at 1 h and 2 h (mean increase of 45.5%, p=0.015 and 49.2%, p=0.007) 

(Figure B1.3 B). BP-PPP1R2 RVxF SC also significantly decreased the percentage of progressive fast 

motile sperm at 1 h and 2 h compared with the negative control (mean decrease of 53.2%, p=0.000 

and 49.6%, p=0.000) (Figure B1.3 A) and increased the percentage of immotile sperm (mean 

increase of 73.2%, p=0.000 and 55.7%, p=0.002) (Figure B1.3 B) at both time points tested. No 

significant alterations were observed in slow progressive motility and non-progressive motility 

(Figure B1.3 C and D). Descriptive and statistical analysis can be consulted in Supplementary Table 

B1.3 and Supplementary Table B1.4, respectively. 

Figure B1.2. Bioportides translocation into bovine and human spermatozoa (previous page). BP-PPP1R2 RVxF and 
BP-PPP1R2 RVxF SC were synthesized and complexed TAMRA to assess the delivery of the bioportides. A. Bovine 
spermatozoa. bioportides accumulation in midpiece (*), head of spermatozoa (+) and occasionally along the 
flagellum. B. Human spermatozoa. Both bioportides also accumulate in midpiece (*) and occasionally in the head (+) 

and along the flagellum. Scale bar in is 10 m. Bovine spermatozoa were acquired at 150 ms and human spermatozoa 
were acquired at 50 ms. C. Quantification of CPP translocation into bovine and human spermatozoa. Graph bars 
represent the mean values of four independent replicas. Error bars represent the SEM (standard error of the mean). 
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B1.4.4. PPP1R2 RVxF and PPP1R2 RVxF scrambled have different stabilities and affinities 

towards PPP1 RVxF pocket 

Molecular dynamics simulations were performed with the peptide sequence, which comprised the 

PPP1R2 RVxF binding motif and 7 aminoacids flanking at N- and C-termini. Figure B1.4 A shows that 

the RVxF binding motif forms a rigid secondary structure, an -helix, while the remaining sequence 

showed no secondary structure. In the case of PPP1R2 RVxF SC binding motif peptide, the most 

frequent cluster presented a pronounced -helix at the N- term and a tendency to form a -helix 

at the C-term. The middle region, comprising the scrambled RVxF binding motif, showed no evident 

secondary structure with an apparently higher flexibility (Figure B1.4 B).  

Figure B1.3. Impact of the bioportides in bovine spermatozoa motility parameter. A. Impact of bioportides (100µM) 
on the percentage fast progressive motility, B. on the percentage immotile spermatozoa, C. on the percentage slow 
progressive motility, D.  on the percentage of non-progressive spermatozoa. Graph bars represent the mean values 
of three independent experiments performed in triplicate. Error bars +/- SE (standard error). Statistically significant 
findings are indicated with a (*). * P<0.05; ** P<0.01.  
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Next, aminoacid substitution studies using previous crystallography studies (PDB code 2O8G) 

revealed that the peptide with RVxF scrambled may bind more stably and with more affinity with 

the core region of the PPP1 RVxF pocket. The substitution of lysine to a glutamine in the first 

aminoacid of RVxF motif appears to provide more stability to the peptide (Table B1.2) while the 

change in the second aminoacid from a serine to a tryptophan confers more affinity to the PPP1 

RVxF pocket (Table B1.2). 

 

Table B1.2. Aminoacids substitution studies of RVxF motif. The substitutions studies were performed using previous 

experimental data no PPP1/PPP1R2 interaction. The more negative the  affinity and  stability (kcal/mol), the stronger 
the affinity and stability, respectively*. In the scrambled peptide, the lysine present at position 47 was not changed. In 
the substitutions studies this lysine was changed for an alanine. 

PPP1R2 Residue RVxF Original RVxF scrambled   Affinity  Stability

44 LYS GLN 3.59 -6.89 

45 SER TRP -4.33 3.16 

46 GLN LYS 6.54 9.27 

47 LYS ALA* 7.34 -3.84 

48 TRP SER 25.3 0.91 

  

Figure B1.4. Molecular dynamics of PPP1R2 RVxF and PPP1R2 RVxF SC peptide. A. RVxF and the 7 flanking 
aminoacids of the BP-PPP1R2 RVxF bioportide. B. Scrambled RVxF and the 7 flanking aminoacids of the BP-PPP1R2 
RVxF SC bioportide. Note that the number of the aminoacids correspond to their position within the peptide not 
within PPP1R2.  Green: N-terminus; Orange: C-terminus; Blue: RVxF aminoacids side chains.  

A B
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B1.5. Discussion 

PPP1 has a broad activity spectrum, but is restrained in vivo by numerous PPP1 interacting proteins 

(PIPs) [26]. One of the major set-backs for the design of selective inhibitors for PPP1 lies in the 

similarity of the catalytic pocket between PPP1 and other serine/threonine phosphatases [27]. Even 

more challenging is to selective inhibit PPP1 isoforms activity, since the catalytic pocket of all PPP1 

isoforms is identical. A promising approach for development of PPP1 selective inhibitors is targeting 

specific interfaces between PPP1 and PIPs. Around 90% of all PIPs present a PPP1 binding motif, the 

RVxF [28]. In 1997, Egloff and colleagues, used a short peptide based on p53BP2, a PIP, to disrupt 

PPP1/PPP1R2 interaction in vitro [28] and more recently Chatterjee and colleagues proved that a 

peptide based on NIPP1 RVxF can, in vivo, release PPP1 from PPP1R2 (among other interactors) and 

restore PPP1 activity. This resulted in enhanced histone H3 dephosphorylation that leaded to loss 

of centromeric dynamic [27]. 

Targeting intracellular protein-protein interactions is dependent on delivering protein-protein 

interactions disruptor drugs to the intracellular environment. Cell penetrating peptides (CPPs) can 

be employed to carry various cargo molecules across the highly impermeable cellular lipid bilayer. 

CPPs are short peptides sequences (typically less than 40 aminoacids) that are rapidly translocated 

into mammalian cells [15]. In 2015, Jones and colleagues proved that CPPs enter mammalian 

spermatozoa at different rates depending on the CPP [16]. Coupling CPPs with a biological active 

peptide originates a bioportide [29,30]. With the purpose of disrupting the interaction between 

PPP1CC2 and PPP1R2 in human sperm, we designed a disruptive bioportide that mimics the PPP1R2 

RVxF and the flanking 7 aminoacids coupled with a CPP (C105Y). The C105Y peptide was used in this 

study, since it has an enhanced and quick translation efficacy into bovine sperm [16]. Two 

bioportides were synthesized: the BP-PPP1R2 RVxF which is expected to be biological active and 

the BP-PPP1R2 RVxF SC which should be biological inactive (scrambled RVxF) (Table B1.1) 

In vitro studies proved that BP-PPP1R2 RVxF disrupted PPP1CC2/PPP1R2 interaction restoring 

PPP1CC2 activity (Figure B1.1). Also, the fact that half the amount of BP-PPP1R2 RVxF released 

PPP1CC2 from PPP1R2 inhibition suggests that the peptide can have a high affinity towards 

PPP1CC2 RVxF pocket. These results indicate that of BP-PPP1R2 RVxF competitively binds to PPP1, 

displacing PPP1R2 and thereby increasing PPP1CC2 enzymatic activity. Surprisingly, the BP-PPP1R2 

RVxF SC also restored PPP1CC2 activity, upon incubation with PPP1CC2/PPP1R2 (Figure B1.1). BP-

PPP1R2 RVxF SC was designed by scrabbling the RVxF motif (QWKKS instead of KSQKW) with the 

goal of not interfering with PPP1CC2/PPP1R2 interaction and keep the peptide chemical features 
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(Table B1.1). Computationally studies revealed that the peptide sequence alterations that 

characterizes the BP-PPP1R2 RVxF SC may resulted in higher stability and affinity of the bioportide 

towards the PPP1 RVxF pocket and consequently explain the observed biological effect of BP-

PPP1R2 RVxF SC (Figure B1.4 and Table B1.4). Nevertheless, docking studies of PPP1/bioportides 

are pivotal to understand these preliminary results as well to determine optimal peptide sequence 

to achieve higher affinity towards the PPP1 RVxF pocket, translocation across the plasma 

membrane and stability within sperm cells. 

Translocation and intracellular accumulation of BP-PPP1R2 RVxF and BP-PPP1R2 RVxF SC were 

verified by qualitative and quantitative fluorescence detection. Subcellular localization of the 

bioportides was similar in bovine (Figure B1.2 A) and human (Figure B1.2 B) sperm and not 

attributed to surface-associated bioportides. Bioportides accumulated preferentially at the 

midpiece and posterior head, analogous to previously described for C105Y [16] (Figure B1.2. A and 

B). BP-PPP1R2 RVxF presented a higher sperm intracellular accumulation (either bovine or human) 

when compared with BP-PPP1R2 RVxF SC (Figure B1.2 C). This may result from different rates of 

translocation, intracellular stability and/or metabolic cleavage of the bioportides in sperm, as 

described in other studies [31,32]. Further studies using a range of CPPs concentration must be 

performed in order determine the external concentrations necessary to achieve a similar 

intracellular uptake and accumulation.  

The effect of the bioportides on bovine sperm motility was evaluated. Both BP-PPP1R2 RVxF and 

BP-PPP1R2 RVxF SC induced significant alterations in motility parameters without altering cell 

viability. We demonstrated that the BP-PPP1R2 RVxF decreased significantly the percentage of fast 

motile sperm and increased significantly the percentage of immotile sperm (Figure B1.3). Our in 

vitro studies, support the idea that BP-PPP1R2 RVxF, which mimics the PPP1R2 RVxF, competed 

with PPP1R2 for PPP1CC2 and prevented PPP1CC2/PPP1R2 interaction (Figure B1.1). Since it is not 

expected that the CPP interferes with PPP1CC2 catalytic center, in contrary to PPP1R2, PPP1CC2 

becomes active and capable of dephosphorylate key proteins involved in sperm motility (Figure 

B1.5). 

 



B1. Sperm motility modulation using a bioportide based on PPP1/PPP1R2 interaction interface  

Consequently, sperm becomes immotile. Similarly to our work, earlier studies targeted PPP1 

interactions successfully. Salubrinal, a small molecule that blocks PPP1/GADD34 interaction 

prevents eIF2α dephosphorylation by PPP1 [33]. Trichostatin A disrupts the interactions between 

PPP1 and HDAC6 in glioblastoma and prostate cancer cells [34]. Nevertheless, since RVxF mediated 

PPP1 interactions are common to most PIPs, the bioportides used in this study may be interfering 

with most PPP1 sperm interactions. Further studies are required to determine the impact of BP-

PPP1R2 RVxF and BP-PPP1R2 RVxF SC in human sperm motility, in PPP1CC2 sperm interactome and 

phosphorylation levels of sperm proteins. Moreover, identify specific PPP1CC2 interactors that are 

expressed uniquely in testis/sperm would be perfect for pharmacologic intervention and overcome 

the issue of ubiquitous expressed PPP1 regulators, such as PPP1R2. In 2017, Silva et al proved that 

disruption of PPP1CC2/AKAP4 interface may be a potential sperm specific pharmacological target 

[35].  

Although in somatic cells the role of PPP1/PPP1R2 complex is well explored, in sperm cells, the role 

of PPP1/PPP1R2 complex is still unclear. Yet, it has been suggested that the PPP1/PPP1R2 is 

essential for regulation of sperm motility [10]. PPP1CC2 activity is inversely associated to human 

sperm motility in human epididymis [5]. In human sperm, it is hypothesized that in caput epididymis 

PPP1CC2 is active due to PPP1R2 inability to interact with PPP1CC2. This results from GSK3 

phosphorylation on threonine 73 of PPP1R2 rendering it unable to interact with PPP1CC2 [36]. 

Throughout epididymis transit, GSK3 activity decreases, resulting in decreased PPP1R2 

phosphorylation. Consequently, PPP1R2 blocks the catalytic center of PPP1CC2 rendering it inactive 

and leading to sperm motility [5,12]. PPP1CC2 inhibition is required for sperm motility and PPP1R2 

Figure B1.5. Schematic representation of the structure of PPP1CC complexed with PPP1R2. PPP1R2 interacts with 
PPP1CC in three regions (orange). The PPP1R2 sequence used in the BP-PPP1R2 RVxF is represented as part of PPP1R2
(green). Unlike PPP1R2, the bioportide BP-PPP1R2 RVxF is expected to only cover the PPP1 RVxF pocket and not 
interfere with PPP1 catalytic center (light blue). Please note that PPP1R2 presents a second RVxF motif (wheat) that 
sites on top of the catalytic center. Light blue: PPP1 catalytic center; Dark blue: PPP1 RVxF pocket; Orange: PPP1R2; 
Wheat: second PPP1 RVxF; Green: PPP1R2 RVxF and flanking aminoacids used on the bioportide BP-PPP1R2 RVxF.  
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is necessary for PPP1CC2 activity inhibition, it is reasonable to assume that loss of PPP1CC2/PPP1R2 

interaction due to the competitive bioportide is associated with immotile sperm. Further studies 

are needed to determine the alterations of PPP1 activity in human sperm upon exposure to 

competitive BP-PPP1R2 RVxF. Additionally, competitive assays will be used to conclusively 

determine that the effect of the BP-PPP1R2 RVxF is due to PPP1CC2/PPP1R2 interaction 

interference.  

Although we observe a decreased sperm motility upon exposure to disruptive peptide, motility is 

not completely abolished (around 18% of sperm still present a fast-progressive motility) (Figure 

B1.3). To completely abolish sperm motility, we believe that instead of targeting one 

PPP1CC2/PPP1R2 interface, a multi interface targeting approach must be undertaken. This will 

increase the percentage of immotile human sperm and decrease the amount of peptide necessary 

to achieve complete immotile sperm. In conclusion, we significantly reduced sperm motility by 

using disruptive bioportides that target PPP1/PIPs interaction interface instead of interfering with 

PPP1 itself. 
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B1.7. Supplementary Material 

B1.7.1. Tables 

Supplementary Table B1.1. Descriptive and statistical measures of the effect of bioportide in PPP1 activity. Mean and 
standard deviation (SD) associated with BP-PPP1R2 RVxF and BP-PPP1R2 RVxF SC peptides in PPP1 activity. 

Condition 0min 5min 10min 15min 20min 25min 30min 

PPP1CC2 
Mean 0.058 0.093 0.127 0.189 0.252 0.298 0.348 

Std. 
Deviation 

0.069 0.076 0.107 0.148 0.186 0.194 0.209 

PPP1R2 and 
PPP1CC2 
(1:200) 

Mean 0.074 0.111 0.079 0.087 0.118 0.155 0.184 

Std. 
Deviation 

0.064 0.111 0.069 0.023 0.030 0.040 0.051 

PPP1R2 and 
PPP1CC2 and 

BP-PPP1R2 
RVxF 

(1:200:0.5) 

Mean 0.072 0.131 0.130 0.188 0.256 0.328 0.392 

Std. 
Deviation 

0.053 0.068 0.072 0.071 0.077 0.085 0.093 

PPP1R2 and 
PPP1CC2 and 

BP-PPP1R2 
RVxF SC 

(1:200:0.5) 

Mean 0.074 0.116 0.113 0.166 0.222 0.284 0.342 

Std. 
Deviation 

0.048 0.063 0.056 0.063 0.071 0.076 0.081 

 

Supplementary Table B1.2. Inferential statistics of the effect of bioportide in PPP1 activity. Mann-Whitney U test 
(grouping variable: condition; exact sig. (2-tailed)) was performed to evaluate the diference between means of two 
idependet grupos associated with BP-PPP1R2 RVxF and BP-PPP1R2 RVxF SC peptides in PPP1 activity 

0m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 

PPP1CC2 0.384 0,772 0.554 

PPP1R2 and PPP1CC2 (1:200) - 0.456 0.101 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.765 

5m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 

PPP1CC2 0.712 0.890 0.890 

PPP1R2 and PPP1CC2 (1:200) - 0.546 0.067 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.109 

10m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 

PPP1CC2 0.234 0.234 0.345 

PPP1R2 and PPP1CC2 (1:200) - 1.00 0.345 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.091 

15m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 
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PPP1CC2 0.234 1.00 1.00 

PPP1R2 and PPP1CC2 (1:200) - 0.029 0.901 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.234 

20m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 

PPP1CC2 0.234 1.00 0.990 

PPP1R2 and PPP1CC2 (1:200) - 0.029 0.101 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.191 

25m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 

PPP1CC2 0.234 1.00 0.125 

PPP1R2 and PPP1CC2 (1:200) - 0.029 0.029 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.121 

30m 
PPP1R2 and PPP1CC2 

(1:200) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF 

(1:200:0.5) 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF SC 

(1:200:0.5) 

PPP1CC2 0.101 0.235 0.201 

PPP1R2 and PPP1CC2 (1:200) - 0.029 0.029 

PPP1R2 and PPP1CC2 and 
BP-PPP1R2 RVxF (1:200:0.5) 

- - 0.901 

 

Supplementary Table B1.3. Descriptive and statistical measures of the effect of bioportide in bovine sperm motility at 
1 and 2 hours of incubation. Mean and standard deviation (SD) associated with BP-PPP1R2 RVxF and BP-PPP1R2 RVxF 
SC effect on bovine sperm motility 

Time 1h 

Bioportide 

% Progressive 

Mobility Fast 

% Progressive 

Motility Slow 

% Non-Progressive 

Motility % Immotile 

NC Mean 40.23 7.28 17.70 33.64 

Std. Deviation 10.95 2.96 6.80 10.61 

BP-PPP1R2 

RVxF 

Mean 25.57 6.84 18.66 48.94 

Std. Deviation 8.88 2.21 4.53 13.09 

BP-PPP1R2 

RVxF SC 

Mean 18.76 5.42 18.30 58.19 

Std. Deviation 4.37 1.67 6.56 7.84 

Time 2h 

Bioportide 

% Progressive 

Mobility Fast 

% Progressive 

Motility Slow 

% Non-Progressive 

Motility % Immotile 

NC Mean 36.33 7.48 19.74 36.64 

Std. Deviation 10.97 3.54 2.83 12.59 

BP-PPP1R2 

RVxF 

Mean 19.04 5.13 18.97 54.58 

Std. Deviation 7.23 1.28 3.41 11.88 



B1. Sperm motility modulation using a bioportide based on PPP1/PPP1R2 interaction interface  

BP-PPP1R2 

RVxF SC 

Mean 18.31 6.13 18.58 56.98 

Std. Deviation 5.58 1.92 5.45 10.28 

 

Supplementary Table B1.4. Inferential statistics of the effect of bioportides on bovine sperm motility at 1 and 2 hours 
of incubation. T-tests of equality of means (grouping variable: condition; exact sig. (2-tailed)) was performed to evaluate 
the diference between means of two independent groups associated with BP-PPP1R2 RVxF and BP-PPP1R2 RVxF SC 
peptides in bovine sperm motility. Bold: statistically significant values at p< 0.05 

Condition Variable Sig (2-tailed) 
% of sperm on variable 

is higer in 

1h 

NC vs BP-PPP1R2 RVxF  

Progressive Mobility Fast 0.007 NC 

Progressive Motility Slow 0.730  

Non-Progressive Motility 0.730  

Immotile 0.015 BP-PPP1R2 RVxF SC 

2h 

NC vs BP-PPP1R2 RVxF  

Progressive Mobility Fast 0.001 NC 

Progressive Motility Slow 0.080  

Non-Progressive Motility 0.606  

Immotile 0.007 BP-PPP1R2 RVxF SC 

 

 

B1.7.2. Figures 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure B1.1. Effect of PPP1R2 on PPP1 activity. To evaluate the effect of on PPP1 activity, PPP1CC2 
was incubated with a range of PPP1R2 concentrations during 30min. A. PPP1CC2 and PPP1R2 phosphatase activity. 
B. PPP1CC2, PPP1R2/PPP1CC2 (1:20), PPP1R2/PPP1CC2 (1:200) and PPP1R2/PPP1CC2 (1:2000) phosphatase activity. 
Graph lines represent the mean values of 4 independent experiments. Error bars represent the SEM (standard error 
of the mean). 
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Supplementary Figure B1.2. Impact of bioportides on bovine spermatozoa viability. Graph bars represent the mean 
values of three independent experiments (at least 200 cells count per experiment). Error bars +/- 2 SE. 
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B2.1. Abstract 

The signaling protein glycogen synthase kinase 3 (GSK3) exists in two isoforms, GSK3 and GSK3. 

In male the male reproduction system, GSK3 is a prominent player on mammalian sperm motility 

signaling pathways. In mouse and bovine sperm, its activity is negatively correlated with motility. 

Moreover, it has been suggested an isoform-specific function of GSK3, since GSK3 KO mice are 

infertile due to reduced sperm motility and metabolism, while GSK3 KO present no fertility 

alterations. With the goal of investigate the role of GSK3 in human sperm, we determine expression 

and activity levels of both GSK3 isoforms in asthenozoospermic and normozoospermic human 

samples in both human testis and sperm. We showed that sperm human sperm motility appears to 

be associated specifically with GSK3 expression and activity. Since this isoform-specific function 

may arise from GSK3 interactors that pay central roles in sperm motility, we unravel the GSK3 

interactome in human testis and sperm. By constructing GSK3-centered motility network, we 

showed 26 GSK3 direct interactors involved in sperm motility annotations, and from those one 

highly expressed in testis/sperm, the PRSS37 (probable inactive serine protease 37). Moreover, 

GSK3 and its interactors appears to be highly associated with protein expression processes 

revealing other possible functions for this protein, in both testis and sperm. Finally, given the 

reported relevance of GSK3 PPIs in sperm motility, we hypothesized that they stand as potential 

targets for  

target for male contraceptive strategy based on sperm motility modulation. 
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B2.2. Introduction  

Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, has been involved in a wide range of 

cellular processes such as apoptosis, mitosis, and proliferation [1,2]. Moreover, deregulation of 

GSK3 functions has been associated with pathological conditions such as cancer, Alzheimer’s 

disease, and diabetes [3,4]. GSK3 is ubiquitously expressed and is encoded by two genes giving rise 

to two isoforms: GSK3 and GSK3. Both isoforms differ in their N-termini with GSK3 having a 

unique glycine-rich N-terminus which is highly conserved in mammals, suggesting an isoform-

specific function [5].  

GSK3 plays a central role in the male reproductive system. In mouse testis, GSK3 is expressed in 

the seminiferous tubules and its expression increases during the onset of spermatogenesis, peaking 

in adult testis [6]. GSK3 expression is present in cells entering meiosis, spermatids and Sertoli cells 

[7]. Curiously, with target disruption of the gene for GSK3, in testis spermatogenesis is normal, 

but mature sperm present a reduced motility and metabolism, rendering male mice infertile [6]. 

On the other hand, GSK3 testis-specific KO is fertile. In sperm, GSK3 activity is inversely 

proportional to motility; in immotile caput sperm, GSK3 activity is 6 times higher than that of motile 

caudal sperm. GSK3 activity is controlled by its phosphorylation state. When serine phosphorylated, 

GSK3 catalytic activity is low (GSK3 Ser9 and GSK3 Ser21) but when tyrosine phosphorylated, it 

is activated (GSK3 Tyr 279 and GSK3 Tyr 216) [8]. In bovine sperm, GSK3 is present in the 

posterior area of the head and along the entire flagellum [9,10]. In mouse sperm, GSK3 localizes to 

the peri-acrosomal area and tail [11]. 

Knowledge on GSK3 in human sperm is limited. The observation that mouse GSK3 cannot 

substitute for GSK3, it implies that GSK3 is essential for normal sperm physiology. We considered 

that the unique role of GSK3 in sperm motility is reliant on its interactors. With that in mind, we 

performed a GSK3 characterization, by determining its activity levels in asthenozoospermic and 

normozoospermic human samples, subcellular location on human sperm, and identifying the 

GSK3 and GSK3 interactomes in both human testis and sperm.  
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B2.3. Methods 

B2.3.1. Ethical approval 

This study was approved by the Ethics and Internal Review Board of the Hospital Infante D. Pedro 

E.P.E. (Aveiro, Portugal) ((Process number: 36/AO) and was conducted in accordance with the 

ethical standards of the Helsinki Declaration. All donors signed an informed consent forms allowing 

the samples to be used for scientific purposes.  

All procedures using mice used in the present study were performed at the Kent State University 

animal facility and were approved by the National Institute of Environmental Health Sciences 

institutional Animal Care and Use Committee (IACUC) and the Kent State Animal Ethics Committee 

under the IACUC protocol number 362DK 13-11. Immediately after CO2 euthanization, testis and 

epididymis of 3-4-month-old wild type and Gsk3a-/- CD1 mice (mus musculus) were removed.  

 

B2.3.2. Sperm extracts  

Human ejaculate semen samples were obtained from healthy donors by masturbation into a sterile 

container. Basic semen analysis was performed by qualified technicians according to World Health 

Organization (WHO) guidelines [12]. After semen liquefaction, sperm cells were washed three times 

in phosphate buffered saline (PBS, Fisher Scientific, Loures, Portugal) and centrifugation at 

600xG for 5min at 4°C. Mouse epididymis was punctured several times with a 26-G (45-mm) needle 

allowing the sperm to swim out (helped by squeezing with surgical scissors) into PBS1x. Sperm were 

also extruded from the vas deferens by squeezing it along its length. Afterwards, sperm 

concentration was determined by counting in a Neubauer hemocytometer (Fisher Scientific, Loures, 

Portugal). Finally, the sperm cells were washed three times in PBS1x followed by centrifugation at 

600xG, 5 min, 4°C.  

To obtain enriched human motile and immotile sperm fractions, sperm cells were separated 

according to their motility using the density gradient method (ORIGIO, Denmark) according to 

manufacturer instructions. Briefly, 1mL of 55% gradient medium was underlayed with 1mL of 80% 

gradient medium and pre-equilibrated at 5% CO2 at 37ºC. 1mL of homogenized sperm was dispense 

on top of the gradient and centrifuged at 300xG, 20min. Then, the supernatant was removed 

(immotile fraction) and transferred to a clean tube. The pellet was resuspended in 5mL of pre-

equilibrated sperm preparation medium (ORIGIO, Denmark), centrifuged at 300g, 10min and the 

supernatant was removed (the washing step was repeated once more). Sperm preparation medium 
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was added to the pellet then concentration and motility were assessed (motile fraction). The human 

albumin and sodium bicarbonate present in the sperm preparation medium are known inducers of 

sperm capacitation.  

 

B2.3.3. Western blot of human and mouse sperm and testis 

After washing, human sperm was lysed in either Tris buffer (20mM Tris-HCl, pH 7.4, 1mM EDTA, 

1mM EGTA) (Fisher Scientific, Loures, Portugal); 1xRIPA (0.05M Tris-HCl, pH 7.4, 0.150M NaCl, 

0.25% deoxycholic acid, 1% NP-40, 1mM EDTA) (Millipore Iberica, Madrid, Spain); 1xRIPA modified 

(0.05M Tris-HCl, pH 7.4, 0.150M NaCl, 0.25% deoxycholic acid, 2% NP-40, 1mM EDTA); or 1%SDS 

(Fisher Scientific, Loures, Portugal) during 30min on ice and centrifuged at 16,000xG, 15min, 4°C. 

The supernatant was recovered (soluble fraction). For mouse sperm, after washing, cells were 

normalized by sperm cell number and lysed in 1xRIPA and centrifuged at 16,000xG, 15min, 4°C. The 

supernatant was recovered (soluble fraction). Human testis protein extract was acquired from 

Takara, Enzifarma, Lisboa, Portugal (ref: 635309). Testis from wild-type mice were homogenized in 

1xRIPA and centrifuged at 16,000xG, 15min, 4°C. The supernatants were recovered (soluble 

fraction).  

Extracts were either mass normalized using BCA assay (ref: 23225, Pierce, Fisher Scientific, Loures, 

Portugal) or sperm cell number. After, sperm protein extracts were separated by SDS-PAGE and 

electrotransferred to a nitrocellulose membrane. Afterwards, the membrane was incubated with 

primary antibody. The following antibodies were used for western blot: mouse anti-GSK3/ 

(Invitrogen, Fisher Scientific, Loures, Portugal, ref: 44-610, 1:2000, 4ºC, ON); rabbit anti-GSK3 (Cell 

Signaling Technology, Danvers, MA, USA, ref: #9338, 1:1000, 4ºC; ON); rabbit anti-GSK3 (Cell 

Signaling ref: #9315, 1:1000, 4ºC; ON); mouse anti-GSK3 pS21 (Santa Cruz Technologies, 

Heidelberg, Germany, ref: sc-365483, 1:1000, 4ºC, ON), mouse anti-GSK3 pS9 (Santa Cruz 

Technologies ref: sc-373800, 1:1000, 4ºC, ON), rabbit anti-LRP6 (Cell Signaling, ref: #2560, 1:1000) 

and rabbit anti-AKAP11 (Invitrogen, ref: PA5-39868, 1:1000). Finally, the membrane was incubated 

with the appropriate infrared secondary antibodies (1:5000, Li-Cor Biosciences UK Ltd, Cambridge, 

UK). The images were obtained using Odyssey Infrared Imaging Bands System (Li-Cor Biosciences 

UK Ltd, Cambridge, UK). Bands were quantified with the Quantity One 1-D Analysis Software (Bio-

Rad, Amadora, Portugal). Phosphoserine GSK3 levels are calculated by determining the ratio 

between phosphoserine signal and total GSK3 signal. Data is expressed as mean ± SEM (standard 

error of the mean). Statistical analysis was conducted using IBM SPSS Statistics Software 22. A test 
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of normality (Shapiro- Wilk test) was performed to assess normality of samples and the Pearson 

correlation coefficient, r, was determined to assess the relationship between two variables. The 

significance level was set at p<0.05. 

 

 

B2.3.4. Immunocytochemistry of human sperm 

Washed sperm was spread onto a glass coverslip and dried at room temperature in a six well plate. 

Sperm cells were fixed in 4% formaldehyde (Fisher Scientific, Loures, Portugal) for 10 min. After, 

sperm was washed and permeabilized in 0.1% Tween (Fisher Scientific, Loures, Portugal) in 1% goat 

serum (Sigma-Aldrich Química, S.A., Sintra) and 5% BSA (NZYTech, Lisboa,Portugal) was added to 

the sperm and incubated for 20min. Blocking was performed with 1% goat serum and 5% BSA for 

1h30min and then incubated with primary antibodies: rabbit anti-GSK3 (Cell Signaling ref: #9338, 

1:50) and rabbit anti-GSK3 (Cell Signaling ref: #9315, 1:50) overnight at 4°C in a moisture 

environment; rabbit anti-LRP6 (Cell Signaling, ref: #2560, 1:50), rabbit anti-pLRP6 1490 (Cell 

Signaling, ref: #2568, 1:50) and rabbit anti-AKAP11 (Invitrogen, ref: PA5-39868, 1:100) for 1h20min 

in a moisture environment. The sperm cells were incubated with a fluorescently-labeled secondary 

antibody against rabbit (Alexa 594nm 1:800, Life Technologies S.A., Madrid, Spain) for 45min at 

room temperature. Coverslips were washed in PBSx1 + 0.1 Tween three times, followed by one 

wash step in PBS1x. Finally, Hoechst was added and coverslips were mounted with ProLong™ Gold 

Antifade Mountant (Invitrogen, ref: 10144). Negative controls (only secondary antibody) were 

processed in parallel. Fluorescence images were obtained using an Imager.Z1, Axio-Cam HRm 

camera and AxioVision software (Zeiss, Jena, Germany). 

 

B2.3.5. Yeast two-hybrid screen of human testis 

Homo Sapiens GSK3 cDNA (NM_019884.2) was subcloned using EcoRI and BamHI (New England 

Biolabs, Herts, UK) into pAS2-1, and Homo Sapiens GSK3 (NM_002093.3) was subcloned using 

NdeI and SalI (New England Biolabs, Herts, UK) into pAS2-1. Both vectors were sequenced to ensure 

that GSK3 and GSK3 were in frame with Gal-AD. The original vectors were a kind gift from Dr. 

Phiel. The pAS2-1-GSK3 and pAS2-1-GSK3 vectors were transformed into AH109 yeast strain by 

a standard lithium acetate method (Clontech, Takara, Enzifarma, Lisboa, Portugal). GSK3 and 

GSK3 are not cytotoxic to AH109 yeast cells. Expression of GSK3 and GSK3 was confirmed and 

both proteins did not activate per se the reporter genes (Supplementary Figure 1). For library 
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screening, the yeast strain AH109 transformed with either pAS2-1-GSK3 or pAS2-1-GSK3 was 

mated with yeast strain Y187 expressing human testis cDNA library in pGADT7-Rec (Mate&Plate 

Library – Human testis ref. 630470, Clontech, Takara, Enzifarma, Lisboa, Portugal) according to 

manufacture instructions. Half of the mating mixture was plated onto high-stringency medium 

(Quadruple dropout medium: SD/-Ade/-His/-Leu/-Trp) and the other half onto low-stringency 

medium (Triple dropout medium: SD/-His/-Leu/-Trp) and the plates were incubated at 30ºC. 

Colonies obtained in the low stringency plates were replica plated onto medium with X--Gal and 

incubated at 30ºC to check for MEL-1 expression (blue color colonies). Positive clones were 

numbered and kept in culture until identification.  

 

B2.3.6. Identification of yeast two-hybrid positive clones 

Yeast plasmid DNA (pGADT7-Rec) containing the cDNA of the positive clones was analyzed using 

the Matchmaker Insert Check PCR mix 2 (Clontech, Takara, Enzifarma, Lisboa, Portugal, ref:630497) 

and DNA sequence analysis was performed using a specific primer for pGADT7-Rec. The DNA 

sequences obtained were compared to the GeneBank database to identify the corresponding 

protein. Moreover, every DNA sequence was check if it was in frame with SV40-AD CDS.  

 

B2.3.7. Yeast co-transformation 

AH109 yeast cells transformed with either LRP6, AKAP11, PTMA or LRRC37A2 in pGADT7-Rec 

(recovered from the human cDNA testis library) or co-transformed with pAS2-1-GSK3 or pAS2-1-

GSK3 and LRP6, AKAP11, PTMA or LRRC37A2 in pGADT7-Rec using a standard lithium acetate 

method (Clontech, Takara, Enzifarma, Lisboa, Portugal) to reconfirm the interaction. Co-

transformation of pAS2-1 and pGADT7-Rec was used as a negative control and co-transformation 

of pAS2-1-p53 and pACT2-SV40 was used as positive control. The co-transformation were plated in 

either quadruple dropout medium or triple dropout medium.  

 

B2.3.8. Co-immunoprecipitation of GSK3 interactors from human sperm 

After washing, 50x106 sperm cells were lysed in 1xRIPA (Millipore Iberica, Madrid, Spain) 

supplemented with 1mM of Phenylmethylsulfonyl fluoride (PMSF) (Fisher Scientific, Loures, 

Portugal) and 0.2mM of sodium orthovanadate (Na3VO4) (Fisher Scientific, Loures, Portugal) for 

60min on ice and centrifuged at 16.000xG, 4°C, 15min. Sperm extracts were pre-cleared using 
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Dynabeads Protein G (ref: 10003D, Invitrogen, Fisher Scientific, Loures, Portugal) and incubated 

with either rabbit anti-GSK3 (Cell Signaling ref: #9338, 1:50), rabbit anti-GSK3 (Cell Signaling ref: 

#9315, 1:50) or rabbit anti-IgG (ref: sc-2027, Santa Cruz Biotechnology) at 4ºC ON with rotation. 

After incubation, 50µL of Dynabeads Protein G were added and incubated for 2h. After washing 

three times with PBS1x at 4°C, 10min with rotation. The beads were resuspended in 50mM glycine 

(Fisher Scientific, Loures, Portugal) for 5min. Finally, the supernatant was recovered and 1%SDS was 

added to the dynabeads, incubated 5min, boiled and recovered.  

Alternatively, rabbit anti-GSK3 (Cell Signaling ref: #9338, 1:50) or rabbit anti-GSK3 (Cell Signaling 

ref: #9315, 1:50) were crosslinked using BS3 (bis(sulfosuccinimidyl)suberate) (Invitrogen, Fisher 

Scientific, Loures, Portugal ref: 21580) to Dynabeads Protein G, according to manufacturer 

instructions. After, sperm extracts were pre-cleared using Dynabeads Protein G, they were 

incubated with crosslinked beads for 1h. After washing the beads were resuspended in trypsin 

digestion buffer (20 mM Tris-HCl pH 8.0, 2 mM CaCl2) and stored at -20ºC. One quarter of the 

Dynabeads were eluted in 1%SDS (for western blot). 

For both protocols, western blot was performed using a mouse anti-GSK3/ (Invitrogen, ref: 44-

610, 1:2000), ON, 4ºC, with shaking and the corresponding secondary antibodies, 1h RT (1:5000, Li-

Cor Biosciences UK Ltd, Cambridge, UK). The images were obtained using Odyssey Infrared Imaging 

System.  

 

B2.3.9. Mass spectrometry 

Mass spectrometry studies of GSK3 human sperm interactors were performed in two facilities. 

The Lerner Research Institute's Proteomics and Metabolomics Laboratory: The LC-MS system was 

a Dionex Ultimate 3000 nano-flow HPLC interfacing with a Finnigan Orbitrap LTQ Elite hybrid ion 

trap mass spectrometer system. The HPLC system used an Acclaim PepMap 100 precolum (75 μm 

x 2 cm, C18, 3 μm, 100 A) followed by an Acclaim PepMap RSLC analytical column (75 μm x 15 cm, 

C18, 2 μm, 100 A). The data was analyzed by using all CID spectra collected in the experiment to 

search the human UniProtKB protein database with the search programs Sequest and Mascot. Only 

results with mascot score p<0.05 and at least two identifying peptides with mascot ion scores of at 

least 40 were considered. Specifically, GSK3 and GSK3 sequences searches were performed in 

Sequest program.  
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VIB Proteomics Core Facility: The LC-MS/MS system was Ultimate 3000 RSLCnano system (Thermo) 

in-line connected to a Q Exactive mass spectrometer (Thermo, Fisher Scientific, Loures, Portugal).  

Peptides were loaded on a reverse-phase column (made in-house, 75 µm I.D. x 20 mm, 3 µm beads 

C18 Reprosil-Pur, Dr. Maisch). Each sample was injected 3 times and analyzed in triplicate. Data 

analysis was performed with MaxQuant (version 1.5.6.5) [13] using the Andromeda search engine 

with default search settings including a false discovery rate set at 1% on both the peptide and 

protein level. Spectra were searched against the human proteins in the UniProt/Swiss-Prot 

database (database release version of January 2017 containing 20,172 human protein sequences). 

Only proteins with at least one unique or razor peptide were retained. Proteins were quantified by 

the MaxLFQ algorithm integrated in the MaxQuant software [14]. A minimum ratio count of two 

unique or razor peptides was required for quantification. Further data analysis was performed with 

the Perseus software (version 1.5.5.3) [15] after loading the protein groups file from MaxQuant. 

Proteins only identified by site, reverse database hits and contaminants were removed and 

technical replicate samples of GSK3, GSK3, and the negative control were grouped. Proteins with 

less than three valid values in at least one group were removed and missing values were imputed 

from a normal distribution around the detection limit. Then, t-tests were performed (FDR=0.0001 

and S0=5) to compare samples of GSK3 and GSK3 with the negative control. 

 

B2.3.10. In silico analysis of human GSK3 and GSK3 interactors: gene expression; 

phenotype; disease association and Gene Ontology. 

To characterize human GSK3 and GSK3 interactors, either UniProtKB or FASTA sequence was 

retrieved for all interactors and used for subsequent in silico analysis (only Homo sapiens 

information was considered). 

For presence of GSK3 consensus phosphorylation site (xxx[ST]xxx[ST]P) [16] in the identified 

interactors, the following bioinformatics tools were used: Eukaryotic Linear Motif (ELM) resource 

[17]; PhosphoSitePlus [18]; Kinase Net (http://www.kinasenet.ca); NetPhos 3.1 Server [19] ; 

ScanProsite [20] and GPS 3.0 [21]. Only data obtained with high threshold, high conservation scores 

and using the specific GSK3 phosphorylation site were used. Also, we only consider the presence of 

GSK3 phosphorylation site in the interactors if at least 3 of the tools supported this information. All 

tools were consulted in the April 2017. 

To determine if any of the GSK3 and GSK3 interactions identified were new interactions, GSK3 

and GSK3 interactomes were retrieved from IMEx-curated databases (DIP; DIP-IMEx; I2D-IMEx; 
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InnateDB-IMEx; MPIDB; MolCon; MatrixDB, MINT; MBinfo; Uniprot, IntAct; bhf-ucl) [22] and 

Human Integrated Protein-Protein Interaction rEference (HIPPIE) database [23]  and compared with 

the identified GSK3 interactome.  Only interactions for human GSK3 and GSK3 with human 

proteins were considered. The GSK3 interactome retrieved from the databases was used for further 

in silico analysis.  

Gene expression patterns (mRNA) for all interactors (whether identified in this study or obtained 

from databases) were retrieved from: The Human Protein Atlas [24]; Pattern Gene Database 

(PaGenBase) [25] Expression atlas EMBL-EBI (68 FANTOM5 project-adult; 32 Uhlen´s Lab and GTEx) 

[26]; BioGPS [27] and UniGene [28].  Specifically, for the Human Protein Atlas and PaGenBase, since 

these databases have subsets list, only mRNA expression patterns of already classified as testis-

enriched, testis-enhanced and group-enriched (that included testis) were retrieved. Also, only 

human gene expression patterns were considered. mRNA expression values for all databases 

(Transcripts per million or fragments per kilobase of exon model per million mapped reads) were 

retrieved and testis expression values were normalized by calculating the percentage of testis 

expression taking into account the expression of all tissues (Supplementary Table B2.1). Only 

interactors that presented more than 50% of expression in testis in at least 2 of the 5 databases 

used were considered highly expressed in testis. Furthermore, these interactors were classified in 

three categories: 50-75%, 75-90%, and >90%. Differently expressed proteins in asthenozoospermic 

samples were collected from peer reviewed papers and compared with GSK3 interactors [29–41]. 

Phenotypes associated with all interactors (genes) were retrieved form Mouse Genome Informatics 

(MGI) [42] and OMIM [43]. Manually curated genes associated with phenotypes of male infertility 

were retrieved from DisGeNet [44] and Phenopedia [45]. These genes were compared with GSK3 

interactome. Also, the DISEASE database was consulted, specifically the experimental data of 

disease-gene associations [46]. Only phenotypes or diseases related with sperm, testis, epididymis 

and spermatogenesis defects; general defects of the male productive system; infertility (including 

litter size) and ciliary defects were included. Altered accessory glands; genetic disorders, sexual 

behavior and tumor incidence were excluded. Phenotypes were categorized into 10 groups: Male 

infertility; Morphological male reproductive system defects; Germ cell line abnormalities; 

Spermatogenesis abnormalities; Male hormonal abnormalities; Inflammation of male reproductive 

system components; Asthenozoospermia and flagellum, cilium and mitochondrial abnormalities; 

Oligozoospermia and Teratozoospermia (Suplementary Table 2). Also, GSK3 and GSK3 

interactors annotated to testis and sperm physiology on GeneOntology enrichment tool (PANTHER 
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version 12.0, 25 August 2017) [47] were classified according to those annotations (Supplementary 

Table B2.2). All databases were consulted June, July, and August of 2017 

To determine the enrichment of GSK3 and GSK3 testis and sperm interactors, the Gene Ontology 

enrichment analysis was performed (PANTHER version 12.0, 25 August 2017) [47]. All genes 

annotated from Homo sapiens were used as reference list and the GO complete lists as annotation 

data set. Only results with p<0.05 were considered. Analysis tool was used on August 2017  

 

B2.3.11. Construction of GSK3 PPIs network 

GSK3 and GSK3 protein-protein interaction networks were built using Cytoscape v 3.4 [48].  Also, 

the inner connections between those proteins were captured. In order to construct sperm motility 

and testis GSK3 and GSK3 PPI networks, GSK3 and GSK3 interactors associated with motility 

annotations and phenotypes and testis annotations and phenotypes were extracted from GSK3 

and GSK3 interactome network.  
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B2.4. Results 

B2.4.1. GSK3 is present in human testis and sperm and its activity is differently correlated with 

ejaculated and capacitated spermatozoa motility 

First, we evaluated the expression and activation of both GSK3 isoforms in human testis and 

ejaculated and capacitated human sperm.  

 

 

 

 

 

 

 

 

 

In order to demonstrates that both GSK3 and GSK3 are expressed in human testis and sperm, 

these proteins were immunodetected in human testis and sperm, similar to what was previously 

described in mouse and bovine (n=1). Moreover, human sperm, different strength recovered 

different amounts of both GSK3 isoforms (Supplementary Figure B2.2). The levels of inhibited 

GSK3 and GSK3 (serine phosphorylation) were assessed in human testis and sperm. In human 

testis, it appears that no serine phosphorylated GSK3 was detected, while in human sperm both 

phosphorylated GSK3 isoforms were detected (Figure B2.1 C).  

To assess if in human sperm GSK3 activity is correlated with sperm motility, serine phosphorylated 

GSK3 and GSK3 (low activity) were evaluated in ejaculated normospermic and 

asthenozoospermic samples. Total GSK3 and serine phosphorylated GSK3 levels were lower in 

asthenozoospermic samples compared to normospermic (Figure B2.2 A and B). Also, it appears that 

the higher the percentage of immotile sperm the lower are the levels of total GSK3 and 

Figure B2.1. GSK3 in human testis and sperm. Western blot analysis of GSK3 isoforms in human testis and sperm, 
mouse testis and HeLa cells. Human sperm, mouse testis and HeLa cells were homogenized in 1xRIPA. 30µg of protein 

were loaded per sample. A. GSK3⍺ and GSK3β were detected using an anti-GSK3/ antibody (Invitrogen, ref: 44-

610, 1:2000). B. GSK3⍺ was immunodetected using an anti-GSK3 antibody (Cell Signaling ref: #9338, 1:1000) and 

GSK3β was immunodetected using an anti-GSK3 antibody (Cell Signaling ref: #9315, 1:1000). Blots were cropped. 
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phosphorylated GSK3 (r= -0.910, p=0.012 and r= -0.872, p=0.023, respectively) (Figure B2.2 C and 

D and Supplementary Table B2.3). Therefore, these results suggest that in human sperm there is a 

strong negative correlation between the percentage of immotile sperm and the levels of total and 

phosphorylated (low activity) GSK3. Regarding GSK3, it seems that the expression of total and 

phosphorylated levels of GSK3 were similar in both normospermic and asthenozoospermic 

samples (Figure B2.2 A and B). It appears that there is no correlation between total GSK3 and 

sperm motility and between phosphorylated (low activity) GSK3 and the percentage of immotile 

sperm (Supplementary Table B2.3) (Figure B2.2 C and D).  

The correlation between motility and levels of total GSK3 and serine phosphorylated GSK3 (low 

activity) in capacitated sperm was also assessed. Ejaculated sperm was subjected to density 

gradients in capacitating conditions, and enriched motile and immotile fractions were recovered. 

Contrary to the situation in ejaculated sperm, total and phosphorylated GSK3 slightly increased in 

immotile sperm compared to the motile sperm, and the higher the percentage of immotile sperm 

the higher the levels of total GSK3 (Figure B2.2 E, F and G). Similarly to GSK3, there was also an 

increase in total and phosphorylated GSK3 in immotile compared to motile sperm. Here again, 

higher the percentage of immotile sperm higher were the levels of total and phosphorylated GSK3 

(low activity) (r= 0.848, p=0.033) (Figure B2.2 H and Supplementary Table B2.3).  
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B2.4.2. GSK3 and GSK3 have distinct spermatozoa subcellular localizations  

Given the importance of GSK3 in sperm motility and distinct expression patterns in normospermic 

and asthenozoospermic samples, the subcellular location of GSK3 and GSK3 in ejaculated human 

sperm was analyzed. Three normospermic human sperm samples were analyzed and around 300 

cells were assessed (total). Figure B2.3 shows that GSK3 was primarily located in the flagellum 

(100%) and 75.7% of sperm cells also showed immunoreactivity in the head. Curiously, 24.2% of the 

spermatozoa showed a strong immunoreactivity for GSK3 in the equatorial region, particularly at 

the edges. In contrast, GSK3 was mainly located in the sperm head (100%), 23.9% of sperm showed 

GSK3 distributed throughout the entire head and flagellum and in 76.0% of sperm it was present 

only sperm head (Figure B2.3).  
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Figure B2.2. Total and serine phosphorylated GSK3 levels in human sperm (previous page). A. Immunoblot of total 
and serine phosphorylated GSK3 isoforms in human normo and asthenozoospermic ejaculated sperm.  B. GSK3 
isoforms protein levels in human normo and asthenozoospermic ejaculated sperm (n=3). C. Correlation between 
percentage of immotile ejaculated sperm and protein levels of total and serine phosphorylated GSK3⍺. D. Correlation 
between percentage of immotile ejaculated sperm and protein levels of total and serine phosphorylated GSK3β. E. 
Immunoblot of total and serine phosphorylated GSK3 isoforms in motile and immotile capacitated sperm. F. GSK3 
isoforms protein levels in motile and immotile capacitated sperm (n=3). G. Correlation between percentage of 
immotile capacitated sperm and protein levels of total and serine phosphorylated GSK3⍺. D. Correlation between 
percentage of immotile capacitated sperm and protein levels of total and serine phosphorylated GSK3β. 
Phosphoserine GSK3 levels are calculated by determining the ratio between phosphoserine signal and total GSK3 
signal. Error bars represent ±SEM. r= Pearson correlation. * Correlation is significant at the 0.05 level (2-tailed). Blots 
were cropped. 
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B2.4.3. Thirty-five new interactors for GSK3 and fourteen new interactors for GSK3 were 

identified in human testis 

To identify novel GSK3 and GSK3 interactors relevant for fertility, yeast two-hybrid screens were 

performed using a human testis library and full-length Homo sapiens GSK3 and GSK3. For GSK3, 

93 positive clones were obtained from a total 2.64x107 screened clones. For GSK3, 54 positive 

clones were obtained from a total of 2.75x107 screened clones. Nucleotide sequencing of the 

positive clones, revealed forty-six putative interactors for GSK3 and twenty-one for GSK3 (Table 

B2.1 and Table B2.2). 

For GSK3, 76% were new putative interactors while 24% were previously described as GSK3 

interactors. From the latter, 45.5% were described as interacting with GSK3 in PPI databases 

(either exclusively or interaction for GSK3 was not tested) and 54.5% interacted with both GSK3 

isoforms. Moreover, 58.7% of GSK3 interactors identified contained the GSK3 consensus 

phosphorylation site (xxx[ST]xxx[ST]P). Finally, 34.8% of GSK3 interactors were already described 

to be present in either testis and/or sperm of mammals (Table B2.1). For GSK3, 77.8% were 

identified for the first time as GSK3 putative interactors, while 22.2% of the interactors were 

already described as GSK3 interactors in PPI databases, from which 50% interacted with GSK3 

(either exclusively or interaction for GSK3 was not tested) and the other half interacted with both 

GSK3 isoforms. Moreover, around 38% of the GSK3 identified interactors had the GSK3 consensus 

phosphorylation site and 61.1% were previously reported to be present in testis and/or sperm of 

mammals (Table B2.2). 

To validate the yeast two-hybrid approach and to confirm some of the interactions identified, yeast 

co-transformations were performed. GSK3 or GSK3 and AKAP11, LRC37A2, LRP6 and PTMA were 

co-transformed in yeast and plated on highly stringency medium. Also, AKAP11, LRRC37A2, LRP6 

and PTMA were transformed in yeast to check for auto-activation of the reporter genes. Figure B2.4 

shows that none of the interactors tested activated per se the transcription of the reporter genes.  

Regarding the interaction between AKAP11 and LRP6 with GSK3, although it was only identified as 

a GSK3 interactor, they also interacted with GSK3 (Figure B2.4). 

  

Figure B2.3. Subcelular localization of GSK3 and GSK3 in mature human sperm (previous page). GSK3 is located 

in the flagellum and head (arrowhead), more specifically in the equatorial region. GSK3 is located through the entire 
head (star) and occasionally in the flagellum. Scale bar is 5 µm. Nucleus is marked in blue. ROI: region of interest. All
images were obtained with 63X magnification in a Imager.Z1, Axio-Cam HRm camera and AxioVision software (Zeiss, 
Jena, Germany). 
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Table B2.1. GSK3 human testis interactors. Gene name, UniProtKB, nr of clones, GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammal testis and sperm 

and alteration on asthenozoospermic samples of testis GSK3 interactors identified by yeast two-hybrid. 

GSK3 human testis interactors 

Gene Name UniProtKB Name 
Nr of 
clones  

GSK3 
phosphorylation 
site 

Previously known 
GSK3 interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

AKAP11 Q9UKA4 A-kinase anchor protein 11  1 Yes GSK3β [49–51]  Human testis and human sperm [52] 

 

ALKBH3 Q96Q83 
Alpha-ketoglutarate-dependent 
dioxygenase alkB homolog 3  

1    
 

AP3D1 O14617 AP-3 complex subunit delta-1  1 Yes    

AURKAIP1 Q9NWT8 Aurora kinase A-interacting protein  2 Yes    

AXIN2 Q9Y2T1 Axin-2  1 Yes 
GSK3⍺ and GSK3β 
[50,51,53,54] 

Mouse testis [55] 
 

BCCIP Q9P287 BRCA2 and CDKN1A-interacting protein  7 Yes    

C11orf98 E9PRG8 Uncharacterized protein C11orf98 1     

CCDC174 Q6PII3 
Coiled-coil domain-containing protein 
174 

1 Yes   
 

CHTOP Q9Y3Y2 Chromatin target of PRMT1 protein 1     

CNTROB Q8N137 Centrobin  1 Yes  
Mouse testis (spermatocyte and 
spermatids) [56] 

 

DCAF8 Q5TAQ9 DDB1- and CUL4-associated factor 8 1 Yes    

DCP1B Q8IZD4 mRNA-decapping enzyme 1B  5 Yes    

DDI1 Q8WTU0 Protein DDI1 homolog 1 1 Yes    

DEAF1 O75398 
Deformed epidermal autoregulatory 
factor 1 homolog  

1 Yes 
GSK3⍺ and GSK3β 
[57]  

 
 

DNAJB1 P25685 DnaJ homolog subfamily B member 1  1   
Human sperm (midpiece and principle 
piece) [58]  + [36] 
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GSK3 human testis interactors 

Gene Name UniProtKB Name 
Nr of 
clones  

GSK3 
phosphorylation 
site 

Previously known 
GSK3 interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

DRC1 Q96MC2 Dynein regulatory complex protein 1 1 Yes    

FBXO42 Q6P3S6 F-box only protein 42  1 Yes    

GOLGA6C A6NDK9 Golgin subfamily A member 6C 1     

H2AFV Q71UI9 Histone H2A.V  1     

HMBS P08397 Porphobilinogen deaminase 1     

HMGN1 P05114 
Non-histone chromosomal protein HMG-
14  

1    
 

HNRNPM P52272 
Heterogeneous nuclear 
ribonucleoprotein M 

1   
Mouse testis [59]  and human sperm 
(mRNA) [60] 

 

HSP90AA1 P07900 Heat shock protein HSP 90-alpha  12 Yes 
GSK3⍺ and GSK3β 
[51,61,62] 

Yes, mouse testis (mRNA) [63] and human 
sperm [64]   

+ [36] 

HSP90AB1 P08238 Heat shock protein HSP 90-beta  4  
GSK3⍺ and GSK3β 
[51,61] 

Rat testis (Sertoli cells) [65] and human 
sperm (equatorial region) note that does 
not distinct AA1 from AB1 [66] 

+ [36]  
  

LDHA P00338 L-lactate dehydrogenase A chain  1   Human sperm (principal piece) [67] 
- [36] 
 

LRP6 O75581 
Low-density lipoprotein receptor-related 
protein 6  

1 Yes 
GSK3⍺ and GSK3β 
[68–70]  

Human sperm (flagellum more intense in 
midpiece) [71] 

 

LRRC37A2 A6NM11 
Leucine-rich repeat-containing protein 
37A2 

1 Yes   
+[36] 
 

MAEA Q7L5Y9 Macrophage erythroblast attacher  1 Yes    

MTCH1 Q9NZJ7 Mitochondrial carrier homolog 1 1 Yes    

MYL12A P19105 Myosin regulatory light chain 12A  1     

NBR1 Q14596 Next to BRCA1 gene 1 protein  1 Yes 
GSK3⍺ and GSK3β 
[57,72]  

Human testis (mRNA) [73] 
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GSK3 human testis interactors 

Gene Name UniProtKB Name 
Nr of 
clones  

GSK3 
phosphorylation 
site 

Previously known 
GSK3 interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

PSMD8 P48556 
26S proteasome non-ATPase regulatory 
subunit 8  

3   Boar sperm (acrosome) [74] 
 

PTMA P06454 Prothymosin alpha  2   
Rat testis (Leydig cells, panchytene 
spermatocyte and spermatids) [75], human 
sperm (acrosome) [76] 

 

RPL15 P61313 60S ribosomal protein L15 1     

RPL19 P84098 60S ribosomal protein L19 1  GSK3β [51] Yes, human sperm [60]  

RPL29 P47914 60S ribosomal protein L29 1  GSK3β [51] Mouse testis [77] 
 

RPS15 P62841 40S ribosomal protein S15  1     

RPS19 P39019 40S ribosomal protein S19 1  GSK3β [51]   

RUNX1 Q01196 Runt-related transcription factor 1  1 Yes    

SBNO1 A3KN83 Protein strawberry notch homolog 1  2 Yes    

SMARCA5 O60264 
SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin 
subfamily A member 5  

1 Yes GSK3β [51] Mouse testis [78] 
 

SMG7 Q92540 Protein SMG7  1 Yes  
Mouse testis (spermatocytes and 
spermatids) [79] 

 

SUGP2 Q8IX01 
SURP and G-patch domain-containing 
protein 2  

1 Yes   
 

TTC16 Q8NEE8 Tetratricopeptide repeat protein 16  1 Yes    

UBTF P17480 Nucleolar transcription factor 1 1 Yes    

VCPIP1 Q96JH7 Deubiquitinating protein VCIP135  1 Yes    

Homo Sapiens Chromosome 
21 clone CTD-250 3J9 map 
p11-q21.1 

  1    
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GSK3 human testis interactors 

Gene Name UniProtKB Name 
Nr of 
clones  

GSK3 
phosphorylation 
site 

Previously known 
GSK3 interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

Human Dna sequence from 
clone RP11-543N17 

  1    
 

RefSeqGene on chromosome 
5 Chromosome 5: 
150,401,911-150,402,122 

  2    
 

 

Table B2.2. GSK3 human testis interactors. Gene name, UniProtKB, nr of clones, GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammal testis and sperm 

and alteration on asthenozoospermic samples of testis GSK3 interactors identified by yeast two-hybrid. 

GSK3 human testis interactors 

Gene Name UniProtKB Name 
Nr of 
clones  

GSK3 
phosphorylation 
site 

Previously known 
GSK3 interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

AXIN2 Q9Y2T1 Axin-2  1 Yes 
GSK3β 
[50,51,53,54]  

Mouse testis [55,71] and mouse sperm 
(mRNA) 

 

BCCIP Q9P287 
BRCA2 and CDKN1A-interacting 
protein 1 Yes  Human testis [80]  

 

C10orf90 Q96M02 Centrosomal protein C10orf90  1 Yes    

C11orf98 E9PRG8 
Uncharacterized protein 
C11orf98 1    

 

CASC4 Q6P4E1 Protein CASC4  1 Yes    

CMTM2 Q8TAZ6 

CKLF-like MARVEL 
transmembrane domain-
containing protein 2  1   

Human testis and sperm (elongating 
spermatids, pachytene spermatocytes, 
posterior head of mature sperm) [81,82] 

 

DCP1B Q8IZD4 mRNA-decapping enzyme 1B 2 Yes    
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GSK3 human testis interactors 

Gene Name UniProtKB Name 
Nr of 
clones  

GSK3 
phosphorylation 
site 

Previously known 
GSK3 interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

HNRNPM P52272 
Heterogeneous nuclear 
ribonucleoprotein M  2   Mouse testis [59] and human sperm [60] 

 

HSP90AA1 P07900 
Heat shock protein HSP 90-
alpha 2  

GSK3⍺ and GSK3β 
[51,62]  

Mouse testis (mRNA) [63] and human sperm 
[64]  

+[36] 
 

HSP90AB1 P08238 Heat shock protein HSP 90-beta  1  
GSK3⍺ and GSK3β 
[51]  

Rat testis (Sertoli cells) [65] and human sperm 
[83] 

+ [36] 
  

LYAR Q9NX58 
Cell growth-regulating 
nucleolar protein 1   Mouse testis [84] 

 

MYL6 P60660 Myosin light polypeptide 6 2   
Mouse sperm (manchete of elongating 
spermatids) [85] 

+ [36]  
 

PRKRIP1 Q9H875 PRKR-interacting protein 1 2     

PSMD8 P48556 
26S proteasome non-ATPase 
regulatory subunit 8  2   Boar sperm (acrosome) [74] 

 

RPS15 P62841 40S ribosomal protein S15  2     

SMG7 Q92540 Protein SMG7 1 Yes  
Mouse testis (spermatocytes and spermatids) 
[79]  

 

TEKT5 Q96M29 Tektin-5 1 Yes  
Mouse sperm (flagellum, more intense in 
midpiece) [86] 

 -  [29,36] 
 
 

YBX1 P67809 
Nuclease-sensitive element-
binding protein 1  1  GSK3β [87]  

 

Human DNA sequence from clone 
RP11-543N17 on chromosome 10, 
complete sequence   

1 
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Table B2.3. GSK3  human sperm interactors. Gene name, UniProtKB, mass spectrometry score, GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammal 

testis and sperm and alteration on asthenozoospermic samples of testis GSK3 interactors identified by yeast two-hybrid. 

GSK3 human spermatozoa interactors 

Gene Name UniProtKB Name 

Spectral 

Count 

ra�o*† 

Log of 

GSK3/NC 

ratio±† 

GSK3 

phosphorylation 

site 

Previously 

known GSK3 

interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

ARG1 P05089  Arginase-1 

GSK3 

only  

 

Yes  Human sperm (activity) [88] 

 

GGCT O75223  

Gamma-

glutamylcyclotransferase 

GSK3 

only  

 

Yes  

Human testis (Sertoli and Leydig cells) and 

epididymis [89] 

 

HIST1H2AD P20671 Histone H2A type 1-D 3     + [36] 

TLR9 Q9NR96 Toll-like receptor 9 

GSK3 

only 

 

  

Mouse sperm (acrosome) [90], human testis 

and sperm(mRNA) [91,92] 

 

SBSN Q6UWP8  Suprabasin  

GSK3 

only  

 

   

 

HIST1H4A P62805  Histone H4  3 

 

  

Mouse testis (spermatocyte) [93] human 

sperm [93] 

 

HIST1H2BK A0A024RCL8  Histone H2B  

GSK3 

only  

 

  Human testis (mRNA) and sperm [94] 

 

HSPA5 P11021 

78 kDa glucose-regulated 

protein 

GSK3 

only 

 

Yes GSK3β [51]   

+ and – [31,36]  

ACR 

P10323 Acrosin  8.0  GSK3β [51] 

Human testis [95] and sperm (acrosome) 

[96,97] 

-[36] 

CPZ Q66K79 Carboxypeptidase Z  4.8     

EEF1G P26641 Elongation factor 1-gamma  4.3  GSK3β [51] Human sperm [98] -[36] 

LTF P02788 Lactotransferrin  6.7   Human sperm (acrosome) [99] -[36] 
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GSK3 human spermatozoa interactors 

Gene Name UniProtKB Name 

Spectral 

Count 

ra�o*† 

Log of 

GSK3/NC 

ratio±† 

GSK3 

phosphorylation 

site 

Previously 

known GSK3 

interactor 

Present in testis and/or sperm 
Asthenozoospermic 

alteration 

PRSS37 

A4D1T9 

Probable inactive serine 

protease 37  4.8    

 

RPL13 P26373 60S ribosomal protein L13  6.9     

RPL6 Q02878 60S ribosomal protein L6  4.8     

RPS18 P62269 40S ribosomal protein S18  8.1   Human sperm [29]  

RPS8 

P62241 40S ribosomal protein S8  4.4   

Human testis [95] and sperm (acrosome) 

[96,97] 

 

 

Table B2.4. GSK3 human sperm interactors. Gene name, UniProtKB, mass spectrometry score, GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammal 

testis and sperm and alteration on asthenozoospermic samples of testis GSK3 interactors identified by yeast two-hybrid. 

GSK3 human spermatozoa interactors  

Gene Name UniProtKB Name 

Spectral 

counts 

ratio* 

Log of 

GSK3/NC 

ratio±† 

GSK3 

phosphorylation 

site 

Previously 

known GSK3 

interactor 

Present in testis and/or 

sperm 

Asthenozoospermic 

alteration 

ANXA1 P04083  Annexin A1  GSK3 only  

 

   

 

ARG1 P05089  Arginase-1 GSK3 only  

 

Yes  

Human sperm [88] 

(activity) 

 

BPIFB1 Q8TDL5  BPI fold-containing family B member 1 GSK3 only       
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GSK3 human spermatozoa interactors  

Gene Name UniProtKB Name 

Spectral 

counts 

ratio* 

Log of 

GSK3/NC 

ratio±† 

GSK3 

phosphorylation 

site 

Previously 

known GSK3 

interactor 

Present in testis and/or 

sperm 

Asthenozoospermic 

alteration 

CASP14 P31944 Caspase 14  GSK3 only       

CAT P04040  Catalase  GSK3 only  

 

  

Human sperm (catalase 

activity) [100]  

 

CTSG P08311  Cathepsin G  GSK3 only       

LYZ B2R4C5  C-type lysozyme GSK3 only       

DMBT1 Q9UGM3  Deleted in malignant brain tumors 1 protein  GSK3 only   Yes    

GGCT O75223  Gamma-glutamylcyclotransferase GSK3 only 

 

Yes  

Human testis (Sertoli and 

Leydig cells) and 

epididymis [89] 

 

GSN P06396 Gelsolin  GSK3 only       

GAPDH P04406  Glyceraldehyde-3-phosphate dehydrogenase 2 

 

 GSK3β [101] 

Boar sperm (fibrous 

sheat of the flagellum) 

[102] 

 

HP P00738  Haptoglobin  GSK3 only  

 

 GSK3β [51] Rat testis (mRNA) [103] 

 

HSP90AB1 P08238 Heat shock protein HSP 90-beta GSK3 only  

 

 

GSK3⍺ and 

GSK3β [51]  

Rat testis (Sertoli cells) 

[65] and human sperm 

[83]  

 

HSPA2 P54652  Heat shock-related 70 kDa protein 2 3     +[29]  
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GSK3 human spermatozoa interactors  

Gene Name UniProtKB Name 

Spectral 

counts 

ratio* 

Log of 

GSK3/NC 

ratio±† 

GSK3 

phosphorylation 

site 

Previously 

known GSK3 

interactor 

Present in testis and/or 

sperm 

Asthenozoospermic 

alteration 

 

HIST1H2AD P20671 Histone H2A  4     + [36] 

HIST1H2BK A0A024RCL8  Histone H2B  GSK3 only       

H3F3B P84243 Histone 3.3 GSK3 only  

 

  

Mouse testis 

(spermatogonia, 

leptotene spermatocytes, 

pachytene 

spermatocytes and 

elongating spermatids) 

[104] 

 

HIST1H4A P62805  Histone H4  13 

 

  

Mouse testis 

(spermatocyte) [93] and 

human sperm [105]  

 

HIST1H3A P68431 Histone H3 GSK3 only 

 

  

Human sperm (nuclear) 

[106] 

 

MUC5AC A7Y9J9  Mucin 5AC, oligomeric mucus/gel-formin GSK3 only      

MPO P05164 Myeloperoxidase  GSK3 only  Yes  In seminal plasma [107] - [36]  

PFN1 P07737 Profilin-1 GSK3 only 

 

  

Rat testis (Leydig and 

Sertoli cells) [108] 

+ [36] 

S100A8 P05109 Protein S100-A8 3    Human sperm [109] -[36] 
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GSK3 human spermatozoa interactors  

Gene Name UniProtKB Name 

Spectral 

counts 

ratio* 

Log of 

GSK3/NC 

ratio±† 

GSK3 

phosphorylation 

site 

Previously 

known GSK3 

interactor 

Present in testis and/or 

sperm 

Asthenozoospermic 

alteration 

DKFZp686J11235 Q6MZW0  

Putative uncharacterized protein 

DKFZp686J11235 GSK3 only 

 

Yes   

 

SERPINB4 P48594 Serpin B4 (Fragment) GSK3 only      

TLR9 Q9NR96 Toll-like receptor 9 GSK3 only 

 

  

Mouse sperm (acrosome) 

[90] human testis and 

sperm (mRNA) [91,92] 

 

n/a Q6GMV8  Uncharacterized protein  GSk3 only      

ZG16B Q96DA0 Zymogen granule protein 16 homolog B  GSK3 only      

ACR P10323 Acrosin  7.70   

Yes, human testis [95] 

and sperm (acrosome) 

[96,97] 

 

LTF P02788 Lactotransferrin  6.45  GSK3β [51] 

Human sperm (mRNA) 

[110] 

-[36] 

PRSS37 A4D1T9 Probable inactive serine protease 37  4.40   Human sperm [98]  

RPL13 P26373 60S ribosomal protein L13  4.79  GSK3β [51]   

RPL6 Q02878 60S ribosomal protein L6  4.75     

RPS18 P62269 

40S ribosomal 

protein S18  7.31   Human sperm (acrosome) [99] 
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* Spectral counts ratios: total number of spectral counts for each protein in GSK3 condition divided by the number of total number of spectral counts for each protein in negative control. 

Only rations higher than 2 were considered relevant (increase of 100% of number of spectral counts in the condition GSK3). Please note that “GSK3 only” means that spectral counts 

were only detected in GSK3 condition.  

±†Logarithm of GSK3/Negative control:  
† Mass spectrometry results present dis�nct scoring methods, since the technique was performed in two different facili�es, VIB Proteomics Expertise Center 
and Proteomic Core Lab, Lerner Research Institute. 
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As for LRC37A2 and PTMA, both proteins were unable to activate the transcription of the reporter 

genes in the most stringent medium, which suggests that the interactions between GSK3 isoforms 

and LRRPC37A2 and PTMA are weaker or more transient (Figure B2.4).  

 

 

 

 

 

B2.4.4. Fourteen new interactors for GSK3 and twenty-nine new interactors for GSK3 were 

identified in human spermatozoa 

To identify novel GSK3 and GSK3 interactors essential for sperm physiology, GSK3 and GSK3 

interactors were isolated from mature human sperm by co-immunoprecipitation using isoform-

specific GSK3 antibodies in two independent experiments (pool of two different samples in each 

experiment) followed by mass spectrometry analysis. Three different elution methods were used: 

1%SDS, 50mM Glycine pH2.5 and no elution (in beads trypsinization was performed). Endogenous 

GSK3 and GSK3 were successfully immunoprecipitated in all experiments, as seen in Figure B2.5. 

Additionally, five peptides were identified that matched GSK3 and four that matched GSK3 

(Table B2.5). Note that neither GSK3 and GSK3 were detected in the negative control either by 

western blot or identified by mass spectrometry (Figure B2.5 and Table B2.5).  
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Figure B2.4. Yeast co-transformation of GSK3 and GSK3 interactors. pAS2-1- GSK3 and pAS2-1-GSK3 were co-
transformed with the either pGADT7-Rec-AKAP11, pGADT7-Rec-LRP6, pGADT7-Rec-LRRC37A2 or pGADT7-Rec-PTMA 
recovered from the human testis cDNA library. All proteins interact with both GSK3 isoforms but only AKAP11 and 
LRP6 maintain the interaction in a more stringency medium. Also, none of the proteins activate per se the reporter 
genes. Negative (NC) and positive controls (PC) were included. 
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Seventeen and thirty-four interactors were identified as sperm GSK3 and for GSK3 interactors, 

respectively (Table B2.3 and B4). Regarding GSK3 interactors, 82.4% were potentially novel 

interactors while 17.6% were previously identified as GSK3 interactors in PPI databases. From 

those, all were described as interacting with GSK3 (either exclusively or interaction for GSK3 was 

not tested). Also, 58.8% of GSK3 identified interactors were described as expressed in either 

mammalian testis and/or sperm by previous studies. Lastly, 17.6% of GSK3 identified interactors 

contained the GSK3 consensus phosphorylation site (Table B2.3).  

Table B2.5. GSK3 isoforms peptides detected on mass spectrometry. Peptide sequence, first and last aminoacid of the 
peptide, peptide % of coverage for the complete protein and peptide spectral count. 

Sequence Start End Coverage Spectral Count 

Mass spectrometry eluted with 50mM glycine and 1% SDS 

GSK3 (UniProtKB: P49840) 

TSSFAEPGGGGGGGGGGPGGSASGPGGTGGGK 19 50 
10% 5 

VTTVVATLGQGPER 100 113 

GSK3 (UniProtKB: P49841) 

TPPEAIALCSR 309 319 3% 1 

Mass spectrometry on-bead trypsin digestion 

GSK3 (UniProtKB: P49840) 

VTTVVATLGQGPER 100 113 

8% 13 SQEVAYTDIK 114 123 

DIKPQNLLVDPDTAVLK 244 260 

GSK3 (UniProtKB: P49841) 

VTTVVATPGQGPDRPQEVSYTDTK 37 60 

17% 32 DTPALFNFTTQELSSNPPLATILIPPHAR 355 383 

IQAAASTPTNATAASDANTGDR 384 405 

Figure B2.5.Co-Immunoprecipitation of GSK3 from normospermic human sperm sample. Both co-
immunoprecipitations were also used for identification of GSK3 interactors by mass spectrometry. GSK3⍺ and GSK3β

were detected using a anti-GSK3/ (Invitrogen, ref: 44-610, 1:2000). A After co-immunoprecipitation with either a 
GSK3⍺ or GSK3β specific antibody, proteins were eluted with 1% SDS or 50mM glycine. Prior to GSK3 
immunodetection, APP presence was evaluated by probing with 6E10 antibody. Although the reason is unknown, 
upon incubation with the 6E10 antibody, two unspecific bands appear on the negative control eluted with 50mM of 
glycine (Supplementary Figure 3). B After co-immunoprecipitation with crosslink of GSK3⍺ or GSK3β antibodies to 
dynabeads beads, ¼ of the beads were eluted with 1%SDS and GSK3⍺ or GSK3β presence was evaluated. Blots were 
cropped 
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For GSK3 interactors, 85.3% were new putative interactors and 14.7% were already described as 

GSK3 interactors. From the latter, one interaction was reported with both GSK3 isoforms while the 

remaining were described as interacting with GSK3. Moreover, 47.1% of GSK3 identified 

interactors are expressed in either mammalian testis and/or sperm. Finally, the GSK3 consensus 

phosphorylation site is present in 14.7% of GSK3 interactors (Table B2.3). 

 

B2.4.5. GSK3 testis and spermatozoa interactomes are enriched in gene and protein 

expression processes  

In this study, four distinct GSK3 interactomes were characterized: GSK3 and GSK3 in human testis 

and human sperm. The Venn diagrams in Figure B2.6 represent the overlap between GSK3⍺ and 

GSK3β interactomes in human testis, sperm and databases.  

  

 

 

 

 

With the goal of identifying key GSK3 interactors for sperm and testis physiology, gene expression 

for GSK3 interactors was retrieved from 5 different databases (Supplementary Table B2.1). For 

GSK3 four proteins were considered testis-enriched, with more than 90% of their expression 

restricted to testis: DDI1, GOLGA6C (testis interactors), ACR and PRSS37 (sperm interactors). 

Although not testis-enriched, 50-75% expression of TTC16 is limited to testis. For GSK3 interactors, 

besides ACR and PRSS37 similarly to GSK3, TEKT5, CMTM2 (testis interactors), HIST1H1T, PRKACG, 

TSKS (databases interactors) were classified as highly enriched in testis (>90% expression). CABYR 

presented 75%-90% of expression in testis while RGS22 only 50-75%. To further characterize GSK3 

Figure B2. 6. Venn diagram showing the overlap of GSK3⍺ and GSK3β interactomes. The data retrieved from testis, 
sperm and databases GSK3 interactors was compared and the number of common proteins between two or three 
categories is shown A. Overlap of GSK3⍺ and GSK3β interactomes between interactors reported in databases and 
identified in testis and sperm. B. Overlap of testis and sperm GSK3 interactors. Green: Sperm interactors; Orange: 
Testis interactors; Yellow: Databases interactors; Blue: GSK3⍺ interactors and Pink: GSK3β interactors. 
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interactome, differently expressed proteins in asthenozoospermic samples were retrieved from 

proteomics studies (Tables B2.1-B2.4).  

To better understand the role of GSK3 isoforms and their interactors in testis and sperm, an 

enrichment analysis was performed. Testis GSK3 interactome appears to be highly associated with 

RNA metabolic processing and located mainly in the nucleus (Supplementary Table B2.4). On the 

other hand, the GSK3 sperm interactome is enriched in proteins involved in ribosomal function, 

particularly protein production (Supplementary Table B2.5)  

The GSK3 testis interactome it appears to be associated with maintenance of gene quality, 

particularly telomerase length (Supplementary Table B2.6). The GSK3 sperm interactome is 

enriched in proteins reported to be involved in immune response (Supplementary Table B2.7).  

 

B2.4.6. The GSK3 interactomes are associated with sperm motility and testis functions  

To further characterize the GSK3 interactome, protein-protein interaction networks were 

constructed using data obtained from this study and GSK3 PPIs retrieved from databases. The 

GSK3 interactome network (Supplementary Figure B2.4) presents 130 proteins,  

Figure B2.7. GSK3α sperm motility network. GSK3⍺-centered subnetwork for sperm motility extracted from GSK3⍺
interactome network. All GSK3⍺ interactors associated with motility-related annotations were used to build the 
network. Solid lines: testis or sperm GSK3⍺ interactions; Dashed lines: Databased retrieved GSK3⍺ interactions. Node 
size: according to testis expression. Node colors: represent motility-related phenotypes, biological processes (BP) or 
cellular components (CC). 
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including GSK3. Between these GSK3 interactors 257 interactions were formed. The average 

number of neighbor of a node was 3.9 (ranging from 1 to 130). Around 40% of GSK3 interactors 

only formed one interaction (with GSK3). 96% of all GSK3 interactors had five or less interactions. 

As expected, GSK3 was the protein that presents more interactions, since it is a protein-centered 

network. The mean clustering coefficient for GSK3 interactome network is 0.462. The GSK3 

interactome is composed by 456 proteins that form 1813 interactions among them (Supplementary 

Figure B2.5). The average number of neighbor of a node was 7.815 (ranging from 1 to 455). Seventy-

six proteins interacted exclusively with GSK3 and 24% of GSK3 interactors had ten or more 

interactors. GSK3 network presents a mean clustering coefficient of 0.448 (Supplementary Figure 

B2.6).  

GSK3 subnetworks associated with sperm-motility and testis were extracted from GSK3 isoforms 

protein-protein networks (Figure B2.7 and B2.8). Twenty-six GSK3 interactors have been 

associated with motility-related functions, phenotypes and/or subcellular locations (Figure B2.7). 

From those, five (PRSS37; DRC1; RPS19; HSPA5 and AP3D1) were identified in this study as either 

testis or sperm GSK3 interactors and only one was classified as testis-enriched protein (PRSS37). 

Figure B2.8. GSK3α testis network. GSK3⍺-centered subnetwork for testis-related annotations extracted from GSK3⍺
interactome network. All GSK3⍺ interactors associated with testis annotations were used to build the network. Solid 
lines: testis or sperm GSK3⍺ interactions; Dashed lines: Databased retrieved GSK3⍺ interactions. Node size: according 
to testis expression. Node colors: represent testis related phenotypes, biological processes (BP) or cellular 
components (CC).  
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PRKACA and DRC1 stand out by presenting five motility-related functions, phenotypes and/or 

subcellular locations, followed by GLI3 with four. Note that GSK3 itself has been associated with 

locomotion and cell motility processes (Figure B2.7). Ten GSK3 interactors were associated with 

testis-related functions or phenotypes/diseases and two of those were identified in this study 

(PRSS37 and HSP90AA1) (Figure B2.8). Only PRSS37 was described as highly expressed in testis and 

associated with testis-related annotations (PRSS37) (Figure B2.8). With five testis-related functions 

and/or subcellular locations, we highlight AKAP9 and AR. PRSS37 is also the single GSK3 interactor 

that is with associated with sperm motility, testis annotations, and categorized as enriched in testis 

(Figure B2.7 and Figure B2.8). For GSK3, 100 interactors are annotated to motility-related 

categories, and from those six are highly expressed in testis (CABYR, TEKT5, PRKACG, PRSS37, TSKS, 

CMTM2) (Figure B2.9). For testis-related categories, GSK3 presents forty-five interactors (Figure 

B2.10). 

Although not directly related to sperm motility and testis function, several GSK3 interactors are 

related to more general phenotypes or functions related to the male reproductive system 

(Supplementary Figure B2.6 and B2.7).  

Figure B2.9. GSK3β sperm motility network. GSK3β-centered subnetwork for sperm motility extracted from GSK3β
interactome network. All GSK3βinteractors associated with motility-related annotations were used to build the 
network. Solid lines: testis or sperm GSK3β interactions; Dashed lines: Databased retrieved GSK3β interactions. Node 
size: according to testis expression. Node colors: represent motility-related phenotypes, biological processes (BP) or 
cellular components (CC). 
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B2.4.7. AKAP11 and LRP6 subcellular localization in human sperm 

Two GSK3 interactors identified in this study, LRP6 and AKAP11, were chosen for further 

characterization. Both these proteins were chosen due to their potential involvement in male 

reproduction. LRP6 was already described as involved in sperm motility and testis physiology and 

AKAP11 in mouse spermatogenesis. AKAP11 and LRP6 expression in human testis and ejaculated 

sperm and the subcellular localization in human sperm were assessed. Figure B2.11 A shows that 

LRP6 is expressed in human testis and in human sperm. Although the expected molecular weight 

of LRP6 was around 180kDa, in human testis immunoreactivity was detected at around 210kDa. 

Several studies reported LRP6 at a higher molecular weight possible due to post-translational 

modification such as glycosylation and phosphorylation [111,112]. In human sperm, LRP6 was also 

detected at around 180kDa, although the immunoreactivity is weak. No immunoreactivity was 

detected for p1490LRP6 using Western blot. Regarding AKAP11, no signal was detected. We believe 

this is due to limitations of the antibody. All commercially available AKAP11 antibodies are  

 

  

 

 

 

 

 

 

 

 

recommended for immunocytochemistry and immunohistochemistry studies and not for Western 

blot, suggesting that only non-denatured AKAP11 is recognized by the antibodies.  

Figure B2.10. GSK3β testis network. GSK3β-centered subnetwork for testis-related annotations extracted from 
GSK3β interactome network. All GSK3β interactors associated with testis annotations were used to build the network. 
Solid lines: testis or sperm GSK3β interactions; Dashed lines: Databased retrieved GSK3β interactions. Node size: 
according to testis expression. Node colors: represent testis related phenotypes, biological processes (BP) or cellular 
components (CC). 
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Immunocytochemistry studies (Figure B2.11 B), revealed that total LRP6 is localized to the entire 

length of the flagellum and occasionally at the post-acrosomal area. However, p1490LRP6 is 

restricted to the midpiece. Moreover, a closer analysis showed that not all sperm cells present 

immunoreactivity towards LRP6 and LRP6p1490. Only 18% and 29% of sperm cells present 

immunoreactivity for LRP6 and p1490LRP6 respectively (Figure B2.11 B). Regarding AKAP11, this 

protein is localized on the anterior portion of the head and the equatorial area of ejaculated human 

sperm (Figure B2.11 B). 
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Figure B2.11. LRP6 and AKAP11 in human testis and sperm. A. LRP6 in testis and mature human sperm. Western blot 
analysis of LRP6 in human testis and mature sperm, mouse testis and HeLa cells. For human testis, mouse testis and 
HeLa cells 30µg of protein were loaded per sample. For mature human sperm 100µg of proteins were loaded. B.
subcellular localization of LRP6, p1490LRP6 and AKAP11 in mature human sperm. Total LRP6 is located in the entire 
flagellum and occasionally in the post-acrosomal area (arrowhead). The phosphorylated form of LRP6 at serine 1490 
is restricted to the midpiece (star). AKAP11 is located to the head, specifically to the anterior and equatorial area (plus 
sign). Scale bar is 10µm. Nucleus is marked in blue. ROI: region of interest. All images were obtained with 63X 
magnification in a Imager.Z1, Axio-Cam HRm camera and AxioVision software Zeiss, Jena, Germany). 
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B2.5. Discussion 

GSK3 has been long associated with sperm motility acquisition and maintenance in mammals 

[9,10,113]. In mice sperm, GSK3 seems key for primary motility acquisition since mice testis 

lacking this protein present low-motility sperm. However, the characterization of both GSK3 

isoforms (GSK3 and GSK3) in human sperm and testis physiology has been sparse. This work 

aimed to characterize GSK3 isoforms in human sperm as well as identify and analyze GSK3 and 

GSK3 interactome in human sperm and testis. Ultimately, this can help depict new GSK3 isoform-

specific interactions essential for human sperm function. 

Similar to other mammals, both GSK3 isoforms are present in human testis and sperm (Figure B2.1) 

[7,9,10,113,114]. We believe that the observed molecular weight differences between mouse and 

human GSK3 isoforms arise from protein sequence differences (Homo sapiens and Mus musculus 

share 95% identity for GSK3 and 99% identity for GSK3). Intraspecies differences may be 

explained by differences in phosphorylation status since this kinase presents multiple 

phosphorylation sites. Besides, it appears that in human testis, GSK3 and GSK3 are mainly active 

while in human sperm part of the GSK3 population is inhibited (Figure B2.1).  

To evaluate the importance of GSK3 in motility we assessed GSK3 activity in human sperm samples 

with distinct motility levels. We showed that in ejaculated human sperm, GSK3 activity presents 

a strong negative correlation with sperm motility, but GSK3 activity does not appear to influence 

motile sperm (Figure B2.2). Moreover, the fact that 100% of the sperm analyzed presented GSK3 

in the flagellum but only around 24% presented GSK3 on the same subcellular location reinforces 

the possible GSK3 isoforms-specific role in sperm motility (Figure B2.3). Contrary to previously 

described [115], we showed that in capacitated sperm GSK3 presents a strong positive correlation 

with sperm motility, while GSK3 has no correlation with motility (Figure B2.3). These findings 

suggest that human sperm motility acquisition can be a GSK3 isoform-specific function and GSK3 

isoforms may have other functions on sperm physiology. In 2015, Koch et al suggested that besides 

sperm motility, GSK3 may be involved in sperm protein stability and subcellular 

compartmentalization [71].  

Given the reported relevance of GSK3 isoforms in sperm function, specifically GSK3 in motility, 

the GSK3 and GSK3 interactomes in testis and sperm were identified and characterized (Tables 

B2. 1-4). The fact that several GSK3 sperm and testis interactions identified in this study were 

previously described, strengthens the validity of the GSK3 testis interactome. Furthermore, the 
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known interaction between GSK3 isoforms and AXIN2 was also detected in testis. The interaction 

between Axin and GSK3 is extensively described in the literature on somatic cells (see Table 1 and 

[116–119]) and has been target for drug pharmacological approach [120]. Yet to our knowledge, 

this is the first time the interaction was described in testis. 

An enrichment analysis of GSK3 interactome revealed that GSK3 and its testis interactors are 

mainly involved in gene expression (transcription) (Supplementary Table B2.4). Testis require high 

and specialized levels of gene expression mainly due to meiosis and the high level of cell 

differentiation [121,122]. The involvement of GSK3 interactors on these processes suggests that 

GSK3 may play a role in testis gene expression. This is further supported by the fact that both LRP6 

and AXIN2 were identified as GSK3 testis interactors (Table B2.1). LRP6, AXIN2 and GSK3 are 

involved in the gene expression control by Wnt/-catenin signaling pathway [116–119]. In mouse 

testis, Wnt/-catenin signaling participates in undifferentiated spermatogonia proliferation and 

regulation [55] and in idiopathic azoospermic cases, -catenin clusters in Sertoli cells [123]. We 

further investigated the potential role of LRP6 in human fertility. Bioinformatics analysis revealed 

that when LRP6 is absent from mice testis, they became infertile due to morphological defects of 

the reproductive system (Supplementary Figure B2.6 and Supplementary Table B2.2). Expression 

studies showed that LRP6 is present in human testis and sperm and is localized along the entire 

flagellum (Figure B2.11). Furthermore, when LRP6 is phosphorylated on S1490 (in somatic cells a 

GSK3 substrate [124,125]) its subcellular location is restricted to the human sperm midpiece (Figure 

B2.11). This is in accordance to earlier studies in mice and bovine sperm [71]. In 2015, Koch et al 

explored the non-genetic effects of -catenin signaling on human sperm and suggested that the 

interaction between LRP6 and GSK3 is required for protein stabilization and consequently sperm 

motility [71]. Therefore, despite the fact that in somatic cells GSK3/LRP6 interaction is involved in 

gene expression, in human sperm this interaction can have other roles which might deserve further 

studies.  

In sperm, the fact that the GSK3 interactome was involved in protein expression processes 

(Supplementary Table B2.5) and several ribosomal proteins were identified in this study as sperm 

GSK3 and GSK3 interactors (Table B2.3 and B2.4) was surprising. Sperm is typically described as 

a transcriptionally silent cell and being unable to produce proteins due to lack of ribosomes [126]. 

Yet, several cytoplasmic and mitochondrial ribosomal proteins have been previously described in 

human sperm (head and flagellum) [127–130]. Moreover, Gur and colleagues demonstrate the 

translation of mRNA by mitochondrial-type ribosomes [127] in human sperm and inhibition of such 
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translation leads to reduced levels of several proteins and, consequently, a significantly reduction 

of sperm motility, capacitation and in vitro fertilization [127,131]. These findings further strengthen 

the idea that GSK3 is a multi-task protein involved in processes other than motility. 

With the purpose of constructing the most complete GSK3 interactome, GSK3 interactions 

annotated on PPIs databases were retrieved. Interestingly, the overlap between testis/sperm 

interactomes and databases is very small (Figure B2.6). This may be a result of the understudy of 

GSK3 and its interactors in the male reproductive system. Also, the discrepancy between the 

number of GSK3 and GSK3-described interactions in databases may rise from more intense study 

of GSK3 than of GSK3, and not from a biological difference in the number of interactors of both 

isoforms. In both testis and sperm, several proteins were identified exclusively in GSK3 or GSK3 

interactomes (Figure B2.6). This may reflect specific GSK3 isoform interactions but further protein-

protein interaction validation is necessary. The fact that both GSK3 and GSK3 networks 

(Supplementary Figure B2.4 and B2.5) presented a clustering coefficient (how nearest neighboring 

nodes of node are connected to each other) higher than 0.02 suggests a motif-like structure [132]. 

Network motifs are network patterns that appear more frequently than expected and typically 

proteins belonging to the same motif share the same function [133,134].  

To achieve functional and tissue-specific relationships, tissue-expression, phenotypes and 

annotations were integrated into the GSK3 networks (Figure B2.7-10). It may be noted that the 

knowledge of protein tissue expression is still limited and typically does not take into account tissue-

specific alternative splicing products. This is particularly relevant for testis, since testis is the tissue 

with a higher number of alternative transcripts splice variants [135] [24]. None of GSK3 interactors 

listed on databases showed a testis-specific or enriched expression. However, we identified DDI1, 

GOLGA6C (testis interactors), ACR and PRSS37 (sperm interactors) that showed a testis-enriched 

expression pattern (Supplementary Table B2.1). Besides being involved in sperm motility functions 

(Figure B2.7), our in silico analysis revealed that PRSS37 may play a role in spermatogenesis (Figure 

B2.8). PRSS37 when absent in mice testis compromises spermatogenesis, sperm oviduct-migrating 

ability, and sperm-zona binding resulting in low percentage of fertilized eggs [136]. AR, PPP1CC, and 

AKAP9 (identified exclusively in the GSK3 interactome) appear to be highly associated with testis 

functions since germ cells and other types of testicular cells are greatly affected by their absence 

(Figure B2.8). These findings are in accordance to former studies [137–139]. 

AKAP11 was identified as a testis GSK3 interactor (Table B2.1). While the interaction between 

AKAP11 and GSK3 has been previously described [49], to our knowledge this is the first description 
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of the interaction with GSK3. Opposing to earlier studies in human sperm [52], we showed that 

AKAP11 is localized in the anterior portion of the head and equatorial region (Figure B2.11). In 

somatic cells, AKAP11 has been associated with cell migration [140] and in 2002, Tanji et al showed 

that AKAP11, PPP1, PRKACA, and GSK3 formed a multimeric complex in which PPP1 and PRKACA 

controlled GSK3 activity. Since both PPP1 and PRKACA have been extensively described in 

mammalian testis [137,141], we may assume that in testis a similar multimeric complex may be 

formed to control GSK3 activity. 

TEKT5 and CMTM2 were identified as GSK3 testis interactors (Table B2.2) and categorized as 

testis-enriched (Supplementary Table B2.1). TEKT5 is present in mouse testis and expression 

patterns of this protein suggest a role in flagella formation during spermiogenesis [86]. Further, in 

mouse sperm TEKT5 is enriched in flagellar accessory structures and has been implicated in sperm 

motility [86]. The fact that TEKT5 is highly associated with sperm motility phenotypes (Figure B2.9), 

suggests that the interaction GSK3/TEKT5 may be involved in sperm motility. 

In conclusion, human sperm motility is at least partially regulated by GSK3 activity, particularly the 

GSK3 isoform. This isoform-specific function may arise from GSK3 interactors that pay central 

roles in sperm motility. In brain, RACK1 is a GSK3-specific interactor. Although no GSK3-specific 

interaction was identified in testis and sperm, we have identified GSK3 interactors, such as 

PRSS37, that are potentially involved in sperm motility. Moreover, GSK3 and its interactors appear 

to be highly associated with protein expression suggesting other possible functions for this protein 

in both testis and sperm. Finally, the interactions identified in this study could be promising 

pharmacological targets for a new male contraceptive based on disrupting sperm motility.  
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B2.7. Supplementary Material 

B2.7.1. Tables 

Supplementary Table B2.1. Testis expression levels of GSK3 interactome. Expression levels of all GSK3 interactors were 
retrieved form the human protein atlas, PaGeneBase, Expression atlas, BioGPS and UniGene were retrieved and testis 
expression values were normalized. Yellow: GSK3 testis interactors; Green: GSK3 sperm interactors; Orange: GSK3 
database interactors. 

https://www.dropbox.com/s/161dwhvy8d2ixvt/Supplementary%20Table%201%20Testis%20ex

pression%20levels%20of%20GSK3%20interactome.xlsx?dl=0  

 

Supplementary Table B2.2. Testis and sperm related phenotypes/diseases/annotations of GSK3 interactome. Testis 
and sperm related phenotypes/diseases/annotations of all GSK3 interactors were retrieved and categorized from MGI, 
OMIM, Phenopedia, DISEASES, DisGeNet and GeneOntology. Also, differently expression levels of protein in 
asthenozoospermic samples in peer reviewed papers was retrieved. Yellow: GSK3 testis interactors; Green: GSK3 sperm 
interactors; Orange: GSK3 database interactors. 

https://www.dropbox.com/s/3qzvvi12us8ihfv/Supplementary%20Table%202%20Testis%20and

%20sperm%20related%20phenotypes%3Adiseases%3Aannotations%20of%20GSK3%20interact

ome.xlsx?dl=0  

 

Supplementary Table B2.3. Correlation coefficient between % of immotile sperm and GSK3 isoform expression and 
activation in human sperm. 

Ejaculated sperm Total GSK3⍺ p21GSK3⍺ Total GSK3β pS9GSK3β 

% of immotile sperm Pearson 
Correlation 

-0.910* -0.872* 0.111 -0.458 

Sig. (2-tailed) 0.012 0.023 0.834 0.361 

N 6 6 6 6 

Capacitated sperm  Total GSK3⍺ pS21 GSK3⍺ Total GSK3β pS9 GSK3β 

% of immotile sperm Pearson 
Correlation 

0.545 0.283 0.578 0.848* 

Sig. (2-tailed) 0.263 0.587 0.230 0.033 

N 6 6 6 6 

 

Supplementary Table B2.4. Top 5 of GeneOntology enrichment of GSK3 testis interactome. The 5 most significant 
categories of biological process, molecular function and cellular component according to p-value are listed. Category, nr 
of protein and p-value is listed. Only results with p>0.005 were considered. 

Testis GSK3 interactome enrichment 

Category nr of proteins p-value 

Biological process 

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 7 6.06E-05 

mRNA metabolic process  11 1.02E-03 

nuclear-transcribed mRNA catabolic process 7 1.89E-03 

mRNA catabolic process  7 2.88E-03 

protein localization to membrane 8 5.47E-03 

Molecular function 
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Testis GSK3 interactome enrichment 

Category nr of proteins p-value 

RNA binding 14 1.57E-02 

Cellular component 

nuclear lumen 24 2.54E-04 

nuclear part 25 2.89E-04 

intracellular organelle part 36 3.18E-04 

intracellular non-membrane-bounded organelle 24 3.92E-04 

non-membrane-bounded organelle 24 3.92E-04 

   

 

Supplementary Table B2.5. Top 5 of GeneOntology enrichment of GSK3 sperm interactome. The 5 most significant 
categories of biological process, molecular function and cellular component according to p-value are listed. Category, nr 
of protein and p-value is listed. Only results with p>0.005 were considered. 

Sperm GSK3 interactome enrichment 

Category nr of proteins p-value 

Biological process 

cellular amide metabolic process 8 1.27E-04 

amide biosynthetic process 7 2.71E-04 

protein localization to endoplasmic reticulum  5 2.76E-04 

peptide metabolic process 7 5.81E-04 

peptide biosynthetic process 6 3.27E-03 

Molecular function 

structural constituent of ribosome 4 2.25E-02 

Cellular component 

cytosolic ribosome  4 2.37E-03 

ribosomal subunit 4 1.55E-02 

ribosome 4 4.27E-02 

cytosolic part  4 4.34E-02 

extracellular matrix 6 1.96E-03 

   

 

Supplementary Table B2.6. Top 5 of GeneOntology enrichment of GSK3 testis interactome. The 5 most significant 
categories of biological process, molecular function and cellular component according to p-value are listed. Category, nr 
of protein and p-value is listed. Only results with p>0.005 were considered. 

Testis GSK3 interactome enrichment 

Category nr of proteins p-value 

Biological process 

telomere maintenance via telomerase 3 4.38E-03 

telomere maintenance via telomere lengthening 3 1.17E-02 

RNA-dependent DNA biosynthetic process 3 2.67E-02 

telomerase holoenzyme complex assembly 2 4.76E-02 

Molecular function 

RNA binding  4 6.36E-04 

nitric-oxide synthase regulator activity 4 3.88E-02 

TPR domain binding  4 3.88E-02 
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Supplementary Table B2.7. Top 5 of GeneOntology enrichment of GSK3 sperm interactome. The 5 most significant 
categories of biological process, molecular function and cellular component according to p-value are listed. Category, nr 
of protein and p-value is listed. Only results with p>0.005 were considered. 

Sperm GSK3 interactome enrichment 

Category nr of proteins p-value 

Biological process 

multi-organism process 18 5.34E-07 

defense response to fungus 5 1.67E-05 

antimicrobial humoral response 6 3.62E-05 

immune response  14 8.06E-05 

response to fungus 5 9.04E-05 

Molecular function 

disordered domain specific binding 3 3.56E-02 

Celular component 

cytoplasmic vesicle lumen  9 6.86E-07 

secretory granule lumen  9 4.48E-07 

DNA packaging complex  4 5.87E-03 

nucleosome 4 4.08E-03 

nuclear nucleosome 3 2.12E-03 
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Supplementary Figure B2. 1. Expression and auto-activation of the reporter genes tests of pAS2-1-GSK3 and pAS2-

1-GSK3 in AH190 yeasts. A. Yeast protein extracts previously transformed with pAS2-1-GSK3 or pAS2-1-GSK3

were probed with an anti-GSK3 antibody (Cell Signaling ref: #9338, 1:1000) and an anti-GSK3 antibody (Cell 
Signaling ref: #9315, 1:1000). The calculated molecular weight of hybrid protein is presented. Blots were cropped B. 

Yeast transformed with pAS2-1-GSK3 or pAS2-1-GSK3 were plated in different levels of stringency mediums. 

Supplementary Figure B2.2. Solubilizing effect of different lysis buffers for GSK3 and GSK3. A. 1% SDS is very 

effective on solubilizing GSK3. For GSK3, 1XRIPA and 1XRIPA modified solubilized approximately half of the protein 

and 20mM Tris-HCl only 30%, when compared with 1%SDS. For GSK3, 1xRIPA and 1XRIPA modified solubilized 

around 70% of GSK3  and 20mM of Tris-HCl only 30%, when compared with 1% SDS. GSK3⍺ and GSK3β were detected 

using a anti-GSK3/ (Invitrogen, ref: 44-610, 1:2000). B. GSK3⍺ was immunodetected using a anti-GSK3 (Cell 

Signaling ref: #9338, 1:1000) and GSK3β was immunodetected using a anti-GSK3 (Cell Signaling ref: #9315, 1:1000). 
Experience done once. 
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Supplementary Figure B2.3. Co-Immunoprecipitation of GSK3 from normospermic human sperm sample (previous 
page). Prior to GSK3 immunodetection, APP presence was evaluated by probing with 6E10 antibody. Although the 
reason is unknown, upon incubation with the 6E10 antibody (Sigma-Aldrich, ref: A-1474), two unspecific bands appear 
on the negative control eluted with 50mM of glycine. 

Supplementary Figure B2.4. The GSK3 interactome network. GSK3α-centered protein-protein interactome 
network. All GSK3⍺ interactors (testis, sperm and databased) were used to build the network. Node size: degree 
(number of neighbors of a protein). 
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Supplementary Figure B2.5. The GSK3 interactome network (previous page). GSK3β-centered protein-protein 

interactome network. All GSK3 interactors (testis, sperm and databased) were used to build the network. Due to the 
density of the network, the name of the proteins was not possible to present Node size: degree (number of neighbors 
of a protein). 

Supplementary Figure B2.6. The GSK3 general male infertility network. GSK3-centered subnetwork for male 

infertility annotations extracted from GSK3 interactome network. GSK3 interactors associated with male infertility 

annotations were used to build the network. Solid lines: testis or sperm GSK3 interactions; Dashed lines: Databased 

retrieved GSK3 interactions. Node size: according to testis expression. Node colors: represent male infertility related 
phenotypes, biological processes (BP). 
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Supplementary Figure B2.7. The GSK3 general male infertility network (previous page). GSK3-centered 

subnetwork for male infertility annotations extracted from GSK3 interactome network. GSK3 interactors associated 

with male infertility annotations were used to build the network. Solid lines: testis or sperm GSK3 interactions; 

Dashed lines: Databased retrieved GSK3 interactions. Node size: according to testis expression. Node colors: 
represent male infertility related phenotypes, biological processes (BP) 





 

 

 

 

 

 

 

 

 

 

 

 

C. General Discussion  

 





C1. Main conclusions and future perspectives 

C1. Main conclusions and future perspectives 

The signaling events that culminate in sperm motility acquisition and maintenance have been 

studied for decades [1]. Yet, many questions are still unanswered. The main goal of this thesis was 

to deepen the knowledge on the signaling events involved in human sperm motility by focusing on 

the characterization and modulation of the signaling pathway GSK3/PPP1R2/PPP1 in human sperm. 

Ultimately, the data generated by this work can be further applied to the development of a new 

group of reversible male contraceptives based sperm motility modulation. 

To achieve this goal, we first developed a molecular biology tool that is capable of specifically 

interfere with protein-protein interactions (PPIs) in mammalian sperm (Section B1.). Although this 

approach has been previously applied in another cell type [2], in mammalian sperm this work is one 

of the first reports [3] . We chose to target phosphoprotein phosphatase 1 catalytic subunit gamma 

2 (PPP1CC2) interactions in human sperm, since former work showed that the PPP1CC2 activity is 

associated with sperm motility control [4,5] and inhibition of PPP1 activity in sperm throughout the 

epididymis transit is partially responsible for highly motile sperm. Our previous work showed that 

PPP1 regulatory subunit 2 (PPP1R2), a PPP1 inhibitor, is involved in regulating PPP1CC2 activity in 

human sperm [6]. Therefore, blocking motility-related PPP1CC2 interactions, such as 

PPP1CC2/PPP1R2, will prevent motility acquisition. In order to disrupt PPP1CC2/PPP1R2 

interaction, we undertook a PPIs disruption peptide approach based on the PPP1CC2/PPP1R2 

interaction interface. With increased affinity towards PPP1CC/PPP1R2 interactions, the disruptive 

peptide competes and displaces PPP1RR2 from PPP1CC2, rendering active PPP1CC2 and 

consequently immotile mammalian sperm. To insure sperm intracellular delivery, the peptide was 

coupled with a cell penetrating peptide (CPP) originating a bioportide. We designed, synthetized 

and evaluated the effect of the disruptive PPP1CC2/PPP1R2 peptide on sperm motility. We 

successfully modulated PPP1CC2/PPP1R2 complex and restored PPP1CC2 activity, in vitro. When 

applied to mammalian sperm, the disruptive peptide was delivered to sperm cells and reduced 

sperm motility without affecting sperm viability. These results demonstrated that it is possible to 

target protein-protein interactions and modulate sperm complexes involved in motility using 

rationally-designed bioportides. We also demonstrated that the development of new type of male 

contraceptive based on inhibiting sperm motility is now achievable.  

The disruptive peptide approach reported in this work can be applied in other key processes for 

reproduction. Although sperm motility acquisition is an ideal target for male contraceptive since it 

is a post-spermatogenesis process and hormone independent, using protein-protein interactions 
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disruptive peptides to interfere with sperm acrosome reaction and/or sperm-oocyte interaction 

can also be explored to prevent oocyte fertilization. Inhibiting sperm motility can be useful not only 

as a reversible male contraceptive, but also as preservative technique in assisted reproductive 

techniques. Sperm motility maintenance requires a high-energy turnover. Consequently, sperm 

energy resources are consumed and high levels of reactive oxidative species are produced [7]. 

Blocking sperm motility, reversibly, can help preserve the quality of sperm samples prior to, for 

example sperm sample storage. 

Although the PPP1CC2/PPP1R2 interaction is involved in sperm motility acquisition, the fact that is 

not restricted to sperm, particularly due to a ubiquitous expression of PPP1R2, is an obstacle to 

achieve sperm-specific phenotypes. To overcome this problem, we aimed to identify testis/sperm-

specific interactors of glycogen synthase kinase 3 (GSK3), a modulator of PPP1R2/PPP1 interaction 

in human somatic and sperm cells and a key protein in sperm motility acquisition. In sperm, PPP1R2 

phosphorylation by GSK3 results in detachment of PPP1R2 from PPP1, rendering the latter active 

[8]. With the goal of unravel key GSK3 interactions for sperm motility, in section B2 we identified 

and characterized the GSK3 testis and sperm interactome. First, we showed that human sperm 

motility appears to be correlated specifically with GSK3 expression and activity. Then, we 

constructed a GSK3-centered motility network that revealed 26 direct interactors involved in 

sperm motility annotations, and from those one highly expressed in testis/sperm, the PRSS37 

(probable inactive serine protease 37). Besides being related with sperm motility, PRSS37 has been 

associated to a successful acrosome reaction [9]. Developing a male contraceptive by targeting 

GSK3/PRSS37 interaction would culminate in both sperm motility and acrosome reaction 

disruption. An in depth PRSS37 characterization in human sperm is necessary to confirm if 

GSK3/PRSS37 interaction is a viable pharmacological target. Given the reported relevance of GSK3 

PPIs in sperm motility, we hypothesized that interfering with such interactions may affect motility 

acquisition and represent a suitable target for male contraceptive strategy. A similar strategy is 

currently being pursued for PPP1CC2 sperm motility related interactions [10] In figure C1.1 is an 

overview of the aims, results accomplished in this work as well as future perspectives. 
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We demonstrated that disruptive bioportides based on sperm protein-protein interactions can 

modulate sperm motility. Molecular modelling and dynamic studies will be used to determine the 

interaction interfaces between bioportides and their target in order to identify and refine 

Figure C1.1. Overview of the aims, results accomplished in this work and future perspectives. Orange circle: GSK3 
testis/sperm specific interactor; HP, homing peptide. 
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bioportides with higher stability, affinity, specificity, activity and uptake to human sperm. A multi 

interface targeting approach will be considered to achieve a more efficient result. The most 

promising bioportides will be further selected for synthesis and in vitro and in vivo studies in 

normospermic human sperm samples. Future efforts will focus on delivering bioportides exclusively 

to fully mature sperm cells using a specific tissue/cells targeting system. Please note that targeting 

fully mature sperm requires transposing the blood epididymal barrier. A homing peptides strategy 

can be used to exclusively deliver bioportides to the epididymal epithelium and sperm cells.  

The association between GSK3 activity and sperm motility has been described extensively [5]. Yet, 

we reported for the first time an isoform-specific association between GSK3 and sperm motility 

in human samples. A population profile concerning GSK3 activity in heterogeneous sperm samples 

will allow to further validate the correlation between GSK3 and human sperm motility and 

indisputably confirm GSK3 as suitable target for sperm motility modulation. Fully characterization 

of GSK3 isoforms in human sperm is required. Approaches such as inhibitory compounds and 

subcellular localization in morphological and motility distinct sperm samples must be undertaken. 

Although no testis/sperm-specific protein-protein complex involved exclusively in sperm motility 

was identified, the knowledge acquired in this work represents the starting point to identify 

potential male contraceptive targets. We believe that GSK3 motility function relies on unique 

interactors of this isoform in human sperm. Future work will center on identification of exclusively 

GSK3 interactors by a proteomic and in silico approach. Characterization of GSK3 and GSK3 

human sperm interactome in normospermic and asthenozoospermic samples will allow to pin-point 

GSK3 interactions key for sperm motility. Additionally, integrating the data in publicly available 

databases and literature concerning testis/sperm-specific and motility-related proteins will allow 

to construct a sperm motility protein-protein network and, consequently, identify interactions 

optimal for pharmacological intervention. 
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