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resumo Ao longo de vários séculos, a distribuição geográfica do urso 

pardo na Península Ibérica tem vindo a diminuir, estando de 

momento limitada ao norte de Espanha. A população de urso 

pardo da Cantábria é uma das mais pequenas da Europa e está 

dividida em duas subpopulações (Ocidental e Oriental), com 

conectividade limitada entre ambas. Para além disso, a 

perseguição, por parte das populações humanas, apresenta 

sérias ameaças à sobrevivência da população de urso pardo na 

Cantábria. Tendo em consideração a situação atual da 

população Cantábrica, é essencial ter uma imagem muito clara 

dos padrões genéticos da população. Foram usados três tipos 

de marcadores genéticos (ADN mitocondrial, microssatélites 

nucleares autossómicos e marcadores sexuais) para inferir a 

origem, estrutura e diversidade genética e fluxo genético da 

população. Os resultados aqui apresentados sugerem que a 

população Cantábrica está dividida em duas linhagens 

matrilineares distintas e que não é monofilética relativamente a 

outras populações europeias. Esta diferenciação, num eixo 

oriental-ocidental, poderá estar relacionada com eventos de 

colonização da cordilheira Cantábrica anteriores e 

contemporâneos ao último máximo glaciar. A população está 

estruturada em duas subpopulações com grande diferenciação 

genética entre as duas. Os resultados mostram fortes evidências 

de migração de ursos entre as duas subpopulações. 

Nomeadamente, encontramos evidências da existência de fluxo 

genético assimétrico e de maior fluxo recente de migrantes da 

subpopulação Oriental para a Ocidental. Contudo, os resultados 

sugerem uma maior introgressão recente em sentido contrário. 

Este estudo ajuda a clarificar as origens da população e fornece 

novo conhecimento sobre a condição genética e os padrões de 

migração e fluxo genético da população de urso pardo. Os 

resultados aqui apresentados irão ajudar na definição e 

implementação de novas estratégias de conservação relevantes 

para a subsistência de uma população de urso pardo viável na 

Cordilheira Cantábrica.                
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abstract Over the centuries, the brown bear geographical distribution in the Iberian 

Peninsula has been decreasing, being currently limited to the North of 

Spain. The Cantabrian brown bear population is one of the smallest 

populations in Europe as is fragmented in two subpopulations (Western 

and Eastern), with limited connection between them. Additionally, human 

persecution represents serious threats to the survival of brown bear in 

Cantabria. Considering the current status of the Cantabrian population, it 

is essential to have a clear picture of the genetic patterns of the 

population. We used three molecular markers (mitochondrial DNA, 

autossomal and sex linked microsatellites) to assess the genetic origins, 

structure, diversity and gene flow of the Cantabrian brown bear 

population. Our results suggest that the Cantabrian population is divided 

in two distinct matrilineal lineages and is not monophyletic relative to 

other European populations. This differentiation, in an east-west axis 

might be related with colonization events of the Cantabrian mountains 

prior and contemporary to the last glacial maximum. The population is 

structured in two subpopulations with great genetic differentiation 

between them. The results also show strong evidences of migration 

between both subpopulations. Namely, we found evidence of 

asymmetrical gene flow and greater migrant flow from the Eastern to the 

Western subpopulation. However, results also suggest greater genetic 

admixture in the opposite way. This study reveals the origins and 

provides new insights on the genetic condition and migration patterns of 

the brown bear population. The results here presented will help in the 

definition of conservation strategies relevant for the maintenance of a 

viable brown bear population in the Cantabrian mountains.          
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Chapter 1. GENERAL INTRODUCTION 

 

The decrease of wildlife over the last decades is astonishing, with the loss 

of 58% of animal populations since the 1970’s (WWF 2016). Anthropogenic 

causes such as habitat fragmentation for farming and logging, as well as 

poaching activities are among the main causes of the loss of wild populations.   

Large carnivores are one of the most challenging group of species to 

preserve. During the human history, there has always been a significant hostility 

towards large carnivore species, which resulted in direct persecution and hunting, 

leading to a decrease in abundance and distribution of these populations. 

Additionally, large carnivores typically occur at low densities, have large vital 

areas and a great dispersal capability (Chapron et al. 2003). Therefore, it is 

crucial to improve the knowledge on these species to ensure that management 

and conservation strategies can be more effectively applied.  

 

1.1 Ursus arctos. Ecology and Global Distribution 

 

The brown bear (Ursus arctos Linnaeus, 1758) is a large carnivore included 

in the Ursidae family, which is composed by a total of eight species, divided in 

three subfamilies (Talbot and Shields 1996; Nyakatura and Bininda-Emonds 

2012). Morphologically, the brown bear is characterized by its large head with 

prominent nose, small eyes, small rounded ears and short tail (Fig.1). Its body 

size depends greatly on habitat conditions and food availability, and it can range 

between 80kg and 600kg. The bigger specimens are found in coastal Alaska, 

where spawning salmon is abundant. The species exhibits sexual dimorphism, 

with adult males being considerably larger and heavier than adult females 

(Pasitschniak-Arts 1993; Swenson et al. 2000; Swenson et al. 2007). 
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The brown bear is characterized as a generalist omnivorous, and its diet 

includes herbaceous plants, berries, fruits and nuts, carrion, small mammals, fish, 

insects and, sporadically, brown bears can prey on livestock (Pasitschniak-Arts 

1993; Paralikidis et al. 2010; Ambarll 2016). 

During the year, brown bears go through distinct physiological stages: 

hypophagia (low food intake) during spring, normal activity during summer, 

hyperphagia (high food intake) during the autumn and hibernation during colder 

months (Swenson et al. 2000). 

The brown bear has a life span of 20 to 25 years in the wild and is a 

polygamous species, since both males and females have multiple partners during 

the mating season (Steyaert et al. 2013). Sexual maturation of individuals is late, 

with females becoming sexually mature at approximately 3 years old and males 

at 5.5 years old. Females have a reproductive cycle of 2 to 4 years and don’t 

reproduce during all weaning period and until their cubs are completely 

independent (Pasitschniak-Arts 1993). Brown bears are non-territorial and 

solitary animals, meaning that social interactions between different individuals 

only occur during breeding season (Swenson et al. 2000). Chromosome number 

for this species is 2n=74 (Pasitschniak-Arts 1993). 

The brown bear occupies the greatest diversity of habitats among all the bear 

species, reflecting its adaptive nature. It can be found in arctic tundra, boreal 

forests, mountains, coastal and desert habitats (Pasitschniak-Arts 1993; 

Servheen et al. 1999; Swenson et al. 2000). Historically, the brown bear was 

distributed across North America (including northern Mexico), Europe, North 

Africa, Middle East and Asia (McLellan et al. 2016). Currently, the species is 

 Figure 1. Photography of a male brown bear (© FAPAS, 2015). 
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widely distributed across the northern hemisphere, from North America to 

Northeast Asia (Fig.2). Globally, the brown bear population is large 

(approximately 200.000 individuals), stable and may be increasing in certain 

areas.  

 

The brown bear is therefore listed as “Least Concern” by the IUCN Red List 

(McLellan et al. 2016). However, the species is not equally distributed across its 

range, with larger and more stable populations in its northern range and smaller 

fragmented populations in its southern range (Proctor et al. 2005; McLellan et al. 

2016). This discrepancy in the distribution of its populations justified the need for 

IUCN to classify each brown bear population individually. Hence, some 

populations are classified as Least Concern, like the Kodiak Island population, 

while others are classified as Endangered or even Critically Endangered, as in 

the case of the Cantabrian and Alpine populations, respectively (McLellan et al. 

2016).     

 

 

 

 

 

 

 Figure 2. Current global distribution of Ursus arctos. Adapted from Mclellan et al. 2016 
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1.2 Use of genetic markers in population studies  

 

The arise of molecular tools contributed in a very significant way to the study 

of wildlife populations. Several questions concerning the evolution, ecology, 

conservation or management of a species can be addressed using genetic 

markers. One of the advantages in using genetic markers is that they provide 

better data for statistical analysis, as they can be quantified with much precision 

than other types of ecological measurements (Servheen et al. 1999; Beebee and 

Rowe 2008).  The use of molecular markers can provide insight at: (i) the 

individual level, including sex determination, relatedness among individuals, 

probability of assignment to given populations, or even insights on the hybrid or 

migrant status of an individual; (ii) at population level, with the study of the 

demographic history, level of structure, diversity or inbreeding of a population; (iii) 

and at interspecific and community level, with the comparative analysis of 

phylogeographic patterns among different species (Miller and Waits 2003; 

DeYoung and Honeycutt 2005; Beebee and Rowe 2008).  

The selection of a molecular marker is dependent of several factors. These 

include the molecular marker suitability to the research question being asked, 

availability as well as financial or logistic constraints. Genetic markers can be 

classified according to their genome location, inheritance and mutation rate 

(DeYoung and Honeycutt 2005). There are different DNA elements used as 

genetic markers, such as mitochondrial DNA (mtDNA) genes, nuclear 

microsatellites or single-nucleotide polymorphisms (SNP’s) and even loci 

associated with the major histocompatibility complex (MHC) (DeYoung and 

Honeycutt 2005; Beebee and Rowe 2008). MtDNA is an extra-nuclear part of the 

genome and is composed by a noncoding control region, 13 protein-encoding 

genes, 22 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. In 

mammals, mtDNA is maternally inherited, has a high mutation rate, when 

compared to nuclear genes, and is non-recombinant, making it a suitable genetic 

marker for evolutionary biology, conservation genetics and phylogeographic 

studies (Beebee and Rowe 2008; Montooth and Rand 2008; Hindrikson et al. 

2016). In the case of studies concerning population genetics of brown bear, 
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mtDNA has been useful in studies of intraspecific phylogeography (e.g. Taberlet 

and Bouvet 1994; Waits et al. 1998; Salomashkina et al. 2014) and also on the 

assessment of the evolutionary processes driven by female lineages (Keis et al. 

2013).  

Microsatellites are autosomal and biparentally inherited markers, widely 

distributed in the nuclear genome of most eukaryotes and consisting in nucleotide 

short tandem repeats of 1 to 6 base pairs (Beebee and Rowe 2008; Guichoux et 

al. 2011). Microsatellites are abundant and have a high mutation rate (10-2 to 10-

5 per generation) which generally results in high levels of polymorphism and high 

allelic richness (Jarne and Lagoda 1996). Therefore, they are a useful molecular 

marker to assess population genetics parameters, including genetic structure, 

inbreeding, gene flow, evidences of bottlenecks, genetic relatedness and genetic 

drift (DeYoung and Honeycutt 2005; Pérez et al. 2010; Xenikoudakis et al. 2015; 

Gonzalez et al. 2016). One of the limitations in the use of microsatellites are the 

strong methodological constraints to compare data between studies due to 

inconsistencies in allele size length of the different studies (Hindrikson et al. 2016; 

Torres et al. 2017).  

Single nucleotide polymorphisms (SNP’s) are a relatively new class of 

molecular markers and have been recently more common in population genetics 

studies. SNP’s are the most frequent type of variation in the genome and 

represent a substitution in a single nucleotide (A, T, C or G) (Brumfield et al. 2003; 

DeYoung and Honeycutt 2005). They have a relatively low mutation rate (10-8 - 

10-9) and have simpler mutation patterns when compared to microsatellites 

(Hindrikson et al. 2016). Additionally, SNP’s could have a larger statistical power 

since they allow the simultaneous typing of thousands of loci. An advantage in 

the use of SNP’s is that, depending on the screening method, the data generated 

by single nucleotide polymorphisms are universally comparable. Although the 

use of SNP’s can be very useful in genome-wide association studies, they are 

not necessarily more powerful in population genetics studies. When addressing 

questions related to genetic structure or linkage disequilibrium, microsatellites 

have more informative power than SNP’s. For instance, in genetic structure 

studies, 12 SNP’s have the same informative power as four microsatellites, and 

only five microsatellites are needed to obtain the same genetic information as 20 

SNP’s, in linkage disequilibrium studies (Guichoux et al. 2011).   
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 Genetic diversity can also be assessed by studying variations in the loci 

encoding proteins for the major histocompatibility complex (MHC). MHC consists 

of class I and class II genes related with immune response, having an important 

role in pathogen resistance and kin recognition (DeYoung and Honeycutt 2005; 

Sommer 2005). MHC diversity is believed to be maintained by pathogen-driven 

selection and can reflect evolutionary and adaptive processes that would be 

impossible to address using non-coding genetic markers (Sommer 2005; 

Hindrikson et al. 2016). MHC markers can be informative in studies of populations 

that could have suffered demographic bottlenecks or in phylogenetic studies 

(Wan et al. 2006; Kuduk et al. 2012) 

Considering all the potential and applications of genetic markers, a great 

variety of research questions can be addressed, however, it is essential to 

consider the most suitable and effective marker for each research question.     

                                                        

1.3 Brown bear in the Iberian Peninsula 

                                              

The brown bear population in the Iberian Peninsula is currently limited to 

the North of Spain (Fig.3). Over the centuries, the Iberian brown bear 

geographical distribution has been decreasing (Clevenger et al. 1999; García-

Vázquez et al. 2015). Before the 17th century, the Cantabrian and Pyrenean 

brown bear ranges were connected, but suffered a separation between the 17th 

and 18th century, ceasing connectivity between the populations and further 

isolating both (Nores and Naves 1993). The Pyrenean population suffered a big 

decline in the 20th century mainly because of hunting, and was estimated to be of 

only 5 individuals in late 1990’s (Taberlet et al. 1997; Arquilliere 1998). Aiming to 

protect and help the recovery of the Pyrenean brown bear population, a 

translocation plan was put into action. To guarantee its success, it would have 

been important to identify the brown bear population that was ecologically, 

genetically and ethologically closer to the Pyrenean population. However, the 

translocation action consisted in the release of three bears (two females and one 

male) from a Slovenian population, in the Pyrenees (Arquilliere 1998; Quenette 

et al. 2001; Clark et al. 2002).  
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The Cantabrian brown bear population is currently classified as Endangered 

by the IUCN Red List (McLellan et al. 2016). This is mainly justified by its isolation 

from other European brown bear populations, low population size and 

fragmented nature (Fig.3). 

Brown bears in the Cantabrian mountains are smaller when compared with 

other European or Alaskan conspecifics (Swenson et al. 2007; Purroy 2017). 

Males and females weight on average 115kg and 85kg, respectively, which can 

be explained by the habitat conditions that can be found in the Cantabrian range, 

where shrublands and dense deciduous forest covers are predominant 

(Clevenger et al. 1992; Clevenger et al. 1997; Purroy 2017). The smaller size of 

the Cantabrian bears could also be related with them inhabiting a region with 

ancient and strong human presence (and direct bear persecution) such as the 

Iberian Peninsula (Roberto Hartasánchez, personal communication). In fact, 

Cantabrian bears are also shyer and less aggressive, which also may be due to 

a long history of human persecution and hunting (Wiegand et al. 1998; Swenson 

et al. 2000).  

The Cantabrian population is divided in two subpopulations (Western and 

Eastern), separated by 50km of mountainous terrain and with limited inter-

population connection (Mateo-Sánchez et al. 2014). Recent studies estimate 

 Figure 3. Historical (red) and current (yellow) distribution of brown bear in the Iberian 
Peninsula. Adapted from Mclellan et al. 2016 
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approximately 200 individuals in the western population and 19 individuals in the 

eastern population (Pérez et al. 2014). The lower number on the Eastern 

subpopulation could be explained by the fact that the habitat where the Eastern 

subpopulation resides is more fragmented and less suitable for brown bears 

when compared with the Western habitat conditions (Mateo-Sánchez et al. 2014). 

Over the last years, several studies using genetic tools have been 

conducted focusing on the brown bear population in Cantabria. Their general aim 

was to assess genetic patterns, condition and population trends of the population 

(Pérez et al. 2009; Pérez et al. 2010; Ballesteros et al. 2014; Pérez et al. 2014; 

Gonzalez et al. 2016). According to these published studies, the genetic condition 

of the Cantabrian Brown bear population seems to be improving. The two 

subpopulations are thought to have been previously genetically isolated, without 

gene flow between them (Pérez et al. 2009). However, the connection between 

the subpopulations would have been recently established, with reported 

migration of males from the Western to the Eastern population (Pérez et al. 2010; 

Gonzalez et al. 2016). There is also evidence of gene flow between both 

subpopulations since genetically admixed individuals on both subpopulations 

have been identified (Pérez et al. 2010; Ballesteros et al. 2014; Gonzalez et al. 

2016).        

The Cantabrian brown bear population faces several threats to its viability 

and survival. Human persecution, hunting and unintentional killing (with poison 

aimed at Iberian wolfs, Canis lupus signatus, or snares aimed at wild boar, Sus 

scrofa) are major factors potentially affecting these populations. Additionally, the 

construction of roads and highways crossing brown bear’s range can further 

isolate the two subpopulations (Zedrosser et al. 2001; Purroy 2017). The 

fragmented nature of these populations overexposes them to reduced gene flow, 

promoting genetic isolation. Moreover, the Cantabrian mountain range itself 

exerts a barrier effect towards population connectivity and gene flow (Swenson 

et al. 2000; Pérez et al. 2014).  
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General Objectives of this Thesis 

The main goal of this study is to provide new insights to help inform the 

management and conservation strategies for Cantabrian brown bear population. 

Our approach is based on the analysis of molecular data and will allow us to 

assess the genetic structure, genetic diversity and gene flow in the Cantabrian 

brown bear population. In order to accomplish our main goal, we identified four 

specific objectives, further detailed in chapter 2:   

(1) Identify the origins of the Cantabrian brown bear population and its 

affinities with other European populations;  

(2) Confirm the existence of population structure and different 

subpopulations (in the sense of reproductive units) within the Cantabrian 

brown bear; 

(3) Reassess the level of genetic health of the Cantabrian brown bear 

population, namely, its genetic diversity, endogamy, genetic structure 

and effective population size; 

(4) Reevaluate the degree of connectivity between the western and eastern 

populations. 

 The results of this study will provide new information on the genetic health 

of this population and will further contribute to the effective management and 

conservation of the brown bear in Cantabria.    
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Chapter 2. New Insights on the origins and genetic condition of 

the Endangered Cantabrian brown bear population 

 

2.1 Introduction 

 

The global population of brown bear (Ursus arctos) is widely distributed 

across the northern hemisphere, with stable numbers and with an increasing 

trend in terms of population growth (McLellan et al. 2016). However, the southern 

range of the brown bear is mainly composed by small and fragmented 

populations that are locally endangered, which is the case of the brown bear 

population in Cantabria. The Cantabrian brown bear population is one of the 

smallest populations in Europe, with approximately 220 individuals (Pérez et al. 

2014). This population is fragmented in two subpopulations (Western and 

Eastern) that are separated by a 50km mountain range (Zedrosser et al. 2001; 

Pérez et al. 2010). Human persecution and poaching represent serious threats 

to the brown bear population of Cantabria, especially in the Eastern 

subpopulation (Purroy 2017). Moreover, connectivity between both 

subpopulations is limited and the construction of roads and highways across 

brown bears’ range can further isolate both subpopulations and, consequently, 

reduce connectivity and gene flow (Swenson et al. 2000; Pérez et al. 2014; 

Mateo-Sanchez et al. 2015). Considering the current status of the Cantabrian 

brown bear population, it is important to have a clear picture of the current genetic 

patterns of the population in order to infer about conservation needs and 

management strategies. To assess the genetic structure and diversity of the 

Cantabrian brown bear, we divided the present study in four main goals. 

 First, we considered it is pivotal to shed light on the origins and 

phylogeographic affinities of the Cantabrian brow bear. During the Last Glacial 

Maximum (LGM), the Iberian Peninsula was one of the three main Mediterranean 

glacial refuge areas that constituted the source for the postglacial recolonization 

of central and western Europe (Randi 2007). Several studies concerning the 

phylogeography of brown bear in Europe reported the existence of two main 

mitochondrial DNA lineages (namely Western and Eastern) (Randi et al. 1994; 
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Taberlet and Bouvet 1994; Kohn et al. 1995; Saarma et al. 2007). However, the 

details of the relations within the putative Cantabrian subpopulations and among 

these and other Iberian and European populations were not clarified.  

Our second goal is to assess the genetic structure and diversity within the 

Cantabrian brown bear population. Assessing the genetic structure is a pivotal 

task, since it enables identification of discrete units within a population, that may 

be important for the demographic stability and genetic diversity of the population 

(Manel et al. 2005). Revealing the population structure will help to understand the 

population dynamics and it will constitute a solid first step to answer other 

questions such as the detection of migrants or gene flow patterns in a structured 

population (Waits et al. 2000; Kopatz et al. 2012; Xenikoudakis et al. 2015). 

Considering the existence of two subpopulations separated by a mountain range 

in the Cantabrian mountains, we expect to distinguish two population units 

(regardless the existence of phylogeographic differences within the Cantabrian 

population), corresponding to the Western and Eastern subpopulations (Pérez et 

al. 2009; Mateo-Sánchez et al. 2014; Gonzalez et al. 2016).      

The third goal is to assess the genetic health of the brown bear population 

in Cantabria. Estimating effective population sizes (Ne), level of endogamy or 

detecting the occurrence of bottlenecks are important parameters when 

assessing the genetic health of a population since they influence the genetic 

diversity of the population. High genetic diversity is normally associated with 

higher population numbers while small populations are expected to show low 

genetic diversity (Swenson et al. 2011). The occurrence of a bottleneck can lead 

to significant declines in population size, making the population susceptible to 

genetic drift, inbreeding and, ultimately to low genetic diversity of the population 

(DeYoung and Honeycutt 2005; Beebee and Rowe 2008). 

Finally, the fourth goal of our study is to determine at which degree the 

subpopulations of brown bear in the Cantabrian range are connected. 

Connectivity between populations and occurrence of gene flow contributes to 

prevent inbreeding and it ensures the maintenance of genetic diversity within a 

population (Waits et al. 2000; Kopatz et al. 2012; Xenikoudakis et al. 2015). The 

brown bear population in the Cantabrian range is supposed to be divided in two 

isolated subpopulations, with no connectivity between them (Pérez et al. 2009). 

Yet, it seems this scenario is changing and connectivity between both 
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subpopulations is being restored. Recent studies have reported the migration of 

individuals mainly from the Western to the Eastern subpopulation and evidences 

of gene flow were detected due to the presence of admixture individuals in the 

Eastern subpopulation (Pérez et al. 2010; Gonzalez et al. 2016). Therefore, we 

expect to find evidences of connectivity between both subpopulations as well as 

presence of gene flow.    

We trust that the outcomes of this study will provide a broader picture of the 

genetic condition and health of the brown bear population in Cantabria. These 

results will aid on the implementation of management and conservation strategies 

that can guarantee the viability and survival of the Cantabrian brown bear 

population.  

 

 

2.2 Materials and Methods  

 

2.2.1 Study area. The Cantabrian mountains 

The Cantabrian mountains are located along the Atlantic coast of 

northwestern Spain. The mountain range runs east to west between 4º-7º 

longitude west and 42º-43º latitude north, comprising the provinces of Asturias, 

Cantabria, León, Lugo and Palencia. It has a high geological and 

geomorphological heterogeneity and a complex topography, with altitudes 

ranging from sea level to 2647m (García et al. 2005; Mateo Sánchez et al. 2013). 

The proximity of the mountain range to the Atlantic Ocean results in abundant 

precipitation and humidity in the northern slope. The northern slope is mostly 

occupied by the Western brown bear subpopulation and is characterized by 

narrow and step valleys. Conversely, the southern slope of the Cantabrian 

mountains is occupied by the Eastern subpopulation and is characterized by 

wider valleys, with precipitation occurring mainly during winter. Giving its 

characteristics, the mountain range represents a transition zone between the 

Eurosiberian and Mediterranean phytogeographic regions (Moreno et al. 1990; 

Palomero et al. 1997). Forest coverage represents about 25% of the total area 

and is mainly characterized by beech (Fagus sylvatica), oaks (Quercus 

pyrenaica, Quercus petraea, Quercus ilex), birch (Betula alba), holly (Ilex 
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aquifolium), chestnut (Castanea sativa) and hazel (Corylus avellana) (García et 

al. 2005; García et al. 2007).   At high altitudes (above 1700m), climatic conditions 

condition forest growth and the landscape is thus characterized by shrubland 

(Juniperus communis, Vaccinium uliginosum, Vaccinium myrtillus, 

Arctostaphylos uva-ursi) (García et al. 2005; García et al. 2007). Although the 

human population density in the Cantabrian mountains is low, human activities 

resulted in conversion of former forest cover into pasture lands and agricultural 

lands, which resulted in high fragmented forested areas (García et al. 2005). 

Brown bears prefer forest habitats for cover and protection, which means that 

forest fragmentation leads to fewer suitable areas for brown bears and increased 

vulnerability of bears when traveling between the patchy forested areas.   

 

         2.2.2 Sample collection and DNA Extraction 

 A total of 98 samples (4 tissue and 94 hair samples) were collected in the 

Cantabrian mountain range, Spain. Samples were collected by experienced field 

technicians of the Spanish NGO Fondo para la Proteccion de los Animales 

Salvages (FAPAS), between the years 2010 and 2016. Hair samples were 

obtained using hair-traps monitored by camera-traps. Tissue samples were 

stored in ethanol 70% and hair samples were dried and preserved in paper 

envelopes at room temperature and in a dry environment until further analysis. 

DNA extraction was conducted using Qiagen® DNeasy Blood and Tissue Kit, 

following manufacturer’s recommendations (protocol reference: DY04).  

 

2.2.3 Mitochondrial DNA amplification and Sequencing  

A 269bp fragment of mtDNA control region was selected and amplified 

using the reverse (5'CTCCACTATCAGCACCCAAAG-3') and forward 

(5'GGAGCGAGAAGAGGTACACGT-3') primers developed by Taberlet and 

Bouvet (1994). Amplification through polymerase chain reaction (PCR) was 

performed using Invitrogen® Taq DNA Polymerase kit, following the 

manufacturer’s conditions. Reaction mixtures were initially denatured at 94ºC for 

3min, followed by 45 amplification cycles (94ºC for 60s, annealing for 60s at 50ºC 

and extension for 90s at 72ºC) and a final extension step at 72ºC for 10min. PCR 
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products were visualized on 2% agarose gel and enzymatically purified with EXO-

SapIT®. Purified samples were sequenced using a ABIPRISM® 3730-XL DNA 

Analyser from Applied Biosystems™. Sequences were aligned using MEGA 

version 7.0 (Kumar et al. 2015) with the CLULTALW algorithm (Thompson et al. 

1994) and were manually edited posteriorly. 

 

       2.2.4 Microsatellite Amplification and Genotyping  

A total of 16 autossomal and two sex linked microsatellite markers. Markers 

were arranged in four loci multiplexes with five (MU50, MU23, MU59, G10L, 

SRY), six (G10P, G10J, G1A, MU61, MU51, AMLX/Y), three (G10X, G1D, MU05) 

and four (G10C, MU64, MU09, MU10) loci used in previous studies (Paetkau and 

Strobeck 1994; Paetkau et al. 1995; Taberlet et al. 1997; Bellemain and Taberlet 

2004; Pagès et al. 2009). DNA amplifications were performed using the 

QIAGEN® Multiplex amplification kit, following manufacturer’s conditions. PCR 

amplifications consisted of denaturing at 95ºC for 10min followed by 38 

amplification cycles (94ºC for 30s, annealing for 45s at 57ºC and extension for 

90s at 72ºC) with a final extension step of 10 minutes at 72ºC. PCR products 

were visualized on 2% agarose gel and fragment analysis was performed using 

an ABIPRISM® 3730-XL DNA Analyser from Applied Biosystems™. Aiming to 

reduce the chance of mistype, each sample was independently amplified and 

genotyped a minimum of three times for each loci. Locus Mu64 (Taberlet et al. 

1997) was excluded from analysis due to poor quality of the amplified products. 

Microsatellite genotyping was performed using Genemarker™ v2.4.1 (Holland 

and Parson 2011). Electrophoretograms were analysed using this software. 

However, allele calling was performed manually and carefully inspected. The 

identification of individual profiles was assessed only when at least 12 

microsatellite markers were successfully amplified.  
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2.2.5 Data analyses  

 In order to simplify the understanding of the methodology and data 

analysis, we decided to divide the data analyses workflow in four different steps, 

each corresponding to each study aim. 

 

Phylogeographic affinities  

To contextualize the phylogeny and phylogeographic affinities of the 

Cantabrian brown bear population within the European population, 81 mtDNA 

control region haplotypes from different geographical regions were retrieved from 

GenBank (Taberlet and Bouvet 1994; Korsten et al. 2009; Kocijan et al. 2011; 

Salomashkina et al. 2014; Ashrafzadeh et al. 2016; Çilingir et al. 2016; see details 

in Appendix I) and combined with two haplotypes obtained in this study. Three 

additional sequences from Asia and North America were also retrieved from 

GenBank and used as outgroup for Bayesian inference. For each retrieved 

haplotype, the correspondent number of individuals per haplotype was obtained 

from the original publication. The defined geographical regions were: Iberia, 

Apennines, Balkans, Carpathians, Scandinavia, Middle East and NW Russia, 

Baltic and Finland.  

 A haplotype network was estimated using the software PopART (Leigh and 

Bryant 2015) using a median-joining algorithm (Bandelt et al. 1999), for 

reconstruction of possible evolutionary pathways among the different haplotypes. 

The median-joining network was constructed using equal weights for all 

mutations and setting the parameter ɛ to zero to restrict the choice of feasible 

links in the final network. Phylogenetic relations among brown bear haplotypes, 

within an European framework, were inferred using a Bayesian approach. A test 

for the best fitting model was conducted using MrModelTest (Posada and 

Crandall 2001). The Hasegawa-Kishino–Yano (HKY) model of nucleotide 

substitution, with a proportion of invariable sites equal to 0.630 and gamma 

distribution shape parameter equal to 0.667 for among-site variation in 

substitution rates, was the best fit for the dataset. These parameters were used 
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as priors in MrBayes 3.2 (Ronquist et al. 2012). Two independent runs of four 

Markov chain Monte Carlo (MCMC) permutations were performed for 1.000.000 

generations, sampling every 100 generations. Tracer 1.6 (Rambaut et al. 2014) 

was used to summarize Bayesian analyses and to inspect the validity of the burn-

in fraction applied. The first 25% of samples were discarded as burn-in, and 50% 

consensus trees were drawn using FigTree 1.4.0 (Rambaut and Drummond 

2012). 

 

Assessment of genetic patterns and structure units  

A preliminary analysis of the dataset was made using Genalex 6.5 (Peakall 

and Smouse 2012) and matches between different samples were identified. The 

probability of identity (PID(SIBS)) was estimated using the same software, for a 

minimum of 12 loci. It was estimated using a conservative method, assuming a 

population of siblings, designed for wildlife populations by Waits et al. (2001). 

When matches between two different samples were detected (corresponding to 

the same individual), one of the samples was removed from the dataset. All the 

15 used loci were tested for: deviations from Hardy-Weinberg equilibrium (HWE) 

using diveRsity R package (Keenan et al. 2013) using an exact Fisher’s test; and 

presence of linkage disequilibrium (LD), using Arlequin version 3.5.1.2 (Excoffier 

and Lischer 2010). Bonferroni corrections were applied for all multiple tests. 

Aiming to detect different structure units within the Cantabrian brown bear 

population, tests for evidences of genetic structure in the Cantabrian brown bear 

population were performed in STRUCTURE version 2.3.4 (Pritchard et al. 2000). 

This program implements a Bayesian algorithm to infer the number of distinct 

genetic clusters represented in a sampled dataset. We used the admixture model 

with correlated allele frequencies with no prior information about the original 

population of each individual. We ran the program for 2 000 000 iterations of the 

Markov Chain Monte Carlo, with a burn-in of 100 000 steps. The putative number 

of populations was simulated with K varying from 1 to 6. The analysis was run 

through 10 repetitions, obtaining a total of 10 replicates for each K. We used 

Structure Harvester (Earl and vonHoldt 2012) to summarize the results obtained 
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in STRUCTURE, and estimated the best K using the Evanno method (Evanno et 

al. 2005). 

To assess the partition of the genetic variation among the identified 

subpopulations, a standard analysis of molecular variance (AMOVA) was 

calculated for the inferred clusters. Significance of the inferred genetic structure 

was assessed through pairwise FST (Wright 1951). All analyses were performed 

using Arlequin version 3.5.1.2, with 10 000 permutations. 

 

Estimation of genetic and demographic parameters  

We estimated number of alleles (NA), observed heterozygosity (HO), 

expected heterozygosity (HE) and inbreeding coefficient FIS using diveRsity R 

package (Keenan et al. 2013). We tested for evidence of bottlenecks for each 

inferred cluster with two different softwares, Mratio (Garza and Williamson 2001) 

and Bottleneck version 1.2.02 (Cornuet and Luikart 1996). In Mratio, M is defined 

as the ratio between the number k of observed alleles of a given locus and the 

range r of the distribution of allele sizes for that microsatellite locus. The software 

calculates an average M value for stable theoretical populations as well as a 

critical M, above which 95% of the ratios for equilibrium populations are placed. 

Both average and critical M were calculated considering the same sample size of 

the studied subpopulations and given the parameters of the model: ps - 

proportion of mutations involving just one repeat unit; Δg - average size of 

mutations evolving more than one repeat unit; Θ - parameter based on effective 

population size previous to the bottleneck and mutation rate. A theoretical, 

conservative parameter values was simulated, with Δg=3.5 (Δg: mean size of 

larger mutations) and ps=0.9 (ps: mean % of mutations that add or delete only 

one repeat) (Garza and Williamson 2001). The parameter Θ was allowed to vary 

over several orders of magnitude (0.01; 0.1; 1 and 5) to account for a wide range 

of mutation rates and pre-bottleneck effective population sizes. 

 The method implemented in Bottleneck software is based on the detection 

of heterozygosity excess relative to the number of alleles, across all loci, that is 

expected to build after a bottleneck. It is expected that if a considerable number 

of loci presents a heterozygosity excess, the population may have suffered a 
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recent bottleneck. Simulations were made using a two-phased model (T.P.M), 

with 70% S.M.M., 20% variance and 1 000 replicates. Wilcoxon sign-rank tests 

were applied to determine significance of each model.    

To estimate the effective population size (Ne) we used the linkage 

disequilibrium method (Waples and Do 2008) and the molecular co-ancestry 

method (Nomura 2008) to estimate the effective number of breeders (Neb). Both 

methods were implemented in NeEstimator v2 software (Do et al. 2014). The 

95% confidence intervals for both methods were obtained via Jackknife method 

and estimates for the linkage disequilibrium method excluded all alleles with a 

frequency of <0.05, to correct for known biases from rare alleles.    

 

Connectivity and gene flow between subpopulations  

 An estimation of the likelihood of assignment of individual genotypes to 

both Western and Eastern subpopulations was made using Genalex 6.5. 

Detection of migrants and hybrids between subpopulations was performed based 

on the results of STRUCTURE version 2.3.4 and NEWHYBRIDS 1.0 (Anderson 

and Thompson 2002). Analysis with NEWHYBRIDS included all individuals from 

Cantabria, with no prior information about geographic origin or putative parent 

population. The analysis was ran considering two parental classes and four 

hybrid (F1, F2 and both backcrosses) classes. Three replicate runs were 

performed, with burn-in lengths of 50 000 and run lengths of 100 000 iterations. 

Results from individual posterior probabilities of assignment to each parental or 

hybrid class were tested for convergence among the different replicate runs. To 

estimate the level and the symmetry of gene flow among the western and eastern 

subpopulations, we estimated a relative migration network using the function 

divMigrate of diveRsity R package. This function implements a method described 

by Sundqvist et al. (2016) and plots the relative migration level between 

population samples, estimated from the microsatellite allele frequency data. The 

significant relative migration network was estimated based on a bootstrap 

procedure with 50 000 replicates. 
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2.3 Results  

 

Success Rates  

Of the 98 samples, 93 could be amplified for at least one of the genetic 

markers used in this study, resulting in a DNA isolation success rate of 95%. We 

obtained 78 mitochondrial DNA sequences (mitochondrial DNA amplification 

success rate of 80%) and 79 samples amplified for at least one microsatellite 

marker (microsatellite amplification rate of 81%). We obtained a reliable 

genotype, based on at least 12 microsatellite markers, for 65 of the samples, 

(genotyping success rate of 66%). Additionally, samples with matching unique 

genotypes were considered as recaptures and removed from the following 

analysis. A total of 7 samples from the western population were identified as 

recaptures. In the final dataset, we considered a total of 57 unique genotypes, 

corresponding to 43 and 14 samples from the Western and Eastern 

subpopulations, respectively. Out of these 57 genotypes, 56 were based on the 

information of at least 14 loci. The probability of identity, considering a siblings 

population, for the whole Cantabrian population, was 9.2x10-4, for 12 loci, and 

1.5x10-4, for the whole set of 15 loci. 

 

Phylogeographic affinities 

 

A total of 78 new sequences were generated for the mtDNA control region, 

with 269bp in length (including recaptures). Among these 78 Cantabrian brown 

bear sequences, two haplotypes were identified (WeC and EaC) (Fig. 4b). 

Haplotype WeC was found only in samples collected in the Western 

subpopulation (n=57).  The haplotype EaC was recovered in all samples collected 

in the Eastern subpopulation (n=14) as well as in other seven samples that were 

collected in the Western subpopulation.  

In the median-joining network generated using both the newly generated 

sequences and the 81 haplotypes retrieved from Genbank (Fig. 4c), haplotype 

WeC corresponded to haplotype Can previously reported by Taberlet and Bouvet 

(1994). Haplotype EaC was recorded for the first time in this study and is more 

closely related to haplotype Pyr, from the Pyrenees, than to haplotype WeC, 
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separated by one and three mutational steps, respectively. All haplotypes from 

the Iberian Peninsula appear to be more related with those from southern 

Scandinavia, as previously reported in other studies, than to haplotypes from 

other southern European peninsulas (Taberlet & Bouvet 1994, Saarma et al. 

2007). Brown bear haplotypes from Europe are divided in two groups: one 

corresponding to NorthEast Europe (NWRussia and Carpathians); and another 

to South and Western Europe (Iberian, Apennine, Balkans and southern 

Scandinavia). Both groups are connected through haplotypes from the Middle 

East (which includes sequences from Iran and Turkey). The relation between 

EaC and Pyr is strongly supported by Bayesian inference (Fig. 4a, complete 

phylogeny in Appendix II), with a posterior probability of 100%. Haplotypes from 

south and western Europe appear to be arranged in two major clades, as 

previously reported (Taberlet and Bouvet 1994), although the support for these 

clades is not significant. One of the clades includes haplotypes from the Iberian 

Peninsula and southern Scandinavia and other clade includes haplotypes from 

the Balkans and Apennine mountains. 
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(a) (b) 

(c) 

 Figure 4. Phylogenetic and phylogeographic affinities of the Cantabrian brown bear, within European brown bear populations. (a) Detail of the Bayesian inference tree based on 83 

brown bear haplotypes from Europe and Middle East. The scale bars indicate expected number of changes by site. Values at nodes are posterior probabilities. Haplotypes are colour-

coded according to the geographic origin. (b) Median-joining network of the two mtDNA haplotypes detected in the Cantabrian population. Dark green corresponds to samples collected 

in the western subpopulation and light green corresponds to samples collected in the eastern subpopulation. (c) Median-joining network of 83 brown bear mtDNA haplotypes from 

Europe and Middle East. Haplotypes are colour-coded according to geographic origin, in agreement with the nomenclature given by Taberlet & Bouvet (1994). Iberian haplotypes were 

named “WeC” and “EaC” according to the region of origin in Cantabria. Mutational steps between haplotypes, in median-joining networks, are represented by dashes.          
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Genetic structure 

 

When considering the Cantabrian population as a whole, three loci 

showed departure from Hardy-Weinberg equilibrium (HWE) conditions and 21 out 

of 105 pairwise loci combinations showed linkage disequilibrium (Table 2), after 

Bonferroni correction. When both West and East subpopulations were analyzed 

separately, deviations to HWE and linkage disequilibrium were substantially 

reduced: 1 and 0 loci showed departure from HWE, respectively; in both 

subpopulations, 2 out of 105 pairs of loci showed significant linkage 

disequilibrium, after Bonferroni correction (Table 2). 

The Cantabrian population was consistently divided in two distinct genetic 

clusters (K=2), based on the 10 replicate runs for each K, performed with 

STRUCTURE (Fig. 5), suggesting the existence of two gene pools in the 

Cantabrian brown bear population. The Q proportions of the individual genotypes 

assigned to each of the inferred genetic clusters were also highly convergent 

among replicate runs. There was a strong agreement among the inferred genetic 

clusters and the geographic origin of sampled individuals (West and East 

Cantabria). Therefore, each genetic cluster was nominated West and East, 

corresponding to both sampling areas and known subpopulations. Individual 

genotypes were mostly assigned to the genetic cluster corresponding to the 

subpopulation where the individuals were sampled. However, 6 individuals (8OC, 

14OC, 71OC, 77OC, 92OC and 93OC) sampled in the Western subpopulation 

were assigned (<95%) to the Eastern genetic cluster. These individuals also 

presented the Eastern subpopulation haplotype (EaC).  
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Genetic distance (FST) (Table 1) between Western and Eastern 

subpopulations was significant (p<0.001), with a value of 0.175 (when confirmed 

recent migrants were excluded from analysis) and 0.167 (when migrants were 

included in Eastern subpopulation). According to Wright (1978), these values 

indicate a great genetic differentiation between both subpopulations. In either 

case, structuration of the Cantabrian population in Western and Eastern 

subpopulations was significant (p<0.001). When migrants were removed from the 

analysis, 85.6% of the total genetic differentiation was attributed to differences 

within individuals and 17.5% to differences among subpopulations. When 

migrants were included in the Eastern subpopulation, 87.9% of the total genetic 

differentiation is attributed to differences within individuals and 16.7% to 

differences among populations.       

 

 

 

  SubPopulation 

  Western vs 
Eastern 

Western vs 
Eastern with 

Migrants 

AMOVA 

FST 0.175 0.167 

Variation within individuals 85.6% 87.9% 

Variation among pops 17.5% 16.7% 

Table 1. Genetic differentiation of the two Cantabrian subpopulations 

 Figure 5. Proportion of each individual genotypes assigned to each genetic cluster (West – white; East – black)  

inferred in STRUCTURE (for best K=2). Individuals identified as migrants are marked with an asterisk.  
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Estimation of genetic and demographic parameters 

 The average number of alleles was higher in the Western subpopulation 

(3.06) than in the Eastern subpopulation, either excluding (2.73) or including 

(2.87) migrants sampled in the Western Cantabria. When considering the total 

Cantabrian population, the average number of alleles was higher (3.53) (Table 

2). Rarefied allelic richness was also higher in the Western subpopulation (2.76) 

than in the Eastern subpopulation with (2.63) or without migrants (2.56) (Table 

2). The expected heterozygosity (HE) was higher in the Western subpopulation 

(0.470) than in the Eastern subpopulation, that presented the same value either 

excluding or including migrants (0.460). The observed heterozygosity (HO) was 

equal (0.500) in the Western and Eastern (including migrants) subpopulations. 

The total Cantabrian population exhibits a significant heterozygosity deficit 

(HE>HO), most likely related with the presence of structure. The inbreeding 

coefficients were slightly negative in the Western subpopulation (-0.065) and in 

the Eastern subpopulation including migrants (-0.071). The Eastern 

subpopulation without the migrants has a small and positive, but not significant, 

inbreeding coefficient (0.010) (Table 2).  

Estimations of effective population size (Ne) for the total Cantabrian 

population were not considered since population structure can affect LD and, 

consequently, Ne estimations using the Linkage Disequilibrium method. Effective 

population size estimations varied from 2.0 in the East subpopulation and 24.8 in 

the West population. Effective number of breeders (Neb) ranged from 2.8 and 11.5 

in the total population and East with migrants, respectively (Table 2).     

Significant evidences of a bottleneck (M value of sample significantly lower 

than critical Mc value) was found for the total Cantabrian brown bear population 

and all the considered subpopulations. The excess of heterozygosity that is 

expected in bottlenecked populations (Cornuet and Luikart 1996) was observed 

in all the subpopulations and in the total Cantabrian population, considering both 

sign and Wilcoxon tests (Table 2). The excess was significant (p<0.05) in all 

cases for the Wilcoxon test, and significant (p<0.05; Western subpopulation) or 

marginally significant (p<0.1; all other cases) for the sign test. 
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Population or sub-population 
 

  Cantabria 
n=57 

West 
n=37  

East  
n=14 

East with 
Migrants 

n=20 

Structure 

 
Loci in HWD 

 

 
3/15 

 
1/15 

 
0/13* 

 
1/13* 

LD (pair of loci in LD) 

 
21 2 2 5 

Genetic 
Diversity 

 
A 
 

 
3.53 

 
3.06 

 
2.73 

 
2.87 

Ar 

 
3.04 2.76 2.56 2.63 

Gene Diversity 
 

0.534 0.481 0.485 - 

HE 

 
0.520 0.470 0.460 0.460 

HO 

 
0.500 0.500 0.460 0.500 

Endogamy 
 

FIS 

 

 
0.046 

 
-0.065 

 
0.010 

 
-0.071 

Effective 
Population 

Sizes 

 
Ne (95% CI) 

 

 
- 

 
24.8 (13.8-53.8) 

 
2.0 (1.5-2.6) 

 
2.7 (2.1–4.0) 

Neb (95% CI) 

 
2.8 (2.0-3.7) 9.0 (2.2-20.5) 5.3 (2.1-9.9) 11.5 (1.4–32.0) 

Bottlenecks 

 
Mratio 

 

 
0.599 

 
0.658 

 
0.643 

 
0.638 

Heterozygosity 
Excess** (p values) 

 

0.008/0.001 0.089/0.015 0.061/0.001 0.058/0.002 

Abbreviations: HWD, Hardy-Weinberg disequilibrium; LD, Linkage disequilibrium; A, Number of alleles; Ar, Allele richness 
(rarefied); HE, expected heterozygosity; HO, observed heterozygosity; FIS, inbreeding coefficient; Ne, effective population 
size; Neb, effective number of breeders;  

* - two monomorphic loci 
**- Significance of excess: p values of Sign/Wilcoxon test under two phase model (TPM)   
 

 

 

     

Table 2. General genetic diversity indices for 2 brown bear subpopulations, based on 15 microsatellite markers. 

Number of loci or pairs of loci with significant deviations to HW and linkage equilibrium conditions, after Bonferroni 

correction are indicated. Significant values in italics. 
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Connectivity and gene flow between subpopulations  

Assignment of individuals to their putative source subpopulations was has 

expected, with some exceptions. Seven individuals (8OC, 14OC, 49OC, 71OC, 

77OC, 92OC, 93OC) sampled in the Western subpopulation territory where 

assigned to the Eastern subpopulation (Fig. 6). One individual (40OR) captured 

in the Eastern population territory, was assigned to the Western subpopulation 

(Fig. 6), while other two (21OR and 23OR) had very close assignment 

probabilities for both populations. Since there is some difference in the sampling 

sizes of the Western and Eastern subpopulations, assignment tests were 

repeated for rarefied samples of the Western subpopulations. The same pattern 

of assignment was obtained in the assignment tests using rarefied samples.     

   

 Figure 6. Population assignment for Western and Eastern subpopulations.  
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Most of the individuals were assigned to their putative parental 

subpopulation, with some exceptions. Six individuals sampled in the Western 

subpopulation (8OC, 14OC, 71OC, 77OC, 92OC, 93OC), but bearing the EaC 

mtDNA haplotype, were assigned with high probability (>95%) to the East 

parental class (Fig. 7). Another individual bearing the EaC (49OC) was not clearly 

assigned to the West parental class, being assigned to the East parental class 

(62%), or to hybrid classes (32%). Two individuals (21OR, 40OR) sampled in the 

territory of Eastern subpopulation (and with haplotype EaC) were assigned with 

high probability (> 95%) to the West parental class (21OR: 63%; 40OR: 58%) or 

to one of the hybrid classes (21OR:33%; 40OR: 40%). Another two individuals 

(23OR and 37OR) revealed the same pattern, but probability of assignment to 

other class, rather their putative parental class, was bellow 95%.               

 

  

Figure 7. Posterior probability of assignment of 

each individual to each of the two parental (West – 

white; East – black) or four hybrid (F1, F2 and both 

backcrosses - grey) classes. Each individual is 

represented by a vertical bar. Average values for 

each populations are shown in pie charts.    
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The analysis of migration dynamics revealed the same patterns, regardless 

of the differentiation statistic. There are relative migration flows between the 

Western and Eastern subpopulations. However, the relative migration is 

asymmetric since its only significant when occurs from the Eastern to the Western 

subpopulation (Fig. 8).  

 

  

Figure 8. Relative migration network between the western and eastern subpopulations. 
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Discussion 

 

Origins and phylogeographic affinities  

 

The results here presented help to clarify the phylogeographic relations 

within the putative Cantabrian subpopulations and with other Iberian populations. 

Previous studies reported the existence of two mitochondrial DNA lineages in 

Europe, corresponding to Western and Eastern lineages. In those studies, the 

Cantabrian brown bear population was included in the Western lineage, closely 

related to the Pyrenean population (Randi et al. 1994; Taberlet and Bouvet 1994; 

Kohn et al. 1995; Saarma et al. 2007). Although, the relations within the putative 

Cantabrian subpopulations were not clarified.  

According to the mtDNA analysis, the Cantabrian brown bear population is 

divided in two distinct lineages, one corresponding to the haplotype Can/WeC 

and other corresponding to haplotype EaC. Haplotype EaC is more related to 

haplotype Pyr, previously reported in Taberlet & Bouvet (1994), than to Can/WeC, 

which means that the Eastern subpopulation is more closely related with the 

historical brown bear population of the Pyrenees. The current Pyrenean 

population resulted from the translocation of individuals from Slovenia in 1995 

and, currently, there is no evidence that the original Pyrenean population has 

persisted after the translocation. It is likely that the current Pyrenean brown bear 

population is genetically more similar to the Slovenian population (Taberlet et al. 

1997; Arquilliere 1998; Quenette et al. 2001), and the closest population to 

historical Pyrenean bear is actually the Eastern Cantabrian population.  

During the Last Glacial Maximum (LGM), several mammal species found 

refuge in southern European peninsulas (Randi 2007). In some species, mtDNA 

phylogenetic patterns show a differentiation within peninsulas, with some 

populations being more related to central and north European populations than 

to other peninsular populations, namely in Iberian Peninsula (wild boar: 

Veličković et al. 2015; Veličković et al. 2016; roe deer: Randi et al, 2004; Royo et 

al, 2010). For this species, as for brown bear, an east-west differentiation axis is 

found in northwestern Iberia. The phylogeographic patterns are consistent with 
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the entrance, in the peninsulas, from populations fleding from northern regions, 

during the last glacial maximum (LGM), that pushed the pre-LGM populations into 

the peninsulas (Veličković et al., 2015). Since these populations persisted in the 

peninsulas, it is possible today to observe the existence of phylogenetic lineages 

with different affinities. Similarly, it is possible that the differences within the 

Cantabrian brown bear population could result from identical population 

dynamics occurred before and during the LGM. In this sense, Western 

Cantabrian population (represented by the haplotype WeC) should represent the 

remnant of the pre-LGM Cantabrian populations (pushed westward during the 

LGM). The Eastern population (represented by EaC) should descend of bears 

colonizing the Cantabrian mountains secondarily, coming from the Pyrenees. It 

is important to notice that despite being closer to the Pyr haplotype, the EaC 

differs from this by one mutational step, again consistent with the pattern 

observed in wild boar (Veličković et al., 2015).  Despite the distinct origins of both 

Cantabrian subpopulations, this scenario does not invalidate the possibility of 

past gene flow between both subpopulations, that in brown bears is mediated by 

male dispersal and should not influence the pattern of matrilineal (mtDNA) 

lineages.  

 

 

Genetic structure, diversity and health 

 

The results showed that the Cantabrian brown bear population is structured 

in two genetic clusters, corresponding to Western and Eastern putative 

subpopulations, with great genetic differentiation between both. This is consistent 

with previous results obtained in other studies and can be explained by the 

division of the Cantabrian population into two subpopulations with limited 

connection, occurred nearly a century ago (Nores and Naves 1993; Pérez et al. 

2010; Mateo-Sánchez et al. 2014; Gonzalez et al. 2016). 

The genetic diversity of both Cantabrian brown bear subpopulations 

appears to have been increasing over the years (Table 3). However, the observed 

diversity is low, when compared with other European populations, such as the 

Scandinavian brown bear population (Ho=0.82) (Kopatz et al. 2014). 



 GENETIC STRUCTURE, DIVERSITY AND GENEFLOW  
ON A THREATENED BROWN BEAR POPULATION IN CANTABRIA, SPAIN 

 

  
31 

Evidences of bottleneck were detected in the Cantabrian brown bear 

population, which can explain the observed low genetic diversity. Higher genetic 

diversity is normally associated with stable populations, with higher population 

numbers, as the ones observed in the Scandinavian brown bear population 

(Waits et al. 2000; Xenikoudakis et al. 2015). Therefore, the low genetic diversity 

observed in the Cantabrian population can be related with its isolation from other 

European brown bear populations and fragmented nature (McLellan et al. 2016). 

Moreover, the low population numbers observed in the Cantabrian population can 

contribute to lower genetic diversity. Recent studies estimate approximately 200 

individuals in the western population and 19 individuals in the eastern population 

(Pérez et al. 2014). We identified a minimum number of 37 individuals in the 

Western population and a minimum number of 14 individuals in the Eastern 

population (20 individuals, if East-West migrants are considered). Among other 

causes of decline, it is possible that Eastern population is losing migrants to the 

Western population. Our estimates show a large difference also in the effective 

population sizes of Western (Ne=24.8) and Eastern (Ne=2.0) subpopulations. 

Notwithstanding, we suggest that these results should be cautiously interpreted. 

There are several methods for the estimation of effective population sizes with 

different time scales and initial assumptions (Wang 2005). A violation on the initial 

assumptions of the method can biases greatly Ne estimations, possibly leading to 

under or overestimations of effective population sizes.  
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Gene Flow and dispersal of individuals             

 

 The results show solid proof of migration between Western and Eastern 

subpopulations. There is evidence of migration of bears from the Eastern to 

Western subpopulation, since six individuals sampled in the Western 

subpopulation were assigned with high probability to the Eastern subpopulation. 

All migrant were males (see Appendix III) and they all presented haplotype EaC, 

corresponding to the Eastern matrilineal lineage identified in the Cantabrian 

population. However, our results also show higher level of hybridization in the 

Eastern subpopulation, suggesting migration of potentially mating individuals 

from the western to the eastern subpopulation. Distribution of allelic frequencies 

suggests long-term asymmetrical gene flow from the Eastern to the Western 

subpopulation, contradicting previous studies that reported gene flow from the 

Western to the Eastern subpopulation (Pérez et al. 2010; Gonzalez et al. 2016).  

These results, considered together, support the idea that movement of individuals 

from one subpopulation to another, does not necessarily reflect gene flow. 

   

 
Period of study 

(years) 

No. of 
genotypes 

used 
Ho  FIS Reference 

Western 
subpopulation 

 
2006-2008 

 

 
31 

 
0.44 

 
- 

 
Pérez et al. 2009  

2010-2016 
 

43 0.50 -0.065 This study 

2013-2014 
 

12 0.49 0.026 Gonzalez et al. 2016 

Eastern 
Subpopulation 

 
2006-2008 

 

 
9 

 
0.28 

 
- 

 
Pérez et al. 2009 

2010-2016 
 

14 0.50 -0.071 This study 

2013-2014 
 

26 0.54 0.038 Gonzalez et al. 2016 

Table 3. Summary of the genetic diversity and endogamy levels of the Cantabrian brown bear subpopulations obtained in 

past studies and this study. 
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The Western population is considerably larger than the Eastern 

subpopulation, meaning that the previously recorded Western-Eastern gene flow 

would allow the recovery of the Eastern subpopulation, with the entrance and 

reproduction of individuals from the Western subpopulation. However, the results 

here obtained showed strong evidences of migration of males from the Eastern 

to the Western subpopulation, opposing the gradient of population density. 

From the ecological point of view, this result could seem contradictory, as it 

would be assumed that populations more stable and with higher number of 

individuals (Western) function as a source population and populations less stable 

and more fragmented (Eastern) would work as sink population. Nevertheless, we 

present three alternative and not mutually exclusive hypothesis that could explain 

the migration of bears from Eastern to Western subpopulations. 1) Since we 

detected only males in the Eastern subpopulation (see Appendix III & IV), the sex 

ratio is clearly more favorable to males in the Western subpopulation (9 females: 

25 males), which may lead to the dispersal of males to Western territories, were 

the number of females is higher; 2) Habitat conditions may be asymmetrical in 

Western and Eastern areas. If habitat is more suitable in the Western area, 

carrying capacity may be higher in this area, which may justify the movement and 

settlement of individuals, both males and females, in the Western subpopulation; 

3) If human disturbance and poaching activities are more intense in the Eastern 

area, it is reasonable that individuals from the Eastern subpopulation disperse 

towards the Western areas, escaping from human persecution and searching for 

habitats with less human interference. These hypotheses show that the corridor 

promoting geneflow between both subpopulations may be functioning in the 

inverse direction to what was expected, leading to the movement of brown bears 

from the Eastern subpopulation to Western areas. These outcomes may justify 

the rethinking of conservation measurements applied in the Cantabrian brown 

bear population. Additional to the creation of ecological corridors between both 

subpopulations, it is necessary to restore habitat conditions, control poaching 

activities, consequently improving the sex ratio and the settlement of individuals 

in the Eastern subpopulation. 
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The results from this study revealed the origins and provided new insights 

on the genetic condition and migration patterns in the Cantabrian brown bear 

population. This will further help on the evaluation of conservation strategies 

implemented for the brown bear population in Cantabria and in the definition of 

new strategies relevant for the maintenance of a viable brown bear population in 

the region. 
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Chapter 3. Final Considerations 

 

As mentioned in the previous chapter, this study provided new insights on 

historical and current population dynamics of the brown bear in Cantabria. The 

relations within the putative Cantabrian subpopulations were clarified, with the 

identification of two distinct matrilineal lineages that may have been separated 

due to population dynamics before and during the Last Glacial Maximum. The 

low genetic diversity observed in the Cantabrian population may be explained by 

the occurrence of bottlenecks and low population numbers, in addition to the 

complete isolation of the Cantabrian population from other European brown bear 

populations. But the most striking result must be the detection of asymmetrical 

gene flow against the population density gradient, which contradicts previous 

studies (Pérez et al. 2010; Gonzalez et al. 2016). This result allowed the 

formulation of new hypothesis that should be adressed and clarified in future 

studies. Are the Cantabrian brown bear recent migration patterns different from 

historical ones? If there is, in fact, a shift on the asymetry of migration flow, what 

are the drivers of this shift? Is it mainly driven by sex ratio? Or is this migration 

pattern driven by differences in habitat suitability and carrying capacity or direct 

human persecution? An increase in the number of genotyped individuals, with a 

particular focus on the Eastern subpopulation will help answering these 

questions. Additionally, complementary approaches as linking the patterns of 

bear and gene flow with landscape features, will help clarify the detected patterns. 

Efforts for the conservation of the brown bear in the Cantabrian mountains 

are being made by several organizations, including FAPAS (Fondo para la 

Protección de los Animales Salvages). In the particular case of FAPAS, this NGO 

is working on the conservation of brown bears for 35 years and have built an 

impressive amount of information and knowledge on the demographics, 

population dynamics and behaviour of the Cantabrian brown bear population. We 

expect the results obtained in this study, together with this comprehensive field 

knowledge, will allow a more accurate and insightful evaluation of current 

implemented conservation strategies. Surely it has raised several new questions 

relevant for the effective management of the Cantabrian brown bear population. 
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Appendix I. Details on mitochondrial DNA sequences used in the 

phylogeographic and phylogenetic analysis. 

Table continues in the next three pages.   

GenBank 
Acession No. 

Location  Reference 

 
X75862.1 

 
Abruzzo, Italy 

 
Taberlet & Bouvet 1994 

 
X75864.1 

 
Bulgary 

 
Taberlet & Bouvet 1994 

 
X75865.1 

 
Cantabria, Spain 

 
Taberlet & Bouvet 1994 

 
X75866.1 

 
Cantabria, Spain 

 
Taberlet & Bouvet 1994 

 
X75867.1 

 
Croatia 

 
Taberlet & Bouvet 1994 

 
X75868.1 

 
Sweden 

 
Taberlet & Bouvet 1994 

 
X75869.1 

 
Estonia 

 
Taberlet & Bouvet 1994 

 
X75870.1 

 
Greece 

 
Taberlet & Bouvet 1994 

 
X75871.1 

 
Norway 

 
Taberlet & Bouvet 1994 

 
X75872.1 

 
Romania 

 
Taberlet & Bouvet 1994 

 
X75873.1 

 
Romania 

 
Taberlet & Bouvet 1994 

 
X75874.1 

 
Estonia, Sweden, Finland, Russia 

 
Taberlet & Bouvet 1994 

 
X75875.1 

 
Slovakia 

 
Taberlet & Bouvet 1994 

 
X75876.1 

 
Slovakia 

 
Taberlet & Bouvet 1994 

 
X75877.1 

 
Trentino, Italy 

 
Taberlet & Bouvet 1994 

 
X75878.1 

 
Pyrenees, France 

 
Taberlet & Bouvet 1994 

 
EU526765.2 

 
Estonia, Finland, European Russia 

 
Korsten et al. 2009 

 
EU526766.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526767.2 

 
Finland 

 
Korsten et al. 2009 

 
EU526768.2 

 
European Russia 

 
Korsten et al. 2009 

 
 

EU526769.2 

 
 

European Russia 

 
 

Korsten et al. 2009 
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(Continued from previous page) 

EU526770.2 
Finland,  

European Russia 
Korsten et al. 2009 

 
EU526771.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526772.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526773.2 

 
Finland 

 
Korsten et al. 2009 

 
EU526774.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526776.2 

 
European Russia 

 
Korsten et al. 2009 

EU526777.2 
Finland,  

European Russia 
Korsten et al. 2009 

 
EU526778.2 

 
Finland 

 
Korsten et al. 2009 

 
EU526779.2 

 
Finland 

 
Korsten et al. 2009 

 
EU526780.2 

 
Finland 

 
Korsten et al. 2009 

 
EU526781.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526782.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526783.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526784.2 

 
Estonia 

 
Korsten et al. 2009 

 
EU526785.2 

 

 
Estonia,  

European Russia 

 
Korsten et al. 2009 

 
EU526786.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526787.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526788.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526789.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526791.2 

 
European Russia 

 
Korsten et al. 2009 

 
EU526792.2 

 
Finland 

 
Korsten et al. 2009 

EU526793.2 
Finland,  

European Russia 
Korsten et al. 2009 

 
EU526799.2 

 
Finland 

 
Korsten et al. 2009 

 
EU526800.2 

 
Russia 

 
Korsten et al. 2009 

 
EU526801.2 

 
Estonia 

 
Korsten et al. 2009 
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 (Continued from previous page) 

 
EU526802.2 

 
Estonia 

 
Korsten et al. 2009 

 
EU526808.2 

 
Russia 

 
Korsten et al. 2009 

 
EU526809.2 

 
Russia 

 
Korsten et al. 2009 

 
EU526810.2 

 
Russia 

 
Korsten et al. 2009 

 
HQ602651.1 

 
Croatia 

 
Kocijan et al. 2011 

 
HQ602652.1 

 
Croatia 

 
Kocijan et al. 2011 

 
HQ602653.1 

 
Croatia 

 
Kocijan et al. 2011 

 
KF545627.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF545628.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF545636.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF545637.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF545638.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF545643.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF563083.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF563086.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KF563087.1 

 
Russia 

 
Salomishkina et al. 2014 

 
KP668987.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668986.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668985.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668984.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668981.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668980.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668978.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668977.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668976.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668975.1 

 
Iran 

 
Ashrafzadeh et al. 2016 
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  (Continued from previous page) 

 
KP668974.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KP668973.1 

 
Iran 

 
Ashrafzadeh et al. 2016 

 
KT438639.1 

 
Turkey 

 
Cilingir et al. 2016 

 
KT438640.1 

 
Turkey 

 
Cilingir et al. 2016 

 
KT438641.1 

 
Turkey 

 
Cilingir et al. 2016 

 
KT438642.1 

 
Turkey 

 
Cilingir et al. 2016 

 
KT438651.1 

 
Turkey 

 
Cilingir et al. 2016 

 
KT438654.1 

 
Turkey 

 
Cilingir et al. 2016 

 
AB013046.1* 

 
Japan 

 
Matsuhashi et al. 1999 

 
AB013047.1* 

 
Japan 

 
Matsuhashi et al. 1999 

 
KM821394.1* 

 

 
Alaska 

 
Talbot et al. 

(unpublished) 

*- Sequences used as outgroup for Bayesian Inference    
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Appendix II. Complete Bayesian Inference tree    
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Appendix III. Molecular sex determination of the sampled 

individuals    

 

 

WESTERN SUBPOPULATION 
      EASTERN 

SUBPOPULATION 

1-OC XX 62-OC XY        16-OR XY 

2-OC XY 63-OC XX       18-OR XY 

3-OC XY 64-OC XY       21-OR XY 

4-OC XX 71-OC XY       23-OR XY 

7-OC XY 72-OC XY       26-OR XY 

8-OC XY 74-OC XX       28-OR XY 

9-OC XY 77-OC XY       30-OR XY 

12-OC XY 78-OC XY       31-OR XY 

14-OC XY 80-OC XX       32-OR XY 

15-OC XX 82-OC XY       33-OR XY 

44-OC XY 83-OC XX       37-OR XY 

45-OC XY 84-OC XY       38-OR XY 

47-OC XY 85-OC XY       39-OR XY 

49-OC XY 86-OC XY       40-OR XY 

50-OC XY 87-OC XY         

52-OC XX 89-OC XX         

53-OC XY 90-OC XY         

54-OC XY 91-OC XY         

55-OC XY 92-OC XY         

56-OC XY 93-OC XY         

57-OC XY 94-OC XY         

59-OC XY 95-OC XY         

60-OC XY 96-OC XY         

 



 GENETIC STRUCTURE, DIVERSITY AND GENEFLOW  
ON A THREATENED BROWN BEAR POPULATION IN CANTABRIA, SPAIN 

 

  
51 

 

 

Appendix IV. Geographical location of the sampled individuals    

 

 Red and blue dots correspond to Western and Eastern putative 
subpopulations, respectively  
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