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Polihidroxialcanoatos, culturas mistas, bioplásticos, extração, 

separação, surfactantes, líquidos iónicos. 

 

Os polihidroxialcanoatos são poliésteres biodegradáveis produzidos 

por inúmeros organismos. Possuem características muito semelhantes 

às dos plásticos, apresentando-se como um possível substituto dos 

mesmos. Os PHAs são produzidos na forma de corpos de inclusão, 

sendo necessária a sua extração. Os surfactantes são compostos 

tensioativos capazes de extrair os PHAs, através da sua incorporação, 

e consequente saturação, nas membranas bacterianas, auxiliando na 

sua lise. Neste trabalho começou-se por testar a eficácia de uma 

variedade de surfactantes, e alguns líquidos iónicos, na extração de 

PHA de culturas mistas. O Tween 20 destacou-se dos restantes visto 

praticamente não apresentar acumulação de surfactante na amostra de 

PHA, tendo igualmente sido responsável pelo isolamento e análise do 

mesmo, de forma eficiente. Com este composto realizaram-se testes 

onde se variaram a quantidade de biomassa, a concentração de 

surfactante e o tempo de digestão. Quanto às concentrações de 

surfactante utilizadas, 50mM, 150mM, 250mM, 400mM e 500mM, os 

melhores rendimentos de extração (56-61%) foram conseguidos com 

menores concentrações de surfactante (50mM e 150mM). Com os 

tempos de digestão (2h, 4h, 6h, 8h e 14h) e com a quantidade de 

biomassa (0.3g e 0.8g), verificou-se que com quantidades e tempos 

mais reduzidos (4h e 0.3g) foi possível obter melhores ou semelhantes 

resultados aos obtidos com valores superiores de tempo e biomassa. 

O clorofórmio foi substituído pelo dimetil carbonato no passo de 

purificação, reduzindo bastante a toxicidade do processo. Foi também 

elaborada uma extração utilizando apenas digestão com surfactante, 

sem purificação, atingindo-se um rendimento de 16.17%. Para além 

dos semelhantes resultados obtidos neste trabalho, um novo processo 

foi testado e redesenhado para a extração de PHAs em culturas mistas, 

verificando-se até aqui uma redução dos custos e da toxidade do 

processo, com a possibilidade de remover totalmente o passo de 

solubilização do polímero num solvente orgânico. 
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Polyhydroxyalkanoates (PHA) are biodegradable polyesters produced 

by a variety of organisms. Their characteristics are very similar to 

those found on plastics, making them a viable replacement for this 

important product. Inside cells, PHA are produced under the form of 

inclusion bodies, and its extraction is required. Surfactants are 

compounds able to carry out PHA extraction by incorporating, and 

consequently saturating, the bacterial membrane, facilitating the lysis 

process. In this thesis, we begun by testing the extraction efficiency of 

a screening of surfactants, and some ionic liquids, on mixed cultures. 

Tween 20 stood out from the rest, as the PHA biofilm obtained was 

free from any surfactant and was possible to isolate and analyse the 

polymer efficiently. Using Tween 20 as extractive agent, more tests 

were carried out, where the amount of biomass, concentration of 

surfactant, and time of digestion were studied. As for the surfactant 

concentrations 50mM, 150mM, 250mM, 400mM e 500Mm, better 

extraction yields (56-61%) were achieved with lower concentrations 

(50mM and 150mM). As for digestion times (2h, 4h, 6h, 8h and 14h) 

and biomass quantity (0.3g and 0.8g), it was verified that with lower 

values and times (4h and 0.3g), results obtained were very similar, or 

better, than those obtained with overnight digestion and 0.8g of 

biomass. Chloroform was replaced by dimethyl carbonate, greatly 

reducing the process toxicity in the purification step. An extraction 

using solely surfactant digestion, without a purification step, was also 

performed, achieving an extraction yield of 16.17%. In addition to the 

similar yields obtained in this work, a new process was tested, and 

later redesigned, for PHA extraction in mixed cultures, with a 

reduction of costs and toxicity of the process, and with the future 

possibility of completely removing the step based on the solubilization 

and isolation of the polymer in an organic solvent. 

Polyhydroxyalkanoates, mixed cultures, bioplastics, extraction, 

separation, surfactants, ionic liquids. 
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1. Introduction 

 

 Plastics play a key role in nowadays society and represent an essential part of the 

industry, for example, by replacing paper and glass in packaging processes (1). Their 

annual production rounds the 300 million tons, with an increase of 5% per year (2). The 

various properties of support, brightness, durability and resistance to degradation made 

plastics essential goods to improve comfort and quality of life. However, they present 

several disadvantages (1). Due to their massive importance in the society of today, plastics 

are mass-produced, leading to an excessive petroleum consumption (2) which represents 

a dramatic increase on demand of this non-renewable resource. Being a non-

biodegradable material, an excessive accumulation of plastics in the environment (25 

million tons per year) results from this (3) which desperately requires a more viable and 

biodegradable alternative for the planet. A potential alternative is the replacement of 

petroleum-based plastics for biodegradable polymers (4), as polyhydroxyalkanoates 

(PHAs). 

 PHAs are polyesters consisting of hydroxyalkanoates, with the general structure 

shown in Figure 1. There is a huge variety of different PHAs which results from the 

different combinations of the R group and the number of repeats of the n group (1). PHAs 

are optically active and 100% degradable biopolymers which exhibit similar 

characteristics to several synthetic polymers (5), thus being a possible alternative to 

plastics. There are many microorganisms capable of producing and storage these 

biopolymers, namely Cupriavidus necator, Haloferax mediterranei or Bacillus 

megaterium (6). This last one was the first bacterium to ever be found to produce Poly(3-

hydroxybutyrate), P(3HB), in 1926. Since then, PHAs have been studied, both in terms 

of their structure and their biosynthesis. 

Nowadays, PHAs face the harsh disadvantage of having a huge production cost 

(7), mainly due to the fermentation (energy and substrate cost) and the downstream 

processes (extraction and purification) (8). In order to obtain a viable process of 

production, it is necessary to improve, to its maximum, the efficiency and yield of 

downstream process of the final product (5). It is estimated that these final steps exceed 

50% of the total production price of P(3HB) (4). 
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2. State of art: Polyhydroxyalkanoates 

 

2.1 Polyhydroxyalkanoates 

 

PHAs are intracellular products, being stored as inclusion bodies with 0.2 – 0.5 

μm of diameter. The inclusion bodies are located in the cell cytoplasm and can be easily 

seen with a phase contrast microscope due to PHA high refractivity (5). PHAs production 

occurs under bacterial stress conditions, during which microorganisms are submitted to 

some particular nutrient limitations with an excess of carbon source (9). The nutrient 

deprivation activates a metabolic pathway that diverges acetyl groups from Krebs cycle 

to PHAs production (10). 

There is a diverse number of bacterial strains capable of producing PHAs, like 

Aeromonas hidrophila, Bacillus flexus, Pseudomonas stutzeri, C. necator and even 

recombinant E. coli. Pure cultures are vastly utilized for PHA production, namely at an 

industrial level, since they are able to achieve high production rates (Table 1). However, 

the costs associated with production control, sterilization equipment and substrates make 

this process less competitive when compared to conventional plastics. C. necator is a 

Gram-negative bacteria and is the most widely studied (4) due to its capacity to produce 

and store larger quantities of PHA while consuming simple carbon sources like glucose, 

fructose or acetic acid (1). Furthermore, PHA production by C. necator from a variety of 

waste materials, such as lignocellulosic materials (11) and oil-containing substrates, like 

Figure 1 – PHA general estruture  
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cooking oil, was also reported (12). It is known that C. necator can store PHAs up to 80% 

of its dry weight when exposed to limited concentrations of nitrogen and phosphorus (1). 

PHAs biosynthesis occurs in aqueous medium, preferentially at 30-37ºC (13) and can be 

produced through fed-batch or continuous fermentation, being the last the most used with 

C. necator cells (1). These methods aim to reduce the overall production cost and to 

increase productivity (7). 

 PHA production can also be performed by mixed cultures, which present some 

advantages, namely the inoculum being made of activated sludge, while the expensive 

carbon sources used with pure cultures are switched with industrial sub products. It also 

is a more economic process since sterilization is not performed and the overall 

fermentation and production equipment are cheaper (14). An example of bacteria groups 

responsible for this type of production are glycogen-accumulating organisms (GAO’s) 

and polyphosphate accumulating organisms (PAO’s) (15). This production was initially 

tested in wastewater treatment plants to perform biological phosphorus removal (16), and 

is based on alternating anaerobic with aerobic cycles (15). In the absence of oxygen, 

PAO’s and GAO’s both produce PHA by using energy, gained by releasing phosphate by 

the first microorganisms (17), while the second’s is produced solely by glycolysis of the 

glycogen (18). Once the conditions turn aerobic, PHA is used for microorganism growth, 

while the glycogen levels rise (17). PHA production by microbial mixed cultures (MMC) 

can also be achieved by a feast and famine process (19). This was observed in aerobic 

wastewater treatment plants where periods of excess carbon (feast) and substrate 

limitation (famine) were alternated. After testing this procedure on lab-scale reactors, it 

was discovered that, during the famine period, a decrease on the amount of intracellular 

components was verified, caused by the absence of substrate. Once the feast period starts, 

the difference between the high substrate concentration and the amount of intracellular 

compounds during the famine period (namely enzymes), greatly decreases the growth rate 

(slow growth response), being instead promoted the PHA accumulation process (fast 

storage response) (20). Despite PHA storage occurring at the same conditions, by growth 

prevention, for both PAOSs/GAOs microorganisms and those based on the aerobic feast 

and famine process, PAOs and GAOs storage is promoted by an external growth 

limitation caused by the absence of and electron donor, while in the feast and famine 

process both electrons (donor and acceptor) are present in the feast period, being the 

storage caused by an internal growth limitation in the famine period, due to the lack of 

intracellular component like RNA and enzymes (8). 
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There is a variety of methods that can be used in order to detect the PHA presence 

and to calculate its production capacity. A simple laboratory method involves the usage 

of Nile red and Nile blue A and its direct addition to the liquid growth medium, causing 

PHA coloration and easy detection under UV light (21). The most used process for PHA 

analysis and determination the polymer methanolysis followed by gas chromatography-

mass spectrometry (GC-MS) and analysis of the methylated monomers. Despite the 

highly sensitive and effective process, this procedure requires the usage of toxic 

chlorinated solvents, such as chloroform, and additional harmful reagents like sulfuric 

acid (22). Polymerase chain reaction (PCR) gene detection and transmission electron 

microscopy (TEM) are two advanced methods widely used for high throughput screening 

and PHA detection, thanks to the ease of sample preparation and short analysis time (22). 

Polymer chain reaction is often used to identify new and potential microorganisms that 

can produce PHA, since it specifically amplifies the phaC gene, present only on PHA-

accumulating organisms. This gene encodes the PHA synthase, responsible for the 

synthesis of PHA (23). TEM is often used to directly visualize and measure intracellular 

granules of PHA through high magnification. However, despite being able to provide 

reliable information related to PHA production or PHA production capacity, hazards are 

used during TEM sample preparation, destroying cells and being time consuming (22). 
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2.2 Separation processes 

 

 2.2.1 Mechanical and Physical methods 

 

 Mechanical methods involve physical processes to disrupt cells and recover 

intracellular products or proteins. They can be divided in two types, namely the solid 

shear and the liquid shear techniques (13). 

 

 A. Temperature 

 

 The application of high temperatures to PHA-containing cells can cause the 

denaturation of DNA and proteins, as well as the cell wall destabilization. The weakness 

of the overall resistance of the membrane, results in an easier breaking and releasing of 

PHA granules. The effect of temperature and time of exposure varies with the bacteria 

type and strain (3). For example, while the perfect conditions for the disruption of C. 

necator cells were 85ºC for 15 minutes (2), other studies show that Pseudomonads only 

required 1 min of this treatment at 120ºC (2). Despite these differences, the membrane 

destabilization occurred in both cases. Furthermore, in the C. necator, the denaturation of 

PHB polymerase, an enzyme capable of degrading the biopolymer, was also verified, 

being this an advantage since the desired product to be separated, the PHA, become 

protected from degradation (2). 

 Meanwhile, when cells are exposed to low temperatures, the mechanical 

disruption of cells is facilitated due to the formation of water crystals during the freezing 

process. Moreover, the exposure of cells to consequent low temperature cycles helps the 

extraction of PHA granules, which are then easily hydrolyzed by other solvents, namely 

the sodium dodecyl sulfate (SDS) and sodium hypochlorite (NaClO) (42). Usually, the 

biomass is free-dried after being washed with deionized water. However, due to the high 

energy costs, it is not recommended for the industrial scale production of PHA (42). 

 

 B. Bead mills 

 

 The bead mill is a solid shear technique that consists on the contact of many tiny 

spheres with biomass in a cylindrical chamber. The cell slurry is inserted in the base of 
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the chamber, through an annular gab and exits in the top (43). By rotating the cylinder, to 

promote the contact between cells and spheres, the resulted friction causes the disruption 

of biomass. Heat can be generated during the process, which is removed by cooling water 

that circulates on the external side of the chamber. The method application and efficiency 

do not depend on the biomass concentration. It also avoids the use of chemicals that could 

potentially react with the intracellular products to be recovered or contaminate the 

samples. However, the method is slow, requiring a large number of steps and cycles until 

an efficient result is achieved (13). 

 Usually, once the PHA production process is finished, the wet biomass is 

harvested by centrifugation, followed by one or more pre-treatments in order to facilitate 

the cell disruption and further extraction processes, namely by the exposure of the cells 

to high or low temperatures and to acidic, alkaline or saline pre-treatments (43). 

 

C. High pressure homogenization (HPH) 

 

 Another used process for cell disruption is the high pressure homogenization 

(HPH) (3). With this process, samples are forced, by a high pressure bomb, to pass 

through two small parallel slots (100 μm), resulting in two parallel fluid streams, 

consisted of disrupted cells. Unlike of what happens with the bead mill, the HPH 

efficiency varies with the biomass concentration. This method becomes more effective 

than the bead mill at cell dry weight concentrations above 45kgm−3, showing low 

efficiencies with low cell concentrations. Despite of not requiring the addition of 

chemicals, the exposure to high pressure may degrade the biopolymer (13) and create fine 

debris that will negatively interfere with later downstream processes (44). Tests 

combining high pressure homogenization with a solvent-assisted method, using the 

surfactant sodium dodecyl (SDS) (See section “Chemical methods”) were developed to 

recover P(3HB) from Methylobacterium. The maximum yield achieved was 98% with a 

purity of about 95%, after applying an operating pressure of 400 kgcm−2 and a two cycle 

process using 5% (w/v) of SDS solution (43). 
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D. Sonication 

 

 Sonication is a process that involves the application of sonic waves to biomass. 

The sound waves propagate into the medium resulting in alternating moments of high 

pressure (compression) and low-pressure (rarefaction). These events lead to a high cell 

membrane destabilization and disruption, releasing the cell material to the surrounding 

liquid. This method was used for PHA extraction from Bacillus flexus cells. Biomass was 

sonicated for 10 minutes, throughout 5 cycles, after being suspended in 50 mL of water. 

The separation and purification steps were then performed using an aqueous biphasic 

system (ABS). Up to 20.3% of PHA was isolated, with a purity of about 92%. These 

values were low when compared to other processes of cell hydrolysis, mainly due to an 

incomplete cell lysis (10). 

 

 E. Osmotic pressure 

 

 The use of saline conditions is other method employed, usually as an initial step, 

for the bacterial cell disruption, aiming at the recovery of PHA by applying an osmotic 

pressure. During this process, cells are subjected to a very high osmotic pressure resulting 

from the hypertonic medium created by the highly concentrated saline solution. 

Consequently, cells release water by diffusion in order to stabilize this difference, causing 

their plasmolysis and disruption (3). Osmotic pressure alone is considered a bad disruptor. 

As a result, it should be combined with other pretreatments, like the alkaline one (13). By 

combining saline, alkaline and heat treatments, a decrease in the number of steps needed 

to fully disrupt cells and release the stored material can be observed. Alcaligenes latus 

biomass was treated with sodium chloride (8kgm-3) at 60ºC for 1h, followed by a 

temperature decrease to 4ºC, while the pH was adjusted to 11.5 by saturating the sample 

with sodium hydroxide. Results show that the number of steps needed to achieve a 

complete disruption decreased from 8 to 4, when compared to the use of the bead mills 

process alone (13). 
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F. Air classification 

 

 This method uses an air classifier 

(Figure 2), which separates diverse 

materials and substances of different 

sizes, shapes and densities. First the 

sample is injected (Inlet scroll) into a 

chamber that contains a column of rising 

air. Inside this chamber, the components 

of the samples to be separated are lifted 

up (through the gas outlet tube) by an 

upward force that counteracts the force of 

gravity. Due to the dependence of air drag 

on object size and shape, the components 

in the moving air column are sorted 

vertically and can be separated. This 

process was combined with 

ultrasonication and used to recover 

P(3HB) from C. necator biomass (45). 

The first step involved a treatment with 

sonication, creating a suspension of PHA 

granules and cellular debris. The suspension was then freeze dried and pulverized. The 

resultant sample suffered an air classification and PHA (38%) was separated from cell 

debris and other non-PHA material (62%). Chloroform was then used to extract PHA 

from the fine fraction, followed by methanol precipitation, reaching purity values of 95% 

and yields higher than 85% (45). Even though smaller volumes of chloroform are used 

when compared to the chloroform conventional method, the usage of this solvent still 

represents risks to the health and food industries, making questionable this process 

viability. 

 

 

 

 

Figure 2 – Air classifier 
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G. Gamma irradiation 

 

 This method involves irradiation of the bacterial wet cells with gamma waves to 

promote cell disruption. Wet biomass of Bacillus flexus was treated using this process, 

with PHA recovery yield values of 54% when the irradiated cells, 10 kGy, were subjected 

to chloroform extraction during a short period of time. The use of gamma irradiation 

meant and increased the recovery yields since the unirradiated samples allowed for only 

18% to 20% of recovery (46). The gamma irradiation process offers optimal cell wall 

disruption with a low dosage of irradiation and lower volumes of chloroform, while it is 

independent of any chemicals that can contaminate the extraction process. However, this 

mechanism has an initial investment cost that hinders large scale applications (47), while 

still requires a final use of organic solvents. 

 

 2.2.2 Chemical methods 

 

A. Solvent extraction 

 

This is the most traditional and, probably, applied method to disrupt cells and, 

consequently, release PHA (2). In this process, solvents can be divided in two types of 

action, as (i) cell disruption agents and as (ii) PHA solvents. The biopolymer recovery is 

then easily achieved by solvent evaporation since they usually present high volatility (48). 

Despite all these advantages, some of the most used organic solvents, namely chloroform 

or dichloromethane (Figure 3), represent a huge risk to human health and the 

environment. For those reasons, alternatives to these solvents were studied (2). Vanlautem 

and Gilain (49) studied PHA extraction from C. necator using another class of liquid 

chlorinated solvents, like chloropropanes or chloroethanes. Results varied according to 

solvents structure, being solvents with at least one chlorine atom those that allowed for 

the best results (49). Tests performed to extract a co-polymer poly(3-hydroxybutyrate-co-

3-hydroxyvalerate) (P(3HB-co-HV)) from C. necator with dichloromethane resulted on 
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purity values above 98%, after concentration by distillation, precipitation on ice-cold 

methanol and recrystallization (50). Besides chlorinated solvents, other classes of 

compounds were also studied to extract PHAs. Diols, like 1,2-propandiol, were also tested 

to extract PHAs from C. necator resulting in a recovery of 79% and a purity of 99.1% at 

140ºC (49). Also with the same biomass, acetalized triols, as glicerol formal, resulted in 

85% of recovery yield, and in a purity of 99.7% at 120ºC. A di-carboxilic acid ester, as 

diethyl succinate, led to 90 % of recovery yield and a purity of 100% at 110ºC (49), and 

butyrolactone allowed for a recovery yield of 90% and a purity of 99,5% at 110ºC (49). 

When using solvent extraction, the biopolymer solutions obtained, could present more 

than 5% (w/v) of P(3HB), with high viscosities. However, the removal of cell debris 

proves to be difficult (2). In order to overcome this problem, Vanlautem and Gilain et all 

(1982) (49) proposed a process were the P(3HB) was solubilized in a solvent immiscible 

with water, at temperatures above 120ºC (49). The recovery of PHA was then made by 

simply adding cool water, leading to the separation of the complex solvent and PHA. 

Rosengart et al. (51) also tested other non-chlorinated solvents, namely anisole and 

cyclohexanone (Figure 4) for PHA separation from Burkholderia sacchari. To a mass of 

lyophilized cells, 0.6g, were added to 40 mL of solvent (anisole and cyclohexanone), in a 

glass balloon, and the solutions were left to rest in an oil bath, at 120ºC, for 1h. A 

temperature of 60ºC for 2h was also tested, but the results were unsatisfactory. Cell debris  

 

Figure 3 – Chloroform and dichloromethane structures. 

Figure 4 – Anisole and Cyclohexanone 
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were then removed by filtration and the solutions were mixed with 100 mL of ethanol at 

room temperature. The precipitated polymer was then recovered using a pre-weighed 

filter and by solvent evaporation. Anisole allowed for a recovery yield of 97% with a 

purity of 98.3% while cyclohexane reached a yield of 93% and a purity of 98.2% (51). 

A process with PHAs solvent and non-solvent was proposed by Noda (1998) (45). 

First the biomass was mixed with the solutions of solvent and non-solvents, then the 

insoluble biomass was separated and, in the final step, the solvent was removed promoting 

PHAs precipitation in the non-solvent (45). 

The reuse of solvents was tested several times before being distilled, lowering the 

overall extraction process costs. Furthermore, solvent usage often leads to alterations of 

the natural morphology of PHA granules, which can be useful in certain applications like 

in the production of strong fibers (52). Solvent extraction processes, unlike some other 

separation methods, do not degrade and allow the purification of the biopolymer, which 

can be useful in some applications, namely in the medical field. Many Gram-negative 

bacteria were used for PHA production and this type of bacteria possesses endotoxins in 

its membranes. These endotoxins represent a health risk, so their removal or, at least, 

concentration reduction to safe levels, is needed for biopolymers used in medical or food 

purposes. The use of chloroform to extract P(3HB) from E. coli, lead to a decrease in the 

endotoxins levels lower than the allowed limit of pyrogen level, 5.0 Endotoxin Units kg 

(53). 

However, the organic solvent-assisted extraction still presents some serious 

problems, mainly because many solvents are considered toxic for humans and the 

environment. This is one of the main reasons why solvent extraction is used widely and 

successfully at laboratory scale but not at industrial one (54). To overcome these 

problems, the extraction processes using non-halogenated solvents have been tested, by 

using long chain alcohols, esters, amides, and ketones (both cyclic and acyclic 

compounds). Some examples of these solvents are butyl propionate, toluene, heptanol, 

ethyl benzene, ethylene glycol diethyl ether and methyl ethyl ketone. Some tests also 

Figure 5 – Non-halogenated solvents: heptanol (1), methyl ethyl ketone (2) and toluene (3) 

(1) (2) 

(3) 
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involve the use of these solvents at high temperatures, above 80ºC, being the polymer 

recovery performed by cooling the mixture (55).  The manipulation of pressure and 

temperature was performed to improve the extraction. In these methodologies, firstly the 

biomass is solubilized at high temperatures, near the PHA melting point, during a certain 

period, normally between 1s to 15 min. The temperature is then reduced while the 

pressure increases, around 1-10 bar, stimulating the PHA extraction (56).  

Dimethyl carbonate (DMC) is another example of a considered green solvent used 

for PHA extraction from C. necator freeze-dried biomass (74 wt% in P(3HB)) (57). After 

adding the solvent to the biomass, being the biomass to solvent ratio 2.5% (w/v) (50 mg 

of biomass extracted with 2 mL of DMC), the sample was kept at 90ºC for 4h. Finished 

that time, PHA was then easily recovered by filtration and solvent evaporation, leading 

this method to a recovery yield value of 88% and purity of 95% (57). Other improvements 

could also be done, like performing the organic solvent extraction directly on wet 

biomass, avoiding a lyophilization step to remove the water. To test this possibility, 

Samori et all (2014) also tested DMC extraction capacity directly on microbial slurries. 

The process followed started by adding 1 mL of microbial slurry with 50 gL-1 with 2 mL 

of DMC, for 1h at 90ºC. After centrifugation, the residual biomass was separated, 

alongside with the water phase. The PHA was then recovered by filtration and solvent 

evaporation, leading to a recovery yield of 94% and a purity of 93%. These values proved 

that similar results were obtained with both freeze-dried biomass and microbial slurries, 

making the liophilization step avoidable. However, this can only be applied to low 

concentrated slurries (<250 gL-1), as 

with higher concentrations DMC 

formed a gel with the biopolymer, 

making the separation in that case 

impossible (57). 

 

B. Alkaline and acidic solutions 

 

 Regarding the alkaline method, alkaline solutions are used to destabilize the cell 

membrane thus facilitating its disruption. One of the most used alkaline solutions is 

sodium hydroxide. The effect of its alkalinity results in a reduction of time and steps used 

in further treatments or pretreatments, however, it could cause some polymer degradation. 

Figure 6 – Dimethyl Carbonate 
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In PHA extraction from Alcaligenes latus, a concentration of 0,8 kg kg−1 of sodium 

hydroxide was enough to reduce, from 6 to 2, the number of steps needed in the bead mill 

(see section “Separation processes: Mechanical and Physical methods”) (2). Mohammadi 

et all (58) tested the alkali method against the water for PHA recovery from recombinant 

C. necator cells. The water method occurred at 30ºC, 0 rpm for 1h, while the NaOH 

method, at similar conditions, occurred at a concentration of base of 0.01M, 0 rpm, at 

30ºC for 1h. Purification was performed by precipitating the biopolymer in ethanol. When 

comparing these 2 different methods, higher values of both recovery yield (96.1%) and 

purity (80.6%) were obtained with water, rather than with NaOH (recovery of 74.9% and 

purity of 48.4%). However, by using NaOH favorable conditions (0.05M, 3h, 0rpm, 4ºC), 

instead of similar conditions to water, both the recovery yield (96.9%) and purity (96.6%) 

greatly increased (58).  

 Another known method involves the use of acids, instead of alkaline solutions. 

Acid solutions can degrade cells with minimal hydrolysis of the biopolymer stored, 

contrarily to what happens in the alkaline treatment. This occurs because, while acid 

protons work for both hydrolysis and esterification, hydroxyl anions remove protons from 

the acid produced during the cleavage of ester bonds, thus resulting in polymer 

degradation. Sulfuric acid is one of the acids already tested (3). A suspension of 5% (w/v) 

was initially digested with 0.64M of H2SO4, during 6h, at 80ºC, followed by a 

hypochlorite treatment. Recovery yield values of 80% and purity of 95% were achieved 

(3). The high purity percentages may be due to selective degradation of molecules, 

namely peptidoglycan that forms a protective membrane that helps stabilizing the 

biopolymer granules (59). 

 

B.1 Selective dissolution of non-PHA cell mass by protons. 

 

 This method was introduced by Yu and Chen (59) and uses protons to dissolve 

non-PHA cell mass/material (NPCM) in an aqueous solution, while inducing the PHA 

crystallization. The process begun with the heating of C. necator cell slurries in sealed 

glass tubes. Then, the temperature of the suspension was decreased with water and the 

pH adjusted to 10 by adding NaOH 5M. The supernatant was discarded after 

centrifugation (5.000rpm for 15 minutes) and the pellets washed with an equal volume of 

water. A bleaching solution, to discolor the pellets, was added (Clorox containing 6% 

NaOH), followed by the addition of sodium hypochlorite to obtain a ratio of 0.5-1:1 with 
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initial biomass weight, at room temperature for 1-2 h. Finally, the solid phase consisting 

of PHA granules was recovered by centrifugation and after drying in an oven. While 

extracting P(3HB), recovery yields and purity reached 98,7%, and 97.9% respectively, 

purity values of 98.5% and recovery yields of 95.4% were obtained when recovering 

PHBV. This method can be considered environmental friendly and much cheaper than 

conventional recovery, since it was estimated to decrease the overall recovery process 

cost by up to 90% (59). 

 

C. Digestion by surfactants. 

  

Aiming to decrease the environmental impact of the processes that use chlorinated 

solvents, some new ideas came out, namely the application of aqueous solutions of 

surfactants (2). Surfactants are amphiphilic compounds, composed by a charged 

hydrophilic “head” and a long alkyl hydrophobic chain “tail”, Surfactants can be cationic 

(“head” positively charged), anionic (“head” negatively charged), non-ionic (“head” 

without charge) and zwitterionic (“head” positively and negatively charged). Examples 

of surfactants belonging to some of these categories are SDS (anionic), the 

hexadecyltrimethylammonium (cationic), the Tween 20 and Triton X-100 (both non-

ionic) (2) and phosphatidylethanolamine (zwitterionic). The mode of action of surfactants 

is based on their incorporation in the lipid bilayer of the cell membranes, which leads to 

a volume increase. After the constant accumulation of the surfactant, the membrane 

saturation occurs leading to its disruption. After the membrane collapse, micelles 

consisting of surfactant and phospholipids are formed, while the PHA granules are 

released to the external medium (60). Surfactants are also able to solubilize some cellular 

debris, proteins and other non-PHA material, without degrading the biopolymer granules 

(61). SDS, with a surfactant/biomass solid liquid ratio higher than 0.4 (v/m), was already 

successfully applied without any other extraction agent, resulting in a purity around 95% 

and a P(3HB) recovery yield above 90%, when applied to C. necator cells. However, high 

purity values, above 97%, are only achievable using high amounts of surfactant (> 5 

wt%), which increases the overall extraction cost, and makes wastewater treatment and 

reuse more difficult. Other solutions can be used, like hypochlorite and sodium hydroxide, 

to reduce the amount of surfactant needed to reach higher purities. Furthermore, to obtain 
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larger amounts of PHA, a combination of surfactants with chelating agents can also be 

used (2). 

Recent tests tried to improve the surfactant extraction process by using ammonium 

dodecanoate (laurate), a switchable anionic surfactant (SAS) (57). SASs are a group of 

surfactants that can reverse their forms and change their properties. Before a pH shift, 

usually achieved by CO2 removal or addition, these surfactants can turn from water-

insoluble neutral forms into anionic water-soluble compounds. The first step is to treat 

the microbial slurry directly with ammonium laurate solution, leading to the dissolution 

of the non-PHA cellular material in the surfactant. This makes PHA recovery easily 

achieved by centrifugation. Once the polymer is recovered, the addition of CO2 increases 

the solution pH, converting the water soluble SAS into a neutral lauric acid and 

ammonium hydrogen carbonate. Another centrifugation separates the lauric acid while 

the NH4OH-solution can be added to carboxylic acid to recover the ammonium laurate to 

be reused in subsequent extraction procedures. C. necator biomass was combined with 

ammonium laurate with four different solid-liquid ratios of 2:1; 1:1; 0.5:1; and 0.2:1. With 

solid-liquid ratio of 2:1, fully recover of PHA was achieved while lower amounts resulted 

in less satisfactory results (70% - 90%). The same was verified for purity, where the 2:1 

led to highest purity, 98%. In addition to the high recovery yields obtained, SAS usage 

has other advantages like the skipping of the biomass drying process, their excellent 

recyclability and the low price, being cheaper than other common surfactants (e.g. SDS). 

However, it presents two major drawbacks: unlike the organic solvent treatment, SAS 

treatment does not guarantee the reduction of endotoxins which can prove to be a problem 

in certain applications and causes a polymer molecular reduction (57). 

 

D. Ionic liquids 

 

Ionic liquids (ILs) are a promising and viable alternative to organic solvents. 

These compounds are defined as organic compounds with melting points lower than 

100ºC (62). They are collectively known as organic salts and, because of their low fusion 

temperature, unlike common electrolytes, some of them are liquids at room temperature. 

Thanks to their ionic structure, these salts present low or null volatility, non-flammability, 

varied viscosities, thermal stability, high solvent power and highly tunable nature (62). 

Furthermore, their hydrophobicity, solvent miscibility and polarity can be fine-tuned by 

tailoring the cation/anion combination, allowing ILs to meet the requirements for their 
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many applications. This is a huge advantage since the separation systems based on 

polymers, which had the disadvantaged of having short polarity gaps, can be improved 

by the addition of ILs to the systems. It is known that their good purification performance 

is justified by the specific and different interactions that distinct ILs can establish with 

different solutes/molecules. Furthermore, these new systems present better results than 

the conventional aqueous biphasic systems (ABS)  with higher extraction efficiencies in 

the separation of bio compounds like testosterone, epitestosterone and BSA (bovine 

serum albumin) (63), among other (64). An example of a good ionic liquid is composed 

by cholinium ([Ch], the cation component of the IL), which presents low toxicity, and 

good biodegradability (65). The usage of ionic liquids in PHA extraction is still low, but 

has been continuously studied in order to improve current and develop new extraction 

processes. 

  

 E. Chelate complexes. 

 

 A chelate can be described as a heterocyclic compound with a central metallic ion 

attached by covalent bonds to two or more nonmetallic atoms in the same molecule 

(Figure 7). Examples of this compounds are ethylenediamine tetraacetic acid (EDTA), 

diethylenetriaminepentaacetic acid (DTPA) and nitrilotriacetic acid (NTA). They have the 

capacity to form complexes with divalent cations, like Ca2+ or Mg2+ present in the outer 

membrane of Gram-negative bacteria, increasing 

the destabilization of both outer and inner 

membranes, which leads to an easier cell 

disruption and increase the amount of PHA 

released (61). By mixing a chelating agent as 

EDTA disodium salt with a surfactant (betaine), 

obtaining a ratio chelate:surfactant-biomass of 

0.08:0.12:1, at pH 13 and 50ºC degrees for 10 

minutes, purities of 98,7% and recovery yield 

values of 93,3% were achieved. Despite producing successful results and being 

environmental friendly, the surfactant-chelate method usually results in large amounts of 

wastewater during the recovery step. In order to attenuate this disadvantage, a process 

involving the wastewater recycling was already proposed (61). In the final steps, after the 

treatment with the complex surfactant-chelate, the wastewater was submitted to 5-cycles 

Figure 7 – Chelate complex 
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of washing with small amounts of hydrochloric acid and activated carbon, enabling its 

recycling for several rounds. With a 0.0075:0.01 surfactant-chelate/dry biomass ratio, 

using C. necator cells, at 15º C and pH 13, the purity obtained was higher than 96% while 

recovery yield values rounded the 90% (61). In addition to surfactants, the use of chelate 

complexes was studied with other compounds as well. A chelate-hydrogen peroxide 

complex treatment was developed by Liddell et al. (66). This method was applied to PHA-

storing C. necator cultures in order to extract and recover the PHBV (poly-3-

hydroxybutyrate/3-hydroxyvalerate) (66). An initial heat pretreatment was applied, at 

150ºC for 80s, followed by the addition of hydrogen peroxide and the chelating agent 

(diethylenetriamine-pentamethylene phosphonic acid). The process required 10h to be 

complete, reaching purity values of 99.5% after PHBV recovery by centrifugation (66). 

 

 F. Sodium hypochlorite 

 

 Sodium hypochlorite works as an oxidant agent and is able to perform a partial 

digestion of the cell material by degrading and dissolving the non-PHA polymeric 

constituents (67). This makes PHA granules isolation easier, by simply performing a 

filtration or centrifugation (6). High purity levels can be achieved using this method, 

namely 86% for C. necator and 93% for the recombinant E. coli (68). However, PHA do 

not totally resist the chemical attack, and a molecular weight reduction, up to 50%, can 

occur, confirmed by a decrease on the intrinsic viscosity (69). This problem was mainly 

observed in C. necator cultures, in opposition to recombinant E. coli cells. The difference 

on the stability during this treatment was probably due to PHA morphology. While 

P(3HB) produced by recombinant E. coli present a crystalline structure, that produced by 

C. necator is mostly on an amorphous state (70). A step to attenuate this molecular weight 

reduction, by adding sodium bisulfite as an anti-oxidant agent, was proposed by Roh et 

all (48). The reduction of PHA molecular weight extracted from C. taiwanensis 184 

cultures, dropped from 30-40% to 14% (71). 

 A combination of sodium hypochlorite with organic solvents or surfactants was 

also proposed. For example, during P(3HB) extraction from C. necator cultures, sodium 

hypochlorite was combined with chloroform to avoid PHA degradation during the 

process. Chloroform acted as a protective agent, since it promptly dissolves the polymer, 

and the degradation caused by the sodium hypochlorite can be reduced (71). In fact, three 
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different phases were obtained using this method. The upper phase contained the sodium 

hypochlorite solution, the middle one the cellular debris and the lower phase contained 

the biopolymer dissolved in chloroform. Precipitation of PHA with a non-solvent 

followed by filtration allowed its recovery. Recovery yield values around 91% were 

obtained while the purity exceeded 97%. The optimal conditions tested for the biopolymer 

extraction from C. necator cultures were 30% (w/v) of hypochlorite, 1:1 chloroform-to-

aqueous phase volume ratio, 4% (w/v) of cells in dispersion, at 30 ◦C, and during 90 

minutes of treatment (70). However, despite the successful decrease of the PHA 

degradation, this combined method required large amounts of solvent, thus resulting in 

an increase of the overall process cost (70). 

To further improve the sodium hypochlorite method, the combination with SDS 

surfactant was developed (72). A freezing step of cells was initially performed to promote 

their lysis. Then the suspension was mixed with 10g.L-1 of SDS for 15 min. Finished this 

step, 30% of NaClO were added at 30ºC. With an initial biomass concentration of 30 gL-

1, this method allowed to reach a purity of 98% and a recovery yield of 86.6%. Comparing 

the costs of this method and the most common method using chloroform, the method 

using SDS represented lower costs while keeping limited the PHA degradation (72). 

 

 G. Supercritical fluids 

 

 Every compound possesses a critical point at a specific pressure and temperature. 

When it is subject to higher values of temperature and pressure of its critical point, it is 

considered as a “supercritical” fluid. In the supercritical region, fluids express properties 

and intermediate diffusivities. Supercritical fluids (SC) usually possess liquid-like 

densities, gas-like viscosities and gas-liquid intermediate diffusivities. All these 

physicochemical properties make SCs good candidates to be used as extractive solvents. 

Carbon dioxide (CO2) is one of the most used for this purpose, mainly because of its 

moderate critical point (31ºC, 73 atm), low toxicity and low cost (73). The use of 

supercritical CO2 to extract P(3HB) from C. necator cells was tested to disrupt the 

microbial cells and other intracellular materials (74). The optimal conditions determined 

for this process were an exposure time of 100 min under a pressure of 200 atm, at 40ºC. 

The recovery yield values were around 89%, similar to those reported for other methods 

(73). However, in order to improve the yields of biopolymer recovery, combinations of 

this method with NaOH or salt pretreatments were under scrutiny (48). One of these 
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combined processes used 1% (v/v) of toluene as a modifier while using the conditions of 

200 bar, 30ºC and twice the supercritical CO2 pressure release. The last step involved a 

purifying treatment with 0,4% (ww) of sodium hydroxide (NaOH). The results showed 

that up to 81% of (P(3HB)) could be extracted from C. necator wet biomass, resulting in 

a decrease of the overall extraction process, since the freeze-drying step was avoided. 

Furthermore, this method was proved to be successful when applied to matured cells, 

which are usually harder to be disrupted (48). 

 

2.2.3 Enzymatic digestion 

 

This process uses enzymes to digest cell membranes. When compared to other 

processes, namely solvent extraction and chemical digestions, this method requires milder 

operating conditions while having negligible degradation of the biopolymers, resulting in 

a much environmental friendly process (2). Proteolytic enzymes, lipases and nucleases 

are examples of enzymes capable of dissolving proteins present in the membranes without 

affecting the composition or structure of PHAs (75). Some enzymes already tested are 

lysozyme, alcalase, pancreatin and bromelain (1). The typical process involves an initial 

heat pretreatment, followed by the enzymatic hydrolyzation and finally a decolorization 

step with hydrogen peroxide, to increase purity. Enzymes can fully hydrolyze cells 

without the need of any mechanical pretreatment. Harrison (1991) reported the complete 

lysis of C. necator cells after using lytic enzymes of Cytophaga sp for 60 minutes at 

37.5ºC and pH 7.3 (76). Further tests involving different enzymes were also developed 

for the lysis of C. necator biomass. The best results were obtained with (i) 2.0% of 

bromelain (mass of enzyme/mass of biomass), in which a purity of 88,8% was achieved 

at 50ºC of temperature and pH 9.0; and (ii) pancreatin, leading to a 90% biopolymer 

purity, and a cheaper process, since the latter is 3 times cheaper than the former (77). 

Even though successful results and high yields can be achieved by applying enzymes, 

their high cost is the major drawback (75). Combined methods were also studied, by often 

paring the enzymatic treatment with sodium hypochlorite or surfactants extraction (78). 

By using an alcalaze action with sodium dodecyl sulfate (SDS) surfactant, helped by the 

addition of Ethylenediaminetetraacetic acid (EDTA), allowed a recovery yield of 90% of 

PHA from P. putida. After the treatment, PHA granules were easily recovered in a water 

phase by simply ultrafiltrating the solubilized non PHA cell material. Purity was 
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improved through a continuous diafiltration process, reaching values of 92,6% (78). 

Martino et al. (12) also tested a similar process for PHA recovery from C. necator cells 

grown on cooking oil. The recovery was carried out in a NA2HPO4 buffer and alcalase 

(0.3 AU g-1) was added for enzymatic digestion, plus a surfactant, SDS (0.3 gg-1) and 

EDTA (0.01gg-1), a chelate complex. The separation process lasted 1h, at 55ºC. The 

biopolymer was then recovered by centrifugation, washes and re-suspended 3 times in 

water, and finally centrifuged again. Purity reached 94% and PHA was recovered in its 

amorphous state. This proves that the process was mild, since after extraction or damage 

of PHA, the amorphous coating layer is usually removed (12). 

 

 2.2.4 Cell fragility 

 

 Cell fragility method is based on modifications made to PHA producing bacteria 

growth media, to weaken their cell walls and facilitate the biopolymer extraction. 

Furthermore, this process is not restricted to Gram-negative bacteria, as it can also be 

applied to Gram-positive microorganisms (46). Tests performed to A. vinelandii UWD, a 

Gram-negative bacteria, involved the addition of fish peptone to the growth medium, 

resulting in the formation of large and osmotically sensitive cell walls, while improving 

the P(3HB) accumulation, reaching recovery yield values of 92%. This recovery step can 

be quickly performed using a 1N aqueous NH3 solution (pH 11.4) at 45ºC during 10min 

(79). Similar results were achieved with Bacillus flexus, a Gram-positive bacteria. 

Bacteria cells grew on an inorganic salt medium, with sucrose as carbon source, while 

being deprived from diaminopilemic acid (DAP) and other amino acids. DAP is a vital 

component to cell walls stability since it is responsible to form cross bridges in the 

peptidoglycan, increasing the bacterial wall resistance. Due to its absence, results showed 

that up to 86 – 100% of PHA were easily extracted using lower volumes of chloroform, 

when compared to normal cells, or mild alkaline hydrolysis. While cultures grown in 

yeast extract or peptone achieved lower results (32-56%). Despite this, it is necessary to 

further study and balance the cell integrity in order to enhance microbial growth and PHA 

accumulation, while still trying to reduce chloroform usage or studying alternative 

solvents (79). 
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2.2.5 Spontaneous liberation 

 

 Spontaneous liberation is a more advanced method that occurs in genetically 

modified PHA-producing organisms, since they usually present a fragile cell membrane, 

like recombinant E. coli bacteria, able to automatically secrete the usually intracellular 

PHA granules, after reaching a determined cell content. Recombinant E. coli harboring 

Alcaligenes phbCAB genes, were described to spontaneous liberate PHA granules (80). 

By using LB medium containing 21% of glucose, cells were able to accumulate P(3HB) 

with an efficiency up to 99% of the glucose supplied. Furthermore, 80% of the PHA 

produced was spontaneously secreted, followed only by a simple purification step of 

centrifugation (80). Further tests combined the phaCAB genes with cloned lysis E genes 

from bacteriophage PhiX174 (plasmidpSH2). The results showed that the PHA granules, 

which were at a semi-liquid state, were squeezed out of the E. coli cells through E-lysis 

tunnel structures, without suffering any morphology alterations (81). 

 

 2.2.6 Predatory bacterium 

 

 This process was recently developed by Martínez et al. (82) and consists on using 

predatory bacterium and their cell-lytic ability to extract valuable intracellular bio-

products, namely PHA. Bdellovibrio bacteriovorus HD100 is a Gram-negative bacteria 

and an obligate predator. It attacks other Gram-negative bacteria, invading their periplasm 

where, once inside, develops and grows a bdelloplast, eventually leading to the prey cell 

lysis. Initial tests showed that, despite being extremely effective at disrupting 

Figure 8 – P. putida KT2440 cells Figure 9 – PHA granules in extracellular 

medium 
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Pseudomonas putida KT2440, B. bacteriovorus HD100 hydrolyses, not all, but a big part 

of the PHA released to the surrounding medium, being this done by a PHA depolymerase 

(PhaZbd) naturally present in B. bacteriovorus HD100 cells. To counter PHA hydrolysis, 

a first step involved the creation of a recombinant version of B. bacteriovorus HD100, B. 

bacteriovorus Bd3709, by inserting a kanamycin resistance gene, causing phaZBd 

disruption. After performing another round of tests, results showed that B. bacteriovorus 

HD100 released bigger amounts of HAs while its recombinant counterpart released 

practically PHAs, proving the PHA degradation absence during predation with B. 

bacteriovorus Bd3709. Since the industrial viability of B. bacteriovorus as a living, cell-

lytic system is based on its capacity to prey and hydrolyze high density cell cultures, its 

ability to do so was also tested. 6.3 plaque forming unit (pfu) mL-1 of B. bacteriovorus 

HD100 were mixed with 30.5 gL-1 of wet P. putida KT2440 biomass (Figure 8). The 

predation and hydrolysis lasted 4h, time after which a reduction of 1-log of P. putida 

KT2440 cells was observed, while the amount of viable B. bacteriovorus HD100 cells 

increased in the same amount. After phase-contrast microscopy, it was visible that PHA 

granules were released into the extracellular medium (Figure 9) (82). 

 

2.2.7 Comparison of extraction methods 

 

 There are a huge variety of processes that have already been tested for PHA 

extraction, each having its owns advantages and disadvantages (45,67,70,83). In Table 1 

the pros and cons associated to some of the methods are summarized. Organic solvents 

have been the most used method thanks to its high recovery yields and purity, despite the 

big volumes of solvent needed and the health and environment risks it represents. To 

counter these problems, non-chlorinated and non-halogenated solvents have been used, 

as well as surfactants. With these, higher purity and less polymer degradation can be 

achieved. Sodium hypochlorite also is a very used extractor, reaching high purities despite 

the polymer degradation it causes. In order to reduce cons that many of the methods alone 

provide, while trying to improve results, different methods can be coupled and used 

together or in succession. It is important to test these combinations since these can greatly 

increase extraction efficiency. For example, when combining surfactant usage with 

sodium hypochlorite, the polymer degradation obtained with NaOCl alone can be 

significantly reduced. Many other methods are also usually combined, mainly 
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temperature and pH manipulation, which, when used early in the extraction process, can 

facilitate the membrane disruption, increasing further methods, like surfactants or sodium 

hypochlorite, efficiency. Other processes like gamma irradiation, cell fragility and air 

classification, used alongside chloroform, prove to be effective to reduce volume solvent 

usage, despite still presenting health and environmental risks, reason why their utility 

needs further studies. 

 

 

 

 

Extraction methods Advantages Disadvantages 

Bead mills No chemicals used Requires several steps 

Long periods of time 

High pressure homogenization No chemicals used Poor disruption rate for low 

biomass levels 

Solvent extraction Elimination of endotoxins 

No polymer degradation 

High prices 

Hazards connected to halogenated 

solvents 

Surfactants No polymer degradation Water waste treatment needed 

NaOCl High purities Polymer degradation 

NaOCl + surfactants Limited degradation 

Low operating cost 

 

NaOCl + chloroform Low polymer degradation 

High purity 

Large quantities of solvent needed 

Chelate complexes High purity 

Low environmental pollution 

Large volumes of waste water 

Enzymatic digestion Good recovery High enzyme cost 

Supercritical fluids (CO2) Low cost 

Low toxicity 

 

Cell fragility Use of weak extracting conditions  

Air classification High purity Low recovery 

Spontaneous liberation No extracting chemicals needed Low recovery 

Table 2 – Comparison of some extraction methods (adapted from (2))  
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2.3 Scale up processes 

 

 It is known that the biggest drawbacks for PHA commercialization are the high 

production cost and expensive separation and purification technologies. Still, many 

processes have been developed in an attempt to scale-up PHA production (84). P. putidia 

has already suffered scale up tests, to a medium scale. The fermentation device was 

composed by a vessel, with over 200L and a sterile filter recirculation loop. Initially a 

heat pretreatment was performed, followed by an enzymatic digestion carried out by 

alcalase. This process was combined with EDTA and SDS. The final product was a PHA 

latex, with up a solid fraction of 30% and a purity exceeding 95% (85). A large-scale 

process was also developed, this time with Aeromonas hydrophila 4AK4. A 20 000L 

processor was filled with 1% of Na2HPO4, 1% of CaCl2, and 100ppm of polyacrylamide. 

The water excess was removed with the help of a filter press while the cell cakes were 

processed in a rotating vacuum dryer, being later converted to power in a grinder. The 

extraction part was then performed on a 30 000L tank, with 5000L of ethylacetate stirred 

at 60 ◦C for 2 h (86), where 200 to 500kg of cell powder were extracted. The solution 

containing the polymer was centrifuged and the co-polymer PHBV was later recovered 

by adding hexane or heptane. The last step involved the filter pressing and washing the 

polymer flocculants with ethanol before being vacuum-dried. With this process, the cost 

of the recovery process exceeded more than 50% of the total cost, reason why further 

large scale studies needed to be developed in order to make this process viable (86). 

Further studies could also involve the usage of new processes, being the microwaves an 

example. This treatment has been vastly used on algae processing, being a good candidate 

to be inserted as a cell disruptor in PHA extraction processes. Improving the current 

extraction methods while introducing new ones can lead to optimal PHA recovery while 

keeping lows production costs. 
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3. Objectives of this work 

 

 In the past years a lot of improvements have been made on PHA extraction 

processes. However, the use of organic solvents is still one of the most successful 

methods, despite its high risks in terms of human health and the environment. Based on 

the literature revision made, this Master project intended to improve the efficiency of 

surfactants on PHA extraction, while using benign solvents, like ethanol, to purify the 

samples. The activity of some specific ionic liquids (ILs) was also studied, and mixed 

microbial cultures were used. 
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4. Materials and Methods 

 

4.1 Biomass  

The biomass was collected from a sequenced batch reactor (SBR) operated under 

feast and famine conditions to select a PHA-storing mixed microbial culture in the 

research group of REQUIMTE at the FCT/UNL. The SBR was operated with cycles of 

12h and fed with pine bio-oil as carbon source, supplemented with phosphorus and 

ammonia salts in order to keep a C:N:P ratio of 100:5:1. The biomass was purged 

periodically in order to keep a sludge retention time of five days. The biomass was 

collected after the end of feast phase and stored at 4ºC to obtain a desirable volume to be 

used for the extraction procedure. Samples were taken periodically and an average PHA 

content of the collected biomass was determined. 

 

4.2 Biomass treatment  

MMC biomass samples were centrifuged at 5000 rpm and 4ºC for 45min. The 

supernatant was discarded, and the pellet washed three times with 0.9% of NaCl solution, 

centrifuged each time at 5000 rpm for 45min and 4ºC. The final pellet was freeze-dried 

(Telstar Lyo Quest) for 72-120h, and kept in a dessicator for determination of polymer 

content by gas chromatography.  

 

4.3 Extractive agents 

In this study the following solvents were used: dodecyltrimethylammonium 

bromide (DTAB) [N1,1,1,12]Br, tetradecyltrymethylammonium bromide (TTAB) 

[N1,1,1,4]Br, cetyltrimethylammonium bromide, [N1,1,1,6]Br (98 wt%),  

decyltrimethylammonium bromide, [N1,1,1,10]Cl (99 wt%), cetylpyridinium chloride 

[C16py]Cl (CPC), tetraoctylphosphonium bromide, [P8,8,8,8]Br (95 wt%), 

tributyltetradecylphosphonium chloride [P4,4,4,14]Cl, polyoxyethylene sorbitan 

monolaurate (Tween 20),  polyethylene glycol dodecyl ether (Brij L4), dymethil 

carbonate (DMC) were supplied by Sigma; sodium dodecylsulfate (SDS) and Triton X-

114 were acquired from Acros Organics. The 1-alkyl-3-methylimidazolium chloride ILs 

series, [Cnmim]Cl, such as 1-ethyl-3-methylimidazolium chloride, [C2mim]Cl (99 wt%), 

1-butyl-3-methylimidazolium chloride, [C4mim]Cl (99 wt%), 1-hexyl-3-

methylimidazolium chloride, [C₆mim]Cl (98 wt%),  1-methyl-3-octylimidazolium 
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chloride, [C₈mim]Cl (99 wt%), 1-decyl-3-methylimidazolium chloride, [C₁₀mim]Cl (98 

wt%), 1-dodecyl-3-methylimidazolium chloride, [C₁₂mim]Cl (98 wt%), 1-methyl-3-

tetradecylimidazolium chloride, [C₁₄mim]Cl (98 wt%), 1-hexadecyl-3-

methylimidazolium chloride, [C₁₆mim]Cl (98 wt%), 1-Ethyl-3-methylimidazolium 

methylphosphonate, [C2mim][MP], 1-ethyl-3-methylimidazolium dicyanamide 

[C2mim][N(CN)2], 1-Ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN] were 

supplied by IoLiTec. All these chemical structures can be seen in Appendix A. 

 

4.4 Solubilization tests 

To minimize the risk of losing PHA by solubilization in the surfactant during 

biomass digestion, some solubilization tests were performed to confirm that PHA would 

not solubilize in desired extractive agent. So, 1.0g of industrial P(3HB) was mixed with 

10mL of Tween 20, both at room and 60ºC temperature, with gentle mixing. 

 

4.5 Extraction procedure 

The reagents used were tested at different concentrations: 50mM, 150mM, 

250mM, 400mM and 500mM. A pre-calculated mass of each solvent (Equation 1) was 

initially weighed in an analytical balance, followed by the addition of distilled water till 

a certain pre-defined weight was reached. 

During this study the extraction procedure suffered several optimizations. The 

starting process involved the overnight (13h-14h) biomass dissolution of 0.800g of 

biomass with 10mL of solvent at 28ºC with stirring (80rpm). Finished this step, a 

centrifugation (5500 rpm, 25ºC, 30min) was performed and the supernatant discarded. 

The pellet was then left to dissolve in 4mL of dimethyl carbonate (DMC) overnight. 

Finally, the mixture was vacuum filtrated with glass microfiber membranes with 47mm 

diameter, and the DMC was left to evaporate. The obtained residue was weighed and the 

PHA content estimated based on the percentage of PHA present in the initial biomass 

(Equation 2).  

 The extraction trials started with a screening of solvents to select the most efficient 

based on the amount of polymer extracted. Then, different parameters were tested with 

the selected solvent, namely solvent concentration, ratio solvent/biomass, and the 

digestion duration. Also, the necessity of using chloroform or DMC in a subsequent 

purification step was assessed. Table 3 resumes the tests performed. 
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Table 3 – Different parameters tested as the work was developed. 

 

 The parameters that led to the best results in terms of amount of polymer extracted 

were included in the initial extraction procedure and a new protocol is proposed at the 

end of this work. 

 

4.6 Analytical methods 

 

A. Gas chromatography 

Gas chromatography with a coupled flame ionization detector (GC-FID) was used 

to determine the PHA concentration in biomass samples, using a chromatograph Clarus 

480 from Perkin Elmer equipped with a column SGE BP20 (WAX) (length: 60m: inner 

diameter: 0.32mm; film thickness: 0.5µm) and using a method adapted from Lemos et al 

(87). The lyophilized biomass was incubated at 100ºC for 3.5h with heptadecane solution 

as internal standards, dissolved in chlorophorm (1:1) and 20% acidic methanol. After 

digestion, the organic fraction of each sample was extracted and injected in the GC--FID. 

The HB and HV monomers concentration were calculated using P(HB-co-HV) (88%-

12%) standards. The column temperature started at 50ºC and was firstly ramped up to 

100ºC by 16ºC/min and followed by a second ramp of 9ºC/min until reaching 220ºC and 

kept and this temperature for 3min. 

 

B. Fourier-transform infrared spectroscopy (FT-IR) 

The PHA film and other substances extracted were analysed by FT-IR 

spectroscopy (PerkinElmer) with the conditions: spectral range, 4000-500 cm-1 to allow 

confirmation of the functional groups presented in the polymer. Sample analysis was 

Parameter Description 

Solvent concentration 
Further trials tested using surfactant at 50mM, 

150mM, 400mM and 500mM.  

Solvent/biomass ratio Biomass quantity decreased from 0.800g to 0.300g. 

Digestion duration 
Further trials tested different durations for the biomass 

digestion: 2h, 4h, 6h and 8h. 

Organic solvent usage 
Trial performed in the absence of this final step (solely 

with surfactant). 
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Equation 1 

Equation 2 

performed by scraping the flask walls or bottom in order to isolate some PHA. The 

biopolymer was then inserted above the crystal, with solid samples being further squeezed 

with an equipped press. 

  

4.7 Calculations 

The equation used to calculate the mass of surfactant needed, according to the 

final concentration (50mM, 150mM, 250mM and 500mM), for surfactant solutions 

preparation was: 

 

𝑚𝑠 = 𝐶𝑠(𝑀) × 𝑀𝑤(𝑔𝑚𝑜𝑙−1) × 𝑓𝑤(𝑘𝑔) 

 

where ms is the mass of surfactant, Cs the desired surfactant concentration, Mw is the 

molecular weight and fw the mixture total weight. 

The percentage of PHA extracted and the yield of the overall process was 

calculated using the following equation:  

 

%𝑃𝐻𝐴𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 =  
𝑚𝑃𝐻𝐴(𝑔)

%𝑃𝐻𝐴𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∗ 𝑚𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑔)
 

 

where mPHA is the mass of polymer film obtained at the end of the process, %PHAbiomass 

is the percentage of PHA found in the lyophilized biomass and mbiomass the mass of 

biomass weighed for the extraction process. 
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5. Results and Discussion 

 

 5.1 PHA production 

  

 The biomass used in extraction assays was collected in three different periods of 

operation of the SBR. Table 4 shows that the biomass used in this work had very low PHA 

content, lower than 10%. This situation occurred because the system was a selection 

reactor, where stability of population was more important than the amount of polymer 

produced. In this case biomass would be available, despite the low value of PHA stored. 

A desirable situation was the collection of biomass from an accumulation reactor where 

more PHA is stored. The storage of biomass at 4ºC has probably contributed to the low 

amount of biomass, since its collection at the end of the feast phase signified the absence 

of an external carbon source. Even at such low temperature, cells require a carbon source 

for their maintenance and, consequently, consumed the stored PHA. From the industrial 

point of view, it is desirable a high PHA content to maximize the amount of polymer 

extracted. However, the use of such low PHA contents could be positive for the 

development of a successful extraction procedure. A method that is efficient to extract 

low amounts of product can mean an even better performance when applying it to biomass 

with higher storage contents. 

 

Table 4 – PHA content found in different biomasses used in this work. 

  

 Biomass A Biomass B Biomass C 

PHA content (%) 9.6 7.1 6.3 

  

 5.2 FTIR characterization of PHA 

  

 The traditional method used for PHA analysis, also including the characterization 

after an extraction procedure, was gas-chromatography (GC). This work started with the 

development of a FTIR (Fourier-transform infrared spectroscopy) analysis to the freeze-

dried biomass and industrial PHA (P(3HB)) (Figure 10), to be used as controls on further  
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Figure 10 – FTIR spectra of industrial P(3HB) and freeze-dried biomass. 

 

analysis. As FTIR was used only in a few works regarding PHA analysis, in this work it 

was a useful tool to quickly detect the biopolymer presence in the final samples, by simply 

comparing the control FTIR spectra characteristics and its peaks, with those obtained for 

each sample (88). Regarding the industrial P(3HB) FTIR spectra, the main peak for PHA 

detection can be seen at ~1700cm-1, which represents the ester groups (C=O stretching 

vibrations). Between ~980cm-1 to around ~1350cm-1 other peaks can be observed 

corresponding to C-C bonds (~980cm-1), C-O-C symmetrical and unsymmetrical 

stretches (~1000cm-1), or CH3 angular symmetrical deformation (~1350cm-1). The peaks 

at ~2900cm-1 and ~2400cm-1 correspond to water and carbon dioxide presence, 

respectively (88). For the biomass, the characteristic peaks can be seen from ~800cm-1 up 

to ~1600cm-1. These represent a large variety of functional groups like vinyl C-H bonds 

(~800cm-1), stretching vibrations of -OH groups in polysaccharides (~1040cm-1 to 

1200cm-1), carboxylic acids, C-O (~1250cm-1-1300cm-1) and multiple different C=O 

bonds (~1500cm-1 to 1750cm-1), as expected to be present in a mixed culture biomass 

sample (89). 
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 5.3 Screening tests 

  

 The main objective of this work was the improvement, and further 

implementation, of an efficient extraction process of PHA considering more 

environmental friendly solvents, while trying to reduce the amount of extractive agent 

used. The first step of the process involved the digestion of freeze-dried biomass samples 

with the purpose to disrupt cell membranes and release the stored PHA, while partially 

solubilizing the NPCM. The extractive agents tested were surfactants and IL’s (Appendix 

A) in a concentration of 250mM, which was above the critical micelle concentration 

(CMC) to all of them (data not shown). The second step aimed to recover and isolate the 

PHA from the NPCM leftovers. At laboratory level, the extraction of PHA is usually 

performed using chlorophorm. In this work, DMC was tested as a substitute, for a more 

viable alternative as a process improvement step (57). The first screening, using biomass 

A, was performed with a variety of solvents and the final product obtained and visible in 

each flask can be observed in Appendix B. In Figure 11 it can be observed the final 

product from an extraction made with DTAB. Despite being possible to observe a small 

film on the walls, there was also an accumulation of surfactant in the bottom of the flask. 

This accumulation seemed to be present in practically every sample which reflected the 

low purity values achieved. To tackle this problem, a purification step was performed by  

 

 

Figure 11 – Extractive agent accumulation in DTAB 

sample. 



36 
 

adding 4mL of ethanol to the flask and gently mixing. Despite being able to solubilize 

surfactants, this solubilization was partial, probably due to the absence of proper stirring, 

to avoid any PHA sample loss, as a stronger mixing would result in the biopolymer 

detachment from the flask walls, being then poured out alongside with ethanol and 

surfactant. Consequently, since the complete surfactant removal from the flasks was not 

possible, these samples were discarded since the weight difference between the final 

product and the initial biomass was too high. To solve this problem, and increase the 

overall purity, the washing step performed after centrifugation was improved. Instead of 

performing one single water washing step, three steps were introduced. First the pellet 

was washed with 5 mL of water, then with 5 mL of ethanol, and finally again with 5mL 

of water. Apart from this change, the temperature of the biomass and surfactant mixture 

was increased to 60ºC, aiming to increase extraction efficiency (90). The results from this 

extraction can be observed in Figure 12. Regarding the different groups of agents, non 

tensioactive compounds achieved similar results, while on the tensioactive cationic group 

was observed a small tendency of extraction yield increase, the bigger the carbonated 

chains were. As the only anionic agent, SDS, achieved the lowest extraction yield of the 

screening and the non-ionic tensioactive group showed a big dispersity. Many different 

yield results were obtained, ranging from lower than 10% to over the 100% limit (Triton 

X-114 and [P8,8,8,8]Br). These last two were automatically discarded since, even if they 

were able to isolate PHA, the extractive agent accumulation obtained was too high, which   

Figure 12 – Results of the initial screening of different extractive agents 
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actually justifies the much higher values of extraction efficiency, the samples were 

contaminated with the solvents. Furthermore, despite not trespassing the percentage limit, 

many other results suffered mild to severe extractive agent contamination. In some of 

them, this accumulation was able to be partially solubilized with ethanol, while in others 

practically no removal was observed ([C2mim][MP], [C2mim][N(CN)2], [C2mim][SCN]), 

probably because these compounds might not be so easily soluble in ethanol (data not 

shown) and/or other solvents could have been tested for their purification step. 

Nonetheless, among all these results, Tween 20 seemed to be the only sample without 

contamination by surfactant accumulation in the flask (Figure 13). In order to better 

characterize the product of extraction, the FTIR spectra was obtained and compared with 

the spectra of commercial P(3HB), The characteristic peaks of P(3HB) were clearly seen 

only on the spectra of the sample obtained with Tween 20 (Figure 14). In some samples, 

the characteristic peaks appeared but with lower signals and in other the peaks were not 

observed (Appendix C). A huge similarity between the spectra of P(3HB) obtained with 

Tween 20 and P(3HB) (industrial) was observed, namely the presence of a strong peak at 

~1700cm-1, meaning P(3HB) was extracted and isolated with this procedure using 

surfactant Tween 20. Furthermore, by comparing P(3HB) (Tween 20) and Tween 20 

spectra it can be observed that no surfactant accumulation was found in the final sample. 

The solubilization tests performed showed that no P(3HB) was solubilized in Tween 20, 

minimizing the risks of losing polymer during the process. For this reason, further 

extraction procedures were performed using Tween 20. 

Figure 13 – PHA film visible on flask walls, without 

surfactant accumulation (Tween 20 sample). 
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Figure 14 – FTIR analysis comparison of industrial P(3HB), P(3HB) extracted with Tween 20 

and Tween 20 surfactant. 

  

 5.4 Effect of surfactant concentration 

 

 After selection of Tween 20 in the first screening, the effect of this surfactant 

concentration was evaluated. Different Tween 20 concentrations, all above the CMC 

point, were tested, namely: 50 mM, 150 mM, 250 mM and 500 mM. Biomass B was used, 

and the results obtained are shown in Table 5. As it can be observed, higher yield values 

were achieved using lower surfactant concentrations, namely 50 mM and 150 mM, while 

these values drastically reduced when using surfactant at 500 mM. Despite the higher 

volume of surfactant used in this sample, which theoretically should lead to a better cell 

disruption, NPCM solubilization, and higher yield values, at this concentration the 

surfactant solution showed a very high viscosity. This property greatly difficulted the 

stirring procedure, which could have led to a bad mixture and, consequently, low 

digestion efficiency. Furthermore, the three washing steps performed after centrifugation 

were not often enough to properly purify the pellet obtained from the high concentrated 

surfactant. The next step involved the reduction of the amount of biomass used from 

0.800g to 0.300g, aiming at to optimize the solid-liquid ratio parameter (Table 6). The use 

of a lower amount of biomass resulted on the increase of the overall extraction yields, 

which was expectable, since the same amount of surfactant was used to digest a lower 

amount of biomass. Furthermore, it can be observed that the extraction yields obtained, 

more than doubled if half of the previously biomass is used. 
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Table 5 – Extraction yield variation with different Tween 20 concentrations for 0.800g of 

biomass. 

 

Tween 20 concentration (mM) Extraction yield (%) 

50 19.69 

150 22.46 

250 17.42 

500 5.18 

 

 

Table 6 – Extraction yield obtained with low amount of biomass, 0.300g. 

 

Tween 20 concentration (mM) Extraction yield (%) 

50 49.41 

150 53.57 

250 40.38 

400 15.93 

500 10.62 

 

In this set of assays, a concentration of 400mM was tested to confirm the result previously 

obtained with 500mM. Again, a crescent viscosity of these solvent solutions with the 

increase of concentration was observed, decreasing the overall extraction efficiency. On 

the other hand, the best results were obtained with lower surfactant concentrations (50, 

150 and 250mM) making the process cheaper since similar or better extraction yields can 

be obtained with smaller amounts of surfactant. 

 

 5.5 Effect of digestion time 

 

 Previous tests were performed overnight aiming at to maximize the amount of 

polymer extracted by the extractive agent. The reduction of the digestion time will signify 

a reduction on the energy costs of this process. Four different digestion times were tested, 

2h, 4h, 6h and 8h for four different concentrations of Tween 20, namely 50mM, 150mM, 

250mM, 500mM (Figure 15). Despite the overall minimum variation of the extraction 

yields with the decrease of digestion time, a reduction in extraction yields was observed 
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for 2h of digestion, especially using the 50mM and 150mM. This probably means that 

this time was not enough to correctly lyse the biomass considering the low amounts of 

lysis agent. When comparing the results of the assays at 4h, 6h and 8h, the extraction 

yields were similar, especially with Tween 20 concentrations at 50mM and 150mM. For 

250mM of Tween 20, the values of extraction yields had a high dispersity while for all 

times tested and 500mM, the extraction yields were the lowest ones. Moreover, the FTIR 

spectra obtained showed almost no P(3HB) on these samples. Summing up, the obtained 

results showed that a digestion time of 4h would be preferential and confirmed that lower 

concentrations of Tween 20 resulted in a more efficient extraction. 

 

Figure 15 – Comparison of different digestion times on the efficient extraction of PHA. 

 

5.6 The influence of the purification step 

 

Nowadays, one of the main objectives in PHA extraction studies is to completely 

avoid the use of organic solvents. This has been done by using DMC as an alternative to 

chloroform or dichloromethane. In this work, the organic solvent DMC was used in a 

purification step and, from a commercial point of view, due to its lower toxicity, DMC 

would be the preferred solvent of all three. However, the possibility of eliminating the 
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purification step would signify a cheaper extraction process. For this reason, an assay 

using Tween 20 at 50mM and overnight digestion was performed, and the film obtained 

without the purification step using an organic solvent was analysed by FTIR. Despite the 

similar results obtained for 50mM and 150mM, the lower Tween 20 concentration was 

chosen to ensure a reduced presence of surfactant in the extracted polymer. Moreover, the 

longer digestion time was chosen to maximize the polymer extracted. Biomass digestion 

was followed by centrifugation and a washing step. After discarding the final supernatant, 

the sample was analysed by FTIR but, as it can be seen in Figure 16, the water peak 

(~3400cm-1) obtained was too high. To solve this issue, the sample was then dried at 80ºC 

for 2h. The dried sample was then analysed by FTIR again (Figure 17). The FTIR spectra 

of the dried sample showed that, despite of being possible to identify the well-known 

peak of PHA (~1700cm-1), as well as other peaks from ~900cm-1 to ~1200cm-1, there 

were also peaks from other substances in this last interval. Their presence could either 

result from the surfactant and/or from the cell debris presence. Actually, the presence of 

cell debris was clearly confirmed by visualization at naked eye. Because of this, the 

extraction yield value (16.17%) cannot be properly considered as a final result due to the 

presence of such contaminations. However, this test confirmed that a purification step not 

only removes the remaining surfactant, but also the NPCM debris, helping to improve the 

extraction yield. However, the presence of PHA was still identified despite the process 

requiring further optimizations in order to find viable alternatives for the polymer 

purification with organic solvents. Moreover, the inclusion of a purification step should  

Figure 16 – FTIR analysis of cell pellet after centrifugation rounds. 



42 
 

be assessed considering the final application of the extracted PHA. Less noble 

applications, as in agriculture, could use less purified PHA, while applications in the 

medicine field require a very efficient purification step. 

 

 

Figure 17 – FTIR analysis of pellet after sample drying and comparison with control 

samples. 

 

5.7 Redesigning the initial process 

 

Considering the obtained results, the initial extraction process was redesigned 

(Figure 18). After starting with 0.800g of biomass and 10mL of Tween 20, a successful 

reduction to 0.300g of biomass was defined. The biomass digestion duration was also 

reduced, following the last tests performed, proving that 4h are enough to achieve similar 

results, when compared to yields obtained with overnight digestions. This also reflects on 

a process efficiency increase, mainly regarding the costs, since less time and energy are 

required. Despite not being one of the main parameters that were tested, the temperature 

at which the digestion was performed was also increased to 60ºC following reports that 

suggested this temperature could be enough to increase, in roughly 20%, the extraction 

efficiencies (90). Improvements to the purification part were also carried, by turning the 

single centrifugation washing step into three steps, resulting in much less surfactant 

accumulation in the resulting samples. The overall process toxicity was greatly reduced 

since the chlorophorm was completely replaced with DMC, a much less toxic and   
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Figure 18 – Final process, with its improved steps, obtained after all tests performed. 

 

biodegradable solvent. Furthermore, the complete removal of this final step is a 

possibility after a successful isolation and detection of PHA with only surfactant usage. 

This attempt has already been made, with both pure (90) and mixed (91) cultures, using 

SDS, although higher recovery yields were achieved with pure cultures (around 90-95%) 

than with mixed ones (ranging from 49-65%). This difference follows the Patel et al. 

(2009) findings, that hypothesised a stronger resistance from mixed cultures to chemical 

treatments, due to the existence of a complex and compact cellular matrix, created 

between the various bacteria in the mixed culture. PHA extraction is still a poorly studied 

area, especially when applied to mixed cultures. Results obtained in this work, with 

surfactant Tween 20 do not differ much from those obtained by Samorì et al (2015) (91) 

with SDS, despite the differences between both processes, namely surfactant used, 
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digestion temperature, duration, and PHA percentage found in the biomass. Furthermore, 

one of the biggest problems when using SDS is the difficulty to remove it from the 

isolated polymer, which was not a problem with Tween 20, especially when used at lower 

concentrations. However, several other aspects need to be considered like other solid-

liquid ratio, the need of the organic solvent step and the overall process itself, since the 

number of steps used in this thesis could still be reduced with further investigations. 
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6. Conclusions 

 

 This work allowed the study of the efficiency of surfactants and ionic liquids in 

the biomass lysis and PHA extraction from mixed cultures. After the initial screening 

performed with a variety of solvents, Tween 20 was the one chosen due to the lack of 

surfactant accumulation and the success on the isolation and analysis of PHA film. Further 

tests were performed with this surfactant to optimize several variables, namely the 

temperature, biomass quantity, surfactant concentration, digestion duration and organic 

solvent usage. The best result, 61.07%, of PHA extraction yield was achieved with a 

surfactant concentration of 150mM and 6h of digestion, with 0.300g of biomass. 

Extractions performed with higher surfactant concentrations (400mM and 500mM) 

presented low yields and low PHA isolation, because of the high viscosity of the 

surfactant solution at this concentration, greatly reducing the efficiency of the stirring step 

and, consequently, the biomass lysis. Despite the recovery values not changing much with 

the different biomasses (even reaching higher values with the lower percentage of PHA 

accumulated), it has been reported that higher polymer accumulation and percentage often 

leads to higher biopolymer purity (91). However, the extraction procedure developed in 

this study worked with low amounts of polymer accumulated with quite significant 

extraction yields. The temperature was set at 60ºC, as reported in literature, and 4h proved 

to be enough time for the biomass digestion. Chlorophorm was completely replaced with 

DMC, greatly reducing the toxicity of the overall process. Furthermore, an extraction 

without the organic solvent usage step was performed and it was possible to isolate PHA 

with an extraction yield of 16.17%. At the end of this work, an improved and redesigned 

process for PHA extraction from mixed cultures was obtained (Figure 18), and future 

work could possibly start from here, aiming to develop new improvements and strategies 

for PHA extraction.  
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7. Future perspectives/work 

 

 The polyhydroxyalkanoates industry still requires further investigation and 

studies to make it economically viable in nowadays big industries. One of the major 

drawbacks, when compared to common plastics, is the increased price, not only of the 

final biopolymer, but of the entire extraction process as well. First, despite costing less 

than 50% of the total final cost of the entire process, PHA production needs to be 

optimized to produce cells with very high PHA percentage accumulation. New types of 

substrates and feedstocks could be tested, following the already usage of wastewaters and 

such materials, to further reduce the costs, as well as keeping the process environmentally 

friendly. Regarding the extraction phase, wet biomass could be applied directly into the 

process, avoiding a freeze-drying step, as well as eventually keeping the cells complete 

integrity. However, the water and other substances presence in the fresh biomass could 

negatively impact the biomass digestion, as well as the stipulated extractive solvents 

concentration. Nowadays the main step involves the isolation of the biopolymer from the 

resulting cell debris, usually made by solubilization in an organic solvent. Despite being 

extremely effective, many other strategies using DMC or water based extractions should 

be further tested to increase the lower yields, while greatly reducing process’s toxicity as 

well as increasing the range of application areas of the resulting biopolymer. The 

complete removal of this step is also a possibility, since further studies around NPCM 

solubilization can develop new strategies that could allow high purity PHA isolation 

through simple centrifugation, after the main digestion.  
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9. Appendix 

Appendix A – Extractive agent’s structures. 
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Appendix  B 

 

 
 

 

Results from the first screening (before washing steps improvement) 
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Appendix C – FTIR analysis of the second screening. 
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