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Abstract 

 

 

 

Hyaline cartilage is composed by specialized cells named chondrocytes. 

It is mainly present on joints. Its degeneration is associated not only with 

ageing, but also with diseases like osteoarthritis and rheumatoid 

arthritis. Cell therapy is an emerging concept for these diseases. 

Mesenchymal stem cells (MSCs) can differentiate into various cell 

lineages, including chondrocytes. Recent studies indicate the 

significance of how cells are capable of sensing mechanical stimuli and 

initiate signaling cascades – mechanotransduction. Although the 

mechanisms are not totally understood, it is known that 

mechanotransduction plays a significant role during chondrogenesis. 

“Mechanical memory” is an emerging concept: it has been 

demonstrated that cells lose their multipotency if cultured on stiff 

substrates for more than 10 days. Distinct studies using primary cells or 

MSCs indicate that optimal matrix stiffness for chondrogenic 

differentiation is between 1 kPa and 320 MPa, depending on cell type 

and platform used. On the present study, we aimed to elucidate the 

optimal stiffness for chondrogenic differentiation of MSCs. Various 

PDMS substrates were produced and characterized by rheology, 

presenting Young’s modulus between 21 kPa and 0.9 kPa. We verified a 

decreasing tendency on the nucleus area along with substrate softening, 

suggesting that MSCs were responding to substrate stiffness. To reduce 

the influence of “mechanical memory”, only naïve cells were induced to 

differentiate. Safranin O (SO) staining revealed that 1 kPa substrate 

favored cell agglomeration, typical of chondrogenesis. Using 

fluorescence of this dye, we established a semi-quantitative assay to 

evaluate chondrogenic differentiation of MSCs. This assay suggests that 

1 kPa substrate potentiates chondrogenic differentiation of MSCs. 

Despite SO assay results need further validation by RT-PCR, 

preliminary data indicates 1 kPa as the optimal stiffness for 

chondrogenic differentiation. 
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Resumo 

 

 

A cartilagem hialina, cujas células especializadas são os condrócitos, 

encontra-se maioritariamente presente nas articulações. A degeneração 

deste tecido está associada a envelhecimento e a diversas doenças como 

artrite reumatóide e osteoartrite. Recentemente, tem sido investigada a 

possibilidade de desenvolver terapias celulares para o tratamento destas 

patologias, utilizando células estaminais mesenquimais (MSCs). As 

MSCs têm capacidade para se diferenciar em várias linhagens, incluindo 

condrócitos, apresentando-se como um dos mais promissores tipos 

celulares em medicina regenerativa. Nos últimos anos as vias de 

sinalização iniciadas pelos estímulos mecânicos do meio envolvente – 

mecanotransdução - tem sido alvo de estudo. Apesar dos mecanismos 

de diferenciação condrogénica não serem completamente conhecidos, 

tem-se tornado evidente que a mecanotransdução desempenha um 

papel crucial neste processo. Foi recentemente demonstrado que as 

MSCs têm “memória mecânica” e que, se cultivadas por mais de 10 dias 

num substrato rígido perdem a multipotência. Vários estudos 

utilizando células primárias ou MSCs apontam a rigidez ótima para 

diferenciação condrogénica deste 1 kPa até 320 MPa, dependendo do 

tipo de células e plataforma utilizados. Este estudo propôs-se então a 

clarificar qual a rigidez ótima para diferenciação condrogénica de MSCs. 

No presente estudo, foram preparados vários substratos de PDMS e 

caracterizados por reologia, apresentando módulos de Young que 

variam entre 21 kPa e 0.9 kPa. A diminuição da área nuclear nos 

substratos menos rígidos permitiu validar que estes substratos são 

capazes de induzir um estímulo mecânico. Somente células de baixa 

passagem foram induzidas a diferenciar diminuir o impacto da 

memória mecânica. A coloração de Safranin O (SO) permitiu evidenciar 

que a formação de aglomerados celulares – típica da condrogénese – é 

favorecida pelo substrato de 1 kPa. Recorrendo à fluorescência deste 

corante, foi possível estabelecer um método semi-quantitativo para 

avaliar diferenciação condrogénica de MSCs. Este ensaio indica que o 

substrato de 1 kPa potencia a diferenciação condrogénica de MSCs. 

Apesar dos resultados de SO requererem uma validação mais exaustiva 

por RT-PCR, os resultados preliminares apontam o que a rigidez ótima 

para diferenciação condrogénica de MSCs é de 1 kPa. 
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1. Introduction 

 

1.1 Cartilage characteristics and associated diseases 

 

Cartilage is a specialized tissue that can be divided into three types: hyaline, 

fibrous and elastic [1]. Fibrous cartilage is the less elastic, usually related to zones 

where forces applied are harder, such as the knee or vertebral joints. Elastic cartilage 

has more flexible properties and it is often present in specific zones, like the external 

ear. Hyaline cartilage (HC) is mainly associated to bone development, growth, 

repair and articular joints. Here, HC coats the edges of coupled bones, creating a slot 

filled with synovial fluid facilitating transmission of loads and diminishing friction 

[2]. In addition, HC lacks blood, lymphatic vessels, or nerves.   

Chondrocytes are specialized cartilage cells, confined in lacunae and encircled by 

the extracellular matrix (ECM), responsible for maintaining and repairing the ECM 

[1,3]. Water, collagen, and proteoglycans predominantly compose cartilaginous 

ECM. Together, these elements distribute chondrocytes sparsely and retain water. 

Water is mainly present between collagen fibers and contributes to its gel-like 

properties, enabling HC to retake its shape after compression. Collagen type II 

constitutes 90-95% of all cartilaginous ECM collagen and is responsible for 

maintaining the sturdy structure. Collagen types I, IV, V, VI, IX, and XI are also 

present, but in a minor fraction. Despite constituting only 10-15% of the ECM, 

proteoglycans are essential for a healthy joint function, since they provide HC both 

endurance and flexibility characteristics. Aggrecan (ACAN) is the most abundant 

proteoglycan. Proteoglycans are stabilized on the ECM by hyaluronan [4]. This 

complex is responsible to maintain cartilage osmotic properties (Figure 1).  
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HC is organized into three distinct zones with different functions: superficial, 

middle and deep zones (Figure 2) [5]. The superficial zone (10-20% of total volume) 

is composed by parallel to surface collagen type I fibers and flattened chondrocytes 

at high density. It is responsible for lubrication and protection of deeper zones [2,5]. 

The middle zone (40-60% of total volume) has thicker obliquely organized collagen 

fibers, proteoglycans and spherical chondrocytes. It is responsible to resist 

deformation. Finally, the deep zone (30% of total volume) endures compressive 

forces caused by movements of the body and transmit it to the bone. Here, 

chondrocytes are hypertrophic, exhibit large diameters [6], collagen fibers are 

oriented perpendicular to the surface and are thicker than in the middle zone [2,5]. 

Moreover, middle and deep zones express prominent levels of proteoglycans 

enabling it to bear compressive forces. Also, collagen types II and IX are more 

prevalent on these zones. The subsequent zone is a calcified layer responsible for 

connecting cartilage to the bone. These characteristics grant specific zone stiffness 

[7]. Stiffness increases with profundity: superficial zone has low matrix stiffness, 

Figure 1 – Organization of hyaluronan on cartilage ECM. Hyaluronan forms a complex, mediated 

by adapter proteins, with proteoglycans to stabilize these proteins on the ECM and maintain 

homeostasis [4]. 
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around 80 kPa; middle zone stiffness is near 2.1 MPa, deep zone is estimated to be 

320 MPa and calcified zone is about 5.6GPa.  

 

 

Zonal organization is achieved by differential secretion of specific biomolecules 

to the extracellular matrix by chondrocytes [8,9]. Superficial zone is maintained by 

the presence of transforming growth factor (TGF)-β1 and bone morphogenetic 

protein (BMP)-7, whereas middle and deep zones are maintained by TGF-β1 and 

insulin-like growth factor (IGF)-1. This leads to differences on intracellular 

signaling, and consequently differential expression of zone-specific chondrogenic 

Figure 2 – Articular cartilage schematic cross-sectional representation [5]. Superficial zone 

(SZ) is predominantly composed by flattened chondrocytes and collagen type I, whose fibrils are 

parallel to the surface [2,5]. These fibrils are parallel to the surface. On the middle zone (MZ), 

spherical chondrocytes are dispersed between the oblique collagen fibers. Additionally, collagen 

is thicker and perpendicular to the surface on the deep zone (DZ). Here, chondrocytes are 

hypertrophic. Middle and deep zones express higher levels of collagen type II and IX and 

proteoglycans. Calcified zone (CZ) connects cartilage and the bone (SB). 
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markers. Particularly, chondrocytes of superficial zone secrete superficial zone 

protein (SZP), also known as lubricin, a mucinous protein present on synovial fluid 

[8]. On middle and deep zones chondrocytes express higher levels of aggrecan 

(ACAN), glycosaminoglycans (GAG) and collagen type II (Col2a1), when compared 

to superficial zone [9,10]. Middle zone chondrocytes express Cartilage Intermediate 

Zone Matrix Protein (CILP) [5]. Also, deep zone chondrocytes express runx2, a 

transcription factor needed for endochondral ossification during bone repair [6]. The 

zonal differential secretion and/or expression described agrees with the 

characteristics of the cartilaginous zones — chondrocytes of superficial zones 

maintain lubrication, while chondrocytes of deeper zones synthetize proteoglycans 

to tolerate stronger forces. 

Ageing alters ECM characteristics [11]. Hydration of the ECM and proteoglycan 

aggregates decreases with age, diminishing joint lubrication. Besides, chondrocytes 

migrate into inner layers and concentrate on the deep zone. Together, these 

modifications reduce HC ability to resist to compressive forces and movements 

between bones are hampered. 

There are innumerous diseases that affect articular cartilage [12,13]. Osteoarthritis 

(OA) and rheumatoid arthritis (RA) are good examples of diseases that impair the 

homeostasis of joints. OA is characterized by a progressive degeneration of articular 

cartilage whose mechanisms and causes are not completely understood [12]. 

Remodeling and sclerosis are usually associated. It can be idiopathic or secondary 

(triggered by other diseases, such as neurologic or metabolic disorders). RA is an 

autoimmune disease that results in chronic inflammation [14]. This disease is 

associated with the destruction of cartilage, mainly mediated by “aggressive” 

fibroblast-like synoviocytes [13]. Physiologically, these cells are responsible for 

maintaining synovial fluid and ECM. In case of disease, they activate innate and 

adaptive immune system, attracting immune cells to the synovial fluid. Thus, the 
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balance between proteases and their inhibitors is impaired, which stimulates 

cartilage erosion and promotes chondrocyte catabolism, resulting in joint injury [14].  

Cartilage regenerative capacity is currently an important biomedical challenge 

and a goal that will have a high impact on patient’s quality of life. Hence, several 

strategies are currently being pursued with that objective in mind. Recently, a 

cartilage stem/progenitor cells (CSPCs) population was identified on cartilage [15]. 

These cells show a great chondrogenic potential, suggesting at least some 

regenerative capacity. Possibly in the future, a more exhaustive study of these cells 

will help to develop a more effective cell therapy. Currently, injection of autologous 

chondrocytes is an innovative treatment option for RA, OA and other cartilage 

diseases [16]. However, the literature indicates that when cultured in monolayer, 

chondrocytes de-differentiate, hampering cell expansion [17]. Recent studies 

indicate a promising future for cell therapy using mesenchymal stem/stromal cells 

(MSCs) for RA and OA, since they have the ability to modulate inflammation while 

undifferentiated cells [18,19] and have been documented to have the ability of 

differentiating along the chondrogenic lineage [20]. Therefore, MSC therapy is a 

promising alternative with these two distinct targets, which could possibly increase 

treatment efficiency. In fact, there are already ongoing clinical trials with MSCs for 

OA [19]. Despite preliminary promising results, studies point that efficiency of 

treatment could probably increase if cells where guided toward a specific cell 

lineage. Matrices, scaffolds and/or adequate adjuvants, such as appropriate growth 

factors administered along with MSCs, might be the key to increase treatment 

success rate. 

Hence, optimizing culture conditions for the proliferation and subsequent 

chondrogenic differentiation of MSCs is a present-day need, allowing in the future 

that MSCs could be used for regenerative therapy in cartilage diseases, ageing, 
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degeneration and possibly bone repair.  In this present study, we aim to define an 

optimal substrate for chondrogenic differentiation of MSCs in vitro. 

 

 

1.2. Mesenchymal stem cells can differentiate into chondrocytes 

 

Human mesenchymal stem (or stromal) cells (hMSC) are multipotent cells 

present not only in extra-embryonic tissues, like the umbilical cord tissue — UCT 

(also known as Wharton’s jelly (Figure 3)) — and placenta, but also in adult tissues 

like the bone marrow (BM) - where MSCs were first identified - or adipose tissue 

(AT) [21].  These cells have colony forming unit-fibroblast (CFU-F) capacity, 

suggesting that they are capable of proliferating and forming colonies, similar to 

fibroblasts behavior [22]. 

 

 

Figure 3 - Umbilical cord schematic representation. MSCs can be isolated from the Wharton's Jelly 

(zone 4) [21] 

. 
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MSCs present a set of obligatory surface markers (CD73, CD90 and CD105) and 

lack the expression of others (CD45, CD34 and CD14 or CD19 and HLA-DR) [20]. 

Moreover, they have the ability not only to proliferate extensively but also to 

differentiate in vitro into osteocytes (bone cells), chondrocytes (cartilage cells) and 

adipocytes (fat cells). MSCs can also differentiate into other cellular types like 

cardiomyocytes (heart muscle cells) and hepatocytes (liver cells) [23,24]. Although 

the differentiation mechanisms are not completely understood, during the past 

years it has become clear that apart from soluble biomolecules (like 

growth/differentiation factors),  the matrix elasticity, cell adhesion and cell shape are 

also able to trigger different signaling cascades and modulate differentiation 

towards distinct lineages [25,26].  

 Soluble growth factors (sGFs) play a key role in initiating differentiation 

signaling cascades in mesenchymal stem cells (MSCs). Transforming growth factor 

β (TGFβ) has three isoforms (1, 2 and 3) and it is involved in many cellular processes, 

like proliferation, apoptosis, cell migration and adhesion [27]. Recent studies 

asserted that TGFβ3 as an essential element on chondrogenesis and myogenesis 

[28,29]. Binding of TGFβ3 to receptor type I recruits type II receptor, which 

phosphorylates GS-domain of receptor I and activates the dimer (Figure 4) [30]. This 

dimer recruits and phosphorylates SMAD2 and SMAD3 complex. Instead, binding 

of BMPs (bone morphogenetic proteins), GDFs (growth and differentiation factors) 

or AMH (anti-Muellerian hormone) to the receptor recruits SMAD1, SMAD5 and 

SMAD8. Both pathways induce the formation of a complex with SMAD4, which is 

capable of binding DNA and regulate the expression of transcription factors. 

Furthermore, it has also been documented that phosphorylated SMAD3, specifically 

MH2 domain, forms a complex with SOX9 (SRY-type high mobility group box 9). 

Also, this complex requires CBP/p300 (cAMP response element-binding protein 

binding protein and its paralog p300), a protein with  histone acetyltransferase 
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activity, as a co-activator [31]. Sox9 cooperates with L-SOX5 and SOX6 to activate 

target genes [32]. Particularly, SOX9 has a DNA-binding domain that targets Col2a1 

gene, a gene that encodes type II collagen, one of the most abundant component of 

cartilaginous matrix [33,34]. It also binds to other cartilaginous specific genes, such 

as collagen type IX and XI (Col9A1, Col11A) and aggrecan [35].  

Moreover, TGFβ also primes MAPK signaling pathway [36]. It can be subdivided 

into p38 and ERK-1 pathways that promote and repress chondrogenesis, 

respectively. Although p38 signaling during chondrogenesis is widely accepted, 

ERK1/2 is controversial, since its inhibition has different effects on distinct cell lines: 

on MSCs does not influence differentiation while on ATCD5 cells— a mouse 

teratocarcinoma chondrogenic cell line that is widely use to study chondrogenic 

differentiation — it positively influences differentiation [37,38]. Possibly, these 

differences are due to the coordinated and differential activity of p38 and ERK1/2 

Figure 4 - Signaling pathway of TGFβ during chondrogenesis, mediated by the Smad2/3 

complex. Binding of TGF activates the dimer, which phosphorylates Smad2/3 complex [30]. Then, 

this complex can bind to Smad4 and target different transcription factors – generic pathway. On 

chondrogenic pathway, Smad2/3 forms a complex with Sox9 and CBP/p300 [31], enabling it to move 

into the nucleus and target specific chondrogenic genes, as Col2a1, ACAN and Col9a1 [33-35]. 
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signaling pathways during chondrogenesis, documented on bone marrow 

mesenchymal progenitor cells (MPCs) [36]. Besides, MAPK pathway also modulates 

cell adhesion molecules expression, as N-cadherin and integrin α5β1, known to be 

important during chondrogenesis. As a conclusion, TGFβ3 is an essential factor for 

triggering chondrogenic differentiation of MSCs. 

MSCs respond to a large variety of biomolecules of the ECM. Various 

combinations of materials have been tested to induce chondrocyte differentiation 

[39]. In fact, a study revealed that pellet cultures – 3D cultures - of MSCs express 

higher levels of chondrogenic markers (Col2A1, Sox9 and ACAN) when 

differentiated in the presence of TGF𝛽3 and heparan sulfate (HS) [40]. In fact, it was 

shown that HS enhanced TGF𝛽3 signaling and Smad2/3 expression when compared 

to control conditions. This study also documented that there were no differences on 

the expression of TGFβ receptors, suggesting that HS possibly favors the binding 

ratio of TGFβ to receptors. Another study stated that hyaluronic acid (HA) 3D 

hydrogel is the one that most potentiates chondrogenesis of adipose stromal derived 

cells, when compared to heparan-sulfate and chondroitin-sulfate hydrogels [41]. 

These data suggest that composition of the extracellular matrix influence 

chondrogenic differentiation of MSCs. 

Despite the fact that TGFβ3 plays a central role on chondrogenesis, other 

molecules are also documented as differentiation enhancers [42]. For example, 

insulin and glucose have been pointed as stimulators of DNA synthesis by 

facilitating the availably of a source of energy to various cell processes [43]. Ascorbic 

acid facilitates collagen-I and -II deposition. Furthermore, GDF-5 stimulates cell 

condensation during early stages, and increases collagen II expression, by 

phosphorylation of Smad1/5/8 complexes [44]. IGF-1 also enhances chondrogenesis, 

but is less studied [37]. 
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Although chondrogenic differentiation mechanisms are not fully understood, 

some proteins have been identified as mediators. One example is Vav1, a protein 

involved on defining between chondrogenic or adipogenic fate [45]. Vav1 is known 

to increase Sirt1 expression, a deacetylase that targets Sox9 (a chondrogenic marker) 

and PPARγ, required for adipogenesis. It was documented that Sirt1 deacetylates 

Sox9, activating it and inducing chondrogenesis. Losing Vav1 inactivates Sox9 and 

activates PPARγ, promoting adipogenesis. Therefore, Vav1 absence has a negative 

effect on chondrogenesis.  MicroRNAs have also been identified as chondrogenic 

mediators, particularly miR-335-5p, which is highly expressed during 

chondrogenesis [46]. This micro RNA inhibits two Sox9 inhibitors, Daam1 and 

Rock1, potentiating chondrogenesis on MSCs. In the future, the interplay between 

all these mediators need to be elucidated.  

 

1.2.1. The interplay between N-cadherin, integrins and the Extracellular Matrix 

plays a key role on chondrogenic differentiation 

 

The ECM is a non-cellular component that exists in all tissues (although with 

distinct compositions), that provides structural support to cells [47,48]. Various 

fibrous proteins compose ECM - collagen type I and III, fibronectin, elastin, laminins, 

tenascin - and proteoglycans – decorin, perlecan, aggrecan and hyaluronic acid. 

These proteins form a compliant meshwork that is responsible for the mechanical 

characteristics of the ECM. Each protein plays specific roles to maintain ECM 

homeostasis. Proteoglycans buffer, hydrate and facilitate force-resistance properties 

[49]. Collagens regulate tensile strength, cell adhesion and migration and direct 

tissue development [50]. They are usually associated with elastin, a molecule that 

enables the tissue to stretch. Fibronectin is mainly involved on ECM internal 

organization and mediates cell attachment [47]. ECM is a dynamic structure, 
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preserved by a balance between matrix metalloproteinases (MMPs) and MMP 

inhibitors [48]. Cells adhere to ECM, mediated by specific receptors, such as 

integrins, that transduce signals and initiate signaling cascades. The reciprocal 

interaction between ECM and cells is crucial to trigger various biochemical and 

biophysical signals that sustain cell survival, proliferation, growth and 

differentiation. Succinctly, ECM is essential to maintain cell homeostasis.  

Chondrogenesis is modulated, in vivo, during development by the 3D structure 

that regulates cell shape [51]. Firstly, mesenchymal cells are condensed on pre-

cartilage zones. This condensation is mediated by cell-cell adhesion molecules, 

especially N-cadherin and N-CAM [52]. During differentiation, expression of these 

receptors decreases, enabling a more spherical morphology, and initiates a 

reorganization of the cytoskeleton [53]. Cell shape can also be altered by biophysical 

interactions between integrins and collagen and proteoglycans, with the former 

being also connected to the cytoskeleton. Changes on polymerization of cytoskeletal 

filaments is transmitted to the nucleus, leading to upregulation of chondrogenic 

factors, such as Sox9, which are capable of initiating synthesis of cartilage-specific 

ECM molecules [54]. Then, the fate of these pre-cartilaginous cells can diverge: they 

can undergo an articular hyaline tissue pathway or an endochondral bone 

development pathway [42]. Cells on the articular path start to express doublecortin 

and growth/differentiation factor-5 (GDF-5) and are malitrin-1 negative. 

Additionally, they maintain high expression of ACAN and PRG4 (lubricin) and low 

Col2a1 and do not proliferate extensively or acquire a hypertrophic phenotype.  

Cell shape has also been documented as an essential regulator of cell fate in 

several contexts [55]. Cells are capable of altering their morphology, namely through 

N-cadherin expression, in order to facilitate cell-cell interactions that are known to 

promote actin polymerization [56]. Moreover, RhoA (a Rho GTPase family protein) 

and its downstream effector, Rho-associated protein kinase (ROCK), have been 
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identified as cell shape mediators. They are known to be involved on focal adhesion-

initiated signaling, myosin phosphorylation, regulation of actin contractility and 

promote formation of stress fibers [25]. ROCK activity was documented to be higher 

on spread cells than on round cells, the former known to exhibit stress fibers and be 

more contractile [57]. In addition, RhoA activity is modulated by cell density [25]. 

RhoA activity was proven to be higher on low-density cultures when compared to 

high-density cultures. Likewise, MSCs express more stress fibers on low-density 

cultures. RhoA and ROCK are proteins of interest since they have been documented 

as relevant factors on lineage commitment of MSCs between osteogenic and 

adipogenic fates [25]. Namely, RhoA downregulation is associated to unspread and 

spherical cells, which promotes adipogenesis. No significant differences were found 

on RhoA activity during chondrogenic/myogenic differentiation of MSCs [58,59]. If 

RhoA plays any key role during chondrogenesis, it is still unknown.  

Likewise, Rac1 - a Rho GTPase - activity was found to be modulated by cell shape 

[59]. This protein is known to be activated by integrins and stimulate cell spreading 

[60] promoting actin meshwork and increasing N-cadherin cell adhesion [61]. A 

recent study identified Rac1 as the “cell shape sensor” that regulates myogenic or 

chondrogenic lineage commitment [59]. Results indicate that in the presence of 

TGFβ3, cells cultured on a substrate that favors acquisition of a non-spread spherical 

morphology (due to the presence of small islands that provide cell attachment only 

on those confined areas), express higher levels of Sox9 (a chondrogenic marker), 

when compared to unconstrained spread cells. This study hypothesizes that the 

“round shape” can inhibit Rac1—a protein necessary and sufficient to commit MSCs 

to a myogenic lineage (Figure 5). Also, it was suggested that a spread shape activates 

Rac1, which increases N-cadherin expression and leads to the expression of smooth 

muscle cell (SMC) genes. Also, this protein is involved on late skeletal myotube 

fusion. Concluding, Rac1 inhibition is required during chondrogenic differentiation.  
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Specific receptors on the cell surface are responsible for recognizing ECM 

proteins, initiating signaling cascades. It is important to understand how the 

expression of adhesion receptors is modulated during chondrogenesis. Particularly, 

integrin expression pattern during chondrogenic differentiation has been 

investigated [62,63]. Results suggest that fibronectin receptor (integrin α5ß1) and 

fibrinogen and fibronectin receptor (GPIIb/GPIIIa) downregulation may assist 

chondrogenic differentiation. These studies also proposed that downregulation of 

ILK, CD47 and ICAP1 might be involved in transducing the signal intracellularly. 

Possibly, downregulation of these specific integrins may assist cells to acquire a 

round shape, triggering chondrogenic differentiation signaling. Furthermore, a 

Figure 5 - Cell shape modulates MSCs chondrogenic and myogenic fate [59]. If cell acquires a 

spread shape, Rac1 activity increases leading to an increased expression of N-cadherin. This protein 

is needed to commit cells to myogenesis. When cells acquire a round shape, Rac1 activity is inhibited, 

committing cells to chondrogenesis.  
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study confirmed that binding of integrin ß1 to collagen type I is essential to alter cell 

morphology and facilitate cell-cell adhesion is essential during cell condensation 

typical of chondrogenesis [64]. In summary, interactions between MSCs and ECM 

are essential to trigger chondrogenesis. 

 

1.2.2.  hMSCs signaling pathways can be mechanomodulated 

 

Stiffness is a structural property of an object that can be defined as the internal 

resistance to deformation (change of size or shape) when a force is applied, that 

depends on the organization, size and shape of the material [65]. Tensile modulus is 

a normalized metric, independent of geometric properties, that defines the material 

tendency to undergo elastic strain (unitless normalization of deformation), when 

experiences stress (force per unit of area). Young’s modulus (or tensile modulus) (E) 

is a measure of stiffness and can be determined by the following formula: 𝐸 =
𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
. 

It is usually presented on units of pressure, as Pascal. Also, shear modulus (G) 

defines the material resistance to shear stress.  

Several techniques, as magnetic resonance elastography (MRE) have provided 

information about each organ stiffness [66]. Therefore, various studies put an effort 

on understanding of how cells are capable of sensing microenvironment stiffness 

and activate mechanical intracellular pathways and modulate gene expression - 

mechanotransduction [67].  

The significance of mechanotransduction has become clearer on the past few 

years. Consequently, several studies have tried to explain how cells sensed the 

matrix elasticity, and how it was transduced through signaling pathways (Figure 6) 

[26,68–70]. Focal adhesions (FA), which involve integrins—transmembrane 

receptors that bind to ECM elements on the extracellular side—, were identified as 

mediators to transmit tension forces. These structures are connected (on the 
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intracellular side) to actomyosin cytoskeleton—composed by filamentous actin (F-

actin) and myosin-II, a motor protein that mediates contractility of the actin 

filaments through adapter proteins. Integrins can transmit signaling bidirectionally. 

FA are responsible to initiate a cascade signaling in response to substrate stiffness. 

First, a stiff substrate induces stress fibers - contractile actin and non-contractile 

myosin II filaments - contraction and microtubules compression, creating a traction 

force that initiates integrin signaling: adapter proteins bind cytoplasmic domains of 

integrins and activate integrin binding to the ECM [70]. Mechanical force on 

integrins, particularly on talin – a FA component – expose vinculin binding sites and 

recruit other proteins that bind to actin [71]. Consequently, actin polymerization is 

further stimulated and stress fibers contractility is altered [70]. Thus, contractility of 

actin cytoskeleton increases, which fosters focal adhesions growth, elongation and 

increase expression levels of focal adhesion components, as filamin, talin or focal 

adhesion kinase (FAK) [26]. Particularly, α5β1 integrin can switch between relaxed 

and tensioned state in response to myosin II cytoskeletal tension in response to 

substrate stiffness [68]. This conformational change promotes FAK phosphorylation, 

initiating several signaling cascades, promoting further activation of integrins and 

enhancing cell adhesion to ECM and increasing intracellular tension [70]. These 

alterations lead to modifications on cell shape – namely, cells growing on stiff 

substrates exhibit a spread shape.  
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RhoA/ROCK signaling pathway was found to play a key role on 

mechanotransduction [70,72]. Mechanical tension activates RhoA, and consequently 

its effector, ROCK. ROCK activates LIMK1, which phosphorylates and inactivates 

cofilin, a actin-depolymerizing protein [72].  Cofilin binding to actin leads to 

depolymerization while phosphorylation of this protein enables actin 

polymerization and stabilization and stress fiber formation [73]. Also, ROCK also 

phosphorylates and activates myosin light chains of myosin II (MLC) [74,75]. 

Figure 6 – Substrate stiffness can modulate intracellular signaling pathways. Mediated by focal 

adhesions, cells are capable on sensing the stiffness of the microenvironment, and initiate specific 

signaling cascades that modify their cytoskeleton, and consequently their shape and gene expression 

[26,68–70]. Stress fibers and microtubule compression activate integrin binding [70]. Moreover, 

changes on tension state on integrin activates integrin signaling pathways, mediated by FAK [68]. 

Together, this increases actin polymerization and stress fibers contractility, which leads to an increase 

on cell adhesion to the ECM, mediated by focal adhesion. These alterations modify cell shape - cells 

growing on a stiff substrate exhibit a spread shape. Also, intracellular tension can be transmitted to 

the nucleus, modulating gene expression. Particularly, nuclear lamin-A is more expressed on stiff 

substrates [80]. 
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Activated MLC can interact with actin, modulate cytoskeleton contractility and form 

stress fibers. Accordingly, RhoA/ROCK signaling pathway can modulate the 

cytoskeleton in response to substrate stiffness. The actin cytoskeleton-focal adhesion 

interplay is essential to transduce mechanical signals – forces generated by actin 

polymerization affect the activity of mechanoresponsive proteins, such as integrins; 

these proteins activate small G proteins, as Rho, capable of regulating cytoskeleton 

proteins [76]. Changes on actomyosin contractibility and actin polymerization 

modulate the resulting force machinery, forming an actin–integrin feedback 

network. 

 

Furthermore, actomyosin contractility and resistive forces of microtubules 

transmit the balance of tensions to the nucleus, modulating genetic expression. The 

nucleus is a mechanoresponsive structure, since it is strictly connected to the 

cytoskeleton (Figure 7) [77]. LINC complex (SUN2 and nesprins) proteins connect 

nucleoskeleton to the cytoskeleton [78]. Particularly, it connects lamin A/C, fibrillar 

proteins present on the inner layer of the nuclear envelope to extra-nuclear actin and 

transmit intracellular tension to the nucleus. On a stressed nucleus, conformational 

changes are induced in lamin A and B, hindering access to kinases, such as cyclase-

dependent kinases (CDK) [77,79]. Consequently, lamin A/C are not degraded and 

are stabilized on the nucleus. Also, it has been described that culturing cells on a stiff 

substrate not only stabilizes lamin-A but also increases its expression (Figure 6) [80]. 

On soft substrates, low-stress conditions do not impair interaction between kinases 

and lamin A/C, resulting on their degradation [77]. Evidences also indicate that cells 

growing on a stiff substrate exhibit a stretched nucleus while cells growing on a soft 

matrix exhibit a relaxed nucleus [79]. Therefore, it is possible to conclude that 

nucleoskeleton can be mechanomodulated. 
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MSCs are capable of sensing the stiffness of the microenvironment in which they 

are cultured, triggering different signaling pathways that modulates their fate 

[81,82], similar to what was described above for cell shape. A stiff ECM leads to the 

development of focal adhesions, which increases stress fibers and intracellular stress 

Figure 7 - Nucleus is a mechanoresponsive structure [78]. LINC complex proteins are responsible 

to connect cytoskeleton to the nucleoskeleton. Cells growing on a stiff substrate show high 

intracellular tension. LINC complex transmits this tension to the nucleus, inhibiting lamin-A 

degradation and stabilizing it on the nucleus. On a relaxed nucleus, lamin-A is degraded.  
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because of enhanced phosphorylation (and activation) of myosin light chain (MLC). 

This intracellular tension regulates cell shape: well-defined and aligned stress fibers 

and enhanced focal adhesions increase cell spreading area (Figure 8) [70,81]. 

Conversely, cells growing on soft matrix internalize (possibly by endocytosis) 

integrins, limiting ECM-integrins connection [70]. This impairs the formation of 

focal adhesions, stress fibers and consequently intracellular tension decreases. As a 

result, MSCs show a poorly defined cytoskeleton and acquire a round shape. A 

study demonstrated that when cultured on collagen I coated acrylamide gels with 

distinct degrees of stiffness, cells start to modify shape: on softer substrates (0,1 - 1 

kPa), they start to develop branches, while on stiffer substrates (25 kPa - 40 kPa) the 

acquire polygonal shape [26]. Hence, MSCs modulate their shape in response to 

stiffness of the environment in which are being cultured. Moreover, in response to 

stiffness, MSCs activate distinct integrins: cells growing on soft substrates activate 

preferentially β1 integrins, but decrease their distribution on cell surface, enhancing 

ECM detachment [83]; in turn, MSCs growing on substrates with moderate stiffness 

(10 kPa) recruit preferentially β3 integrins, develop focal adhesions [70].   
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Figure 8 - Cells are capable of modifying their shape in response to ECM stiffness [81]. If cells 

are growing on a stiff substrate, intracellular tension increases, which leads to an increase on focal 

adhesions and formation of aligned stress fibers, spreading cell area [70,81]. On a soft substrate, 

intracellular tension and expression of focal adhesions components decreases, stress fibers are not 

prominent which enables cells to acquire a round shape. 
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1.2.2.1.  Mechanotransduction signals are involved during chondrogenic 

differentiation 

 

Efforts have been made to culture chondrocytes in vitro. The literature shows that 

when cultured on 2D systems in presence of TGFβ3, primary chondrocytes 

dedifferentiate and acquire a fibroblastic phenotype, impairing proliferation [84]. 

However, another study indicates that both primary chondrocytes and ATCD5 (a 

chondrogenic cell line ATDC5 derived from teratocarcinoma AT80) can mature and 

acquire characteristics of distinct cartilage zones [85]. In fact, this study 

demonstrated that primary chondrocytes cultured in the presence of TGFβ on 

acrylamide gels of 0,5MPa express higher levels of chondrogenic markers (Sox9, 

Col2a1 and ACAN) when compared to 0.2 MPa and 1.1 MPa gels. This data enhances 

the significance of mechanotransduction during cell growth, since in the absence of 

optimal stiffness, chondrocytes are not able to preserve their phenotype. In terms of 

signaling pathways, no differences were found on Smad3 activity on different 

stiffness. However, cells cultured on 0.5 MPa gels showed that Smad3 was more 

prevalent on the nucleus and that p38 pathway through MAPK kinase TAK1 was 

also targeted chondrogenic markers. ROCK activity increases with stiffness. It was 

suggested that reduced ROCK activity on soft substrates induced autocrine TGFβ 

expression [85].  Hence, mechanical stimulus is essential to maintain a chondrogenic 

phenotype.  

Optimal culture stiffness has been identified for differentiation of MSCs on 

various lineages: soft substrates promote adipogenesis (2.5-5  kPa), while 

intermediate matrices (8-17  kPa) promote myogenesis and stiff matrices (100 kPa) 

promote osteogenesis [26,86]. Several efforts have been made trying to define 

optimal 2D and 3D culture conditions for the differentiation of MSC into 

chondrocytes [51,58,87]. 3D structures, such as pellet or micromass culture, are more 
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like in vivo models than 2D cultures. Nevertheless, these systems are more difficult 

to control and to analyze, and more susceptible to mechanical loadings, like 

hydrostatic pressure or uniaxial compression (reviewed in [51]). 2D models are 

somehow farther from what occurs in vivo and are typically easier to control and 

analyze, specifically in what concerns the effect of matrix stiffness on chondrogenic 

differentiation. 

Initially, naïve MSCs do not express basal levels of lineage specific markers, and 

are round and small. Although matrix stiffness is not sufficient to determine cell 

lineage it is now clear that it plays a significant role. It has been investigated how 

stiffness can modulate chondrogenic differentiation [58,88]. In the presence of 

TGFβ3, bone marrow hMSCs adherent to stiffer substrates (2D culture) (15 kPa and 

stiffer) expressed higher levels of smooth muscle markers (calponin-1 and α-actin), 

while cells differentiating on a soft gel (1 kPa) expressed higher levels of collagen II 

(chondrogenic marker) and lipoprotein lipase (LPL) (adipogenesis marker) [58]. 

Research groups developed 3D scaffolds to study chondrogenic differentiation. 

Using 3D methacrylate hyaluronic acid (HA) hydrogels with different stiffness, it 

was found that low crosslinking hydrogels (3.5-3.6  kPa) favored cartilage matrix 

synthesis and deposition, while high density crosslinking hydrogels hypertrophic 

cartilage differentiation [88]. Additionally, a different study indicates that 3 kPa HA-

hydrogel upregulates aggrecan and collagen type II expression when compared to 

stiffer hydrogels, as 90 kPa [41]. In conclusion, these studies point that, for on both 

2D and 3D culture, a soft matrix favors chondrogenesis. 

In the absence of soluble growth factors, substrate composition and stiffness are 

still capable of modulating chondrogenic differentiation of MSCs [87]. Sulfonated 

proteoglycans are a component of the ECM [2]. A study indicates that 

polyacrylamide gels coated with sulfonated groups, even in the absence of specific 

chondrogenic growth factors can induce chondrogenic differentiation [87]. This 
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same study specifies that murine MSCs cultured on low stiffness hydrogels (1 kPa) 

express higher levels of chondrogenic markers, such as Col2a1 and Sox9, when 

compared to stiffer substrates.  

A different study also shows that MSCs are capable of differentiating into 

chondrocytes with specific characteristics if grown encapsulated in hydrogels – 3D 

culture - with optimal specific matrix stiffness and with fibers oriented according to 

specific cartilage zones and in the presence of specific zone biomolecules [89]. 

Specifically, this study proves that of all variables tested, matrix modulus has a 

leading effect on differentiation of MSCs into superficial and deep zone 

chondrocytes (80 kPa and 320 MPa, respectively), while TGFβ1 has a major effect in 

driving differentiation into middle zone chondrocytes. Despite cells were growing 

on a 3D environment, this writes down that possibly stiffness can guide cells to 

acquire zonal characteristics. 

 

As described above, RhoA is plays a key role on lineage commitment. In order to 

investigate how its activity is modulated by mechanotransduction, in the presence 

of TGFβ, a study acknowledged that no significant differences were found on RhoA 

activity between soft and stiff substrates on MSCs [58]. Conversely, RhoA/ROCK are 

well characterized mechanotransducers [70,72]. Substrate stiffness should alter their 

activity, which surprisingly does not occur in this study. Yet, if transfected with 

RhoA vector, expression of both chondrogenic and adipogenic markers on soft 

substrates, and smooth muscle markers on stiffer substrates increases [58].  

Perchance, RhoA is thought to be involved on the expression of various lineage 

markers, despite that lineage commitment needs another stimulus. Moreover, it was 

documented that matrix stiffness did not modulate Smad2/3 activity, suggesting 

that TGFβ signaling is independent of mechanical stimulus. Contrary, on 

chondrocytes and ATCD5 cells literature shows inconsistent results showing 
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RhoA/ROCK pathway represses chondrogenesis [90]. Interestingly, no evidences 

were found that ROCK targets Sox9. Thus, it is not possible to establish a clear role 

of RhoA and its effector, ROCK, during chondrogenesis.  

It has been described that stress fibers activation by β1 integrin—through FAK 

and ERK signaling, possibly mediated by small GTPases - has an inhibitory effect on 

chondrogenesis [91]. Moreover, when submitted to dynamic compression during 

chondrogenic differentiation, integrin expression was downregulated, suppressing 

signaling though the ß1/FAK/ERK pathway, consequently up-regulating Smad2,3-

mediated signaling, enhancing chondrogenesis [92]. These results are concordant 

with the previously described pattern of integrin α5β1 expression during 

chondrogenesis, which becomes downregulated [63]. Possibly, downregulation of 

this receptor suppresses the pathway formerly described and enhances 

chondrogenesis. 

 

Together, this data suggests that when cultured on a specific microenvironment, 

with optimal stiffness and suitable biomolecules MSCs can differentiate into 

chondrocytes. Interestingly, there is a large discrepancy between the stiffness 

pointed by these studies, since both soft and stiff substrates (to acquire zonal specific 

characteristics) are shown as optimal for chondrogenic differentiation. Even though 

it needs to be taken under consideration that 2D and 3D models create distinct 

environment for the cells, stiffness is still the mutual variable. Thus, future 

investigations need to clarify which stiffness most favors chondrogenesis. 
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1.2.2.2. Cells have “mechanical memory” 

 

Several proteins have been identified as mechanotransducers [55]. Focal 

adhesions are an important mechanosensor that can trigger diverse pathways and 

modulate the cytoskeleton and nucleoskeleton. Yes-associated protein (YAP) and 

TAZ were identified as important mechanotransducers, that change localization in 

response to cytoskeleton tension [93]. YAP localization is predominantly nuclear if 

cells are grown on stiff substrates and on cytoplasmic if cells are cultured on soft 

substrates. It was documented that YAP/TAZ localization was modulated by 

intracellular tension – particularly, increased Rho activity, actin polymerization and 

stress fibers are responsible for its accumulation in the nucleus [93]. Phosphorylated 

YAP can not be translocated into the nucleus and is retained on the cytoplasm. In 

response to increased intracellular tension, mediated by an unknown kinase, Rho 

GTPases reduce inhibitory phosphorylation of YAP, enabling it to translocate into 

the nucleus [94], favoring cell proliferation. Also, inhibition of Rho activity 

prevented nuclear localization [93]. The Hippo pathway, mediated by LATS1/2, also 

modulates YAP localization [95]. LATS1/2 phosphorylates YAP and relocalizes it on 

the cytoplasm. Rho inhibition is responsible to activate LATS1/2, excluding YAP 

from the nucleus. In summary, YAP localization is a balance between pathways 

formerly described. Moreover, lamin-A is more expressed on stiffer substrates [80]. 

This study suggested that this protein was responsible to stabilize YAP/TAZ 

complex on the nucleus. Furthermore, YAP/TAZ localization can be modulated by 

cell density: YAP has low activity on high cell density culture [96], possibility due to 

less spreading of the cells.  

YAP has been found to be the key to the “mechanical memory” of stem cells [97]. 

YAP endures permanently activated on MSCs cultured on a hard substrate (TCPs), 

even if cells are moved to a softer substrate. Therefore, these evidences suggest that 
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expansion conditions of MSCs can influence their differentiation fate. It was 

documented that MSCs cultured on soft substrates more than 10 days, and then 

moved to a stiff substrate decreased neurogenic markers and increased osteogenic 

markers expression, equaling cells grown exclusively on stiff substrates [98]. Also, 

MSCs cultured on stiff substrates and then transposed to soft substrates reduced 

runx2 (osteogenic marker) expression; nonetheless, it persisted active. Neurogenic 

markers increased but its expression was lower when compared to cells cultured 

exclusively on soft substrates. It was also documented that MSCs cultured on TCPs 

(1 GPa) for 1 and 7 days could totally and partially, respectively, reverse nuclear 

localization of YAP and runx2 if transferred to a soft substrate (2  kPa) [97]. On cells 

cultured on 10 kPa substrates, these differences were not evidenced. Longer periods 

on TCPs biased MSCs differentiation into osteogenesis. This suggests that 

expanding MSCs on a stiff substrate “primes” stem cell fate.  

Substrate topography – substrates with specific topography that modulate cell 

shape - and fluid shear stress – stress induced by fluid flow – can modulate cell 

contractibility [57]. This study states that cells can preserve their multipotency if a 

low optimal intracellular contractibility is achieved, allowing proliferation, but not 

committing to adipogenesis. Hypothetically, if cells are expanded on an optimal soft 

substrate, with low intracellular tension, YAP/TAZ complex can not translocate into 

the nucleus and differentiation will not be biased. 

Recently, YAP has been associated with regulation of stem cell fate, including 

chondrogenesis [96,99]. YAP was found to inhibit MSC differentiation into 

chondrocytes [96]. Additionally, YAP expression is mostly responsible for 

suppressing Smad signaling, decreasing target genes of this pathway. Both studies 

are concordant, since it has been previously described that softer gels promote 

chondrogenesis, and consequently YAP is not present in the nucleus [58,96]. 

Therefore, this reveals the relevance of mechanical memory during chondrogenesis. 
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However, there are currently no studies showing how this “memory” can possibly 

influence MSCs during chondrogenesis. 

 

“Mechanical memory” highlights the need to use low passages cells. Cell therapy 

applications usually require a high number of cells. Expansion of cells on substrates 

with the optimal stiffness could be an alternative to maintain multipotency and/or 

to prime a specific lineage. Therefore, a high number of cells could be available 

without loss of multipotency and perchance a higher potency to differentiate. Since 

it has become clear that MSCs lose their multipotency if cultured more than 10 days 

on stiff substrates, results can be biased if high passages MSCs are induced to 

differentiate. On the study mentioned before, where no differences were found on 

RhoA expression between substrates with different stiffness [58], it was possibly 

because cells were used at passage 8-11 and they no longer had the ability to respond 

to cell stiffness.  

All taken together, data shows the ability of MSCs to differentiate on 

chondrocytes. Literature highlights the relevance of mechanical memory, enhancing 

the need to induce only naïve MSCs to differentiate. Although mechanisms involved 

during chondrogenesis are not totally understood, improving culture conditions for 

cell proliferation and differentiation could be a step closer to develop a future cell 

therapy to cartilage diseases and clarify the role of specific proteins during 

chondrogenesis, as for example RhoA, whose role during chondrogenesis is still not 

consensual. 

 

 



|   Introduction 

 

30 
 

1.3. Polydimethylsiloxane (PDMS) is a suitable substrate for cell 

culture 

 

As previously described, MSCs trigger different signaling pathways when 

cultured on substrates with distinct rigidity. As a result, there has been an effort to 

develop biocompatible materials whose stiffness can be modulated. 

Polydimethylsiloxane (PDMS) as emerged as an interesting solution for a suitable 

substrate for cell culture [100–102]. The literature comprises different Young’s 

modulus (E) to the same elastomer:curing agent ratio (Table 1), since  differences on 

the temperature and curing time can influence polymerization - the higher curing 

time or temperature, the higher the polymerization reaction extension. Also, it is 

possible to infer that increasing curing agent proportion creates a more dense 

network of PDMS, and consequently stiffness increases [103]. Therefore, to replicate 

the exact same conditions, it is necessary to choose the more adequate protocol for 

the aims of the study. Distinct stiffness measurement techniques may also introduce 

some variability. 

 

 

 

 

 

 

 

 

 

 

Table 1 - PDMS stiffness with different base:curing agent ratio 

PDMS 
(base:curing) 

Young’s 

Modulus 

Curing 

temperature 

Reference 

10:1 1783 kPa 

1300 kPa 

750 kPa 

60 °C (18h-20h) 

80 °C (4h) 

60 °C (1h) 

[100] 

[104] 

[102] 

30:1 259 kPa 

100 kPa 

60 °C (18h-20h) 

80 °C (4h) 

[100] 

[104] 

40:1 45 kPa 80 °C (4h) [104] 

50:1 48 kPa 

38 kPa 

8 kPa 

60 °C (18h-20h) 

60 °C (1h) 

80 °C (4h) 

[100] 

[102] 

[104] 

60:1 3 kPa 80 °C (4h) [104] 
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PDMS seems to be a very a good material to study the effects of stiffness during 

chondrogenesis, since it can comprise a wide range of stiffness. Additionally, it is 

possible to functionalize its surface enabling an efficient protein coating of PDMS 

surface facilitating cell adhesion [105,106]. Therefore, PDMS is pointed as a 

promising option to help to comprehend the mechanisms involved during 

chondrogenesis. 

 

1.3.1. Rheological testing to determine viscoelastic properties of PDMS 

 

Materials have specific mechanical properties, such as viscosity and elasticity 

[107]. A material purely elastic can return to its original shape after a force is applied. 

Specifically, the work force induced to deform is stored and after its removal, energy 

can be recovered. However, many materials are not ideal elastics, exhibiting viscous 

and elastic properties – viscoelastic materials. After compression, shape and volume 

can be altered. Deformation can be associated to volume modifications, which is 

usually determined by Poisson ratio (𝑣). PDMS Poisson ratio is around 0,5, 

suggesting that it does not change its volume significantly under compression [108]. 

Additionally, volume can remain unaltered macroscopically, but there will be a 

shape modification [107]. Therefore, elasticity and viscosity can be measured if 

deformations and forces are quantified.  

Rheology is the study of how materials deform when forces of a certain 

magnitude are applied to the structure. G is called the shear modulus, and describes 

the resistance to deformation [109]. It is related to G’ modulus (storage modulus) - 

the elastic component - and G’’ modulus (loss modulus) - the viscous component. 

Both can be determined by rheometric studies. Namely, G’ can be related to the 

Young’s modulus (E) via Poisson ratio, trough the following formula: 𝐸 =

2 × 𝐺′ × (1 + 𝑣). A frequency sweep analysis can give information about structure 
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and dynamics of a specific material [107]. For elastic hydrogels, storage and loss 

modulus are independent of the frequency applied, and G’ modulus is higher than 

G’’ [107,109]. In contrast, viscoelastic hydrogels are frequency depend and G’’ is 

predominant at low frequencies. At higher frequencies, G’ can dominate if the 

substrate is not able to relax.  

Tan δ correlates G’ and G’’ trough the following formula: 

𝑇𝑎𝑛 𝛿 =
𝐺′′

𝐺′
 

This formula elucidates about the prevalent behavior of the material [110]. Values 

smaller than one indicate that elastic properties are dominating. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 9 - Frequency sweep of elastic and viscoelastic hydrogels [109]. Elastic materials (left) are 

frequency independent and G’ predominates. Viscoelastic materials (right) are frequency dependent 

and G’’ predominates at low frequencies. 
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Studies described above point towards a large discrepancy of putative optimal 

substrate stiffness (between 1 kPa and 1783 kPa) (Table 1). Since PDMS is a promisor 

substrate candidate for this study, a rheological study will help us understand not 

only elastic but also viscous properties of this material. Different formulations will 

be synthetized to create substrates with specific elastic and viscous behaviors. 

Culturing cells on PDMS substrates with different stiffness will help us to define 

optimal viscoelastic characteristics for chondrogenic differentiation and MSCs 

proliferation.  

 

 

1.4. Objectives 

As formerly described, MSCs can trigger signaling pathways in response to 

substrate stiffness. Therefore, we postulated that chondrogenesis can be 

mechanomodulated.  

On the present study, we aimed to define an optimal stiffness for chondrogenic 

differentiation. For that, we characterized viscoelastic properties of distinct PDMS 

formulations by rheology and validated that these substrates were capable of 

triggering a mechanical stimulus on MSCs. To reduce the impact of mechanical 

memory, only low passages MSCs (P2) were induced to differentiate. We evaluated 

the influence of a range of stiffness on chondrogenic differentiation of MSCs, 

performing a glycosaminoglycan semi-quantitative assay and assessing the 

expression of chondrogenic markers by RT-PCR. Moreover, we studied MSCs 

kinetics proliferation on PMDS substrates.  
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2. Materials & methods 

 

2.1. Cell culture of hMSCs 
 

 

All cell culture procedures were performed under aseptic conditions, on a class 

II vertical laminar air flow cabinet (HeraSafe HS-18, Heraeus). Cells were cultured 

on an incubator (Shel Lab), at 37 °C, with 5% CO₂ and 95% humidity. Culture 

mediums and sterile 1x phosphate buffered saline (PBS) were stored at 4 °C. Before 

use, both were pre-warmed in a water bath at 37 °C. 

 

2.1.1. Isolation, expansion and cryopreservation of hMSCs 

 

For isolation procedure of hMSCs, fragments of the human umbilical cord (UC) 

were washed with serum-free Minimum Essential Media (MEM) α medium (Life 

Technologies) supplemented with Penicillin (10 U/ml), Streptomycin (10 μg/ml) and 

Amphotericin B (2.5 μg/mL) (all from Life Technologies). Fragments were placed on 

a tissue culture polystyrene (TCPs) (Corning-star) 21cm² dish, and left to dry around 

20 minutes. Then, a glass coverslip was placed on top of the fragments. Both steps 

aimed to increase the contact between the fragments and the surface of culture, since 

hMSCs are adherent cells. Proliferation medium (PM) – MEM α medium 

supplemented with 10% (v/v) MSCs qualified Fetal Bovine Serum (FBS) (Hyclone), 

Penicillin (10 U/ml), Streptomycin (10 μg/ml) and Amphotericin B (2.5 μg/mL) (all 

from Life Technologies) was added and fragments were placed on an incubator. 

After 12 days of culture, fragments were checked for cell migration to the dish and 

colonies formation, up to 25 days. If after this period no colonies were formed, the 

sample was considered negative and discarded. When colonies formed were 
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compact, fragments were discarded. Adherent cells were washed with sterile 1x PBS 

twice and detached with 0.05% (v/v) trypsin-EDTA (Life Technologies) for 5 minutes 

at 37 °C. Trypsin was inactivated by adding DMEM high glucose medium (Hyclone) 

supplemented with 10% (v/v) FBS (Gibco, Life Technologies), Penicillin (10 U/ml), 

Streptomycin (10 μg/ml) and Amphotericin B (2.5 μg/mL) (all from Life 

Technologies). MSCs were resuspended for complete cell dissociation. Then, cell 

suspension was centrifuged at  290 ×  𝑔 for 5 minutes at RT (Eppendorf Centrifuge 

5810R), on a conical tube (Sarstedt). Supernatant was discarded and the pellet was 

resuspended on PM. MSCs were seeded on new 21cm² or 55cm² TCPs plate (Corning 

star) and expanded with PM – passage 1 (P1). Fresh medium was added every 2/3 

days until 80-90% confluence was achieved. This procedure was repeated at each 

cell passage.  

To calculate the total number of harvested cells, 10 μl of the resuspended cell 

solution was added to a hemocytometer. The average of the four corners was 

calculated and multiplied by 10⁴. Subsequently, when needed, an exact number of 

cells could be seeded.  

For cryopreservation, after centrifugation step previously described, cells were 

resuspended on FBS (Gibco) supplemented 10% dimethylsulfoxide (DMSO), to 

prevent the formation of crystals. Resuspended cells were placed on a cryovial 

(Nunc) and stored during 24h at -80 °C refrigerator on a Mr. Frosty™ Isopropanol 

Freezing Container. This cryovial was then transferred to liquid nitrogen. When 

needed, cells were thawed on a water bath at 37 °C. Cell suspension was transferred 

to a conical tube (Sarstedt) and DMEM high glucose medium (Hyclone) 

supplemented with 10% FBS (Gibco, Life Technologies), Penicillin (10 U/ml), 

Streptomycin (10 μg/ml) and Amphotericin B (2.5 μg/mL) (all from Life 

Technologies) was added. Cell suspension was centrifuged at  290 𝑥 𝑔 for 5 minutes 

at RT (Eppendorf Centrifuge 5810R). The pellet was resuspended on PM and cells 
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were seeded on a TCPs plate considering the information described on the cryovial 

label. 

 

2.1.2. Chondrogenic differentiation of hMSCs 

 

To evaluate the impact of substrate stiffness during chondrogenesis, MSCs were 

induced to differentiate on functionalized (according to section 2.6.) PDMS 

substrates – 21 kPa, 18 kPa, 4 kPa, 1 kPa and 0.93 kPa and glass. Only naïve MSCs – 

passage 2 cells – were induced to differentiate into chondrocytes. Near confluence 

P1 MSCs were harvested and resuspended on 1 ml of PM. For chondrogenic 

differentiation, MSCs were seeded at 10.000/cm², according to the protocol described 

on section 2.1.1. After 24h, cells were washed with sterile 1x PBS twice and 

chondrogenic differentiation medium (StemPro® Chondrogenesis Differentiation 

Kit, Life Technologies) (CDM) was provided. Fresh CDM was added every three 

days. Cells were maintained in culture for 9 days. For control experiments, hMSCs 

were seeded at 8.000/cm² and cultured with PM for 9 days. Control cells cultured on 

glass were seeded at 3.000/cm².  

Cells in culture were monitored on a contrast phase microscope (Axiovert 40C). 

 

 

2.2. Safranin O assay to assess chondrogenic differentiation 

 

2.2.1. Giemsa staining and spectrophotometric assay 

 

Giemsa azure-eosin-methylene blue solution is a mixture of Azure-B and Eosin 

Y and methylene blue. Methylene blue has affinity to DNA. Also, azure and eosin 

form a complex and intercalate DNA, producing a purple coloration on the nucleus 
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(Romanowsky effect) [111,112]. Despite Giemsa absorbance has already been 

described to infer about the number of attached cells [113], it has not been verified if 

this method was reliable after dye extraction. For that, cells were seeded at 

3.000/cm², 10.000/cm², 20.000/cm² and 30.000/cm². After 24h, culture medium was 

removed and cells were washed twice on 1x PBS. Cells were fixed with 4% (w/v) 

paraformaldehyde (Sigma) for 20 minutes, washed 3 times with 1x PBS and stained 

with Giemsa solution (diluted in 1x PBS in the ratio 1:20, according to the 

manufacturer’s instructions) for 15 minutes. This step was followed by 4 washes 

with ddH₂O water to remove unbounded dye. Bounded dye was extracted with the 

addition of 5% (v/v) tricloroacetic acid (TCA) (diluted in ddH₂O) for 10 minutes. 

Absorbance of extracted dye was measured at 550 nm on 96-well white microplate, 

using a Microplate Spectrophotometer (PowerWave XS, BioTek). 

A calibration curve correlating Giemsa absorbance and the total number of 

seeded cells was elaborated, performing a linear regression on GraphPad Prism 7 

software. 

 

2.2.2. Safranin O staining and fluorescence assay  

 

Safranin O (SO) is a dye that has affinity to glycosaminoglycans (GAG), a protein 

of cartilaginous ECM. Since SO is a cation, one molecule of dye binds each of the 

negatively charged groups of GAG [114,115]. Fluorescence of this dye is 

proportional do GAG content [116]. To analyze GAG synthesis by measuring SO 

fluorescence, cells were induced to differentiate on all PDMS substrates (21 kPa, 17 

kPa, 3 kPa, 1 kPa and 0.93 kPa) and glass for 9 days (see details on section 2.1.2). At 

day 9, differentiated and control cells grown on all PDMS substrates and glass were 

stained with SO. For that, culture medium was removed and cells were wash twice 

on 1x PBS. Cells were fixed with 4% (w/v) paraformaldehyde (Sigma) for 20 minutes, 
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and washed 3 times with double-distillated water (ddH₂O). To acidify the 

environment and favor the impairment with a cation, cells were rinsed on 1% (v/v) 

acetic acid [117]. Then, samples were stained with 0.1% (w/v) Safranin O (Alfa 

Aesar) solution (diluted in ddH₂O), at RT, for 5 minutes [118]. To remove 

unbounded dye, cells were washed 4 times, for 5 minutes each, with 1x PBS. Stained 

cultures were observed on a contrast phase microscope (Axiovert 40C). Images were 

acquired by a AxioCam, with the support of Axiovision Microscope Software (both 

from Carl Zeiss). For SO extraction and removal of bounded dye, 75% ethanol was 

added for 5 minutes. Fluorescence was read on a fluorescence plate reader 

(SpectraMax – Gemini) – Ex₅₃₀ₙₘ/Em₅₇₀ₙₘ, using a 96-well black microplate.  

To quantify the background of SO staining, we performed replicates of blank 

samples. For that, all PDMS substrates and glass were functionalized and PM 

medium without cells was added. The substrates were kept on the incubator for 9 

days. Then, the protocol formerly described was performed. The mean of the three 

replicates was subtracted to SO fluorescence of cultured cells. 

After SO extraction, cells were washed twice with 1x PBS, and stained with 

Giemsa, according to section 2.2.1. Due to discrepancies on value range of SO assay 

and Giemsa assay results, SO fluorescence and Giemsa absorbance values were 

normalized to a 1 to 10 range using the following formula [119]: 

𝑧 = 1 +
(x − min(x)) × (10 − 1))

max(x) − min(x)
 

Finally, normalized GAG values were calculated using Safranin O 

fluorescence/Giemsa absorbance ratio. 
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2.3. RNA isolation, purification, reverse transcription and real time 

– polymerase chain reaction (RT-PCR) analysis of chondrogenic 

markers expression 

 

To study chondrogenic genes expression by RT-PCR, cells were induced to 

differentiate on glass, 17 kPa and 1 kPa substrates for 9 days (see details on section 

2.1.2). At day 9, total RNA was extracted from control and differentiated cells. On 

all the procedures described on this section, only RNAse free tips (VWR) were used. 

The first step is RNA isolation and purification. For that, at day 9, culture medium 

was removed and cells were washed once with cold 1X PBS. Cold TRIzol 

(Invitrogen) was added and, using a scrapper, cells were harvested and lysed. Cell 

lysate was collected to a microtube and vortexed and frozen at -80 °C, if needed to 

be stored. The mixture was then centrifuged at 12000  × 𝑔 for 10 minutes at 4 °C 

and supernatant was transferred to a new microtube. To promote organic/aqueous 

phase separation, chloroform was added to the sample and left at RT for 3 minutes. 

Then, the mixture was centrifuged at 12000  × 𝑔, for 15minutes at 4 °C. Aqueous 

phase – the upper layer - was transferred to a new microtube and 70% (v/v) ethanol 

was added. Ethanol addition is important because it has a low dieletric constant, 

facilitating the neutralization of nucleic acids backbone charges, making it less 

hydrophilic and easing the binding of this molecule to the column [120].  

Purification protocol was followed according to the manufacturer’s instructions. 

RNA/ethanol solution was added to a RNA purification column (RNeasy Mini Kit – 

Qiagen) and centrifuged at 7.378 × 𝑔 at RT. RNA binding to the column was 

followed by washing steps. These steps required the sequential addition of cleaning 

buffers (RW1 and RPE) to the purification column followed by short centrifugations 

at 7.378 × 𝑔 at RT. The addition of these buffers aimed to remove any contaminants. 
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Composition of RW1 and RPE (reconstituted in ethanol 100%) buffers is not known. 

However, ethanol is important to remove any salts that might still be present. 

Finally, RNAse free water was added to the RNA purification column, to dilute 

purified RNA, and the column was centrifuged one last time at  7.378 × 𝑔 for 1 

minute. 

The total amount of RNA was quantified on a spectrophotometer (Nanodrop™ 

1000 Spectrophotometer). Absorbance was measured at 260nm, since nucleic acids 

absorb at this wavelength. RNA content of each sample was quantified three times 

and total amount was calculate using the average of three measurements. To 

evaluate quality of samples, absorbance at 230nm (contaminants absorb at this 

wavelength) and 280nm (proteins, phenol and other contaminants absorb at this 

wavelength) were also measured. Samples with 260nm/280nm ratio near 2 and 

260nm/230nm near 2-2.2 were considered pure. Purified RNA was frozen at -80 °C.  

Polymerase chain reaction (PCR) requires DNA templates. Catalyzed by a 

reverse transcriptase, complementary DNA (cDNA) was synthetized from a RNA 

template. For that, a mix composed by Taqman buffer, MgCl₂ (cofactor for the 

enzyme), dNTPs, random hexamers, water, RNAse inhibitors, MultiScribe Reverse 

Transcriptase and RNA template was prepared. The reaction was performed on a 

thermal cycler (BioRad MyCycler™): 10 minutes at 25 °C (incubation) followed by 

30 minutes at 48 °C (DNA polymerization) and finally 5 minutes at 95 °C (enzyme 

deactivation). cDNA was stored at -20 °C. During this reaction, first, random 

hexamers bind RNA strands; then, MultiScribe enzyme synthetizes cDNA.  

Target genes studied were, as follow: GAPDH (used as a housekeeping gene), 

Sox9, Aggrecan, Collagen type II and runx2. For each pair of primer (Table 2), a mix 

of SYBR® Green Real-Time PCR Master Mix (includes SYBR® Green I dye, 

AmpliTaq Gold® DNA Polymerase and dNTPs), forward and reverse primers, 

RNAse free water and cDNA template was prepared. Primers used had already 



|   Materials and methods 

 

44 
 

been described [121]. Additionally, a blast primer (NCBI) 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/)  was performed to be certain of 

its specificity. Amplification was performed on an Applied Biosystems 7500 Real 

Time PCR System. PCR reactions were prepared in duplicate. First, samples were 

heated and held during 10 minutes at 95 °C, followed by 40 cycles of denaturation 

(95 °C, 15 seconds), annealing (60 °C, 1 minute) and extension (72 °C, 20 seconds).  

SYBR® Green I dye has affinity to DNA double strands and emits fluorescence 

proportionally to the total amount of PCR generated products [122]. When the 

number of copies reaches detection limit, there is an exponential increase of 

fluorescence, suggesting that DNA is being replicated exponentially. 𝐶𝑇 is the 

number of the cycle that signal reaches the threshold; it is inversely proportional to 

the amount of the product amplified. Samples were analysed using the 2−∆∆𝐶𝑇 

method. The fold change of each target gene was calculated using the following 

formula:  

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 = 

2−((𝐶𝑇,𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒 𝐷𝐺−𝐶𝑇,𝐺𝐴𝑃𝐷𝐻 𝐷𝐺)−(𝐶𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒,𝐶𝐺 −𝐶𝑇 𝐺𝐴𝑃𝐷𝐻,𝐶𝐺))  

where DG is the differentiation group and CG is the control group. 

 

Primers concentrations were optimized. All combination of primer 

concentrations (50 nM, 300 nM and 900 nM) of forward and reverse primers were 

tested. Concentrations of primers chosen were shown to have a precise melt curve 

and did not form primer-dimers (Figure S6 and S7).  

 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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2.4. Nuclear staining and immunofluorescence 

 

DAPI is a fluorescent dye that has affinity to DNA [123]. To evaluate effective 

number of cells attached and nucleus area, cells were stained with this dye. For that, 

MSCs were cultured on all PDMS substrates (21 kPa, 18 kPa, 3 kPa, 1 kPa and 0.93 

kPa) and TCPs. After 24, cells were fixed with 4% (w/v) paraformaldehyde (Sigma), 

as described before (section 2.2). Then, cells were permeabilized with PBS-0.1% 

Triton-X 100 (v/v) for 20 minutes. After being washed twice with 1x PBS, cells were 

incubated for 5 minutes with PBS-0.1% Tween (v/v). Finally, cells were incubated in 

the dark with a DAPI solution (0.8 μg/μl) for 5 minutes and washed 3 times with 1x 

PBS.  

Images were collected on a fluorescence microscope (Zeiss Axiovert 200M), 

using AxioVision release 4.8 software (Zeiss). For each PDMS substrate, twelve 

images were randomly acquired and analyzed on Fiji/ImageJ software. Images were 

converted to a binary scale. Watershed tool was applied to identify nucleus merged 

TARGET GENE SEQUENCE 

GADPH F’ 5’-CTCTGCTCCTCCTGTTCGACA-3’ 

GADPH R’ 5’-ACGACCAAATCCGTTGACTC-3’ 

SOX9 F’ 5’-GACTTCCGCGACGTGGAC-3’ 

SOX9 R’ 5’-GTTGGGCGGCAGGTACTG-3’ 

ACAN F’ 5’-TCGAGGACAGCGAGGCC-3’ 

ACAN R’ 5’-TCGAGGGTGTAGCGTGTAGAGA-3’ 

COL2A1 F’ 5’-GGCAATAGCAGGTTCACGTACA-3’ 

COL2A1 R’ 5’-CGATAACAGTCTTGCCCCACTT-3’ 

RUNX2 F’ 5’-GGAGTGGACGAGGCAAGAGTTT-3’ 

RUNX2 R’ 5’-AGCTTCTGTCTGTGCCTTCTGG-3’ 

Table 2 - Primers sequences used for RT-PCR. Genes under study were collagen 

type II, aggrecan, Sox9 and runx2. GAPDH was used as a housekeeping gene. 
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together. The software automatically counted the number of cells on each field 

(particles smaller than 100 μm² were considered background). Since the area of each 

field acquired was known, real cell density could be calculated. Moreover, 

Fiji/ImageJ automatically calculated nucleus area.  

 

 

2.5. Proliferation kinetics of MSCs on PDMS substrates 

 

Cell therapy requires a high number of cells [19]. Thus, MSCs need to be 

previously expanded in vitro. Therefore, we evaluated MSCs capacity to proliferate 

on PDMS substrates - 18 kPa and 1 kPa and TCPs. First, we expanded P1 cells on 

TCPs. Then, at P2, cells were seeded at 10.000/cm² on TCPs, 18 kPa and 1 kPa 

substrates. For the following passages, MSCs were seeded at 8.000/cm². MSCs were 

proliferated until passage 6 and stiffness was kept constant. Passages procedures 

were performed according to what was previously described on section 2.1. For each 

passage on PDMS substrates, PDMS was functionalized according to section 2.6.1. 

To evaluate kinetics of MSCs on different substrates, population doubling (PD) 

– the number of times that a population has doubled -  and generation time (GT) – 

the period of time that a population needs to double its size - was calculated 

according to the following formulas [124]: 

𝑃𝐷 =
𝑙𝑜𝑔10(𝑁𝐻) − 𝑙𝑜𝑔10(𝑁𝐼)

𝑙𝑜𝑔102
 

𝐺𝑇 =
𝑙𝑜𝑔102 × ∆𝑡

𝑙𝑜𝑔10(𝑁𝐻) − 𝑙𝑜𝑔10(𝑁𝐼)
 

where 𝑁𝐻 is the number of harvested cells, 𝑁𝐼 is the number of seeded cells, and ∆𝑡 

is the number of days of cells in culture.   
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Total number of cells (TNC) was determined by accumulative counting of the 

number of cells on each passage [125]. TNC is calculated using the following 

formula, where B represents the total number of cells in the previous passage:  

𝑇𝑁𝐶 =
𝑁𝐻 × 𝐵

𝑁𝐼
 

TNC accounts for the theoretical number of cells that could be obtained if no cells 

were discarded between each passage. 

 

 

2.6. Synthesis and functionalization of PDMS substrates 

 

PDMS is an elastomer that polymerizes in the presence of a curing agent, at 

moderately high temperatures and in the presence of platinium (Figure 10) 

[126,127]. Elastomer has ethylene groups while curing agent are shorter chains and 

methyl groups. Crosslinking reaction is a platinum-catalyzed hydrosilylation. 

Initially, Pt(ii) is coordinated by two ethylene groups. Then, Pt(ii) is oxidized to 

Pt(iv) and becomes coordinated to the curing agent instead. At this moment, a 

hydrogen binds to ethylene group and Pt(iv) is reduced to Pt(ii), enabling it to be 

coordinated with two ethylene elastomers again and an ethylene bridge is formed. 



|   Materials and methods 

 

48 
 

 

 

 

 

 

 

 

 

 

Therefore, the higher the concentration of the curing agent, higher the extension 

of the reaction and gel polymerization. Five different formulations with different 

proportions of PDMS (Sylgar 184) elastomer:curing agent – 10:1, 30:1, 40:1 50:1 and 

60:1 - were prepared. Substrates were polymerized on culture plates (Corning Star) 

and cured during 4 hours at 80 °C - maximum temperature 82 °C on an oven 

(Memmert). 

For rheology characterization, PDMS substrates were polymerized on top of 

vinyl paper to allow manipulation of the substrate after polymerization and ensure 

adherence of the system to the rheometer’s base. 

 

2.6.1. Functionalization of PDMS substrates 

 

PDMS is hydrophobic, hindering cell-substrate adhesion [128]. Moreover, the 

elastomer does not provide cells with anchoring points (like ECM proteins) per se. 

Figure 10 - PDMS polymerization reaction [127]. It is a platinum-catalyzed hydrosilylation. 

Initially, Pt(II) is initially coordinated by two ethylene groups. Pt(ii) is oxidized to Pt(iv) and 

becomes coordinated to the curing agent instead. At this moment, a hydrogen binds to ethylene 

group and Pt(iv) is reduced to Pt(ii), and an ethylene bridge is formed.  
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Cells do not adhere to crude PDMS substrates. In order to overcome this, 

modification of the surface has been proposed by different research groups 

[105,106]. On the present study, surface was oxidized by the addition of a solution 

containing water, hydrochloric acid (37%), hydrogen peroxide solution, which 

forms hydroxyl groups and makes the surface more hydrophilic. For 10:1 and 30:1 

PDMS formulations, 3 parts of water, 1 part of hydrochloric acid and 1 part of 

hydrogen peroxide were mixed; for the other PDMS formulations a solution with 5 

parts of water, 1 part of hydrochloric acid and 1 part of hydrogen peroxide was 

prepared. Oxidation solution was added to PDMS surface for 5 minutes. Secondly, 

a solution of 10% (v/v) 3-aminopropyltriethoxylsilane (3-APTES) in 96% (v/v) 

ethanol was prepared and added to the surface for 30 minutes. This solution to 

generates amine groups on the surface. This step was followed by three 10 minutes 

washes, shaking, with ddH₂O. Finally, a 3% (v/v) glutaraldehyde in 1x PBS solution 

was added to PDMS surface for 20 minutes, followed by three 5 minutes washes 

with ddH₂O. This reagent acts like a crosslinking agent, forming a Schiff’s base 

between aldehyde and amines of 3-APTES [106,129]. Together, these modifications 

enable proteins to bind covalently to PDMS surface. Functionalization of PDMS 

surface is resumed on Figure 11. Finally, for PDMS sterilization, functionalized 

substrates were left for 30 minutes on the flow cabinet under UV light.  
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After sterilization, a coating solution was prepared. Coating proteins - Human 

plasma purified Fibronectin (FN) and rat tail type I Collagen (both from Millipore) - 

were diluted in 1x PBS and added to the surface. The final coating solution contained 

1.4 μg of FN and 2.4 μg of collagen I per cm² of substrate. Hydrogels were incubated 

with the coating solution for 4 hours, at 37 °C. Non-ligand proteins were washed 

twice with sterile 1x PBS and cells were seeded. 

Figure 11 - PDMS surface functionalization [106]. First, surface is oxidized with a solution of 

water, hydrochloric acid and hydrogen peroxide. Addition of 3-APTES solution forms amine groups 

on the surface that react with glutaraldehyde, forming a Schiff’s base. These modifications allow the 

covalent bonding between coating proteins – fibronectin and collagen type I - and PDMS surface.  
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2.6.2. Functionalization of glass substrates 

 

Standard protocols use TCPs dishes to culture cells. However, literature does not 

describe any methodology to effectively functionalize TCPs surface and guaranty 

that proteins are covalently attached. Therefore, to minimize differences between 

control and experiment groups, in some experiments TCPs was replaced by glass, 

since it can be functionalized and stiffness is similar. Functionalization is similar to 

the one described before for PDMS (section 2.6.1), except for the oxidation step, 

whereas a 1M NaOH solution is added to the surface during 30 minutes, to 

hydroxylate glass surface and activate it [130]. 

 

 

2.7. Rheological characterization of PDMS substrate 

 

The rheological characterization of hydrogels was determined by small-strain 

oscillatory shear tests using a Kinexus Pro rheometer and rSpace sofware Malvern 

fitted with a parallel plate geometry (stainless steel wrinkled plate). Frequency 

sweeps were performed from 10 to 0.1 Hz (five reads per decade) with a deformation 

of 10 millistrain (mε) at 37 °C. A 0.5 N normal force was used to guarantee 

adherence. The Young’s modulus (E) was calculated from the measured viscoelastic 

shear modulus using the formula 𝐸 = 2 × 𝐺′ × (1 + ν) where G′ is the shear storage 

modulus measured at 1 Hz and ν is Poisson’s ratio, assumed to be 0.5 for materials 

that do not vary its volume upon stretching. 
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2.8. PDMS thickness assay  

 

Cured 10:1 PDMS substrates were detached from the TCPs plate, since it was the 

only formulation that could easily be removed. Due to its concavity, the substrate 

was sliced on the center. Slices were observed on the contrast phase microscope 

(Axiovert 40C). Thickness of central zone of PDMS was calculated using Axiovision 

Microscope Software. 

 

 

2.9. Statistical analysis 

 

Statistical analysis was performed on GraphPad prism 7 software. Non-

parametric tests were performed, since the number of repetitions was small. To 

compare two groups, a Mann-Whitney test was performed. For multiple 

comparisons, a Kruskal-Wallis test was run to assess statistically significant 

differences. Additionally, a Dunn's multiple comparison test was performed to 

analyze which group(s) were diverging. All tests took in consideration that 

significance level (α) was 0.05. Graphics represent mean and SEM. Additionally, p 

values are represented: * p<0.05; **p<0.01; ***p<0.001. 
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3. Results 

 

3.1. PDMS substrates can trigger a mechanical stimulus on MSCs 

 

We first evaluated if substrates stiffness were capable of triggering a mechanical 

stimulus on MSCs. On the present study, we confirmed that substrate thickness 

(section 3.1.1) is enough to trigger a mechanical stimulus. Also, we acknowledged 

that that substrate stiffness is not influencing cell density (section 3.1.2) but it is 

modulating nucleus area (section 3.1.3) of MSCs. 

 

3.1.1. PDMS substrates are 315 μm thick 

 

The literature indicates that a minimal thickness of the substrate is required so 

that cells can effectively “sense” substrate stiffness [131]. It was described that cells 

cultured on thin substrates can “fell” the rigidity of the structure on which the 

hydrogel was polymerized on top of. Hence, we measured the thickness of 10:1 

substrate. For that, we detached the substrate from the culture dish, sliced it on the 

central zone. Images collected by contrast phase microscopy were analyzed and 

thickness was measured. This substrate formulation was chosen because it was the 

only possible to rip out from the plate where PDMS was poured for curing. Since 

volume is constant in all formulations, we assumed that no significant differences 

would be found on the final thickness. PDMS hydrogels are 315.5 ± 23.3 μm thick 

(Figure 12). Substrates need to be thicker than 100 μm to trigger a mechanical 

stimulus [131]. Accordingly, substrates synthetized are thick enough to initiate a 

signaling cascade in response to substrate stiffness. 
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3.1.2. Cells density does not differ between substrates 

 

Mechanical stimulus triggered by a stiff substrate modify cell cytoskeleton, and 

consequently their shape [70,81]. On a stiff substrate, intracellular tension increases, 

which stimulates actin polymerization, stress fibers formation and development of 

FA, which increases cell spreading. MSCs cultured on soft substrate exhibit a poorly 

define cytoskeleton, are less “anchored” to the substrate and are rounder and 

smaller (details are described on section 1.2.2). These modifications on cell shape 

induced by matrix stiffness lead to differences on apparent cell density. Also, when 

MSCs are transferred from TCPs to a substrate with different stiffness, differences 

on the rigidity could be associated to cell loss. To investigate if substrate stiffness 

was significantly influencing cell density, we cultured cells on PDMS substrates with 

different stiffness and TCPs for 24h. Then, MSCs were stained with DAPI and 

Figure 12 - Thickness of 10:1 PDMS substrate. On average, 10:1 PDMS substrate is 315.5 ± 23.3 

μm thick (n=5, 26 fragments). Bars represent mean + SEM. 
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observed on a fluorescence microscope (Figure S1). Images were analyzed and the 

real number of adherent cells was calculated (Figure 13). No significant differences 

were found between substrates with different stiffness (Kruskal-Wallis test p>0.05 

and Dunn's multiple comparison test p>0.05). Despite cells cultured on soft 

substrates are smaller, real cell density does not differ between PDMS substrates and 

TCPs. 

 

 

 

 

 

Figure 13 – Cell density does not differ between substrates. After 24h, cell density is, on average, 

10.000/cm² on all substrates, after 24h. No significant differences on cell density were found between 

the substrates (n=5) (Kruskal-Wallis test p>0.05 and Dunn's multiple comparison test p>0.05). Bars 

represent mean + SEM.  
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3.1.3. Nucleus area decreases on softer substrates 

 

Intracellular tension increases on cells growing on a stiff substrates [70]. LINC 

complex connects the nuclear envelope to the cytoskeleton [77]. As a result, 

intracellular tension can be transmitted to the nucleoskeleton. Modifications on 

nuclear tension can modulate nucleus area [80]. Similar to what was previously 

described to the cytoskeleton, nucleus is more flattened on cells cultured on stiff 

substrate, and consequently its area increases. On soft substrates, nucleus area of 

MSCs decreases. To be certain that cells were effectively responding to the substrate, 

we evaluated nucleus area on all PDMS substrates and TCPs. We cultured cells on 

PDMS substrates with different stiffness and TCPs for 24h. Then, MSCs were stained 

with DAPI and observed on a fluorescence microscope (Figure S1). Images were 

analyzed and nucleus area was calculated. After 24h, nucleus area decreased 

significantly (around 35%) on the 0.931 kPa substrate, when compared to TCPs 

(Kruskal-Wallis test p<0.05 and Dunn's multiple comparison test p<0.01) (Figure 14). 

Additionally, it is possible to see a decreasing tendency of nucleus area along with 

substrate softening.  
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On the present study, we could synthetize hydrogels thick enough to trigger 

mechanical stimulus. This was corroborated by the declining tendency of the 

nucleus area observed along with substrate softening. Also, we could confirm that 

substrate stiffness did not influence the real cell density. Thus, we can conclude that 

substrate stiffness of synthetized PDMS substrates is modulating MSCs. 

 

Figure 14 - Nucleus area on substrates with different stiffness. Nucleus area of cells cultured on 

0.93 kPa substrate is significantly lower than cells cultured on TCPS (n=5) (Kruskal-Wallis test 

p<0.05 and Dunn's multiple comparison test p<0.01). After 24h, nucleus area is, in average, 364 ± 

33.49 μm² on TCPS, 304.84 ± 46.42 μm² on 21 kPa substrate, 304.42 ± 28.16 μm² on 18 kPa 

substrate, 299.48 ± 35.22 μm² on 3 kPa substrate, 275.46 μm² ± 44.87on 1 kPa substrate and 243.74 

μm² ± 39.05 on 0.931 kPa substrate. Bars represent mean + SEM.  
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3.2. Rheological assessment of viscoelastic properties of PDMS substrates by 

rheometry 

 

Rheology studies viscoelastic properties of materials. This technique is capable 

to determine not only storage/elastic modulus - G’ - but also loss/viscous modulus – 

G’’ – of materials. G’ and G’’ are correlated by tan δ: if higher then 1, means that the 

material is predominantly viscous (for details, see section 1.3.1). To study elastic and 

viscous properties of different formulations of PDMS substrates, a rheologic analysis 

was carried out, using a rheometer. Different formulations of PDMS - 10:1, 30:1, 40:1, 

50:1 and 60:1 (elastomer:curing agent) – were cured for 4 hours, at 80 °C. Using a 

rheometer, we performed a frequency sweep test (0.1 – 10 Hz) on all PDMS 

formulations (Figure 15). Analysis of elastic and viscous modulus behavior on a 

range of frequencies enables us to infer about viscoelatic properties of PDMS 

substrates. 10:1 substrate is a completely polymerized hydrogel, since its shear 

modulus (G’ and G’’) are independent of the frequency; additionally, tan δ is below 

1. For 30:1 and 40:1 substrates, frequency slightly influences G’’. Also, tan δ is below 

1. This suggests that despite viscous properties also contribute to the hydrogel 

structure, elastic properties are still dominant for 30:1 and 40:1 formulation. Finally, 

for 50:1 and 60:1 substrates, G’ and G’’ are highly frequency dependent. At high 

frequencies, tan δ is bigger than 1 for 50:1 hydrogel; for 60:1 substrate, tan δ is 

superior to 1 even at low frequencies, suggesting a major viscous behavior. 

Therefore, we can conclude that 50:1 and 60:1 viscous properties play a significant 

role on the structure of this hydrogels. Thus, apart from different stiffness, each 

PDMS formulation has specific viscous and elastic properties.  
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Figure 15 – Viscoelatic properties of different PDMS formualtions (n=3). Representative 

rheological measurements of elastic modulus, G’, G’’ and tan δ (by rehometry) of five different PDMS 

formulations, across a frequency sweep (0.1 Hz – 10 Hz) at a constant milistrain (10) at 37 °C. A: 10:1 

hydrogel is predominantly elastic, since G’ and G’’ modulus are independent of the frequency. B: For 30:1 

substrate, G’’ is slightly dependent of the frequency, but its elastic properties are still dominant. C: 40:1 

hydrogel behavior is similar to 30:1 formulation, despite that tan δ is higher. D: 50:1 substrate is highly 

frequency dependent, suggesting a viscous behavior. E: 60:1 hydrogel behavior is similar to 50:1 hydrogel, 

though, tan δ is higher. 
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We could correlate G’ (storage modulus) and Young’s Modulus of our substrates 

through the following formula - 𝐸 = 2 × 𝐺′ × (1 + 𝑣). Young’s modulus of PDMS 

hydrogels vary from 21 kPa to 0.93 kPa, at 1 Hz (Figure 16). Statistical differences 

were found (Kruskal-Wallis test p<0.001) but it was not possible to identify specific 

groups that diverged (Dunn's multiple comparison test p>0.05), suggesting the need 

for more replicates to validate these results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On this present study, we synthetized PDMS hydrogels with a wide range of 

stiffness – 21 kPa to 0.93 kPa. Also, soft substrates have a major contribution of 

viscous properties. 

 

Figure 16 - Young's modulus of different PDMS substrates formulations. Young’s modulus is   

21.362 ± 11.754 Pa (21 kPa) for 10:1 formulation, 17.735 ± 2.234 Pa (18 kPa) for 30:1 formulation, 

2.870 ± 1.083 Pa (3 kPa) for 40:1 kPa, 1209 ± 55.21 Pa (1.2 kPa) for 50:1 formulation and 931.8 ± 

149.8 Pa for 60:1 formulation. Young’s modulus was obtained at 1 Hz (n=3). Statistical differences 

were found (Kruskal-Wallis test p<0.001 and Dunn's multiple comparison test p>0.05). Bars represent 

mean + SEM. 
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3.3. Chondrogenic differentiation of MSCs is modulated by substrate stiffness 

 

MSCs can differentiate into chondrocytes [20]. Protocols commonly used 

mention that differentiation should last 14 to 21 days [132–134]. On the present 

study, we reduced this period to 9 days to emphasize the significance of mechanical 

stimulus on chondrogenic differentiation. MSCs were seeded on different substrates 

- 21 kPa, 17 kPa, 3 kPa, 1 kPa and 0.93 kPa substrate and glass – and induced to 

differentiate. At day 9, cells were stained with Safranin O. Safranin O dye has affinity 

to GAG and it is widely used for cartilage staining [135–137]. To evaluate if cells 

were synthetizing GAG, differentiated cells (Figure 17) and control cells (Figure 18) 

were stained with Safranin O and images were collected. On 1 kPa substrate it was 

possible to see the formation of prominent cellular aggregates, typical of 

chondrogenesis, in the case of differentiated cells. Also, these agglomerates show a 

strong red staining, suggesting an intensive GAG synthesis. On other substrates, 

differentiated cells denoted a tenuous red coloration, implying the beginning of cell 

condensation; however, this agglomeration was not so mature when compared to 1 

kPa substrate. These tenuous staining indicated that GAG were being less expressed. 

Control groups did not show a red coloration, except for glass substrate, where is 

possible to see a weak red staining. Robust Safranin O staining and agglomerates 

formation on 1kPa substrate strongly suggest that this stiffness potentiates 

chondrogenic differentiation of MSCs.  
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Figure 17 - Safranin O staining of MSCs cultured with DM for 9 days. MSCs were cultured 

different substrates: on the left glass (top), 21 kPa (center) and 17 kPa (bottom); on the right 3 kPa 

(top), 1 kPa (center) and 0.93 kPa (bottom). At day 9, cells were stained with Safranin O. Images 

were collected on a contrast phase microscope. 
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Figure 18 - Safranin O staining of MSCs cultured with PM. MSCs were cultured different 

substrates: on the left glass (top), 21 kPa (center) and 18 kPa (bottom); on the right 3 kPa (top), 1 kPa 

(center) and 0.93 kPa (bottom). At day 9, cells were stained with Safranin O. Images were collected 

on a contrast phase microscope. 
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3.3.1 Establishment of a semi-quantitative assay for chondrogenic differentiation 

 

Literature lacks information about a simple, reliable, and cheap method to 

quantify chondrogenesis. A research group proposed a methodology that used SO 

fluorescence to quantify synthetized GAG and infer about chondrogenesis [118]. 

However, this study normalized SO fluorescence using DAPI fluorescence per well. 

Nevertheless, DAPI staining requires the use of a fluorescence microscope, an 

expensive equipment. Here, we propose an alternative method to estimate cell 

number, using Giemsa dye absorbance. Giemsa dye can intercalate with DNA and 

stain the nucleus [111,112]. It has already been described that Giemsa absorbance 

(550 nm) is proportional to the number of adherent cells [113]. Since absorbance 

could not be read directly on culture plates, we evaluated if after extraction this 

method was still reliable to estimate cell number. For that, we seeded cells at 

3.000/cm², 10.000/cm², 20.000/cm² and 30.000/cm². After 24h, MSCs were fixed and 

stained with Giemsa. We verified that Giemsa OD is proportional to the total 

number of seeded cells (Figure 19). Therefore, this method is still reliable to estimate 

about the total number of cells after extraction. Thus, Giemsa absorbance can be used 

to normalize results.  
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Safranin O staining is known to be proportional to proteoglycans content [116]. 

Recently, literature described a semi-quantitative assay for glycosaminoglycans, 

using Safranin O fluorescence, to infer about chondrogenic differentiation of MSCs 

[118]. Proteoglycans are a major component of cartilaginous ECM. Hence, an 

increase of GAG - glycosylated proteoglycans - expression leads to an increase of SO 

fluorescence, which suggests that cells are differentiating. On the present study, we 

adapted this method normalizing SO fluoresce to absorbance of extracted Giemsa, 

regardless of normalizing it to DAPI fluorescence. MSCs were seeded on different 

substrates - 21 kPa, 17 kPa, 3 kPa, 1 kPa and 0.93 kPa substrate and glass – and 

induced to differentiate. At day 9, cells were stained with Safranin O. Bounded dye 

was extracted with ethanol and fluorescence was read. Fluorescence of SO was 

normalized to Giemsa OD. On the present study we established a cheap, fast and 

reliable semi-quantitative assay to assess chondrogenic differentiation of MSCs on 

PDMS and glass substrates (Figure 20). Results indicate that SO fluorescence 

Figure 19 - Giemsa OD at 550nm is directly proportional to the total of cells seeded on TCPs. R 

value ~ 1 shows a strong correlation between extracted Giemsa OD and the total number of cells 

seeded (n=3). 
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increases significantly on differentiated cells cultured on 1 kPa substrate, when 

compared to its respective control (Figure 20A) (Mann-Whitney test p<0.05). 

Furthermore, we state that the SO fluorescence augments significantly on cells 

cultured on 1 kPa substrate when compared to cells cultured on glass substrates 

(Figure 20B) (Dunn’s multiple comparison test p<0.05). Together, these results 

suggest that 1 kPa substrate enhances GAG expression. Thus, we can deduce that 1 

kPa enhances chondrogenic differentiation of MSCs.  
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Figure 20 - Semi-quantitative assay for chondrogenic differentiation. (n=4) MSCs were induced 

to differentiate for 9 days. Control groups were cultured with PM for 9 days. A (top): GAG semi-

quantitative assay. Safranin O fluorescence was normalized to Giemsa OD at 550nm. SO fluorescence 

increases significantly on 1 kPa substrates, when compared to its respective control (Mann-Whitney 

p<0,05). B (bottom): Fold change of normalized SO fluorescence. SO fluorescence on 1 kPa 

increases significantly when compared to glass (Dunn's multiple comparisons test p<0,05). Together, 

these data suggest that 1 kPa substrate enhances GAG synthesis, and therefore chondrogenic 

differentiation. Bars represent mean + SEM. 
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3.3.2. Assessment of chondrogenic markers expression by RT-PCR 

 

GAG semi-quantitative assay previously described (section 3.3.1) suggested that 

1 kPa enhances chondrogenic differentiation. Though, this assay needed to be 

validated by a well-established molecular biology technique, as RT-PCR. MSCs were 

seeded on 18 kPa, 1 kPa substrates and glass – and induced to differentiate. At day 

9, RNA was isolated and expression of specific chondrogenic markers - Sox9, ACAN 

and COL II – was investigated on control and differentiated cells. As a negative 

control, we investigated runx2 (an osteogenic marker) expression. GAPDH was 

used as a housekeeping gene to normalize results. In general, RT-PCR results show 

high standard deviations, impairing a precise analysis of the results (Figure 21). No 

significant differences were found between substrates on chondrogenic or 

osteogenic markers. Cells cultured on glass and PDMS substrates were expressing 

both Sox9 (Figure 21A) and runx2 (Figure 21D), suggesting that cells were not naïve 

as desired [138]. Also, aggrecan was preferentially expressed on glass substrate 

(Figure 21B). ACAN was not expressed on cells cultured on 17 kPa substrate and it 

was only expressed on two replicates on cells cultured on 1 kPa. It is not accurate to 

assess collagen type II expression due to discrepancies between replicates (Figure 

21C). Taken together, this data is not enough to validate GAG assay results, that 

suggested 1 kPa as the optimal stiffness for chondrogenic differentiation of MSCs. 

 

In summary, GAG semi-quantitative assay suggests 1 kPa as the optimal stiffness 

for chondrogenic differentiation. In the future, these results need to be 

complemented by RT-PCR results using naïve MSCs. 
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Figure 21 - Expression of chondrogenic markers and runx2, at day 9. Sox9 (A), ACAN (B) and 

Collagen type II (C) expression was analyzed. Runx2 was used as a negative control (D). No 

significant differences were found on any gene analyzed (Kruskal-Wallis test p>0.05 and Dunn's 

multiple comparisons test p>0.05) (n=4). Cells were expressing both Sox9 and runx2, suggesting they 

are not naïve as desired. Aggrecan was predominantly expressed on glass substrates. Bars represent 

mean + SEM. 
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3.4. Proliferation kinetics study of MSCs on PDMS substrates 

 

“Mechanical memory” is an emerging concept [138]. It has been described that if 

P1 MSCs are maintained more than 10 days on TCPs, YAP and runx2 – an osteogenic 

marker - move permanently to the nucleus and differentiation is hampered (see 

details on section 1.2.2.2). Therefore, differentiation on cell lines other than 

osteogenesis will be biased. We hypothesized that if cells can be proliferated on 

softer substrates, it would be possible to expand cells and retain YAP and runx2 on 

the cytoplasm, so that differentiation is not biased. Since cell therapy requires 

numerous cells, this would be a great achievement [19]. We evaluated kinetics of cell 

proliferation of 18 kPa and 1 kPa substrate. For that, we expanded MSCs on TCPs, 

18 kPa and 1 kPa until passage 6. Results show that proliferation rate of cells 

growing on PDMS is slower when compared to TCPs (Figure 22). Also, cells cultured 

on TCPs proliferated extensively until passage 6, while cells expanded on softer 

substrates are only capable of proliferating until passage 4. Specifically, population 

doubling decreases significantly on 1 kPa at P3 and on 18 kPa at P6, when compared 

to TCPs (Kruskal-Wallis test p<0.05 and Dunn's multiple comparisons test p<0.05) 

(Figure 22A). Also, generation time was bigger for MSCs proliferated on 18 kPa and 

1 kPa substrate, suggesting that they proliferate slower when compared to TCPs 

(Figure 22B). Additionally, the total number of cells obtained is smaller on PDMS 

substrates when compared to TCPs (Kruskal-Wallis test p<0.05 and Dunn's multiple 

comparisons test p<0.05) (Figure 22C). Specifically, total number of cells is 

significantly lower on 1kPa at P3, P5 and P6 when comparing to TCPs (Kruskal-

Wallis test p<0.05 and Dunn's multiple comparisons test p<0.05) (Figure 23 C). 

Comparing 18 kPa and 1 kPa substrate, MSCs cultured on 18 kPa have a more 

reliable behavior until passage 4 and TNC is slightly higher on 18kPa substrate. 
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These results suggest 18 kPa substrate as an option to cell proliferation. However, in 

the future, culture conditions for MSCs proliferation on PDMS need to be optimized. 

  

 

 

Figure 22 - Proliferation kinetics of MSCs cultured on TCPs, 18 kPa and 1 kPa substrate. (A) 

Population doubling of MSCs cultured on TCPs, 18 kPa and 1 kPa substrate. PD decreases 

significantly between TCPs and 1 kPa at P3 and between TCPs and 18 kPa at P6 (Kruskal-Wallis test 

p<0,05 and Dunn's multiple comparisons test p<0,05). (B) Generation time of MSCs cultured on 

TCPs, 18 kPa and 1 kPa. In general, generation time is higher for cells cultured on PDMS substrates. 

GT decreases significantly on 1 kPa substrate at P6, when compared to TCPs P6 (Kruskal-Wallis test 

p<0,05 and Dunn's multiple comparisons test p<0,05). (C) Total number of MSCs cultured on TCPs, 

18 kPa and 1 kPa substrate. TNC is lower for cells cultured on TCPs. TNC is statistically lower on 1 

kPa at P3, P5 and P6, when compared to TCPs P6 (Kruskal-Wallis test p<0,05 and Dunn's multiple 

comparisons test p<0,05). 
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4. Discussion 

 

It was previously described that MSCs can sense substrate stiffness and 

modulate their intracellular signaling cascades – mechanotransduction [48,93]. So, 

in our work, we started by the development of methods for the validation of the 

experimental conditions, to be sure that substrates prepared were effectively 

triggering mechanical responses on MSCs. Hence, we evaluated if thickness of the 

substrate was enough to mechanomodulated intracellular signaling. Literature 

indicates a range between 20 μm to 100 μm as a minimal thickness required to cells 

respond effectively to substrate rigidity [131,139,140]. Cells growing on thin gels are 

able to sense the rigidity of the structure on which the hydrogel was polymerized. 

In our work, we performed the polymerization of the substrates directly on TCPs 

plates. If the substrate was not thick enough, MSCs would be responding to 1 GPa. 

We were able synthetize PDMS substrates with 315 μm (section 3.1.1 – Figure 12). 

This value was obtained in the central part of the substrate, because after 

polymerization the hydrogel exhibits a concave form. Concluding, PDMS hydrogels 

are thick enough to guarantee that MSCs are not “feeling” TCPs stiffness, but 

hydrogel stiffness.  

Despite theoretically thick hydrogels could trigger a mechanical response, we 

evaluated modifications on nucleus area to be certain that cells were effectively 

responding to substrate thickness. Cells growing on stiff substrates increase their 

intracellular tension [70]. Since the nuclear envelope is connected, by LINC complex 

proteins to the cytoskeleton, tension can be transmitted to the nucleoskeleton  [77]. 

Therefore, nuclear shape is modulated - a “stressed nucleus” is forced by the 

cytoskeleton to flatten [77,141]. Consequently, these alterations modify nucleus area 

[80]. Literature indicates that cell spreading is associated with an increase on nucleus 

area. Additionally, it was shown that nucleus area of cells decreases when cultured 
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on soft substrates. On this study, we seeded cells on substrates with different 

stiffness – between 21 kPa and 0.931 kPa – and TCPs and stained MSCs with DAPI. 

Images, collected by fluorescence microscopy were analyzed and nuclear area was 

calculated. Nucleus area decreased on cells cultured on soft substrates (section 3.1.3 

– Figure 14). Particularly, results indicated that nucleus area is significantly smaller 

on 0.93 kPa substrate, when compared to TCPs. Also, nucleus area showed a 

tendency to decline along with substrate softening. This tendency is in accordance 

to what was previously described [80]. Together, this data suggests that substrate 

stiffness is capable of modulating intracellular signaling, which conduct to 

differences on nucleus area. Therefore, we can conclude that the established 

experimental conditions can mechanomodulate MSCs. 

When seeded, cell density was apparently less on soft substrates when compared 

to TCPs. Additionally, the wanted to guarantee that the transposal of MSCs to softer 

substrates was not associated to cell loss. To be sure that real cell density was not 

affected and that functionalization of the substrate was being efficient, we analyzed 

the DAPI staining images collected by fluorescence microscopy and counted the 

number of cells attached to the various substrates. No significant differences were 

found between cell density on the various substrates, evidencing that cell density 

was not biased (section 3.1.2 – Figure 13). It is known that MSCs are able modulate 

their actin-myosin cytoskeleton in response to stiffness of their surrounding 

environment [77]. Consequently, these changes modify cell area and cell spread 

[139,140,142]. Since spreading decreases on soft substrates, possibly, modifications 

on the cytoskeleton induced by substrate stiffness lead to a reduction on cell 

spreading. Consequently, cell area decreases, which resulted on an apparent lower 

density on soft substrates.  
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Taken together, this data states that MSCs were effectively responding to 

mechanical stimulus induced by substrate stiffness. Also, substrate stiffness did not 

affect cell density.  

 

Due to discrepancies on PDMS substrate stiffness described on the literature 

(section 1.3 - Table 1), we characterized PDMS substrates by rheology. This 

technique evaluates not only elastic but also viscous properties of the materials. 

Results indicate that Young’s Modulus of PDMS substrates (section 3.2 - Figure 16) 

are lower than what was formerly described on the literature, using the same time 

and temperature [104]. Another study declared that Young’s modulus of these 

hydrogels was higher if cured at 65 °C, overnight [100]. Both studies are concordant, 

since an increase of the curing time lead to an increase of the Young’s Modulus. 

However, these studies performed a tensile test to calculate Young’s Modulus, at 

RT. It is known that temperature can influence materials behavior. Our rheological 

assay evaluated elastic properties at 37 °C, the same temperature used for cell 

culture. Therefore, an increase on the temperature of the assay might modulate 

PDMS elastic behavior, resulting on a decrease of Young’s modulus. This could 

justify discrepancies between tensile tests and results here shown. Apart from 

temperature, tensile tests are sensible to the geometry of the structure, which might 

also lead to inconsistencies on the Young’s modulus [143]. However, 10:1 substrate 

Young’s modulus results are not reliable since it was difficult to guarantee adhesion 

to the surface, hindering the stabilization of the strain applied during the frequency 

sweep assay, as it is possible to denote on high standard deviations on G’’ (section 

3-2 - Figure 15A). In the future, stiffness of this formulation needs to be confirmed.  

PDMS substrates have already been characterized by rheology [144]. This study 

described to see the same tendency, - in accordance with our results – namely, 

increased cross-linking agent concentration leads to the formation of a stiff structure, 
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with elastic properties (section 3.2 - Figure 15). In contrast, lower concentrations of 

the crosslinker, leads to lower Young’s modulus and more viscous materials. 

However, results for Young’s modulus are lower than results described on the 

literature [144]. For 10:1 formulations, stiffness is 510 kPa, for 30:1 is 71.6 kPa and 

50:1 is 7.6 kPa (measured at 1 Hz). Despite curing temperature is lower than in our 

study (75 °C), PDMS is left to polymerize overnight, which might lead to longer 

reaction time, resulting on an increase of stiffness. Also, the assay was performed at 

20 °C. As described before, temperature influences elastic behavior of PDMS. This 

might lead to divergences on the results, since our assay was performed at 37 °C. 

Rheological characterization of PDMS is scarce, thus no more information can be 

obtained to discuss our results. 

Indentation is a distinct technique to characterize Young’s Modulus of 

substrates. It has been widely used to characterize PDMS, showing discrepant 

results [102]. This technique is capable of sensing the substrate on a micro scale; 

contrasting, tensile test and rheology evaluate macro structures [145,146]. 

Nanoindentation pointed a Young’s modulus of 750 kPa for 10:1 formulation and 38 

kPa for 50:1 formulation, for substrates cured 1h at 60 °C [102]. These results are not 

concordant most probably due to the fact that curing time and temperature used 

were lower and results are like the ones described before. Recently, a study 

compared macro and micro scale techniques to evaluate elastic properties of PDMS 

[146]. This study reported differences between techniques when comparing the 

same PDMS formulations. Particularly on soft substrates, microscale techniques 

results show a higher Young’s Modulus. This same study indicates that macroscale 

tensile test and compression test are not sensible enough to evaluate soft substrates, 

possibly because this material is very difficult to handle. Therefore, rheologic test is 

a sensitive alternative that can give information not only about elasticity but also 

about viscosity of the substrate. 
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Unfortunately, it was not possible to characterize PDMS after functionalization, 

because it was synthetized on top of vinyl paper, impairing the addition of 

functionalization solutions to the surface. Even though substrates were subjected to 

UV light for 30 minutes, it is known that surface modification may influence the 

resulting stiffness [147]. In the future, it is important to try to find another support 

to the PDMS substrate that enables functionalization.  

In summary, there are evidences that softer PDMS substrates have the tendency 

to be more viscous, while stiffer substrates are predominantly elastic. PDMS 

hydrogels Young’s modulus are 18 kPa for 30:1 formulation, 3 kPa for 40:1 

formulation, 1 kPa for 50:1 formulation and 0.93 kPa for 60:1 formulation. 

It has been recently shown that not only elastic, but also viscous properties of 

materials play also an important role on cell culture [148]. A study indicates that for 

hyaluronic gels, cells are only viable if tan δ is between 0.11 and 0.61 (assay 

performed at 0.1 Hz at 37 °C). Here, we did not perform any viability assay. 

However, if these results are transposable to our cells, it could explain why it is 

difficult to maintain cells on 0.93 kPa substrates, a predominantly viscous substrate. 

Moreover, it has been described that cells are capable to respond substrate viscosity 

[149]. Using polyacrylamide gels, with different loss modulus but maintained 

storage modulus, it was demonstrated that increasing loss modulus increased cell 

spread but decreased focal adhesion size and maturity. Additionally, adipogenic 

and myogenic markers also increased on high loss modulus substrates. Literature 

does not describe the impact of viscosity of the substrate during chondrogenic 

differentiation. Hence, future work need to clarify if viscous properties of PDMS 

substrates play an role during chondrogenic differentiation.  
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Literature is not extensive about easy methods to quantify chondrogenesis. Most 

of studies evaluate chondrogenesis using molecular biology techniques, as RT-PCR 

or Western Blots. Despite these techniques are essential to study chondrogenic 

differentiation, they are not suitable to a fast, day by day, analysis, since they are 

expensive and time-consuming methods. A semi-quantitative assay for 

chondrogenic differentiation was established [118]. This method used DAPI staining 

to normalize SO fluorescence. However, DAPI analysis requires a fluorescence 

microscope, an expensive equipment not available on all laboratories. In our work, 

we adapted the previous semi-quantitative assay– using Giemsa absorbance to 

normalize Safranin O fluorescence, instead of DAPI. A calibration curve for Giemsa 

OD (section 3.3.1. – Figure 19) was determined. It was possible to denote a strong 

correlation between the number of cells and Giemsa OD, since R is approximately 1, 

confirming that this is a suitable parameter to normalize results. Since there was a 

big discrepancy between SO fluorescence and Giemsa OD units, we normalized the 

results to a 1 to 10 range, in order to be sure that calculations did not mask the 

differences.  

On the present study SO was normalized to Giemsa OD (section 3.3.1. – Figure 

20 A). SO assay results pointed high values of fluorescence for both on 

undifferentiated and differentiated cells cultured in glass. The semi quantitative 

assay previously established also showed an increase on SO fluorescence on control 

group, particularly at day 10 [118]. However, the fold increase is not significant on 

this substrate (section 3.3.1 – Figure 20 B). These results are confirmed with the 

images obtained by contrast phase microscopy, since it is possible to see a tenuous 

red stain, suggesting a more diffuse deposition of GAG both on control (section 3.3. 

– Figure 18) and differentiated (section 3.3 – Figure 17) groups. Analyzing images of 

SO staining, 1 kPa substrate stands out from the other substrates. On this substrate, 

it is possible to see the formation of cell agglomerates, typical of chondrogenesis, on 
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differentiation group. Also, these agglomerates are strongly stained in red, 

suggesting an intensive synthesis of GAG. These images are in accordance with the 

results obtained on the SO assay, since SO fluorescence is high on cells differentiated 

on 1 kPa. Fluorescence of this dye increases significantly on this substrate, when 

compared to its respective control (section 3.3.1 – Figure 20). Despite that cells grown 

in other substrates also show the tendency to form agglomerates, these are not so 

mature and the staining is not so strong. Additionally, control groups of PDMS 

substrates do not show any coloration, which is concordant with low SO 

fluorescence. In summary, images agree with the results obtained on the semi-

quantitative assay we established. Cell agglomeration, synthesis of GAG and 

suggested that chondrogenesis was enhanced on 1 kPa substrate. Taken together, 

these results point toward 1 kPa as the optimal stiffness for chondrogenic 

differentiation. However, to validate this assay we evaluated the expression of 

chondrogenic markers by RT-PCR. 

We stained replicates of blank substrates that were previously functionalized 

and cultured with PM for 9 days. We concluded that SO staining is associated with 

high background fluorescence, despite it was not possible to observe on the 

microscope (data not shown). To overcome this issue, we subtracted the mean of 

background values to SO fluorescence of cultured cells to obtain more accurate 

values. 

 

To validate the semi-quantitative assay for chondrogenesis, we evaluated 

expression of chondrogenic markers – Sox9, ACAN and collagen type II – on cells 

cultured on glass, 17 kPa and 1 kPa substrate, for 9 days. Glass substrate was used 

to mimic standard conditions of differentiation on TCPs, since both have similar 

stiffness. Nevertheless, glass can be functionalized.  
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During chondrogenic differentiation of MSCs for posterior RT-PCR analysis cells 

did not behave as reported before: cell morphology was similar to its control and 

there was no formation of cell agglomerates. Since cells did not appear to be 

different, by microscopy, it is not surprising that chondrogenic markers were not 

overexpressed on a specific substrate. Also, high divergences between replicates 

impaired an accurate analysis of RT-PCR results. 

Aggrecan is a proteoglycan present on cartilage matrix [4]. Our RT-PCR results 

also show that ACAN is preferentially expressed by undifferentiated and 

differentiated cells grown in glass (section 3.3.2 – Figure 21B). SO results are 

concordant with our RT-PCR, since despite SO fluorescence is higher on glass 

substrates, there is no significant increment on ACAN expression on this substrate. 

Surprisingly, ACAN was not expressed on 18 kPa substrate and only twice on 1 kPa 

substrate. Recently, a study declared that dynamic stretch increased phosphorylated 

ERK and stimulated aggrecan expression, when compared to control group, where 

no stretch was applied [150]. Also, inhibition of contractibility decreased aggrecan 

expression on stretched cells. As described before, a stiff substrate activates 

RhoA/ROCK pathway, which leads to actin polymerization, formation of stress 

fibers, modifications on cell contractibility and increases intracellular tension (see 

details on section 1.2.2.). Most probably, on the present study, glass, a stiff substrate, 

may change cell contractibility and activate intracellular pathways similar to what 

was described for dynamical stretching [150]. In summary, both stimulus – stiffness 

and dynamical stretching – are capable of modulating cell contractility and stimulate 

aggrecan expression. 

A recent study also revealed the relevance of TGFβ autocrine and paracrine 

stimulation during chondrogenic differentiation of synovial MSCs and 

chondrocytes culture [151,152]. According to what was previously described, 

despite real density is the same on all substrates, apparent cell density is different 
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between PDMS and glass substrate, since cells cultured on soft substrates are less 

spread and consequently do not touch as it occurs in TCPs/glass (detailed on section 

1.2.2). Our hypothesis is that cells close to each other are capable of an effective 

paracrine signaling, which could favor the expression of chondrogenic markers. 

Together, these data reveal a new opportunity to study the impact of real cell density 

on chondrogenic differentiation. A study has documented the relevance of cell 

density on osteogenic and adipogenic fate [25]. Future studies will need to clarify if 

cell density plays a key role on chondrogenesis.  

RT-PCR results showed that runx2, an osteogenic marker, is being widely 

expressed on cells on PDMS and glass substrates. Mechanical memory of cells has 

been studied - if P1 cells are maintained on TCPs for more than 10 days, YAP and 

runx2 move permanently to the nucleus, even if cells are transposed to a softer 

substrate (see details on section 1.2.2.2.) [138]. On the present study, MSCs induced 

to differentiate to subsequent RT-PCR analysis, had already been expanded and 

frozen at P1. Therefore, we cannot be certain about the proliferating period on TCPs. 

Runx2 expression (section 3.3.2 – Figure 21D) suggested that these MSCs were kept 

for longer periods (more than 10 days) in TCPs and suggesting that runx2, and 

probably YAP, had permanently moved to the nucleus. Moreover, a study 

acknowledged  that expression of neurogenic markers on cells that were first 

cultured on a stiff substrate and then transferred to a soft substrate were not so 

remarkable, when compared to cells that were continuously grown on soft 

substrates [98]. Hypothetically, a similar outcome occurred on MSCs induced to 

differentiate onto chondrocytes: since cells were maintained for more than 10 days 

on TCPS, runx2 was permanently expressed. Possibly, this impaired an effective 

response to the substrate and/or to soluble factors, justifying why cells were not able 

to express evidently chondrogenic markers.  
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The process of osteogenic and chondrogenic commitment has been widely 

studied [153,154]. Literature describes that TGFβ is able to form a complex with 

Smad3, which recruits histone deacetylases 4 and 5 and is capable of repressing 

runx2 expression [153]. Also, Sox9 has the ability to repress runx2 to prime cells to 

chondrogenic fate [154]. In the presence of low expression of runx2 and high 

expression of Sox9, cells are commited to a permanent chondrogenic fate [155]. 

Nevertheless, if both genes are co-expressed, chondrocytes acquire a hypertrophic 

phenotype, characteristic of replacement cartilage, to posterior endochondral 

ossification. Both persistent or hypertrophic chondrocytes express aggrecan [155]. 

Results show that cells were expression both Sox9 and runx2 (section 3.3.2 – Figure 

21A and 21D). To evaluate if cells were acquiring a hypertrophic phenotype, it 

would be interesting to complement results obtained by RT-PCR, assessing the 

expression of hypertrophic markers, as collagen type X and/or BMP6 [155]. 

Together, these data enhance the relevance of guaranteeing a low runx2 expression 

to enhance an articular chondrogenic fate. 

Despite that Safranin O assay needs further validation, it suggests 1 kPa as the 

optimal stiffness for chondrogenic differentiation. In accordance, 1 kPa has already 

been suggested as the optimal stiffness for chondrogenic differentiation [58]. YAP-

ROCK2 feedback loop has been characterized – a stiff ECM upregulates ROCK2 

leading to an overexpression of YAP [156]. Recently, YAP was shown to be a 

negative regulator of chondrogenesis [96]. Possibly, due to a decreased intracellular 

tension, MSCs cultured on 1 kPa substrate can trigger pathways that can relocalize 

YAP on the cytoplasm and enhance chondrogenic differentiation. Future work using 

naïve MSCs will help to clarify this hypothesis. 

 

We aim to use MSCs on cell therapy. Though, this treatment requires a high 

number of cells. If MSCs are expanded for long periods on TCPs, YAP moves 
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permanently to the nucleus and multipotency might be impaired [138] (details on 

section 1.2.2.2). Therefore, evaluated kinetics proliferation of MSCs on 18 kPa and 1 

kPa PDMS substrates. When compared to TCPs, MSCs on PDMS proliferate less and 

slower on softer substrates (section 3.4 – Figure 22). Despite MSCs maintain their 

capacity to proliferate on TCPs until P6, MSCs only proliferate until P6 on PDMS. 

Also, the number of cells obtained is significantly lower on PDMS substrates. 

Comparing 18 kPa and 1 kPa substrate, 18 kPa substrate is more suitable to expand 

MSCs, since behavior of these cells is constant until passage 4. YAP/TAZ are 

important effectors of the Hippo pathway involved in cell proliferation and 

apoptosis [157]. YAP/TAZ bind TEAD, and target transcription factors involved on 

cell proliferation and cell survival [157,158]. Since on soft substrates ROCK activity 

decreases, YAP/TAZ complex translocation into the nucleus decreases and therefore 

expression of factors involved on cell proliferation is impaired. Hypothetically, 

PDMS substrates are reducing RhoA activity, impairing cell proliferation on these 

substrates. Possibly, RhoA activity is slightly higher on 18 kPa substrate, when 

compared to 1 kPa. This justifies why proliferation rate on 18 kPa is slightly higher 

on this substrate.  

Future work need to optimize culture conditions for MSCs proliferation on 

PDMS substrates. As an example, different combinations of coating proteins could 

enhance MSCs proliferation. It would be interesting to compare the expression of 

multipotency-specific markers on MSCs expanded on TCPs and a softer substrate, 

as 18 kPa substrate. Also, chondrogenic potential of MSCs expanded on TCPs and 

18 kPa should be evaluated.  
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On the present study, we synthetized PDMS substrates with a wide range of 

stiffness – 21 kPa to 0.931 kPa. Characterization of viscoelastic properties of these 

substrates, by rheometry, showed that soft substrates are predominantly viscous, 

while stiff substrates are mainly elastic. Results show that thickness of synthetized 

substrates is enough to trigger a mechanical stimulus. This data was corroborated 

by the declining tendency of the nuclear area of MSCs observed along with substrate 

softening. Additionally, it was verified that transposal of MSCs to PDMS substrates 

did not affect cell density.  

Slow proliferation rate on 18 kPa suggests that, in the future, culture conditions 

for MSCs proliferation on PDMS need to be optimized.  

Safranin O is a dye that has affinity to GAG, a major component of cartilaginous 

ECM. Using Safranin O fluorescence, we established an easy, cheap, and rapid 

methodology to semi-quantify GAG expression and assess chondrogenic 

differentiation of MSCs. Results suggest that 1 kPa as the optimal stiffness for 

chondrogenic differentiation of MSCs. Additionally, Safranin O staining emphasizes 

that 1kPa substrate potentiates cell agglomeration and GAG synthesis. Taken 

together, this data strongly suggests 1 kPa as the optimal stiffness for chondrogenic 

differentiation of MSCs. Although, these results need further validation by RT-PCR 

using naïve cells, namely low runx2 expression MSCs.  
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Figure S 1 - DAPI staining of nucleus on different PDMS substrates. Cells cultured for 24h in PM 

were stained with DAPI on different substrates: (a) TCPs (b) 21 kPa substrate (c) 18 kPa substrate 

(d) 3 kPa substrate (e) 1 kPa substrate (f) 0,931 kPa substrate. Images were collected on a 

fluorescence microscope. 
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Figure S 2 - MSCs were cultured with DM, for 1 (left) and 3 (right) days. MSCs were cultured on  

different substrates: glass (top), 21 kPa substrate (center) and 18 kPa substrate (bottom). Images were 

collected on a contrast phase microscope. 
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Figure S 3 - MSCs were cultured with DM, for 1 (left) and 3 (right) days. MSCs were cultured 

on different substrates: 3 kPa (top), 1 kPa substrate (center) and 0.93 kPa substrate (bottom). Images 

were collected on contrast phase microscopy. 
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Figure S 4 - MSCs cultured with DM, for 6 (left) and 9 (right) days. MSCs were cultured on 

different substrates: glass (top), 21 kPa substrate (center) and 18 kPa substrate (bottom). Images were 

collected on a contrast phase microscope. 
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Figure S 5 - MSCs cultured with DM, for 6 (left) and 9 (right) day. MSCs were cultured on different 

substrates: 3 kPa (top), 1 kPa substrate (center) and 0.93 kPa substrate (bottom). Images were collected 

on a contrast phase microscope. 
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GAPDH Sox9 

Collagen type II Aggrecan 
Figure S 6 – Melting curves of chondrogenic markers obtained by RT-PCR. GAPDH is a 

housekeeping gene. Sox9, ACAN and collagen type II were used as chondrogenic markers. For each 

gene, melting curves are overlapping, suggesting that specific products are being amplified. No 

primers dimers were detected since there is no amplification at lower temperatures. Concentrations 

of primers were optimized: A. F primer – 50 nM; R primer – 900 nM; B: F primer – 50 nM; R primer 

– 300 nM; C: F primer – 50 nM; R primer – 50 nM; D: F primer – 50 nM; R primer – 50 nM. 

A. B. 

C. D. 
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Runx2 

Figure S 7 - Melting curves of runx2 obtained by RT-PCR. Melting curves are overlapping, 

suggesting that specific products are being amplified. No primers dimers were detected since there is 

no amplification at lower temperatures. Concentrations of primers were optimized: F primer – 300 

nM; R primer – 300 nM 

 


