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resumo 

 

 

A ocorrência de fármacos, nomeadamente antibióticos, no meio ambiente é um 
tema de elevada preocupação devido ao seu impacto ambiental, uma vez que 
as estações de tratamento de águas residuais não são totalmente eficientes na 
sua remoção. No que diz respeito aos antibióticos, usados no tratamento e 
prevenção de infeções, estes representam um problema para o meio ambiente 
e para os seres vivos em geral, devido ao desenvolvimento da resistência 
bacteriana. O antibiótico sulfametoxazol (SMX) pertence ao grupo das 
sulfonamidas, um dos grupos de antibióticos mais utilizados, sendo encontrado 
com regularidade não só em efluentes provenientes de estações de tratamento 
de água residuais, como no ambiente aquático. Assim, a fotodegradação surge 
como um processo alternativo para a remoção deste tipo de contaminantes do 
meio aquático. O recurso a fotossensibilizadores, naturais ou sintéticos, poderá 
ser uma forma de aumentar a eficiência da fotodegradação e, 
consequentemente, a taxa de fotodegradação. No entanto, neste trabalho, as 
substâncias húmicas, consideradas fotossensibilizadores naturais, não se 
mostraram eficientes no aumento da taxa de fotodegradação do SMX. O 
composto em estudo foi fotodegradado em água ultrapura, sob radiação solar 
simulada, muito rapidamente, tendo-se obtido um tempo de meia vida de 0,86 
horas. Contudo, em amostras ambientais de diferentes origens, a taxa de 
fotodegradação do SMX mostrou ser muito mais lenta quando comparada com 
a observada em água ultrapura e na presença das substâncias húmicas, com 
tempos de vida a variar entre as 5,30 e as 7,54 horas. Tendo em conta a 
conversão destes tempos de meia vida para tempos de meia vida em 
condições ambientais, obtiveram-se valores que variaram entre 1.4 e 1.98 dias 
soalheiros de verão. Desta forma, foi importante estudar a influência de 
algumas das propriedades das matrizes aquosas para perceber quais os 
principais fatores responsáveis pela persistência do SMX no ambiente 
aquático. Dessa forma, concluiu-se que o pH, a salinidade e o carbono 
orgânico dissolvido influenciam de forma acentuada a fotodegradação do SMX. 
Com o objetivo de aplicar a fotodegradação às estações de tratamento de 
águas residuais, nomeadamente, como tratamento terciário, testou- se um 
método de fotodegradação em modo contínuo em que os tempos de irradiação 
diminuíram acentuadamente relativamente ao método em descontínuo.  Por 
fim, foi avaliada a atividade antibacteriana do SMX em água ultrapura e em 
três amostras ambientais, antes e durante a fotodegradação, tendo-se 
concluído que a fotodegradação é eficiente para combater a problemática da 
resistencia bacteriana, uma vez que a atividade bacteriana aumentou com a 
fotodegradação total do SMX. A única exceção foi a amostra da estaçã de 
tratamento de águas residuais para a qual não foi possivel retirar conclusões, 
uma vez que esta, só por si, inibe muito o crescimento das bacterias Vibrio 
fischeri. 
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abstract 

 

The occurrence of pharmaceuticals, namely antibiotics, in the environment is a 
subject of high concern due to their environmental impact, since the sewage 
treatment plants (STPs) are not completely efficient in their removal.  In relation 
to antibiotics, used in the treatment and prevention of infections, they represent 
a problem for the environment and for living organisms in general, because of 
the imminent development of bacterial resistance. The antibiotic 
sulfamethoxazole (SMX) belongs to the group of sulfonamides, one of the most 
commonly used antibiotics, and is regularly found, not only in effluents from 
STPs, but also in the aquatic environment. Thus, photodegradation appears as 
an alternative process for the removal of this type of contaminants from the 
aquatic environment. The use of natural and synthetic photosensitizers may be 
a way of increasing the efficiency of photodegradation and, consequently, the 
rate of photodegradation. However, in this work, the humic substances (HS), 
considered natural photosensitizers, were not efficient in increasing the SMX 
photodegradation rate. The compound under study was photodegraded very 
fast in ultrapure water under simulated solar radiation, presenting a half-life 
time of 0.86 hours. However, in environmental water samples from different 
origins, the SMX photodegradation rate was shown to be much slower than that 
observed in ultrapure water or under the presence of HS, with half-life times 

that varied between 5.30 and 7.54 hours. With the conversion of these half-life 
times to half-life times under environmental conditions, values ranging from 1.4 
to 1.98 sunny summer days were obtained. Thus, it was important to study the 
influence of some of the properties of the water matrices on the SMX 
photodegradation to understand the main factors responsible for the 
persistence of SMX in the aquatic environment. It was concluded that pH, 
salinity and dissolved organic carbon strongly influence the photodegradation 
of SMX. In order to apply the photodegradation in STPs, namely as a tertiary 
treatment, a method of photodegradation was tested in a continuous flow mode 
in which the irradiation times decreased sharply in relation to the batch method. 
Finally, the antibacterial activity of SMX in ultrapure water and in three 
environmental water samples was evaluated before and during 
photodegradation. It was concluded that the photodegradation is an efficient 
method to combat the problem of bacterial resistance, since the bacterial 
activity increased with the total photodegradation of the SMX. The exception 
was the STP sample, in which it was not possible to obtain conclusions, 
because the sample itself inhibited the growth of the Vibrio fischeri bacteria. 
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CAM – Clarithromycin 

DNA – DesoxyriboNucleic Acid 
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LCM – Lincomycin 
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LOD – Limit of Detection 

N-Ac-SMX ‒ N4-acetylsulfamethoxazole 

NED – Netherlands 

NOR – Norfloxacin 
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NSAID – Non-Steroidal Anti-Inflammatory Drug 

OD – Optical density 

OFL – Ofloxacin 

OM – Organic Matter 

OTC – Oxytetracycline 

RNA – RiboNucleic Acid 

ROX – Roxithromycin 

RSD ‒ Relative Standard Deviation 

SD – Sulfadiazine 

SMX – Sulfamethoxazole/Sulfametoxazol 

SSD – Sunny Summer Days 

STP – Sewage Treatment Plant 

STPF – Sewage Treatment Plant effluent after secondary treatment 

TMP – Trimethoprim  

TOC – Total Organic Carbon 

USA – United States of America 

UV – Ultraviolet 

UV-Vis ‒ Ultraviolet-Visible 

XAD-4 – registered trademark (matrix: styrene divinylbenzene) 
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Symbols 

 

a – Intersection with the y-axis 

Am – Absorbance value of the mixture (SMX + HS) at 290 nm 

ASMX – Absorbance value of SMX at 290 nm  

b – Slope of the calibration curve  

C – Concentration of SMX at a given irradiation time 

C0 – Concentration of the SMX protected to light 

𝜀 ‒ Molar absorptivity of the SMX at the wavelenght 𝜆𝑖 

HO2
· ‒ Hydroperoxyl radical 

3HS* – Humic substances in the triplet excited state  

(
𝐼𝑎

𝐼0
)

𝑚
 – Fraction of light absorbed by the mixture (SMX + HS) at 290 nm 

(
𝐼𝑎

𝐼0
)

𝑆𝑀𝑋
− Fraction of light absorbed by SMX alone (in ultrapure water) at 290 nm 

(
𝐼𝑎

𝐼0
)

𝑆𝑀𝑋
𝑚⁄

– Fraction of light that was absorbed by SMX in the presence of HS at 290 nm 

𝐼𝜆𝑖
𝑎𝑏𝑠 ‒ Rate of light absorption at the wavelenght 𝜆𝑖 

𝐼𝜆𝑖
0   ‒ Lamp emission intensity at the wavelenght 𝜆𝑖 

Kcalc – Calculated first-order rate constant for degradation of SMX in presence of HS acting 

only as inner filter 

Kmeas – Pseudo first order degradation rate constant measured 

Kow – Octanol/water partition coefficient 

ki ‒ Pseudo first-order degradation rate constant at wavelenght 𝜆i 

l ‒ Path lenght inside the photoreactor 

LODx – Value of LOD in the x-axis 

LODy – Value of LOD in the y-axis 
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n – Number of standard solutions that were used for calibration 

1O2 – Singlet oxygen  

O2
·‒ ‒ Superoxide anion  

·OH – Hydroxyl radical 

pKa ‒ Acid dissociation constant 

R2 – Determination coefficient  

𝑟𝑎𝑡𝑒 𝜆𝑖 ‒ Photodegradation rate of SMX induced by the absorption of radiation with 

wavelenght 𝜆𝑖.  

RSDb – Relative standard deviation of slope  

Sy/x – Statistical parameter that estimates the random errors in the y axis 

t – Time 

tr – Retention time 

t1/2 – Half-life time 

t1 – About 50 % of SMX photodegradation 

t2 – After more than 95 % of SMX photodegradation 

t3 – No SMX was detected  

𝑦𝑖 – Experimental values of y obtained for each calibration standard 

𝑦̂𝑖 – Calculated y-values by using the calibration curve equation, corresponding to the 

individual x-values of standards   

𝜙 ‒ Quantum yield 

𝜙ave ‒ Average quantum yield  

∆𝜆 ‒ Wavelength interval of acquisition of the spectral irradiance of the lamp  
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1. Introduction 
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1.1. Pharmaceuticals in the environment 

 

Demographic growth and industrial expansion brought, as a consequence, air, soil 

and water resources pollution worldwide. This situation is worrying, being necessary to 

reverse or leastways minimize this process (Melo et al., 2009). 

 The question related with water quality has been widely discussed, because this is a 

natural resource essential to many human activities, for example, public and industrial 

supply, agricultural irrigation, electric power production, leisure and recreation activities, as 

well as to the preservation of aquatic life. Given this context, treatment of waste water has 

been gaining more and more importance (Melo et al., 2009). 

 The presence of pharmaceuticals in aquatic environments was verified for the first 

time in the 70’s. Since that, many studies have been performed and residual 

pharmaceuticals have been detected in different parts of the world (Bastos, 2012), 

(Katsumata et al., 2014), (Melo et al., 2009). These compounds and their metabolites have 

been found in municipal sewage, because the conventional STPs do not have adequate 

processes for their removal from the aqueous matrix and also because they are used in 

high amounts worldwide (Bastos, 2012), (Katsumata et al., 2014). Therefore, it is important 

and imperative for the scientific community to conduct investigations to solve this problem.  

 More recently, investigation on pharmaceuticals monitoring in the aquatic 

environment has been performed in different countries such as Germany, Brazil, Canada, 

United States of America (USA), Netherlands (NED), England, Sweden and Italy. These 

compounds were found in STPs, surface water, ground water and potable water in 

concentrations ranging from µg/L to ng/L (table 1) (Bila and Dezotti, 2003), (Kümmerer, 

2001). So, the development of sufficiently sensitive analytical methods for the determination 

(identification and quantification) of these compounds in aquatic environments is important 

(Bastos, 2012), (Bila and Dezotti, 2003), (Melo et al., 2009). 
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Table 1- Concentrations of pharmaceuticals detected in the aquatic environment (adapted from Bila et al. 

(2003)). NSAID* - Non-Steroidal Anti-Inflammatory Drug.  

 

 

 

Drug Drug 

Class 

Concentration 

(ng/L) 

Aquatic Matrix 

Acetylsalicylic acid   NSAID* 220 Effluent of STP in Germany 

Diclofenac NSAID* 200-370 Effluent of STP in Sweden 

150 Surface Water in Germany 

<1-12 Surface Water in Sweden 

Ibuprofen NSAID* 87 Surface Water in Canada 

370 Effluent of STP in Germany 

1000-3300 Domestic sewage in 

Sweden 

Indomectacine NSAID* 950 Domestic sewage in Brazil 

270 Effluent of STP in Germany 

170 Surface Water in Germany 

Ketoprofen NSAID* 200 Effluent of STP in Germany 

Ciprofloxacin Antibiotic 20 Surface Water in USA 

Chlorotetracycline Antibiotic 420 Surface Water in USA 

Erythromycin Antibiotic 100 Surface Water in USA 

150 Surface Water in Germany 

2500 Effluent of STP in Germany 

Lincomycin Antibiotic 60 Surface Water in USA 

Norfloxacin Antibiotic 120 Surface Water in USA 

Oxytetracycline Antibiotic 340 Surface Water in USA 
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Penicillin Antibiotic 1.8-5.9 Surface Water in Germany 

Roxitrocin Antibiotic 50 Surface Water in USA 

560 Surface Water in Germany 

680-1000 Effluent of STP in Germany 

Sulfamethoxazole Antibiotic 30 Surface Water in Germany 

30-85 Surface Water in Germany 

6-150 Surface Water in USA 

300-1500 Effluent of STP in Germany 

400 Effluent of STP in Germany 

410 Ground Water in Germany 

Tetracycline Antibiotic 110 Surface Water in USA 

Trimethoprim Antibiotic 13-150 Surface Water in USA 

150 Surface Water in Germany 

320-660 Effluent of STP in Germany 

2500 Effluent of STP in Germany 

Tylosin Antibiotic 40 Surface Water in USA 

Vancomycin Antibiotic 700-3800 Surface Water in Germany 

17α-

Ethinylestradiol 

Hormone 9 Effluent of STP in Canada 

0.2-7.0 Effluent of STP in England 

450 Surface Water in Germany 

73 Surface Water in USA 

<0.5-10 Domestic sewage in Italy 

and NED 
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 In table 1, the concentrations for different pharmaceuticals detected in the 

environment are presented and it is possible to verify that there are different concentration 

values depending not only on the type of water, but also on the sampling site. Also, other 

factors play a role on the concentrations found: studies show that the typical concentration 

values of the pharmaceuticals found in aquatic environments are related to their 

consumption pattern by the population, the rate of removal in the STP, the type of effluent 

that arrives to the STP and by seasonality (Bastos, 2012), (Melo et al., 2009). 

  

17β-Estradiol Hormone 21 Domestic sewage in Brazil 

<0.5-17 Domestic sewage in Italy and 

NED 

2.7-48 Effluent of STP in England 

9-160 Surface Water in USA 

Estrone Hormone 20-50 Surface Water in Brazil 

27 Surface Water in USA 

40 Domestic Sewage in Brazil 

<0.5-38 Domestic sewage in Italy and 

NED 

9 Effluent of STP in Germany 

<0.5-54 Effluent of STP in Italy and 

NED 

Estriol Hormone 19 Surface Water in USA 

2-4 Effluent of STP in England 

0.43-18 Effluent of STP in Italy 

1.2-3.1 Surface Water in England 

24-188 Domestic sewage in Italy 

Progesterone Hormone 110 Surface Water in USA 

Testosterone Hormone 116 Surface Water in USA 
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In some locations in the world, the raw sewage is released directly into surface water, 

because they have a deficit in sanitation infrastructures (Melo et al., 2009). When there are 

sanitation infrastructures, these compounds pass through a STP, where they are subjected 

to conventional treatment processes, but are not totally eliminated, being found in significant 

amounts in STP effluents and surface water. 

Conventional processes are based on adsorption to solid component of sludge and 

on biological degradation of the contaminants which are not efficient in completely remove 

this type of compounds, since they can have biocide action or complex chemical structures 

not amenable to biodegradation (Castiglioni et al., 2006), (Kümmerer, 2001), (Melo et al., 

2009). Consequently, many pharmaceuticals enter the aquatic environment (persisting in 

the environment) and eventually reach drinking water (Bila and Dezotti, 2003), (Melo et al., 

2009). 

 The veterinary use, including in aquaculture, as growth promoters and in the 

prevention and treatment of diseases, also counts for the discharge of pharmaceuticals and 

their metabolites into the environment through (waste) water or by water run-off from fields 

after application of manure. Pharmaceuticals can therefore enter the ground water system 

through the soil after the application of liquid manure or sewage sludge as fertilizers (Bila 

and Dezotti, 2003), (Kümmerer, 2001), (Melo et al., 2009). However, the waste water from 

pharmaceuticals’ companies and hospitals and the improper disposal of pharmaceuticals 

should also be considered as significant contributors to the presence of these compounds 

in the environment (Bila and Dezotti, 2003), (Melo et al., 2009). In figure 1, possible routes 

for the introduction of pharmaceuticals in the aquatic environment are schematized (Bastos, 

2012), (Bila and Dezotti, 2003).  

From all the stated above, it is clear that the water contamination by pharmaceuticals 

deserve special attention, since the real risks to human health and to the aquatic 

environment are not yet fully known and because there is no established legal limits for 

environmental concentrations (Bastos, 2012), (Melo et al., 2009). Antibiotics, hormones, 

analgesics, anti-inflammatories are examples of different pharmaceuticals detected in 

waste water. However, some groups need special attention, mainly antibiotics, because of 

their pronounced toxicity and their potential of fostering bacterial resistance (Bila and 

Dezotti, 2003), (Kümmerer, 2001).   
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Figure 1- Routes of pharmaceuticals introduction into the environment (adapted from Silva (2014)).  

 

1.1.1. Occurrence of antibiotics in the aquatic environment 

Originally, the word antibiotic referred to any agent with biological activity against 

living organisms. Now, antibiotic refers to substances with antibacterial, anti-fungal or anti-

parasitical activity (Kümmerer, 2009). In table 2, an overview of the most important classes 

of antibiotics is given. 
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Table 2- Important classes of antibiotic compounds (adapted from Kümmerer et al. (2009)).  

Class Example Chemical structure 

ß-lactams Amoxicillin  

Tetracyclines Doxycycline 
 

Macrolides Erythromycin A 
 

Glycopeptides Vancomycin 
 

Sulfonamides Sulfamethoxazole 
 

Qinolones Ciprofloxacin 
 

  

In the 20th century, the discovery of antibiotics and their use in anti-infectious therapy 

constituted an unquestionable progress in medicine (Instituto Nacional de Saúde Doutor 

Ricardo Jorge, 2010). The antibiotics are the mostly used pharmaceuticals in human and 

veterinary medicine (Göbel et al., 2005), (Hirsch et al., 1999).  
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The most important classes of antibiotics for human medicine are β-lactams, 

sulfonamides (with or without trimethoprim (TMP)), macrolides and fluoroquinolones (table 

3) (Göbel et al., 2004),(Hirsch et al., 1999). As already mentioned, antibiotics are 

extensively used in animal medicine and the main groups of pharmaceuticals used are 

tetracyclines, sulfonamides and fenicoles (table 3). According Food and Agriculture 

Organization of the United Nations (FAO), antibiotics authorized for use in aquaculture are 

tetracycline, fluoroquinolones, macrolides and sulfonamides potentiated with TMP or 

ormethoprim. In Norwegian aquaculture, from 2002 to 2005, an increase in the use of 

antibiotics in aquaculture was observed, which was accounted by newly-farmed fish 

species, especially Atlantic cod. However, for most countries specific data are missing 

(Kümmerer, 2009).   

The bacteriostatic sulfonamide pharmaceuticals, which includes the SMX, are 

antibiotics extensively used and the wide use in factory farming without proper withdrawal 

periods has led to their accumulation in meat, eggs and milk as well as in fish (Hartig et al., 

1999).  
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Table 3- Important antibiotics in human and animal medicine (adapted from Kemper et al. (2008)). 

 

The antibiotics are polar, non-volatile and defined as naturally, semi-synthetic and 

synthetic compounds with antimicrobial activity that can be applied parentally, orally or 

topically (Kemper, 2008), (Sajjad, 2014). The first antibiotics were of natural origin, but 

currently, antibiotics are obtained by chemical synthesis, such as the sulfonamides (e.g. 

SMX) or by chemical modification of compounds of natural origin, such as paclitaxel used 

in chemotherapy medication (Kümmerer, 2009), (De Souza, 2004).    

 Antibiotics are complex molecules that can be present in the environment in the 

neutral, cationic, anionic or zwitterion forms. Thus, the physicochemical and biological 

properties of these compounds vary with pH, in other words, properties such as solubility, 

Class Compounds Primary usage 

β-Lactams 

 

Flucloxacillin 

Methicillin 

Phenoxymethylcillin 

Penicillin G 

Humans 

Humans 

Humans 

Humans 

Fenicoles Chloramphenicol Cats, dogs 

Fluoroquinolones Ciprofloxacin 

Flumequin 

Ofloxacin 

Humans 

Humans 

Humans 

Macrolides Erythromycin 

Roxithromycin 

Vancomvcin 

Humans, cattle, chicken 

Humans 

Humans 

Sulfonamides  Sulfanilamide 

Sulfadimethoxine 

Sulfadinidine 

Sulfamethoxazole 

Sulfapyridine 

Sulfathiazole 

Humans 

Cattle, pigs, chicken 

Cattle, sheep, chicken 

Humans and animals 

Pigs 

Humans 

Trimethoprim  In combination with sulfonamides 

Tetracyclines Chlortetracycline 

Doxycycline 

Oxytetracycline 

Tetracycline 

Cattle, pigs 

Humans, cats, dogs 

Human, cattle, sheep, pigs 

Humans, horse, sheep, pigs 
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hydrophobic and hydrophilic character and partition coefficient, kow, of antibiotics depend 

essentially on pH (Sajjad, 2014). 

It is documented in some studies that antibiotics are not completely metabolized in 

the body and thus are excreted into the environment unchanged or in the form of their 

metabolites via urine and feces (Carballa et al., 2004), (Gao et al., 2012), (Kemper, 2008). 

The rates of excretion are dependent on the substance, the dose ingested, the mode of 

application, the excreting species and time after administration (Bastos, 2012), (Bila and 

Dezotti, 2003), (Castiglioni et al., 2006), (Melo et al., 2009). For tetracyclines and 

sulfonamides it has been shown that rates of excretion vary in the range (40-90) % (Kemper, 

2008). The disposal of expired or unused antibiotics is also a considerable source of these 

compounds in the environment (Gao et al., 2012). It is important to note that concentration 

limits of antibiotics in the environment are not regulated (Bengtsson-Palme and Larsson, 

2016), (Kemper, 2008), (Milić et al., 2013).  

Besides their use to prevent or treat diseases in humans, animals and plants, 

antibiotics are also used to promote the growth of animals in livestock and aquaculture 

operations (Gao et al., 2012), (Kemper, 2008), (Kümmerer, 2001). In 2001, it was reported 

that more than 70 % of veterinary antibiotics consumption in the USA was as growth 

promoters (Kümmerer, 2001). However, in 2006, growth promoters were banned in Europe 

and thus there was an actual decline in antibiotics used in veterinary medicine (Kemper, 

2008). Aquacultures are an important source of antibiotics to the environment: (70-80) % of 

the antibiotics administered as pelleted feed medication are released into the aquatic 

environment via urinary and fecal excretion and in unused medicated food (Christensen et 

al., 2006). 

 Antibiotics have been detected in municipal sewage, hospital waste water, surface 

water, ground water and in soil, sediment and sludge samples (Gao et al., 2012) and the 

residual concentration of these compounds in the treated effluents depend on their removal 

during STP treatment (Göbel et al., 2004). So, several studies have been conducted to 

investigate the occurrence of antibiotics in STPs and surface waters, especially, since these 

compounds may promote bacterial resistance (Bastos, 2012). 

Isidori et al. (2005) determined six antibiotics: erythromycin (ERY), oxytetracycline 

(OTC), SMX, ofloxacin (OFL), lincomycin (LCM) and clarithromycin (CAM) belonging to 

different classes of antibiotics in surface water samples from Germany and Italy. ERY was 

found in concentrations of 0.02 and 0.016 µg/L in Germany and Italy, respectively. The 

concentrations achieved for OTC were 0.05 µg/L (Germany) and 0.019 µg/L (Italy). The 
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compounds OFL and SMX were found only in Germany with concentrations of 

0.05 and 0.02 µg/L, respectively. CAM was detected in Germany and Italy with 

concentrations of 0.02 µg/L (Isidori et al., 2005).  

 In the study developed by Tamtam et al. (2008) the occurrence of seventeen 

antibiotics in the Seine River inner estuary was investigated. Quinolones, sulfonamides, 

nitroimidazoles and diaminopyrimidines were the four classes of antibiotics analyzed (from 

January to June 2006). All the seventeen compounds were detected at least once. In the 

specific case of SMX, it was observed that it was detected in every sample and showed the 

highest concentrations reaching 544 ng/L (Tamtam et al., 2008). 

The presence of eleven antibiotics belonging to three classes was investigated in the 

Beibu Gulf, China (Zheng et al., 2012). ERY-H2O, SMX and TMP were the most frequently 

detected, with mean concentrations in the range (0.51-6.30) ng/L. The concentrations of 

ERY-H2O, SMX and sulfadimidine in the vicinity of aquaculture activities were larger, 

suggesting that a higher intensity of aquaculture activities could contribute to increasing the 

levels of antibiotics in the environment (Zheng et al., 2012).  

In the research developed by Hirsch et al. (1999), eighteen antibiotics from the 

classes of macrolides, sulfonamides, penicillins and tetracyclines were analyzed. The 

investigated STP effluents and surface water samples showed frequent appearance of 

roxithromycin (ROX) and SMX with concentrations up to 6 µg/L. Neither tetracyclines nor 

penicillins could be detected at concentration levels above 50 and 20 ng/L, respectively 

(Hirsch et al., 1999).  

The determination of thirteen sulfonamides was performed in primary and secondary 

effluents of STPs and in different surface waters (Hartig et al., 1999). In this study, the 

compounds SMX and sulfadiazine (SD) were detected with concentrations in the ranges 

(30-2000) and (10-100) ng/L, respectively (Hartig et al., 1999). As in the previous article, 

SMX was also detected in waste water samples from two STPs in Switzerland. SMX was 

detected in the primary effluent with a concentration ranging from (343-641) ng/L, in the 

secondary effluent with a concentration between (343-352) ng/L and in the tertiary effluent 

with a concentration of 352 ng/L (Göbel et al., 2004).  

The occurrence of twenty-two antibiotics was investigated in eight STPs in Beijing, 

China (Gao et al., 2012). The antibiotics studied belonged to the fluoroquinolones, 

sulfonamides and macrolides classes and the most frequently detected antibiotics were 

OFL, norfloxacin (NOR), SD, SMX, ERY and ROX. The concentrations of fluoroquinolones 

OFL and NOR were in the range (0.15-1.2) and (0.0094-0.20) µg/L, respectively. For SD 
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and SMX, antibiotics belonging to the sulfonamides group, the concentration varied 

between (0.12-0.56) and (0.13-0.46) µg/L, respectively. The concentrations of ERY and 

ROX detected in effluent samples were in the ranges (0.051-0.30) and (0.054-0.36) µg/L, 

respectively.  

The presence of twenty-eight antibiotics was investigated in South–East Queensland, 

Australia (Watkinson et al., 2009). In hospital effluents, antibiotics were found in 

concentrations in the range (0.01-14.5) μg/L, dominated by β-lactam, quinolone and 

sulfonamide groups. Antibiotics were also found in STPs influents, up to 64 μg/L, and 

effluents in the low ng/L range up to a maximum of 3.4 μg/L, with the macrolide, quinolone 

and sulfonamide antibiotics being the most prevalent. Similarly, antibiotics were detected in 

the low ng/L range, up to 2 μg/L in surface waters of six investigated rivers (Watkinson et 

al., 2009).  

Among the different existent sulfonamides, SMX is one of the compounds most 

frequently detected in municipal sewage. However, concentrations of SMX in effluents from 

STPs vary widely, as these depend on the use of the antibiotic and the type of treatment 

used in the STPs (Sajjad, 2014). In the next table (table 4), the different concentrations of 

SMX in different aquatic matrixes are presented.  

 

Table 4- Concentration of SMX in aquatic environment. 

Localization Concentration of SMX 

(ng/L) 

Aquatic matrix References 

China 545-791 Effluents Peng et al., 2006 

Germany 30-85 Surface Water Bila and Dezotti, 2003 

Israel 90-150 Effluents Avisar et al., 2009 

Brazil 0.78-106 Surface water Locatelli et al., 2011 

  

In the body, SMX is metabolized and 50 % of the administered dose is excreted as 

the inactive human metabolite N4-acetylsulfamethoxazole (N-Ac-SMX) and only 10 % as 

the unchanged compound. There are few studies concerning the SMX metabolites: SMX 

and its metabolite N-Ac-SMX were detected in two urban STPs from Switzerland (Göbel et 

al., 2004). The maximum concentration determined for the metabolite was (943 ± 2.9) ng/L 

while for SMX the higher concentration was (641 ± 4.0) ng/L (Göbel et al., 2004). Although 
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the concentration was higher for SMX metabolite, it lacked relevant antibacterial activity 

(Brown, 2014). Also, Senta et al., (2013) detected the presence of SMX (323 ± 135) ng/L 

and N-Ac-SMX (214 ± 177) ng/L in a STP of Zagreb (Senta et al., 2013).  

 

1.1.1.1. Bacterial resistance  

The excessive and uncontrolled use of antibiotics in human and veterinary medicine 

causes two environmental problems: one is the contamination of water resources and the 

other is that some microorganisms can develop resistance to these pharmaceuticals 

(Heinemann et al., 2000), (Kemper, 2008). Bacteria previously susceptible to an 

antimicrobial compound can undergo changes in their genetic material, through mutation or 

through genetic transfer processes (such as transformation, transduction and conjugation), 

gaining pharmaceutical resistance. The evolution of antibacterial resistance in human and 

in animals is the result of the interaction between antibiotic exposure and the transmission 

of resistance within and between individuals (Heinemann et al., 2000). The resistance of 

bacteria is not developed only by direct therapeutic use of antibiotics, but also by indirect 

contact with them (Kemper, 2008).  

The misuse of antibiotics by both practitioners and patients and the poor quality of 

pharmaceuticals marketed in developing countries and also, an increase of antimicrobials 

comsumption in most developed countries, are factors related to bacterial resistance. For 

exemple, in children, it has been shown that at 200 days after birth more than 70 % of the 

infants had used at least one antibiotic (Guillemot, 1999). So, it is important to do an optimal 

antibiotic use and limit the diffusion of existing antibacterial resistance in the population and 

avoid the emergence of new strains of resistant bacteria (Fair and Tor, 2014) (Guillemot, 

1999), (Heinemann et al., 2000), (Penesyan et al., 2015), (Zhang et al., 2015).  

Combating bacterial resistance involves shortening the time to investigate new 

antibiotics, which currently exceeds a decade, and quickly find new therapeutic alternatives, 

since the antibiotics currently available are ineffective in combating the new strains of 

bacteria that arise all the days (ionline, 2015) or in another perspective to remove effectively 

the antibiotics from the environment, avoiding the development of more bacterial resistance. 

However, it is equally or even more important to make people aware of the proper use of 

antibiotics.  
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1.1.1.2. Sulfamethoxazole 

1.1.1.2.1. Structure and physico-chemical properties 

 According to the International Union of Pure and Applied Chemistry (IUPAC), SMX is 

denominated 4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide, so C10H11N3O3S 

is the molecular formula.  

 SMX is a representative antibacterial compound of the sulfonamide group and it is 

frequently used in human medicine to treat bronchitis and urinary infections and also in 

veterinary medicine, for prevention and treatment of infections, as well as growth promoter 

(Abellán et al., 2009). The bactericidal sulfonamide group is considered to be one of the 

first antimicrobial pharmaceuticals used and it was intensively manufactured since the 40s, 

revolutionizing the use of antibiotics in medicine. Sulfonamides have a bacteriostatic effect, 

inhibiting desoxyribonucleic acid (DNA) synthesis. The combination of the common 

antibacterial pharmaceutical TMP, a folic acid analogue, with SMX, inhibits two steps in the 

enzymatic pathway for folic acid synthesis, necessary for the synthesis of DNA and 

ribonucleic acid (RNA) precursors in bacteria, therefore necessary for the survival of 

bacteria.  

 The chemical structure of SMX and the chemical structure of the general 

sulfonamides are represented in figure 2 (Bastos, 2012). Table 5 summarizes the 

physicochemical properties of SMX. 

 

Figure 2- SMX chemical structure (a) and general chemical structure of sulfonamides (b).  

 

 

 

 

 

 

 

a) b) 
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Table 5- Physicochemical properties of SMX (adapted from Boreen et al., (2004), Sulfamethoxazole-

Toxicology Data Network and Yalkowsky et al., (2010)).  

 

 

  

 

  

 

 

 

 

 If SMX is released onto soils, it is expected to have high mobility, since SMX have a 

log Kow value lower than 104, so it is a compound with low volatility and hydrophilic nature 

(Silva et al., 2012). The pKa1 and pKa2 of SMX indicate that this compound partially exists 

in the anionic form in the environment and anions generally do not adsorb strongly to soils 

containing organic carbon and clay. If released into water, SMX is not expected to adsorb 

to suspended solids and sediment based. So, in general, sulfonamides are not quickly 

biodegraded and can persist in soils. Bioconcentration is related to the ratio of the 

concentration of a particular chemical in a living organism to the chemical’s concentration 

in the surrounding water. An estimated bioconcentration factor of 3 suggests that the 

potential of SMX bioconcentration in aquatic organisms is low (Sulfamethoxazole-

Toxicology Data Network). 

 

 

1.2. Removal processes for pharmaceuticals in STPs  

 

In order to avoid the risks associated with the presence of pharmaceuticals in water, 

they should be eliminated before final release into the environment. In general, they can be 

eliminated by sorption (physical processes), biodegradation (biological processes) or 

photolysis and photocatalysis (oxidation processes). 

Molecular weight (g/mol) 253.28 

Water Solubility (mg/L at 37 ºC) 610 

Melting Point (ºC) 167 

Vapor pressure (mm Hg at 25 ºC) 6.93x10-8 

Log Kow
 0.89 

Dissociation constants pka1=1.6 
pka2=5.7 

Bioconcentration Factor 3 
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The elimination of pharmaceuticals from waste water in STPs is dependent on the 

pharmaceuticals structural characteristics and physico-chemical properties, such as 

photosensitivity, biodegradability, lipophilicity and on the environmental conditions (Melo et 

al., 2009), (Radjenovic et al., 2007). 

 

1.2.1. Physical processes 

Sorption elimination involves the uptake of pharmaceuticals from the aqueous phase 

onto a solid phase (sorbent) and this allows the effluents to be purified. However, 

contaminants are not degraded or eliminated, only transferred to a new phase. 

Nevertheless, this approach proved to be an effective and economic purification method to 

be used as pre- or post-treatment process in STPs (Freire et al., 2000), (Jiuhui, 2008), (Melo 

et al., 2009). In STPs operating with an activated sludge system, sorption is the dominant 

process in the removal of lipophilic compounds, such as estrogens (Melo et al., 2009).  

Also, adsorption of pharmaceuticals from STPs effluents, on activated carbons can 

be an efficient strategy to them. The work developed by Calisto et al., (2015) describes the 

single adsorption of seven pharmaceuticals (carbamazepine, oxazepam, SMX, piroxicam, 

cetirizine, venlafaxine and paroxetine) from water onto a commercially available activated 

carbon and a non-activated carbon, produced by pyrolysis of primary paper mill sludge 

(Calisto et al., 2015). 

 

1.2.2. Biological processes  

Biological processes are the most frequently used in the effluents treatment because 

they allow the treatment of large volumes of effluents, high rates of organic matter removal, 

the transformation of toxic organic compounds in carbon dioxide (CO2) and water (H2O) or 

methane (CH4) and costs are relatively low (Freire et al., 2000), (Melo et al., 2009). 

In general, degradation of organic compounds depends on their bioavailability and 

also on the ability of microbial organisms to transform and degrade them (Stumpe and 

Marschner, 2009). Biological processes may be aerobic or anaerobic. In aerobic processes, 

formation of CO2 and H2O happens, whereas in anaerobic we have the formation of CO2 

and CH4 (Freire et al., 2000). However, some organic compounds are not degradable by 

the microorganisms and therefore are resistant to biological treatment. (Freire et al., 2000). 
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The enzymatic process, which belongs to biological processes, is a recent technology 

used in effluents biological treatment. Within this context, ligninolytic enzymes (lignin 

peroxidase and manganese peroxidase) have the capacity to degrade a large number of 

toxic and persistent substances (Freire et al., 2000).  

 

1.2.3. Oxidation processes  

 The advanced oxidation processes (AOPs) are attractive technologies that have been 

extensively studied due to their potential as an alternative or an addition to conventional 

processes for treating waste water, destructing a wide range of organic substances resistant 

to conventional methods (Augugliaro et al., 2006), (Freire et al., 2000), (Lester et al., 2010).  

The AOPs are defined as the chemical oxidation of target organic pollutants in water 

and these processes produce powerful transitory species, mainly hydroxyl radicals (·OH), 

by the combination of oxidants (such as hydrogen peroxide (H2O2), chlorine (Cl2), chlorine 

dioxide (ClO2), permanganate (MnO4
-) with ultraviolet (UV) radiation or by the combination 

between UV radiation and catalysts (Augugliaro et al., 2006), (Freire et al., 2000), (Lester 

et al., 2010), (Melo et al., 2009). AOPs have a high efficiency for organic matter oxidation, 

which can be converted to CO2, H2O and innocuous mineral salts (Augugliaro et al., 2006). 

However, in most cases, the use of this type of treatment promotes the formation of a wide 

variety of by-products, which may be as toxic or even more toxic than the initial contaminant 

(Melo et al., 2009). UV radiation has been reported in the literature as being used in the 

degradation of pharmaceuticals compounds, but it can also produce subproducts that can 

be highly toxic and persistent in water (Bastos, 2012), so it is important to evaluate toxicity 

of subproducts formed. Heterogeneous photocatalysis is another effective method for the 

removal of some pharmaceuticals from the aquatic environment based on the chemical 

oxidation mediated by a semiconductor activated by UV radiation (Augugliaro et al., 2006). 

This method involves the use of catalysts, such as titanium dioxide (TiO2), ferric oxide 

(Fe2O3) and silicon (Si). In general, TiO2 is the photocatalyst mostly used due to its high 

stability over a wide pH range, water insolubility, photoactivity, low environmental impact, 

low toxicity and cost, when compared to other available semiconductors (Augugliaro et al., 

2006), (Freire et al., 2000), (Melo et al., 2009). Although this method is efficient in the 

mineralization of several chemical species of environmental relevance, there are problems 

that hinder large-scale treatment, such as the difficulty of radiation penetration in the 

reaction medium and the separation of the catalysts from the sample. The work of Hu et al. 

(2007) examines direct photolysis of SMX by UVA light (UVA: 324 ≤ ʎ ≤ 400 nm) and the 
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degradation of SMX in aqueous suspensions of nanophase TiO2 irradiated with visible light 

(ʎ ˃ 400 nm) and with UVA light.  Experimental results demonstrated that no SMX 

degradation was observed in TiO2 suspensions irradiated with visible light and direct 

photolysis of SMX by UVA was slow (less than 10 % degradey in 60 minutes). In 

comparison, 95 % SMX degradation was observed in UVA-irradiated TiO2 suspensions over 

the same time. Rates of UVA–TiO2 photocatalyzed SMX degradation were dependent on 

different variables, including initial SMX concentration, catalyst phase identity and 

concentration, electron acceptor identity and concentration, and the presence of non-target 

water constituents. 

Photodegradation using sunlight is an interesting method for removing 

pharmaceuticals from the aquatic environments (Bastos, 2012), (Sajjad, 2014). In the 

aquatic environment, photodegradation can occur via two processes: direct and indirect 

photolysis, as can be seen in figure 3. These two processes are a primary pathway for 

abiotic transformation of the organic compounds in surface waters (Andreozzi et al., 2003). 

In the direct photolysis, light is absorbed directly by the chemical itself, leading to bond 

cleavage (Chen et al., 2013), (Liu and Liu, 2004). The direct photolysis was shown to be 

efficient for the removal of contaminants only when the absorption spectrum of the pollutant 

overlaps the emission spectrum of the UV lamp and the quantum yield (𝜙) of the 

photochemical process is reasonably large (Andreozzi et al., 2003), (Lester et al., 2010).  

 

 

Andreozzi et al. (2003) evaluated the rate of degradation of six selected 

pharmaceuticals (carbamazepine, diclofenac, clofibric acid, OFL, SMX and propranolol) 

Direct 

Photolysis 

Indirect 

Photolysis 

Photosensitizers 

·OH      1O2      H2O2      3DOM 

Photoproducts 

 

Figure 3- Direct and indirect photolysis occurring in the aquatic environment.   
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submitting them to solar irradiation. Based on experimental results, the direct photolysis in 

distilled water for SMX, diclofenac, OFL and propranolol undergo fast degradation with a 

half-life time (t1/2) of 2.4, 5.0, 10.6 and 16.8 days, respectively, whereas, under the same 

conditions,  carbamazepine and clofibric acid presented a t1/2, of around 100 days  

(Andreozzi et al., 2003). So, for some compounds, the direct photolysis is not an efficient 

process for their removal in water.  

Indirect photolysis consists of light absorption by photosensitizers, which generate 

strong oxidant species, such as ·OH or singlet oxygen (1O2). The most important natural 

photosensitizers are natural dissolved organic matter (DOM), nitrate and nitrite (Andreozzi 

et al., 2003), (Freire et al., 2000), (Lam et al., 2003), (Lester et al., 2010), (Lin and Reinhard, 

2005), (Melo et al., 2009). For example, in the study above mentioned (Andreozzi et al., 

2003), the influence of nitrate ions present in aqueous solutions was also studied and the 

results showed a reduction of t1/2, thus an increase in the degradation rate (Andreozzi et al., 

2003). DOM can act also as photosensitizer, however it has a dual role in photodegradation, 

acting not only as photosensitizer, but also as a filter of solar radiation. Total effect of the 

DOM presence depends on the balance between these opposite contributions, and for each 

target substance such effect may be different (Andreozzi et al., 2003), (Melo et al., 2009).  

 Some compounds may be photodegraded directly and indirectly in aqueous solution, 

as was proved in the case of estriol (E3) (Oliveira et al., 2016). Natural sunlight can degrade 

all estrogens in river water (Lin and Reinhard, 2005) and sea water (Zuo et al., 2006).  

 

1.2.3.1. Photodegradation of SMX 

 SMX is not completely degraded in conventional STPs, thus affecting aquatic and 

terrestrial organisms. However, only few studies have been conducted to evaluate the 

effectiveness of photodegradation on the removal of antibiotics, including SMX, from 

drinking water and waste water effluents (Lester et al., 2010).  

The photochemical transformation of SMX using a solar simulator was investigated 

by Trovó et al. (2009). Toxicity, persistence and route of degradation of SMX was evaluated 

in different water matrices: distilled water (pH = 4.8), distilled water + nitrate and sea water 

(pH = 8.1). In this study, differences in degradation rate in distilled water and sea water 

were verified, being the photodegradation in sea water matrix slower. It was also verified 

that indirect photolysis in the presence of nitrate in distilled water did not affect the SMX 

degradation rate. For the solution of SMX prepared in distilled water (pH = 4.8), during the 

first 45 minutes of irradiation a decay of 40 % of the initial concentration of SMX was 
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observed. The phototransformation rate slowed down markedly with time, probably because 

of the increase of pH from 4.8 to 6.4. Only after 30 hours of irradiation, 98 % of the initial 

concentration of SMX was removed. In the experiments using sea water (pH = 8.1) 

solutions, a slower kinetic was observed, where only a slight reduction in the SMX 

concentration (14 %) occurred after 7 hours. This was considered to be due to the fact that 

SMX photolysis is strongly affected by pH. They made the identification of nine products of 

photolysis in distilled water. In figure 4, the mechanism proposed by Trovó et al. (2009) for 

the degradation of SMX is represented. The cleavage of sulfonamide bond and 

rearrangement of the isoxazole ring represent the main pathways of degradation, which 

generate more abundant and persistent intermediates (C2, C3 and C8). On the aromatic 

rings C6, C9 and C1 hydroxylation reactions also occur. The addition of the hydroxyl radical 

to isoxazole ring formation occurs across C7, as well as with the C4, which is the only 

evidence of the opening of the isoxazole ring  (Trovó et al., 2009).  

 

In the study developed by Bastos (2012), the direct photolysis of SMX in ultrapure 

water with UV radiation was carried out considering the variation of the concentration (10-

50 mg/L) and of the pH (5-9). In the first 30 minutes of photolysis, the removal rate of SMX 

in the acid medium was higher than that observed in neutral medium. After 60 minutes of 

irradiation, SMX had the removal % of 99 in all experiments (Bastos, 2012). 

 

Figure 4- Degradation path of SMX by direct photolysis in distilled water (from Trovó et al. (2009)). 



 

23 

 

1.2.3.2. Importance of photosensitizers 

 Photochemistry plays a crucial role in pharmaceuticals reduction in aquatic 

environments. Under solar irradiation, photochemical transformations involve direct and 

indirect reactions. As mentioned before, in indirect photodegradation the degradation of 

compounds can be induced by the presence of natural photoreactive substances, such as 

HS. All these constituents may generate strong oxidants, undergo photoreactions, and 

further oxidize and degrade environmental pollutants in natural water (Chen et al., 2013), 

(al Housari et al., 2010). 

 

1.2.3.2.1. Humic substances 

HS are heterogeneous mixtures of polydispersed organic materials, which result from 

biochemical and chemical reactions during the decay and transformation of plant and 

microbial remains, and therefore are formed in soils, sediments and natural waters. HS are 

main components of the natural organic matter in terrestrial (soil organic matter) and aquatic 

(DOM) systems.  

In aqueous systems, like rivers, about 50 % of the dissolved organic materials are HS 

that affect pH and alkalinity. In terrestrial and aquatic systems, HS affect the chemistry, 

cycling and bioavailability of chemical elements, as well as transport and degradation of 

xenobiotic and natural organic chemicals. These substances also affect biological activity 

in aquatic ecosystems (IHSS, 2007), (Stevenson, 1994).  

HS have a high-molecular-weight, with aromatic cores, substituted with functional 

groups and aliphatic cores (Aleksandrova et al., 2011). HS can be generally characterized 

as being rich in oxygen-containing functional groups, notably carboxylic group (COOH), but 

also phenolic and/or enolic hydroxyl group (OH), alcoholic OH and carbonyl group (C=O) of 

quinones (Stevenson, 1994). They can operationally be divided into three main fractions: 

humic acids (HA), fulvic acids (FA) and humin: HA are insoluble under acid conditions, but 

soluble at high pH values, FA are soluble in both alkali and acid conditions; humin is 

insoluble in all pH values.  

Most of the data on HA, FA and humin refer to average properties and structure of a 

large ensemble of components of diverse structure and molecular weight. The precise 

properties and structure of a given HS sample depends on the water or soil source and the 

specific conditions of extraction (IHSS, 2007), (Stevenson, 1994).  

Photolysis of HS, under solar radiation, can lead to the formation of various reactive 

species, such as 1O2, superoxide anion (O2
•−), hydroperoxyl radical (HO2

•), H2O2 and HS 



 

24 

 

triplet excited states (3HS*). Many photochemical reactions require molecular oxygen (O2) 

in the initial step, since O2 is a source of O2
•− or 1O2 in the presence of the photosensitizer 

and visible light (Bancirova, 2011). The mechanism of 1O2 formation involves the energy 

transfer between 3HS* and the O2 (Aguer et al., 1999), (Hessler et al., 1996). 

However, the effect of HS on the pollutants photodegradation is complicated because 

it acts as photosensitizer, light filter and quencher of free radicals. As an example, the 

formation of some of these reactive species, during the irradiation of HA, is represented in 

the below mechanisms:  

  

      HA + h 1HA* 3HA*    Eq. 1 

                                                            3HA* + O2 HA + 1O2   Eq. 2 

 3HA* + O2 HA+ + O2
−   Eq. 3 

 2O2
●- + 2H+ H2O2 + O2   Eq. 4 

                                       H2O2 + h 2●OH   Eq. 5 

 

 However, HA can also act as a light-filtering agent and/or a free radical quencher to 

inhibit degradation as shown in the next equation: 

 

                      HA/1HA*/3HA*/HA+ + ●OH Oxidized HA Eq. 6 

  

So, the overall effect of HA on the photodegradation of compounds depends on the 

competition between the opposing roles.  

Chen et al. (2013) concluded that the HA photoactivated species (1HA*, 3HA*, HA+) 

are more efficient free radical quenchers than the parent HA. So, an increased free radical 

quenching efficiency and light screening effect led to an inhibition on the photodegradation 

of E3, which means that the HA had an impact in the indirect photodegradation of E3. In 

this study, it was found for the first time that the enhancement or inhibition role of HA in the 

photodegradation depended on the incident light intensity. HA accelerated the degradation 

as a photosensitizer under weak irradiation. In contrast, under the high incident light 

intensity, HA inhibited the photodegradation due to light screening and free radical 

quenching effects.  
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It was reported in different studies that the photodegradation of estrone (E1), 17β-

estradiol (E2) and E3 was enhanced in the presence of HS (Caupos et al., 2011), (Lin and 

Reinhard, 2005), (Oliveira et al., 2016), (Silva, 2014). However, under simulated light, the 

inhibition effect of HS on photodegradation of E1 was also reported (Atkinson et al., 2011). 

So, it was speculated that the differences in quality and type of DOM resulted in the different 

effects (Atkinson et al., 2011). In some studies were shown the distinct effects of HS on the 

photodegradation of pollutants under simulated sunlight (Chen et al., 2009), (Ge et al., 

2009), (Yuan et al., 2009).  

 

  

1.3. Objectives of the dissertation  

 

 The presence of SMX in the aquatic environment around the world was confirmed by 

the different studies presented. In addition, there is already some knowledge about the 

harmful effects of SMX, since it belongs to the group of antibiotics and therefore there is a 

risk of developing bacterial resistance. Consequently, the removal of this pharmaceutical 

from the aquatic environment is urgent.  

 So, the aims of this work are: 

1)  To study the SMX photodegradation behavior under simulated solar irradiation and 

thus to verify whether photodegradation may be an effective method for the removal 

of this antibiotic from effluents of STPs. The photodegradation rates of SMX will be 

followed by high performance liquid chromatography with fluorescence detection 

(HPLC-FLD).  

2)  To evaluate the effect of natural photosensitizers in the photodegradation, because 

it is known that these can influence the degradation rate of pharmaceuticals. So, the 

HA, FA and styrene divinylbenzene (XAD-4) fractions extracted from an estuarine 

water stream were chosen to evaluate indirect photodegradation caused by organic 

matter (OM) present in aquatic environments.  

3)  To understand the photodegradation behavior of SMX in the natural aquatic 

environment and due to the differences in the content and nature of DOM, salinity, 

samples from different origins (estuarine, fresh and waste waters samples) will be 

collected and used in this work. Several factors that might influence the 
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photodegradation kinetics of SMX will also be studied, such as pH, salinity and 

presence of inorganic compounds, such as calcium and magnesium, important 

constituents of sea water. 

4) To evaluate the antibacterial activity before and after photodegradation to 

understand the consequences of this proposed method on combating bacterial 

resistance. 



 

 

 
 

 

2. Materials and Methods 
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2.1. Chemicals  

 

SMX ‒ C10H11N3O3S (purity > 98 %) used in these studies was provided by TCI 

(Europe). Ultrapure water, used in the preparation of solutions, was obtained from a 

Millipore system (Milli-Q plus 185).  

Acetonitrile (HPLC grade) and acetic acid (p.a.) used for HPLC analysis, were 

obtained from VWR, Prolabo and Merck, respectively. Methanol (99.99 %) and nitric acid 

(>65 %) were purchased from Fisher Chemical and Sigma-Aldrich, respectively. 

The pH solutions were adjusted using hydrochloric acid ‒ HCl (NormaPur, 37 %) and 

sodium hydroxide ‒ NaOH (ABSOLVE, 99.3 %) solutions.  

The stock solution of phosphate buffer 0.1 M was prepared in ultrapure water from 

the mixture of 0.05 mol of sodium dihydrogen phosphate dihydrate ‒ NaH2PO4.2H2O (Fluka, 

Biochemika, ≥ 99.5 %) and 0.05 mol of di-sodium hydrogen phosphate dihydrate ‒ 

Na2HPO4.2H2O (Fluka, Biochemika, ≥ 99 %) for each litre of buffer.  

The Red Sea Salt and sodium chloride ‒ NaCl (99.3 %) were acquired from Red Sea 

Europe and ABSOLVE, respectively.   

Calcium chloride dihydrate ‒ CaCl2.2H2O (p.a.) and magnesium chloride hexahydrate 

‒ MgCl2.6H2O (p.a.) were provided from Merck and Riedel-de-Haën, respectively.  

 

 

2.2. Instrumentation  

 

Solar radiation simulator (Solarbox) 

All samples were irradiated under simulated solar radiation using a Solarbox 1500 

(Co.fo.me.gra, Italy). The irradiation device contained an arc xenon lamp (1500 W) and 

outdoor UV filters that limited the transmission of light with wavelengths below 290 nm. The 

irradiance of the lamp was set to 55 W/m2 (290-400) nm and was kept constant during all 

the experiments. To monitor the irradiance level and temperature, a multimeter 

(Co.fo.me.gra, Italy), equipped with a UV (290-400) nm large band sensor and a black 

standard temperature sensor, was used. Through an air-cooled system, the device was 
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refrigerated. Furthermore, a parabolic reflection system guaranteed the uniformity of the 

irradiation inside the chamber. 

  

HPLC-FLD 

Quantitative analysis of SMX was achieved using a HPLC-FLD. This device consisted 

of a degasser DGU-20A5R, a column oven CTO-10AC, a pump LC-30AD and an 

autosampler SIL-30AC (all from Shimadzu). For the separation, a Kinetex XB-C18 column 

(2.6 μm, 100 mm x 4.60 mm) was used. Both the cell and column temperature were 

maintained at 25 °C and an injection of 20 µL was used. The mobile phase consisted of 

water (acidified with 1 % acetic acid):acetonitrile mixture (40:60, v/v) and the flow rate was 

maintained at 0.8 mL/min. Before use as mobile phase, water with 1 % of acetic acid and 

acetonitrile were filtered through a 0.2 μm polyamide membrane filters (Whatman). The 

detection of SMX was done by using a Prominence RF-20Axs fluorescence detector from 

Shimadzu with an excitation wavelength of 265 nm and an emission wavelength of 343 nm. 

 

Conductivity, pH and salinity 

Conductivity was measured using a Consort C861 multi-parameter analyser at 25 ºC. 

Salinity and pH were measured using a MASTER REFRACTOMETER, from ATAGO and a 

pH/mV/°C meter pHenomenal® pH 1100L from VWR.  

  

UV-Vis spectrophotometer and DOC 

All UV-Visible (UV-Vis) spectra were obtained with a Shimadzu UV 2101 PC 

spectrometer using rectangular quartz cuvettes with an optical path length of 1 cm, between 

200 and 800 nm. 

Dissolved organic carbon (DOC) was measured using a Total Organic Carbon 

analyser, TOC-VCPH, from Shimadzu, where samples were acidified with 2 % (v/v) of HCl 2 

M, purged with nitrogen and covered with Parafilm M®, previously to the analysis. 

Stock solution of potassium hydrogen phthalate (KHC8H4O4) 1000 mg/L was prepared 

by dissolving 0.2125 g of KHC8H4O4 in 100 mL of ultrapure water.  
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Calibration curve, used for quantification of DOC in different samples throughout the 

experimental work, were performed using standard solutions of KHC8H4O4 in ultrapure 

water (0.0-10.0 mg/L), by dilution of proper amounts of the stock solution.  

The coefficient of determination (R2) and limit of detection (LOD) for the calibration 

curve obtained were 0.9984 and 0.613 mg/L, respectively. To confirm the stability of 

calibration curve, everyday a newly prepared standard solution [5.0 mg/L] of KHC8H4O4 was 

prepared and analyzed before the samples analysis. 

 

Atomic absorption spectrophotometer 

To determine metals in environmental water samples by flame atomic absorption 

spectroscopy (air-acetylene) an atomic absorption spectrophotometer Perkin Elmer, 

Analyst 100 was used.  

For this determination, water samples were filtered, using a membrane filter (0.2 µm, 

NL16 Whatman) and acidified with nitric acid to pH ≤ 2 (adding 200 µL of nitric acid 65 % to 

100 mL of sample). The samples were refrigerated until the analysis. Before determination 

of dissolved metals, the material used was previously washed with HNO3 4 M followed by 

ultrapure water to prevent the contamination with metals ions. 

To quantify the dissolved calcium, magnesium, sodium, potassium and iron by the 

flame atomic absorption method, calibration curves were made for each element. For 

calcium and magnesium determination, six standards were prepared by dilution of proper 

amounts of the stock solution 100 and 10 mg/L, respectively, in ultrapure water. Due to the 

possibility of complexation, for the calcium and magnesium determinations, 500 µL of 

lanthanum chloride (LaCl2) 0.10 % were added to 50 mL of samples and standard solutions. 

Also, six standards were prepared by dilution of proper amounts of the stock solution 

1000 mg/L in ultrapure water for sodium determination. For minimize the ionization of 

sodium, 400 µL of KCl 25 % were added to 50 mL of samples and standard solutions. For 

potassium and iron determination, four standards were prepared by dilution of proper 

amounts of the stock solution 400 and 100 mg/L, respectively, in ultrapure water.  

 

Spectrofluorometer 

 All fluorescence spectra were acquired with a spectrofluorometer FluoroMax-4 

(Horiba Jobin Yvon) and a quartz cell with an optical path length of 1 cm was used as 
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sample container. The excitation and emission wavelengths ranged from (200-540) nm and 

from (210-600) nm, respectively. Excitation and emission slits of 10 nm and an increment 

of 5 nm were chosen to acquire the spectra.  

 

 

2.3. Humic substances 

 

To study the effect of OM on SMX photodegradation, three fractions of HS were used 

to simulate dissolved organic matter (DOC) in the aquatic environment, since these 

substances are aquatic origin. These fractions, HA, FA and XAD-4, were extracted and 

isolated by Esteves (1995) from an estuarine stream that flows into the Aveiro lagoon, 

Portugal, during low tide at the bar entrance of Aveiro (Portugal) at 40º31’16’’N and 

8º46’34’’W.  

Different fractions of HS were previously (Esteves, 1995) extracted and isolated using 

a system of two resins in series - poly(methymetacrylate) (XAD-8) followed by XAD-4. After 

the isolation of HA and FA using the XAD-8 column, an additional step was applied to isolate 

the hydrophilic organic acids using the XAD-4 styrene resin, being the obtained substances 

called XAD-4 fraction (Esteves et al., 2009). The purified fractions of HS were subsequently 

characterized by elemental analysis by Esteves (1995).  

In this work, UV-Vis spectrophotometry was used for HS fractions’ characterization.  

 

 

2.4.  Environmental water samples 

 

Surface and waste water samples were collected in cleaned ambar glass bottles 

between October 2016 and February 2017 with the purpose of studying the SMX 

photodegradation in environmental aquatic matrices.  

A surface estuarine water sample was collected from Ria de Aveiro, more precisely 

in the urban city center of Aveiro (Fonte Nova, Ria de Aveiro, Aveiro, Portugal). In this 

sampling site, water is typically known to have high contents of OM and salinity. Ria de 
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Aveiro is a shallow lagoon (about 1 m of depht) situated in the Northwest Atlantic coast of 

Portugal (40º38’N, 8º45’W) with 45 km length and 10 km width. The lagoon receives fresh 

water from two main rivers, the Antuã river with average flow of 5 m3/s and the Vouga river 

with 50 m3/s. In addition to the rivers mentioned above, Ria de Aveiro has a number of 

channels and among them two are more important, the São Jacinto and Espinheiro 

channels. This lagoon covers an area of 83 km2 at high tide and 66 km2 at low tide. Ria de 

Aveiro was affected by the increase of anthropogenic activities, namely building and land 

occupation, agricultural and industrial activities, leading to a significant change of the lagoon 

morphology, with the addition of anthropogenic nutrients and contaminants. Thus, there is 

a negative impact on the water circulation, as well as on the water quality of the lagoon. The 

main anthropogenic sources of pollution are domestic and industrial discharge flows (Lima, 

2011).  

Other surface water samples were tested: a fresh water from Rio Novo do Príncipe 

(Aveiro, Portugal), located in the rural and agricultural area of Aveiro and a fresh water from 

Poço da Cruz (Aveiro, Portugal), belonging to the Mira channel. Finally, a waste water 

sample was collected from the North Aveiro STP, after secondary treatment (corresponding 

to the final effluent, STPF). In Aveiro, there are two STPs (North and South of Aveiro) where 

domestic (South STP) and both domestic and industrial (North STP) effluents from 10 

different locations are treated and discharged into the Atlantic Ocean, at a distance of 

3.2 Km from the coast, at approximately 17 m depth. North STP is located in Cacia, Aveiro, 

and was projected to satisfy the effluents’ treatment needs of Águeda, Aveiro (part of), 

Albergaria-a-Velha, Estarreja, Murtosa, Oliveira do Bairro and Ovar. It is dimensioned to 

serve a population of 272 000 inhabitants and an average daily flow of 48 705 m3 and 

performs the treatment of both domestic and industrial effluents (Lima, 2011).  

All sampling sites are represented in figure 5.  

After collection, all the samples were filtered through 0.22 μm nitrocellulose 

membrane filters (Millipore) avoiding bacteria activity and stored at 4 ˚C prior to use.  

All water samples were characterized through UV-Vis spectrophotometry, atomic 

absorption spectrophotometry and measuring different parameters, such as DOC, salinity, 

pH and conductivity. 
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2.5. Photodegradation experiments 

 

2.5.1. Solutions of SMX 

SMX stock solution of 100 mg/L was prepared by dissolving 10 mg of SMX in a small 

quantity of methanol (less than 1 %) and stored at 4 °C in the dark.  

The SMX calibration curve was obtained by preparation of standard solutions in 

ultrapure water, with concentrations 100, 50, 25, 10, 5 and 1 μg/L, by dilution of proper 

amounts of the stock solution.  

For the evaluation of the antibacterial activity of SMX and its photoproducts, a 

400 mg/L aqueous standard stock solution of SMX was prepared by dissolving SMX in a 

small volume of methanol (less than 1 %). Solutions were kept at 4 °C in the dark. 

STPF Fonte nova 

Rio Novo Príncipe 

Poço da cruz 

Figure 5- Location of the sampling points. 
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2.5.2. Photodegradation of SMX in batch mode 

General procedure of SMX photodegradation  

The SMX photodegradation studies were performed using quartz tubes (1.8 cm 

internal diameter and height of 20 cm) containing the compound solution. Thereafter, the 

tubes were placed on a suitable support to be maintained in suspension inside the 

irradiation chamber and subjected to irradiation making use of the Solarbox. For each set 

of experiments, four properly identified quartz tubes capped with Parafilm M® were 

introduced into the Solarbox: three of them were exposed to radiation and the other one 

was covered with aluminum foil to protect it from light (control). The controls were kept 

inside the Solarbox during the same time as the irradiated solutions. These controls will 

indicate the existence or not of any degradation by microbiological or thermal means, during 

the photodegradation experiments. Therefore, the decrease of SMX concentration in 

exposed solutions, as compared with controls, may be only ascribed to photo-induced 

degradation.  

For kinetic studies, from each irradiated samples and controls, 1 mL aliquot was 

collected after 5, 10, 20, 30, 45, 60, 90, 120, 150 and 180 minutes; then every hour until 8 

hours, after 10 hours of irradiation and then every 4 hours until no SMX was detected using 

HPLC-FLD.  

The degradation percentage for each set of experiments was calculated in relation 

with the respective control. Experimental data was fitted to the pseudo first-order kinetic 

equation given below, using GraphPad Prism 5.:  

                                      C⁄C0 = e-kt                                                                                                                                         Eq. 7 

 

where,   

C ‒ is the concentration of SMX exposed to light at different irradiation times (µg/L);  

C0 ‒ is the concentration of SMX protected to light at different irradiation times (µg/L);  

k ‒ is the pseudo first-order degradation rate constant (h-1);  

t ‒ is time (h).  
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 The determination quantum yield of photodegradation (𝜙) was performed by 

radiometry using the method described by Calisto et al. (2011), using the equations 

presented below:     

                                               

                                                 𝜙𝜆𝑖 =
𝑟𝑎𝑡𝑒 𝜆𝑖

𝐼𝜆𝑖
𝑎𝑏𝑠                                                                                        Eq. 8 

 

where, 

𝜙𝜆𝑖 ‒ is the quantum yield at the wavelenght 𝜆𝑖 (mol/L.s or Ein/L.s); 

𝑟𝑎𝑡𝑒 𝜆𝑖 ‒ is the photodegradation rate of SMX induced by the absorption of radiation with 

wavelenght 𝜆𝑖 (mol/L.s or Ein/L.s); 

𝐼𝜆𝑖
𝑎𝑏𝑠 ‒ is the rate of light absorption at the wavelenght 𝜆𝑖 (do not have units); 

and  

                                       𝐼𝜆𝑖
𝑎𝑏𝑠 = 𝐼𝜆𝑖

0 ×(1 − 10−𝜀𝜆𝑖×𝑙×𝐶0  )                                                   Eq. 9                       

 

where, 

𝐼𝜆𝑖
0   ‒ is the lamp emission intensity at the wavelenght 𝜆𝑖 (wm-2/nm); 

𝜀𝜆𝑖 ‒ is the molar absorptivity of the SMX at the wavelenght 𝜆𝑖 (L/mol.m); 

l ‒ is the path lenght inside the photoreactor (m); 

and  

                           

                                       𝜙𝜆𝑖 =
𝐶0 × 𝑘𝑖

𝐼𝜆𝑖
0  ×(1−10−𝜀𝜆𝑖×𝑙×𝐶0  )

                                                         Eq. 10 

 

where,  

ki ‒ is the pseudo first-order degradation rate constant at the wavelenght 𝜆i (s-1).  

 

However, taking into account the experimental impossibility of determining the rate 

constant of a photodegradation process corresponding to the absorption of a single 
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wavelength, the photodegradation 𝜙 is often determined considering an overall average 

over the lamp emission wavelength range as given by equation 11: 

 

                           𝜙𝑎𝑣𝑒 =
𝐶0 × 𝑘

∑ 𝐼𝜆𝑖
0 ×(1−10−𝜀𝜆𝑖×𝑙×𝐶0  ) × ∆𝜆

                                                  Eq. 11      

 

where,  

∆𝜆 ‒ is the wavelength interval of acquisition of the spectral irradiance of the lamp (nm).  

 

According to these equations, the units of the average quantum yield (𝜙ave) should be 

mol/Ein. Taking into account that one Ein is equivalent to one mole of photons, the 𝜙 is a 

dimensionless quantity. 

 The SMX’s photodegradation 𝜙 was calculated considering an overall average over 

the lamp emission wavelength range (290–800) nm and respective emission intensities, 

directly extracted from the lamp spectrum (as given by the manufacturer), for the irradiance 

level used during the experiments (55 W m-2, 290–800 nm). The calculation of the 𝜙 was 

performed considering a diameter of the cylindrical photoreactor of 1.8 cm, a volume of 

irradiated solution of 20 mL and a solution exposure area of 36 cm2. 

 

Photodegradation of SMX in ultrapure water 

For the direct phototodegradation of SMX, a solution of 100 μg/L SMX, 

environmentally relevant concentration, in ultrapure water was prepared by dilution of the 

stock solution and transferred into quartz tubes (20 mL in each tube). The aliquots were 

collected at different times of irradiation, as described above, until a maximum of 3 hours of 

irradiation. 

 

Photodegradation of SMX in environmental water samples    

With the objective to study the SMX photodegradation when present in the aquatic 

environment, each one of the four environmental water samples collected was spiked with 

100 μg/L of SMX. These solutions were distributed into quartz tubes and the aliquots in 

Fonte Nova, Rio Novo do Príncipe, Poço da Cruz and STPF samples, were collected as 

described previously until no SMX was detected. 
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Effect of HS on SMX photodegradation 

To study the effect of HS on the SMX photodegradation, kinetic studies were 

performed using three fractions of HS (HA, FA and XAD-4). The SMX solutions of 100 μg/L 

were prepared in the presence of 20 mg/L of HA, FA or XAD-4 and subjected to irradiation 

until no SMX was detected.   

 

Effect of pH on SMX photodegradation 

Several experiments were performed to study the influence of pH in aqueous solutions 

on SMX photodegradation.  

Firstly, a 100 µg/L of SMX solution prepared in a 0.001 M phosphate buffer with pH 

5.00 and 7.30 adjusted with NaOH or HCl was irradiated until no SMX was detected using 

HPLC-FLD and aliquots were collected at different times following the order described 

above.  

Secondly, an estuarine water sample spiked with 100 µg/L SMX with no pH 

adjustment (pH = 7.33) and with pH adjusted to 6.30 with HCl was also irradiated until no 

SMX was detected using HPLC-FLD.  

At last, SMX solutions (100 μg/L) in absence and presence of each one of the three 

fractions of HS (HA, FA and XAD-4) at a concentration of 20 mg/L prepared in a 0.001 M 

phosphate buffer with pH 5.00 and 7.30 adjusted with NaOH or HCl were irradiated until no 

SMX was detected by HPLC-FLD. 

 

Effect of sea salts on SMX photodegradation 

The influence of sea salts on photodegradation behaviour was evaluated using 

100 μg/L of SMX, dissolved in 0.001 M phosphate buffer with pH adjusted to 7.30 containing 

21 ‰ of NaCl or 21 ‰ of sea salts (artificial sea water from Red Sea Salts). Both solutions 

were irradiated during 5 hours and analysed with HPLC-FLD. Results were compared with 

the ones obtained using an estuarine water sample spiked with 100 µg/L SMX and an 

ultrapure water with phosphate buffer at pH 7.30. 

In order to obtain information on the possibility of inorganic compounds (such as 

calcium and magnesium) playing a role in the photodegradation of SMX, the following 
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experiment was conducted: 100 µg/L SMX solutions in 0.001 M phosphate buffer with pH 

adjusted to 7.30 with NaOH and containing 785 mg/L of magnesium or 261 mg/L of calcium 

were also irradiated during 5 hours and analysed with HPLC-FLD. These concentrations of 

magnesium and calcium were chosen because they are similar to the existing on Red Sea 

Salts mentioned previously. 

To test the possible influence of ionic strength photodegradation, kinetics of the 

photodegradation of SMX was also performed using 21 ‰ of sea salts (artificial sea water 

from Red Sea Salts) and using 21 ‰ of NaCl spiked with 100 μg/L of SMX, dissolved in 

0.001 M phosphate buffer with pH adjusted to 7.30 with NaOH and irradiated until a 

maximum of 18 hours. Results were compared with those obtained in previous sections 

using an estuarine water sample spiked with 100 µg/L SMX at pH 7.33 and an ultrapure 

water with phosphate buffer at pH 7.30. 

 

2.5.3. Photodegradation of SMX in continuous flow mode 

To study the SMX photodegradation in continuous flow mode, solutions of the 

compound kept in two reservoirs with 20 mL each were capped with Parafilm M® and 

covered with aluminum foil to protect them from light. The samples were pumped with a 

Longer Pump BT 100-1L, using a flow rate of 150.1 µL/min, through a narrow-bore (inner 

diameter: 0.8 mm and outer diameter: 1.6 mm), transparent tube of fluorinated ethylene 

propylene. Each one of the two tubes used had a total lenght of 2.80 m, however, just 

1.50 m were placed in a flat plate inside the solarbox, while the rest of the tube was outside, 

to allow sample recirculation. It is important to refer that the reservoirs and part of the tubes 

that were outside the solarbox were all carefully covered with aluminum foil to protect them 

from light. One of the two plates were covered with aluminum foil to protect it from light 

(control). The scheme used to study the photodegradation in continuous flow mode is 

represented in figure 6. The control was kept inside the Solarbox during the same time as 

the irradiated flat plate containing the solution. During the photodegradation experiments, 

these controls were used to verify that there was not another type of degradation or 

adsorption to the inner walls of the tube besides photodegradation. So, the decrease of 

SMX concentration in exposed solutions may only be ascribed to photo-induced 

degradation. 
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Figure 6- Scheme of SMX photodegradation in continuos flow mode. 

 

Residence time plays a significant role in the complete degradation of the target 

compound. So, to build the kinetic profile of SMX degradation, samples with 100 µg/L were 

tested with different residence times, being varied by several consecutive cycles.  

For the direct phototodegradation of SMX, a solution of 100 μg/L of SMX in ultrapure 

water was prepared by dilution of the stock solution and transferred to two reservoirs (5 mL 

in each). The aliquots were collected at different times of irradiation as described above 

until a maximum of 1 hour of irradiation. 

With the objective to study the SMX photodegradation when present in the aquatic 

environment, each one of four environmental water samples collected was spiked with 

100 μg/L of SMX. These filtered solutions were distribued into reservoirs and the aliquots 

of Fonte Nova, Rio Novo do Príncipe, Poço da Cruz and STPF samples, were collected as 

described previously until a maximum of 5, 4, 4 and 5 hours of irradiation, respectively.  

From each one of the irradiated samples and controls, 200 µL aliquot was collected 

after 3, 6, 9, 15, 21, 30, 45 and 60 minutes; then every 30 minutes until 3 hours and then 

every hour until no SMX was detected using HPLC-FLD.  

The degradation percentage for each set of experiments was calculated in relation 

with the respective control and to perform the fittings of experimental data the same 

equation as in SMX photodegradation in batch mode was used.   
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2.5.4. Antibacterial activity 

Before performing the antibacterial activity tests, SMX photodegradation experiments 

were done using five tubes placed inside the solarbox in the same way as referred in 2.5.2 

section. All quartz tubes were capped with Parafilm M® and two of these tubes were covered 

with aluminum foil to protect them from light (controls).  

For the direct phototodegradation of SMX, a solution of 100 mg/L of SMX, 

concentration needed to detect bacterial growth, in ultrapure water was prepared by dilution 

of the stock solution and transferred to four quartz tubes (20 mL each). 

With the aim of studying the antibacterial activity of SMX in aquatic environment 

during the photodegradation process, each one of three environmental water samples 

collected was spiked with 100 mg/L of SMX and these solutions were distributed into four 

quartz tubes.  

Aliquots of the three replicates were collected after about 50 % of SMX 

photodegradation (t1 – sample E), after more than 95 % of SMX photodegradation (t2 – 

sample F) and when no SMX was detected (t3 – sample G) by HPLC-FLD. All concentrations 

of SMX in ultrapure water and in environmental water samples at different times of 

irradiation used for antibacterial activity tests are on the table A1 (annex).  

One of the dark controls (sample D) consisted in a SMX solution of 100 mg/L in the 

water matrix subjected to the irradiation and the aliquots were collected at zero time of 

irradiation to evaluate the antibacterial activity and t1, t2 and t3 of irradiation for analysis by 

HPLC-FLD to calculate the photodegradation rate and to evaluate the existence or not of 

any degradation by microbiological or thermal means, during the photodegradation 

experiments. The other control (sample C), with an expected SMX concentration 

corresponding to 50 % of degradation, was used to evaluate the existence of any loss of 

antibacterial activity due to thermal heat that samples might be subjected.  

A 5 mL blank of the water matrix (no SMX added) was used to evaluate matrix effects 

on bioassays performance (sample A). Also, a 5 mL of a SMX standard with 50 % of the 

initial concentration not subjected to any irradiation (sample B) was used to compare its 

antibacterial activity with the one obtained with 50 mg/L SMX solution in the water matrix 

subjected to irradiation (containing any photoproducts formed during the irradiation).  

The tests of antibacterial activity were performed using Vibrio fischeri ATCC 7744 

incubated overnight in Nutrient Broth n.2 supplemented with 2 % of NaCl. This strain was 

chosen to represent bacteria present in environmental waters and because it is known to 
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play an important role in antibiotics’ resistance dissemination (Cabral, 2010), (Chavez-dozal 

et al., 2013), (Backhaus and Grimme, 1999). Its detection is favoured since it emits 

luminescence (Hamada, 2008).  

The strain was grown to optical density (OD) 0.9 at wavelength 600 nm and then was 

used in the bioassays in ultrapure water and in the different environmental water samples. 

All assays were performed in triplicate. 

The cytotoxic effect was evaluated considering the bacterial growth at a wavelength 

of 600 nm and its luminescence at a wavelength of 420 nm using a Multiskan ™ GO, 

Thermo Scientific, UK.  

For the various samples tested, a growth control was performed, where the strain was 

grown in the water sample under study without SMX (control - sample A). Then, the % of 

viable cells was estimated at wavelength 420 nm using the following ratio: 

 

                          % 𝑜𝑓 𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 = (
𝑂.𝐷.𝑖𝑛 𝑡𝑒𝑠𝑡

𝑂.𝐷.𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝐴
) ×100                                Eq. 12 



 

 

 

3. Results and Discussion 
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3.1. Calibration curve  

 

The calibration curve was performed using six standard solutions of SMX with 

concentrations ranging from (1 to 100) μg/L and each standard was analysed in 

quadruplicate. These solutions were prepared by dilution of a 100 mg/L stock solution of 

SMX in ultrapure water and analysed by HPLC-FLD. 

The equation used for SMX quantification and respective errors are presented below:  

 

 

where,  

y – is the peak area obtained by HPLC-FLD; 

x – is the concentration obtained at different times of irradiation.  

 

The calibration curve allowed to obtain the value of R2 of 0.9979 which confirms the 

good linear response in the studied range of concentrations.  

The repeatability of retention time (tr) and peak areas were measured throught the 

relative standard deviation (RSD) and values below 5.0 % were obtained proving the good 

repeatability of the HPLC method. However, is also possible to calculate the LOD and the 

linearity (Lin) of response of the method using the equations described below (Esteves et 

al., 2004), (Lima, 2011), (Miller and Miller, 2010): 

 

                                                    𝐿𝑂𝐷𝑦 = 𝑎 + 3 𝑆𝑦/𝑥   Eq. 14 

  

where,  

𝑎 – is the intersection with the y-axis; 

𝐿𝑂𝐷𝑦 – is the value of LOD in the y-axis; 

𝑆𝑦/𝑥 – is the statistical parameter that estimates the random errors in the y axis; 

 y = (1517 ± 35) x + (4.4x103 ± 2.0x103)                       Eq. 13 
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and 

                                         𝑆𝑦/𝑥 =  √
∑ (𝑦𝑖−𝑦̂𝑖)2

𝑖

𝑛−2
                                                            Eq. 15 

 

where,  

𝑦𝑖 – is the experimental values of y obtained for each calibration standard; 

𝑦̂𝑖 – is the calculated y-values by using the calibration curve equation (eq.13), corresponding 

to the individual x-values of standards;         

n – is the number of standard solutions that were used for calibration; 

and 

                                        𝐿𝑂𝐷𝑋 =
3 𝑆𝑦/𝑥

𝑏
                                                                    Eq. 16 

 

where, 

b – is the slope of the calibration curve.  

 

                                         Lin (%) = 100 ‒ RSDb                                                      Eq. 17 

 

where,  

RSDb – is the relative standard deviation of slope.  

 

The value obtained for LOD on the y-axis was 53188 and the LOD for x-axis was 

3.42 μg/L. Linearity obtained was 99.98 % suggesting that the method used is linear for the 

range of concentrations tested.  

The results, obtained in the calibration procedure, allowed to determine the SMX 

concentration in the samples subjected to irradiation needed to determine the 

photodegradation rate. 
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3.2. Photodegradation of SMX in batch mode 

 

3.2.1. Direct photodegradation kinetics of SMX 

The study of direct photodegradation of SMX was performed in ultrapure water to 

investigate the rate of degradation in the absence of OM or salts.  

So, the photodegradation of 100 µg/L of SMX prepared in ultrapure water was 

investigated irradiating the solution during 3 hours and results showed a decrease of SMX 

concentration with time (figure 7).  

The experimental data were fitted by non-linear regression, according to the equation 

7, referred in the section 2.5.2.  
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To calculate the t1/2 of SMX, the following equation was used: 

                                           𝑡1 2⁄ =
𝑙𝑛2

𝑘
                                                                            Eq. 18 

 

Photodegradation of SMX followed a pseudo first-order kinetic model with a rate 

constant of (0.81 ± 0.04) h-1 and a t1/2 of (0.86 ± 0.03) h. No degradation was observed in 

the tubes covered with aluminum foils (control tube), indicating that no degradation by 

microbiological or thermal means occurred. The same kinetic model was well adjusted for 

other studies of the photodegradation of E1 (Silva et al., 2016a), E2 (Silva et al., 2016b), 

Figure 7- Kinetics of SMX photodegradation in ultrapure water - direct photodegradation (x) and control during 

the photodegradation experiment (▲).  
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(Mazellier et al., 2008), (Liu and Liu, 2004), 17α-ethinylestradiol (EE2) (Silva et al., 2016b), 

E3 (Oliveira et al., 2016) and also of psychiatric pharmaceuticals (Calisto et al., 2011).  

The fast photodegradation of SMX in ultrapure water is in accordance with literature. 

For example, in the study performed by Trovo et al. (2009), experiments were conducted in 

a solar simulator equipped with a 1100 W xenon arc lamp and special filters restricting 

transmission of light below 290 nm and a rapid decay of 40 % of the initial concentration of 

SMX (10 mg/L) solution prepared in distilled water was observed during the first 45 minutes 

(Trovó et al., 2009). However, it is important to refer that the concentration of SMX used in 

the mentioned study was higher than that used in this work.  

 

3.2.2. Photodegradation of SMX in the environmental water samples 

3.2.2.1. Characterization of environmental water samples  

In order to understand the results of SMX photodegradation in environmental water 

samples, the characterization of the samples collected was performed in terms of salinity 

levels, conductivity, DOC, pH, UV-Vis spectrophotometry and quantification of different 

dissolved elements by flame atomic absorption spectroscopy.  

 

Salinity, conductivity, DOC and pH 

Salinity, conductivity, DOC and pH values of the samples are presented in the table 

6.  

Salinity is the quantity of dissolved salt content of the water, being the salt compounds 

sodium chloride, magnesium sulfate, potassium nitrate and sodium bicarbonate. The 

sample of Fonte Nova has the highest value while fresh waters samples show a value of 

zero (table 6). It should also be noted that the STPF sample shows a low value of salinity 

comparing with the Fonte Nova sample (table 6). The values of salinity are in agreement 

with conductivity, with higher value for Fonte Nova sample and lower value for the two fresh 

waters samples (table 6).  
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DOC analysis (table 6) indicates a greater content of organic carbon in the fresh water 

river Poço da Cruz sample [134.74 mg/L] comparing with the other samples, being the fresh 

water Rio Novo Príncipe sample [3.14 mg/L] the one with lower organic carbon content.  

The pH measurements indicate that all environmental water samples are basic, with 

pH values higher than 7. 

 

UV-Vis spectrophotometry 

With respect to the UV-Vis spectrophotometry, larger absorbance values are most 

likely caused by higher chromophore content. The obtained results (figure 8) show the same 

trend for all water samples studied: decreasing of absorbance towards longer wavelengths.  

 

 

 

 

 

 

 

 

 

Figure 8- UV-Vis spectra of the environmental water samples analysed.  

Sample Salinity 

(‰) 

 

Conductivity 

(mS/cm) 

DOC [mg/L] pH 

Fonte Nova 20.8  24.000 5.5 ± 0.1 7.33  

Rio Novo Príncipe 0.0  0.087 3.14 ± 0.07 7.20  

Poço da Cruz 0.0  0.480 134.74 ± 0.08 8.11  

STPF 2.0  2.820 26.45 ± 0.03 8.08  

 Table 6- Salinity, conductivity, pH and DOC values of the samples tested and respective standard errors. 
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Through the investigated range of wavelenght, the highest absorbance values were 

obtained for STPF sample, while the lowest values were for Rio Novo Príncipe sample.  

To investigate the influence of the environmental water samples in SMX 

photodegradation, the absorbance values at 290 nm were measured in SMX (100 µg/L) 

solutions in ultrapure water and in STPF, Rio Novo Príncipe, Poço da Cruz and Fonte Nova 

water samples. Although SMX does not present a maximum of absorbance at 290 nm 

(figure 9), since radiation used in photodegradation studies are above 290 nm, the 

wavelength chosen to compare the absorbance values of SMX solutions in ultrapure water 

and in environmental samples was 290 nm. Results showed the increase of absorbance 

values in the order: 

 

Ultrapure water (0.011)  <  𝑅𝑖𝑜 𝑁𝑜𝑣𝑜 𝑃𝑟í𝑛𝑐𝑖𝑝𝑒 (0.063)  <  𝐹𝑜𝑛𝑡𝑒 𝑁𝑜𝑣𝑎 (0.095)

<  𝑃𝑜ç𝑜 𝑑𝑎 𝐶𝑟𝑢𝑧 (0.126) < STPF (0.323) 

 

due to the screen filter effect it could be expected a decrease of SMX photodegradation in 

this order.  

 

Figure 9- UV-Vis spectra of SMX [10 mg/L] and SMX [100 µg/L] in ultrapure water. 
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Atomic absorption spectrophotometry 

To quantify the calcium, magnesium, sodium, potassium and iron using flame atomic 

absorption spectroscopy, calibration curves for each element were determined. 

Concentration range, R2 and LOD obtained are summarized in the table 7.  

 

Table 7- Concentration range used, calibration curve equation, R2 and LOD obtained in determination of 

calcium, magnesium, sodium, potassium and iron by atomic absorption. 

 

The environmental water samples were diluted whenever necessary and results 

obtained are presented in table 8. 

 

Table 8- Concentration of calcium, magnesium, sodium, potassium and iron determined in environmental 

samples and respective standard errors.  

 

 It is possible to verify that Fonte Nova sample presented higher concentration for all 

dissolved elements, except iron, when compared with the other environmental water 

samples. This is in accordance with the higher salinity level measured in this sample 

Element Concentration 

range [mg/L] 

Calibration curve equation R2 LOD 

[mg/L] 

Calcium 1.0-6.0 y= (0.0755 ± 0.0005) x + (0.014 ± 0.002) 0.9998 0.0895 

Magnesium 0.1-0.6 y= (0.651 ± 0.003) x + (0.007 ± 0.001) 0.9999 0.0059 

Sodium 5-50 y= (0.043 ± 0.001) x – (0.03 ± 0.03) 0.9980 2.637 

Potassium 2-16 y= (0.0186 ± 0.0006) x – (0.014 ± 0.006) 0.9967 1.142 

Iron 0.5-5 y= (0.0388 ± 0.0005) x + (0.001 ± 0.001) 0.9997 0.136 

Sample Calcium 

[mg/L] 

Magnesium 

[mg/L]  

Sodium 

[mg/L] 

Potassium 

[mg/L] 

Iron  

[mg/L] 

Fonte Nova 277 ± 1 738 ± 1 5667 ± 1 291 ± 2 0.20 ± 0.04 

Poço da Cruz 49.5 ± 0.2 8.31 ± 0.04 20.9 ± 0.5 7.63 ± 0.04 0.21 ± 0.02 

Rio Novo 

Príncipe 

4.47 ± 0.01 2.08 ± 0.02 9.34 ± 0.04 2.48 ± 0.03 0.053 ± 0.001 

STPF 59.4 ± 0.4 46.8 ± 0.1 9.86 ± 0.01 40 ± 1 0.42 ± 0.05 



 

52 

 

3.2.2.2.  Photodegradation kinetics of SMX 

In photodegradation experiments, the two fresh waters, a waste water and an 

estuarine water samples were spiked with SMX in order to obtain the same concentration 

used in the previous studies [100 µg/L] and were irradiated until no SMX was detected.   

Experimental results were fitted by non-linear regression, according to the equation 

7, in the same way that was made for kinetic of SMX photodegradation in ultrapure water. 

The kinetic curves of SMX photodegradation in the different water samples tested are 

presented in figure 10. The kinetic curve of SMX in ultrapure water is also presented for 

comparison.  
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Figure 10- Kinetics of SMX photodegradation in ultrapure water and in environmental water samples. Shown 

error bars are standard deviations (n = 3) (note that, for most of the experimental points error bars are too 

small to be visible in the figure). 

 

In these environmental water samples, there is an obvious decrease of the SMX 

photodegradation rate compared with the obtained in ultrapure water. On the other hand, 

after 14 hours of irradiation, the photodegradation of SMX in environmental water samples 

increased as follow: STPF - 72.46 % < Fonte Nova - 80.00 % < Rio Novo Príncipe - 81.65 % 

< Poço da Cruz - 86.77 %. However, in ultrapure water after only 3 hours of irradiation SMX 

was practically all degraded.  
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Results obtained are summarized in table 9 showing the different photodegradation 

behaviour of SMX in environmental water samples from different origins. These results 

showed that environmental water samples are less efficient to photodegradation of SMX, 

since the t1/2 obtained in ultrapure water was lower than 1 hour, while in estuarine and 

riverine waters was around 6 hours and in STPF reached almost 8 hours (table 9).  

 

Table 9- Data on apparent first-order rate constants, kmeas (h-1), R2, t1/2 (h), and t1/2 (SSD) obtained in ultrapure 

water and in environmental water samples and respective standard errors.  

Type of water kmeas (h-1) R2 t½ (h) t½ (SSD) 

Ultrapure 0.81 ± 0.04 0.9900 0.86 ± 0.04 0.23 ± 0.01 

Fonte Nova 0.13 ± 0.01 0.9397 5.3 ± 0.5 1.4 ± 0.1 

Rio Novo do Príncipe 0.117 ± 0.007 0.9701 5.9 ± 0.4 1.56 ± 0.09 

Poço da Cruz 0.122 ± 0.004 0.9916 5.7 ± 0.2 1.50 ± 0.05 

STPF 0.092 ± 0.003 0.9907 7.54 ± 0.04 1.98 ± 0.07 

 

For all environmental water samples, the first order rate constant of SMX 

photodegradation was much lower than the one obtained in ultrapure water. Also, it was in 

the STPF sample that the first order rate constant of SMX photodegradation was lower, 

(0.092 ± 0.003) h-1, compared to the obtained in ultrapure water, (0.81 ± 0.04) h-1. These 

results can indicate that the high capacity of STPF sample to absorb radiation originates a 

significant amount of light not available for SMX degradation (higher inner filter effect). 

These values are in accordance with the absorbance values determined for STPF which 

were higher than those for fresh and estuarine water samples. 

It is important to highlight that t1/2 is strictly related to the adopted experimental 

conditions and assuming that the lamp properly simulates sunlight, results can be converted 

into outdoor t1/2, in summer sunny days (SSD) equivalents (table 9). Considering that the 

total energy reaching the ground on a cloudless summer day (45 ºN latitude) is 

7.5 x 105 J/m2, one summer sunny day (24 hours day/night cycle) corresponds to 3.8 hours 

of irradiation (Calisto et al., 2011). The conversion of the resulting t1/2 (h) to t1/2 (SSD) in 

environmental conditions, allows to observe enormous differences in the number of 

necessary SSD to reach the t1/2 in ultrapure water and in environmental water samples. In 

ultrapure water, 0.23 SSD are needed to reach the t1/2, while for natural environmental 
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samples the SSD varied between 1.4 and 1.98. This means that when SMX is present in 

natural environments its degradation rate becomes much slower, increasing its persistence, 

along with potential risks, such as increasing microbial resistance through the prolonged 

exposure of microorganisms to SMX. Thus, it is important to understand the main 

contributors for this decrease in the photodegradation rate. 

The salinity of the samples used in this study ranged between 0, 2.0 and 20.8 for fresh 

waters, STPF and estuarine water samples, respectively (table 6). The highest salinity was 

measured on Fonte Nova sample. A decrease of OM content with increasing of salinity has 

been proven (Yang et al., 2015). Since lower OM content will result in a lower inner filter 

effect, this can explain the higher degradation rate observed in Fonte Nova sample in 

comparison with the observed in the other environmental samples. However, salinity also 

has been known to have an inhibitory effect on the photocatalytic degradation of 

sulfonamide antibiotics (Yang et al., 2015), which may explain why the first order rate 

constant of SMX photodegradation in Fonte Nova sample was much lower than the 

obtained in ultrapure water. Also, estuarine water contains various inorganic compounds 

that are high in Na+ and Cl- ions and includes numerous other ions in minor concentrations 

(e.g., Ca2+, Mg2+, K+, I-, SO4
2- and Br-) (Leal et al., 2015). In table 8, it is possible to verify 

that estuarine water presents higher concentration of sodium, calcium, magnesium and 

potassium when compared with the other samples tested. As mentioned before, indirect 

photolysis consists of light absorption by photosensitizers, which generate many 

photoreactants, such as ·OH or 1O2. It has also been referred that anions such as chlorides, 

carbonates, phosphates and sulphates have the ability to scavenge the ·OH (Umar and 

Aziz, 2013) that may contribute in the indirect photodegradation, since the addition of the 

·OH to SMX isoxazole ring formation was mentioned by Trovó et al., 2009. 

In this study, the pH of environmental water samples varied between 7.20 and 8.11 

(table 6); these values are higher than that attributed to 100 µg/L SMX in ultrapure water 

(pH = 6.30).  According to Dias et al. (2014), pH affects greatly the SMX speciation in 

solution and thus its UV-Vis spectrum. Since photodegradation rate constant depends upon 

the quantity of photons absorbed by each mole of SMX per unit of time and on the 𝜙, it will 

also depend of the SMX speciation.  

So, it is possible to conclude that salinity, the concentration of ions dissolved in 

environmental samples and pH have great influence in photodegradation rate of SMX, thus 

it is important to study their influence in more detail. In addition, the effect of 



 

55 

 

photosensitizers, such as HS, should also be evaluated as they can influence 

photodegradation.  

 

3.2.3.  Effect of HS on SMX photodegradation 

3.2.3.1. Characterization of HS 

To investigate the effect of HS on the SMX photodegradation, three fractions of HS 

were used: HA, FA and XAD-4 at a concentration of 20 mg/L. Each one of the HS fractions 

has different chemical and optical properties (Sierra et al., 2005) that can influence the 

degree of SMX photodegradation.  

 

Elemental analysis 

The purified fractions HA, FA and XAD-4 used in our photodegradation studies were 

characterized by Esteves et al. (1995) (table 10).   

 

Table 10- Elemental analysis of HS fractions selected to study the effect of DOM on SMX photodegradation. 

Results are corrected for humidity at 60 ͦC and ashes at 750  ͦC (adapted from Esteves et al. (1995)). 

 

 

 

 

 

 

After analyzing the elemental analysis results (table 10) it can be seen that XAD-4 

fraction has a lower carbon content than HA and FA; however, the oxygen content of XAD-

4 is higher. This indicates greater content of oxygen functional groups on XAD-4 fraction 

than in the other two fractions used. 

HSs are complex molecules, which consist of aromatic cores, substituted with 

functional groups and aliphatic cores (Aleksandrova et al., 2011) with different heat 

resistance. In the thermogravimetric analysis HA, with the higher carbon content, was found 

Elemental analysis (%)  

 C H N S O 

HA 54.8 4.0 3.6 1.8 32.4 

FA 54.5 4.7 1.9 1.0 34.9 

XAD-4 48.8 4.2 3.1 1.2 40.5 
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to be the most thermo-resistant and only decomposes at temperatures higher than 300 °C, 

which suggests that this fraction have higher aromaticity and lower content of aliphatic 

chains and functional groups, comparing with FA and XAD-4 fractions (Esteves, 1995). 

To further investigate the structural differences of the three fractions of HS used, UV-

Vis spectrophotometry (figure 11) were performed.  

 

UV-Vis spectrophotometry 

The UV-Vis spectra of SMX [100 µg/L] in ultrapure water and in the presence of the 

three HS fractions were performed in the range (200 to 600) nm and show a continuous 

decrease of absorbance values from (200 to 600) nm for all HS isolates (figure 11). 

 

 

Figure 11- UV-Vis spectra of SMX in ultrapure water and in the three fractions of HS. 

 

Through the observed range of absorbance, the highest values were obtained for HA, 

while the lowest were for XAD-4, which indicates the higher sensitivity of HA to absorb 

radiation. The same results were obtained previously in the study of HS from different origin 

by Esteves et al. (2009).   

To study the effect of HS on the photodegradation of SMX, the absorbance values at 

290 nm were measured in SMX solutions in absence of HS (ultrapure water) and in 
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presence of HS (HA, FA and XAD-4 at 20 mg/L). The results showed the increase of 

absorbance values in the order: 

 

𝑈𝑙𝑡𝑟𝑎𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 (0.011) < 𝑋𝐴𝐷 − 4 (0.197) < 𝐹𝐴 (0.225) < 𝐻𝐴 (0.441) 

 

which can suggest that the rate of photodegradation of SMX in presence of HS could 

decrease in the same order due to the inner filter effect of HS. 

 

3.2.3.2. Photodegradation kinetics of SMX 

The studies of SMX photodegradation were performed in the presence of the three 

HS fractions (HA, FA and XAD-4), since the photodegradation of SMX can happen either 

as a direct phototransformation by absorption of light and/or be induced by the presence of 

HS. Photodegradation was performed using solutions containing 100 µg/L of SMX and 

20 mg/L of HA, FA or XAD-4 which were irradiated during 4, 3 and 2.5 hours, respectively. 

Dark controls, obtained under the exact same conditions, were performed for all the 

irradiation experiments. Degradation in the dark due to thermal or hydrolytic processes was 

not observed. 

The experimental results were fitted using a non-linear regression, according to the 

equation 7, as for SMX photodegradation kinetic in ultrapure water. The SMX 

photodegradation kinetic curves in presence of different HS fractions and kinetic curve in 

ultrapure water (for comparison) are presented in figure 12. 
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Figure 12-  Kinetics of SMX photodegradation in absence and presence of three fractions of HS. Shown error 

bars are standard deviations (n=3) (note that, for most the experimental points, error bars are too small to be 

visible in the figure). 

 

The obtained data for the variation of SMX concentration along irradiation time was 

fitted to a pseudo first-order kinetic model and shows a significant impact of each of HS 

fractions studied on the SMX photodegradation (figure 12).  

Addition of HA [20 mg/L] caused an apparent decrease of the SMX photodegradation 

rate compared with the one obtained in ultrapure water. On the other hand, the addition of 

XAD-4 [20 mg/L] caused a slight acceleration of the SMX photodegradation rate.  

For example, after 2 hours of irradiation, in ultrapure water, SMX was 81.83 % 

degraded. However, after the same time of irradiation, the results of SMX photodegradation 

were 71.78 %, 75.63 % and 91.19 % for HA, FA and XAD-4, respectively. These results 

showed that XAD-4 is the most efficient to photoinduce the SMX degradation, which is in 

accordance with the expected low inner effect for this fraction of HS. Each one of the HS 

fractions studied absorb the radiation due to the presence of chromophores' moieties (inner 

filter effect). Considering the UV-Vis spectra (figure 11), a low value of absorbance indicates 

the weak ability to absorb radiation, which causes that a significant amount of light can be 

available for SMX, resulting in an increase of its degradation. Therefore, if the generation 

of reactive species is not considered for the XAD-4 solution (since these moieties present 
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a weaker ability to absorb radiation), a higher SMX photodegradation will be expected in 

this solution, when compared with the FA and HA solutions. So, the strongest 

photoinductive properties were obtained for XAD-4, which resulted in a SMX t1/2 of 

(0.73 ± 0.04) h compared to (0.86 ± 0.04) h in ultrapure water. The t1/2 of SMX for the other 

HS was higher than the obtained in ultrapure water (t1/2 = (0.94 ± 0.06) h and 

t1/2 = (1.05 ± 0.05) h, for FA and HA fraction, respectively) (table 11).  

In the absence of HS, a first order rate constant of (0.81 ± 0.04) h-1 was obtained 

(table 11), which corresponds to the direct photodegradation of SMX. According to Caupos 

et al. (2011), the value of the rate constant in presence of HS can be calculated, considering 

that they do not have any photosensitizing properties, thus acting only as inner filter. The 

calculations of the initial fraction of light, absorbed by SMX alone and in presence of different 

HS fractions, were performed at 290 nm (at the higher absorbance of SMX in the spectral 

range of simulated sunlight), using the equation below: 

 

                                                              (
𝐼𝑎

𝐼0
)

𝑆𝑀𝑋
𝑚⁄

= (
𝐼𝑎

𝐼0
)

𝑚
×

𝐴𝑆𝑀𝑋

𝐴𝑚
                                                 Eq. 19 

where, 

(
𝐼𝑎

𝐼0
)

𝑆𝑀𝑋
𝑚⁄

–  is the fraction of light that was absorbed by SMX in presence of HS at 290 nm; 

(
𝐼𝑎

𝐼0
)

𝑚
 – is the fraction of light absorbed by the mixture (SMX + HS) at 290 nm; 

𝐴𝑆𝑀𝑋 – is the value of absorbance of SMX at 290 nm (constant due to the constant value of 

the concentration); 

𝐴𝑚 – is the absorbance value of the mixture (SMX + HS) at 290 nm. 

Since the intensity of light absorbed depends on the absorbance value and the 

intensity of incident light, the ratio  
𝐼𝑎

𝐼0
 can be calculated, by using the following equation: 

 

                              𝐼𝑎 = 𝐼0(1 − 10−𝐴)                                                             Eq. 20 
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In presence of HS, the radiation emitted by the lamp is mainly absorbed by HS 

fractions. As it was mentioned before, it is possible to calculate the first order rate constant 

of SMX degradation in the presence of HS acting only as an inner filter (𝑘𝑐𝑎𝑙), using the 

following equation:  

                                         𝑘𝑐𝑎𝑙 = 𝑘𝑆𝑀𝑋×
(

𝐼𝑎
𝐼0

)
𝑆𝑀𝑋

𝑚⁄

(
𝐼𝑎
𝐼0

)
𝑆𝑀𝑋

                                                     Eq. 21 

 

where, 

(
𝐼𝑎

𝐼0
)

𝑆𝑀𝑋
−  is the fraction of light absorbed by SMX alone (in ultrapure water); 

 𝑘𝑆𝑀𝑋 − is the first order rate constant of SMX direct photolysis (in absence of HS). 

 

Combination of equations (19), (20) and (21) leads to calculate first order rate 

constant of SMX photodegradation in presence of HS fractions, as follows:  

 

                                    𝑘𝑐𝑎𝑙 = 𝑘𝑆𝑀𝑋×
(1−10−𝐴)

𝑚

(1−10−𝐴)
𝑆𝑀𝑋

×
𝐴𝑆𝑀𝑋

𝐴𝑚
                                         Eq. 22 

 

The contribution to photodegradation of each one of the three different isolates of HS 

was also studied and calculated using the next equation: 

  

                                   𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻𝑆 [%] =  (
𝑘 𝑚𝑒𝑎𝑠 − 𝑘 𝑐𝑎𝑙

𝑘 𝑚𝑒𝑎𝑠
) ×100                    Eq. 23 

  

Table 11 shows the calculated and the measured rate constants in presence of HS, 

the contribution of HS, the t1/2 obtained for SMX in ultrapure water and the three fractions of 

HS and the t1/2 of SMX converted in SSD.  

 



 

61 

 

Table 11- Kmeas (h-1), R2, t1/2 (h), t1/2 (SSD), Kcal (h-1) and contribution of three different HS isolates to 

degradation obtained and respective standard errors. 

Type of 

water 

kmeas (h-1) R2 t½ (h) t½ (SSD) Kcal (h-1) HS Contribution 

(%) 

Ultrapure  0.81 ± 0.04 0.9900 0.86 ± 0.04 0.23 ± 0.01 --- --- 

HA 

[20 mg/L] 

0.66 ± 0.03 0.9894 1.05 ± 0.05 0.28 ± 0.01 0.51 23.1 

FA 

[20 mg/L] 

0.74 ± 0.04 0.9864 0.94 ± 0.06 0.25 ± 0.01 0.63 14.6 

XAD-4 

[20 mg/L] 

0.96 ± 0.06 0.9881 0.73 ± 0.04 0.19 ± 0.01 0.65 32.0 

 

The HS fractions can be promoted to a transient excited state in which they may react 

with oxygen present in solution, forming reactive species, or react directly with excited 

natural organic compounds, promoting an enhancement in the photodegradation rate. 

However, it is well known that OM, such as HS, can have two antagonist effects, the 

photosensitizing properties and the inner filter effect, that reduces the available energy to 

degrade pollutants in solution, resulting in a decrease of the photodegradation rate. The 

real effect of HS in photodegration rate is obtained by the combination of these two effects 

(Andreozzi et al., 2003). The inner filter effect should be dominant for HA and FA fractions, 

because a decrease rate in the photodegradation rate was observed, with a first order rate 

constant of (0.66 ± 0.03) h-1 and (0.74 ± 0.04) h-1, respectively. Results suggest an inverse 

correlation between the HS aromaticity and their effect on photodegradation. HS 

characterization (table 10) indicated that HA must be the most hydrophobic fraction, more 

enriched in aromatic and/or chromophoric groups. On the other hand, results showed that 

XAD-4 fraction is the type of OM that seems to produce the higher number of reactive 

species, which can be explained by the greater content of oxygen functional groups, 

suggested by elemental analysis, where XAD-4 fraction presented a lower carbon content 

than HA and FA and a higher oxygen content (table 10).  

The kcalc values for the photodegradation of SMX in presence of HS were 0.51 h-1, 

0.63 h-1 and 0.65 h-1 for HA, FA and XAD-4, respectively. So, HA has the lowest value of 

Kcal, which indicates the high ability to act as inner filter. Consequently, a significant amount 

of light is not available for SMX, which results in a decrease of its photodegradation. The 
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fact that a decrease in SMX photodegradation rate was verified for HA and FA fractions, is 

due to the fact that the inner filter effect (that decreases the photodegradation rate of the 

target compound) is higher for these fractions, than their photosensitizing capacity (that 

increases the photodegradation rate of the target compound). This effect is more evident in 

the HA fraction with higher absorbance at 290 nm. The opposite is observed for the XAD-4 

fraction. 

The results show how important the presence of HS is on the photodegradation of 

SMX, as well as the type of HS fraction, that has also some effect on the SMX degradation 

rate. The highest contribution of XAD-4 (about 32 %), in the photodegradation of SMX, has 

been proven, which resulted in a lower t1/2. It means that about 32 % of the overall SMX 

degradation is caused by photosensitized reactions. Lower contribution of HS, was obtained 

for HA and FA fractions, about 23 % and 15 %, respectively.  

The conversion of the resulting t1/2 (h) to t1/2 (SSD) allows the determination of the t1/2 

of SMX in environmental conditions, being possible to observe the differences in the number 

of necessary SSD to reach the t1/2 in presence or absence of HS fractions. In ultrapure water 

0.23 SSD are needed to reach t1/2, while when SMX is in presence of HS fractions the SSD 

varied between 0.19 and 0.28 SSD, being the lower value of SSD observed in presence of 

XAD-4. 

Other authors reported an increase on photodegradation rate for estrogens due to 

photosensitizing reactions induced by the presence of this type of organic matter (Oliveira 

et al., 2016), (Silva et al., 2016a), (Silva et al., 2016b), while for other compounds, namely 

antibiotics, a decrease in the presence of this type of organic matter was observed (Leal et 

al., 2015). For less hydrophobic compounds the screening effect seems to be the reason 

for the delaying effect on photodegradation, while for hydrophobic compounds this decrease 

can also be attributed to hydrophobic association between the organic pollutant and the HS 

promoting the decay of excited state of pollutant (Leal et al., 2015).  

 

3.2.4.  Effect of pH on SMX photodegradation  

3.2.4.1. Importance of pH  

An important parameter in the photodegradation is the pH of the dispersion, which will 

influence the distribution of pollutant charges. Depending on the nature of the organic 

compound, an increase in the pH will have a positive or negative effect on its 

photodegradation rate.  
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SMX has two pKa values (1.85 and 5.60) and the chemical structures change with pH 

according to figure 13.  

 

According to the species distribution (figure 14), the molar ratio between SMX species 

depends on pH. At pH 1.0 around 88 % of SMX is in the protonated species, while at pH 

4.0 almost 97 % is in the neutral form. At the pH of the environmental samples used in our 

study (higher than 7), more than 96.2 % of SMX is in the negative form.  

 

 

Figure 14- Speciation diagrams of SMX (adapted from Dias et al., (2014)). 

 

UV-Vis spectrophotometry 

To evaluate the influence of the speciation of SMX on photodegradation, since it 

depends on the light absorption, UV-Vis absorbance spectra of SMX at 10 mg/L in ultrapure 

water without pH adjustment (pH 6.30) and with pH adjusted to different values with NaOH 

0.1 M or HCl 0.5 M (pH 4.97, 7.33 and 8.08) were obtained (figure 15).  

Figure 13- Variation of the chemical structure of SMX with pH. 
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Figure 15- UV-Vis spectra of SMX [10 mg/L] in ultrapure water at different pH values. 

 

These pH values were chosen, because the pH value of the HS tested previously was 

approximately 5, the pH 6.30 is the considered pH of ultrapure water and the pH 7.33 and 

8.08 correspond to pH values measured for estuarine water and waste water samples, 

respectively. In all spectra presented in figure 15, a decrease in UV absorbance is observed 

especially above 270 nm. Comparing all the spectra, one can observe that the absorbance 

values shift to higher wavelenghts at pH 4.97. For the other pH values analysed (6.30, 7.33 

and 8.08) there are also differences, but they are not so remarkable. 

However, if we compare absorbance at 290 nm (the lower wavelength used in the 

photodegradation experiments) for ultrapure water at the different pH values studied we can 

evaluate the possible influence of pH on SMX photodegradation in ultrapure water. The 

results showed the increase of absorbance values in the order: 

 

              𝑝𝐻 8.08 (0.105) < 𝑝𝐻 7.33 (0.118) <  𝑝𝐻 6.30 (0.148) < 𝑝𝐻 4.97 (0.206) 

 

Therefore, it could be expected that the rate of photodegradation of SMX increase in the 

same order. If we compare the absorbance at pH 6.30 and 7.33 it is possible to observe a 

decrease of 20 %, while between pH 6.30 and pH 8.0 there is a decrease of 30 %. This 

decrease can explain, at least partially, the lower photodegradation rate of SMX observed 

for the environmental water samples tested previously, when compared with the obtained 

in ultrapure water. 
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Also, comparing the absorbance at pH 6.30 and pH 4.97 it is possible to observe an 

increase of 40 %. HS tested are acidic compounds, so the influence of HS on SMX 

photodegradation rate mentioned previously may be influenced not only by the presence of 

the HS, but also by the pH decrease. To correctly evalute the influence of HS in the SMX 

photodegradation rate, solutions containing 100 µg/L of SMX in the absence and presence 

of HA, FA, XAD-4 (20 mg/L), together with phosphate buffer (0.001 M) at pH 5.00 and 7.30 

were irradiated for 1 hour. The results obtained are presented in figure 16, where the 

photodegradation rate (in percentage) is presented for each irradiated solution.   

 

Figure 16- SMX photodegradation rate (%) in presence and absence of different HS fractions together with 

phosphate buffer (0.001 M) at pH 5.00 and 7.30 after 1 hour of irradiation. Shown error bars are standard 

deviations (n=3). 

 

 After analysing the results, it is possible to conclude that the photodegradation rate of 

SMX after 1 hour of irradiation in ultrapure water is much higher than the one obtained in 

all HS fractions for both pH values tested. Thus, the inner filter effect of HS is higher than 

their photosensitizing capacity, since the HS fractions absorb the radiation and, therefore, 

less radiation will be available for SMX photodegradation. 

However, there is a similarity of the data obtained for the kinetics of SMX 

photodegradation (shown previously) in the presence of HS, for both pH. XAD-4 fraction 

was the most efficient in the photodegradation of SMX, whereas the least efficient was the 

HA. This can be explained by HA higher UV-Vis absorbance observed in figure 11, relatively 

to XAD-4 fraction. 
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Also, it is possible to verify that photodegradation of SMX is more efficient at pH 5.00 

than pH 7.30 either in the absence or presence of the different HS fractions studied.  

 

3.2.4.2. Photodegradation kinetics of SMX  

3.2.4.2.1. In ultrapure water 

The influence of pH in ultrapure water was studied adding 100 µg/L of SMX to 

phosphate buffer at pH 5.00 and 7.30 and irradiating during 1.5 and 10 hours, respectively. 

These results were compared with the kinetics of SMX photodegradation in ultrapure water 

at pH 6.30 without pH adjusted. 

In figure 17, the kinetic curves of SMX photodegradation in ultrapure water at different 

pH values are presented. 
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Figure 17- Kinetics of SMX photodegradation in ultrapure water with natural pH and with phosphate buffer at 

pH 5.00 and 7.30. Error bars in the graph are standard deviations (n=3) (note that, for most of the 

experimental points error bars are too small to be visible in the figure). 

 

 In table 12, Kmeas (h-1), R2, t1/2 (h), t1/2 (SSD) and 𝜙ave obtained for SMX 

photodegradation in ultrapure water at differents pH are summarized. 
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Table 12- Kmeas (h-1), R2, t1/2 (h), t1/2 (SSD) and 𝜙ave obtained for SMX in ultrapure water at different pH values 

and respective standard errors. 

Ultrapure water kmeas (h-1) R2 t½ (h) t½ (SSD) 𝜙ave 

pH = 5.00 1.4 ± 0.1 0.9812 0.49 ± 0.04 0.13 ± 0.01 1.72 x 10-7 

pH = 6.30  0.81 ± 0.04 0.9900 0.86 ± 0.04 0.23 ± 0.01 2.76 x 10-8 

pH = 7.30 0.24 ± 0.01 0.9767 2.9 ± 0.2 0.76 ± 0.05 2.42 x 10-8 

 

Considering the ultrapure water, at pH 5.00 a first order rate constant of (1.4 ± 0.1) h- 1 

was obtained, being this first order rate constant greater than that obtained for ultrapure 

water with other pH values. 

By the analysis of figure 17 and table 12, it is possible to verify the high influence of 

the pH on SMX photodegradation, being pH 5.00 the most efficient, while pH 7.30 is the 

least efficient. For example, after 1 hour of irradiation, the photodegradation of SMX in 

ultrapure water at pH 7.30 was 34.71 %. However, after the same time of irradiation, 

photodegradation rate in ultrapure water at pH 6.30 and pH 5.00 was 58.07 % and 78.42 %, 

respectively. These results showed that ultrapure water at pH 5.00 is more efficient to 

induce the photodegradation of SMX than ultrapure water at pH 6.30 and 7.30, which 

resulted in a SMX t1/2 of (0.49 ± 0.04) h for pH 5.00 compared to (0.86 ± 0.04) h and 

(2.9 ± 0.2) h obtained in ultrapure water at pH 6.30 and 7.30, respectively. The SSD varied 

between 0.13 and 0.76, being the highest values obtained for higher pH values.  

Analysing the 𝜙ave (table 12), the highest value was obtained in ultrapure water at 

pH 5.00, while the lowest value corresponded to ultrapure water at pH 7.30, being in 

accordance with the expected, since the 𝜙 of a photodegradation process can be defined 

as the ratio between the photodegradation rate and the rate of light absorption. As can be 

seen in figure 15, there is a greater absorption of UV radiation in ultrapure water at pH 4.97 

than at pH 6.30 and at pH 7.33, where the lowest absorption occurs, which is in agreement 

with the values obtained for the 𝜙ave.  

So, it is possible to conclude that at pH 5.00 and 6.30 the photodegradation of SMX 

is more efficient than at pH 7.30, probably due to the fact that at pH 5.0 almost 97 % of SMX 

is in neutral form and, therefore, may not be complexed with other ions present in solution 

and thus photodegradation may be facilitated, while at pH 7.30 more than 96.2 % of SMX 

is in the negative form. 



 

68 

 

3.2.4.2.2. In estuarine water 

To study the influence of pH on SMX photodegradation in environmental water 

samples, a sample from Fonte Nova was spiked with the same concentration of SMX 

[100 µg/L] used previously, adjusting the pH to 6.30 with HCl 0.5 M and irradiated during 8 

hours. The results obtained were compared with the kinetics of SMX photodegradation in 

Fonte Nova sample at pH 7.33. 

The kinetic curves of SMX photodegradation in the estuarine water sample at the two 

different pH values tested are presented in figure 18.  

Apparent first order rate constants, R2, t1/2 (h) and t1/2 (SSD) obtained for SMX 

photodegradation in estuarine water at pH 6.30 and 7.33 are presented in table 13.  

0 3 6 9 12 15 18 21 24
0.0

0.5

1.0

Fonte Nova pH=7.33

Fonte Nova pH=6.30

Time (h)

C
/C

0

 

Figure 18- Kinetics of SMX photodegradation in estuarine water at pH 6.30 and 7.33. In the graph are also 

represented error bars with standard deviations (n=3) (note that, for most of the experimental points error bars 

are too small to be visible in the figure). 

 

Table 13- Kmeas (h-1), R2, t1/2 (h) and t1/2 (SSD) obtained for estuarine water at different pH values and 

respective standard errors.  

Fonte Nova  kmeas (h-1) R2 t½ (h) t½ (SSD) 

pH = 6.30  0.24 ± 0.02 0.9731 2.8 ± 0.2 0.74 ± 0.05 

pH = 7.33  0.13 ± 0.01 0.9397 5.3 ± 0.5 1.4 ± 0.1 
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Once again, from the analysis of figure 18 and table 13, it is possible to verify that pH 

has a great influence on SMX photodegradation even when present in an estuarine water 

sample. Once present in the estuarine water sample at pH 7.33, SMX takes 22 hours to 

degrade almost completely, while in the estuarine water sample at pH 6.30 it only needs 8 

hours. These results showed that environmental water sample from Fonte Nova at pH 6.30 

is more efficient to induce the photodegradation of SMX than Fonte Nova at pH 7.33, which 

resulted in a SMX t1/2 of about (2.8 ± 0.2) h compared to (5.3 ± 0.5) h obtained in Fonte 

Nova at pH 7.33. The SSD varied between about 0.74 and 1.4, evidencing once again the 

enormous influence of pH on photodegradation of SMX. For estuarine water sample at pH 

6.30 a first order rate constant of (0.24 ± 0.02) h-1 was obtained, being greater than that 

obtained for estuarine water at pH 7.33.  

 So, the great influence of pH either in ultrapure water or in the estuarine sample was 

proved. However, in environmental water samples there are other factors that can influence 

the photodegradation of SMX, because in estuarine water samples the first order rate 

constant is smaller than the one obtained in ultrapure water at the same pH. Thus, it is 

important to continue assessing other contributors to the decrease in the photodegradation 

rate. 

 

3.2.5. Effect of sea salts on SMX photodegradation 

3.2.5.1. Evaluation of inorganic salts on SMX photodegradation 

Sea salts have been reported for influencing the photodegradation of some 

compounds in water samples, for example, OTC due to the occurrence of complexation 

(Leal et al., 2016). Since the estuarine sample presents high salinity levels it is important to 

evaluate the influence of sea salts on SMX photodegradation behaviour. As mentioned 

before, photodegradation in sea water samples, can be influenced by the presence of 

inorganic compounds, such as calcium and magnesium. In fact, these are two of the main 

constituents of sea water. Thus, the influence of calcium and magnesium on 

photodegradation of SMX was evaluated preparing two solutions, one with 261 mg/L of 

calcium and the other with 785 mg/L of magnesium. To both solutions 100 µg/L of SMX and 

phosphate buffer (0.001 M) were added and pH was adjusted to 7.30. These solutions were 

irradiated for 5 hours. Results of SMX photodegradation in those two solutions after 5 hours 

of irradiation were compared with those obtained in ultrapure water, in 21 ‰ of NaCl solution 

and in 21 ‰ of artificial sea salts solutions buffered with phosphate buffer (0.001 M) at pH 

7.30 and in estuarine water at pH 7.33 (figure 19).    
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Figure 19- SMX photodegradation rate in ultrapure water in presence and absence of calcium, magnesium, 

sodium chloride and red sea salts with phosphate buffer at pH 7.30 and in estuarine water at pH 7.33 after 5 

hours of irradiation. Shown error bars are standard deviations (n=3). 

 

From the analysis of figure 19, it is possible to verify, that the addition of magnesium, 

calcium and sodium chloride decreased the photodegradation rate measured after 5 hours 

of irradiation comparing with the obtained in ultrapure water. The presence of magnesium 

is the one that most decreased the photodegradation rate, from (66.4 ± 0.3) % to 

(37.3 ± 0.6) %. The effect of calcium is not so pronounced decreasing the photodegradation 

to (58 ± 1) %. The corrected 3D fluorescence spectra for SMX 100 g/L in ultrapure water 

(figure 20 – (a)) exhibited a maximum at λem 350 nm with λexc  260 nm. However, in 

presence of magnesium (figure 20 – (b)), there is a decrease of the fluorescence intensity 

of the SMX mentioned band and a new band appears at higher wavelengths, λem= (440-

480) nm with λexc = (375-410) nm, indicating the possible complexation between SMX and 

Mg2+. In presence of Ca2+ (figure 20 – (c)) it is also possible to observe the fluorescence 

decrease of SMX band, although in this case no new fluorescence band is observed. The 

decrease of SMX fluorescence intensity in the presence of Mg2+ and Ca2+ can also be 

correlated with the decrease of UV-Vis absorbance at approximately 260 nm (figure 21). 

In presence of 21 ‰ NaCl, it is possible to observe a decrease in SMX 

photodegradation rate to (50.5 ± 0.4) %. In this case, SMX fluorescence spectra (figure 20 

– (d)) also presents a decrease in the SMX band at λem 350 nm with λexc  260 nm, but 

besides the new band observed in the presence of magnesium, there is a second band 

observed at similar λexc of SMX in water but at higher λem = (430-480) nm.  
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Figure 20- 3D fluorescence spectrum (contour map) of SMX 100 µg/L in ultrapure water at pH 7.30 with 

phosphate buffer (0.001M) in absence of salts (a) and in presence of 785 mg/L magnesium (b), 261 mg/L 

calcium (c), 21 g/L sodium chloride (d) and 21 g/L Red Sea Salts (e). 
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In presence of 21 ‰ Red Sea Salts the decrease in the photodegradation rate, 

(50.3 ± 0.5) %, is similar to the one observed in presence of 21 ‰ NaCl and in the estuarine 

environmental water sample, (53 ± 2) %. In what concerns the 3D fluorescence spectra 

there is an obvious increase of fluorescence intensity for low excitation wavelengths, (200-

275) nm, and for emissions between (250-450) nm. The changes observed in the SMX 3D 

fluorescence spectra in presence of Red Sea Salts indicate that the salts present in this 

artificial sea salt sample induce changes in SMX either by complexation/interaction with 

inorganic compounds or by changes of ionic strength. Also, UV-Vis absorbance spectra 

(figure 21) presented lower absorbance for SMX in the presence of all inorganic salts tested, 

compared with SMX in ultrapure water. 

 

 

 

 

Although individually calcium and, mainly, magnesium appear to have some 

influence on the photodegradation of SMX, when in a mixture with other compounds, it does 

not appear to have a considerable influence, since photodegradation of SMX after 5 hours 

of irradiation in 21 ‰ of Red Sea Salts is similar to the obtained in 21 ‰ NaCl and estuarine 

water sample.  

 

Figura 21- UV-Vis spectra of SMX 10 mg/L in ultrapure water at pH 7.30 with phosphate buffer (0.001 M) in 

absence of salts and in presence of 785 mg/L magnesium, 261 mg/L calcium, 21 ‰ sodium chloride and 21 

‰ Red Sea Salts. 
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3.2.5.2. Photodegradation kinetics of SMX  

 To further investigate the influence of sea salts on SMX photodegradation two 

solutions of 100 µg/L of SMX in 21 ‰ of NaCl solution and in 21 ‰ of artificial sea salts 

solution with phosphate buffer (0.001 M) at pH 7.30 were irradiated for 18 hours. The results 

were compared with the kinetics of 100 µg/L SMX photodegradation in Fonte Nova at 

pH 7.33 and in ultrapure water at pH 7.30 with phosphate buffer (0.001 M). As done 

previously, experimental results were fitted by non-linear regression and the obtained data 

for the variation of SMX concentration along irradiation time were fitted to a pseudo first-

order kinetic model (figure 22). The results obtained show that salinity has a great influence 

on SMX photodegradation kinetics, since the addition of sodium chloride and synthetic sea 

salts leads to a significant decrease in the SMX photodegradation rate, when compared to 

the one obtained in ultrapure water at the same pH. It is also possible to conclude that 

kinetics with 21 ‰ of NaCl and 21 ‰ of sea salts are very similar to kinetics obtained with 

estuarine water sample. However, in the estuarine water sample 22 hours were necessary 

to degrade SMX almost completely, while in the NaCl and sea salts solutions prepared only 

18 hours were needed. The difference observed may be attributed to screen filter due to 

the presence of organic matter in the environmental estuarine water sample. 
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Figure 22- Kinetics of SMX photodegradation and curves of pseudo first-order decay fitted to the data by 

nonlinear regression when present in ultrapure water, in ultrapure water with sea salts and in a NaCl solution 

buffered with phosphate buffer at pH 7.30 and in estuarine water at pH=7.33. Shown error bars are standard 

deviations (n=3) (note that, for most of the experimental points error bars are too small to be visible in the 

figure). 
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Results of kmeas (h-1), R2, t1/2 (h), t1/2 (SSD) and 𝜙ave obtained for SMX photodegradation 

in the different matrices used to evaluate the influence of sea salts in photodegradation 

behaviour of SMX are summarized in table 14. 

 

Table 14- Kmeas (h-1), R2, t1/2 (h), t1/2 (SSD) and 𝜙ave obtained for ultrapure water, 21 ‰ sea salts, 21 ‰ NaCl 

buffered with phosphate buffer (0.001 M) at pH 7.30 and Fonte Nova sample at pH 7.33. 

Type of water kmeas (h-1) R2 t½ (h) t½ (SSD) 𝜙ave 

Ultrapure  

pH = 7.30 

0.24 ± 0.02 0.9767 2.9 ± 0.2 0.76 ± 0.05 2.42 x 10-8 

21 ‰ Sea Salts 

pH = 7.30 

0.133 ± 0.004 0.9949 5.2 ± 0.1 1.37 ± 0.04 6.79 x 10-9 

21 ‰ NaCl  

pH = 7.30 

0.143 ± 0.004 0.9938 4.8 ± 0.1 1.27 ± 0.04 1.23 x 10-8 

Fonte Nova  

pH = 7.33 

0.13 ± 0.01 0.9397 5.3 ± 0.5 1.4 ± 0.1 --- 

 

For ultrapure water, a first order rate constant of (0.24 ± 0.02) h-1 was obtained, being 

higher than that obtained with 21 ‰ artificial sea salts, (0.133 ± 0.004) h-1, with 21 ‰ NaCl, 

(0.143 ± 0.004) h-1, and with estuarine water sample, (0.13 ± 0.01) h-1. These results showed 

that saline environmental water samples are less efficient to induce the photodegradation 

of SMX, which resulted in much longer SMX t1/2 when compared to ultrapure water. The t1/2 

obtained in ultrapure water was (2.9 ± 0.2) h, while in estuarine water, in a 21 ‰ artificial 

sea salts solution and in a 21 ‰ NaCl solution the t1/2 obtained were (5.3 ± 0.5), (5.2 ± 0.1) 

and (4.8 ± 0.1) h, respectively. So, it is possible to conclude that besides the pH, salinity 

also has a high influence on SMX photodegradation.  

The differences observed between SMX photodegradation kinetics in ultrapure water 

and in the presence of NaCl may be attributed to changes in the SMX structure influenced 

by the increase in the ionic strenght, which is corroborated by the change in the 3D 

fluorescence spectra (figure 20 – (d)) that presents a decrease in the SMX band at 

λem 350 nm with λexc  260 nm, a new band at higher wavelengths, λem= (440-480) nm 

with λexc = (375-410) nm and a second band observed at similar λexc of SMX in water but at 

higher λem = (430-480) nm. Also, it is known that chloride has the ability to scavenge the 
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hydroxyl radicals (Umar and Aziz, 2013) and thus, decrease the radicals concentration that 

induce SMX degradation. 

The conversion of the t1/2 (h) in t1/2 in environmental conditions (SSD), allows to 

observe large differences in the number of necessary SSD to reach the t1/2 between 

ultrapure water and the samples with inorganic salts. In ultrapure water (0.76 ± 0.05) SSD 

are needed to reach t1/2, while when SMX is present in samples with high salinity the SSD 

varied between about 1.27 and 1.4 SSD. This means that when SMX is present in natural 

environments with high salinity levels its degradation rate becomes much slower, increasing 

the problems associated with the persistence of SMX in natural aquatic environments.  

Similar to what was done in ultrapure water at different pH values, the 𝜙 was 

calculated for 21 ‰ artificial sea salts solution (6.79 x 10-9) and 21 ‰ NaCl solution 

(1.23 x 10-8) buffered at pH 7.30 and the values obtained were lower than those obtained 

in ultrapure water. These values are in line with the expected, since the photodegration rate 

in these two solutions was lower than the obtained in ultrapure water (at all the pH values 

tested), being the lowest value of 𝜙 observed for the 21 ‰ Red Sea Salts solution.  

Although the values obtained for the first order rate constant were very similar 

between samples with the same salinity, there is greater similarity between estuarine 

sample ((0.13 ± 0.01) h-1) and the solution with 21 ‰ Red Sea Salts ((0.133 ± 0.004) h-1). 

This may be due to the fact that in the sample of synthetic sea salts there are also ions, 

such as calcium and magnesium, characteristic of estuarine samples, that, as mentioned 

before, influence the SMX photodegradation rate. 

 

 

3.3. Photodegradation of SMX in continuous flow mode 

 

3.3.1. Photodegradation kinetics of SMX in ultrapure water and 

environmental water samples 

In the photodegradation of SMX in continuous flow mode the concentration of SMX 

was used in batch mode. Thus, direct photodegradation of 100 µg/L SMX was performed 

in ultrapure water without pH adjusted irradiating the solution during 1 hour. Indirect 

photodegradation was performed in environmental water samples: Fonte Nova, Rio Novo 



 

76 

 

do Príncipe, Poço da Cruz and STPF and these samples were irradiated until no SMX was 

detected.  Experimental results were fitted by non-linear regression, according to the 

equation 7, as in batch mode.  

The kinetic curves of SMX photodegradation in ultrapure water and in the different 

water samples tested are presented in figure 23. The obtained data for the variation of SMX 

concentration along irradiation time were fitted to a pseudo first-order kinetic model.  
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In all samples studied, no degradation was observed in the tube covered with 

aluminum foils (control tube), indicating that no degradation by microbiological or thermal 

means occurred. So, the decrease of SMX concentration in these solutions can be only 

ascribed to photo-induced degradation. 

 For example, in ultrapure water, after 45 minutes of irradiation, SMX showed a 

photodegradation of 81.38 %, while in Rio Novo do Príncipe and Fonte Nova a 

photodegradation of 47.49 % and 42.81 %, respectively, was obtained.   

 The results presented in table 15 showed that environmental water samples are less 

efficient to photodegradation SMX than ultrapure water as already shown to occur. STPF 

sample was the one showing the lower efficiency to induce the photodegradation of SMX, 

which resulted in much longer SMX t1/2 ((1.5 ± 0.1) h) when compared to ultrapure water 

((0.32 ± 0.03) h). The conversion of the resulting t1/2 in t1/2 in environmental conditions allows 

Figure 23- Kinetics of SMX photodegradation in continuous flow mode and curves of pseudo first-order 

decay fitted to the data by nonlinear regression when present in ultrapure water and in environmental 

samples. 
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to observe differences in the number of necessary SSD to reach the t1/2 between ultrapure 

water and environmental samples. In ultrapure water (0.085 ± 0.007) SSD were needed to 

reach t1/2, while when SMX is present in natural environmental samples the SSD varied 

between (0.25 ± 0.01) and (0.39 ± 0.03) SSD.  

 

Table 15- Photodegradation of SMX in flow mode - Kmeas (h-1), R2, t1/2 (h) and t1/2 (SSD) obtained in ultrapure 

water and in environmental water samples and respective standard errors.  

 

 

 

 

 

 

 

Analysing the data, and as expected, it is possible to conclude the same as in batch 

mode, that is, that the environmental water samples cause a great delay in the 

photodegradation of the SMX, due to the factors mentioned in the chapter 3.2.  

However, the purpose of this study was not to prove the results obtained in chapter 

3.2, but trying to obtain a method to photodegradate the samples in a more efficient way, 

since the tube in which the radiation is incident presents a smaller tickness. This objective 

was achieved, since the samples were photodegraded in a much shorter time, as can be 

verify in the figure 24. For example, in the case of the Fonte Nova sample, the SSD was 

reduced from 1.4 to 0.37. So, the main advantages of this method are related to the less 

irradiation time required, which leads to a lower lamp expenditure; also, the 

photodegradation in continuous mode is more easily applicable to reality, that is, it can be 

used as a tertiary system in STPs, since there is a defined effluent entrance and exit. The 

design of efficient processes for photodegradation of organic pollutants, in terms of energy 

and time, are needed for a sustainable approach. This was the first assessment of the 

potential of the continuous flow mode to be applied in an effluent tertiary treatment of waste 

water. Results are promissing for the development of an economically viable green water 

Type of water kmeas (h-1) R2 t½ (h) t½ (SSD) 

Ultrapure 2.1 ± 0.2 0.9812 0.32 ± 0.03 0.085 ± 0.007 

Fonte Nova 0.49 ± 0.04 0.9698 1.4 ± 0.1 0.37 ± 0.03 

Rio Novo Príncipe 0.69 ± 0.04 0.9841 1.01 ± 0.06 0.27 ± 0.02 

Poço da Cruz 0.73 ± 0.03 0.9904 0.95 ± 0.05 0.25 ± 0.01 

STPF 0.47 ± 0.03 0.9746 1.5 ± 0.1 0.39 ± 0.03 
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treatment technology, aiming at the photodegradation of organic pollutants under solar 

radiation. 

 

Figure 24-  Comparison between SSD obtained in batch mode and continuous flow mode in ultrapure water 

and in environmental water samples in the same conditions.  

 

 

3.4. Antibacterial activity 

 

The bacterial growth was correlated with the luminescence of the bacteria, because 

considering only the bacterial growth it is not possible to know which cells are metabolically 

active. Thus, if the correlation is positive, luminescence converts in bacterial growth and 

demonstrates the viability of cells (metabolically active cells). 
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Figure 25- Correlation between luminescence at wavelenght 420 nm and bacterial growth at wavelenght 600 

nm. 
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In figure 25, it is shown that the higher the luminescence the greater the bacterial 

growth, so data correlate positively. Therefore, luminescence data can be used for the 

interpretation of the cytotoxic effect of the samples under study. Thus, the following figures 

show the results obtained for the tests of antibacterial activity.  
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Figure 26- Percentage of viable cells Vibrio fischeri in A - ultrapure water (matrix) without SMX and without 

irradiation; B - control without irradiation (50 mg/L of SMX); C – control covered with aluminum at t3 of 

irradiation (50 mg/L of SMX); D - control without irradiation (100 mg/L of SMX); E - sample at t1 (50 mg/L of 

SMX); F - sample at t2 (SMX concentration < 5 mg/L); G - sample at t3 (no SMX detected). Statistical 

hypothesis test: *- ρ value = 0.05; **- ρ value = 0.01; ***- ρ value = 0.001.  

 

From the analysis of figure 26, a higher bacterial growth can be observed in sample 

A since no antibiotic was present, only ultrapure water. Thus, this bacterial growth 

corresponds to that of the culture medium where the bacteria Vibrio fischeri was grown. On 

the other hand, as would be expected, in sample D there was a greater inhibition of bacterial 

growth, indicating antimicrobial activity, since SMX was in its higher concentration tested.  

It is also possible to see differences in terms of antibacterial activity between samples 

C and B; however, the antibacterial activity of B is less to the one of sample E although all 

of them present similar SMX concentrations (50 mg/L). This fact may suggest that 

temperature influences antibacterial activity, since sample C and E were exposed to the 

same temperature during the irradiation, whereas sample B was not irradiated and present 

a higher antibacterial activity.  

As for samples F and G, similar bacterial activity was observed, which was higher 

than the presented by sample D, being these results statistically different (for 
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p value = 0.01). From the results obtained in ultrapure water, it can be concluded that the 

photodegradation of SMX leads to a loss of antibacterial activity and if the formation of 

photoproducts occurs these not exhibit higher antibacterial activity than SMX.  

A B C D E F G

0

2 5

5 0

7 5

1 0 0

1 2 5 * * *

* *

* *

* * *
%

 o
f
 v

ia
b

le
 c

e
ll

s
V

ib
r

io
 f

is
c

h
e

r
i

 

Figure 27- Percentage of viable cells Vibrio fischeri in A – Poço da Cruz (matrix) without SMX and without 

irradiation; B - control without irradiation (50 mg/L of SMX); C - control covered with aluminum at t3 of 

irradiation (50 mg/L of SMX); D - control without irradiation (100 mg/L of SMX); E - sample at t1 (50 mg/L of 

SMX); F - sample at t2 (SMX concentration < 5 mg/L); G - sample at t3 (no SMX detected). Statistical 

hypothesis test: **- ρ value = 0.01; ***- ρ value = 0.001. 

 

From figure 27 it was possible to observe that sample A did not exhibit the highest 

bacterial growth. Although in sample A SMX was absent, the bacterial growth in Poço da 

Cruz matrix was lower than the obtained in the culture medium. So, the compounds present 

in the water matrix from Poço da Cruz have the ability to inhibit the bacterial growth, 

because also in samples E and G the bacterial growth is greater than in sample A, indicating 

that the photodegradation eliminates compounds of the own matrix. 

 As observed previously, sample D was the one in which the inhibition of bacterial 

growth was higher, indicating the antimicrobial activity of SMX. Samples A, B, C and D were 

not statistically different, although SMX concentration and irradiation times were different, 

which again indicates that the matrix had a great effect on bacterial growth, that might be 

even greater than SMX effect. 

Sample E had higher bacterial activity than sample C, and although both had the 

same SMX concentration, sample E was subjected to irradiation. This suggests that, in 
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addition to the photodegradation of the compound, photodegradation of the matrix or some 

compound present in the matrix can occur, resulting in a higher bacterial activity in sample 

E.  

Sample D and E were statistically different (for p value = 0.01), with a higher bacterial 

activity observed for sample E, indicating that photodegradation reduced the antibacterial 

activity of SMX. Sample E and F were also statistically different (for p value = 0.01), with 

higher SMX activity in sample F than in sample E. This suggests that photoproducts or 

photoproducts of the first photoproducts formed had higher antibacterial activity than SMX 

or the matrix compounds photodegradation may result in harmful compounds with 

antibacterial activity, which need more time of irradiation to photodegrade than SMX. 

However, in sample G the bacterial activity increased with respect to sample F (statistically 

different for p value = 0.001), indicating that whatever was formed in sample F disappeared 

at the end of the irradiation time. Once again it was proved that, for this particular case 

study, photodegradation was efficient to eliminate compounds that might increase the 

bacterial resistance. 
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Figure 28- Percentage of viable cells Vibrio fischeri in A – Fonte Nova (matrix) without SMX and without 

irradiation; B - control without irradiation (50 mg/L of SMX); C - control covered with aluminum at t3 of 

irradiation (50 mg/L of SMX); D - control without irradiation (100 mg/L of SMX); E - sample at t1 (50 mg/L of 

SMX); F - sample at t2 (SMX concentration < 5 mg/L); G - sample at t3 (no SMX detected). Statistical 

hypothesis test: *- ρ value = 0.05. 

 

Results of antibacterial activity obtained using an estuarine water sample are 

presented in figure 28. As observed for the riverine water sample, sample A did not exhibit 

the highest bacterial growth, indicating once again that the compounds present in the water 
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matrix have the ability to inhibit the bacterial growth. This fact is also proved, since in 

samples F and G the bacterial growth is greater than in sample A, so the photodegradation 

also eliminated compounds from the matrix, which inhibit the bacterial growth. 

As before, in sample D was observed the higher inhibition of bacterial growth, 

indicating antimicrobial activity of SMX. Samples A, B, C, D and E were not statistically 

different, although SMX concentration and irradiation times were different, which again 

indicated that the matrix had a greater effect on bacterial growth than SMX. However, 

sample D and F were statistically different, with higher bacterial activity in sample F, 

indicating that photodegradation reduced the antibacterial activity of SMX.  
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Figure 29-  Percentage of viable cells Vibrio fischeri in A – STPF (matrix) without SMX and without irradiation; 

B - control without irradiation (50 mg/L of SMX); C – control covered with aluminum at t3 of irradiation (50 mg/L 

of SMX); D - control without irradiation (100 mg/L of SMX); E - sample at t1 (50 mg/L of SMX); F - sample at t2 

(SMX concentration < 5 mg/L); G - sample at t3 (no SMX detected). 

 

Finally, antibacterial tests were performed when SMX is in STPF sample (figure 29). 

All samples presented were not statistically different and bacterial growth in the sample 

STPF was much lower than that obtained in the culture medium, which did not allow to 

obtain many conclusions about the antibacterial activity of SMX in this water matrix. So, the 

compounds present in waste water matrix had a greater effect on bacterial growth than 

SMX, because it greatly inhibited bacterial growth. This effect may be due to the fact that 

the STPF effluent may have in its constitution other antibiotics or other compounds harmful 

to the bacteria Vibrio fischeri used in this study. 

 



 

 

 

4. Conclusions 
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The occurrence of SMX in aquatic environments was already referred in several 

studies, and being an antibiotic, its removal or reduction in the environment is extremely 

important, mainly due to the problem of bacterial resistance.  

Photodegradation can be used to improve the remediation processes of environments 

contaminated by SMX and other hazardous compounds from STPs in order to discharge 

effluents in the aquatic environment without its contamination.  

Therefore, in this work, initially it was evaluated the SMX photodegradation in 

ultrapure water, using simulated solar radiation, in the presence of different HS fractions 

and in environmental water samples from different origins. From the results obtained, it was 

possible to conclude that SMX photodegradation in environmental water samples was much 

slower than in ultrapure water. In order to understand the reason for that photodegradation 

decrease several factors were evaluated, such as pH, salinity, as well as the presence of 

calcium, magnesium and ionic strength in the photodegradation rate of SMX.   

This work brings together a set of results that allowed conclusions to be drawn:  

• Direct photodegradation rate of SMX is pH dependent. The pH 5.00 is the most efficient 

among those tested, presenting a t1/2 of (0.13 ± 0.01) SSD, while at pH 6.30 and 7.30 

show a t1/2 of (0.23 ± 0.01) and (0.76 ± 0.05) SSD, respectively. The quantum yield of 

SMX in ultrapure water at pH 5.00 (1.72 x 10-7) was greater than the obtained in 

ultrapure water at pH 6.30 (2.76 x 10- 8) and at pH 7.30 (2.42 x 10-8).  

• The results obtained for HS fractions were affected by a variation of pH, because the 

natural pH of ultrapure water was higher than when HS were present. However, 

controlling the pH, it was possible to conclude that the presence of all HS was 

consistent with a decrease on the photodegradation rate of SMX either at pH 5.00 and 

7.30 when compared with ultrapure water at the same pH. Thus, the inner filter effect 

was higher than the photosensitizing effect of HS, being more remarkable in the 

presence of HA.  

• In the collected water samples, under the same conditions of irradiation, the 

photodegradation had a marked decrease when compared with SMX in ultrapure water 

(t1/2 of 0.23 ± 0.01 SSD); the major decrease was observed in the STPF sample 

(t1/2 of 1.98 ± 0.07 SSD). The Fonte Nova, Rio Novo do Príncipe and Poço da Cruz 

samples showed a t1/2 of (1.4 ± 0.1), (1.56 ± 0.09) and (1.50 ± 0.05) SSD, respectively. 

So, this work allowed to conclude that photodegradation might not prevent the 
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environmental accumulation of SMX, which was shown to be considerably resistant to 

photodegradation.  

• The pH effect was studied in the estuarine water sample by comparing the pH value of 

this sample with the natural pH of ultrapure water. The t1/2 in estuarine water at pH 6.30 

(0.74 ± 0.05 SSD) was much lower than t1/2 in estuarine water at pH 7.33 

(1.4 ± 0.1 SSD). However, when comparing the value obtained for the t1/2 at pH 6.30 in 

the estuarine sample with that obtained in the ultrapure water it was verified that the t1/2 

is higher in the estuarine sample and this can be explained by the higher absorbance 

of radiation by the estuarine sample matrix than the one observed in ultrapure water, 

leaving less radiation available for the SMX photodegradation (inner filter effect).  

• pH is not sufficient to justify the slow photodegradation rate of SMX in environmental 

samples, thus, the influence of sea salts, namely calcium, magnesium and sodium 

chloride on photodegradation of SMX was also evaluated. It was possible to conclude 

that obtained results with the addition of 21 ‰ of NaCl (0.143 ± 0.004 h-1) or 21 ‰ of 

sea salts (0.133 ± 0.004 h-1) in ultrapure water at pH 7.30 were similar to the obtained 

in estuarine water sample at pH 7.33 (0.13 ± 0.01 h-1). However, there is a greater 

similarity between estuarine sample ((0.13 ± 0.01) h-1) and the solution with 21 ‰ Red 

Sea Salts ((0.133 ± 0.004) h-1) and this may be due to the fact that in the sample of 

synthetic sea salts there are also ions, such as calcium and magnesium, characteristic 

of estuarine samples. 

Concluding, it was proven that pH is extremely important on the photodegradation 

behaviour of SMX in all environmental samples tested, since they all have a pH higher than 

7.0. However, for the estuarine sample, salinity also has an important influence, while for 

the fresh water samples DOC is a contributing factor for the decrease of the degradation 

rate of SMX due to its inner filter effect. For the STPF sample, photodegradation of SMX is 

influenced by all the three factors mentioned: pH, salinity and DOC.  

Then, the SMX photodegradation in continuous flow mode was performed in ultrapure 

water and environmental samples. The photodegradation in this mode is much faster than 

the observed in batch mode, since the tube in which the radiation is incident presents a 

smaller thickness. Therefore, the radiation interacts easier with SMX in the sample and 

consequently, increases the photodegradation rate. In this way, this method of 

photodegradation becomes advantageous because it requires a lower exposure time to the 

radiation, and thus, a lower cost is associated to the lamp use. Also, the photodegradation 
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in continuous flow mode is a more efficient design for application to reality, and can be used 

as a sustainable approach for tertiary system in STPs.  

Finally, bacterial resistance to SMX during and after photodegradation experiments 

was also evaluated either in ultrapure water or in the environmental water samples. It was 

concluded that photodegradation is an efficient method to combat the problem of bacterial 

resistance in water samples from different origins, since SMX was not detected by HPLC-

FLD and the bacterial activity increased with SMX total photodegradation. Thus, the 

antibacterial effect of SMX is eliminated along with its photodegradation. However, with 

regard to the STPF sample tested, the same conclusions could not be obtained, since the 

STPF sample greatly inhibits bacterial growth and, therefore, it was not possible to obtain 

conclusions about the influence of SMX photodegradation on bacterial activity of the 

bacteria Vibrio fischeri.
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In order to complement the SMX photodegradation studies, the influence of synthetic 

photosensitizers should be tested, since the photodegradation of SMX in presence of 

natural photosensitizers and in environmental water samples is slower than in ultrapure 

water. Therefore, it is important to achieve a way to increase the photodegradation of SMX 

in environmental water samples in order to decrease the persistence of SMX in natural 

aquatic environment.  

Since it is known that the formation of photodegradation products (that might be as or 

more toxic than the parent compound) may occur, the assessment of the SMX 

photoproducts formed, in ultrapure water and especially in environmental water samples by 

mass spectrometry, is essential. This study becomes even more important, since there are 

only few studies in literature related to the formation of SMX photoproducts in environmental 

water samples.  

Besides the knowledge of the products formed and although the antibacterial activity 

of the products formed has been already evaluated in ultrapure and in environmental water 

samples, it is also important to do acute and chronic toxicity tests in these samples. Even 

though these studies are important for a correct assessment of the efficiency of the 

photodegradation process, the information in literature about the toxicity of SMX 

photodegradation products is scarce. Thus, it is crutial to increase the scientific community 

knowledge not only about the SMX photoproducts formed but also about their toxicity.  
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Table A1- Concentration of SMX (mg/L) in ultrapure water and in different environmental water samples used for antibacterial activity tests. 

 Ultrapure water Fonte Nova Poço da Cruz STPF 

Identification Time of 

irradiation 

(h) 

Concentration 

of SMX (mg/L) 

analysed by 

HPLC-FLD 

Time of 

irradiation  

(h) 

Concentration of 

SMX (mg/L) 

analysed by 

HPLC-FLD 

Time of 

irradiation 

(h) 

Concentration 

of SMX (mg/L) 

analysed by 

HPLC-FLD 

Time of 

irradiation 

(h) 

Concentration 

of SMX (mg/L) 

analysed by 

HPLC-FLD 

A 0 0 0 0 0 0 0 0 

B 0 50.92 0 50.95 0 50.36 0 50.49 

C 133 50.25 275 50.81 251 50.12 253 50.08 

D 0 100.91 0 100.73 0 100.78 0 100.98 

E1 2 50.94 27 46.29 20 49.36 22.5 45.25 

E2 2 47.44 27 44.66 20 51.65 22.5 46.34 

E3 2 50.70 27 45.45 20 54.30 22.5 47.02 

F1 38 0.49 137 1.26 103 1.99 111 3.08 

F2 38 <LOD 137 0.89 103 2.19 111 3.22 

F3 38 0.46 137 1.47 103 2.20 111 3.27 

G1 133 <LOD 275 <LOD 251 <LOD 253 <LOD 

G2 133 <LOD 275 <LOD 251 <LOD 253 <LOD 

G3 133 <LOD 275 <LOD 251 <LOD 253 <LOD 



 

 

 

 


