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palavras-chave 

 
Terpenos, terpenoides, óleos essenciais, líquidos iónicos, solventes eutécticos 
profundos, coeficientes de atividade a diluição infinita, equilíbrio líquido-líquido, 
equilíbrio sólido-líquido, propriedades críticas. 
 
 

resumo 
 

 

Os terpenos pertencem ao que é provavelmente a maior e mais diversificada 
classe de produtos naturais com aplicações em vários setores devido aos seus 
sabores e fragrâncias. O seu elevado número, variedade de estruturas e 
complexidade química, fazem deles uma classe de compostos onde há ainda 
muitos estudos a serem realizados e questões a serem respondidas tanto 
sobre as suas propriedades termofísicas e equilíbrio de fases como sobre o 
seu impacto nos processos de extração e purificação e no ambiente. Ambos 
são relevantes para o desenvolvimento de biorrefinarias, onde estes 
compostos podem desempenhar um papel importante dada a sua ubiquidade, 
valor económico e variedade de aplicações. 
Esta tese está relacionada com a extração de terpenos de fontes naturais e a 
sua posterior separação e purificação. Além do desenvolvimento de novos 
métodos experimentais para medir propriedades termodinâmicas e equilíbrios 
de fases, algumas abordagens teóricas foram também consideradas para o 
mesmo fim. 
Inicialmente, de forma a criar novas aplicações para estes compostos e tirando 
vantagem da sua baixa solubilidade em água, tal como demonstrado por novas 
e precisas determinações experimentais, os terpenos são utilizados para 
preparar solventes hidrofóbicos sustentáveis e de baixo custo, no âmbito dos 
solventes eutécticos profundos. Depois, com base nos coeficientes de 
atividade a diluição infinita e previsões do COSMO-RS, foi feita uma seleção 
de líquidos iónicos com potencial para o fracionamento de terpenos. Mais 
ainda, visando o desenvolvimento de novos processos de separação de 
terpenos, foram também formulados e caracterizados solventes eutécticos 
profundos compostos por sais de amónio e ácidos monocarboxílicos. 
Finalmente, e com o objetivo de desenvolver modelos precisos para o destino 
dos terpenos no ambiente, uma série de propriedades físico-químicas 
essenciais foi medida e modelada.  
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abstract 

 
Terpenes belong to what is probably the largest and most diverse class of 
natural products with applications in several industries due to their flavor, and 
fragrance. Their high number, variety of structures and chemical complexity, 
make of them a class of compounds for which there are still many studies to be 
carried out and questions to be answered both concerning their thermophysical 
properties and phase equilibria and their impact in their extraction and 
purification processes and on their environmental impact. Both are relevant for 
the development of the biorefinery where these compounds may play an 
important role given their ubiquity, economic value and variety of applications.  
This thesis is related to terpenes extraction from natural sources and their 
subsequent separation and purification. Besides to the development of new 
experimental procedures for thermodynamic properties and equilibrium 
measurements, some theoretical approaches were also applied to this end.  
First, to create new applications for this compounds, and taking advantage of 
their very low solubility in water as shown by new and accurate experimental 
determinations, terpenes are used to prepare sustainable and cheap 
hydrophobic solvents within the deep eutectic solvents framework. After, based 
on the activity coefficients at infinite dilution measurements and COSMO-RS 
predictions a selection of ILs was made with potential for terpenes fractionation. 
Yet, and aiming at the development of new separation processes of terpenes, 
deep eutectic solvents composed of ammonium salts and monocarboxylic 
acids were also formulated and characterized. Finally, and targeting the 
development of accurate models for the fate of terpenes in the environment, a 
range of essential physicochemical properties of terpenes were measured and 
modelled. 
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1.1. General context 

At a time when new chemical products are increasingly sought after to address societal 

needs without neglecting the growing focus on a greener, more environmentally friendly 

and sustainable development, it seems appropriate to emphasize the topic of natural and 

renewable sources for these compounds. These trends are spurring the demand for 

research, development and innovation of natural products.1 Essential oils are one of the 

most important classes of natural products with application in food, pharmaceutical, 

cosmetics, fine chemicals and perfumery industries due to their flavor, fragrances and 

spices. They are also used as precursors in syntheses of new drugs and as sources of 

complex aromatic derivatives. Per year circa 100,000 tons of volatile essential oils, with a 

value of about 1 billion US$, are produced worldwide. In 2015, the total world fragrance 

and flavor market was estimated to be approximately US$ 24 billion, a 33% growth from 

2006.2,3 Besides from the volatile oils, 250,000-300,000 tons of turpentine are also 

produced, from which about 100,000 tons are used for the production of terpenes such 

as camphor, camphene, limonene and p-cymene.4 As far as essential oils are concerned, 

terpenes are the largest and most important class of natural products. 

1.1.1. Terpenes 

The word terpene was first used by Kekulé, in 1866, as a generic term of compounds with 

the general formula C10H16. It derives from the German “Terpentin”, from which 

compounds of this class were first isolated. The suffix “ene” indicates the presence of 

olefinic bonds. Between 1884 and 1887, Kekulé’s assistant Otto Wallach described the 

structural formula of many terpenes and proposed the “isoprene rule” that says that 

terpenes are constructed from isoprene units. Robinson later perfected this rule by 

suggesting that the isoprene units are connected head-to-tail, the isopropyl part of 2-

methylbutane being defined as the head, and the ethyl moiety as the tail.5 In 1950 

Ruzicka proposed the “biogenetic isoprene rule” which states that all terpenes are 

obtained by specific precursors sharing a common biosynthetic pathway.6,7 Wallach, 

Robinson and Ruzicka all were recipient of the Nobel Prize in Chemistry.8 
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Along the years, many other important scientists worked on this subject, to characterize, 

extract and purify these compounds (Figure 1.1). After the World War II, chromatographic 

methods emerged, along with an increase on the number of works on terpenes. The 

distillation processes were replaced by improved chromatographic methods that allowed 

a more effective and faster separation of essential oil into its hundreds of components, 

facilitating their characterization. 

 

 

 

Figure 1.1. Record count of works on terpenes and/or terpenoids. Values extracted from 

ISI Web of Knowledge in January, 2017. 

Terpenes have been used since the Egyptians9 and their importance both in nature and 

for human related applications is huge. One of the reasons for their widespread use is the 

abundance and diversity of these compounds; they are found in all living organisms. Using 

a basic five carbon building block, the isoprene, nature creates an array of compounds 

with an wide range of structural variations and a vast number of purposes.10 Structurally, 

terpenes are unsaturated acyclic, monocyclic, or polycyclic hydrocarbons. They can also 

occur as oxygenated derivatives, such as alcohols, ethers, aldehydes, ketones, and 

carboxylic acids, called terpenoids.11 In this work the term terpene includes both, the 

terpene hydrocarbons and the terpene oxygenated derivatives – terpenoids. Figure 1.2 

shows some terpenes and terpenoids structures and their classification based on the 

number of isoprene units. 
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Terpenes are divided into several groups and sub-groups according to the pathway by 

which they are synthesized by nature, or according to their structures, since these arise 

directly from their biosynthesis. As presented in Figure 1.2, the primary classification is 

related to the number of isoprene units. The fundamental family members are 

hemiterpenes or hemiterpenoids – compounds containing only one unit of isoprene that 

is widely produced and emitted in nature.10 Monoterpenes and sesquiterpenes are 

present in nature as components of essential oils of herbs and spices, of flower scents, 

and of turpentine; and thus, widely used in perfumery and flavor industries.12 Their 

mixtures can form up to 5% of a plant dry weight.13 Monoterpenes are components of 

anticancer and antimicrobial drugs,14 while sesquiterpenes present antibiotic 

activities.15,16 Containing four units of isoprene, diterpenes arise from the metabolism of 

geranylgeranyl pyrophosphate17 and occur in almost all plant families. Taxol is a diterpene 

drug used to treat cancer.18 The least common group, sesterterpenes are primarily 

isolated from fungi and marine organisms and rarely found in higher plants.19 The C30 

constituents derived from squalene – triterpenes – are largely found in nature, mainly in 

resins, and are important structural components of plant cell membranes.20,21 Comprising 

eight units of isoprene, tetraterpenes are formed by the coupling of two geranylgeranyl 

pyrophosphate molecules. Important tetraterpenes are the yellow or orange-red 

carotenoid pigments.17  Polyterpenes are composed of many isoprene units and to date 

have no biological function associated.12 Examples are found in rubber and gutta-percha, 

macromolecules of molecular weight over 100 000. While in mono-, sesqui-, di- and 

sesterterpenes the isoprene units are linked to each other from head-to-tail, tri- and 

tetraterpenes contain one tail-to-tail connection in the center.12 
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Hemiterpenes Monoterpenes Sesquiterpenes Diterpenes Sesterterpenes Triterpenes Tetraterpenes Polyterpenes 

Hemiterpenoids Monoterpenoids Sesquiterpenoids Diterpenoids Sesterterpenoids Triterpenoids Tetraterpenoids Polyterpenoids 

1 i.u. (C5H8) 2 i.u. (C10H16) 3 i.u. (C15H24) 4 i.u. (C20H32) 5 i.u. (C25H40) 6 i.u. (C30H48) 8 i.u. (C40H64) (C5H8)n 

Acyclic  Acyclic 

    
   

 

Isoprene Citronellol α-farnesene Phytol  Squalene Lycopene Natural Rubber 

   
    

 

Isovaleric Acid Geraniol Farnesol    Phytoene Gutta-percha 

   
   

  

Prenol Linalool Nerolidol  
 

  
 

 Monocyclic Tetracyclic Monocyclic  

 

     
 

 

  

 
Carvacrol S-Carvone Elemol Humulene Cembrene A Geranylfarnesol Cucurbitane Torulene 

 

 
     

 

 

  

 
Limonene Menthol Thymol Zingiberene Retinol 

 
Lanosterol γ-Carotene 

 
 Bicyclic   Bicyclic  

 

      

 
 

 
 

 
Borneol Camphor Eucalyptol Cardinene Caryophyllene Labdane 

 
 α-Carotene 

 

 
   

  
 

 
 

 
α-pinene β-pinene Mutisianthol 

  
 β-Carotene 

 
 Tricyclic Pentacyclic   

 

    
  

  

 
Cyclosantene α-santalol Ferruginol Cafestol α-amyrin Betulinic Acid 

  

Figure 1.2. A visual introduction to some common terpenes and terpenoids and their structures (i.u. isoprene units). 
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Concerning the biosynthesis, all terpenes derive from the precursors isopentenyl 

diphosphate (IDP) and its allylic isomer dimethylallyl diphosphate (DMADP), called ‘active 

isoprene’.22–24 These are formed through two metabolic pathways: the mevalonic acid 

pathway (MEV) and the methylerythritol phosphate pathway (MEP). As can be seen in 

Figure 1.3, hemiterpenes can be formed directly through DMADP while the assembly of 

this with 1 – 4 units of IDP gives rise to the immediate precursors of terpenes, GDP, FDP, 

GGDP and GFDP, respectively.22 The conformation adopted by the chain determines the 

terpene structure, being the most common the cyclic forms with a mono-, bi-, tri-, tetra- 

or pentacyclic structures.8  

 

Figure 1.3.  Simplified scheme of terpenes biosynthesis. 

Properties and applications 

Many plants as balm trees, caraway, carnation, citrus fruits, conifer wood, coriander, 

eucalyptus, lavender, lemon grass, lilies, peppermint species, roses, rosemary, sage, 

thyme and violet, are known due to their aroma, taste and medicinal properties, being 

terpenes the main responsible for these properties. With more than 55.000 different 

structures,25,26 the properties and applications of this class of natural compounds are 
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difficult to overstate. Many of them are considered as GRAS (Generally Recognized As 

Safe)27 and their importance makes them attractive to be used in diverse industries. Table 

1.1 shows some of the generic applications of terpenes in pharmaceutical,28 food 

additives,29 cosmetics,10 perfumery,10 fine chemicals30 and agriculture30 industries as well 

as some of their properties and examples of terpenes or their sources. 

Due to their biological importance and particular properties, the study of these natural 

products led to the discovery of an enormous variety of useful drugs for the treatment of 

diverse diseases. In the pharmaceutical field terpenes are used as excipients to enhance 

skin penetration, active principles of drugs and components of non-prescription drugs.28 

In 2002, the market of terpene-based pharmaceuticals generated about US$ 12 billion.28 

The anticancer taxol and the antimalarial artemisinin are two of the better-known 

terpene-based drugs.31 Menthol and camphor are non-prescription drugs widely used in 

the pharmaceutical field. In 2015, the sales of Salonpas (5.7% menthol and 1.12% 

camphor),32 a famous topical analgesic, in the United States reached US$ 60.1 million.33 In 

the food industry, terpenes are also very attractive due to their several appealing 

properties that allow them to be used as safer alternatives to chemical additives.34,35 The 

culinary herbs basil, cinnamon, coriander, cumin, lavender, mint, oregano, and rosemary; 

and trees like eucalyptus, fir and myrtle are famous sources of terpenes.29 When added to 

chocolate products, limonene was proposed as a reducer of the fat content and viscosity 

and therefore its addition can improve the final product quality.36,37 

Fragrances make terpenes and essential oils the most important natural products used by 

the cosmetic and perfumery industries since ancient times. According to Euromonitor 

International38 the beauty industry generated US$ 465 billion in sales in 2014, with a 5 per 

cent yearly growth, being China and Brazil the most promising markets. This is an 

evidence that the global demand for cosmetics and perfumes, and consequently essential 

oils, is still an extremely important and profitable market. There are more than 3000 

known essential oils and from these, around 300 are used commercially in the flavor and 

fragrances market.34 Citrus peel and neroli oil are examples of widely applied essential 

oils in perfumes, colognes and other high-end fragrances. Neroli is a highly prized floral oil 
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produced from orange blossoms by steam distillation. To produce 1 kg of neroli oil, 850 kg 

of orange blossoms are necessary.39  

Table 1.1. Generic properties/applications of terpenes in several industries.10,28–30 

Pharmaceutical Industries Essential Oil or Compound 

Analgesic Oils of oregano, myrtle, eucalyptus, lemon and orange 

Antibiotic α/β-pinene, illudinic acid, manoalide 

Anticancer Paclitaxel, halomon, mutisianthol, ferruginol, cafestol 

Antifungal Thymol, labdane 

Antihyperglycemic Pycnanthuquinones A and B 

Anti-inflammatory α/β-pinene, α-humulene, trans-caryophyllene, labdane 

Antimicrobial Zuccarinin, carvacrol, thymol 

Antiparasitic Artemisinin, betulinic acid 

Antiviral β-caryophyllene, star anise oil 

Food Additives Industries 

Color agents Carotenoids 

Antioxidants Safranal, carnosol, eugenol, thymol, carvacrol 

Natural preservative Oregano, rosemary and thyme essential oils 

Organoleptic agents (flavor, fragrances, 

spices) 

Steviol (stevia), lactisole, sabinene, camphor, humulene 

Natural food additives Steviol (stevia) 

Cosmetics and Perfumery Industries 

Organoleptic agents (flavor, fragrances) α/β-ocimene, β-myrcene, citral A, S-limonene, patchoulol 

Repellent Geraniol, citronellal, camphor, farnescene 

Antibacterial Carvacrol 

Emulsifier Lanosterol, saponins, ursolic acid 

Conditioner and Lubricant Lanosterol 

Fine Chemicals Industries 

Synthetic precursors and intermediates  Menthol, menthone, terpineol, linalool, α/β-pinene 

Chiral building blocks α/β-pinene, limonene 

Agriculture 

Pesticides Pyrethrins, limonene 

Plant protectors Farnesene 

Animal feed Zeaxanthin 

Phytohormones Fusicoccanes, abscisic acid 



Chapter 1 – General Introduction 

 

10 
 

Volatile mono-, sesqui- and diterpenes are the most important subclasses of terpenes 

economically important as perfumes and fragrances. Extracted from various eucalyptus 

species, eucalyptol is one monoterpenoid widely used in perfumery and as a nasal 

decongestant. Other examples are α-ocimene, β-ocimene, β-myrcene, citral A, S-

limonene, verbenone, zingiberene, bisabolane, bisabolene, caryophyllne, and patchoulol. 

Patchoulol is a sesquiterpene alcohol found in the essential oil Patchouli, an important 

material in perfumery that also gives name to a French perfume brand. Another 

important application of patchoulol is its use in the synthesis of the chemotherapy drug 

Taxol. Verbena, that has as main constituent verbenone, is the signature fragrance of 

L’Occitane, a well-known company located in Provence, France. 

As one of the most abundant and diverse classes of compounds produced by animals and 

plants, terpenes can be converted into commercially important fine chemicals to be used 

in the industries and as synthetic intermediates and chiral building blocks.30 A well-known 

engineering application for terpenoids is the norbornadiene-quadricyclane system, a 

photochemical conversion cycle for the storage of solar energy.40 One example that 

demonstrates the use of monoterpenes as building block for the production of chiral fine 

chemicals is the synthesis of the herbicide cinmethylin developed by the Shell Oil 

Company.41 In addition, there are evidences that plants, animals and microorganisms 

produce terpenes as defense mechanisms against predators, pathogens and 

competitors,42 protection against abiotic stress,43 and signalization.44 Thus, terpenes have 

also been explored as pesticides.45  

Due to the similar physico chemical properties between some other organic solvents and 

terpenes as α-pinene, limonene and p-cymene, studies have been performed to explore 

the possibility of replacing them.46,47 Limonene was studied for recycling and reduction of 

polystyrene volume as an alternative to hydrocarbon based solvents.48,49 Tanzi et al.50 

have shown that terpenes could be an efficient alternative to benzene for the recovery of 

triglycerides from the algae Chlorella vulgaris. 

In addition, it is also important to highlight the polyterpene rubber and the essential oil 

turpentine. Produced by the rubber tree as a defensive secretion, natural rubber is a 
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polymer of isoprene widely used due to its elastic properties.9 In 2015, a total of around 

26.8 million metric tons of natural and synthetic rubber were produced globally.51 On the 

other hand, turpentine is, by far, the essential oil most produced in the world. Their main 

constituents are α-pinene (30 000 tons / year) and β-pinene, and in small amounts some 

other monoterpenes. With an annual production of around 330 000 tons, this secondary 

product of paper pulp industry has been used for decades as an important source for 

applications requiring large-scale supplies. Examples are its use as a solvent, particularly 

for paints, and as feedstock for the synthesis of other materials of commercial interest, 

particularly the monoterpenes production, and fragrance ingredients.10 During colonial 

times, turpentine was included in the term naval stores originally used to denote resin-

based components of pine trees used in building and maintaining of wooden sailing ships 

as waterproof agents. 

Concerning synthesis, the fact is that basic monoterpenes skeletons can interconvert to 

give rise to other monoterpenes or their derivatives.7,30 Industrially, the abundant α-

pinene and β-pinene are thermal or acidic isomerized in order to produce molecular 

skeletons of other naturally occurring chemicals, especially when their natural sources are 

not abundant.7 α-terpineol is obtained when turpentine is distillated in an acidic medium, 

causing the opening of the ring of α-pinene.10 By thermal cycloreversion β-pinene leads to 

myrcene, that can subsequently be converted into (R)-(+)-citronellal.12  

As can be seen in Table 1.2, the second major source of terpenes is citrus essential oil, a 

co-product of citrus juice that has as major constituent (>95%) the monoterpenes 

limonene (30 000 tons/year) and terpinene, followed by other essential oils produced in 

less quantity.  

Although most terpenes present “good” characteristics that lead to important 

applications, there are also a set of compounds with negative features. The monoterpene 

thujone is the toxic agent present in Artemisia absinthium from which the liqueur 

absinthe is made. Isovaleric acid is a major component of the cause of foot odor, however 

it is widely applied in perfumery. Umbellulone is produced by Callifornian “headache 
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trees” and causes headaches; pulegone causes abortions, camphene is explosive and 

ascaridole is poisonous and explosive.  

Table 1.2. Major commercial sources of terpenes (adapted from Schwab et al.30). 

Essential Oil Main terpenes Tons oil/year 

Turpentine α-pinene, β-pinene 330 000 

Citrus R-(+)-limonene 30 000 

Mentha arvesis (-)-menthol 4800 

Peppermint (-)-menthol, (-)-menthone 3200 

Cedarwood α-cedrene, β-cedrene 2600 

Eucalyptus globulus Eucalyptol 2070 

Litsea cubeba Citral 2000 

Clove leaf β-caryophyllene 2000 

Spearmint R-(-)-carvone 1300 

Aiming at the development of new applications for this important class of compounds 

and taking advantage of their hydrophobic character, a part of this thesis is devoted to 

the attempt to prepare sustainable and cheap hydrophobic solvents from mixtures of 

terpenes combined with other terpenes or other organic solvents or chemicals – Chapter 

2.  

Production and deterpenation 

Essential oils are extracted from their natural sources through four basic processes: 

tapping, expression, distillation and solvents extraction. Tapping is the process of damage 

the trees bark to collect the exuded resin. Turpentine gum and natural rubber are collect 

using this process. Some other resins as olibanum and myrrh are also produced by this 

method, however they suffer further processing after collection. Many citrus oils and, in 

particular, bergamot oils are produced by physical pressure of the natural source, process 

called expression. The resulting oil is called an expressed oil.10  

Due to their high volatility, essential oils and terpenes can also be isolated from plant by 

distillation, one of the most important methods. This comprises three types: dry 

distillation, steam distillation and hydrodiffusion. In dry distillation high temperatures or 
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direct flames are applied to the recipient containing the raw material. This technique is 

usually used for oils with high boiling points as those derived from wood, such as cade 

and birch tar oils. In steam distillation the oils are co-distillated by adding water or steam 

to the recipient. The water is then removed with, for example, a Florentine flask. In order 

to save energy, in hydrodiffusion steam is introduced at the top of the recipient and the 

water and oil collected at the bottom.10  

The most important method to extract essential oils is solvent extraction, divided in 

ethanolic extraction, enfleurage and simple solvent extraction. The first is more applied to 

materials, as the ambergris produced through the triterpenoid ambreine that is excreted 

by the sperm whale. When subjected to ethanol extraction ambergris forms a tincture. 

Enfleurage was used since ancient Egyptians until the early twentieth century. The 

process consisted in mixing the raw material with purified fat that is then melted and the 

mixture filtered. After cooling the mixture formed a pomade where the essential oils are 

diffused. However, the concentration was low and the final product not very convenient. 

In more recent times, ethanol was used to extract the fat by dissolving the essential oils. 

Ethanol was then distillated. Nowadays the most important and most used technique is 

solvent extraction. Initially was made with benzene but due to concerns related to its 

possible toxic effects was replaced by petroleum ether, acetone, hexane, ethyl acetate, or 

their mixtures.10 

When in high concentrations the monoterpene hydrocarbons can be undesirable and are 

removed from the essential oils, process known as deterpenation.52 In this process, the 

essential oils are separated in two fractions, one rich in terpene hydrocarbons and 

another rich in oxygenated terpene derivatives.53 The fraction rich in terpene 

hydrocarbons, mainly monoterpenes and sesquiterpenes, contributes little to the flavor 

and fragrance, is poor soluble in water and alcohols and may be easily oxidized, while the 

fraction rich in oxygenated compounds is the responsible for its organoleptic 

characteristics.54 Whereas some applications involve the non-deterpenated oil, as 

aromatherapy, others require the concentration of the oxygenated compounds by the 

hydrocarbons removal in order to increase the stability and the solubility in water, and 

other organic solvents used in food technology. 
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Lemon oil is an example of one essential oil dominated by a volatile fraction composed by 

terpene hydrocarbons (≈90%), such as limonene, and some of their oxygenated 

derivatives – Figure 1.4. That fraction presents low boiling point and is prone to oxidation 

to produce molecules that cause strong off-flavors. Besides, they do not contribute 

significantly to the oil fragrance, in comparison to the other fraction that provides most of 

the flavor character.5 To have acceptable flavor in lemonade drink, the level of lemon oil 

required would result in an excess of terpene hydrocarbons exceeding the solubility limit. 

On the other hand, the oxygenated chemicals are soluble, what makes the deterpenation 

of utmost importance in order to improve the quality of the final product and have a clear 

drink.10 This fractionation increases the essential oils commercial value, since the fraction 

composed by oxygenated compounds is preferred by many industries.55 

  

Figure 1.4. Mass percent composition ranges of components of different citrus essential 

oils (adapted from Arce and Soto, 2008).54 

Vacuum and steam distillations,56 membrane processes,57 supercritical extraction,58–60 

solvent (or liquid-liquid) extraction52,61–63 and chromatography64 are the techniques most 

used to remove hydrocarbons from essential oils. The solvent extraction is preferred, 

since this method requires less energy, than processes such as distillation and 
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supercritical fluid extraction, while retaining the most volatile aliphatic chemicals,65 and 

preserving the organoleptic properties of the original oil. Large-scale deterpenation is 

generally carried out by vacuum distillation or extraction into dilute alcohol or other 

solvents.54 Nowadays, newer technologies are being tested and one of the most 

interesting approaches currently under development is the use of ionic liquids (ILs).54  

To be applied in food,23 perfumery,66 medicines67,68 and cosmetics,69 or for research 

purposes, pure terpenes must be extracted from essential oils, usually by fractional 

distillation.12 To the best of our knowledge, the first academic study published in the 

open literature on terpenes extraction dates back to 1959,70 and since then a vast 

number of works were published in the field.10 In a laboratorial scale, chromatographic 

methods of separation predominantly in the gas or liquid phase allow the isolation of 

small amounts with high purities. 

In the isolation process, first the raw material is dried, chopped or ground and then 

extracted with inert solvents at low temperatures, to prevent artifacts formation. Water, 

ethanol, or methanol are used to extract polar compounds while petroleum ether is used 

for the less-polar ones. The extracts are then dried under vacuum or freeze-dried and 

fractionated by column chromatography. Liquid chromatography with medium- or high-

pressure is used to the final purifications.12   

However, and despite terpenes abundance, most are present in low concentrations 

(Figure 1.4), so they tend to be expensive or even uneconomic to exploit.10 An example is 

the anticancer paclitaxel, found in Taxus brevifolia. The level of terpene in the bark is very 

low, being needed three trees with several hundred years old to produce paclitaxel to 

treat one patient. As the number of trees in the world is insufficient, researchers are 

focused on attempts to synthetize paclitaxel.10 Moreover, since 1960´s natural sources of 

terpenes can no longer meet their worldwide demand. Thus, although many terpenes are 

isolated from natural sources most are nowadays produced by synthetic methods. Two 

thirds of monoterpenes in the market are manufactured by synthetic or semi-synthetic 

processes. As main components of turpentine, the essential oil most produced in the 

world, α-pinene and β-pinene arise as raw materials for the production of many of the 
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commercially important terpenes and their derivatives (i.e., terpineol, linalool, linalyl 

acetate, nerol, geraniol, and citral).71  

For the production of pure terpenes from natural materials,72 or for the deterpenation, 

the separation of terpenes is of the utmost importance, being an area regarding eagerly 

for new technological developments. Thus, to replace noxious organic solvents used in 

the terpenes production or essential oils deterpenation and to increase the process yield, 

Chapter 3 investigates the potential of ionic liquids for terpenes fractionation. Moreover, 

another classes of neoteric solvents, the deep eutectic solvents, are formulated and 

characterized aiming at the development of new separation processes. 

Environmental impact 

With the advent of the biorefinery, and the increasing importance and volume of terpene 

production and applications, especially in the fragrance and flavor, pharmaceutical and 

chemical industries, their environmental impact needs to be considered. Over the last 

years, the role of terpenes as biogenic volatile organic compounds (BVOC) as well as in 

aerosol formation became an important topic of research on the chemistry of the 

atmosphere, with a new emphasis on the ongoing climate change debate.24,73,74 It is 

thought that, on a global scale, volatile organic compounds of biogenic origin exceed by 

far the amount of anthropogenic emissions, while this is not necessarily true on a regional 

scale, regarding industrialized and heavily encumbered areas.  

Forests present emission of large quantities of unsaturated hydrocarbons like isoprene, 

mono- and sesquiterpenes. They are subject to gas-phase oxidation reactions, and the 

reaction products contribute to particle formation.74,75 Smaller degradation fragments will 

remain for long times in the atmosphere influencing its chemistry. Until recently, it was 

widely believed that VOC only contributed to secondary aerosol formation when 

composed of six or more carbon atoms, but recent studies suggest the involvement of 

smaller molecules on a considerable scale. About half of global BVOC-emissions originate 

in isoprene.76 
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In terms of quantities, biorefineries are on their way to become a new important 

anthropogenic source of terpenes and thus, envisioning the risk assessment of large scale 

operations, environmentally relevant physicochemical property data have to be known. 

However, data on water solubility and vapor pressure of terpenes – two of the most 

important properties – are scarce and often inconsistent, and their temperature 

dependency largely unknown.11,77–82 

Perdue et al.83 emphasized the importance of physicochemical properties of 

monoterpenes in another environmental context: their fate in the soil and the aquatic 

environment. Their interest was driven by possible environmental consequences due to 

emerging applications of terpenoids as, among others, replacement for 

chlorofluorocarbons, and therefore their increasing production.83 Also here, there is a 

scarcity of available data for basic physicochemical property data, while several models 

are available for their estimation.83 Physicochemical parameters such as water solubility, 

vapor pressures and octanol-water partition coefficients, allow an ample description of 

the behavior of a substance in the environmental compartments, from multi-

compartment analysis to transport and distribution of substances over the compartment 

boundaries. 

In order to contribute to the development of accurate models for the fate of terpenes in 

the environment, on this thesis a range of physicochemical properties such as densities, 

water solubilities and critical properties will be accurately measured and/or estimated – 

Chapter 4. Moreover, water solubilities, vapor pressure and octanol-water partition 

coefficients can describe a hypothetical chemical space that allows a first screening of 

compounds with respect to their probable distribution in the environment once released. 

The natural emissions of terpenes cannot be targeted for intervention unlike the 

anthropogenic. Thus, the researchers goal must be the search of strategies and 

technologies to reduce the environmental impacts of terpenes from biorefineries. For this 

purpose, aiming at maximizing efficiency and minimizing waste new eco-friendly solvents 

will be here investigated. 
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1.1.2. Designer solvents 

Within the framework of green chemistry, solvents occupy a strategic place. In this 

context, to be qualified as a green medium, solvents must be non-toxic, biodegradable, 

recyclable, non-flammable, and economic, among others. The point is to minimize the 

environmental and health impact of common noxious organic solvents used in industries. 

Up to now, the number of available solvents proposed as green include ethanol,84 

water,85 supercritical CO2,86 and recently ionic liquids87 and deep eutectic solvents.88 

Regarding the terpenes extraction and separation, water89,90 and several organic solvents 

as alcohols,49,61,89,91–99 acetonitrile, nitromethane and dimethylformamide,100 glycols101,102 

and aminoethanol have been investigated.103 Lately, ionic liquids have been also 

investigated as potential substituent for organic solvents.52,53,63,104–107 Moreover, in this 

work the neoteric deep eutectic solvents are proposed to the extraction of terpenes.  

Ionic liquids 

Ionic liquids are a novel and remarkable class of compounds that have received enormous 

attention during the past decade.108 Chemically, they are composed by bulky organic 

cations coupled with organic or inorganic anions that, unlike conventional salts, are liquid 

at or close to room temperature, as result of their low-charge density and low symmetry 

ions. This makes them attractive as alternative solvents for many chemical reactions and 

separation processes.109 The combination of ions can lead to a large number of ILs, what 

provides considerable flexibility in the selection of the most suitable pairs for a specific 

chemical application and, consequently, to significant changes in their thermophysical 

properties such as density, viscosity, heat capacity, thermal conductivity, as well as their 

solvation ability. Therefore, they have been categorized as “designer solvents” owing to 

the very large number of possible cations and anions combinations that can be 

envisioned.110  

The first ionic liquid, ethylammonium nitrate, was synthetized almost a century ago by 

Paul Walden111 and in 1934 the first process concerning ILs industrial applications in the 

preparation of cellulose solutions was patented.112 Thereafter the number of scientific 
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works reporting on ionic liquids increased progressively. However, the boom occurred in 

the past years with the discover of air- and water-stable ILs, as well as of task-specific 

compounds.108 Nowadays a large number of ILs can be synthetized being the most widely 

studied the cations imidazolium-, pyridinium-, pyrrolidinium-, piperidinium-, and 

quaternary-ammonium and phosponium, combined with the anions chloride, bromide, 

acetate, hexafluorophosphate and tetrafluoroborate – Figure 1.5. Moreover, the green 

chemistry framework led to eco-friendlier alternatives, as derivatives from carboxylic 

acids and amino-acid-based anions and cholinium- and amino-acid- based cations.113  

Cations Anions

 

Figure 1.5. Common structures of ILs cations and anions. 

Due to their ionic nature, most ILs are known to present interesting properties, such as a 

negligible vapor pressure, chemical and thermal stability, high ionic conductivity, large 

liquid temperature ranges and high solvating capacity for organic, inorganic, and 

organometallic compounds.87,109 Due to these unique characteristics, ILs are often 

considered green solvents with a potential to replace conventional volatile organic 

solvents that are believed to contribute to the global warming.110,114 Many recent reviews 

summarize the large range of applications of ionic liquids in organic synthesis, catalysis, 

biocatalysis, electrochemistry, and separation technology.108,115,116 

Over the past years, the role of ionic liquids in fragrance and flavor chemistry has been 

explored. Main investigations include chemical synthesis of fragrance and flavor materials 

in ionic liquids, extraction of natural compounds from biomass, and determination of 

fluid-fluid equilibria for essential oil deterpenation using ILs.106,115,117,118 
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In 2005 Forsyth et al.119 investigated the use of ionic liquid solvents to synthesize lily-of-

the-valley Lilial fragrances and Petrat et al.120 found that the evaporation of a perfume 

could be delayed using an ionic liquid as fixative. A similar discovery was patented by 

BASF, discovering that azeotropes can be broken using ILs in order to affect the 

compounds volatility.121 Concerning cleaning products, Procter & Gamble has an 

extensive portfolio of patents involving ILs including the treatment or cleaning agents for 

surfaces, the protection or stabilization of benefit agents and the improvement of 

processability of active concentrates.117 

Table 1.3 shows terpenes extracted from biomass using ILs or ILs solutions. The most used 

ILs are imidazolium-based cations combined with Br−, Cl− and [BF4]− anions – pure, or in 

mixtures of water or ethanol. Due to its utmost importance in malaria treatment, the 

extraction of the sesquiterpene lactone artemisinin from the plant Artemisia annua was 

evaluated by Bioniqs Ltd using ILs as solvents in the solid-liquid extraction process.122 In 

this work, a specific ionic liquid, [N11(2(O)1)0][C2CO2], was designed for the extraction of 

artemisinin. As far as we know, this was the first patent concerning the application of ILs 

in the extraction of value-added compounds from biomass. 

One year Later, Wu et al.123 investigated the extraction of tanshinones from Salvia 

miltiorrhiza Bunge using surfactant ionic liquids suggesting that the extraction is micelle-

mediated since the tanshinones are lipophilic compounds. The same terpenoids were also 

studied by Bi et al. 124 that suggested the application of IL-based ultrasound-assisted 

extraction for the extraction and pre-concentration of tanshinones. Later the same author 

applied the former technique using ethanol solutions to the extraction of astaxanthin, the 

most valuable carotenoid, from shrimp waste.125 Another technique, IL-based microwave-

assisted simultaneous extraction and distillation was usefully applied by Liu et al.126 to 

extract carnosic acid, rosmarinic acid and essential oils from Rosmarinus officinalis.  

Bica and co-workers106 dissolved fresh fragrance biomass in ionic liquids in order to 

isolate essential oils. The liquid solutions were subjected to vacuum distillation and a 

distilled fraction composed of two layers, limonene and water, obtained allowing the 

isolation of high purity limonene. The IL was totally recovered. Additionally, the same 
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group explored the extraction of the pharmaceutically active betulin from birch bark 

using pure ILs.127 This triterpene presents many interesting characteristics as the 

antitumor, antiviral and antimalarial properties, as well as their derivatives (betulinic acid 

and bevirimat) that have been studied as contributors to a new anti-HIV drug. 

In 2013, aqueous ionic liquid based ultrasonic assisted extraction was applied to 

ginsenosides.128 This approach showed the highest extraction yields of total ginsenosides 

(≈ 17 mg·g-1) when compared with water or ethanol. Finally, Onda et al.129 extracted the 

terpene trilactone bilobalide from Ginkgo biloba leaves using the biomass-dissolving ionic 

liquid 1-butyl-3-methylimidazolium chloride. In combination with methanol, an efficient 

extraction was achieved. 

Table 1.3. Terpenes extracted from natural sources using ILs or ILs solutions (adapted 

from Passos et al.115).  

Terpene Natural Source ILs / ILs solutions 

Artemisinin122 Artemisia annua [Nnmop]+ + [CnCO2]- 

Tanshinones123,124 Salvia miltiorrhiza Bunge [CnCmim]+ + Br-; Cl- + water 

Astaxanthin125 Shrimp waste [CnCmim]+ + Br-; [BF4]-; [CH3SO4]-; Cl- + ethanol 

Limonene106 Orange peels [CnCmim]+ + [CnCO2]-; Cl- 

Carnosic acid126 Rosmarinus officinalis [CnCmim]+ + Br-; [BF4]-; [NO3]-; Cl- + water 

Betulin127 Birch bark [CnCmim]+; [CnCmpyr]+; [CnCmpy]+ + Br-; Cl-; 
[(CH3)2PO4]–; [BF4]-; [CnCO2]-; [Ci3CO2]-; [N(CN)2]-; 
[PF6]-; [NTf2]- 

Ginsenosides128 Ginseng root [CnCmim]+ + Br-; [BF4]-; I- + water 

Bilobalide129 Ginkgo biloba leaves [CnCmim]+; [Pnmop]+  + Cl-; [OH]- 

 

Deep eutectic solvents 

With the growing focus in green chemistry, researchers are increasingly seeking 

environmentally friendly solvents. Recently, a new class of eco-friendly solvents has been 

proposed by Abbott and co-workers,130 the Deep Eutectic Solvents (DES). These are 



Chapter 1 – General Introduction 

 

22 
 

mixtures of two, or more compounds, formed by hydrogen bond complexation, for which 

the eutectic point is far below the melting point of each individual component.131 As 

represented in Figure 1.6a, the eutectic point corresponds to the minimum temperature 

and system composition at which the system is still in the liquid phase. 

DES can be easily prepared by mixing the components at a moderate temperature, 

without chemical reactions and complex purification steps. Many are prepared using 

cheap and well-characterized biodegradable materials, making the “synthesis” green and 

safe.131,132 They may also be classified as designer solvents since their structures can be 

adjusted by selecting the hydrogen-bond donor–acceptor combinations, tailoring their 

phase behavior and physical properties.133 The most common components used in DES 

formulations are quaternary ammonium salts, particularly choline chloride ([Ch]Cl), due 

to its non-toxicity, biodegradability and economic synthesis. When combined with 

polyols, urea, carboxylic acids, sugars or other safe hydrogen bond donors, DES are 

formed. The interaction mechanism of choline chloride with a generic hydrogen bond 

donor (HBD) is represented in Figure 1.6b. 

  

Figure 1.6.  a) A simple eutectic phase diagram; b) Interaction mechanism of [Ch]Cl with a 

generic HBD. 

DES exhibit a wide range of properties which make them an attractive family of solvents 

for different applications in catalysis, organic synthesis, dissolution and extraction 

processes, electrochemistry and material chemistry.131,134,135 Their low toxicity, non-

volatility, non-flammability and non-reactivity with water together with their 
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renewability, biodegradability and availability of precursors, are some of the favorable 

characteristics of these compounds.131,136 The renewability of a DES depends mainly on its 

starting materials. For most DES described in literature, the precursors used in their 

preparation are abundant natural compounds (Figure 1.7).  

Owing to their promising applications, efforts have been devoted to the physicochemical 

characterization of DES. It has been shown that usually they are denser than water and 

show different melting points depending on the starting materials, and also on the molar 

ratio of these precursors. Like ILs, the DES often present high viscosities at room 

temperature. Due to these high values of viscosity, they usually present low ionic 

conductivities.131 

 

Figure 1.7. Structures of HBD and HBA commonly used in the deep eutectic solvents 

formulation (adapted from Francisco et al.135). 

Since DES emergence, they have been applied to a wide range of biomass types to extract 

different compounds, including terpenes – Table 1.4. The first study was performed in 

2014, were terpenes linalool, α-terpineol, terpinyl acetate were extracted from 

Chamaecyparis obtusa leaves using mixtures of choline chloride and ethylene glycol by 

headspace-solvent microextraction.137  
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After, Zhang et al.138 and Lee and Row139 investigated the extraction of astaxanthin from 

shrimp byproducts and marine products, respectively. Zhang et al.138 applied an 

ultrasonic-assisted method obtaining more astaxanthin (146 µg·g−1) with [Ch]Cl+1,2-

butanediol (1:5) than when using the traditional organic solvent ethanol (102 µg·g−1). 

Later, Lee and Row139 evaluated ILs and DES as additives for the extraction of astaxanthin 

by the same method. The optimal DES was synthesized from methyl triphenyl 

phosphonium bromide and 1,2-butanediol (1:4) while the optimal IL was 1-ethyl-3-

methylimidazolium bromide. The amount of astaxanthin extracted from Portunus 

trituberculatus waste was 73.49 mg·g−1 using the DES compared with 47.30 mg·g−1 using 

the IL. 

The extraction of ginsenosides from white ginseng was used as a way to demonstrate the 

tuneability as well as recyclability of DES by Jeong et al.140 A mixture of glycerol, L-proline, 

and sucrose (9:4:1) was found to be the DES with high efficient extraction. Additionally, 

was confirmed that the DES is merely an extraction solvent with no influence on the 

bioactivity of the ginsenosides extracted. The addition of glycerol to a binary DES proved 

to increase extraction efficiencies while reducing viscosities. The ginsenosides were 

successfully recovered by solid-phase extraction and the DES recycled through simple 

freeze-drying of the washes from the solid-phase extraction procedure. 

Last year, Wang et al.141 applied a ball mill-assisted deep eutectic solvent-based 

extraction method to extract tanshinones from Salvia miltiorrhiza Bunge. The developed 

method was found to be greener, more efficient, and faster than conventional, 

environmentally harmful extraction methods such as methanol-based ultrasound-assisted 

extraction and heat reflux extraction. 

Although no extraction was performed, Bruinhorst et al.142 showed the disintegration of 

orange peel waste in deep eutectic solvents. Due to the viscosity decrease, the addition of 

water to DES lowered the amount of remaining solids and the disintegration times. This 

work offers new possibilities for the development of orange peel waste valorization 

routes and in the possible extraction of essential oils and pure terpenes, namely 

limonene, from these wastes using DES. 
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Table 1.4. Terpenes extracted from natural sources using DES.  

Terpene Natural Source DES components 

Linalool, α-terpineol, 
terpinyl acetate137 

Chamaecyparis 
obtusa leaves 

[Ch]Cl; ethylene glycol 

Astaxanthin138,139 Shrimp 
byproducts / 
Marine products 

[Ch]Cl; zinc chloride; tetramethyl ammonium 
chloride, methyl triphenyl phosphonium bromide; 
ethylene glycol; glycerol; urea; 1,2- butanediol; 2,3-
butanediol; 1,3-butanediol; 1,4- butanediol; 1,6-
hexanediol; methacrylic acid; phenol; oxalic acid; 
glycerin 

Ginsenosides140 White ginseng [Ch]Cl; glycerol; L-proline; xylitol; citric acid; adonitol; 
betaine; D-(+)-galactose; D-(−)-fructose; D-(+)-glucose; 
DL-malic acid; sucrose 

Tanshinones141 Salvia miltiorrhiza 
Bunge 

[Ch]Cl; ethyl glycol; glycerol; 1,2- butanediol; 1,3-
butanediol; 1,4- butanediol; 2,3-butanediol 

In another perspective, a hydrophobic DES composed of menthol and lauric acid was used 

to successfully extract indium from hydrochloric and oxalic acids aqueous solutions with 

low acidity (pH ≈ 3).143 Results provide an opportunity for valuable metallic compounds 

extraction from aqueous phases by means of cheap and ecofriendly solvents. 

In industry, there is an important application of DES involving natural compounds that 

must be mentioned: EutectysTM by Naturex. This new set of botanical extracts based on 

the patented extraction process Eutectigenesis,144 which consists of extracting active 

compounds of plants through the formation of natural DES. This breakthrough eco-

extraction technology offers a natural alternative to conventional solvents and makes it 

possible to capture the plant most precious metabolites.145 Due to the nature of the 

compounds used, the extracts main remain contaminated with DES after extraction. 

1.2. Scope and objectives 

With more than 55000 structures and a large range of applications in several industries, 

terpenes are nowadays a very important research topic. However, due to the high 

number of structures and their complexity, there are still a lot of knowledge to be 

gathered and questions to be answered. This thesis aims at contributing to deepen the 

understanding of terpenes concerning their applications; their extraction, production or 
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deterpenation; and the environmental problems associated with natural and 

anthropogenic emissions. To a better understanding of this work, a schematic 

representation is presented in Figure 1.8. 

Taking advantage of their very low solubility in water, terpenes arise as suitable 

candidates to prepare sustainable hydrophobic solvents to be used in novel processes 

and products. To the best of our knowledge, so far, only a few works reported 

hydrophobic eutectic mixtures and, among them, those that are liquid at room 

temperature are very limited. Moreover, the absence of phase diagrams is common, 

despite the important information they can provide on the range of compositions and 

temperatures for operating these systems. Chapter 2 deals with eutectic solvents and 

deep eutectic solvents composed by terpenes and monocarboxylic acids, and mixtures of 

terpenes (section 2.4). Phase diagrams are characterized and analyzed in the whole 

composition range, and the physicochemical properties densities and viscosities of the 

eutectic point explored. 

To be used in industrial applications, terpenes must first be extracted from their natural 

sources, most often as essential oils. In the fractionation of these essential oils for the 

production of pure terpenes or their deterpenation, noxious organic solvents are 

commonly used. In order to replace them and to develop more efficient processes, this 

work investigates the use of neoteric solvents: ionic liquids and deep eutectic solvents. 

Chapter 3 addresses the ability of the ILs to act as entrainers in separation processes 

(3.1.4) and the selection of ILs as separation agents of terpenes and terpenoids (3.1.5) – 

both using measurements of activity coefficients at infinite dilution and, for terpenes, the 

design of better ionic liquids based on COSMO-RS predictions. Based on the results of this 

work, the design of novel DES, composed of ammonium salts and monocarboxylic acids, 

are carried out and the DES solid-liquid phase diagrams characterized and modeled with 

PC-SAFT (3.2). Moreover, being choline chloride the most used salt used to prepare DES 

and since the compound decomposes upon melting, its melting properties are indirectly 

estimated from solid-liquid equilibria data (3.3). New eutectic systems formed by choline 

chloride and a fatty alcohol, or a fatty acid are then prepared and characterized (3.4).  
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As stated above, many plants release scented vapors formed mainly by monoterpenes. 

Labeled recently as volatile organic compounds, these turn into aerosols once in the 

atmosphere. Moreover, the emerging applications of terpenes are leading to the increase 

of their anthropogenic production and thus, their fate in the air, soil and aquatic 

compartments is concerning the environmentalists. Thus, in Chapter 4, a range of 

essential physicochemical properties of terpenes are accurately measured and modelled 

or calculated, contributing for the development of accurate models for the fate of 

terpenes in the environment, and to develop predictive theoretical models for these 

properties. When deriving the activity coefficients at infinite dilution, the lack of physical 

properties was noted, namely the critical properties – essential to many thermodynamic 

models. Accordingly, the first work presented in this chapter (4.1) responds to this using 

group-contribution methods and equations of state for the estimation of critical 

properties of terpenes, and the best set is recommended.  In another context, since ILs 

have been studied to extract and fractionate terpenes, their environmental fate, 

especially in water, is also important. Thus, the mutual solubilities, densities and 

viscosities for a range of ILs and water are measured and discussed (4.2.4, 4.2.5, 4.2.6) 

and the same experimental method is then applied to measure the solubility of terpenes 

in water. However, it proved to be inappropriate due to the formation of emulsions after 

stirring which cause sampling problems. A new technique is then developed and firstly 

applied to sparingly soluble N-(diethylaminothiocarbonyl)benzimido derivatives (4.3) 

providing accurate results and thus applied to determining the solubility of terpenes in 

water (4.4). Moreover, the measured properties, along with some others from literature, 

are used to draw a two-dimensional plot describing a hypothetical chemical space that 

allows a first screening of compounds with respect to their probable distribution in the 

environment once released. 

Finally, a conclusion is addressed and future work envisioned (Chapter 5).   
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Figure 1.8. Schematic illustration of the work developed on this thesis. 
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2.1. Introduction 

Nowadays the modern chemistry is strongly influenced by the concepts of green 

chemistry and sustainability. On this framework, there is a demand for new eco-friendly 

solvents able to dissolve a large spectrum of solutes. Currently, two of the most 

important focus of researchers are ionic liquids and, more recently, deep eutectic 

solvents (DES).88,146 

Most of the DES proposed so far were prepared through the combination of a salt or an 

ionic liquid, with nontoxic and biodegradable compounds such as carboxylic acids,147 

polyols, and sugars;148,149 being the vast majority hydrophilic. To the best of our 

knowledge, only a few works reported hydrophobic deep eutectic mixtures143,150–152 and, 

among them, the absence of phase diagrams is common, despite the important 

information that they can provide on the range of compositions and temperatures for 

operating these systems. Moreover, a thermodynamic evaluation of the physical 

properties of these systems is rarely presented.  

Due to their very low solubility in water and low price, terpenes mixtures arise as 

candidates to prepare sustainable and cheap hydrophobic solvents. Limonene is a 

promising candidate due to the similar physico chemical properties with organic solvents 

and has already been studied as an alternative to hydrocarbon based solvents in the 

recycling and reduction of polystyrene volume.48,49 Menthol, borneol, camphor and 

thymol are monoterpenoids used in different industries and their eutectic mixtures have 

been investigated for different applications. In the pharmaceutical field, mixtures of 

borneol/menthol,153–155 camphor/menthol156,157 and camphor/borneol158 were used as 

vehicles for transdermal delivery.159,160 Moreover mixtures of thymol with ibuprofen161 

and meloxicam;160 camphor with ibuprofen162 and lidocaine;163 and of menthol with 

ibuprofen,161,164,165 testosterone,166 lidocaine,167 and ubiquinone168 have been 

investigated as analgesic, antimicrobial and anti-inflammatory compounds.152 Recently, 

mixtures of menthol and ibuprofen, benzoic acid, acetylsalicylic acid or phenylacetic acid 

were proposed as therapeutic deep eutectic solvent used to design a controlled drug 
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delivery system using supercritical fluid technology,169 and as dissolution enhancers of 

active pharmaceutical ingredients.170  

In the extraction field, menthol-lauric acid mixture was proposed as a hydrophobic DES 

able to extract indium from aqueous solutions;143 and hydrophobic mixtures of menthol 

and naturally occurring acids, namely pyruvic acid, acetic acid, L-lactic acid, and lauric acid 

were applied as solvents in the extraction of caffeine, tryptophan, isophthalic acid, and 

vanillin.152 

The main goal of this work is to prepare eutectic solvents and DES composed by the 

terpenes menthol and thymol, and the monocarboxylic caprylic, capric, lauric, myristic, 

palmitic, stearic and oleic acids, and mixtures of terpenes (menthol+thymol, 

menthol+camphor, menthol+borneol, borneol+camphor, thymol+camphor, 

thymol+borneol). Phase diagrams of these mixtures are characterized and analyzed in the 

whole composition range, through differential scanning calorimetry (DSC). Moreover, the 

eutectic composition, and the physicochemical properties density and viscosity are 

measured in order to characterize these systems. 

2.2. Experimental 

2.2.1. Materials 

Information on the investigated compounds is summarized in Table 2.1 and Figure 2.1. 

The samples were used as received without further purification. The terpenes purity was 

evaluated by 1H, and 13C NMR spectra and GC-MS. 

 

 

 

 

 



 
Chapter 2 – Terpenes Applications 

33 
 

Table 2.1. Compounds description and their melting properties herewith values from 

literature.  

Compound Supplier CAS wt %a 
Tfus / K fusH / kJ·mol-1 

exp. lit. exp. lit. 

L(−)-menthol Acros 2216-51-5 99.7 315.68 ± 0.22 
315.9171 

316.7171 
12.89 ± 0.77 12.83171 

Thymol Sigma 89-83-8 ≥99.5 323.50 ± 0.34 
323.1171 

322.8171 
19.65 ± 0.42 17.54171 

(−)-borneol Fluka 464-45-9 ≥99 480.57 ± 0.06 480.3172 7.60 ± 0.13 7.3172 

(1R)-(+)-camphor Aldrich 464-49-3 98 450.42 ± 0.41 451.8173 5.28 ± 0.18 6.2173 

Caprylic acid Sigma 124-07-2 ≥99 288.20 ± 0.09 289.50174 19.80 ± 0.54 21.38174 

Capric acid Sigma 334-48-5 99-100 304.75 ± 0.05 305.48175 27.50 ± 1.29 27.23175 

Lauric acid Sigma 143-07-7 ≥99 317.48 ± 0.14 318.48175 37.83 ± 0.20 34.62175 

Myristic acid Sigma 544-63-8 ≈95 327.03 ± 0.04 328.93175 41.29 ± 0.38 43.95175 

Palmitic acid Aldrich 57-10-3 ≥98 336.84 ± 0.10 336.36176 51.02 ± 0.22 53.02176 

Stearic acid Merck n.a. ≥97 343.67 ± 0.07 344.04176 61.36 ± 0.42 61.1176 

Oleic acid Aldrich 112-80-1 90 284.45 ± 0.11 286.45174 32.45 ± 2.01 39.6174 

aDeclared by the supplier. n.a.: not available. 
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Oleic acid
 

Figure 2.1. Structures of the compounds investigated in this work. 
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2.2.2. Methods 

Differential scanning calorimetry 

Binary mixtures were prepared by adding the compounds into glass vessels at different 

molar ratios, on the full composition range, using an analytic balance XP205 (Mettler 

Toledo, precision = 2×10-4 g). The mixtures were melted under stirring on a heating plate 

until a homogeneous liquid mixture was obtained and then cooled at room temperature. 

Samples (2 – 5 mg) were hermetically sealed in aluminum pans and weighed in a micro 

analytical balance AD6 (PerkinElmer, USA, precision = 2×10-6 g).  

The melting points of pure components and their mixtures were determined using a DSC 

2920 calorimeter from TA Instruments working at atmospheric pressure and coupled to a 

cooling system. The equipment was previously calibrated with indium. The analytical 

procedure was based on a cooling ramp down to 208.15 K at 5 K·min-1, followed by a 

heating ramp up to 10 K above melting, at a 1 K·min-1. A constant nitrogen flow (purity ≥ 

0.99999 mass fraction) was used as purge gas in order to avoid condensation of water at 

low temperatures. Data were analyzed through the TA Universal Analysis software (TA 

Instruments) and the melting temperatures taken as the peak temperature. At least three 

cycles of cooling and heating were performed for pure compounds.  

Density and viscosity 

Densities and viscosities were measured at atmospheric pressure and in the temperature 

range from 278.15 to 373.15 K using an automated SVM 3000 Anton Paar rotational 

Stabinger viscometer–densimeter (temperature uncertainty: ± 0.02 K; absolute density 

uncertainty: ±5×10-4 g·cm-3; dynamic viscosity relative uncertainty: ± 0.35%).  

2.3. Theoretical approach 

Solid-liquid equilibria 

The solid-liquid equilibria of the mixtures investigated in this work was described using 

the thermodynamic expression:177 
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where i  is activity coefficient at a certain liquid mole fraction composition xi, T is the 

absolute temperature, Tfus and fusH are the melting temperature and enthalpy of fusion 

of the pure compound, respectively, R is the universal gas constant, and pfusC  is the 

difference between the heat capacity of compound i in the liquid and solid phases. The 

last term of the equation has a negligible value when compared to the second,178,179 and 

was not taken into account. 

Density 

From the linear dependency of the density with temperature, Equation 2.2, the isobaric 

thermal expansion coefficient, αp, which considers the volumetric changes with 

temperature, can be calculated according to Equation 2.3,  
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where ρ is the density, and A0 and A1 are fitting parameters. 

Viscosity 

The viscosity, that describes the internal resistance of a fluid to a shear stress, can be 

correlated through the Vogel–Tammann–Fulcher (VTF) model,180 expressed by,  
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where Aη, Bη, and Cη are adjustable parameters estimated from experimental data. 

Hereafter, the energy barrier (E) – that is the energy value that must be overcome in 

order for the fluids to move past each other181 – can be determined based on the 

viscosity dependence with temperature using the following equation,182 
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where η is viscosity, and R is the ideal gas constant. 

2.4. Tunable hydrophobic deep eutectic solvents and eutectic mixtures based on 

terpenes 

Mónia A. R. Martins, Paula V. A. Pontes, Liliana P. Silva, Guilherme J. Máximo, Eduardo A. 

C. Batista, Simão P. Pinho & João A. P. Coutinho, in preparation. 

2.4.1. Abstract 

Inspired by the lack of well-characterized hydrophobic deep eutectic mixtures, in this 

work we aim at the preparation and characterization of eutectic solvents and deep 

eutectic solvents composed by terpenes and monocarboxylic acids, and mixtures of 

terpenes. Their phase diagrams were analyzed in the whole composition range, through 

differential scanning calorimetry. Additionally, densities and viscosities at the eutectic 

compositions for mixtures of L(–)-menthol, or thymol, and monocarboxylic acids were 

measured. Results show that mixtures between thymol or menthol, and monocarboxylic 

acids, form normal eutectic solvents. The eutectic temperatures of these mixtures 

increase with the alkyl chain of the monocarboxylic acid. Moreover, the eutectic 

composition also varies depending on the monocarboxylic acid used. On the other hand, 

mixtures of terpenes L(–)-menthol, thymol, (R)-(+)-camphor and (–)-borneol form deep 

eutectic solvents. Mixtures of terpenes containing thymol were impossible to crystallize 

at very low temperatures (208.15 K), however visual results indicate the existence of glass 

transitions at lower temperatures. The new eutectic solvents composed by terpenes and 

monocarboxylic acids present densities lower than water and low viscosities (1.3 – 100.6 

mPa·s). Viscosity decreases with temperature increase, and with the decrease of the alkyl 

chain length of the monocarboxylic acids. In general mixtures involving thymol are less 

viscous and denser. 
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2.4.2. Results and discussion 

Solid-liquid phase diagrams 

The measured melting properties of the pure compounds used in this work are presented 

in Table 2.1, along with values from literature. Both sets are in good agreement, 

validating the measurements of the melting points presented in this work. Concerning 

melting enthalpies, only for oleic acid a significant difference to the values from literature 

was found, probably due to the low mass fraction purity of the compound used in this 

work.  

The solid-liquid experimental data for the 20 mixtures investigated are plotted in Figure 

2.2 together with the ideal solubility curves (eq. 2.1), and listed in Table S2.1 of Appendix 

2, along with the activity coefficients estimated from equation 2.1. As can be seen, 

mixtures of terpenes thymol or L(–)-menthol with monocarboxylic acids form normal 

eutectic mixtures, while mixtures of (R)-(+)-camphor + L(–)-menthol and (–)-borneol + L(–

)-menthol form deep eutectic solvents (Figure 2.2d). Due to limitations in the 

experimental device used, the phase diagrams of mixtures involving thymol were not 

completed; however, the measured data points indicate that these mixtures do not 

crystallize, forming glasses instead.135,183 The mixtures were placed in an ultra-freezer at 

193.15 K during approximately 2 hours, Figure 2.3, and their aspect was found to be glass-

like, corroborating the later statement. All mixtures with complete phase diagrams 

exhibited a phase behavior characterized by a single eutectic point, with the exception of 

(–)-borneol + (R)-(+)-camphor (Figure 2.2e), whose phase diagram indicates the existence 

of a solid solution in this organic system. 

Unlike the DES composed of mixtures of terpenes, the melting point depressions (and the 

deviations to the ideal behavior) of mixtures of thymol or L(–)-menthol with 

monocarboxylic acids are relatively small. Thus, less complex hydrogen-bonding networks 

are established in these systems, and only HB interactions between the hydroxyl group of 

the terpene and the hydroxyl group of the monocarboxylic acid are expected to occur (in 

opposition with DES where different types of HB interactions are formed). As shown in 

Figure 2.2a and b, these systems have only slight deviations to the ideal behavior mainly 
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in the terpene solubility curve, while the solubility curve of the acid presents an almost 

ideal behavior. In both groups (thymol or L(–)-menthol + monocarboxylic acids) a higher 

eutectic temperature was observed for the systems involving acids with higher melting 

temperatures. Additionally, the eutectic compositions are found to be richer in acid for 

the lower chain length acids due to their lower melting points. Ribeiro et al.152 reported 

286.99 K as the melting point of the mixture DL-menthol and lauric acid at 0.66:0.33 (mole 

fraction ratio), where in this work the value measured was 291.54 K at the composition 

ratio 0.69:0.31. 

All mixtures of terpenes present large deviations to ideal behavior, especially those 

involving thymol, and the mixture of camphor+borneol that seems to form a solid 

solution. Thus, to better analyze these systems modeling work will be carried out in 

future, and additional experimental measurements on the mixtures involving thymol 

must also be performed. Taking this into account, mixture of terpenes will not be 

considered in the second part of this work. 
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Figure 2.2. Solid-liquid phase diagrams of mixtures composed of monocarboxylic acids 

and terpenes. Symbols represent the experimental data measured in this work while the 

solid lines represent the ideal solubility curves. 
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Figure 2.3. System L(–)-menthol + Thymol after cooling down to 193.15 K. 

In order to evaluate thymol or L(–)-menthol + monocarboxylic acids mixtures as potential 

solvents, their mixtures at the experimental eutectic composition are characterized in the 

next sections. Density and viscosity are relevant solvent properties once they have an 

important impact on the mass transport phenomena, affecting solvents suitability for 

specific applications. 

Density 

Densities of the mixtures were determined at atmospheric pressure, in the temperature 

range from 278.15 to 373.15 K, and are reported in Figure 2.4 and Tables S2.2 and S2.3 of 

Appendix 2, together with the mole fraction of the monocarboxylic acid at the eutectic 

point. The densities of pure thymol and L(–)-menthol (see Chapter 4.1) are also displayed 

in Figure 2.4 for comparative purposes. 

In all mixtures studied the density decrease with the temperature increase. Mixtures 

involving thymol present higher densities than the ones involving L(–)-menthol and the 

range in which they vary is also broader. The density of pure thymol is higher than the 

densities involving mixtures with monocarboxylic acids, while the density of pure L(–)-

menthol is in between of those. 

Mixtures of monocarboxylic acids with L(–)-menthol follow a well-defined trend in which 

the density decrease with the increase of the chain of the fatty acid. Oleic acid, the only 

unsaturated fatty acid studied, is an exception and the density values of the mixture oleic 

acid + L(–)-menthol crosses the other mixtures studied. Concerning the mixtures with 
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thymol, the opposite trend is observed, i.e., the densities decrease with the decrease of 

the chain of the fatty acid with the exception of lauric and oleic acid. 
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Figure 2.4. Density of mixtures involving monocarboxylic acids and L(–)-menthol or 

thymol. 
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The experimental density data was further correlated according with the linear equation 

2.2 (parameters available in Table S2.4) and the isobaric thermal expansion coefficient, 

αp, derived from equation 2.3. No temperature dependence was assigned to this value.  

Figure 2.5 illustrates the results obtained as a function of the monocarboxylic acid. αp 

values are in general very similar, varying between -8.0×10-4 and -8.9×10-4. No well-

defined dependence of αp with the chain length of the monocarboxylic acid was 

observed. Oleic acid presents considerable superior values of αp in mixture with both 

terpenes studied. Moreover, caprylic and palmitic acids shows significant differences in 

mixture with the two terpenes. The isobaric thermal expansion coefficient is higher in 

thymol than in L(–)-menthol with the exception of caprylic acid. 
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Figure 2.5. Thermal expansion coefficient representation of mixtures of L(–)-menthol or 

thymol and monocarboxylic acids. 

Ribeiro et al.152 also reported the densities of the mixture DL-menthol and lauric acid, 

however not at the eutectic composition and thus no comparison can be addressed.  

Viscosity 

The new experimental viscosity data for the mixtures under study were also determined 

at atmospheric pressure, in the temperature range from 278.15 to 373.15 K and are 

depicted in Figure 2.6 and presented in Tables S2.5 and S2.6. 
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Figure 2.6. Viscosity of mixtures involving monocarboxylic acids and L(–)-menthol or 

thymol. 

Viscosity values decrease with increasing temperature and with the decrease of the 

monocarboxylic chain length. Mixtures with oleic acid present the higher viscosities for 
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both evaluated mixtures with terpenes. Contrary to what happen in density, the range of 

viscosities of mixtures of L(–)-menthol is broader than the range of viscosities of mixtures 

involving thymol, and these show lower viscosities. 

Experimental viscosity values were fitted using the VTF equation (eq. 2.4) and the 

estimated parameters are listed in Table S2.7 together with the energy barrier, E, 

calculated through equation 2.5 at 338.15 K. This temperature was chosen because is the 

lowest temperature at which all mixtures are liquid. The energy barrier as a function of 

the monocarboxylic acid used in the mixture is represented in Figure 2.7. 
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Figure 2.7. Energy barrier of the mixtures investigated at 338.15 K as a function of the 

monocarboxylic acid used. 

The energy barrier increases with the increase of the chain length of the fatty acid used in 

the mixture, and for mixtures with the same monocarboxylic acid, the ones with thymol 

present lower energy barrier values. Being E the energy barrier of a fluid to shear stress, 

the higher this value the more difficult it is for the molecules to move past each other. 

Thus, as caprylic acid is the smaller monocarboxylic acid used, it presents the smaller 

value of E. Oleic acid is an exception presenting smaller values than most of the other 

acids in both series. Due to the presence of a double bond, this compound has a superior 

ability of entanglement decreasing the energy barrier. 
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2.5. Conclusions 

Novel eutectic and deep eutectic mixtures were prepared from natural materials as 

monocarboxylic acids and terpenes. Mixtures involving monocarboxylic acids and 

terpenes were found to be normal eutectic mixture, while some mixtures of terpenes 

were considered deep eutectic solvents. Mixtures of terpenes containing thymol indicate 

the formation of glasses instead of crystallizing. Almost all systems presented a eutectic 

point below room temperature. The new eutectic solvents composed by terpenes and 

monocarboxylic acids present densities lower than water and low viscosities (1.3 – 100.6 

mPa·s) and in general mixtures involving thymol are less viscous and denser. 
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3.1. Ionic liquids as separation agents 

3.1.1. Introduction 

To fully exploit the ionic liquids potential as solvents in separation processes involving 

terpenes or other organic solutes, and to avoid a large number of experimental liquid-

liquid extractions, the ILs-solutes interactions must be known. The understanding of such 

interactions can be derived from physico-chemical measurements such as 

solubilities,184,185 solute activity coefficients at infinite dilution ( 

13 ),186–189 molecular 

simulation,190,191 spectroscopic techniques,192–194 vapor-liquid equilibrium (VLE) data195,196 

and liquid-liquid equilibrium (LLE) data,197,198 as well as from thermodynamic models such 

as equations of state199 or from prediction tools such like COSMO-RS.196,197 COSMO-RS 

(COnductor-like Screening MOdel for Real Solvents) is a quantum chemical approach, 

developed by Klamt and Eckert200 and used by several authors,201,202 for the a priori 

prediction of activity coefficients at infinite dilution and other thermophysical data using 

only structural information of the molecules. 

Moreover, to replace a conventional separation process by another that uses ILs, this 

must be more performant and cost-effective, what is, in general, difficult. Due to their 

cost, higher than for commodity solvents, the main challenges in applying ionic liquids are 

related to their recovery and reutilization. Therefore, a good knowledge of ILs physical-

chemical properties, and phase equilibria, is a fundamental step for the design and 

optimization of industrial processes.87 

Very useful for screening purposes, the activity coefficient of solutes at infinite dilution 

are related to the relative strength of intermolecular interaction with the ionic liquid, 

being the lowest values usually observed for polar substances such as alcohols, ketones 

and ethers; a result from the hydrogen bonding, the -, σ-, or other strong 

interactions.203 

13  can be determined from retention times using gas–liquid 

chromatography (GLC)204–206 or through the diluter technique.207,208 In the GLC method, 

the chromatographic column is coated with the ionic liquid and the solutes introduced 

with a carrier gas. This technique works for solutes that are retained by the IL more 
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strongly than by the carrier gas (usually helium).109 The solutes retention times are a 

measure of the strength of interaction, i.e., the activity coefficients at infinite dilution, of 

the solute in the ionic liquids. Solute-solvent interactions, selectivities and capacities can 

be derived from activity coefficients at infinite dilution.187,189  

Based on the concepts expressed above, the work reported on this section was carried 

out to investigate the application of activity coefficients at infinite dilution data to select 

ionic liquids able to promote the separation and purification of common organic solutes 

and terpenes. Ionic liquids with same cation and different anions were chosen to 

rationalize the effect of changes in the structures, evaluating polarity, as these anions 

present solvatochromic parameters reflecting very high hydrogen-bond acceptor ability.  

Experimental activity coefficients at infinite dilution values were determined by gas–liquid 

chromatography. The ILs density as a function of temperature was measured to calculate 

the gas-liquid partition coefficients, LK . Additionally, excess thermodynamic properties 

at infinite dilution were discussed and comparisons with literature addressed. Concerning 

terpenes, the new data here gathered were used to evaluate the ability of COSMO-RS in 

the description of the selectivities and capacities for these compounds, and the model 

was then applied to screen different IL cations and anions for terpenes and terpenoids 

separation. 

3.1.2. Experimental methods 

Activity coefficients at infinite dilution 

The activity coefficients at infinite dilution were determined using the GLC method.209–211 

Experiments were carried out using a PerkinElmer Clarus 500 gas chromatograph 

equipped with a heated on-column injector and a thermal conductivity detector (TCD). 

The injector and detector temperatures were kept at 473.15 K during the experiments, 

value above the boiling point of the solutes. Helium was used as the carrier gas and the 

exit gas flow rates were measured with one Agilent Precision Gas Flow Meter placed on 

the outside, after the detector, with an uncertainty of ± 0.1 cm3·min–1. The inlet pressure, 

Pi, was measured by a pressure gauge installed on the gas chromatograph with an 
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uncertainty of ± 0.1 kPa and the outlet pressure, P0, was measured using the same Agilent 

Precision Gas Flow Meter with an uncertainty of ± 0.07 kPa. The settled inlet pressure was 

10 kPa for alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes and ethers; 60 kPa for 

aromatic hydrocarbons, ketones, cyclic ethers, esters, butyraldeyde, acetonitrile, 

pyridine, 1-nitropropane and thiophene; and 80 kPa for alcohols, water and terpenes. The 

outlet pressure ranged between [97.84 – 101.08] kPa. Data were collected and processed 

using the TotalChrom Workstation software.  

Column packing containing between 45% to 55% IL stationary phase coated onto a 

100−120 mesh Chromosorb W/AW – DMCS solid support material (supplied by Sigma-

Aldrich), were prepared by the rotary evaporation technique. 212,213  High amounts of ILs 

were used to avoid possible residual adsorption effects of the solutes on the solid 

support. Each IL was dissolved in methanol and dispersed in Chromosorb. After coating, 

the mixture was shaken, and vacuum-assisted rotary evaporation was used to remove the 

methanol. Masses of the stationary phase and of the solid support were weighed with a 

precision of ± 1 × 10–4 g. Glass columns of 1 m length and 4 mm internal diameter were 

filled with the dry packing and placed in the chromatograph to equilibrate during 6 h, at 

388 K and 60 kPa. The stream of helium gas was passed through the stationary phase for 

the final drying. A large amount of column packing is used also to prevent the residual 

adsorption of solute onto the column packing, a very important feature, especially for 

alkanes. For each IL, at least two columns were prepared, with different IL packing’s 

percentage. The deviations between the 

13  in the different columns, for a given set of 

solutes, was always less than 3%. In general, the major contributions to the errors were 

from solutes with smaller retention times, as alkanes, cycloalkanes, ketones and some 

ethers. The repeatability of 

13  values from two columns were within ±1.5% for the vast 

majority of the solutes. 

In order to measure the retention times, solutes were injected in the column in volumes 

of (0.01 to 0.3) μL, to be at infinite dilution conditions. In each measurement, together 

with the organic solutes, air was also injected, as a non-retained component. Absolute 

values of retention times varied between 0.04 to 249.72 min corresponding to α-pinene 
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and carvacrol, respectively. Each experiment was repeated at least twice to establish 

repeatability. The temperature of the column was maintained constant to within ± 0.02 K. 

Measured retention times were generally reproducible within 0.01 – 0.03 min depending 

upon the temperature and the individual solute. Values of the dead time, tG, equivalent to 

the retention time of a completely non-retained component, in this case air, were also 

measured. Considering the solute retention times accuracy (0.001 min), and the standard 

deviations (in parentheses) related with: solute vapor pressures (< 5%), mass of the 

stationary phase (< 1 × 10–4 g), flow rate of helium (0.1 cm3·min−1), inlet (0.1 kPa) and 

outlet (0.07 kPa) pressures, and oven temperature (0.02 K); the uncertainties in 

13  were 

estimated by error propagation to be less than 3%. 

Densities 

Densities measurements of the pure ILs were carried out at atmospheric pressure and in 

the (293.15 to 373.15) K temperature range using an automated SVM3000 Anton Paar 

rotational Stabinger viscometer-densimeter. The equipment uses Peltier elements for fast 

and efficient thermostatization. The uncertainty of temperature is ± 0.02 K and the 

absolute uncertainty in density is ± 5·10-4 g·cm-3. Additional details related with the 

equipment can be found elsewhere.214  

3.1.3. Theoretical approach 

Activity coefficients at infinite dilution 

When an infinitesimal amount of solute sample is introduced into a GLC column with a 

non-volatile stationary phase it is possible to calculate the activity coefficient at infinite 

dilution for the solute (1) partitioning between the carrier gas (2) and the non-volatile 

liquid solvent (3) through the solute retention,205 according to the equation developed by 

Everett215 and Cruickshank et al.216: 
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where 3n  is the number of moles of solvent on the column packing, T is the GC oven 
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temperature where the column is placed, 
NV  is the net retention volume of the solute, 

*

1P  is the saturated vapor pressure of the solute, 11B  is the second virial coefficient of the 

pure solute, *

1V  is the molar volume of the solute, 
0P  is the outlet pressure, 3

2J  is a 

pressure correction term, 12B  is the mixed second virial coefficient of the solute and the 

carrier gas (helium), and 

1V  is the partial molar volume of the solute at infinite dilution in 

the solvent. The standard state for the solute is pure liquid at system temperature and 

zero pressure, and all temperature dependent properties are calculated at T. 

The pressure correction term 3

2J ,217 and the net retention volume of the solute, 
NV , are 

given by the following equations: 
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where Rt  and 
Gt  are the retention times for the solute and an unreturned gas (air), 

respectively, and 
0U  is the column outlet volumetric flow rate, corrected for the vapor 

pressure of water by, 
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where fT  is the temperature at the column outlet, 
WP  is the vapor pressure of water at 

fT , and U is the volumetric flow rate measured at the outlet of the column.  

COSMO-RS 

COSMO-RS is a well-stablished a priori method to predict thermophysical properties of 

fluids and liquid mixtures based on unimolecular quantum calculations. Theoretical 

details about this method can be found elsewhere.200,218,219 To predict the 

13  with 

COSMO-RS first it is necessary to generate distinct input files, for solutes and IL cations 
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and anions, using BP functional B88-p86 with a triple-ξ valence polarized basis set (TZVP) 

and the resolution of identity standard (RI) approximation using TURBOMOLE 6.1 

program package.220 The following calculation consists mainly of statistical 

thermodynamics and were performed using COSMOtherm, which provides an efficient 

and flexible implementation of the COSMO-RS method. The parameterization adopted 

was BP_TZVP_C30_1401 (COSMOconfX v3.0, COSMOlogic GmbH & Co KG. Leverkusen, 

Germany). It contains intrinsic parameters of COSMOtherm and element specific 

parameters, required for the calculation of physiochemical data. In all calculation, ILs 

have been described by an equimolar mixture of the cation and the anion, that contribute 

σ-profile as two different compounds, allowing the study of specific contribution of each 

counter ion. As consequence, it is necessary to scale the calculated values with the factor 

0.5.219 Moreover, the lowest energy conformations of all the species involved were used 

in the COSMO-RS calculations. 

Thermodynamic functions at infinite dilution 

The activity coefficients at infinite dilution were determined as a function of temperature, 

allowing the determination of some important partial molar excess thermodynamic 

functions, namely the Gibbs free energy (
,E

mG ), enthalpy (
,E

mH ) and entropy (
,E

mS ) that 

will help to explore and rationalize the collected experimental information. Since the 

experimental activity coefficients were measured at infinite dilution, the partial molar 

excess properties were estimated using the following equations, 

)ln( 13

, 

 RTG
E

m          (3.5) 

xp

E

m

T
RH

,

13
,

)/1ln(

ln




















 

        (3.6) 

T

GH
S

E

m

E

mE

m


 


,,
,

         (3.7) 

where subscripts p and x indicate isobaric condition and constant composition, 

respectively.  
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Gas-liquid partition coefficients 

To use volatile solvents for technical purposes, their characterization is required. The 

partition coefficients are many times used for this purpose, since the solubility of selected 

substances can be predicted from them. These coefficients are also highly important in 

chemical engineering and environmental modelling, where the distribution of individual 

compounds between different organic phases and water or air, is of importance.  

Aiming at the determination of the order of elution from columns, partition coefficients 

are extracted from the retention data and many numbers have been published as a by-

product of chromatographic separations, where their determination usually constitutes 

part of the procedure. In this work, the gas–liquid partition coefficient )/( 11

GL

L ccK   for 

a solute partitioning between the carrier gas and the ILs was calculated from the solute 

retention according to the following equation,221 
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
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      (3.8) 

in which 
3  is the density of the IL and 

3m  is the mass of the IL.  

Selectivity and capacity 

The selectivity between the solutes i and j, 

ijS  and the capacity 

jk  of the separation 

process are defined as follow:207 

  jiijS  /           (3.9) 

  jjk /1           (3.10) 

where j is the solute that presents the smaller activity coefficients at infinite dilution in 

the solvent (in this work, the ILs). 
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3.1.4. Activity coefficients at infinite dilution of organic solutes and water on 

polar imidazolium-based ionic liquids 

Mónia A. R. Martins, João A. P. Coutinho, Simão P. Pinho & Urszula Domańska, Journal of 

Chemical Thermodynamics 91, 194–203 (2015), DOI: 10.1016/j.jct.2015.07.042 

3.1.4.1. Abstract 

The separation of aromatic hydrocarbons from C4–C10 aliphatic hydrocarbon mixtures is 

challenging since these hydrocarbons have boiling points in a close range, and several 

combinations form azeotropes. The discussion on the desulphurization, or 

denitrogenation of fuels is also important nowadays. Thus, the activity coefficients at 

infinite dilution, 

13 , of 55 organic solutes and water in three ionic liquids with the 

common cation 1-butyl-3-methylimidazolium and the polar anions Cl-, [CH3SO3]- and 

[(CH3)2PO4]-, were determined by gas-liquid chromatography at four temperatures in the 

range (358.15 to 388.15) K for alcohols and water, and (398.15 to 428.15) K for the other 

organic solutes including alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, ketones, 

ethers, cyclic ethers, aromatic hydrocarbons, esters, butyraldeyde, acetonitrile, pyridine, 

1-nitropropane and thiophene. From the experimental 

13  values, the partial molar 

excess Gibbs free energy, 
,E

mG , enthalpy 
,E

mH , and entropy 
,E

mS , at infinite dilution, 

were estimated to provide more information about the interactions between the solutes 

and the ILs. Moreover, densities were measured and gas-liquid partition coefficients ( LK ) 

calculated. Selectivities at infinite dilution for some separation problems such as 

octane/benzene, cyclohexane/benzene and cyclohexane/thiophene were calculated using 

the measured 

13 , and compared with literature values for N-methyl-2-pyrrolidinone 

(NMP), sulfolane, and other ionic liquids with a common cation or anion of the ILs here 

studied. From the obtained infinite dilution selectivities and capacities, it can be 

concluded that the ILs studied may replace conventional entrainers applied for the 

separation processes of aliphatic/aromatic hydrocarbons.  
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3.1.4.2. Chemicals 

The chemical structure and some of the properties of the studied ILs are presented in 

Table 3.1. Organic solutes source and purity can be found in Table S3.1 of Appendix 3. To 

reduce the water and volatile compounds individual samples of ILs were dried under 

vacuum at 0.1 Pa and constant stirring at 353 K, for a minimum of 48 h. After, the purity 

of each ionic liquid was further checked by 1H, and 13C, NMR spectra. Additional drying 

was applied keeping the ILs during 72 hours at 300 K under reduced pressure to remove 

volatile impurities and traces of water. The water content of the dried ILs was determined 

using the Karl Fischer titration technique (method TitroLine KF). Samples were dissolved 

in dry methanol and titrated with a step of 2.5 µL. The analysis showed that the water 

content was found to be below 300 ppm for all samples. The organic solutes were used 

without further purification once GLC technique separates impurities in the column. The 

water used in the measurements was distilled and filtered, presenting a final mass 

fraction purity higher than 0.999, being the analysis performed through density 

measurement.  

Table 3.1. Studied ionic liquids: name, structure, abbreviation, source, molar mass (M), 

melting point (TM) and purity. 

Chemical Formula 
Chemical Name Supplier 

M 

(g·mol-1) 
TM (K) 

Purity 

(mass.%) Cation Anion 

 

Cl- 
1-butyl-3-methylimidazolium 

chloride, [C4mim]Cl 
IoLiTec 174.67 341.95a 99 

 

1-butyl-3-methylimidazolium 

methanesulfonate, 

[C4mim][CH3SO3] 

IoLiTec 234.32 
≈ 

353.15b 
99 

 

1-butyl-3-methylimidazolium 

dimethyl phosphate, 

[C4mim][(CH3)2PO4] 

IoLiTec 264.26 n.a.c 98 

aRef.222; bRef.223; cNot available. 
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3.1.4.3. Results and discussion 

The average values of the activity coefficients at infinite dilution for several organic 

solutes, and water, in the studied ILs are presented in Table 3.2. The temperature 

dependent properties required for the 

13  calculations were obtained using equations 

and constants taken from the literature.224 The values of 12B  were calculated using the 

Tsonopolous225 correlation, applying the information also found in Poling and 

Prausnitz.224 The measurements were carried out in the temperature range between 

(358.15 and 388.15) K, with intervals of 10 K. The lower temperature value was chosen 

regarding the ILs melting points, namely of [C4mim]Cl and [C4mim][CH3SO3], to avoid their 

solidification inside the column. Alcohols and water were measured between (398.15 and 

428.15) K due to their usual longer retention times. In order to explore the data, a 

comparison at a fixed temperature, 358.15 K, is presented in Figure 3.1 (for alcohols and 

water the values are presented at 398.15 K). 
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Figure 3.1. Activity coefficients at infinite dilution of several solutes in ILs, at 398.15 K for 

alcohols and water, and 358.15 K for the other organic compounds. , [C4mim]Cl; , 

[C4mim][CH3SO3]; Δ, [C4mim][(CH3)2PO4]. The dotted line represents the number of 

carbons in the solutes structure, N. Symbols with the same color correspond to solutes of 

the same chemical family. 
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Table 3.2. Activity coefficients at infinite dilution of organic compounds and water in ILs, at different temperatures.a 

Organic Solutes [C4mim]Clb [C4mim][CH3SO3]c [C4mim][(CH3)2PO4]d 

T / K 358.15 368.15 378.15 388.15 358.15 368.15 378.15 388.15 358.15 368.15 378.15 388.15 

Octane 330.66 302.07 268.50 258.36 170.84 164.58 159.96 155.32 47.90 46.22 44.57 43.35 

Nonane 475.82 432.95 393.64 375.50 250.53 239.46 229.20 223.29 67.86 63.95 61.45 59.15 

Decane 704.04 637.87 579.72 560.12 371.49 351.76 340.15 324.31 93.39 88.52 84.67 81.58 

Cyclopentane 38.69 36.24 33.50 31.83 23.85 23.70 23.50 23.26 8.76 8.59 8.41 8.33 

Cyclohexane 54.69 50.90 47.36 44.92 35.18 34.49 33.90 33.81 12.29 11.88 11.64 11.45 

Methylcyclohexane 84.25 79.00 73.02 69.85 52.79 51.70 50.88 50.40 17.38 16.78 16.40 16.07 

Cycloheptane 62.67 58.82 55.41 53.57 44.21 43.33 42.59 42.25 15.14 14.64 14.26 14.00 

Cyclooctane 79.55 75.40 71.10 68.62 57.11 55.66 54.42 53.60 18.77 18.24 17.72 17.33 

Hex-1-ene 61.71 57.87 53.94 51.97 39.66 39.99 40.01 40.26 13.89 13.71 13.40 13.20 

Hept-1-ene 88.90 83.76 79.33 77.17 59.23 58.91 58.68 58.03 19.61 19.38 19.15 18.91 

Oct-1-ene 141.84 134.44 125.75 122.50 88.06 86.76 86.48 85.64 27.49 26.95 26.46 26.22 

Dec-1-ene 322.82 305.86 284.63 277.46 192.88 187.08 181.89 179.06 53.50 52.23 50.44 49.24 

Cyclohexene 22.84 22.30 21.48 21.31 18.44 18.59 18.73 19.00 7.15 7.13 7.11 7.11 

Pent-1-yne 4.89 5.25 5.51 5.78 5.46 5.84 6.26 6.67 2.18 2.32 2.46 2.60 

Hex-1-yne 7.33 7.85 8.19 8.61 8.02 8.52 9.06 9.64 3.01 3.22 3.39 3.57 

Hept-1-yne 11.63 12.30 12.74 13.33 11.97 12.64 13.34 14.11 4.21 4.48 4.70 4.93 

Oct-1-yne 18.32 19.20 19.73 20.45 17.77 18.58 19.47 20.39 6.04 6.22 6.48 6.74 

Acetone 3.05 3.12 3.17 3.27 2.06 2.12 2.22 2.30 1.92 1.96 2.02 2.10 

Pentan-2-one 7.59 7.71 7.78 8.01 4.50 4.59 4.76 4.91 3.63 3.70 3.78 3.94 

Pentan-3-one 7.60 7.72 7.78 7.97 4.68 4.79 4.88 5.09 3.73 3.81 3.89 4.04 

MTBE 24.61 23.80 23.02 22.85 16.97 17.39 17.90 18.55 7.17 7.35 7.48 7.66 

TAME 33.96 33.14 32.18 32.06 23.82 24.18 24.67 25.26 9.50 9.61 9.66 9.75 

ETBE 64.78 59.34 55.67 53.32 35.29 35.59 36.10 36.62 12.75 12.78 12.89 12.95 

Diethyl ether 19.27 18.93 18.36 18.39 14.69 14.91 14.98 15.32 6.21 6.30 6.39 6.48 
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Di-n-propyl ether 57.40 55.26 52.78 51.93 38.11 38.73 38.94 39.41 13.95 13.73 13.55 13.42 

Di-iso-propyl ether 78.53 71.67 63.98 59.12 40.59 - 40.79 41.19 14.39 14.27 14.22 14.12 

Di-n-butyl ether 130.04 124.82 118.31 116.17 83.87 82.13 81.55 80.53 26.78 26.23 25.90 25.52 

THF 5.66 5.67 5.67 5.70 3.41 3.48 3.59 3.72 2.79 2.84 2.89 3.02 

1,4-Dioxane 3.47 3.55 3.65 3.74 2.33 2.41 2.49 2.62 2.13 2.19 2.25 2.37 

Benzene 4.51 4.59 4.72 4.82 3.08 3.19 3.29 3.46 2.33 2.41 2.49 2.63 

Toluene 7.78 7.91 8.09 8.36 5.32 5.45 5.68 5.84 3.86 3.99 4.09 4.29 

Ethylbenzene 13.15 13.25 13.51 13.73 8.45 8.61 8.76 9.05 5.73 5.87 5.97 6.26 

o-Xylene 11.55 11.72 11.93 12.28 7.64 7.79 7.99 8.21 5.54 5.70 5.79 6.03 

m-Xylene 14.31 14.50 14.69 15.02 9.27 9.43 9.57 9.92 6.49 6.60 6.73 7.00 

p-Xylene 13.63 13.72 14.00 14.29 9.03 9.20 9.37 9.71 6.31 6.44 6.59 6.86 

Styrene 4.96 5.18 5.42 5.73 3.79 3.96 4.20 4.40 2.79 2.93 3.06 3.26 

a-Methylstyrene 9.01 9.33 9.83 10.34 6.43 6.71 6.96 7.41 4.57 4.77 4.98 5.29 

Methyl acetate 4.82 4.89 5.01 5.09 2.94 3.03 3.14 3.33 2.58 2.65 2.73 2.85 

Ethyl acetate 9.02 9.06 9.10 9.16 4.76 4.88 5.00 5.28 3.81 3.91 4.01 4.18 

Methyl propanoate 8.00 8.09 8.20 8.31 4.43 4.56 4.68 4.90 3.56 3.65 3.76 3.93 

Methyl butanoate 12.30 12.43 12.57 12.69 6.79 7.21 7.39 7.84 4.93 5.04 5.17 5.39 

Vinyl acetate 5.66 5.74 5.86 6.05 3.47 3.58 3.76 3.92 2.79 2.88 2.99 3.13 

Butyraldehyde 5.24 5.31 5.43 5.54 3.33 3.44 3.58 3.74 2.66 2.74 2.82 2.97 

Acetonitrile 1.12 1.16 1.21 1.28 0.99 1.03 1.08 1.12 0.88 0.92 0.95 1.00 

Pyridine 1.47 1.55 1.64 1.78 10.93 10.80 10.61 10.47 1.18 1.23 1.28 1.35 

1-Nitropropane 2.51 2.61 2.69 2.80 1.89 1.96 2.02 2.13 1.50 1.56 1.62 1.72 

Thiophene 2.04 2.16 2.27 2.41 1.72 1.81 1.94 2.05 1.24 1.35 1.43 1.53 

T / K 398.15 408.15 418.15 428.15 398.15 408.15 418.15 428.15 398.15 408.15 418.15 428.15 

Methanol 0.156 0.166 0.176 0.191 0.325 0.340 0.357 0.373 0.097 0.105 0.115 0.125 

Ethanol 0.297 0.313 0.332 0.353 0.533 0.553 0.576 0.599 0.160 0.173 0.189 0.205 

Propan-1-ol 0.408 0.434 0.464 0.501 0.711 0.744 0.783 0.823 0.197 0.218 0.239 0.264 
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Propan-2-ol 0.542 0.577 0.619 0.668 0.835 0.878 0.928 0.976 0.256 0.282 0.311 0.344 

2-Methyl-propan-1-ol 0.540 0.576 0.615 0.665 0.893 0.938 0.991 1.042 0.230 0.254 0.281 0.313 

Butan-1-ol 0.558 0.594 0.635 0.680 0.937 0.984 1.024 1.071 0.247 0.271 0.299 0.324 

Butan-2-ol 0.749 0.804 0.865 0.931 1.114 1.181 1.255 1.333 0.327 0.365 0.406 0.451 

tert-Butanol 0.987 1.067 1.159 1.269 1.285 1.385 1.483 1.594 0.419 0.471 0.527 0.592 

Water 0.070 0.077 0.085 0.094 0.200 0.214 0.228 0.239 0.073 0.081 0.092 0.101 

aStandard uncertainties are: u(


13 ) = 3 % and u(T) = 0.02 K. bPacking: 52.1 %, n3 = 17.02 mmol. cPacking: 49.8 %, n3 = 11.48 mmol. dPacking: 47.3 %, n3 = 

9.39 mmol. 
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The higher the interactions between the solutes and the ionic liquids, the higher the 

retention times measured, and the lower the activity coefficients at infinite dilution.226,227 

A global analysis of Figure 3.1 shows that water presents the lower 

13  values indicating 

the highest interaction with the ionic liquids, what is expected since the ionic liquids were 

chosen with highly polar anions. Other polar solutes such as alcohols, thiophene, 1-

nitropopane, pyridine and acetonitrile present also low 

13  values. On the opposite, 

alkanes and alkenes, the less polar solvents, present the weakest interactions with the ILs 

studied. Moreover, analyzing Figure 3.1 it is possible to observe that the 

13  increases 

with the chain length for the alkanes, cycloalkanes, alkenes, alkynes, ketones, ethers, 

aromatic hydrocarbons (increasing radicals) and alcohols. The experimental values 

obtained in this work for aliphatic and aromatic hydrocarbons are much larger than those 

observed in other ILs with the same cation.204,228 However, if compared with ILs with the 

same anion  the 

13  are similar,211 indicating a dominant role of the anion on these 

interactions. The 

13  value for acetonitrile at T = 358.15 K is considerably low in all ILs 

studied suggesting the high potential for the extraction of acetonitrile from aliphatic 

hydrocarbons. In [C4mim][(CH3)2PO4], also pyridine (1.18), 1-nitropropane (1.50) and 

thiophene (1.24) have low 

13  values at T = 358.15 K, suggesting a high selectivity for the 

extraction of nitrogen and sulfur-containing compounds from alkanes.  

The temperature dependence of 

13  is presented in the Appendix 3 (Figure S3.1). 

Increasing the temperature, a decrease in the natural logarithm of 

13  with the reciprocal 

temperature is observed for alkanes, cycloalkanes, alkenes, cycloalkenes, and few ethers. 

The inverse dependence is observed for all the other solutes, what will be hereafter taken 

into consideration. 

According to Cláudio et al.,229 the polarity of the ILs studied follow the trend: [(CH3)2PO4]- 

> Cl- > [CH3SO3]-, in conformity with the relative values of 

13  observed for water and 

alcohols, the most polar solutes studied. Pyridine that is an aromatic ring with one 

methine group (=CH-) replaced by a nitrogen atom, also show the same behavior because 
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of its high hydrogen bonding ability. The other organic solutes studied follow the trend: 

[(CH3)2PO4]- > [CH3SO3]- > Cl-.  

Comparison with literature data 

Similar studies have been published on solute activity coefficients at infinite dilution in 

ILs. Figure 3.2 shows the experimental 

13  of several solutes in the ILs [C4mim]Cl and 

[C4mim][CH3SO3], and the respective literature values. To the best of our knowledge, no 

data are available for the IL [C4mim][(CH3)2PO4]. Analyzing Figure 3.2 in general, results 

are very consistent. The solutes THF and 1,4-dioxane are clear exception; THF in both ILs 

and 1,4-dioxane in [C4mim][CH3SO3], with more significant deviation to the literature 

values.230,231 Additionally, our experimental data shows an increase in 

13  of toluene in 

[C4mim][CH3SO3], with increasing temperature, while the data reported by Stark et al.231 

shows the opposite trend. All the others aromatic hydrocarbons studied in this work, such 

as benzene, ethylbenzene, p-, m-, o-xylene, present the same slope observed for toluene. 

Moreover, for further comparison purposes data from literature involving ILs presenting 

the same cation, or one of the anions, were selected. Some standard organic solutes and 

the temperature of 358.15 K were chosen and are presented in Table 3.3. 
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Figure 3.2. Comparison of the experimental activity coefficients at infinite dilution with 

values from literature for two ionic liquids: (a) [C4mim]Cl,  THF,  ethanol,  water 

(empty symbols correspond to literature data230); (b) [C4mim][CH3SO3],  decane,  dec-

1-ene,  THF,  1,4-dioxane,  toluene,  methanol,  butan-1-ol (empty symbols 

correspond to literature data231). 
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Table 3.3. Comparison between the activity coefficients at infinite dilution with values 

from literature at 358.15 K. 

Ionic Liquids Octane Cyclohexane Benzene Ethanol Water Reference 

[C4mim]Cl 330.7 54.7 4.5 0.22a 0.04 a This Work 

[C8mim]Cl 17.1a 7.8a 1.3a - - 206 

[C2mim][CH3SO3] 275.3a 45.5a 4.3 0.47 0.09 211 

[C2mim][CH3SO3] 356.7a 50.5a 4.1a 0.36a - 232 

[C4mim][CH3SO3] 170.8 35.2 3.1 0.44a 0.15a                              This Work 

[C1mim][(CH3)2PO4] 246.1a 39.6a 3.8a 0.13a 0.05a 207 

[C4mim][(CH3)2PO4] 47.9 12.3 2.3 0.10a 0.04a This Work 

[C2mim][(CH3CH2)2PO4] 83.4a 24.6a 2.3a - - 233 

[C4mim][(CH3(CH2)3)2PO4] 6.2b 2.6b 0.9b - - 234 

aExtrapolated value; bInterpolated value. 

Regarding the anion chloride, increasing the alkyl chain length on the cation decreases 

considerably the 

13  with non-polar solvents. The same is observed for the non-polar 

solvents on the other anions studied suggesting that the increase on the cation alkyl chain 

enhances the dispersive interactions with the non-polar solvents. In comparison the 

effect on the polar compounds such as ethanol and water seems to be negligible, within 

the experimental uncertainty of the data, suggesting that for these compounds the 

dominant interactions are related to the anions and no longer with the cation. 

Effect of the anion 

As mentioned before, the anion has a large influence on the activity coefficients at infinite 

dilution. To better understand this effect, some organic solutes with different 

characteristics were investigated. The ion–dipole interactions were studied using 

acetonitrile, to clarify the IL ability to solvate dipolar molecules. Octane and toluene 

allowed the investigation of σ-electron and π-electron dispersion forces, respectively. The 

hydrogen bond acceptor and donor properties of the ILs were investigated with propan-1-

ol (a hydrogen bond donor) and 1,4-dioxane (a hydrogen bond acceptor), respectively. 

The influence of the anion on the solvation properties of ILs was investigated with the 
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three ILs studied in this work, [C4mim]Cl, [C4mim][CH3SO3] and [C4mim][(CH3)2PO4]. The 

effect of the nature of the anion on 

13  of the organic solutes chosen is displayed in 

Figure 3.3. 

0.1

1

10

100

1000

Octane 1,4-Dioxane Toluene Acetonitrile Propan-1-ol

γ 1
3
∞

[C₄mim]Cl

[C₄mim][CH₃SO₃]

[C₄mim][(CH₃)₂PO₄]

 

Figure 3.3. Activity coefficients at infinite dilution of selected solutes in ILs, at 398.15 K for 

propan-1-ol, and 358.15 K for the other organic compounds. 

As can be seen, for acetonitrile, all 

13  are very close, however chloride gives the larger 

value, followed by the anions methanesulfonate and dimethyl phosphate, where the 

dipole is better accommodated. Concerning 1,4-dioxane and propan-1-ol, the hydrogen 

bond acceptor and donor, it is possible to see that the choice of the anion has an 

important effect in the 

13  values. The 

13  of propan-1-ol decreases in the order of 

[CH3SO3]−  > Cl− > [(CH3)2PO4]− by a factor close to 2. This sequence is in complete 

agreement to the rank based on the solvatochromic β parameter235 for the description of 

the hydrogen bonding accepting ability of each anion. The 

13  of 1,4-dioxane decreases 

according to Cl− > [CH3SO3]−  > [(CH3)2PO4]−. This happens because this solute can only 

interact with the cation ring’s hydrogen atoms if they are not engaged in strong 

interactions with basic anions, and hence the activity coefficients are higher in the 



 
Chapter 3 – Extraction, Production and Deterpenation 

66 
 

chloride-based IL. When comparing between the five solutes, the lower values of 

13  in 

propan-1-ol attest the hydrogen-bond acceptor character of the anions chosen. 

For the π and σ-electron dispersion forces the choice of the anion also plays a significant 

role. The lowest 

13  of toluene, and hence the highest degree of interaction, is found for 

the [(CH3)2PO4]-, followed by [CH3SO3]-  and Cl-. For octane the same trend was observed 

however, this solute shows higher 

13  values and a higher variation between the different 

ionic liquids. 

Thermodynamic functions at infinite dilution 

The partial excess molar properties such as Gibbs energy, enthalpy, and entropy, all at 

infinite dilution, for the organic solutes and water in the studied ILs at the reference 

temperatures T = 358.15 K and T = 398.15 (alcohols and water), were evaluated to 

provide more information about the interactions between the solutes and the ILs. The 

thermodynamic functions at infinite dilution, calculated through the 

13  values are listed 

in Appendix 3 (Table S3.2) at the reference temperatures. 

The 
,E

mH , calculated through the temperature dependence of 

13  (equation 3.6), exhibit 

negative values for almost all solutes, expressing the favorable interactions between the 

solute and the solvent, except for alkanes, cycloalkanes, alkenes, cycloalkenes and a few 

ethers, all apolar compounds, and the ILs. The 
,E

mG  is positive for most of the solutes, 

apart from alcohols, water, and acetonitrile (for [(CH3)2PO4]- and [CH3SO3]-), indicating 

strong interactions solute-IL for these polar solutes. The largest positive values of 
,E

mG  

are exhibited by aliphatic hydrocarbons, showing again the weak aliphatic hydrocarbon-IL 

interactions. Lastly, 
,E

mS  are < 0 for all solutes studied, indicating their reorganization 

inside the ionic liquid phase, and often representing the dominance of entropic effect 

over the enthalpic one.  

To further understand the molecular level interactions in these systems, Figure 3.4 relates 



13  and partial molar excess properties, where three different areas can be distinguished. 
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The region (II) corresponds to the ILs−organic solutes systems with positive deviations to 

Raoult’s law, 

13  > 1 and, to some organic solutes also 
,E

mG  and 
,E

mH  are positive. In this 

region, mainly constituted by non-polar solutes such as alkanes, cycloalkenes, alkenes and 

a few ethers, no particular affinity between ILs and organic solutes molecules is expected. 

This low interaction between organic solutes and ILs can lead to the formation of 

immiscible solutions and consequently, phase separation. Thus, they may find themselves 

as potential solvents in liquid−liquid extraction, as will be shown below. 

The region (III) corresponds to the ILs−organic solutes systems with negative deviations 

from Raoult’s law ( 

13  < 1) that is related to a spontaneous dissolution of organic solutes 

in the ILs. From all the solutes studied, only alcohols and water lie in this region, due to 

their strong polarity. All the partial excess molar properties studied are negative, 

revealing that the hydrogen bonding between organic solutes and the IL anions is much 

stronger than hydrogen bonding between solute−solute or IL−IL molecules, leading to an 

exothermic mixing behavior of these systems. As expected, systems with IL composed by 

the anion with stronger hydrogen basicity, [(CH3)2PO4]-, exhibits lower values of 
,E

mH . 

Region (IV) presents 

13  > 1, 
,E

mS  and 
,E

mH  < 0 kJ·mol−1. This is the region where most 

organic solutes fall. For some solutes 
,E

mG  is close to 0, while the enthalpic and entropic 

contributions are both negative, meaning that they cancel each other. As can be observed 

in Figure 3.4, when region (IV) is compared to region (II) the dominance of the entropic 

term over the enthalpic is evident. It is also relevant to notice that that when the 

interaction between the solute and IL are strong (regions I or III), the enthalpic effect is 

always dominant. 
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Figure 3.4. Partial molar excess energies as a function of the activity coefficients at 

infinite dilution of the organic solutes studied in the ILs [C4mim]Cl, [C4mim][CH3SO3] and 

[C4mim][(CH3)2PO4], at 358.15 and 398.15 K. The line represents 
,E

mG and the symbols 

correspond to: , 
,E

mH  and Δ, Tref
,E

mS .  
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Gas-liquid partition coefficients 

To calculate the gas–liquid partition coefficients, LK , the ILs densities were measured 

over the temperature range from (293.15 to 373.15) K and the results are listed in Table 

3.4. Density data were previously reported and are represented in Figure 3.5, along with 

the experimental values from this work. As can be seen for the ILs [C4mim][(CH3)2PO4] and 

[C4mim][CH3SO3] the experimental values are in good agreement with literature, with a 

maximum relative deviation of 0.11 and 0.08%, respectively. Concerning [C4mim]Cl more 

data sets are available, which show some inconsistencies within each other. Our data 

show very good agreement to those published by Machida et al.236 and He et al.,237 

presenting larger deviations to others.238–240 However, taking in account the IL purity and 

water content, which sometimes are not given, discrepancies are not that significant, 

being the maximum relative deviation of 1.26% concerning the data of Kavitha et al.,239 

for the IL [C4mim]Cl at 313.15 K. 

Table 3.4. Density of the pure ILs studied as a function of temperature at 0.1 MPa. 

 ρ / g·cm-3 a 

T / K [C4mim]Cl [C4mim][CH3SO3] [C4mim][(CH3)2PO4] 

293.15   1.1665 
298.15   1.1632 
303.15   1.1594 
308.15 1.0794  1.1562 
313.15 1.0766  1.1527 
318.15 1.0737  1.1495 
323.15 1.0709  1.1461 
328.15 1.0681  1.1430 
333.15 1.0652 1.1506 1.1397 
338.15 1.0624 1.1474 1.1365 
343.15 1.0596 1.1443 1.1333 
348.15 1.0569 1.1412 1.1301 
353.15 1.0543 1.1379 1.1269 
358.15 1.0517 1.1349 1.1237 
363.15 1.0490 1.1319 1.1206 
368.15 1.0464 1.1288 1.1174 
373.15 1.0439 1.1258  

aStandard uncertainties, u, are u(ρ) = ± 5·10-4 g·cm-3,  u(T) = 0.02 K and ur(p) = 0.05. 
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Figure 3.5. Comparison of density experimental values with literature data. Symbols:  

[C4mim]Cl, this work;   [C4mim]Cl236;  [C4mim]Cl237;  [C4mim]Cl238;  [C4mim]Cl239; 

 [C4mim]Cl240;  [C4mim][CH3SO3], this work;  [C4mim][CH3SO3]223;   

[C4mim][(CH3)2PO4], this work;   [C4mim][(CH3)2PO4]235. 

0

2

4

6

8

10

12

1

10

100

1000

10000

O
ct

an
e

N
o

n
a

n
e

D
e

ca
n

e

C
yc

lo
p

e
n

ta
n

e

C
yc

lo
h

e
xa

n
e

M
et

h
yl

cy
cl

o
h

ex
a

n
e

C
yc

lo
h

e
p

ta
n

e

C
yc

lo
o

ct
an

e

H
e

x-
1-

e
n

e

H
e

p
t-

1-
e

n
e

O
ct

-1
-e

n
e

D
e

c-
1-

e
n

e

C
yc

lo
h

e
xe

n
e

P
e

n
t-

1
-y

n
e

H
e

x-
1-

yn
e

H
e

p
t-

1-
yn

e

O
ct

-1
-y

n
e

A
ce

to
n

e

P
e

n
ta

n
-2

-o
n

e

P
e

n
ta

n
-3

-o
n

e

M
TB

E

T
A

M
E

ET
B

E

D
ie

th
yl

 e
th

e
r

D
i-

n
-p

ro
p

yl
 e

th
e

r

D
i-

is
o

-p
ro

p
yl

 e
th

er

D
i-

n
-b

u
ty

l e
th

e
r

T
H

F

1
,4

-D
io

xa
n

e

B
e

n
ze

n
e

T
o

lu
en

e

Et
h

yl
b

e
n

ze
n

e

o
-X

yl
e

n
e

m
-X

yl
e

n
e

p
-X

yl
e

n
e

St
y

re
n

e

a
-M

et
h

yl
st

yr
e

n
e

M
et

h
yl

 a
ce

ta
te

Et
h

yl
 a

ce
ta

te

M
et

h
yl

 p
ro

p
a

n
o

at
e

M
et

h
yl

 b
u

ta
n

o
a

te

V
in

yl
 a

ce
ta

te

B
u

ty
ra

ld
eh

yd
e

A
ce

to
n

it
ri

le

P
yr

id
in

e

1
-N

it
ro

p
ro

p
a

n
e

T
h

io
p

h
en

e

W
a

te
r

M
et

h
a

n
o

l

Et
h

a
n

o
l

P
ro

p
an

-1
-o

l

P
ro

p
an

-2
-o

l

2
-M

e
th

yl
-p

ro
p

a
n

-1
-o

l

B
u

ta
n

-1
-o

l

B
u

ta
n

-2
-o

l

te
rt

-B
u

ta
n

o
l

NK
L

398.15 K

358.15 K

 

Figure 3.6. Experimental gas–liquid partition coefficients, LK , for organic solutes and 

water in the ILs studied. , [C4mim]Cl; , [C4mim][CH3SO3]; Δ, [C4mim][(CH3)2PO4]. The 

dotted line represents the number of carbons in the solutes structure, N. Symbols with 

the same color correspond to solutes of the same chemical family. 
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The gas–liquid partition compares the affinity of the solute to both phases. Results are 

listed in Appendix 3 (Table S3.3) and presented in Figure 3.6. As can be seen, for all 

solutes LK  decreases with increasing temperature, and increases with the alkyl chain in 

aliphatic and aromatic hydrocarbons, and ketones. The highest value is observed for 

water LK  = 1233.27 in [C4mim]Cl at T = 358.15 K, whereas the lowest value is observed 

for di-iso-propyl ether (0.99) in the same IL at 388.15 K. This is consistent with previous 

analyses, since higher LK  value corresponds to larger affinities of the solute to the liquid 

phase. 

Selectivities and capacities 

The measurements of the activity coefficients at infinite dilution can be used to evaluate 

the performance of ILs as solvents for several practical chemical separation 

problems.230,241,242 This is achieved by the calculation of selectivities and capacities. A 

suitable solvent should possess both a high selectivity and a high capacity for the 

components to be separated. The results obtained for 

ijS  and 

jk , were calculated using 

equations 3.9 and 3.10, and the results are presented in Table 3.5, along with values from 

literature for ILs presenting the same anion or cation as those studied here. Some other 

important industrial solvents such as N-methyl-2-pyrrolidinone (NMP) and sulfolane are 

presented as well for comparison purposes. 

Analyzing Table 3.5 it is possible to see that the separation of octane/benzene is the 

easiest, especially with [C4mim]Cl and the methanosulfonate-based anions. The lowest 

values of selectivity are found for [C8mim]Cl and [C4mim][(CH3(CH2)3)2PO4], both present a 

cation and a anion, respectively, with a longer alkyl chain. The cyclohexane/benzene 

separation problem is, according with the calculated values, the most difficult separation. 

As can be seen, selectivities are similar, but much lower than for the previous system. 

Despite the low capacity value the IL [C4mim]Cl is, once again, the one that makes the 

separation easier. Regarding the separation of sulfur compounds from aliphatic 

hydrocarbons, cyclohexane/thiophene, the values are similar among the studied ILs, but 

[C4mim]Cl is again the solvent presenting better selectivities. Common solvents, NMP and 
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sulfolane, have lower values of selectivities in both aliphatic/aromatic separations than 

the ILs here studied.  

Table 3.5. Selectivities ( 

ijS ) and capacities ( 

jk ) at infinite dilution for different 

separation problems at 358.15 K. 

Ionic Liquids 


ijS /


jk   

Cation Anion 
Octane / 

Benzene 

Cyclohexane / 

Benzene 

Cyclohexane / 

Thiophene 
Reference 

[C4mim]+ 

Cl- 73.32 / 0.22 12.13 / 0.22 26.75 / 0.49 This work 

[CH3SO3]- 55.50 / 0.32 11.43 / 0.32 20.41 / 0.58 This work 

[(CH3)2PO4]- 20.58 / 0.43 5.28 / 0.43 9.88 / 0.80 This work 

[(CH3(CH2)3)2PO4]- 7.20 / 1.17 3.06 / 1.17 - 234,a 

 [CF3SO3]- 30.61 / 0.61 8.16 / 0.61 11.27 / 0.85 204 

[C8mim]+ Cl- 13.67 / 0.80 6.04 / 0.80 - 206,b 

[C2mim]+ [CH3SO3]- 
64.02 / 0.23b 10.57b / 0.23b 21.75 / 0.48 211 

86.08 / 0.24 12.18 / 0.24 24.59 / 0.49 232,b 

[C1mim]+
 [(CH3)2PO4]- 65.71 / 0.27 10.58 / 0.27 - 207,b 

[C2mim]+ [(CH3CH2)2PO4]- 36.24 / 0.43 10.70 / 0.43 - 233,b 

Other solvents     

Sulfolane 26.03 / 0.44 - - 243,a 

NMP - 4.49 / -       - / 0.93 244,b 

aInterpolated value; bExtrapolated value. 

Another very important problem is the de-nitrogenation of fuels. The values of selectivity 

for the separation of nitrogen compounds from aliphatic hydrocarbons as for example 

octane/pyridine or octane/1-nitropropane are (224.57, 15.63 and 40.57) and (131.54, 

90.23 and 31.86) for Cl-, [CH3SO3]- and [(CH3)2PO4]-, respectively, at 358.15 K. The values 

presented for the IL [C4mim]Cl are very promising.  
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3.1.5. Selection of ionic liquids to be used as separation agents for terpenes and 

terpenoids 

Mónia A. R. Martins, Urszula Domańska, Bernd Schröder, João A. P. Coutinho & Simão P. 

Pinho, ACS Sustainable Chemistry & Engineering 4, 548−556 (2016), DOI: 

10.1021/acssuschemeng.5b01357 

3.1.5.1. Abstract 

In this work ionic liquids are evaluated for the first time as solvents for extraction and 

entrainers in separation processes involving terpenes and terpenoids. For that purpose 

activity coefficients at infinite dilution, 

13 , of terpenes and terpenoids, in the ionic liquids 

[C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4], and [C4mim][CF3SO3] were determined 

by gas-liquid chromatography at six temperatures in the range (398.15 to 448.15) K. 

Based on the experimental values, a correlation of 

13  with an increase of the solubility 

parameters is proposed. The infinite dilution thermodynamic functions were calculated 

showing the entropic effect is dominant over the enthalpic. Gas-liquid partition 

coefficients give indications about the recovery and purification of terpenes and 

terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-

RS was evaluated for the description of the selectivities and capacities, showing to be a 

useful tool for the screening of ionic liquids to find suitable candidates for terpenes and 

terpenoids extraction, and separation. COSMO-RS predictions show that in order to 

achieve the maximum separation efficiency, polar anions should be used such as 

bis(2,4,4-trimethylpentyl)phosphinate or acetate, while high capacities require nonpolar 

cations such as phosphonium. 

3.1.5.2. Chemicals 

The properties of the ionic liquids used in this work are presented in Table 3.6, while the 

terpenes and terpenoids description is available in Table 3.7 and Table S3.4. The 

individual samples of the ILs used were purified under vacuum (0.1 Pa and 353 K) and 

constant stirring, for at least 48 h. The purity was then analyzed using 1H, 13C, and 19F 

NMR spectra. To further reduce the water traces and the volatile impurities, ILs individual 
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samples were additionally dried during 72 hours at 300 K under reduced pressure. Karl-

Fischer titration was used to determine the water content of the dry ILs. For that, samples 

were dissolved in dry methanol and titrated with a step of 2.5 µL. The water content was 

found to be below 300 ppm for all samples. Terpenes and terpenoids were used without 

any further purification since the GLC technique operates at elevated temperatures (> 

398.15 K) and thus, impurities can be removed from the column.  

Table 3.6. Name, structure, abbreviation, supplier, molar mass (M), melting point (TM) 

and purity of the investigated ionic liquids. 

Chemical Formula 
Chemical Name Supplier 

M  
(g·mol-1) 

TM (K) 
Purity 

(mass.%) Cation Anion 

 

Cl- 
1-butyl-3-

methylimidazolium 
chloride, [C4mim]Cl 

IoLiTec 174.67 341.95222 99 

 

1-butyl-3-
methylimidazolium 
methanesulfonate, 
[C4mim][CH3SO3] 

IoLiTec 234.32 
≈ 

353.15223 
99 

 

1-butyl-3-
methylimidazolium 

dimethyl phosphate, 
[C4mim][(CH3)2PO4] 

IoLiTec 264.26 < 253.15 98 

 

1-butyl-3-
methylimidazolium 

trifluoromethanesulfonate, 
[C4mim][CF3SO3] 

IoLiTec 288.29 289.15245 99 
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Table 3.7. Names, structures, supplier, molar mass (M), boiling points (TBP) and mass 

fraction purities of the terpenes and terpenoids used.  

Chemicals Supplier CAS M (g·mol-1) TBP (K)246 
Mass 

fraction 
puritya 

Terpenes 

α-pinene 
 

Sigma-
Aldrich 

80-56-8 136.237 429.29 98% 

β-pinene 
 

Sigma-
Aldrich 

18172-67-3 136.237 439.19 99% 

Terpenoids 

(−)-borneol 

 

Fluka 464-45-9 154.252 485.80 ≥99% 

(−)-Isopulegol 

 

SAFC 89-79-2 154.252 480.98 ≥98% 

(−)-menthone 

 

Fluka 14073-97-3 154.252 483.15 ≥99% 

(1R)-(−)-
fenchone 

 

Aldrich 7787-20-4 152.236 466.15 ≥98% 

(1R)-(+)-
camphor 

 

Aldrich 464-49-3 152.236 480.55 98% 

(S)-(+)-
carvone 

 

Merck 2244-16-8 150.221 504.15 96% 

Carvacrol 

 

SAFC 499-75-2 150.221 510.15 99% 

DL-citronellol 
 

Sigma 106-22-9 156.268 496.40 ≈95% 

Eucalyptol 

 

Aldrich 470-82-6 154.252 449.55 99% 

Eugenol 
 

Aldrich 97-53-0 164.204 526.35 99% 

Geraniol  
Sigma-
Aldrich 

106-24-1 154.252 503.15 98% 

L(−)-menthol 

 

Acros 2216-51-5 156.268 487.40 99.7% 

Linalool  Aldrich 78-70-6 154.252 470.15 97% 

Thymol 

 

Sigma 89-83-8 150.221 505.65 ≥99.5% 

α-pinene 
oxide  

Aldrich 1686-14-2 152.236 489.51 97% 

aDeclared by the supplier. 



 
Chapter 3 – Extraction, Production and Deterpenation 

76 
 

3.1.5.3. Results and discussion 

Activity coefficients at infinite dilution  

The experimental measurements of the activity coefficients at infinite dilution of terpenes 

and terpenoids in ILs were carried out between (398.15 and 448.15) K, with intervals of 

10 K, and the average values at each temperature are presented in Table S3.5 of 

Appendix 3. The properties required for the 

13  calculations are presented in Table S3.4, 

as well as literature sources and methods applied in their estimation. The virial 

coefficients were calculated using the correlation proposed by Tsonopolous,225 available 

in Poling and Prausnitz.224 High temperatures were adopted to avoid long retention times 

of solutes, and to prevent the solidification of the ionic liquids used inside the column. To 

better understand and explore the data, a comparison at a fixed temperature, 408.15 K, is 

presented in Figure 3.7. This temperature was chosen since it is the lowest temperature 

at which data are available for all the solutes studied in, at least, one ionic liquid. 
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Figure 3.7. Activity coefficients at infinite dilution of terpenes and terpenoids in the ILs 

studied, at 408.15 K. , [C4mim]Cl; , [C4mim][CH3SO3]; , [C4mim][(CH3)2PO4]; , 

[C4mim][CF3SO3].  
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As shown in Figure 3.7, α-pinene and β-pinene show the weakest interactions with the ILs 

studied. This was expected since all the ionic liquids used present polar anions and thus, 

interact better with polar solutes as terpenoid alcohols, while the interactions with 

hydrocarbons (terpenes), and terpenoid ethers and ketones are weaker presenting higher 

values of activity coefficients at infinite dilution. 

The terpenoid linalool is a clear exception, presenting an increase in the activity 

coefficients at infinite dilution and, additionally, a change in the ILs trend, when 

compared with the other alcohols. Trying to rationalize this apparent outlier, the sigma 

profiles of all ILs and solutes in their most stable form were computed by COSMO-RS and 

are presented in Figure S3.2 of Appendix 3. The alcohols sigma profiles show that linalool 

is the only one that does not present an H-bond donor character. Since the ILs anions 

have an H-bond acceptor character, the interactions are weaker and, consequently, the 



13  increase. Moreover, the change in the ILs trend suggests that in this case the anion-

cation interaction is dominant face to the solute-anion interaction. 

Due to the long retention times, and to the TCD detector sensitivity limit, the activity 

coefficients at infinite dilution of a few alcohols, in some ionic liquids, were not possible 

to measure. However, in [C4mim][CF3SO3], the least polar IL,229 all solutes were measured. 

No significant differences were observed between the aromatic and the aliphatic 

terpenoids suggesting that the cyclical structure does not have a relevant impact in the 

activity coefficients at infinite dilution in the aromatic imidazolium ILs here investigated.  

In our previous work,247 measurements of 

13
 for organic solutes with the same ILs were 

carried out. Considering the functional groups, the same trend of 

13
 was found: 

hydrocarbons > ethers > ketones > alcohols. Moreover, the ILs trend observed for the 

activity coefficients at infinite dilution magnitude was [CF3SO3]- < [(CH3)2PO4]- < [CH3SO3]- 

< Cl-, which is in good agreement with the polarity trend described by Cláudio et al.229  

The dependency with the temperature is presented in Figure S3.3 of Appendix 3. For 

most solutes there is a linear increase or decrease in the natural logarithm of 

13  with the 

reciprocal temperature. The compounds (–)-menthone, (S)-(+)-carvone and (1R)-(+)-
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camphor in [C4mim]Cl; (–)-menthone, geraniol and (1R)-(+)-camphor in [C4mim][CH3SO3]; 

and (1R)-(−)-fenchone and eucalyptol in [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] present 

almost an independent behavior of the logarithm of 

13  with the reciprocal temperature, 

and thus their enthalpy of solution is close to zero.  

Despite the large number of studies published on the measurement of activity 

coefficients at infinite dilution of solvents in ionic liquids, to the best of our knowledge no 

data for activity coefficients at infinite dilution of terpenes and terpenoids was previously 

reported using ILs as a stationary phase, and no comparison is possible. 

On an attempt to systematize the data collected here, correlations of the activity 

coefficients at infinite dilution of the terpenes and terpenoids measured with some of 

their properties (e.g. dipolar moment, solubility parameter, molar volume) were 

evaluated. The most promising results are reported on Figure 3.8 for the correlation with 

the solubility parameters calculated through the relation presented by Goharshadi and 

Hesabi.248 Results show a decrease of the activity coefficient at infinite dilution with the 

increase of the solubility parameter. Additionally, the different ILs presents almost 

parallel trend lines, suggesting a predictive character to be explored as soon as more data 

are available.  
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Figure 3.8. Activity coefficients at infinite dilution as a function of the solubility 

parameters (calculated through reference 248) of terpenes and terpenoids in the ILs 

studied, at 408.15 K. Empty symbols were not used in the fit. 
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Thermodynamic functions at infinite dilution 

To obtain additional information concerning the interactions between the solutes and the 

ionic liquids, the partial excess molar properties at infinite dilution were analyzed. The 

Gibbs energy, enthalpy, and entropy, for terpenes and terpenoids in the investigated ILs 

at T = 408.15 K, were calculated through the 

13  values and are listed in Table S3.6 of 

Appendix 3. As mentioned before, there are some solutes in some ILs that present a small 

variation with the temperature and hence, in those cases, the partial molar excess 

enthalpy at infinite dilution is close to zero. 

The partial molar excess properties as a function of 

13  are presented in Figure 3.9. As can 

be seen, two different areas can be distinguished for ILs composed by the more polar 

anions (Cl−, [CH3SO3]−, [(CH3)2PO4]-), and three areas for the IL [C4mim][CF3SO3]. Region (I) 

and (II), common to all ILs studied, represents the ILs−organic solutes systems with 

positive deviations to Raoult’s law, 

13  (
,E

mG ) > 1. When 
,E

mH  is also positive, region (I), 

no particular affinity between ILs and solutes molecules is expected, as for hydrocarbons, 

ketones and ethers. Due to the weak interaction, these mixtures have potential to the 

formation of two immiscible phases. In region (II) both enthalpy and entropy are negative, 

clearly indicating the dominance of the entropic over the enthalpic effect. Indeed, in both 

regions, the partial excess enthalpy is close to zero, and the entropic effect is always 

dominant. 

[C4mim][CF3SO3] presents also region IV, with negative deviations from Raoult’s law ( 

13  < 

1). This region is characterized by favorable interactions between the solutes and the ILs, 

related with spontaneous dissolution, and consequently the enthalpic effect is dominant. 

The only solutes belonging to that region are carvacrol and thymol, both presenting 

strong polarity, where all the partial excess molar properties investigated are negative, 

showing that the HB between carvacrol and thymol, and the anion [CF3SO3]- is favorable. 

The terpenoid linalool, highlighted before due to the absence of an H-bond donor region 

character, shows an extremely low value of the excess molar enthalpy at infinite dilution, 
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when compared with all the other solutes. The interaction of this compound with the ILs 

is highly influenced by the temperature. 
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Figure 3.9. Partial molar excess energies at infinite dilution as a function of the natural 

logarithm of the activity coefficients at infinite dilution of the terpenes and terpenoids in 

the ILs study, at 408.15 K. The full line represents 
,E

mG  and the symbols correspond to: 

, 
,E

mH  and Δ, Tref
,E

mS .  

Gas-liquid partition coefficients 

Gas–liquid partition coefficients, LK , were calculated from retention times using the 

densities of the pure ILs previously reported.247,249,250 Assuming an ideal gas phase, the 

gas-liquid partition coefficients can be used to understand the terpenes and terpenoids 

extraction using ILs, and their subsequently evaporation in order to recover the ILs, at low 

pressures. Moreover, these parameters are also useful to understand the role of ILs on 

the fractionation of a complex mixture of terpenes and terpenoids. Results at a fixed 

temperature are presented in Figure 3.10. In general, the highest values are observed for 

more polar solutes like alcohols, with the less polar IL, [C4mim][CF3SO3]. As expected, α- 
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and β-pinene present the lowest values of the gas liquid partition coefficients, especially 

with the IL [C4mim]Cl. These coefficients indicate the possibility to separate terpenes 

from the terpenoid alcohol or ketone fractions. The LK  always decreases with increasing 

temperature as can be seen in Table S3.7 of Appendix 3. 
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Figure 3.10. Experimental gas–liquid partition coefficients, LK , for terpenes and 

terpenoids in the ILs studied, at 408.15 K. , [C4mim]Cl; , [C4mim][CH3SO3]; , 

[C4mim][(CH3)2PO4]; , [C4mim][CF3SO3].  

Selectivities and capacities 

Selectivities, 

ijS , and capacities, 

jk , can be used to evaluate the ILs performance as 

solvents for separation processes.230,241,242 Considering the similarities in molecular 

structures and physical properties of terpenes and terpenoids, and therefore, the 

problems involved in their extraction from essential oils and subsequent fractionation, 

these two parameters must be known. According to the definition, a suitable solvent 

should present both a high selectivity and capacity for the components to be 

separated.251 Experimental results along with the selectivities and capacities predicted 

using COSMO-RS are schematically presented in Figure 3.11.  
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Figure 3.11. Experimental and COSMO-RS predictions of 

ijS and 

jk  of all solutes at 

408.15 K in the different ionic liquids studied. Color code:  [1-2];  [2-4];  [4-10];  [10-

20];  [20-30]; and  >30. Capacities,  <0.01;  [0.01-0.05];  [0.05-0.1];  [0.1-0.2];  

[0.2-1];  [1-2];  [2-5]; and  > 5. 

The experimental capacity takes the highest values for the pairs containing thymol or 

carvacrol, when the anion of the IL is [CF3SO3]- (1.661 and 1.671, respectively), and the 

lowest values for the pairs containing β-pinene or eucalyptol in [C4mim]Cl (0.005 and 

0.006, respectively). From the experimental selectivities it is possible to identify the most 

complicated separation problems: (-)-menthone/α-pinene oxide and thymol/carvacrol, 

with a 

ijS value close to 1 in the ILs [C4mim]Cl and [C4mim][CF3SO3], respectively. 

Inversely, the pairs linalool/thymol and linalool/carvacrol present high selectivity and 

capacity values with the IL [C4mim][CF3SO3], showing that this ionic liquid may be used in 

their separation. In general, experimental capacities are considerably lower than 1 and 

most of the selectivities fall in the range [1-2] and [2-4]. Selectivities ranges were chosen 

based on the numerical results obtained. Among the studied ILs, [C4mim][CF3SO3] is the 

one that seems to present high selectivities and capacities, indicating that ILs with low 

polarity should be used in the terpenes and terpenoids separation. However, the major 

limitation that the ionic liquids studied in this work present are the low capacities that 

would prevent their application into a separation process. 
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To improve the separation efficiency, new ILs must be evaluated. For that purpose, an ILs 

screening, computed using COSMO-RS, was attempted. To validate COSMO-RS 

predictions, the ILs studied in this work were used. Figure 3.11 shows that the selectivities 

obtained with COSMO-RS are generally lower than the experimental ones, which may be 

attributed to an over estimation of the hydrogen bonding interactions between ILs and 

solutes. Accordingly, COSMO-RS capacities are in general superior to the experimental 

ones. In spite of the quantitative deviations obtained with COSMO-RS from experimental 

data, in general the model is able to correctly estimate the order of the selectivities and 

capacities for the terpenes and terpenoids studied. A better agreement with the 

experimental data is obtained for the less polar ILs, such as [C4mim][(CH3)2PO4] and 

[C4mim][CF3SO3].  

According with the experimental results obtained in this work, better selectivities and 

capacities are achieved with the less-polar ILs. As the COSMO-RS predictions seem to be 

more precise also for these compounds, a set of selectivities and capacities of terpenes 

and terpenoids with selected ILs was computed using COSMO-RS: cations, 1-butyl-3-

methyl-imidazolium, [C4mim]+; and trihexyltetradecylphosphonium, [P66614]+; were 

combined with the anions tetracyanoborate, [BCN4]-; bis(trifluoromethylsulfonyl)imide, 

[NTf2]-; bis(2,4,4-trimethylpentyl)phosphinate, [(C8H17)2PO2]-; tosylate, [TOS]-; 

methylsulfate, [CH3SO4]-;  trifluoroacetate, [TFA]-; and acetate, [OAc]-. The ionic liquids 

were chosen based on the polarity of the cations and anions to cover a wide range of 

differentiated polarities between the ion pair. The most relevant cases unveiled by this 

search are presented in Figure 3.12, while the other compounds studied are presented in 

Figure S3.4 of Appendix 3. COSMO-RS predictions show that the higher selectivities are 

obtained using polar anions such as bis(2,4,4-trimethylpentyl)phosphinate or acetate; 

while to obtain high capacities nonpolar cations such as phosphonium based must be 

preferred. This indicates that terpenes and terpenoids extraction must be made using 

cations and anions presenting distinct characteristics to fulfill simultaneously the 

requirements of high selectivities and capacities. The experimental validation of these 

predictions and the use of these ionic liquids for terpene and terpenoids separation are 

currently under development in our laboratory. 
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Figure 3.12. 

ijS and 

jk  of all solutes at 408.15 K in selected ILs, computed by COSMO-RS. 

Color code: Selectivities,  [1-2];  [2-4];  [4-10];  [10-20];  [20-30]; and  >30; 

Capacities,  <0.01;  [0.01-0.05];  [0.05-0.1];  [0.1-0.2];  [0.2-1];  [1-2];  [2-5]; and 

 > 5. 

Among the compounds studied, a literature survey showed that an important separation 

problem is α-pinene/β-pinene, a mixture extracted from turpentine,10,30 usually by steam-

distillation.252,253 The experimental results obtained for 

ijS  and 

jk
 
are presented in Table 

3.8, along with selected COSMO-RS results and values from literature for some other 

important solvents. 
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According to Table 3.8, it is possible to see that the experimental ILs studied present 

similar selectivities to the solvents studied by Díaz et al.254 However, the capacities are 

much lower. As discussed before, to increase the capacity, ionic liquids with low polarity 

must be used. [C4mim][CF3SO3] is the most promising solvent with respect to separation 

amongst the ILs experimentally evaluated in this work. Based on the COSMO-RS result for 

that IL, this agrees with the experimental information. Moreover, according to COSMO-RS 

the ILs [P66614][(C8H17)2PO2] and [P66614][OAc] show good potential to be applied as agent 

for the α-pinene/β-pinene separation 

Table 3.8. Selectivities ( 

ijS ) / capacities ( 

jk ) at infinite dilution for α-pinene / β-pinene 

at 408.15 K in different solvents. 

Solvent Selectivities (


ijS ) / capacities (


jk ) Reference 

[C4mim]Cl 1.386 / 0.005 

This work 

[C4mim][CH3SO3] 1.364 / 0.024 
[C4mim][(CH3)2PO4] 1.271 / 0.044 
[C4mim][CF3SO3] 1.327 / 0.053 
[C4mim][CF3SO3] – COSMO-RS 1.313 / 0.105 
[C4mim][(C8H17)2PO2] – COSMO-RS 1.315 / 2.467 
[P66614][(C8H17)2PO2] – COSMO-RS 1.205 / 6.237 
[C4mim][OAc] – COSMO-RS 1.590 / 1.137 
[P66614][OAc] – COSMO-RS 1.260 / 5.940 

Dinonyl phthalate 1.260 / 1.156a 

254 

Amine 220 1.304 / 0.849a 

Tricresyl phosphate 1.113 / 0.643a 

Carbowax 6000 1.346 / 6.601a 

Ethylene glycol phthalate 1.375 / 0.292a 

Carbowax 1500 1.424 / 1.300a 

aExtrapolated value. 

3.1.6. Conclusions 

New data of activity coefficients at infinite dilution of ILs composed by the cation 1-butyl-

3-methylimidazolium and the anions chloride, methanesulfonate, dimethylphosphate and 

trifluoromethanesulfonate were measured by gas–liquid chromatography techniques for 

organic solutes, water, and terpenes at different temperatures. When possible 

comparisons with literature were carried out, showing consistent trends among the 

different ILs analyzed. The infinite dilution thermodynamic function and the gas-liquid 
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partition coefficients were calculated and analyzed. It was concluded that the hydrogen 

bonding between organic solutes and the ILs anion plays a significant role on the 

interaction of the ILs with organic solutes, and determines the enthalpic behavior of the 

binary mixtures. On the other hand, in the vast majority of the binary mixtures of 

terpenes and ILs the entropic effect was dominant over the enthalpic one. 

The ability of the ILs to act as entrainers in important separations problems such as 

octane/benzene, cyclohexane/benzene and cyclohexane/thiophene was evaluated. In 

spite of the lower capacities obtained, the selectivities achieved were quite high and, 

thus, these ILs could be used as an alternative separating agent for the separation 

processes of aliphatic/aromatic hydrocarbons. 

COSMO-RS was evaluated for the description of the selectivities and capacities for the 

systems involving terpenes studied, and showed to be a useful tool for the screening of 

ionic liquids to find suitable candidates for terpenes and terpenoids extraction and 

separation before extensive experimental measurements. COSMO-RS predictions on 

capacities and selectivities show that in order to achieve the maximum separation 

efficiency polar anions such as bis(2,4,4-trimethylpentyl)phosphinate or acetate should be 

used and combined with nonpolar cations such as phosphonium that would maximize the 

capacities of the solvents. For the specific α-pinene/β-pinene separation, the ionic liquids 

studied in this work present satisfactory selectivity values, but very low capacities, and a 

set of ILs were identified to have good potential for this difficult separation problem. 

3.2. Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic 

solvents of quaternary ammonium chlorides and carboxylic acids 

Paula V. A. Pontes, Emanuel A. Crespo, Mónia A. R. Martins, Liliana P. Silva, Catarina M. S. 

S. Neves, Guilherme J. Máximo, Miriam Dupas Hubinger, Eduardo A. C. Batista, Simão P. 

Pinho, João A. P. Coutinho, & Christoph Held, Fluid Phase Equilibria, in press (2017), DOI: 

10.1016/j.fluid.2017.04.007. 
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3.2.1. Abstract 

In this study the solid-liquid equilibria (SLE) of 15 binary mixtures composed of one of 

three different symmetrical quaternary ammonium chlorides and one of five different 

fatty acids were measured. The experimental data obtained showed extreme negative 

deviations to ideality causing large melting-temperature depressions (up to 300K) that are 

characteristic for deep eutectic systems. The experimental data revealed the 

strengthening of the HBA-HBD complex with increase of the alkyl chain length of the 

quaternary ammonium chloride and with increase of the chain length of the carboxylic 

acid. The pronounced decrease of melting temperatures in these deep eutectic systems is 

mainly caused by strong hydrogen-bonding interactions, and thermodynamic modeling 

required an approach that takes hydrogen bonding into account. Thus, the measured 

phase diagrams were modelled with perturbed-chain statistical associating theory based 

on the classical molecular homonuclear approach. The model showed very good 

agreement with the experimental data using a semi-predictive modeling approach, in 

which binary interaction parameters between quaternary ammonium chloride and 

carboxylic acid correlated with chain length of the components. This supports the findings 

into the phase behavior and interactions present in these systems and allows estimating 

eutectic points of such highly non-ideal mixtures. 

3.2.2. Introduction 

Aiming at sustainable process design and considering the growing focus on green 

chemistry, there has been an effort towards the development of novel and 

environmentally friendly solvents with equivalent or better performance than classical 

organic solvents, such as the neoteric deep eutectic solvents (DES).  

While much work has been reported using these novel solvents, the number of DES which 

are liquid at room temperature is still very limited. Moreover, data on their solid-liquid 

equilibria (SLE) is surprisingly scarce despite the important information it provides on the 

operation window (range of compositions and temperatures) as well as on donor-

acceptor interactions in these systems. Likewise, modeling the SLE by suitable equations 

of state (EoS) and/or activity coefficient models is a poorly explored research field due to 
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both, lack of enough comprehensive and reliable experimental data and the strong and 

highly complex interactions between the DES constituents that are not easily captured by 

most models.  

In the past few years, Statistical Associating Fluid Theory (SAFT), a molecular-based model 

that accounts for the repulsive and attractive interactions of fluids,255,256 has been used to 

successfully describe a wide variety of systems.257,258 Additionally, Perturbed-Chain SAFT 

(PC-SAFT),259 the most prominent modification of original SAFT, was already successfully 

applied to systems containing DES. Verevkin et al.260 used PC-SAFT to model infinite 

dilution activity coefficients of 23 different solutes in [Ch]Cl:glycerol and Zubeir et al.261 

used PC-SAFT to model the CO2 solubility in quaternary ammonium salts + lactic acid 

mixtures.  

The renewability of a DES depends mainly on its starting materials being most of the DES 

described in literature prepared using abundant natural compounds. The most common 

precursors are quaternary ammonium salts, particularly choline chloride, due to its non-

toxicity, biodegradability and economic synthesis, combined with polyols, urea, carboxylic 

acids, sugars or other safe hydrogen bond donors. Monocarboxylic acids with long 

aliphatic chains, known as fatty acids, are the major co-products of the vegetable oils 

refining. Their use in DES would have a positive impact on the processes sustainability 

since, besides their vast natural sources, they allow purification of the extracts when used 

as solvents for extraction operations.262  

In this context, the purpose of this work is to measure the solid-liquid phase diagrams of 

fifteen new DES composed of one quaternary ammonium salt [tetramethylammonium 

chloride ([N1111]Cl), tetraethylammonium chloride ([N2222]Cl) and tetrapropylammonium 

chloride ([N3333]Cl)] and of one fatty acid (capric acid, lauric acid, myristic acid, palmitic 

acid or stearic acid) that are commonly found in vegetable oils. PC-SAFT is here applied 

for the first time to describe the DES solid-liquid phase diagrams by fitting energy related 

binary interaction parameters to the measured experimental data allowing to obtain 

information about the non-ideality of the compounds in the liquid phase and new insights 

regarding the hydrogen-bonding interactions between the DES constituents. 
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3.2.3. Experimental 

3.2.3.1. Materials 

The quaternary ammonium salts (hydrogen-bond acceptor, HBA) and the fatty acids 

(hydrogen-bond donor, HBD) used to prepare the DES are described in Table 3.9. The 

quaternary ammonium salts were dried under vacuum at room temperature during at 

least three days while fatty acids were used as received from the supplier. Indium, used 

for the DSC calibration, was supplied by PerkinElmer with a purity higher than 0.999 

(molar fraction). 

Table 3.9. Sources and purities of the compounds used in this work. 

Component Molecular Formula CAS number Supplier Purity (mass %)a 

HBA (Quaternary Ammonium Salts) 

[N1111]Cl C4H12ClN 75-57-0 Sigma-Aldrich 97.0 

[N2222]Cl C8H20ClN 56-34-8 Sigma-Aldrich 98.0 

[N3333]Cl C12H28ClN 5810-42-4 Sigma-Aldrich 98.0 

HBD (Fatty Acids) 

Capric acid C10H20O2 334-48-5 Sigma ≥ 99.0 

Lauric acid C12H24O2 143-07-7 Sigma ≥ 99.0 

Myristic acid C14H28O2 544-63-8 Sigma ≈ 95.0 

Palmitic acid C16H32O2 57-10-3 Aldrich ≥ 98.0 

Stearic acid C18H36O2 57-11-4 Merck ≥ 97.0 

aAccording to the supplier 

3.2.3.2. Methods 

Solid-liquid equilibria 

Mixtures of the HBA-HBD were prepared in the whole composition range, allowing the 

measurement of the solid-liquid phase diagrams. Three different experimental 

methodologies were used: the visual method, the melting points measurement method, 

and differential scanning calorimetry. These are explained in the following. 
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For the visual method binary mixtures were weighted at room temperature using an 

analytical balance model ALS 220-4N from Kern with an accuracy of ±0.002 g, inside a dry-

argon glove-box. Vials with the mixtures were heated in an oil bath under stirring using a 

heating plate until complete melting prior to recrystallization. After the first cycle the 

melting temperatures corresponding to the last crystal disappearance were recorded. The 

temperature was measured with a Pt100 probe with a precision of ± 0.1 K. This procedure 

was repeated at least two times.  

For measurements of the melting points samples were prepared as described in the visual 

method procedure. After recrystallization solid mixtures were ground in the glove-box 

and the powder was filled into a capillary. Melting temperatures were then determined 

with an automatic glass capillary device model M-565 from Büchi (100-240 V, 50-60 Hz, 

150 W, temperature resolution: 0.1 K). A temperature gradient of 0.5 K·min-1 was used 

and the melting points measurements were repeated at least two times. 

Differential Scanning Calorimetry (DSC) was applied in specific cases indicated in Tables 

S3.8, S3.9, and S3.10. Mixtures were prepared into a glass vessel on an analytic balance 

XP205 (Mettler Toledo, precision = 2×10-4 g) in a glove box under inert nitrogen 

atmosphere (purity ≥ 0.99996 mass fraction). The mixtures were melted under stirring on 

a heating plate until a homogeneous liquid mixture was obtained, and the mixture then 

cooled at room temperature. Samples (2 - 5 mg) were hermetically sealed in aluminum 

pans inside the glovebox and then weighed in a micro analytical balance AD6 

(PerkinElmer, USA, precision = 2×10-6 g). A DSC 2920 calorimeter (TA Instruments) 

working at atmospheric pressure and coupled to a cooling system was used for the 

sample analysis. The method was based on a cooling run at 5 K·min-1 until 208.15 K 

followed by a heating run with a rate of 1 K·min-1 until 10 K above melting. Nitrogen 

(purity ≥ 0.99999 mass fraction) was used as purge gas. The melting temperatures of the 

samples were assumed to be the maximum temperatures of the melting peak, taking into 

account the appearance of broad thermo events in the melting of the eutectic mixtures 

(see Figure S3.5). Data were analyzed through the TA Universal Analysis software (TA 

Instruments). For pure compounds, the uncertainty of the equilibrium data was 
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calculated by the average of the standard deviations of triplicates. The equipment was 

previously calibrated with indium. 

Water activities 

Water activities (aw) measurements were carried out using a Novasina hygrometer 

LabMaster- aw (Lucerne, Switzerland) with an accuracy of 0.001aw and ±0.20 K in the 

controlled temperature chamber. The instrument principle is based on resistive-

electrolytic method. The equipment was initially calibrated with six saturated pure salt 

standard solutions (water activity ranging from 0.113 to 0.973), provided by the supplier. 

Moreover, in order to achieve the given accuracy, a calibration curve was built using at 

least six aqueous solutions of LiCl or NaBr at different salt molalities and results were 

compared to those recommended in literature.263,264 Quaternary ammonium solutions 

were prepared at room temperature by mixing salts and water at the desired 

composition. The water content is presented in Table S3.11. Samples of approximately 2–

3 cm3 were then filled into proper cells and placed in the air-tight equilibrium chamber. 

When a constant value was reached, the water activity was recorded. Usually, solutions 

reached equilibrium in less than 1 h. 

Density of mixtures 

The density measurements were performed at atmospheric pressure and in the 

temperature range from 298.15 to 358.15 K using an automated SVM 3000 Anton Paar 

rotational Stabinger viscometer–densimeter (temperature uncertainty: ± 0.02 K; absolute 

density uncertainty: ±5×10-4 g·cm-3). The solutions prepared for the water activity 

measurements were used here. The salt content of the samples and the resulting mixture 

densities are presented in Tables S3.12-S3.14. 

3.2.4. Theoretical approach 

PC-SAFT EoS 

SAFT is a thermodynamic approach derived from Wertheim’s first-order thermodynamic 

perturbation theory,265–268 proposed by Chapman and co-workers.255,256 Since the original 



 
Chapter 3 – Extraction, Production and Deterpenation 

93 
 

SAFT version, several modifications have been proposed. In particular, PC-SAFT proposed 

by Gross and Sadowski in 2001259 that uses a system of freely jointed hard spheres as 

reference (designated as hard-chain system), which may be perturbed by dispersive and 

association interactions. The PC-SAFT model attracted much attention from researchers 

since it was already successfully applied to a wide variety of systems. Compared to the 

original SAFT model, PC-SAFT modeling results demonstrate good improvements of long-

chain molecules, like polymers or ILs, and even of substances of low molecular 

weight.259,269 

In general, SAFT-type equations are written in terms of residual molar Helmholtz energy, 

resa , defined as the difference between the total molar Helmholtz energy and that of an 

ideal gas at the same temperature and molar density: 

res ida a a

RT RT RT
    (3.11) 

The residual Helmholtz energy is, in PC-SAFT, defined as the sum of different 

contributions from different molecular forces: 

res hc disp assoca a a a

RT RT RT RT
     (3.12) 

In Equation 3.12, the superscripts refer to the terms accounting for the residual, hard-

chain fluid, dispersive and associative interactions, respectively. An EoS written in terms 

of the Helmholtz energy has the advantage that the calculation of all the thermodynamic 

properties is possible by using only derivatives and ideal-gas integrals. 

In PC-SAFT model, a non-associating component i  is characterized by three-pure 

component parameters, namely the segment number, seg

im , the segment diameter, 
i , 

and the van der Waals dispersion energy parameter between two segments, 
iu . For 

associating components, two additional parameters are required, namely the association-

energy parameter, AiBi , and the association-volume parameter, AiBi . Additionally, a 
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proper association scheme specifying number/type and allowed interactions must be 

assigned to each associating component. 

When describing mixtures, the conventional Lorenz-Berthelot combining rules were used 

to determine the mixture parameters where one adjustable binary interaction parameter, 

ijk , for correction of the cross-dispersion energy can be used whenever required. 

1
( )

2
ij i j       (3.13) 

(1 )ij ij i ju k u u     (3.14) 

Simple combining rules for the cross-association interactions between the two 

components, proposed by Wolbach and Sandler,270 were further applied when dealing 

with mixtures. 

  _

1
(1 )

2

AiBj AiBi AjBj

ij epsk        (3.15) 

3

1 ( )
2

ii jjAiBj AiBi AjBj

ii jj

 
  

 

 
  
 
 

   (3.16) 

A binary interaction parameter, _ij epsk , for correction of the cross-association energy can 

be also applied, when required, to account for the deviations from the value calculated 

through the original mixing rule. It is important to highlight that either in the dispersive or 

association interactions only energy-related binary parameters were applied in this work 

since the use of size-related binary parameters is unusual and not recommended.271 

PC-SAFT pure-component parameter estimation 

Ji et al.,272 Nann et al.273 and Passos et al.274 reported the use of PC-SAFT to model IL 

solutions while Zubeir et al.261 used this EoS to model the CO2 solubilities in DES with 

[Ch]Cl, and different symmetrical quaternary ammonium chlorides serving as HBA. The 

various authors treated ILs as molecules with associative behavior by using a 2B 
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association scheme (according to Huang and Radosz275), where to each molecule two 

association sites (mimicking the cation and the anion) are assigned and association 

interactions between unlike sites are allowed. 

The molecular parameters for [N1111]Cl and [N2222]Cl were directly taken from reference 

261 and the same approach was here followed to obtain the [N3333]Cl parameters. Thus, 

the association scheme (2B) and the corresponding association parameters from [N1111]Cl 

and [N2222]Cl were applied to [N3333]Cl. The remaining parameters seg

im , 
i , and 

iu as well 

as one temperature-independent binary interaction parameter 
ijk  between water and 

[N3333]Cl were fitted to experimental water activity coefficients (at 298.15 K, Table S3.11) 

and mixtures densities of water + [N3333]Cl solutions (Table S3.14). The result of the 

parameter estimation is depicted in Figure 3.13, and the PC-SAFT parameters for the 

quaternary ammonium chlorides are summarized in Table 3.10. 
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Figure 3.13. a) Experimental densities of aqueous solutions of [N3333]Cl measured in this 

work at atmospheric pressure: , xIL=0.0931; , xIL=0.1608. b) Water activity coefficients 

at 298.15 K: , Lindenbaum et al.276; ▲, this work. Symbols represent experimental data 

while the solid lines depict the PC-SAFT results using kij= -0.1167 between water and 

[N3333]Cl and the water parameters also used in reference274. 
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Table 3.10. PC-SAFT molecular parameters for symmetrical quaternary ammonium 

chlorides (2B association scheme). 

Salt ( / )wM g mol  seg

im  (Å)i  ( )iu K  ( )AiBi K  AiBi  % ( )wARD  a % ( )LARD  a 

[N1111]Clb 109.60 6.597 2.9160 451.63 5000 0.1 - - 

[N2222]Clb 165.70 17.670 2.3510 278.06 5000 0.1 - - 

[N3333]Cl 221.81 17.789 2.6151 217.95 5000 0.1 0.40 0.12 

aARD, average relative deviation. bParameters taken from Zubeir et al.261 

The phase behavior of carboxylic acids is complex due to their strong hydrogen-bonding 

character. Their particular association behavior results in two hydrogen bonds formed 

simultaneously, which leads to a dimerization in the vapor phase. Kleiner et al.277 

addressed this subject by applying and comparing two different association schemes (1A 

and 2B) to some carboxylic acids. While the former enables the formation of only dimers, 

the latter also allows the formation of clusters with more than two acid molecules. The 

results by Kleiner et al.277 showed that both association schemes provided good results 

but using a one-site association scheme yielded an improved description of vapor-

pressure data. Nevertheless, this specific thermodynamic feature is more important 

especially for carboxylic acids of lower molecular weight. In fact, Albers et al.278 applied 

the 2B association scheme to model different carboxylic acids achieving a good 

description of the experimental data by considering that each acid molecule contains two 

different association sites: an acceptor site at the oxygen atom and a donor site 

mimicking the hydroxyl group. Thus, the 2B association scheme was applied also for the 

carboxylic acids studied in this work, and the deviations [%ARD(ρL) and %ARD(P*) in table 

3.11] were found to be much lower compared to modeling with the 1A association 

scheme (results not shown in this work). 

Thus, the pure-component parameters for lauric acid and myristic acid were inherited 

from Albers et al.,278 while pure-component parameters for capric acid, palmitic acid and 

stearic acid were adjusted in the present work by regression to pure fluid liquid-density ρL 

and vapor pressure, P*, data. The results obtained are depicted in Figure 3.14 and the 

parameters reported in Table 3.11, along with the deviations to the experimental data. 
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Figure 3.14. Densities and vapor pressures of pure monocarboxylic acids. The symbols 

represent experimental data from ref.279 while the solid lines represent the PC-SAFT 

results for capric acid (), palmitic acid () and stearic acid (▲), respectively. 

Table 3.11. PC-SAFT pure-component parameters for monocarboxylic acids (2B 

association scheme). 

Acid ( / )wM g mol  seg

im  (Å)i  ( )iu K  ( )AiBi K  AiBi  % ( )LARD    *%ARD P  

Capric 172.26 7.1472 3.3394 242.46 2263.0 0.02 0.96 1.90 

Lauricb 200.32 7.2547 3.5244 252.97 3047.5 0.00338 0.34278 0.60278 

Myristicb 228.37 7.4126 3.6719 256.48 2252.5 0.04399 0.57278 0.46278 

Palmitic 256.42 7.5599 3.8092 267.52 2291.4 0.02 0.17 1.70 

Stearic 284.48 7.6146 3.9536 275.20 2351.6 0.02 0.10 2.20 

aARD, average relative deviation. b Parameters taken from Albers et al.278 
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Furthermore, as commonly observed for homologous series, the optimized molecular 

parameters of SAFT-type equations can be correlated with the compounds molecular 

weight. This allows predicting pure-component parameters for compounds of different 

chain length or decreasing the number of parameters to be included in the parameter 

estimation procedure. Thus, the non-associative pure-component parameters reported in 

Table 3.11 were correlated with the molecular weight of the carboxylic acids and linear 

trends were observed as described by Equations 3.17 to 3.19.  

20.0044198 6.3885 0.9808seg

i wm M R       (3.17) 

3 3 2(Å ) 1.8145 46.551 0.9999seg

i i wm M R       (3.18) 

2( ) 3.2523 1174.7 0.9933seg

i i wm u K M R      (3.19) 

This supports the physical meaning behind the adjusted PC-SAFT parameters. 

Additionally, the associative parameters can often be set to constant values for 

components within a homologous series since the associative behavior and interactions in 

the pure fluid are generally not strongly influenced by the compounds chain length 

(except for the components with very small chain length). Thus, the association volume 

was set to a value of 0.02 for palmitic acid, capric acid, and stearic acid, and similar values 

for the association energy parameter were obtained for these carboxylic acid in the 

parameter estimation (see Table 3.11). 

Solid-Liquid Equilibrium Modeling 

All the DES constituents considered in this work (quaternary ammonium salts and 

carboxylic acids) are solids at room temperature. Their solubility in a liquid solvent can be 

described by a simplified thermodynamic expressions for solid–liquid equilibria  according 

to:280 

exp
sl

l l i mi
i i

mi

H T T
x

RT T


    
    

   

   (3.20) 
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where l

ix   is the mole fraction of the component i  in the liquid phase (solubility), l

i  is 

the activity coefficient of the component i  in the liquid phase, 
miT  and sl

iH  are the 

melting temperature (K) and melting enthalpy ( 1J mol ) of the pure component i , T is 

the melting temperature (K) of the mixture, and R is the ideal gas constant (8.314 

1 1J mol K   ). This equation considers that pure compounds do not present polymorphic 

forms, what is acceptable since the solid-solid transition temperature of the fatty acids 

are very close to the melting temperature, or below the eutectic point.281–283 Additionally, 

the effect of the difference between specific heats of the solid and liquid phases was 

neglected since the heat capacities for fatty acids, and salts, are commonly much lower 

than their enthalpy values.284–286 Moreover, Equation 3.20 assumes that the pure 

compounds are independently crystallized in the solid phase as expected from an 

eutectic-type phase diagram. Therefore, the solid phase can be assumed as composed by 

two pure components without presence of mixed crystals, such that the activity in the 

solid phase 1s s

i ix   .  

An ideal mixture is characterized by activity coefficients in the liquid phase that are equal 

to one ( 1l

i  ). Although clearly non-ideal, the mixtures under investigation were also 

treated as ideal mixtures to evaluate the non-ideality of the compounds in the liquid 

phase.  

The liquidus lines can be obtained through Equation 3.20 where the activity coefficients 

need to be considered due to the non-ideality of the studied systems. Applying Equation 

3.20 allows determination of an experimental value for the activity coefficients, which can 

be used to validate thermodynamic models (in this work PC-SAFT) 

Using PC-SAFT, the activity coefficients are calculated from the fugacity coefficients 

through Equation 3.21. 

0

i
i

i





    (3.21) 
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where 
i  and 0

i  are the fugacity coefficients of component i  in the mixture and that of 

the pure compound, respectively. Fugacity coefficients in the mixture depend on the 

components, mixture composition, density and temperature, are were derived from the 

residual Helmholtz energy ares using thermodynamic standard relations. 

To evaluate the accuracy of PC-SAFT, the deviations between PC-SAFT modeled melting 

temperatures Tcalc and experimental data Texp are expressed in terms of AAD  (average 

absolute deviation) applying Equation 3.22 where 
expN  is the total number of 

experimental points in the mixture (excluding the melting points of the pure 

components): 

exp

exp

1exp

1
( ) ( ) ( )

N

calc

k k

k

AAD K T K T K
N 

         (3.22) 

3.2.5. Results and discussion 

Table 3.12 presents the melting temperatures and enthalpies for the pure compounds 

studied in this work as well as values from literature. The melting properties of the 

carboxylic acids under study are in very good agreement with those from literature. 

Melting temperatures of the quaternary ammonium salts are very scarce in literature, 

and melting enthalpy data for these compounds were not found in the open literature. 

The values for the melting points of the three quaternary ammonium salts under study 

were measured by DSC and confirmed with the melting points measured by the Büchi 

apparatus. [N1111]Cl decomposed upon heating and it was thus impossible to measure its 

melting enthalpy, that was fitted to the experimental data for the SLE phase diagrams 

measured, using the activity coefficients estimated by the COSMO-RS model.287  

Figure 3.15 shows the 15 SLE phase diagrams measured in this work. They exhibited a 

phase behavior characterized by a single eutectic point, with a melting temperature much 

lower than that of the quaternary ammonium salt used, like commonly found in DES. The 

detailed melting experimental data obtained for each mixture are reported in Appendix 3 

(Tables S3.8 to S3.10). 
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Table 3.12. Melting properties for pure compounds measured in this work and 

comparison with literature. 

Components 
/mT K  ( / )slH kJ mol  

This work Literature Ref. This work Literature Ref. 

Quaternary ammonium salts 

[N1111]Cl 612.87 ± 6.16 693.15 288 20.49 - - 

[N2222]Cl 526.78 ± 1.03 - - 51.24 ± 0.02 - - 

[N3333]Cl 503.07 ± 2.56 416.15 - 418.15 289 66.58 ± 2.10 - - 

Fatty acids 

Capric Acid 304.75 ± 0.05 

305.48 175 

27.50 ± 1.29 

27.23 175 

305.30 290 28.00 290 

303.80 291 28.30 291 

304.95 292 28.60 292 

Lauric Acid 317.48 ± 0.14 

318.48 175 

37.83 ± 0.20 

34.62 175 

316.20 291 36.10 291 

317.82 293 34.69b 293 

317.45 294 36.30 294 

Myristic Acid 327.03 ± 0.04 

328.93 175 

41.29 ± 0.38 

43.95 175 

326.50 291 45.00 291 

326.20 295 45.75b 295 

327.45 294 45.20 294 

Palmitic Acid 336.84 ± 0.10 

336.36 176 

51.02 ± 0.22 

53.02 176 

337.69 296 51.37 296 

335.44 297 55.85 297 

335.40 298 53.90 298 

Stearic Acid 343.67 ± 0.07 

344.04 176 

61.36 ± 0.42 

61.10 176 

343.65 299 59.96 299 

343.85 300 59.96 300 

342.75 301 61.30 301 
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Figure 3.15. Solid-liquid phase diagrams of DES composed of monocarboxylic acids and 

symmetrical quaternary ammonium chlorides. Symbols represent the experimental data 

measured in this work while the solid lines depict the PC-SAFT modelling. 

Taking into account the simple eutectic behavior observed for these systems, they were 

modeled with Equation 3.20 by two methods: i) considering ideal liquid phase (γi = 1) and 
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ii) as non-ideal liquid phase with activity coefficients calculated with PC-SAFT EoS. The SLE 

modeling results with activity coefficients obtained from PC-SAFT for the systems under 

study are illustrated in Figure 3.15, while the comparison with the ideal solubility curves is 

depicted in Figure 3.16 for the system [N2222]Cl + lauric acid, and in Appendix 3 for all 

other systems under study (Figures S3.6 to S3.10). 
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Figure 3.16. Solid-liquid equilibrium (left) and activity coefficients (right) for the DES 

[N2222]Cl + lauric acid. Legend: , experimental; ―,PC-SAFT; ---, ideal. 

Figure 3.15 shows that PC-SAFT is able to provide a good description of the experimental 

data using either one or two binary parameters (accounting for corrections to the cross-

dispersion energy and/or cross-association energy). The binary parameters are listed in 

Table 3.13. They were obtained by optimizing an objective function that equaled to a 

minimization of the AAD(T) given in Equation 3.22 using all the experimental SLE data 

listed in Tables S3.8-S3.10. Using the pure-component parameters listed in Table 3.10 and 

Table 3.11, the melting properties in Table 3.12 and the binary interaction parameters in 

Table 3.13, Equation 3.20 allows to accurately describe the experimental data. The highly 

unsymmetrical non-ideal behavior that characterizes these mixtures is correctly described 

with PC-SAFT. That is, the solubility curves of the quaternary ammonium salts are much 

more non-ideal than the solubility curves of the carboxylic acids. This is also graphically 

illustrated in Figure 3.16 by the values of the activity coefficients in the system [N2222]Cl + 

lauric acid: these values are very low (close to zero) for the quaternary ammonium salts 

whereas values by one order of magnitude higher can be observed for the carboxylic acid. 
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Table 3.13. Binary parameters applied within PC-SAFT model. 

 

This highly unsymmetrical non-ideality was observed for all systems under study, and is 

presented in Figures S3.6-S3.10 of the Appendix 3. Besides some small quantitative 

differences between the activity coefficients of the quaternary ammonium salts in the 

systems under study, a big qualitative difference between the activity coefficients of the 

carboxylic acids in the DES under study becomes obvious. In the systems containing 

[N1111]Cl, very small deviations to ideality can  be found as the activity coefficients of the 

carboxylic acids are close to one, and usually values L

acid >1.0) were observed. However, 

upon increasing the chain length of the alkyl groups of the quaternary ammonium salt, 

negative deviations to ideality were also observed based on the fact that the values L

acid  

<< 1.0. That is, the attractive interactions strongly increase with increasing chain length of 

the quaternary ammonium salt, and a moderate increase can also be observed with 

increasing chain length of carboxylic acid. This behavior suggests a strengthening of the 

HBA:HBD complex due to the weakening of the coulombic interactions between the 

cation and anion of the salt with the increase of its alkyl chains, which has been described 

Systems 
PC-SAFT binary parameters 

ijk  _ij epsk  

[N1111]Cl + capric acid -0.178 ---- 

[N1111]Cl + lauric acid -0.210 ---- 

[N1111]Cl + myristic acid -0.220 ---- 

[N1111]Cl + palmitic acid -0.220 ---- 

[N1111]Cl + stearic acid -0.220 ---- 

[N2222]Cl + capric acid -0.085 -0.270 

[N2222]Cl + lauric acid -0.100 -0.180 

[N2222]Cl + myristic acid -0.120 -0.140 

[N2222]Cl + palmitic acid -0.140 -0.096 

[N2222]Cl + stearic acid -0.160 -0.060 

[N3333]Cl + capric acid -0.050 -0.280 

[N3333]Cl + lauric acid -0.050 -0.250 

[N3333]Cl + myristic acid -0.050 -0.290 

[N3333]Cl + palmitic acid -0.050 -0.320 

[N3333]Cl + stearic acid -0.050 -0.220 
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by Kurnia et al.202 for the interactions of ionic liquids and water through hydrogen 

bonding.  

In general, extreme strong negative deviations from ideal mixture behavior is found in all 

DES under study causing a large decrease in the system melting temperature. Strong 

associative interactions (hydrogen bonding) between the two DES constituents are the 

main reason for the observed negative deviations to ideality. Cross-association occurs 

between the carboxylic acid that acts as H-bonding donor and the quaternary ammonium 

salt that acts as H-bonding acceptor. These strong cross interactions explain very low 

activity coefficients. However, activity coefficients of the carboxylic acids are larger than 

one at very high concentration of carboxylic acid in the mixture. In these concentration 

regions, self-association interactions between the carboxyl groups become stronger than 

in the pure-component state, and cross-association interactions play a minor role.282,290 

Thus, the melting-point depressions are higher the higher the amount of quaternary 

ammonium salt present in the mixture. This explains the behavior of the almost 

horizontal liquidus line of carboxylic acid shown in Figure 3.15. In fact, the eutectic 

behavior observed in these systems is not trivial, as the complex interaction behavior is 

additionally confronted by very large differences between the melting temperatures of 

the DES constituents. This prevents high melting-point depressions in regions with high 

concentration of carboxylic acid, which forces the eutectic temperature close to the 

melting temperature of the pure carboxylic acid302 (note in Figures S3.6 to S3.10 that the 

ideal solubility curves exhibit this behavior).  

In contrast to the close-to-ideal phase behavior at high concentrations of carboxylic acids, 

negative deviations to ideality are very high at higher concentrations of quaternary 

ammonium salt. The deviations to the experimental data (in terms of AAD, in K) applying 

Equation 3.20 under the assumption of ideal mixture behavior is depicted in Figure 3.17. 

High deviations to the experimental data can be observed due to the significant negative 

deviations from ideal behavior at high concentrations of quaternary ammonium salt. 

Thus, advanced thermodynamic models such as PC-SAFT are required in order to quantify 

activity coefficients and to improve the accuracy of Equation 3.20. PC-SAFT allows for a 

good description of most systems with a global AAD (K) of only 7.39 K for all the systems 
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studied in this work. Taking into account the large temperature ranges studied (about 300 

K), these results can be considered as a very satisfactory result. 
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Figure 3.17. Deviations to the experimental data measured in this work: , ideal; , PC-

SAFT for a) [N1111]Cl + carboxylic acids b) [N2222]Cl + carboxylic acids c) [N3333]Cl + 

carboxylic acids.  

One drawback of the measurements is the time they consume. A huge number of 

measurements is required to quantify the eutectic point (eutectic temperature TE and 

composition xE), allowing also to assess the temperature difference between ideal TE and 

real TE (assigned with ΔTE). To overcome this time limitation, PC-SAFT was applied in this 

work in order to estimate the eutectic point of the DES under study. For that purpose, the 

pure-component parameters in Table 3.10 and Table 3.11 and the binary parameters in 

Table 3.13 were used. The modeling results are depicted in Figure 3.18. Figure 3.18 

suggests that the eutectic composition is shifted towards lower mole fractions of acid 

upon increasing alkyl chain of both, the acid and the quaternary ammonium salt. In spite 

of the uncertainties of experimental data and PC-SAFT modelling associated to these 

estimates it can be stated that a fixed stoichiometric relationship between carboxylic acid 
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and quaternary ammonium salt is not observed. This is not surprising as the systems 

under study do not obey co-crystal formation with a fixed stoichiometric composition. It 

is possible however to state that the liquid mixture seems to be dominated by associates 

with molar ratios of 2:1 for the considered DES carboxylic acid / quaternary ammonium 

salt.  

The eutectic temperature increases with increasing chain length of the carboxylic acid. 

This is expected as the pure-acid melting temperature limits the eutectic temperature of 

the system, i.e. the lower the melting temperature for the pure acid, the lower TE values. 

Further, it can be observed from Figure 3.18 that TE decreases from [N1111]Cl to [N3333]Cl, 

which can be explained by the decrease of melting points of the quaternary ammonium 

salts from [N1111]Cl to [N3333]Cl combined with the increased non-ideality of the liquid 

phase from [N1111]Cl to [N3333]Cl (see Appendix 3).  
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Figure 3.18. a) Eutectic compositions b) eutectic temperatures c) melting-temperature 

depression of the various DES studied, estimated by PC-SAFT. , [N1111]Cl; , [N2222]Cl; ▲, 

[N3333]Cl. 
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Concerning the temperature difference ΔTE (i.e. the difference between the eutectic 

temperature estimated by PC-SAFT and that calculated considering an ideal liquid phase 

for the estimated eutectic composition), an increase following the order: [N1111]Cl > 

[N2222]Cl > [N3333]Cl can be observed from Figure 3.18, which is mainly due to the melting 

temperatures of the pure quaternary ammonium salts. In contrast, activity coefficients of 

the salts decrease in the order [N1111]Cl > [N2222]Cl > [N3333]Cl , as illustrated in Figures S3.6 

– S3.10. Thus, the strength of cross interactions increase in the order [N1111]Cl < [N2222]Cl < 

[N3333]Cl between the salt and the carboxylic acid. The very large temperature difference 

observed are a strong evidence that the systems studied here are, in fact, deep eutectic 

mixtures. 

These observations are further reinforced by the binary parameters estimated for 

quantitative PC-SAFT modeling. As already known, one of the advantages of using these 

coarse-grained models is the enhanced physical meaning of the model parameters, when 

compared to activity coefficients models. The binary _ij epsk  accounts for deviations in the 

cross-association energy obtained through the conventional mixing rules. The fact that 

_ij epsk  takes negative values applied confirms the strong cross-association between acid 

and salt in the considered DES. According to Table 3.13, the _ij epsk  values become more 

negative in the order [N1111]Cl < [N2222]Cl < [N3333]Cl, supporting the interpretation for an 

increase of the cross-association strength in that order. 

Despite the importance of hydrogen bonding, also dispersion forces are important in the 

DES under study. To quantitatively model the phase diagrams shown in Figure 3.15 and 

Figure 3.16, one binary interaction parameter ijk , that accounts for deviations to the 

mixture’s dispersive energy, was applied to each mixture. According to Table 3.13, the 

values obtained were also negative, which means an increased mixture’s dispersive 

energy compared to the ideal combining rule and points to very strong cross-dispersion 

interactions. As often observed for a series of mixtures with mixing partner from one 

family (e.g. water-alkane, gas-alkane and many more), the parameter ijk  can be 

correlated with molecular weight of the mixing partner. In the DES studied in this work, 
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ijk values become more negative upon increasing the alkyl chain length of the carboxylic 

acid. In Table 3.13, an exception can be found for the DES with [N3333]Cl, where ijk  values 

were applied that were independent of the chain length of the carboxylic acid. For these 

mixtures, cross-association interactions obviously dominate the physical behavior of the 

mixtures, and dispersion interactions are less important compared to the DES with 

[N1111]Cl or [N2222]Cl. In this work, the binary parameters applied were found to follow 

these dependencies on molecular weight of the carboxylic acid: 

6 2 3 2

1111 _ _( ) 6.715 10 3.402 10 0.2066 ( 0.9634)ij w acid w acidk N Cl M M R           (3.23) 

4 2

2222 _( ) 6.773 10 0.03367 ( 0.9972)ij w acidk N Cl M R         (3.24) 

3333( ) 0.05ijk N Cl      (3.25) 

2

_ 2222 _( ) 0.4063 ( ) 2.350 ( 0.9823)ij eps w acidk N Cl Ln M R        (3.26) 

These correlations allow predicting interaction parameters for mixtures that are not 

presented in this work, or alternatively to decrease the number of required binary 

parameters, reducing considerably the amount of experimental data to be gathered in 

order to correctly describe the SLE behavior of this type of DES. 

3.2.6. Conclusion 

(Solid+liquid) phase equilibrium diagrams for 15 different DES composed of carboxylic 

acids and symmetrical quaternary ammonium chlorides were measured by a combination 

of DSC and visual methods. The experimental data obtained showed that these systems 

present a single-eutectic type behavior, with a eutectic temperature very close to the 

melting temperature of pure carboxylic acid, and a very large negative deviation from 

ideal-mixture behavior, that becomes more relevant as the salt alkyl chain increases. This 

behavior suggests a strengthening of the HBA:HBD complex upon weakening the 

coulombic interactions between the cation and anion of the salt with the increase of its 

alkyl chain length. 
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The modelling of the studied systems was performed applying the molecular based PC-

SAFT EoS. The pure-component PC-SAFT parameters were either taken from literature, or 

fitted to experimental data of the pure compound for the acids, or, in the case of the 

salts, to activity data and density data of their aqueous solutions. The pure-compound 

parameters taken from literature showed transferability of the molecular parameters to 

different mixtures, phases or phase equilibria. By using one or two binary parameters 

(that in most cases can be kept constant or correlated to the molecular weight of the 

fatty acid), a good quantitative description (an average AAD of only 7.39 K) of the 

experimental data was achieved, despite the complex cross-association and large 

asymmetry of the studied mixtures. PC-SAFT modeling allowed to estimate the eutectic 

points of the DES under study. The physical meaning of the parameters within this model 

was also enhanced and insights into the molecular interactions in the systems were given. 

In more detail, the binary parameters accounting for deviations in the cross-association 

energy and cross-dispersion energy suggested the increase in cross-association (cross-

dispersion) as the number of CH2 groups in the salt (acid) increased.  

The results here reported show that PC-SAFT can be a valuable tool in the description of 

the SLE of DES, and allows for a better understanding of phase behavior and interactions 

within this type of deep eutectic mixtures. 

3.3. Indirect assessment of the fusion properties of choline chloride from solid-liquid 

equilibria data 

Luis Fernandez, Liliana P. Silva, Mónia A. R. Martins, Olga Ferreira, Juan Ortega, Simão P. 

Pinho & João A. P. Coutinho, Fluid Phase Equilibria, in press (2017), DOI: 

10.1016/j.fluid.2017.03.015. 

3.3.1. Abstract 

The temperature and enthalpy of fusion of choline chloride -[Ch]Cl- are not measurable 

directly since the compound decomposes upon melting. Yet, given the wide use of this 

compound in the preparation of deep eutectic solvents (DES), its thermophysical fusion 

properties are very important for a better understanding of these mixtures and the 



 
Chapter 3 – Extraction, Production and Deterpenation 

111 
 

thermodynamic description of their solid-liquid phase diagrams. In this work, the fusion 

properties of choline chloride were estimated using the solubility curves of choline 

chloride in ten different ionic compounds, forming simple binary eutectic mixtures with 

quasi-ideal liquid phases. Experimental solid-liquid equilibria data for these systems -

[Ch]Cl+ionic compounds- were measured, and the ideality of the systems assessed 

through the quantification of the activity coefficients and their comparison in each pair of 

binary solutions. The values estimated for the fusion properties of choline chloride are 

Tfus,[Ch]Cl=597±7 K and fusH[Ch]Cl=4300±600 J·mol-1. These were additionally checked by 

thermodynamic consistency tests and by the prediction of the solid-liquid curves with 

COSMO-RS model. The results obtained with both procedures allow us to guarantee the 

usefulness and robustness of the estimated data. 

3.3.2. Introduction 

Deep eutectic solvents (DES) formed by choline chloride ([Ch]Cl) and organic hydrogen 

donors130,148,303 have been proposed as green solvents for a wide range of 

applications131,132,304 due to their interesting properties, such as good solvent capacity, 

low cost, and low eco-toxicity.305 The knowledge of the melting properties of [Ch]Cl is 

necessary to thermodynamically characterize the choline-based DES, which includes the 

estimation of the eutectic points and the complete description of their solid-liquid phase 

diagrams. This is relevant for the design and optimization of processes involving DES, 

including the search and selection of the best DES for a particular application. However, 

the decomposition temperature of [Ch]Cl before/upon melting306 prevents the use of 

direct technics for the measurement of fusion properties. 

In this work an indirect method to estimate the fusion temperature and enthalpy of 

[Ch]Cl was used. This is based on the evaluation of the solid-liquid phase equilibria of a 

set of quasi-ideal binary solutions formed by [Ch]Cl and other ionic compounds. Previous 

works302,307,308 have shown that mixtures of ionic liquids, even with melting points above 

100 oC, often form quasi-ideal mixtures. For this purpose, the solubility curves of ten 

eutectic systems formed by [Ch]Cl and the ionic compounds (IC): choline acetate 

([Ch][Ac]), choline propanoate ([Ch][Prop]), choline butanoate ([Ch][Buta]), 
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tetrabutylammonium chloride ([N4444]Cl), tetrabutylphosphonium chloride ([P4444]Cl), 

benzyldimethyl(2-hydroxyethyl)-ammonium chloride ([BzCh]Cl), 1-butyl-1-

methylpyrrolidinium chloride ([C4mpyr]Cl), choline bis(trifluoromethylsulfonyl)imide 

([Ch][NTf2]), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl) and 1-(2-hydroxyethyl)-3-

methylimidazolium chloride, ([C2OHmim]Cl), were measured. The quasi-ideality of each 

mixture was firstly assessed calculating the activity coefficients by COSMO-RS,218 and 

using the experimental data to compare the similarity of [Ch]Cl activity coefficients in 

each pair of binary systems. The solubility data were then used to estimate the fusion 

properties of [Ch]Cl by linear regression of the solid-liquid equilibrium equation, and the 

final results were checked using two independent procedures: 1) evaluation of the 

thermodynamic consistency of the experimental data, and 2) estimation of the solid-

liquid phase diagrams by COSMO-RS and comparison with the experimental phase 

equilibria diagrams. 

3.3.3. Experimental 

3.3.3.1. Materials 

The source, purity and temperature of fusion of the compounds used in this work are 

described in Table 3.14. [Ch][Prop] and [Ch][Buta] were synthetized in our laboratory 

following standard procedures presented in Appendix 3.3. Before use, all individual 

compounds were purified under vacuum (0.1 Pa and 298 K), for at least 72 h. The water 

content was then measured by Karl-Fisher and was found to be always lower than 600 

ppm. 

3.3.3.2. Methods 

The melting temperatures were determined with an automatic glass capillary 

device model M-565 from Buchi (100-240 V, 50-60 Hz, 150 W), which has a 

temperature resolution of 0.1 K. Since many ionic compounds are highly 

hygroscopic, in particular choline chloride, mixtures were prepared inside a dry-

argon glove-box, at room temperature using an analytical balance model ALS 220-

4N from Kern with an accuracy of ±0.002 g. Vials with mixtures were, whenever 
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possible, heated under stirring until complete melting and then recrystallized. The 

solid mixtures were ground in the glove-box and the powder filled into a capillary. 

A temperature gradient of 0.5 K·min-1 was used in all cases, and the melting 

procedure repeated at least two times. The estimated uncertainty of the melting 

temperatures is better than 1.2 K. This technique was also used to determine the 

degradation temperature of pure [Ch]Cl, where different temperature gradients 

were used (see Table S3.15 and Figure S3.11 of Appendix 3). 

Table 3.14. Pure component properties. 

Compound Source 
Purity / 

% 

Tfus / K fusH / 

J·mol-1 exp. lit. 

[Ch]Cl Acros Organics 98  575.15130 - 

[Ch][Ac] Iolitec > 99 362.62a 324.15309/345.15310 8881.7d 

[Ch][Prop]c - - 282.57b - 2238.6b 

[Ch][Buta]c - - 315.98b 318.15311 8793.6b 

[N4444]Cl Sigma-Aldrich 97 342.82a 348.15312 19430d 

[P4444]Cl Cytec 97 339.46a 338.15313 - 

[BzCh]Cl Aldrich 97 351.42a - 8730d 

[C4mpyr]Cl Iolitec 99 472.98a >387.15314 30896d 

[Ch][NTf2] Iolitec 99 305.65b 303.15315 1226.5b 

[C2mim]Cl Iolitec 98 350.42a 363.15316 8588d 

[C2OHmim]Cl Iolitec 99 358.88a 335.15114 20974d 

aVisual detection, bDSC, cSynthetized in this work, dEstimated from experimental data using 

Eq.3.28 and the experimental points with xIC>0.6. 

In a few specific cases indicated in Table 3.14, differential scanning calorimetry 

(DSC) was used. The melting properties were determined using a Hitachi DSC7000X 

model working at atmospheric pressure. Samples of approximately 5 mg tightly 

sealed in aluminium pans were submitted at least to 3 repeated cooling−heating 

cycles at 2 K·min-1. The thermal transitions temperatures were taken as the peak 

temperature. The temperature uncertainty calculated through the average of the 

standard deviation of several consecutive measurements was better than ± 0.1 K. 

The equipment was previously calibrated with several standards with weight 

fraction purities higher than 99%. 
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3.3.4. Theoretical approach 

For eutectic systems with complete immiscibility in the solid phase the phase 

equilibrium can be described by 3.27:177 
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where 
ix  is the mole fraction solubility of compound i and L

i  its activity coefficient 

in the liquid phase, Hfus  and fusT  are the enthalpy and temperature of fusion, 

respectively, R is the ideal gas constant, T is the absolute temperature, and pfusC  

is the difference between the heat capacity of the compound i in liquid and solid 

phases. Since values for the heat capacities of most compounds here studied have 

not yet been measured, and for [Ch]Cl it is not measurable since the compound 

decomposes before melting, the last term in Eq. 3.27 is neglected in this work. 

Moreover, even when that data is available, the contribution of this term to the 

phase equilibrium calculations has been shown to be very small.178,179 If the liquid 

phase is an ideal mixture, Eq. 3.27 becomes, 
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Eq. 3.28 shows a linear relationship between )ln( ix  and 1/T and thus, a linear 

regression of a set of experimental data for the solubility of choline chloride, in 

ideal systems, can provide an indirect estimation of the [Ch]Cl fusion properties. In 

the same way, Eq. 3.28 provides an estimation of the enthalpies of fusion for the 

other components for which these data are not available. These estimated 

enthalpies of fusion are shown in Table 3.14.   

Assessment of the systems ideality 

The use of Eq. 3.28 implies that the experimental data used in the regression must 

come from systems with an ideal, or quasi-ideal, liquid phase. In this work, from a 



 
Chapter 3 – Extraction, Production and Deterpenation 

115 
 

set of 21 binary systems containing [Ch]Cl, a group of 10 was selected after 

checking the ideality of the liquid phase of those systems using, initially, COSMO-

RS. 

COSMO-RS allows the prediction of the activity coefficients of each compound in a 

mixture without any empirical data. The activity coefficients at 300, 400 and 500 K 

of the [Ch]Cl(1)+IC(2) systems were estimated by COSMO-RS and this information 

used to assess the ideality of the solutions. Before the estimations, all the IC 

structures were optimized.317 The ions of each compound were optimized 

simultaneously as an ion pair. On a second step, the COSMO file of each structure 

was generated by Gaussian, computing the ideal screening charges on the 

molecular surface at the BVP86/TZVP/DGA level.317 

Despite its usefulness, COSMO-RS is a predictive tool and thus, additional 

experimental-based verifications must be performed. For this reason, an empirical 

procedure named -method was further employed to check the similarity of the 

behavior of each pair of binary solutions. This approach is based on the constancy 

of the second term of the equilibrium in Eq. 3.27, when the solid phase is the same, 

in this study [Ch]Cl, and so the product L

iix   is independent of the second 

compound in solution. This allows us to establish the equality between the 

activities of [Ch]Cl in two different binary solutions at the same temperature: 

        BClChBClChAClChAClCh xx ,,,,          (3.29) 

where A and B are two different ionic compounds forming binary solutions with 

[Ch]Cl. To compare magnitudes, , is defined as the ratio of the mole fractions of 

[Ch]Cl in both systems, which is equivalent to the ratio of the [Ch]Cl activity 

coefficients: 


 
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From two experimental binary data sets, interpolated values for the [Ch]Cl mole 

fractions at the same temperature can be found, and  calculated, showing similar 

magnitudes of [Ch]Cl activity coefficients, when the ratio is close to one. 

Consistency of estimated properties 

Beyond the uncertainty of the fusion properties, which can be high due to the nature of 

the studied substances as well as of the indirect method applied, a very important 

concept is their reliability, in terms of the error introduced by the use of these properties 

in the equilibrium calculations. A check of this reliability was performed through the 

thermodynamic consistency tests proposed by Kang et al.318 and Cunico et al.319, which 

apply pure compound fusion properties to check the quality of the data. These methods 

are described briefly in Appendix 3.3. 

3.3.5. Results and discussion 

Solid-liquid phase diagrams 

The phase diagrams measured for the ten selected systems –[Ch]Cl(1)+IC(2)– 

retained for the assessment of [Ch]Cl fusion properties are plotted in Figure 3.19 

and listed in Table S3.16 of Appendix 3.  

 

Figure 3.19. Solid-liquid phase diagrams for the [Ch]Cl+Ionic compounds systems studied. 

[Ch]Cl(1)+ () [Ch][Ac](2); ()[Ch][Prop](2); () [Ch][Buta](2); ()[N4444]Cl(2); 

()[P4444]Cl(2); () [BzCh]Cl(2); ()[C4mpyr]Cl(2); ()[Ch][NTf2](2); ()[C2mim]Cl(2); 

()[C2OHmim]Cl(2). 
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Data show a similar behavior in all the solubility curves. The solubility curve of 

[Ch][Prop] was not possible to measure because this compound is liquid at room 

temperature, preventing the use of the experimental methodology applied in this 

work. The eutectic points of all the other systems studied depend essentially on 

the fusion properties of the IC in solution.  

Evaluation of the ideality of the studied systems: estimation of the activity coefficients 

by COSMO-RS 

The activity coefficients of [Ch]Cl at equimolar composition were estimated by 

COSMO-RS at three temperatures (T=300, 400 and 500 K) and are reported in Table 

S3.17, while the curves at the full composition range can be found in Figure S3.14 

of Appendix 3.  

According to the equimolar data, all systems show a quasi-ideal behavior with 

exception of the mixture containing [N4444]Cl. However, the value of the activity 

coefficients of these systems is still adequate in the concentrated [Ch]Cl 

composition region (see Figure S3.14), and thus they were also considered in this 

work. The system [Ch]Cl+[Ch][Ac] presents a strong negative deviation to the ideal 

behavior at low temperatures, which decreases rapidly with increasing 

temperature. Therefore, a quasi-ideal behavior is expected close to the fusion 

temperature of [Ch]Cl and the data were also considered.  

The experimental activity coefficients of the ten systems studied were calculated 

by Eq. 3.27 and are reported in Table S3.16 along with the solubility data. These 

values further confirm the ideality of the studied systems.  

Evaluation of the ideality of the studied systems: -method 

All the possible combinations for comparing two different binary systems were 

explored, and for each system, the values of  that present maximum deviation 

from unity are summarized in Table S3.18. The systems showing the most different 

behavior between each other are [Ch]Cl+[Ch][Buta] and [Ch]Cl+[C2OHmim]Cl and  

[Ch]Cl+[Ch][Buta] and [Ch]Cl+[N4444]Cl. Four pairs of systems show a value of =1: 
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[Ch]Cl+[Ch][Prop] and [Ch]Cl+[N4444]Cl or [C2OHmim]Cl, [Ch]Cl+[N4444]Cl + 

[C2OHmim]Cl and [P4444]Cl + [C2mim]Cl, but all the others are close enough to 1 to 

consider that they have a very similar behavior, and so to be used in the 

assessment of the fusion properties.  

Assessment of the fusion properties of [Ch]Cl 

After the establishment of the quasi-ideality of the ten systems selected, the 

experimental data were fitted using Eq. 3.28. To do so, only the experimental 

information, for each binary system, comprising choline chloride mole fractions 

higher than 0.6, was considered. Figure 3.20 shows the results of the linear 

regression. 

 

Figure 3.20. Plot of the regression by equation 3.29 of the experimental data for 

the solubility of [Ch]Cl in [Ch]Cl+Ionic compounds systems. [Ch]Cl(1)+ () 

[Ch][Ac](2); ()[Ch][Prop](2); () [Ch][Buta](2); ()[N4444]Cl(2); ()[P4444]Cl(2); 

() [BzCh]Cl(2); ()[C4mpyr]Cl(2); ()[Ch][NTf2](2);  ()[C2mim]Cl(2); 

()[C2OHmim]Cl(2). (—) ideal solution (Tfus,[Ch]Cl = 597 K, fusH[Ch]Cl = 4300 J·mol-1). 

The calculated fusion properties of choline chloride are Tfus,[Ch]Cl = 597 ± 7 K and 

fusH[Ch]Cl = 4300 ± 600 J·mol-1. The deviation of these values to those obtained by 

applying Eq. 3.28 to each individual system (Table S3.19) are: s(Tfus,[Ch]Cl)= 11 K and 

s(fusH[Ch]Cl)= 593 J·mol-1, close to the uncertainty of the estimated properties. 
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The deviations increase for lower concentrations of [Ch]Cl, where an increase 

deviation to ideality is observed. However, all curves converge for concentrated 

choline chloride mixtures, with the experimental data showing small deviations 

from the fit and allowing a good estimation of the fusion properties. Given that the 

compound decomposes before melting there are no literature data of the enthalpy 

of fusion of [Ch]Cl to compare with the values here estimated. Abbott et al.130 

proposed a value for the fusion temperature of [Ch]Cl, that is probably a 

decomposition temperature. This is somewhat lower than the value estimated in 

this work (T18 K), but nevertheless again within the uncertainty of the 

estimation. 

Validation of the results 

The values of the three quality factors described in Appendix 3.3 [(S3.4), (S3.7) and 

(S3.10)] are presented in Table S3.20. The NRTL model320 was used to fit the solid-

liquid equilibria diagrams (parameters given in Table S3.21). All systems show very 

satisfactory quality factors by the three consistency tests. The system which shows 

a lower quality is [Ch]Cl+[P4444]Cl.  

An additional verification of the results was performed through the reproduction of 

the solid-liquid phase equilibria of all systems by COSMO-RS model. For that, the 

properties estimated for [Ch]Cl and the other components shown in Table 3.14 

(experimental and estimated) were used. Figure S3.15 presents all the resulting 

diagrams obtained, showing a very satisfactory representation of the experimental 

data, with three exceptions: the solubility curves of the systems [Ch]Cl+[Ch][Ac] 

and [Ch][NTf2] do not intersect because of the low value of the activity coefficients 

at low temperatures, and the system [Ch]Cl+[N4444]Cl presents a curious concavity 

resulting from a large deviation of the ideality estimated by COSMO-RS, which is in 

total disagreement with the quasi-ideal behavior found from the experimental 

solid-liquid equilibrium data.  

The eutectic points obtained from the experimental data, and the different models 

used (NRTL and COSMO-RS) are presented in Table S3.22, showing relevant 
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differences as COSMO-RS is a pure predictive model. These results also show the 

importance to find the eutectic coordinates experimentally. 

Finally, is important to reinforce that the methodology here proposed can 

potentially be expanded to other ionic compounds that decompose upon melting, 

giving tools for a much better analysis, thermodynamic representation and 

eventually screening of new DES. 

3.3.6. Conclusion 

The experimental solid-liquid equilibria data of choline chloride in ten different 

ionic compounds was measured and the solubility curves used to estimate the 

fusion properties of choline chloride: Tfus,[Ch]Cl=597±7 K and fusH[Ch]Cl=4300±600 

J·mol-1. These were additionally checked by thermodynamic consistency tests and 

by the prediction of the solid-liquid curves with COSMO-RS model. Results 

obtained guarantee the usefulness and robustness of the estimated data. 

3.4. Solid-liquid phase diagrams of eutectic solvents based on choline chloride and 

fatty acids or alcohols 

Mónia A. R. Martins, Liliana P. Silva, Olga Ferreira, Simão P. Pinho & João A. P. Coutinho, 

in preparation. 

3.4.1. Abstract 

The solid-liquid equilibria phase diagrams of eight eutectic systems formed by choline 

chloride and a fatty alcohol or a fatty acid were measured. All systems show slight 

deviations to ideal behavior, especially for the non-ionic compounds, resulting from the 

sum of the hydrogen bonding between the acid/alcohol groups with the chloride anion 

(attractive) and the dispersion forces (repulsive). In most of the cases, experimental 

eutectic points present temperatures higher than those obtained for ideal mixtures, 

showing that these systems cannot be considered as deep eutectic solvents.  
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3.4.2. Introduction 

In spite of the very large number of eutectic solvents reported in the literature, the actual 

number of solid-liquid phase diagrams investigated is surprisingly scarce despite the 

important information they can provide on the donor-acceptor interactions, and the 

range of compositions and temperatures for operating these systems.130,303 This limits the 

systems characterization and the development of models to describe the liquid phase 

non-ideality, and the ability to design new eutectic solvents using computer aided 

molecular design approaches, instead of the trial and error currently used. Additionally, 

to screen solvents with particular characteristics and specific ranges of eutectic 

temperatures, knowledge on the relationship between the structural characteristics of 

organic compounds and the eutectic points is necessary. Thus, studies of solid-liquid 

phase diagrams focused on comparable systems (same functional groups and different 

chain lengths, or same chain lengths and different functional groups, etc.) are required.  

In this work, the solid-liquid phase diagrams of eight eutectic solvents formed by choline 

chloride and fatty alcohols or fatty (monocarboxylic) acids are reported. The experimental 

data were measured using a visual detection technique and the thermodynamic 

consistency verified using tests available in literature.318,319  

3.4.3. Experimental 

3.4.3.1. Materials 

The properties of the compounds used in this work are detailed in Table 3.15. 

Experimental melting temperatures for the fatty alcohols and fatty acids obtained in this 

work were compared with literature showing a good agreement. For choline chloride the 

melting properties proposed in section 3.3 were used.321 Choline chloride was purified 

before use under vacuum (0.1 Pa and 298 K) and constant stirring, for at least 72 h. The 

water content was measured using a Metrohm 831 Karl Fischer coulometer, with the 

analyte Hydranal® – Coulomat AG from Riedel-de Haën, and was found to be below 

700ppm. 
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Table 3.15. Pure component properties. 

Compound Source Purity % 
Tfus / K fusH / 

J·mol-1 exp. lit. 

[Ch]Cl Acros Organic 98 - 597321 4300321 

1-tetradecanol Aldrich n.a. 311.7 ± 0.3 311.10175 45810175 

1-hexadecanol Aldrich 99 324.4 ± 0.2 322.90176 60960176 

1-octadecanol Aldrich 99 332.9 ± 0.4 331.34176 65350176 

Decanoic acid Alfa Aesar 99 304.6 ± 0.2 305.48175 27230175 

Dodecanoic acid Acros Organics 99 317.5 ± 0.3 318.48175 34620175 

Tetradecanoic acid Acros Organics 99 327.4 ± 0.2 328.93175 43950175 

Hexadecanoic acid Riedel de Haen 98 336.2 ± 0.2 336.36176 53020176 

Octadecanoic acid Acros Organics 97 343.4 ± 0.3 344.04176 61100176 

n.a. not available. 

3.4.3.2. Methods 

The solid-liquid phase diagrams were measured using a melting point device model M-

565 by Bucchi (100-240 V, 50-60 Hz, 150 W) with a temperature resolution of 0.1 K. 

Temperature gradients of 0.1 and 0.5 K·min-1 were used for pure components and 

mixtures, respectively. All samples were measured at least two times. Mixtures were 

prepared at room temperature inside a dry-argon glove-box, using an analytical balance 

model ALS 220-4N from Kern with an accuracy of ±0.002 g. Whenever possible mixtures 

were heated under stirring until complete melting and then recrystallized and mashed. 

The powder was filled into a glass capillary. The estimated reproducibility of the 

measurements is better than 1 K. 

3.4.4. Theoretical approach 

The activity coefficient, i , at a certain composition, xi, is related with the experimental 

temperature, T, and the fusion properties (Tfus – melting temperature, fusH – enthalpy 

of fusion) of the pure compound by the following equation,177 
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where R is the universal gas constant, and pfusC  is the difference between the heat 

capacity of comnpound i in the liquid and solid states. 

This equation assumes that the solid phases of each compound are not miscible. In 

general, the last term has a negligible value when compared with the second178,179 and 

thus, it was not considered in this work. The enthalpies of fusion for the pure compounds 

were taken from literature and are summarized in Table 3.15.   

3.4.5. Results and discussion 

The solid-liquid experimental data for the systems [Ch]Cl + fatty alcohols or fatty acids are 

listed in Table 3.16 and presented in Figure 3.21. Data were checked using the 

consistency tests proposed by Kang et al.318 and Cunico et al.319 with the modification 

proposed in a previous work,321 and the NRTL parameters shown in Table S3.23. The 

results ensure an acceptable quality of the experimental data (see Table S3.24 of the 

Appendix 3).  

Table 3.16. Experimental (x1, T) and calculated (γi) data of the solid-liquid equilibria for 

the systems investigated in this work.  

x1 T / K γ2 x1 T / K γ1 

[Ch]Cl+1-Tetradecanol 

0.109 310.92 1.07 0.461 319.48 1.02 

0.202 310.32 1.16 0.505 331.28 0.99 

0.288 306.55 1.03 0.551 353.18 1.00 

0.419 303.15 1.03 0.600 390.25 1.05 

   
0.643 414.08 1.06 

   
0.711 443.85 1.04 

   
0.742 456.58 1.03 

   
0.796 483.52 1.03 

   
0.835 494.78 1.00 

   
0.893 520.08 0.99 

[Ch]Cl+1-Hexadecanol 

0.113 326.08 1.27 0.583 334.62 0.87 

0.132 323.35 1.07 0.591 335.42 0.86 

0.202 325.15 1.32 0.650 351.25 0.84 

0.306 322.55 1.27 0.679 368.55 0.86 

0.332 322.28 1.29 0.681 371.45 0.87 

0.396 320.95 1.30 0.691 369.28 0.85 
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0.408 320.78 1.31 0.750 415.78 0.91 

0.486 325.92 2.16 0.759 426.45 0.93 

0.500 318.55 1.32 0.800 452.72 0.95 

   
0.808 451.65 0.94 

   
0.860 488.25 0.96 

   
0.878 487.75 0.94 

   
0.898 513.25 0.97 

   
0.899 511.18 0.96 

   
0.944 536.25 0.96 

[Ch]Cl+1-Octadecanol 

0.098 332.42 1.07 0.567 333.68 0.89 

0.135 337.95 1.65 0.587 344.82 0.90 

0.203 331.12 1.10 0.599 341.25 0.87 

0.211 329.35 0.98 0.600 339.48 0.86 

0.302 330.55 1.21 0.632 363.25 0.91 

0.319 330.58 1.24 0.650 373.95 0.92 

0.394 329.52 1.30 0.685 383.65 0.90 

0.403 329.98 1.36 0.748 418.65 0.92 

0.492 328.48 1.43 0.750 413.78 0.91 

0.502 328.32 1.45 0.751 413.48 0.91 

   
0.798 460.15 0.97 

   
0.800 456.75 0.96 

   
0.841 480.75 0.96 

   
0.850 477.25 0.95 

   
0.888 508.55 0.97 

   
0.901 510.18 0.96 

   
0.939 541.55 0.97 

[Ch]Cl+Decanoic acid 

0.101 304.60 1.11 0.456 328.75 1.08 

0.212 304.45 1.26 0.485 343.30 1.09 

0.296 304.10 1.40 0.540 373.60 1.10 

0.342 309.25 1.79 0.592 395.55 1.09 

0.399 304.70 1.67 0.642 413.70 1.06 

   
0.675 427.85 1.05 

   
0.761 453.70 1.00 

   
0.786 473.55 1.02 

   
0.850 499.80 0.99 

   
0.896 520.95 0.98 

   
0.938 543.95 0.98 

[Ch]Cl+Dodecanoic acid 

0.100 316.48 1.07 0.446 324.20 1.08 

0.198 315.88 1.17 0.497 343.85 1.06 

0.297 313.38 1.20 0.561 373.75 1.06 

0.345 313.20 1.28 0.594 405.62 1.12 
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0.411 316.05 1.60 0.658 423.45 1.06 

   
0.691 444.35 1.08 

   
0.748 473.40 1.07 

   
0.792 483.78 1.03 

   
0.840 505.70 1.02 

   
0.877 513.35 0.99 

   
0.953 543.55 0.96 

[Ch]Cl+Tetradecanoic acid 

0.101 326.65 1.07 0.550 338.85 0.94 

0.208 326.20 1.19 0.579 373.62 1.03 

0.311 325.95 1.35 0.653 395.40 0.98 

0.405 325.45 1.53 0.667 413.52 1.02 

0.491 323.30 1.60 0.745 443.25 0.99 

   
0.799 473.45 1.00 

   
0.839 483.95 0.97 

   
0.897 523.82 0.99 

   
0.944 543.75 0.97 

[Ch]Cl+Hexadecanoic acid 

0.112 334.50 1.02 0.449 338.85 1.15 

0.221 330.75 0.94 0.527 366.05 1.10 

0.309 329.00 0.96 0.554 393.88 1.16 

0.409 323.60 0.81 0.603 418.85 1.15 

   
0.652 438.48 1.12 

   
0.673 443.48 1.10 

   
0.750 473.58 1.06 

   
0.803 502.18 1.06 

   
0.850 517.95 1.03 

   
0.895 539.52 1.02 

[Ch]Cl+Octadecanoic acid 

0.108 342.45 1.06 0.452 355.52 1.23 

0.189 341.72 1.11 0.505 388.62 1.25 

0.297 340.68 1.20 0.574 400.88 1.14 

0.386 339.55 1.28 0.596 433.78 1.21 

   
0.650 443.85 1.14 

   
0.695 463.58 1.12 

   
0.746 483.82 1.09 

   
0.787 493.68 1.06 

   
0.844 523.92 1.05 

   
0.896 543.68 1.03 
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Figure 3.21. Solid-liquid phase diagrams of [Ch]Cl + fatty alcohols and fatty acids. () 

Experimental data, (- - -) Ideal solution. [Ch]Cl + (a) 1-tetradecanol; (b) 1-hexadecanol; (c) 

1-octadecanol; (d) Decanoic acid; (e) Dodecanoic acid; (f) Tetradecanoic acid; (g) 

Hexadecanoic acid; (h) Octadecanoic acid. 
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The activity coefficients of each compound in the solutions were calculated from the 

experimental data, using equation 3.31, and the resulting values are also presented in 

Table 3.16. In general, small deviations from ideal behavior are observed. For the non-

ionic compounds, in general, low positive deviations are obtained except for the system 

containing hexadecanoic acid. In this case, the negative deviations reflect a higher 

temperature decrease from the pure acid melting point up to the eutectic point. As can 

be seen in Figure 3.21, by comparing systems containing the fatty acid or the fatty alcohol 

with the same chain length, the systems [Ch]Cl+1-tetradecanol and [Ch]Cl + tetradecanoic 

acid are very well described by the ideal solubility curve in this composition range. For 

systems containing 16 or 18 carbon atoms, γ1 are slightly lower than 1 for the fatty 

alcohols systems and slightly higher than 1 for the fatty acids.  

Table 3.17 presents the experimental and ideal eutectic compositions and temperatures 

of the measured systems. Experimental temperatures are all below 339.6 K and any 

mixture is liquid at room temperature. The differences between the experimental and the 

ideal-solution eutectic temperatures, show that only the system [Ch]Cl + hexadecanoic 

acid show depression in the eutectic point. The experimental eutectic points of the 

remaining systems have higher temperature than the corresponding ideal ones. These 

differences are considerably higher in the fatty acids series. Both the experimental and 

ideal predictions of the eutectic compositions are closer to equimolar composition, 

suggesting the formation of 1:1 complexes.  

Table 3.17. Eutectic points, experimental and obtained by the ideal liquid phase model. 

Compound 
Experimental Ideal 

ΔT / K 
xe Te / K xe Te / K 

[Ch]Cl+1-Tetradecanol 0.42 303.15 0.43 302.00 1.1 

[Ch]Cl+1-Hexadecanol 0.50 318.55 0.46 315.70 2.9 

[Ch]Cl+1-Octadecanol 0.50 328.32 0.48 323.90 4.4 

[Ch]Cl+Decanoic Acid 0.40 304.70 0.40 290.70 14.0 

[Ch]Cl+Dodecanoic Acid 0.41 316.05 0.43 304.30 11.8 

[Ch]Cl+Tetradecanoic Acid 0.49 323.30 0.46 315.30 8.0 

[Ch]Cl+Hexadecanoic Acid 0.41 323.60 0.48 324.90 -1.3 

[Ch]Cl+Octadecanoic Acid 0.39 339.55 0.50 332.60 6.9 
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3.4.6. Conclusion 

The solid-liquid equilibria of eight eutectic systems composed by choline chloride and 

fatty acids or fatty alcohols was measured and analyzed. Low positive deviations from the 

ideal behavior are observed, especially for the non-ionic compounds. In most of the cases, 

eutectic points present temperatures higher than those obtained for ideal liquid mixtures 

showing that these systems cannot be considered as deep eutectic solvents. All mixtures 

investigated remain solid in all composition range and the eutectic composition was 

found to be near to the equimolar composition.  
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4.1. Critical properties of terpenes and terpenoids 

Mónia A. R. Martins, Mariana B. Oliveira, Pedro J. Carvalho, Urszula Domańska, João A. P. 

Coutinho & Simão P. Pinho, submitted to Industrial & Engineering Chemistry Research. 

4.1.1. Abstract 

The knowledge of critical properties is fundamental in engineering process calculations, 

due to their use in equations of state for the prediction of thermodynamic properties and 

phase equilibria. A literature survey shows a large number of methods for predicting 

critical properties of different classes of compounds, but no indications are yet available 

to help deciding which are the most suitable for terpenes and terpenoids. In this work, 

Joback, Constantinou and Gani and Wilson and Jasperson group-contribution methods 

were applied to terpenes and terpenoids, and tested through Peng-Robinson (PR) and 

Soave-Redlich-Kwong (SRK) equations of state predictions of density and vapor pressure 

data with the critical properties estimated by Joback method presenting the best results. 

On other hand, density and vapor pressure data were also used to estimate the critical 

properties directly by the same equations of state, allowing a comparison between both 

estimation procedures. Densities were measured at atmospheric pressure in the 

temperature range (278.15 to 368.15) K for pure compounds, showing high agreement to 

literature values. The first approach indicates that the best combination is the Joback 

method and the Peng-Robinson EoS, even if vapor pressure calculations show high 

relative deviations and density predictions show problems at low temperatures. Following 

the second approach, the set of critical properties and acentric factors estimated is able 

to adequately correlate the experimental data. Both equations show a similar capability 

to correlate the data with SRK EoS presenting a global %ARD of 3.16 and 0.62 for vapor 

pressure and density, respectively; while PR EoS presented 3.61 and 0.66 %, respectively 

for the same properties. 

4.1.2. Introduction 

Despite being widely used and investigated by researchers there is still an enormous lack 

of experimental thermodynamic properties for systems containing terpenes and 
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terpenoids. Aqueous solubilities, vapor pressures, and octanol-water partition coefficients 

– required to assess environment fate and transport – and critical properties – used as 

the basis for the estimation of a large variety of thermodynamic, volumetric and transport 

properties using the corresponding states principle – are required. 

Critical temperature and pressure data provide valuable information for the regression 

and prediction of vapor pressures and are essential for the description of pure 

component and mixture behavior by equations of state (EoS).322 However, their 

experimental determination is complex, expensive, and in many cases impossible, since 

large and strongly associating components usually decompose before the critical point is 

reached. Thus experimental data are usually only available for smaller molecules, and 

predictive methods must be used to the most part of the substances.323–325  

Considering terpenes, to the best of our knowledge only the critical volume and 

temperature for limonene, α-pinene and 3-carene have been published in the open 

literature,326 and the results may be considerably uncertain since terpenes are unstable at 

their critical point.327 In literature, when critical properties of terpenes are needed, 

usually to derivate properties through cubic equations of state, most of the authors use 

different contribution methods to estimate them.328–330 

Due to their practical and theoretical importance, estimation of critical properties has 

attracted the interest of researchers and a wide variety of estimation methods is available 

in the open literature. Riedel331 and Lydersen332 were the first authors to develop group-

contribution methods for critical property data estimation, followed by many others.323–

325,333–343 Moreover, there are also publications related with the use of quantitative 

structure property relation (QSPR) correlations and popular mathematical methods like 

neural networks. A broad overview of these methods together with a detailed discussion 

of their reliability have been published during the past years.344,345 In addition, some 

authors have evaluated the performance of models utilizing a large common set of 

experimental data.322 

Due to the scarcity of experimental critical data for terpenes, the use of group-

contribution schemes seems to be the adequate approach to obtain reliable results. Most 
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of the estimation techniques require only the molecular structure and, additionally, other 

relevant properties as the normal boiling point.344 The main issue is how the different 

estimated values compare and what is their performance in terms of volumetric 

properties or vapor pressure estimations through a cubic equation of state (EoS). 

If accurate critical properties can be found, their use in corresponding state methods, like 

the Lee-Kesler generalized correlation346 and cubic Equations of State,347–350 to the 

prediction of many thermodynamic properties, significantly important for reliable phase 

equilibrium calculations, is straightforward. These EoS play an important role in chemical 

engineering design and nowadays, the Peng-Robinson (PR)350 and Soave-Redlich-Kwong 

(SRK)349 equations of state are still widely used in process simulators as Aspen-Plus and 

ChemCad.351 Several advantages can be related with how they can accurately and easily 

represent the relation among temperature, pressure, and phase compositions in binary 

and multicomponent systems, requiring only the critical properties and acentric factor as 

generalized parameters.  

The aim of this work is to choose a good set of critical properties (critical temperature, 

critical pressure), and acentric factor, of a group of terpenes and terpenoids to be used 

with the Soave-Redlich-Kwong349 and Peng-Robinson350 equations of state. Two 

approaches were followed (Figure 4.1): 

1) Apply the estimated critical properties using the group contribution methods 

developed by Joback,323 Constantinou and Gani,325 and Wilson and Jasperson333, to 

calculate densities and vapor pressure through equations of state, and compare both 

experimental and calculated sets;  

2) Use experimental densities and vapor pressures to estimate the critical properties 

by the same equations of state. 

Density data were here measured experimentally at atmospheric pressure, while vapor 

pressure values were taken from literature.  
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Figure 4.1. Schematic representation of the procedure followed in this work. 

4.1.3. Experimental 

4.1.3.1. Material 

Detailed information about the terpenes and terpenoids investigated in this work is 

presented in Table 4.1. Compounds were used without any further purification.  

4.1.3.2. Methods 

Density measurements 

Densities measurements of the pure terpenes and terpenoids were carried out at 

atmospheric pressure and in the (278.15 to 368.15) K temperature range, using an Anton 

Paar GmbH 4500 vibrating-tube densimeter (Graz, Austria). Two integrated Pt 100 

platinum thermometers provided good precision of the internal control of temperature (± 

0.01 K) and the densimeter includes an automatic correction for the viscosity of the 

sample. The apparatus is precise to within ± 1·10-5 g·cm-3, and the overall uncertainty of 

the measurements was estimated to be better than ± 5·10-5 g·cm-3. Additional details 

related with the equipment can be found elsewhere.352 The density of (R)-(+)-limonene 

and p-cymene was measure using an automated SVM 3000 Anton Paar rotational 

Stabinger viscometer–densimeter (temperature uncertainty: ± 0.02 K; absolute density 

uncertainty: ± 5·10-4 g·cm-3) at atmospheric pressure and in the same temperature range. 
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Table 4.1. Names, structures, sources, molar mass (M), boiling pointsa (TBP) and mass 

fraction purities (declared by the supplier) of the terpenes and terpenoids used.  

Chemicals Supplier CAS M / g·mol-1 TBP
a

 / K wt % 

Terpenes 

(R)-(+)-limonene 

 

Aldrich 5989-27-5 136.23 449.65 97 

α-pinene 
 

Sigma-aldrich 80-56-8 136.23 429.29 98 

β-pinene 
 

Sigma-aldrich 18172-67-3 136.23 439.19 99 

p-cymene 

 

Aldrich 99-87-6 134.22 450.28 99 

Terpenoids 

(−)-menthone 

 

Fluka 14073-97-3 154.25 483.15 ≥99 

(1R)-(−)-fenchone 

 

Aldrich 7787-20-4 152.23 466.15 ≥98 

(S)-(+)-carvone 

 

Merck 218-827-2 150.22 504.15 96 

Carvacrol 

 

SAFC 499-75-2 150.22 510.15 99 

Eucalyptol 

 

Aldrich 470-82-6 154.25 449.55 99 

DL-citronellol  Sigma 106-22-9 156.26 496.40 ≈95 

Eugenol 
 

Aldrich 97-53-0 164.20 526.35 99 

Geraniol  Sigma-aldrich 106-24-1 154.25 503.15a 98 

(−)-isopulegol 

 

SAFC 89-79-2 154.25 480.98 ≥98 

Linalool  Aldrich 78-70-6 154.25 470.15 97 

L(−)-menthol 

 

Acros 2216-51-5 156.26 487.40 99.7 

Thymol 

 

Sigma 89-83-8 150.22 505.65 ≥99.5 

α-pinene oxide 
 

Aldrich 1686-14-2 152.23 489.51 97 

aTaken from Yaws353. 
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4.1.4. Theoretical approach 

Critical Properties  

The following sections will briefly introduce the methods used in this work to estimate 

the critical temperature, Tc, and the critical pressure, Pc, of terpenes and terpenoids, 

namely Joback (1984; 1987),323,339 Constantinou and Gani (1994),325 and Wilson and 

Jasperson (1996).333 

Joback Method 

Joback323,339 proposed a group-contribution method based on the Lydersen’s group-

contribution scheme,332 adding new functional groups, and establishing new parameter 

values. In this method no interactions between groups is assumed and the elemental 

contributions are mainly determined by the bonds within and among small groups of 

atoms, according to the following set of equations, 
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where tck and pck are the Joback contributions for the critical properties, Nk is the 

number of groups of type k in the molecule and Natoms is the number of atoms in the 

compound. Table S4.1 of Appendix 4 presents the structural groups and their respective 

contributions for each property estimated in this work. For Tc a value of the normal 

boiling point, Tb, is needed (Table 4.1). 

Constantinou and Gani (CG) Method 

In 1994, Constantinou and Gani325 developed an advanced group-contribution method 

based on UNIFAC and in a two level estimation scheme. The basic level has contributions 

from first-order functional groups and the next level has second-order groups, which 
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provide further information about the molecular structure of the compound. The CG 

formulations are: 
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where, tc1k and pc1k are the contributions of first order, and tc2j and pc2j the 

contributions of second order of groups j. Mj is the number of groups of type j with 

second order group contributions in the molecule. The constant W is assigned a value of 

zero for a first-order approximation and unity in the second-order approximation. Table 

S4.2 of Appendix 4 presents the set of groups and the respective contributions for each 

property used in this work.   

Wilson and Jasperson Method 

The method reported by Wilson and Jasperson (WJ)333 uses the nature of the atoms 

involved to determine the elemental contributions. It can be applied to both organic and 

inorganic species. The first order method uses atomic contributions along with boiling 

point and number of rings, while the second order method also includes group 

contributions. The first order and second order contributions use the following equations: 
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where Nr is the number of rings in the compound and Δtck and Δpck are the first order 

atomic contributions, while Δtcj and Δpcj are the second order group contributions. 

Values of the contributions used in this work are given in Table S4.3 of Appendix 4. 
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Acentric Factor 

Along with the critical properties, a commonly used pure component constant for 

property estimation is the acentric factor, ω. According with Poling et al.344, the most 

accurate technique to estimate the acentric factor is using the critical constants:  

 
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Equations of State (EoS) 

EoS are used to relate temperature, pressure and volume, the macroscopically 

measurable properties in a system. In this work, Soave-Redlich-Kwong349 and the Peng-

Robinson350 EoS were selected. 

Soave-Redlich-Kwong (SRK) 

In 1972, Soave349 suggested the replacing of a term of the Redlich-Kwong348 equation with 

one more general temperature-dependence, and the introduction of the acentric factor in 

the cubic equation of state, Eqs. 4.10-4.13. With this modification, the new equation is 

able to predict the phase behavior of mixtures in the critical region and improved the 

accuracy of the calculated critical properties of mixtures.  
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Peng-Robinson (PR) 

Since the van der Waals equation in 1873, many other approaches have been proposed. 

For the most part, the term ‘a’ was replaced by semi-empirical corrections with the 

temperature. One of the most successful examples was the approach of Peng and 

Robinson350 in 1976, Eqs. 4.14-4.17.  
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According with Poling et al.,344 the PR equation of state slightly improves the prediction of 

liquid volumes. Peng and Robinson350 gave examples of the use of their equation for 

predicting the vapor pressure and volumetric behavior of single-component systems, and 

the phase behavior and volumetric behavior of the binary, ternary, and multicomponent 

system and concluded that it can be used to accurately predict the vapor pressures of 

pure substances and equilibrium ratios of mixtures. 

Along this work, the accuracy of the estimations was evaluated by using the statistical 

parameter average relative deviation (%ARD): 
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where expX  and calX  refers to the experimental and calculated property, respectively, 

and N is the number of data points. 

4.1.5. Results and discussion 

Density 

Density measurements for the terpenes and terpenoids here studied were carried out in 

the temperature range (278.15 to 368.15) K and at atmospheric pressure. Results are 

reported in the Table S4.4 of Appendix 4 and depicted in Figure 4.2. As expected the 

density decreases linearly with increasing temperature, being eugenol and (R)-(+)-

limonene the more and less dense, respectively. The phenylpropene eugenol is the only 

compound with densities higher than 1 throughout the temperature range studied. 

Although new density data of terpenes and terpenoids were measured in this work, it 

should be remarked that many other authors already reported this property for the same 

terpenes at different temperatures. Nevertheless, no data was found concerning 

carvacrol, thymol or α-pinene oxide. The maximum relative deviations between the 

experimental values measured in this work and those reported in the literature are 

presented in Figure 4.3 and Table 4.2. As can be seen a good agreement is found for all 

compounds, with an average relative deviation of 0.14 % and a maximum relative 

deviation of 0.62 %. 
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Figure 4.2. Density, ρ, of pure terpenes and terpenoids as a function of temperature and 

at 0.1 MPa. 
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Figure 4.3. Percentage relative deviations between density data determined here and 

those from literature (references on Table 4.2). 

Table 4.2. Maximum relative deviations between the experimental values measured in 

this work and those reported in the literature. 

Substance Maximum relative 
deviation (%) 

Substance Maximum relative deviation 
(%) 

(−)-menthone 0.59354 (−)-isopulegol 0.30355 

(1R)-(−)-fenchone 0.02,356 0.04,357 0.01358 Linalool 0.62,355 0.11,330 0.07,359 0.02,89 
0.03,360 0.05,361 0.09362  

(S)-(+)-carvone 0.14,359 0.16363 L(−)-menthol 0.10354 

Eucalyptol 0.05,364 0.05,365 0.01,366 
0.04,367 0.06,360 0.06368 

(R)-(+)-limonene 0.25,357 0.20,369 0.24,359 0.41,89 
0.05361 

DL-citronellol 0.13355 α-pinene 0.22,369 0.19,361 0.14,368 
0.11370 

Eugenol 0.02,371 0.01372 β-pinene 0.46,369 0.02,359 0.01,368 
0.14370 

Geraniol 0.26355 p-cymene 0.03,368 0.11370 
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Terpenes and terpenoids vapor pressures (liquid – vapor) used in this work were collected 

from literature – Figure S4.1. Due to the lack of vapor pressure data of α-pinene oxide, 

this compound was not considered in the following calculations. 

Critical Properties and Acentric Factor 

I. Estimation of critical properties using group contribution methods and EoS 

Following the approach described before, the critical properties of terpenes and 

terpenoids were estimated using the group contribution methods of Joback,323 

Constantinou and Gani (CG),325 and Wilson and Jasperson (WJ).333 Results are shown in 

Table 4.3, alongside with the acentric factor and a structural analysis is presented in 

Figure 4.4. Joback and CG methods cannot be applied to all the substances studied due to 

the absence of some groups.  

Table 4.3. Critical properties of terpenes and terpenoids estimated with different 

contribution methods. 

 Tc / K Pc / MPa ω 

 Joback CG WJ Joback CG WJ Joback CG WJ 

(−)-menthone 689.70 679.35 727.31 2.60 2.43 2.79 0.412 0.459 0.218 

(1R)-(−)-fenchone 679.18  707.95 3.08  2.81 0.388  0.189 

(S)-(+)-carvone  688.74 772.76  2.40 3.16  0.619 0.198 

Carvacrol 722.20 734.81 716.34 3.44 2.85 2.93 0.581 0.408 0.553 

Eucalyptol 661.05  635.70 3.02  2.44 0.339  0.432 

DL-citronellol 657.87 675.94 672.09 2.45 2.19 2.30 0.848 0.591 0.657 

Eugenol 735.58 772.46 733.37 3.58 2.71 2.93 0.676 0.306 0.599 

Geraniol 671.67 682.12 684.75 2.57 2.18 2.42 0.820 0.617 0.648 

Isopulegol 656.76 682.75 667.43 2.77 2.36 2.56 0.698 0.398 0.558 

Linalool 633.30 650.00 639.84 2.58 2.16 2.26 0.755 0.494 0.612 

L(−)-menthol 661.63 679.32 672.52 2.66 2.38 2.50 0.716 0.496 0.580 

R-(+)-Limonene  639.85 649.99  2.41 2.72  0.394 0.373 

Thymol 715.83 734.76 710.02 3.44 2.84 2.91 0.581 0.367 0.549 

α-pinene  657.01 620.56  3.37 2.60  0.224 0.354 

β-pinene  651.26 634.87  3.22 2.66  0.329 0.363 

p-cymene 656.89 664.29 655.59 2.91 2.47 2.84 0.359 0.249 0.358 
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Figure 4.4 shows some discrepancy between the results, possibly related with limitations 

associated to each method which was previously verified by other authors.373 Globally, 

acentric factors present higher deviations than critical properties especially for aromatic 

monocyclic terpenes, with eugenol being an patent outlier. Regarding critical 

temperatures and pressures the highest deviations are presented by (S)-(+)-carvone and 

(–)-menthone. Non-cyclic compounds have the lowest deviations indicating that linear 

compounds are more easily described by group contribution methods available. Critical 

pressures from Joback method are usually larger than those by CG and WJ methods, while 

generally is clear that Joback and WJ methods present, for this set of compounds, more 

uniform results among the three tested methods. 
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Figure 4.4. Temperature change (ΔT / K) and critical pressure and acentric factor ratio for 

the different contribution methods and compounds studied. 

In his initial study, Joback employed only 41 molecular groups, which oversimplifies the 

molecular structure, thus making several types of isomers indistinguishable. Overall this is 

insufficient to capture the structural effects of organic molecules and is the main reason 

for some inaccuracy of the method. Moreover, in CG method a group appearing in an 

aliphatic ring is considered equivalent to its non-ring counterpart. These groups cannot 
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distinguish between special configurations such as multiple groups located close to each 

other, and resonance structures. WJ method requires additional information apart from 

structure and boiling point, what makes it more complex and sensitive to errors.  

As pointed out, all group contribution methods present weaknesses. Therefore, to choose 

the best model to represent terpenes and terpenoids, the estimated sets of Table 4.3 

were used to calculate densities and vapor pressures through the Soave-Redlich-Kwong 

and Peng-Robinson EoS. The calculated values were compared with the experimental and 

a global summary is displayed in Figure 4.5. Individual %ARD for each substance studied 

are presented in Table S4.5 of Appendix 4.  
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Figure 4.5. Global average relative deviation between the experimental and the predicted 

densities and vapor pressures, calculated using the PR and SRK EoS, with critical 

properties estimated by Joback, CG, and WJ methods 

Globally, the PR EoS presents better results than the SRK. Regarding the group-

contribution methods, for both properties, the smaller error was obtained with Joback. 

Moreover, is important to emphasize that the error obtained for vapor pressures is much 

higher than for density.  

So far the best combination found is the PR EoS with the Joback method. Thus, in order to 

further investigate the results obtained, calculated and experimental densities and vapor 

pressures, for some terpenes and terpenoids presenting consistent data, are depicted in 
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Figure S4.2 and S4.3 of Appendix 4, respectively. In general, the approach is able to 

establish a ranking for the magnitude of the density and vapor pressure values of the 

different terpenes, in conformity to the experimental observed rank, and a correct 

temperature trend for vapor pressures (Figure S4.3). However, concerning the densities 

at low temperatures the correct temperature dependency is not always obtained showing 

that this cubic EoS should be used with precaution to estimate densities of liquids. Both 

EoS combined with the three method contribution groups here studied led to incorrect 

temperature dependency descriptions of the terpenes isopulegol, (−)-menthone, (S)-(+)-

carvone, carvacrol, DL-citronellol, eugenol, geraniol and linalool. Moreover, using the SRK 

EoS, the experimental densities are always higher than the correspondent calculated 

ones; while the calculated vapor pressures are most of the times superior to the 

experimental. The same is observed using the EoS PR, with the exception of the Joback 

method, where the calculated densities are often superior to the experimental. 

II. Estimation of critical properties using experimental data and EoS 

In the second approach proposed, experimental densities and vapor pressures were used 

to estimate the critical properties and the acentric factor directly by EoS Soave-Redlich-

Kwong and Peng-Robinson – Table 4.4. The critical properties obtained in previous section 

were used as initial estimates and the calculations performed until the minimum error 

between experimental and estimated data was obtained (equation 4.18). The values of 

the estimated critical properties are generally in the same range to those estimated by 

group contributions methods. 

In Figure 4.6 the critical temperature changes and critical pressure and acentric factor 

property ratio between the two EoS applied is displayed. While critical pressures are 

always higher in SRK equation than in PR, acentric factors are almost always lower. 

Critical temperatures are almost always superior using SRK EoS. 
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Table 4.4. Critical properties and acentric factor of terpenes estimated according with the 

approach II. 

 SRK PR 

 Tc / K Pc / MPa ω Tc / K Pc / MPa ω 

(−)-menthone 702.09 3.16 0.391 684.83 2.75 0.453 

(1R)-(−)-fenchone 671.30 3.36 0.403 675.00 3.02 0.403 

(S)-(+)-carvone 743.14 3.65 0.389 724.76 3.17 0.452 

Carvacrol 744.38 3.69 0.479 727.07 3.20 0.542 

Eucalyptol 643.72 3.10 0.398 636.37 2.75 0.432 

DL-citronellol 698.11 2.94 0.650 699.27 2.64 0.651 

Eugenol 771.00 3.87 0.477 780.03 3.55 0.470 

Geraniol 679.01 3.02 0.770 677.01 2.66 0.782 

Isopulegol 690.01 3.22 0.490 689.05 2.86 0.500 

Linalool 624.38 2.74 0.751 615.43 2.41 0.803 

L(−)-menthol 659.80 2.94 0.713 647.03 2.56 0.779 

R-(+)-Limonene 655.51 3.27 0.385 655.50 2.93 0.395 

Thymol 713.60 3.57 0.576 699.92 3.12 0.634 

α-pinene 629.57 3.23 0.338 615.39 2.83 0.392 

β-pinene 642.53 3.34 0.345 635.97 2.95 0.372 

p-cymene 673.01 3.44 0.311 656.06 2.99 0.367 
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Figure 4.6. Temperature change (ΔT / K) and critical pressure and acentric factor ratio 

between Soave-Redlich-Kwong and Peng-Robinson EoS for the compounds studied.  
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Individual %ARD between the calculated and experimental densities and vapor pressures 

using SRK and PR Eos are presented in Figure 4.7. Globally both equations show a similar 

correlation capability, with the SRK EoS presenting an %ARD of 3.16 and 0.62 % for vapor 

pressure and density, respectively; while Peng Robinson EoS presented 3.61 and 0.66 %, 

for the same properties.  
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Figure 4.7. Average relative deviation between the experimental and the predicted 

densities and vapor pressures, calculated using the SRK and the PR, with critical 

properties estimated by the same EoS. 
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The vapor pressure of DL-citronellol, geraniol, (–)-isopulegol, and p-cymene show %ARD 

higher than the other compounds. Table S4.6 shows that there is a decrease followed by 

an increase in the %ARD with the temperature indicating an intersection of the series. For 

p-cymene the %ARD are randomly distributed with temperature. These are compounds 

with very low vapor pressures or for which data is available in a larger temperature range. 

This somehow stresses the difficulty of measuring vapor pressure and the need of new 

experimental data in this field.  

Figure S4.4 and S4.5 of Appendix 4 show a comparison between calculated and 

experimental densities and vapor pressures, for some terpenes and using the EoS Peng-

Robinson. Concerning vapor pressure, this second approach is able to establish a ranking 

for the magnitude of values in conformity to the experimental observed rank, and a 

correct temperature trend, while for density an important improvement is observed 

when compared with results shown before. 

Methods Comparison 

Comparing the critical properties and the acentric factor obtained by the group 

contribution methods and the EoS – Table 4.5 –  is it possible to see that the differences 

between critical temperatures are minor. The absolute error obtained for critical pressure 

shows higher deviations between the contribution methods and the EoS SRK. The 

opposite is verified for acentric factors; however, the effect is less pronounced. 

Table 4.5. Critical properties and acentric mean absolute error between those calculated 

by group contribution methods and those estimated by the SRK and PR EoS. 

  
PR SRK 

Tc / K 

Joback 17.61 17.09 

CG 19.58 17.68 

WJ 19.39 18.18 

Pc / MPa 

Joback 0.15 0.33 

CG 0.45 0.74 

WJ 0.23 0.61 

ω 

Joback 0.08 0.08 

CG 0.16 0.12 

WJ 0.10 0.09 
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Literature Analysis 

For terpenes and terpenoids, experimental critical data is very rarely available, as only 

one work was found in the open literature.326 The reason for this, is that higher molecular 

weight and strongly associating components readily decompose before the critical point 

is reached. This makes experimental measurements rather difficult and experimental 

errors very considerable. Table 4.6 presents, however, a comparison of critical 

temperatures estimated by the methods studied in this work, with the few experimental 

results, and some of the estimated values found in the literature for the same 

compounds. 

Table 4.6. Comparison between estimated and experimental critical temperatures. 

Tc / K (R)-(+)-Limonene α-pinene 

This Work 

CG 639.9 657.0 

WJ 649.99 620.56 

SRK 655.51 629.57 

PR 655.50 615.39 

Experimental326 653.0 644.0 

Yaws246 640.0, 630.0 632.0, 644.0 

Within this very limited set of experimental values, and taking into account the 

decomposition problem of this class of compounds, any further comparisons are 

premature. Regarding the estimated literature values, these are included in order to show 

the high variance of the critical properties values proposed in the literature, what 

establishes the importance of finding rational recommended values for the critical 

properties of terpenes and terpenoids. 

4.1.6. Conclusions 

In this work three group-contribution methods for the estimation of critical properties are 

applied and analyzed for terpenes and terpenoids. As expected, the variance between the 

results is high and therefore, their suitability is tested through cubic equations of state, 

calculating densities and vapor pressure and comparing with experimental data. Results 
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indicate that the best combination is the Joback method and the Peng-Robinson EoS. 

Vapor pressure calculations globally showed higher average relative deviations between 

the predicted and the experimental values, when compared to density predictions. 

However, density predictions show problems at low temperatures. In the second part of 

this work, experimental densities and vapor pressures were used to estimate the critical 

properties and the acentric factor directly by EoS Soave-Redlich-Kwong and Peng-

Robinson. The two equations show a similar correlation ability for densities and vapor 

pressures with SRK EoS presenting a global %ARD of 3.16 and 0.62 for vapor pressure and 

density, respectively; while Peng Robinson EoS presented 3.61 and 0.66 %, respectively 

for the same properties. 

 

Clarifying note 

The next sections are related with the aqueous solubility of organic compounds, aiming 

the selection of the best methodology to apply to terpenes and thus contribute to the 

development of accurate models for the fate of these compounds in the environment. 

Since ILs have been studied to extract and fractionate terpenes, their mutual solubilities, 

densities and viscosities were measured (4.2) for a range of ILs and water. The same 

experimental method was applied to measure the solubility of terpenes in water that 

proved however to be inappropriate due to the formation of emulsions after stirring, 

which caused sampling problems. Thus, a new technique was implemented and firstly 

applied to sparingly soluble N-(diethylaminothiocarbonyl)benzimido derivatives (4.3) 

providing accurate results, and thus applied to determining the solubility of terpenes in 

water (4.4).  

4.2. Mutual solubilities, densities and viscosities of ionic liquids and water 

4.2.1. Introduction 

Over the last years, ionic liquids (ILs) have been the subject of intensive investigations as a 

new class of neoteric solvents. Their thermodynamic data such as liquid–liquid 

equilibrium (LLE) and thermophysical properties have been widely study since they can be 
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used to develop thermodynamic models374 and allow better understanding of the ILs 

nature, their benefits and limitations at an industrial scale.114 Moreover, it is well-known 

that the ILs phase equilibrium and their thermophysical properties are significantly 

influenced by the presence of water,374,375 a factor that makes the knowledge of the 

thermophysical and thermodynamic properties of water-saturated ILs very important 

together with the information that it provides on their environmental impact, toxicity and 

bioaccumulation.376 Albeit non-volatile, even strongly hydrophobic ILs, such as the 

bis(trifluoromethylsulfonyl)imide-based fluids, present some solubility in water377 and 

thus may create environmental problems in case of their accidental release into the 

environment.  

In what concerns the IL-water miscibilities, the IL anion plays a major role although the 

cation also influences the hydrophobicity or hydrogen-bonding ability of the IL and can be 

further used to fine tune this property.378–387 For instance, the 1-butyl-3-

methylimidazolium cation, [C4C1im]+, in combination with anions like Cl-, Br-, [CF3SO3]- or 

[BF4]- are totally miscible with water at room temperature; yet, combined with [C(CN)3]-, 

[PF6]− or [NTf2]− they tend to phase separate at the same temperature.380 However, if the 

alkyl side chain of the IL cation is sufficiently long, the IL-water system also display two 

phases, as happens with the [C6-10C1im][BF4] ILs.384,385 Therefore, the wide array of 

possible cation-anion combinations allows a flexibility in designing new ionic fluids and in 

optimizing their physical/chemical properties for particular applications. 

Densities and viscosities have been investigated over the last years, and a significant 

number of works have been published on the relationships between the structures of ILs 

and their fundamental properties.180,182,214,284,374,375,388–393  On the other hand, systematic 

studies on the effect of water on the ILs densities and viscosities were also studied but 

are still scarce.214,235,392–397 In all situations it was found that the water content has a 

strong effect on the viscosity of the ILs, while the effect is less significant on their 

densities.180,182,214,284,374,375,392,393  

The works presented in this section are extensions of our investigation into water-ILs 

miscibility for ILs containing the bis(trifluoromethylsulfonyl)imide anion.182,378,380–382 The 
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systems studied so far showed a very low solubility of ILs in the water-rich phase, 

considerable water mole fraction solubility in the IL-rich phase, and an upper critical 

solution behavior. As part of our ongoing work on the LLE between [NTf2]-based ILs and 

water, we present here new data for ILs that have been hitherto poorly investigated, 

focused on the structural variations of the cation, namely the number of alkyl side chains 

and their structural isomerism. Moreover, the densities and viscosities of binary mixtures 

of water and ILs, namely for ILs composed of the common anion 

bis(trifluoromethylsulfonyl)imide, are discussed.  

4.2.2. Experimental methods 

Mutual solubilities 

The mutual solubilities between water and ILs were determined in the temperature range 

from (288.15 to 318.15) K and at atmospheric pressure using a LLE method previously 

detailed.378,380 The ionic liquid and water phases were initially vigorously stirred and 

allowed to settle and equilibrate for at least 48 h.374 This period of time proved to be 

enough to guarantee a complete separation of the two phases, as well as their saturation. 

The samples, in tightly-closed glass vials with a septum cap, were put inside an aluminum 

block specially designed for this purpose, as schematically depicted in Figure 4.8. The 

isolated air bath is capable of maintaining the temperature within ± 0.01 K. The 

temperature control was achieved with a PID temperature controller driven by a 

calibrated Pt100 (class 1/10) temperature sensor inserted in the aluminium block. A 

Julabo (model F25-HD) refrigerated bath and circulator was used as the cooling source of 

the thermostatized aluminium block. The temperature accuracy was ±0.01 K. Both phases 

were sampled at each temperature from the equilibrium vials using glass syringes 

maintained dry and kept at the same temperature of the measurements.  

The solubility of water in the IL-rich phase was measured by KF titration, whereas the 

solubility of IL in the water-rich phase was measured by UV-Vis spectroscopy, using a 

SHIMADZU UV-1700 PharmaSpec Spectrometer ( = 209 nm for [C1im][NTf2] and 

[C2im][NTf2]; and 211 nm for all other ILs). This wavelength was found to be the maximum 

UV absorption wavelength for the imidazolium-based ILs investigated here. 
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Approximately 0.1 g of the IL-rich phase was sampled and directly injected in the KF 

coulometric titrator to determine the water content. For the water-rich phase, ca. 0.5 g of 

each sample was taken and diluted in (250-500) cm3 of ultrapure water. At each 

temperature, each measurement was repeated at least 5 times, and the results are 

reported as the average solubility value along with the respective standard deviations. In 

case of observing large standard deviations, new equilibrium phases were produced and 

new measured values added. 

 

Figure 4.8. Scheme of the apparatus used for the mutual solubility measurements. (A), 

PID temperature controller; (B), Isolated air bath; (B1) Aluminum block; (B2), Pt100 (class 

1/10) temperature sensor; (B3), Thermostatic fluid; (C), Refrigerated bath. 

Densities and viscosities 

Densities and viscosities measurements of water-saturated ILs (of the IL-rich phase) were 

carried out at atmospheric pressure and in the (298.15 and 363.15) K temperature range 

using an automated SVM3000 Anton Paar rotational Stabinger viscometer-densimeter. 

The uncertainty of temperature is ± 0.02 K, the relative uncertainty in the dynamic 

viscosity is ± 0.35%, and the absolute uncertainty in density is ± 5·10-4 g·cm-3. Saturated 

solutions were prepared, at 298.15 K, by mixing ILs and water in excess amounts and 

allowing the mixture to reach the equilibrium by the complete separation of the two 

phases, and for at least 48h.374  
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4.2.3. Theoretical approach 

COSMO-RS 

COSMO-RS is a predictive method developed by Klamt and co-workers for providing the 

thermodynamic equilibrium of fluids and mixtures and that uses a statistical 

thermodynamic approach based on the results of unimolecular quantum chemical 

calculations.200,218 The model can be used to predict the phase behavior of binary 

mixtures and subsequently the concentration of each component in a given phase.197,398 

Previously we used COSMO-RS to predict the equilibrium behavior of ILs and water and 

confirmed its high capability as a predictive tool.377,380 

The standard procedure of COSMO-RS calculations employed in this work consisted 

essentially in two steps: (i) the continuum solvation COSMO calculations of electronic 

density and molecular geometry that were performed with the TURBOMOLE 6.1 program 

package on the density functional theory level, utilizing the BP functional B88-P86 with a 

triple-ζ valence polarized basis set (TZVP) and the resolution of identity standard (RI) 

approximation;220 (ii) the estimation of the phase diagrams of binary mixtures of ILs and 

water performed with the COSMOtherm program using the parameter file 

BP_TZVP_C20_0111 (COSMOlogic GmbH & Co KG, Leverkusen, Germany).399 The detailed 

calculation of the phase equilibrium using COSMOtherm is explained in our previous 

work.400 In all calculations, the ILs were always treated as isolated ions at the quantum 

chemical level. In a previous work,401 the best predictions of the experimental data were 

obtained with the lowest energy conformations or with the global minimum for both 

cation and anion. Thus, in this work, the lowest energy conformations of all the species 

involved were used in the COSMO-RS calculations. 

Temperature dependence and thermodynamic functions of solution 

To describe the temperature dependence of the experimental mutual solubilities aiming 

at determining the thermodynamic functions of solution, two correlations were 

employed. The solubility of water in the IL-rich phase is described by Equation 4.19, while 

the solubility of IL in the water-rich phase is expressed using Equation 4.20,402 
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where x1 is the mole fraction solubility of water in the ionic liquid; x2 is the mole fraction 

solubility of the ionic liquid in water; T is the absolute temperature; and A, B, C, D, and E 

are fitted parameters. For the solubility of water in the IL-rich phase, it is assumed that 

the process occurs at constant molar enthalpy of solution while for the solubility of the ILs 

in water, there is a significant dependence on temperature for the enthalpy of solution.  

Aiming at exploring the molecular mechanisms behind the solvation phenomena, the 

molar thermodynamic properties of solution, namely the standard molar Gibbs 

energy )( 0

msolG , enthalpy )( 0

msol H  and entropy )( 0

msol S  of solution were derived. 

These thermodynamic properties are associated with changes that occur in the solute 

neighborhood when one solute molecule is transferred from an ideal gas phase to a 

diluted ideal solution and were calculated using Equations 4.21-4.23378 for the water-rich 

phase, where the solute could be considered at infinite dilution. In the IL-rich phase, the 

solubility of water is higher and the associated thermodynamic molar functions cannot be 

determined.  
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where x2 is the mole fraction solubility of ionic liquid in water, R is the ideal gas constant, 

subscript p indicates isobaric condition during the process and the subscript m refers to 

molar quantity. 
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Furthermore, when dealing with liquid-liquid equilibrium, the standard molar properties 

of solvation can be estimated using the following equations:378 
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where p(s2,T) is the vapor pressure of the solute at the temperature T and p0 is the 

standard pressure of 105 Pa. 

The standard molar enthalpy of solution, 0

msolH , is a sum of the standard molar enthalpy 

of solvation, 0

svt mH , that reflects the solute-solvent interaction, and the standard molar 

enthalpy of vaporization of the solute to form an ideal gas,  0

m

g

l H . The standard molar 

Gibbs energy of solvation,  0

msvtG , can be then derived using the hypothetical reference 

state for the solute, which considers the solute in the gas phase and at the standard 

pressure. 

Density 

From the linear dependency of the density with temperature, at 0.1 MPa, the isobaric 

thermal expansion coefficient, αp (which considers the volumetric changes with 

temperature), can be calculated according to Equation 4.28, that is further derived from 

Equation 4.27 used to correlate the density as a function of temperature, 
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where A0, and A1 are fitting parameters, ρ is the density in kg·m-3 and T is the absolute 

temperature in K. 
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Methods to estimate the mutual solubilities of ILs and water are of utmost importance 

due to the enormous possible combinations of cations and anions to form ILs and, 

consequently, the extended number of experimental measurements necessary. For the 

prediction of the solubility of ILs in the water-rich phase, several methods have been 

proposed.403  However, and as a consequence of the dominant hydrogen-bonding 

interactions, the solubility of water in the IL-rich phase is more difficult to predict. In this 

sense, a faster, easier, and reliable method supported on the densities of pure and water-

saturated ILs can be used.375 Thus, and assuming that the excess molar volumes are 

negligible in the narrow mole fraction solubility range, the ILs water solubility can be 

estimated using the following equations, 

wwmwILmmixturem xVxVV  ,,, )1(        (4.29) 
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where M is the molecular weight in kg·mol-1 and Vm is the molar volume in m3·mol-1. The 

subscripts IL, w, and mixture are IL, water and water-saturated ILs, respectively.  

Viscosity 

The viscosity describes the internal resistance of a fluid to a shear stress, and as it is well-

known, most ILs display higher viscosities than common molecular solvents. The ILs high 

viscosities are a direct consequence of their high molecular weights as well as their 

multiple intermolecular interactions (H-bonding, dispersive and electrostatic 

interactions). The energy barrier (E) is the energy value that must be overcame in order 

for the ions to move past each other in the fluid.181 The larger is E, the harder it is for the 

ions to move past each other, which is inherently related with the interactions occurring 

in the fluid. The energy barrier can thus be correlated with structural information on the 

IL, and can be determined based on the viscosity dependence with temperature using the 

following equation,182 
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where η is viscosity in mPa·s, and R is the gas constant. 

In order to calculate the energy barrier of the water-saturated ILs studied in this work, the 

experimental viscosity data were initially correlated through the Vogel–Tammann–

Fulcher (VTF) model,180 expressed by equation 4.32,  
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where Aη, Bη, and Cη are adjustable parameters estimated from experimental data.  

4.2.4. Impact of the cation symmetry on the mutual solubilities between water 

and imidazolium-based ionic liquids 

Mónia A. R. Martins, Catarina M. S. S. Neves, Kiki A. Kurnia, Andreia Luís, Luís M. N. B. F. 

Santos, Mara G. Freire, Simão P. Pinho & João A. P. Coutinho, Fluid Phase Equilibria 375 

161–167 (2014), DOI: 10.1016/j.fluid.2014.05.013 

4.2.4.1. Abstract 

Aiming at the evaluation of the impact of the ionic liquids (ILs) cation symmetry on their 

phase behavior, in this work, novel mutual solubilities with water of the symmetric series 

of [CnCnim][NTf2] (with n = 1-5) were determined and compared with their isomeric forms 

of the asymmetric [CnC1im][NTf2] group. While the solubility of isomeric ILs in water was 

found to be similar, the solubility of water in ILs follows the same trend up to a maximum 

cation alkyl side chain length. For n ≥ 4 in [CnCnim][NTf2] the solubility of water in the 

asymmetric ILs is slightly higher than that observed in the asymmetric counterparts. The 

thermodynamic properties of solution and solvation derived from the experimental 

solubility data of ILs in water at infinite dilution, namely the free Gibbs energy, enthalpy 

and entropy were used to evaluate the cation symmetry effect on the ILs solvation. It is 

shown that the solubility of ILs in water is entropically driven and highly influenced by the 

cation size. Accordingly, it was found that the ILs solubility in water of both the symmetric 

and asymmetric series depends on their molecular volume. Based on these findings, a 
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linear correlation between the logarithm of the solubility of ILs in water and their molar 

volume is here proposed for the [NTf2]-based ILs at a fixed temperature.  

4.2.4.2. Chemicals 

The experimental mutual solubilities with water were carried out for the 5 ILs presented 

in Table 4.7. The chemical structures of the studied compounds are presented in Figure 

4.9. To reduce their impurities, individual samples of ILs were dried under vacuum at 0.1 

Pa and 353.15 K, under constant stirring, and for a minimum period of 48 h. After, the 

purity of each IL was checked by 1H, 13C, and 19F NMR. The water content of the dried ILs 

was determined using a Metrohm 831 Karl Fischer (KF) coulometer, with the analyte 

Hydranal® - Coulomat AG from Riedel-de Haën, and was found to be below 100 ppm for 

all samples. Ultrapure water, double distilled, passed by a reverse osmosis system and 

further treated with a MilliQ plus 185 water purification apparatus, was used throughout 

the mutual solubility experiments (M (H2O)= 18.01528 g·mol-1). The water used presents a 

resistivity of 18.2 MΩ·cm, a TOC smaller than 5 μg·dm-3 and is free of particles > 0.22 μm.  

Table 4.7. Investigated ionic liquids: name, abbreviation, source, molecular mass (M), and 

purity. 

Chemical Name Abbreviation Source M (g·mol-1) Purity (mass %) 

1,3-dimethylimidazolium 

bis((trifluoromethyl)sulfonyl)imide 
[C1C1im][NTf2] Iolitec 377.29 > 99 

1,3-diethylimidazolium 

bis((trifluoromethyl)sulfonyl)imide 
[C2C2im][NTf2] Iolitec 405.34 > 99 

1,3-dipropylimidazolium 

bis((trifluoromethyl)sulfonyl)imide 
[C3C3im][NTf2] Iolitec 433.39 > 99 

1,3-dibutylimidazolium 

bis((trifluoromethyl)sulfonyl)imide 
[C4C4im][NTf2] Iolitec 461.45 > 99 

1,3-dipenthylimidazolium 

bis((trifluoromethyl)sulfonyl)imide 
[C5C5im][NTf2] Iolitec 489.50 > 99 
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Symmetric
[CnCnim]+

n = 1-5
R1=R2=(CnH2n+1)

Asymmetric
[CnC1im]+

n = 3, 5, 7, and 9
R1 = CH3

R2 = (CnH2n+1)

 

Figure 4.9. Chemical structures of the studied imidazolium-based ILs. 

4.2.4.3. Results and discussion 

Mutual solubilities between ionic liquids and water 

The novel experimental solubility data for the series [CnCnim][NTf2] (with n = 1-5), along 

with the respective standard deviations, are presented in Table 4.8 and 4.9. The solubility 

data for the asymmetric imidazolium-based ILs, [CnC1im][NTf2] (with n = 2-8) were 

previously reported,378  and are here used for comparison purposes.  

Table 4.8. Experimental mole fraction solubility of water (xW) in ILs as a function of 

temperature and at 0.10 KPa.a 

T / K 
[C1C1im][NTf2] [C2C2im][NTf2] [C3C3im][NTf2] [C4C4im][NTf2] [C5C5im][NTf2] 

xw xw xw xw xw 

288.15 0.312 (0.002) 0.241 (0.004) 0.194 (0.007) 0.159 (0.004) 0.132 (0.002) 

293.15 0.335 (0.002) 0.261 (0.001) 0.206 (0.001) 0.172 (0.001) 0.148 (0.001) 

298.15 0.354 (0.004) 0.277 (0.001) 0.223 (0.001) 0.184 (0.003) 0.158 (0.001) 

303.15 0.376 (0.001) 0.290 (0.001) 0.240 (0.002) 0.196 (0.002) 0.170 (0.001) 

308.15 0.395 (0.001) 0.305 (0.002) 0.255 (0.002) 0.207 (0.002) 0.184 (0.002) 

313.15 0.424 (0.006) 0.322 (0.002) 0.270 (0.001) 0.219 (0.006) 0.197 (0.001) 

318.15 0.451 (0.007) 0.341(0.001) 0.285 (0.003) 0.233 (0.002) 0.209 (0.002) 

aThe correspondent standard deviation is presented between brackets. Standard uncertainties, u, 

are u(T) = 0.01 K, and ur(p) = 0.05 KPa. 
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Table 4.9. Experimental mole fraction solubility of ionic liquid (xIL) in water as a function 

of temperature and at 0.10 KPa.a 

T / K 
[C1C1im][NTf2] [C2C2im][NTf2] [C3C3im][NTf2] [C4C4im][NTf2] [C5C5im][NTf2] 

103 ·xIL 104 ·xIL 104 ·xIL 105 ·xIL 105 ·xIL 

288.15 1.38 (0.03) 5.23 (0.04) 1.82 (0.02) 6.89 (0.02) 1.94 (0.03) 

293.15 1.42 (0.01) 5.31 (0.03) 1.86 (0.01) 7.03 (0.02) 2.05 (0.08) 

298.15 1.49 (0.01) 5.36 (0.01) 1.92 (0.02) 7.25 (0.01) 2.11 (0.02) 

303.15 1.60 (0.02) 5.79 (0.04) 2.00 (0.01) 7.62 (0.01) 2.23 (0.01) 

308.15 1.69 (0.01) 6.13 (0.05) 2.06 (0.04) 7.90 (0.07) 2.35 (0.01) 

313.15 1.72 (0.01) 6.50 (0.06) 2.14 (0.02) 9.00 (0.06) 2.50 (0.02) 

318.15 2.03 (0.02) 7.04 (0.08) 2.25 (0.02) 9.61 (0.07) 2.71 (0.04) 

aThe correspondent standard deviation is presented between brackets. Standard uncertainties, u, 

are u(T) = 0.01 K, and ur(p) = 0.05 KPa. 

The inspection of Table 4.8 indicates that the solubility of water in the IL is always above 

0.1 in mole fraction, despite the “hydrophobic” label usually attributed to the [NTf2]-

based ILs. Table 4.9, on the other hand, indicates that the mole fraction solubility of ILs in 

water is in the order of 10-3 to 10-5, and therefore the dissolved ILs can be considered at 

infinite dilution.  

The liquid-liquid phase diagrams of all the [CnCnim][NTf2] ILs studied, along with the 

[CnC1im][NTf2] previously investigated,380 are depicted in Figure 4.10. Concerning the 

phase diagrams, two features must be highlighted: (i) the studied ILs and water binary 

systems display a common UCST behavior asymmetrically centered in the low-

concentration region of the ILs; (ii) the mutual solubilities between ILs and water, in both 

series, decrease with increasing the cation alkyl side chain of ILs. This is the expectable 

behavior given the increasing hydrophobic nature of ILs with the aliphatic moiety 

increase. These features are also observed in the phase behavior of water with other 

imidazolium-based ILs combined with the [BF4]- or [PF6]- anions.380,384,404  
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Figure 4.10. Liquid-liquid phase diagrams of water and ionic liquids: (a) ionic-liquid-rich 

phase; and (b) water-rich phase. Symbols (experimental data): (+), [C1C1im][NTf2]; (), 

[C2C2im][NTf2]; (), [C3C1im][NTf2];(), [C3C3im][NTf2]; (), [C5C1im][NTf2]; (), 

[C4C4im][NTf2]; (), [C7C1im][NTf2]; (), [C5C5im][NTf2]; and (), [C9C1im][NTf2]. The 

matching color full and dashed lines represent, respectively, the COSMO-RS predictions 

for the ILs containing asymmetric and symmetric cations. 

In order to check the validity of the results obtained, a literature revision was made. Data 

for the mutual solubilities with water of [C1C1im][NTf2]405 and [C2C2im][NTf2]406 were 

found and are represented in Figure 4.11 together with the experimental values. As can 

be seen, in the ionic liquid rich phase, Figure 4.11a, the discrepancy is not significant for 

both ionic liquids, and taking in account the different experimental conditions we can 

conclude that values are in agreement. However, in the water rich-phase, Figure 4.11b, 

the values presented for Gardas and co-workers405 are considerably distinct. These data 

don’t present an upper critical solution temperature behavior as was expected and as was 

already proved in some works.380,384,404 It is worth to say that Domańska and co-

workers406 also presented two points in the water-rich phase, but the temperatures used 

are much different from the ones used in the present work and, thus, they do not allow a 

reasonable comparison. 



 
Chapter 4 – Environmental Impact 

164 
 

250

300

350

400

450

0.0 0.2 0.4 0.6 0.8 1.0

T/
K

xH2O

(a)

 

280

290

300

310

320

330

0.994 0.995 0.996 0.997 0.998 0.999

T/
K

xH2O

(b)

 

Figure 4.11. Comparison with literature data: (a) ionic-liquid-rich phase; and (b) water-

rich phase. Symbols: (), [C1C1im][NTf2] this work; (), [C1C1im][NTf2]405; (), 

[C2C2im][NTf2] this work; and (), [C2C2im][NTf2]406. 

The main goal of this work is to provide a better understanding of the impact of the 

symmetry of the IL cation and, to this end, two series of ILs are compared: symmetric and 

asymmetric ones with the same number of total methylene groups in the alkyl side 

chains. Figure 4.10a shows that the solubility of water in [C2C2im][NTf2] and [C3C3im][NTf2] 

are similar to those of their structural analogues or isomers, [C3C1im][NTf2] and 

[C5C1im][NTf2], respectively. On the other hand, water presents a somewhat lower 

solubility in [C4C4im][NTf2] and [C5C5im][NTf2] than on [C7C1im][NTf2] and 

[C9C1im][NTf2].407 Thus, for the long alkyl chain length isomers, the ILs with an asymmetric 

cation are able to dissolve a higher content of water. A symmetry-asymmetry effect was 

also recently reported for other properties of the same ILs series, such as density and 

viscosity,182 volatility,408 heat capacity,409,410 surface tension,411,412 and refractive index.413  

The solubility of isomeric ILs in water is essentially identical, as shown in Figure 4.10b. The 

solubility of poorly soluble compounds in water, is known to be primarily controlled by 

their molar volume.382 Since the molar volume for isomeric ILs is identical, containing 

either symmetric or asymmetric cations, their solubilities in water are very close. The 

effect of the molar volume, Vm, on the solubility of ionic liquids in water has been 

discussed in our previous works.377,381 The Vm of each ionic liquid at 298.15 K was 

determined based on experimental density data taken from literature,182 and the 

aqueous solubility experimental data used were those obtained in this work along with 
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other results taken from the literature.378 The dependence of the IL solubility in the 

water-rich phase with the IL molar volume, at 298.15 K, is shown in Figure 4.12. A very 

good correlation between the logarithm of the solubility, ln(xIL), and the molar volume, 

Vm, was obtained while covering a wide range of magnitudes regarding the solubility mole 

fraction data. Thus, it is here shown that a large range of solubilities of [NTf2]-based ILs in 

water can be estimated using their molar volumes and the equation provided in Figure 

4.12 caption. 

 

Figure 4.12. Solubility of [NTf2]-based ILs in water (expressed in mole fraction) as function 

of the IL molar volume: ln(xIL) = -0.0309 (Vm/cm3·mol-1) + 0.9357; R2 = 0.9947. All data are 

at 298.15 K. 

Temperature dependence and thermodynamic functions of solution 

The fitted parameters of equations 4.19 and 4.20 along with their standard deviations are 

presented in Table 4.10. The proposed correlations present a maximum relative deviation 

in the experimental mole fraction data of 2 and 3%, for the water-rich and IL-rich phases, 

respectively.  

The molar thermodynamic properties of the ionic liquid solvation in water are reported in 

Table 4.11 at 298.15 K.  
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Table 4.10. Estimated parameters for the mole fraction of water in the IL-rich phase and 

IL in the water-rich phase estimated using Equations 4.19 and 4.20, respectively.a 

Ionic liquid A B / K C D / K E 

[C1C1im][NTf2] 2.65 (0.08) -1098 (23) -337 (83) 13938  (3744) 50 (12) 

[C2C2im][NTf2] 2.11 (0.09) -1102 (28) -359 (73) 15065 (3322) 53 (11) 

[C3C3im][NTf2] 2.52 (0.08 -1197 (24) -131 (28) 4954 (1240) 19 (4) 

[C4C4im][NTf2] 2.12 (0.07) -947 (34) -462 (96) 19516 (4309) 68 (14) 

[C5C5im][NTf2] 2.76 (0.15) -1372 (38) -217 (45) 8495 (2022) 31 (7) 

aThe correspondent standard deviation is presented between brackets. 

Table 4.11. Standard thermodynamic molar properties of solution of ionic liquids in water 

at 298.15 K. a 

 
10 molkJ/  msol H  10 molkJ/  msolG  110 molKJ/   msol S  

[C1C1im][NTf2] 7.6 (1.5) 16.131 (0.017) -28.6 (5.0) 

[C2C2im][NTf2] 5.8 (1.5) 18.672 (0.014) -43.3 (5.0) 

[C3C3im][NTf2] 4.7 (1.5) 21.218 (0.026) -55.2 (5.0) 

[C4C4im][NTf2] 6.0 (1.5) 23.629 (0.003) -59.2 (5.0) 

[C5C5im][NTf2] 7.0 (1.5) 26.687 (0.024) -66.1 (5.0) 

aThe correspondent standard deviation is presented between brackets. 

At 298.15 K, the standard Gibbs energy of solution of the ILs in water increases with the 

alkyl chain leading to a lower solubility in water with the increase of the respective 

aliphatic moieties. The enthalpies of solution derived from experimental data show that 

the dissolution of ionic liquids in water is an endothermic process, thus leading to an 

UCST-type of phase diagram. As previously shown, the enthalpies of solution of ILs in 

water are very little dependent on the alkyl side chain length of the cation,378 and this 

trend is also observed with the symmetric [CnCnim][NTf2] series of ILs. These results 

confirm that the solubility of ILs in water is entropically driven, as previously observed for 

[CnC1im][NTf2]378 and [PF6]-based ILs.380 Figure 4.13 presents the experimental entropies 

of [CnCnim][NTf2], [CnC1im][NTf2],378 and [CnC1im][PF6]380 as function of total methylene 

groups in the two alkyl side chains, N. The entropies of solution of these three series of ILs 
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in water exhibit a small decrease in the entropy of solution of approximately -5 J·K-1·mol-1 

per methylene addition to the cation. In addition, the entropies of solution of ILs in water 

decrease with increasing cation alkyl side chain length, regardless of the anion. Thus, it 

can be concluded that the decrease of the ILs solubility with the increase of the alkyl side 

chain length is driven by the linear decrease of the entropy of solution, related with the 

increase of the cavitation entropy very identical to that the observed in the solvation of 

linear alkanes and alcohols in water.414,415 

 

Figure 4.13. Standard molar entropy of solution, 0

msol S , as function of total methylene 

groups in the alkyl side chains, N, of ILs. Symbols: (♦, solid line), [CnC1im][PF6],380 0

msol S = 

- 4.7·N + 10.3, R2 = 0.9931 ; (■, dashed line), [CnC1im][NTf2],378 0

msol S = - 5.2·N + 19.4, R2 = 

0.9832; and (▲, dotted line), [CnCnim][NTf2], 0

msol S = - 4.5·N - 23.2, R2 = 0.9459. The 

symbols and line represents the estimated 0

msol S calculated using Equation 4.23 and 

dependency of 0

msol S  as function of N, respectively. All data are at 298.15 K. 

The conventional standard molar properties of solvation were determined through the 

reported vapor pressures and the standard molar enthalpy of vaporization of each IL 

studied at 298.15 K.408,416 The reported vapor pressures were used to extrapolate them to 

298.15 K using the Clarke and Glew equation. The conventional solvation thermodynamic 

functions at 298.15 K, and for the ILs studied, are presented in Table 4.12. 
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Table 4.12. Standard molar properties of solvation of ionic liquids in water at 298.15 K. a 

 
10 molkJ/  msvt H  10 molkJ/  msvtG  110 molKJ/   msvt S  

[C1C1im][NTf2] -128.8 (1.8) -63.775 (0.017) -218.1 (4.5) 

[C2C2im][NTf2] -123.3 (1.8) -57.017 (0.024) -222.3 (4.5) 

[C3C3im][NTf2] -131.3 (1.8) -55.226 (0.026) -255.1 (4.5) 

[C4C4im][NTf2] -134.8 (1.8) -53.867 (0.003) -271.4 (4.5) 

[C5C5im][NTf2] -143.6 (1.8) -54.087 (0.024) -300.3 (4.5) 

aThe correspondent standard deviation is presented between brackets. 

The standard molar Gibbs energies of solvation increase with the alkyl chain length 

(decrease of the IL solubility in water). The results show, with exception of the outlier IL, 

[C1C1im][NTf2], a regular decrease the molar enthalpies and entropies of solvation as a 

function of the alkyl chain length, highlighting the role of the entropy in the solvation of 

ionic liquids in water. 

COSMO-RS 

Figure 4.10 presents the COSMO-RS predicted phase diagrams of the binary mixtures 

composed of ionic liquids and water. The results obtained with COSMO-RS show an 

acceptable qualitative agreement with the experimental data, and as previously 

observed.374,377–380 The same hydrophobic character increase, at the water-rich side, is 

observed both in the experimental data and in the predictions. Furthermore, the similar 

trends of mole fraction solubility of water in symmetric and asymmetric ionic liquids are 

also well predicted by COSMO-RS. Higher relative deviations were observed in the water-

rich phase due to the very low solubility of the studied ionic liquids in water. In spite of 

the quantitative deviations obtained with COSMO-RS from experimental data the model 

is able to correctly display the alkyl chain length and cation symmetry impact in these 

mutual solubilities. Thus, COSMO-RS proved to be a useful predictive method for the a 

priori screening of ionic liquids to find suitable candidates for a given task, before 

extensive experimental measurements. 



 
Chapter 4 – Environmental Impact 

169 
 

It is worth mentioning that we also used the latest COSMO file parameterization, 

BP_TZVP_C30_1301 and the results are given in Figure S4.6 of Appendix 4. Despite the 

new parameterization being able to correctly predict the trend of water mole fraction in 

the IL-rich phase, the phase diagram of ILs in the water-rich phase deviates much more 

from the experimental results. Moreover, the predicted phase diagrams behavior displays 

a wrong trend with temperature. 

4.2.5. Analysis of the isomerism effect on the mutual solubilities of 

bis(trifluoromethylsulfonyl)imide-based ionic liquids with water 

Mónia A. R. Martins, Catarina M. S. S. Neves, Kiki A. Kurnia, Luís M. N. B. F. Santos, Mara 

G. Freire, Simão P. Pinho & João A. P. Coutinho, Fluid Phase Equilibria 381 28–35 (2014), 

DOI: 10.1016/j.fluid.2014.08.007 

4.2.5.1. Abstract 

The knowledge of the liquid-liquid equilibria (LLE) between ionic liquids (ILs) and water is 

of utmost importance for environmental monitoring, process design and optimization. 

Therefore, in this work, the mutual solubilities with water, for the ILs combining the 

1‐methylimidazolium, [C1im]+; 1‐ethylimidazolium, [C2im]+; 1-ethyl-3-propylimidazolium, 

[C2C3im]+; and 1‐butyl‐2,3‐dimethylimidazolium, [C4C1C1im]+ cations with the 

bis(trifluoromethylsulfonyl)imide anion, were determined and compared with the 

isomers of the symmetric 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide 

([CnCnim][NTf2], with n = 1-3) and of the asymmetric 1-alkyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([CnC1im][NTf2], with n = 2-5) series of ILs. The results 

obtained provide a broad picture of the impact of the IL cation structural isomerism, 

including the number of alkyl side chains at the cation, on the water-IL mutual solubilities. 

Despite the hydrophobic behavior associated to the [NTf2]- anion, the results show a 

significant solubility of water in the IL-rich phase, while the solubility of ILs in the water-

rich phase is much lower. The thermodynamic properties of solution indicate that the 

solubility of ILs in water is entropically driven and highly influenced by the cation size. 

Using the results obtained here in addition to literature data, a correlation between the 

solubility of [NTf2]-based ILs in water and their molar volume, for a large range of cations, 
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is proposed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was also 

used to estimate the LLE of the investigated systems and proved to be a useful predictive 

tool for the a priori screening of ILs aiming at finding suitable candidates before extensive 

experimental measurements. 

4.2.5.2. Chemicals 

The ILs studied in this work are displayed in Table 4.13 band their chemical structure is 

presented in Figure 4.14. 

Table 4.13. Investigated ionic liquids: name, abbreviation, source, molecular mass (M), 

and purity. 

Chemical Name Abbreviation Source M (g·mol-1) Purity (mass %) 

1‐methylimidazolium 

bis(trifluoromethylsulfonyl)imide 
[C1im][NTf2] Iolitec 363.25 > 99 

1‐ethylimidazolium 

bis(trifluoromethylsulfonyl)imide 
[C2im][NTf2] Iolitec 377.28 > 99 

1-ethyl-3-propylimidazolium 

bis(trifluoromethylsulfonyl)imide 
[C2C3im][NTf2] Iolitec 419.37 > 99 

1‐butyl‐2,3‐dimethylimidazolium 

bis(trifluoromethylsulfonyl)imide 
[C4C1C1im][NTf2] Iolitec 433.39 > 99 

 

 

Figure 4.14. Schematic representation of chemical structure of the studied imidazolium-

based ionic liquids. 
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To reduce the water and volatile compounds content to insignificant values, individual 

samples of ILs were dried under vacuum at 1 Pa and constant stirring at 353 K, for a 

minimum of 48 h. After, the purity of each ionic liquid was further checked by 1H, 13C, and 

19F NMR spectra. A Metrohm 831 Karl Fischer coulometer using the analyte Hydranal® - 

Coulomat AG, from Riedel-de Haën, was used to determine the water content of the 

dried ionic liquids, and was found to be below 100 ppm for all samples. The water used in 

the measurements was double distilled, passed by a reverse osmosis system and further 

treated with a MilliQ plus 185 water purification apparatus, presenting a resistivity of 18.2 

MΩ·cm, a TOC smaller than 5 μg·dm-3 and free of particles larger than 0.22 μm (M (H2O)= 

18.01528 g·mol-1). 

4.2.5.3. Results and discussion 

Mutual solubilities between ionic liquids and water 

The experimental data for the mutual solubility between water and the studied ILs, along 

with the respective standard deviations, are given in Table 4.14 and 4.15.  

The analysis of Table 4.14 reveals a significant mole fraction solubility of water in the IL-

rich phase, and above 0.5 for the [C1im][NTf2] and [C2im][NTf2] ILs. Thus, in spite of the 

hydrophobic character usually associated to the bis(trifluoromethylsulfonyl)imide anion, 

it is shown here that monosubstituted ILs dissolve large amounts of water. The change on 

the nature and acidity of the imidazolium cation by and “extra” “N-H” acidic site leads to 

a saturation limit above 1:1 for the pair water-IL. The water solubility in [C2C3im][NTf2] 

and [C4C1C1im][NTf2] is of the same order observed previously in the [CnC1im][NTf2] and 

[CnCnim][NTf2] series.378,403 On the opposite side of the phase diagram, the mole fraction 

solubility of ILs in the water-rich phase is much lower, in the order of 10-3 to 10-4, which 

may be considered as an almost pure phase with the IL close to infinite dilution.  

In general, an when comparing the data obtained for [C1im][NTf2] and [C2im][NTf2], the 

mutual solubilities with water decrease with the increase on the alkyl side chain length of 

the cation due to an increase in the IL hydrophobic character. For all the studied ILs, the 

mutual solubilities increase with temperature, displaying an upper critical solution 
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temperature behavior. This is the expectable behavior, and also observed with other 

imidazolium-based ILs combined with the [BF4]- or [PF6]- anions.380,384,404 Watanabe and 

Katsuta (2014)417 reported the solubility of [C4C1C1im][NTf2] in water at 298.15 K. The 

relative deviation to the experimental value measured in this work is only 5%. 

Table 4.14. Experimental mole fraction solubility of water in ionic liquids, xw, at different 

temperatures and at 0.10 MPa.a 

T / K 
[C1im][NTf2] [C2im][NTf2] [C2C3im][NTf2] [C4C1C1im][NTf2] 

xw xw xw xw 

288.15 0.627 (0.009) 0.604 (0.010) 0.209 (0.002) 0.168 (0.001) 

293.15 0.648 (0.003) 0.612 (0.010) 0.222 (0.002) 0.183 (0.002) 

298.15 0.667 (0.005) 0.628 (0.006) 0.239 (0.001) 0.191 (0.001) 

303.15 0.686 (0.001) 0.641 (0.004) 0.256 (0.001) 0.212 (0.001) 

308.15 0.709 (0.001) 0.659 (0.005) 0.278 (0.006) 0.229 (0.001) 

313.15 0.720 (0.003) 0.673 (0.007) 0.296 (0.003) 0.244 (0.002) 

318.15 0.736 (0.010) 0.682 (0.012) 0.314 (0.003) 0.263 (0.001) 

aThe correspondent standard deviation is presented between brackets. Standard uncertainties, u, 

are u(T) = 0.01 K, and ur(p) = 0.05. 

Table 4.15. Experimental mole fraction solubility of ionic liquids in water, xIL, at different 

temperatures and at 0.10 MPa.a 

T / K 
[C1im][NTf2] [C2im][NTf2] [C2C3im][NTf2] [C4C1C1im][NTf2] 

103 xIL 103 xIL 103 xIL 103 xIL 

288.15 4.132 (0.037) 2.360 (0.004) 0.311 (0.001) 0.203 (0.002) 

293.15 4.206 (0.027) 2.388 (0.019) 0.317 (0.001) 0.206 (0.008) 

298.15 4.359 (0.011) 2.451 (0.008) 0.325 (0.001) 0.209 (0.001) 

303.15 4.499 (0.053) 2.549 (0.001) 0.336 (0.002) 0.217 (0.003) 

308.15 4.811 (0.032) 2.669 (0.019) 0.351 (0.002) 0.237 (0.001) 

313.15 5.393 (0.020) 2.979 (0.060) 0.387 (0.002) 0.246 (0.003) 

318.15 5.945 (0.026) 3.233 (0.010) 0.410 (0.014) 0.270 (0.001) 

aThe correspondent standard deviation is presented between brackets. Standard uncertainties, u, 

are u(T) = 0.01 K, and ur(p) = 0.05. 
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Aiming at studying the impact of the structural variation of ILs toward their mutual 

solubility with water, Figure 4.15 depicts the phase diagrams of the studied ILs along with 

the corresponding isomers previously reported.378,403 The ionic liquids studied in this work 

and the symmetric and asymmetric series with the same number of methylene groups in 

the alkyl side chains are compared, enabling us to investigate the impact of structural 

isomers toward their mutual solubilities with water. As depicted in Figure 4.15a, the mole 

fraction solubility of water in the ionic liquid [C2C3im][NTf2] is similar to that of 

[C4C1im][NTf2]. Considering now the IL [C4C1C1im][NTf2] with the respective structural 

isomers, [C3C3im][NTf2] and [C5C1im][NTf2], the trialkyl-substituted IL presents a lower 

solubility of water whereas the dissubstituted ILs present similar solubility values. The 

introduction of a third aliphatic moiety substituting the most acidic hydrogen clearly 

reduces the hydrogen-bonding ability between the imidazolium cation and water with an 

impact on the water solubility. However, smaller differences are observed for the pair, 

[C3C3im][NTf2] and [C5C1im][NTf2] that contain the same number of aliphatic tails. 

Moreover, it is interesting to notice the significant differentiation of the solubility of 

water in [C2im][NTf2] and in [C1C1im][NTf2], also structural isomers. The change in the 

chemical nature of the cation and the presence of a N-H group increases the water 

solubility in the IL to a mole fraction higher than 0.5 (above 1:1, water:IL) that is an 

indication of a strong affinity and hydrogen-bonding between N-H and H2O.  
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Figure 4.15. Liquid-liquid phase diagram for water and ionic liquids: (a), ionic-liquid-rich 

phase; and (b) water-rich phase: (×), [C1im][NTf2]; (), [C2im][NTf2]; (), [C1C1im][NTf2]; 

(), [C2C3im][NTf2]; (), [C4C1im][NTf2]; (), [C4C1C1im][NTf2]; (), [C3C3im][NTf2]; and 
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(), [C5C1im][NTf2]. The lines at the same colors represent the COSMO-RS predictions for 

the compounds measured in this work. 

The mole fraction solubility of the different ionic liquids in water is presented in Figure 

4.15b. Also here, as noted in the IL-rich phase, the mole fraction solubility in water of the 

ionic liquid [C2C3im][NTf2] is similar to that of [C4C1im][NTf2]. In the case of the trialkyl-

substituted IL, [C4C1C1im][NTf2], and their structural isomers [C5C1im][NTf2] and 

[C3C3im][NTf2], the solubility in water of the [C4C1C1im][NTf2] is slightly larger than the 

respective isomers, contrary to what happens in the IL-rich phase. The solubility of the 

dissubstituted isomers [C3C3im][NTf2] and [C5C1im][NTf2] is similar as they contain the 

same number of aliphatic tails. Finally, concerning the solubility in water of [C2im][NTf2] 

and [C1C1im][NTf2], and similarly to what observed is the IL-rich phase a large significant 

difference, can be observed. Once again the strong affinity and hydrogen-bonding 

between “N-H” and H2O increases the ionic liquid solubility in water. 

In order to more thoroughly understand the impact of the structural variations of ionic 

liquids on their mutual solubilities with water, the solubility variations are summarized in 

Figure 4.16. The ionic liquids investigated in this work, together with the symmetric 

([CnCnim][NTf2], with n = 1-3) and asymmetric ([CnC1im][NTf2], with n = 2-5) series are 

analyzed in order to evaluate the variations in the mutual solubilities when adding a 

methyl group.  

As observed in Figure 4.16, in both phases, whenever a methyl group is introduced, the 

solubility decreases. In the IL-rich phase, this reduction is within the range 5-16%, if the 

introduction of the methyl group takes place in the aliphatic chains, and 26-52%, if 

directly attached to the aromatic ring. Concerning the water-rich phase, the reduction is 

more pronounced but less distinct; 36-44% for an addition of a methyl to the aliphatic 

chains, and 32-66% if to the aromatic ring. When the methyl group is added to the 

aromatic ring, the highest percent decrease correspond to the pair [C2im][NTf2] / 

[C2C1im][NTf2] and the lowest to [C4C1im][NTf2] / [C4C1C1im][NTf2], i.e., the introduction of 

a third aliphatic moiety has a less impact that the elimination of the “N-H” bond.  
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Figure 4.16. Schematic representation of the percent decrease in the mutual solubilities 

of ILs with water, when introducing a methyl group. 

Concerning the IL-rich phase, when adding a methyl group to [C1im][NTf2] in the aliphatic 

chain the variation is 6%, but, if this addition causes the elimination of the “N-H” bond, 

the variation is 47%. In the same way, the variation in the solubility to obtain 

[C2C1im][NTf2] from a monosubstituted IL ([C2im][NTf2]) is much larger than from a 

dissubstituted IL ([C1C1im][NTf2]). The addition of methyl groups to obtain the symmetric 

and asymmetric series causes a more or less constant variation in the solubility (5-14%), 

being [C4C1im][NTf2]/ [C5C1im][NTf2] the pair where the greatest variation occurs. Lastly 

the [C4C1im][NTf2], where the introduction of a third aliphatic moiety to obtain 

[C4C1C1im][NTf2], reduce the hydrogen-bonding ability and, consequently, causes a 

significant decrease in the solubility. 

On the other hand, in the water-rich phase although the changes are larger than in the IL-

rich phase, these seem more similar the different isomers. For instance, when adding a 

methyl group to the monosubstituted IL [C1im][NTf2] the variations are 44 for the addition 

to the aliphatic chain and 66 % if the addition takes place directly in the aromatic ring. To 

obtain [C2C1im][NTf2] the addition of a methyl group to [C2im][NTf2] cause a variation of 

66% while the addition to [C1C1im][NTf2] causes a variation of only 44%. Again, the 
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additions of methyl groups to obtain the symmetric and asymmetric series, causes 

approximately constant variations in the solubility (36-43%). Concerning the trialkyl-

substituted IL, [C4C1C1im][NTf2], the addition of  a methyl group to [C4C1im][NTf2] causes 

merely a reduction of 32% in the IL solubility. Moreover, is interesting to note that the 

variation on the solubility between the pairs [C3C1im][NTf2]/[C2C3im][NTf2] and 

[C2C2im][NTf2]/[C2C3im][NTf2] is almost the same in each phase, and four times higher in 

the water-rich phase. 

Temperature dependence and thermodynamic functions of solution 

The fitted parameters of equations 4.19 and 4.20 as well as their standard deviations are 

listed in Table 4.16. The maximum relative deviation to the experimental data is 2%, for 

both the water-rich and the ionic liquid-rich phases. 

Table 4.16. Correlation parameters for the mole fraction solubility of water in the IL-rich 

phase and IL in the water-rich phase.a 

IL A B / K C D / K E 

[C1im][NTf2] 1.252 (0.055) -494.1 (16.6) -554.0 (62.7) 23802.9 (2826.8) 82.3 (9.3) 

[C2im][NTf2] 0.853 (0.051) -392.4 (15.5) -503.6 (60.9) 21623.2 (2746.8) 74.6 (9.1) 

[C2C3im][NTf2] 2.860 (0.084) -1277.7 (25.3) -382.0 (61.3) 16139.1 (2764.5) 56.1 (9.1) 

[C4C1C1im][NTf2] 2.987 (0.145) -1376.3 (43.9) -390.6 (68.7) 16495.2 (3098.6) 57.4 (10.2) 

aThe correspondent standard deviation is presented between brackets. 

The molar thermodynamic functions for the IL solution in water were estimated at 298.15 

K and are reported in Table 4.17. 

Table 4.17. Standard molar properties of solution of ILs in water, at 298.15 K.a 

 

10 molkJ/  msol H  10 molkJ/  msolG  110 molKJ/   msol S  

[C1im][NTf2] 6.0 (1.5) 13.475 (0.006) -25.0 (5.1) 

[C2im][NTf2] 5.2 (1.5) 14.901 (0.008) -32.7 (5.1) 

[C2C3im][NTf2] 5.0 (1.5) 19.910 (0.010) -50.1 (5.1) 

[C4C1C1im][NTf2] 5.1 (1.5) 21.000 (0.017) -53.1 (5.1) 

aThe correspondent standard deviation is presented between brackets. 
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At 298.15 K, the 0

msol H  of the studied ILs in water, remains approximately constant with 

the increase of the aliphatic moiety, because when the ionic liquid is in aqueous solution 

the interactions occur mainly with the charged head and are much less dependent on the 

alkyl chain. The experimental enthalpies of solution also show that the solubilisation of ILs 

in water is an endothermic process, leading to an upper critical solution temperature 

behavior type phase diagram. On the other hand, the standard Gibbs energy of solution 

increases with the alkyl chain length leading to a lower solubility of the heavier ILs in 

water. The molar entropies of solution are shown to be negative and dependent on the 

cation structure, decreasing with increasing the alkyl chain length (approximately -5 J·K-

1·mol-1 per methylene addition to the cation and as shown previously378,380–382). 

Therefore, the solubility of the ILs in water is driven by the entropy of solution; the higher 

(less negative) the entropic change, the higher the solubility of the ILs in water. 

The significant increase of solubility of the [C1im][NTf2] and [C2im][NTf2] in water is also 

entropically driven and is a results of the quite significant  increase of the entropy of 

solution of  ~ (+25 kJ·K-1·mol-l) when compared with their isomers378,403 and other 

members of the [NTf2]-series of ILs as well as combined with other anions. The significant 

increase in the entropy of solution is also related with the expected cation to water 

interaction via the N-H group that leads to a better solvation interaction with water and 

to a decrease of the cavitation entropy penalty (more hydrophilic). 

COSMO-RS 

The predicted phase diagrams of the binary mixtures composed of water and the studied 

ILs using COSMO-RS are presented in Figure 4.15. The same increase on the hydrophobic 

character is observed for the experimental data and COSMO predictions. COSMO-RS is 

thus able to qualitatively predict the trend on the ILs affinity for water. The only 

exception found was for the prediction of the solubility change with the temperature for 

the ionic liquid containing the cation [C4C1C1im]+ in water. In opposition to the 

experimental information, COSMO-RS predicts a solubility decrease with rising 

temperature. This irregularity can be related to the fact that simple empirical interaction 
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potentials are used in COSMO-RS to describe the weaker interactions of the ILs with 

water, which is expected to poorly describe their effective complexity. 

Figure 4.17 plots the calculated versus experimental solubility for several [NTf2]-based ILs, 

at both rich phases, and at 298.15 K. From the close correlations depicted in Figure 4.17 it 

can be concluded that COSMO-RS can predict the mutual solubilities between the studied 

ILs and water.  
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Figure 4.17.Calculated versus experimental solubility of bis(trifluoromethylsulfonyl)imide-

based ionic liquids at 298.15 K in (a) IL-rich phase and (b) water-rich phase. 

It should be pointed out here that the latest COSMO file parameterization, 

BP_TZVP_C30_1401, was also used to predict the LLE of the binary systems investigated 

in this work, cf. Figure S4.7 of Appendix 4, presenting a global relative deviations of 35.3 

and 2.8 % for the solubility of water in ILs and ILs in water, respectively. However, this 

COSMO-RS parameterization is also unable to correctly describe the solubility change 

with the temperature for the ILs [C4C1C1im][NTf2] and [C2C3im][NTf2] in water. With the 

file parameterization, BP_TZVP_C21_0110 the global relative deviations obtained were 

16.8 and 1.2 %. Since the latest version of COSMO-RS predicts the phase diagrams with a 

larger deviation from the experimental results and wrong trends, the oldest version is 

preferred and was used here. Despite some regular deviations, COSMO-RS shows to be a 

useful tool in the prediction of the binary systems behavior, and able to correctly display 

the alkyl chain length and IL cation isomeric effect, and as previously observed.374,377,378,380  

 



 
Chapter 4 – Environmental Impact 

179 
 

Correlation for the solubility of bis(trifluoromethylsulfonyl)imide-based ionic liquids in 

water 

The solubility of hydrophobic solutes in water, near infinite dilution, is controlled and 

strongly correlated to their molar volume.377,381,382 For isomeric ILs, the molar volume is 

identical and, consequently, the solubilities are essentially the same. In this context, in 

our previous work403 we have start to investigate the relevance of the solutes molar 

volume on the solubility of the [NTf2]-based ionic liquids in water, at 298.15 K, and a 

correlation was proposed. Here, new points were plotted together with the correlation 

obtained,403 in order to verify if it can be also used for more diverse systems, as shown in 

Figure 4.18. The molar volumes were calculated based on density data taken from 

literature182,397,418 and the aqueous solubility data used were those obtained in this work 

along with data previously published.378,381,382,403 Data relative to other cations 

(pyridinium-, pyrrolidinium- and piperidinium-based381,382,397,418) combined with the same 

anion where also included in order to verify the robustness of the correlation proposed.  

[C1C1im]+

[C2C2im]+

[C3C3im]+

[C4C4im]+

[C5C5im]+

[C2C1im]+

[C3C1im]+

[C4C1im]+ [C5C1im]+

[C6C1im]+

[C7C1im]+
[C8C1im]+

[C3C1pip]+

[C3C1pyr]+

[C4C1pyr]+

[C3-3-C1py]+

[C4py]+

[C4-3-C1py]+
[C4-4-C1py]+

[C6py]+

[C8py]+

[C1im]+

[C2im]+

[C2C3im]+

[C4C1C1im]+

-12

-11

-10

-9

-8

-7

-6

-5

200 250 300 350 400

ln
 x

IL

Vm / cm3·mol-1
 

Figure 4.18. Solubility of bis(trifluoromethylsulfonyl)imide-based ionic liquids in water as 

a function of the ionic liquid molar volume: ln(xIL) = -0.0309 (Vm/cm3·mol-1) + 0.9357; R2 = 

0.9947,403 at 298.15 K. (♦), data used in the correlation; and (●), new data.  

Despite the different cations families, the correlation403 is able to correctly describe the 

solubility of [NTf2]-based ILs in water. However, it is observed that cations with different 

cores, i.e. with a more different chemical nature (like pyridinium-, pyrrolidinium- and 
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piperidinium-based) and the mono substituted imidazolium IL deviate more from the 

proposed correlation that was constructed with imidazolium-based fluids only. On Figure 

4.18 the isomerism effect can also be analyzed and, as can be seen, ionic liquids with the 

same molar volume present similar solubility in water. Exceptions are only the pair 

[C2im][NTf2]/[C1C1im][NTf2], which is understood due to the elimination of a ‘N-H’ bond in 

the imidazolium ring like explored before, and for ILs with a different core than 

imidazolium, namely, [C3C1pip][NTf2] and [C6py][NTf2]. 

4.2.6. Densities, viscosities and derived thermodynamic properties of 

water‒saturated imidazolium‒based ionic liquids 

Mónia A. R. Martins, Catarina M. S. S. Neves, Kiki A. Kurnia, Pedro J. Carvalho, Marisa A. A. 

Rocha, Luís M. N. B. F. Santos, Simão P. Pinho & Mara G. Freire, Fluid Phase Equilibria 407 

188–196 (2016), DOI: 10.1016/j.fluid.2015.05.023 

4.2.6.1. Abstract 

In order to evaluate the impact of the alkyl side chain length and symmetry of the cation 

on the thermophysical properties of water-saturated ionic liquids (ILs), densities and 

viscosities as a function of temperature were measured at atmospheric pressure and in 

the (298.15 to 363.15) K temperature range, for systems containing two series of 

bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [CnCnim][NTf2] (with n 

= 1-8 and 10) and asymmetric [CnC1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-

saturated ILs, the density decreases with the increase of the alkyl side chain length while 

the viscosity increases with the size of the aliphatic tails. The saturation water solubility in 

each IL was further estimated with a reasonable agreement based on the densities of 

water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing 

properties of ILs and water follow a near ideal behavior. The water-saturated symmetric 

ILs generally present lower densities and viscosities than their asymmetric counterparts. 

From the experimental data, the isobaric thermal expansion coefficient and energy 

barrier were also estimated. A close correlation between the difference in the energy 

barrier values between the water-saturated and pure ILs and the water content in each IL 
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was found, supporting that the decrease in the viscosity of ILs in presence of water is 

directly related with the decrease of the energy barrier. 

4.2.6.2. Chemicals 

The densities and viscosities of water-saturated ILs were measured for the following 

bis(trifluoromethylsulfonyl)imide-based compounds: 1,3-dialkylimidazolium, 

[CnCnim][NTf2] (with n = 1-8 and 10); and 1-alkyl-3-methylimidazolium, [CnC1im][NTf2] 

(with n = 2-5, 7, 9 and 11). The ILs investigated in this work are displayed in Table 4.18 

and their chemical structure are depicted in Figure 4.19.  In general, two series of fluids 

were investigated: (i) ILs with symmetric alkyl side chains at the imidazolium cation; and 

(ii) a group of ILs with alkyl side chains of different length at the cation and where one 

aliphatic moiety is always a methyl group. All ILs were purchased from Iolitec with mass 

fraction purities higher than 99%. To reduce the impurities, all ILs were dried and purified 

under vacuum (1 Pa) and at moderate temperature (353 K) for a minimum period of 48 h 

before the experimental measurements. The purity of each IL was further confirmed by 

us by 1H, 13C, and 19F NMR. Ultra-pure water, double distilled, passed by a reverse osmosis 

system and further treated with a MilliQ plus 185 water purification apparatus was used. 

It presented a resistivity of 18.2 MΩ·cm, a TOC (Total Organic Content) smaller than 5 

μg·dm‒3 and was free of particles > 0.22 μm.  

 

Figure 4.19. Schematic representation of the chemical structure of the studied 

imidazolium-based ILs. 
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Table 4.18. Investigated ionic liquids: chemical name, abbreviation, source, molecular 

weight (Mw) and purity. 

Chemical Name Abbreviation Source Mw / (g·mol-1) Purity / (wt %) 

1-ethyl-3-methylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C2C1im][NTf2] Iolitec 391.31 > 99 

1-methyl-3-propyllimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C3C1im][NTf2] Iolitec 405.34 > 99 

1-butyl-3-methylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C4C1im][NTf2] Iolitec 419.37 > 99 

1-methyl-3-pentylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C5C1im][NTf2] Iolitec 433.39 > 99 

1-heptyl-3-methylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C7C1im][NTf2] Iolitec 461.45 > 99 

1-methyl-3-nonylmethylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C9C1im][NTf2] Iolitec 489.50 > 99 

1-methyl-3-undecylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C11C1im][NTf2] Iolitec 517.55 > 99 

1,3-dimethylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C1C1im][NTf2] Iolitec 377.29 > 99 

1,3-diethylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C2C2im][NTf2] Iolitec 405.34 > 99 

1,3-dipropylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C3C3im][NTf2] Iolitec 433.39 > 99 

1,3-dibutylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C4C4im][NTf2] Iolitec 461.45 > 99 

1,3-dipenthylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C5C5im][NTf2] Iolitec 489.50 > 99 

1,3-dihexylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C6C6im][NTf2] Iolitec 517.55 > 99 

1,3-diheptylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C7C7im][NTf2] Iolitec 545.60 > 99 

1,3-dioctylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C8C8im][NTf2] Iolitec 573.66 > 99 

1,3-didecylimidazolium 
bis((trifluoromethyl)sulfonyl)imide 

[C10C10im][NTf2] Iolitec 629.76 > 99 

  

4.2.6.3. Results and discussion 

Although the density and viscosity values determined in this work majorly correspond to 

novel ILs saturated with water at 298.15 K, it should be remarked that Jacquemin et al.396 

already reported the density and viscosity of the water-saturated [C2C1im][NTf2] and 

[C4C1im][NTf2] at several temperatures. The maximum relative deviations between the 

experimental values measured in this work and those reported in the literature396 are 

0.2% and 9.0% for the water-saturated [C2C1im][NTf2], and 0.4% and 14.9% for the water-
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saturated [C4C1im][NTf2], for density and viscosity, respectively. Moreover, the equipment 

used by us was already validated and proven to be adequate for the measurements of 

densities and viscosities of IL-rich phases.180,374,375 

The ILs water content, i.e., the saturation values of water in each IL at 298.15 K, used in 

the density and viscosity measurements, are presented in Table 4.19. 

Density of Water-Saturated Ionic Liquids 

The new experimental density data for the water-saturated ILs are presented in the Table 

S4.7 and S4.8 of Appendix 4. Figure 4.20 depicts the density results obtained in this work 

alongside with the relative deviations between the pure ILs, reported previously by us,182 

and the water-saturated ones. As previously observed with the pure fluids,182 also in both 

series of the water-saturated ILs, the density decreases with the increase on temperature. 
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Figure 4.20. Density of the symmetric and asymmetric water-saturated ILs as function of 

temperature, (a, b), respectively; and density relative deviations between the pure182 and 
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the symmetric and asymmetric water-saturated ILs, (c, d), respectively: ( ), 

[C1C1im][NTf2]; ( ), [C2C2im][NTf2]; ( ), [C3C3im][NTf2]; ( ), [C4C4im][NTf2]; ( ), 

[C5C5im][NTf2]; ( ), [C6C6im][NTf2]; ( ), [C7C7im][NTf2]; ( ), [C8C8im][NTf2]; ( ), 

[C10C10im][NTf2]; (), [C2C1im][NTf2]; (○), [C3C1im][NTf2]; (×), [C4C1im][NTf2]; (∆), 

[C5C1im][NTf2]; (□), [C7C1im][NTf2]; (), [C9C1im][NTf2]; and (), [C11C1im][NTf2]. 

In general, and for both symmetric and asymmetric series of ILs, the density decreases 

with the increase of the alkyl chain length, which is a direct effect of the increasing 

fraction of methylene groups (-CH2). In addition, the presence of water leads to a 

decrease on the density of ILs ranging between (0.19 to 1.6)% - values that depend on the 

IL hydrophobicity and associated water content. This decrease on density is more 

pronounced in ILs with shorter alkyl chains, and it is related with the higher water 

solubility in these ILs when compared to those with longer alkyl chains – cf. Table 4.19. 

For instance, at 298.15 K, the density relative deviations of the pure ILs in respect to the 

water-saturated samples are 1.4% and 0.23% for [C1C1im][NTf2] and [C10C10im][NTf2], 

respectively, and 0.75% and 0.29% for [C3C1im][NTf2] and [C11C1im][NTf2], respectively.  

When addressing the results obtained for the structural pairs of isomers some discussions 

and conclusions can be drawn. For all the isomeric pairs, the asymmetric series present 

slightly higher values of densities than the corresponding symmetric ones. The more 

pronounced differences in densities where observed for the pairs 

[C3C3im][NTf2]/[C5C1im][NTf2] and [C6C6im][NTf2]/[C11C1im][NTf2]. A similar behavior on 

densities was already reported for the pure ILs.182  In general, and due to the slightly 

differences between the isomeric pairs (which most of the times fall within the densities 

uncertainty), it can be postulated that the cation isomerism, at least derived from 

symmetric/asymmetric series of imidazolium-based ILs, does significantly lead to different 

densities – whereas the contribution of the –CH2 groups towards the IL molar volume 

seems to be independent on its localization at one of the aliphatic tails.419,420  
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Table 4.19. Experimental and estimated mole fraction solubility of water (xw) in the 

investigated ILs, at 298.15 K and 0.10 MPa. 

Ionic Liquid 
xw 

xDev b 
Estimated Experimentala [29-31] 

[C2C1im][NTf2] 0.345 (0.002) 0.298 (0.009) 0.0467 

[C3C1im][NTf2] 0.264 (0.002) 0.272 (0.007) -0.0079 

[C4C1im][NTf2] 0.142 (0.002) 0.257 (0.006) -0.1149 

[C5C1im][NTf2] 0.225 (0.002) 0.221 (0.005) 0.0042 

[C7C1im][NTf2] 0.298 (0.002) 0.197 (0.004) 0.1010 

[C9C1im][NTf2] 0.248 (0.002) 0.174 (0.001) 0.0748 

[C11C1im][NTf2] 0.244 (0.002) 0.157 (0.001) 0.0871 

[C1C1im][NTf2] 0.354 (0.002) 0.355 (0.004) -0.0011 

[C2C2im][NTf2] 0.282 (0.002) 0.277 (0.001) 0.0043 

[C3C3im][NTf2] 0.251 (0.002) 0.223 (0.001) 0.0277 

[C4C4im][NTf2] 0.235 (0.002) 0.184 (0.003) 0.0508 

[C5C5im][NTf2] 0.147 (0.002) 0.158 (0.001) -0.0109 

[C6C6im][NTf2] 0.183 (0.002) 0.149 (0.001) 0.0337 

[C7C7im][NTf2] 0.208 (0.002) 0.137 (0.001) 0.0711 

[C8C8im][NTf2] 0.297 (0.002) 0.125 (0.001) 0.1728 

[C10C10im][NTf2] 0.349 (0.002) - c - 

aStandard deviation between brackets. Uncertainties are u(T) = 0.01 K and ur(p) = 0.05. 

bxDev = xw(Estimated)
 –xw(Experimental).  

cNot experimentally determined at 298.15 K due to the higher melting temperature of this ionic 
liquid. However, the water solubility in [C10C10im][NTf2] at 308.15 K is 0.1337 (in mole fraction).407 

Figure 4.21 depicts the dependency of the ILs density at a fixed temperature along with 

the cation’s alkyl side chain length. In both series of ILs, larger differences in densities 

amongst the pure and water-saturated ILs are observed in compounds with shorter alkyl 

side chains. This is a major result of a higher water content in ILs with alkyl side chains of 

smaller size as highlighted before. Overall, the densities of the water-saturated and pure 

ILs, in both series, become almost equal for N = 8 (where N represents the total number 

of carbon atoms in the two aliphatic tails). 
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Figure 4.21. Density of the studied pure182 (empty symbols) and water-saturated (full 

symbols) [NTf2]-based ILs as a function of the cation structure (alkyl side chain length 

increase) at 298.15 K. Colorful symbols correspond to isomers, and black symbols 

correspond to ILs with no corresponding isomers. 

Despite the current debate surrounding the application of a linear correlation or a second 

order polynomial equation to describe the density data of ILs,180 it was found that the use 

of a linear equation satisfactorily describes the experimental data within the temperature 

studied in this work. The fitting parameters of Equation 4.27 are given in Table S4.9 of 

Appendix 4.  

Table 4.20 lists the thermal expansion coefficients calculated at 323.15 K and 0.1 MPa, 

using Equation 4.28, for all the studied water-saturated ILs, together with the values 

previously reported for the corresponding pure ILs.182 This temperature was chosen to 

allow a direct comparison of all ILs at their liquid state. Even though similar thermal 

expansion coefficients for both symmetric and asymmetric ILs are observed, the presence 

of water leads to a slightly increase on αp. The αp for water-saturated ILs varies between 

(6.82 and 7.00) × 10-4 K-1, i.e., between [C7C1im][NTf2] and [C3C1im][NTf2], respectively.  
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Table 4.20. Thermal expansion coefficients, αp, of pure182 and water-saturated ILs, 

estimated using Equation 4.28 at 323.15 K and 0.1 MPa. a 

Ionic Liquid 104 · (αp,water-saturated ± σ)b / K-1 104 · (αp,pure ± σ)b / K-1 %ADc 

[C2C1im][NTf2] 6.959 ± 0.012 6.69 ± 0.09 4.01 

[C3C1im][NTf2] 7.003 ± 0.007 6.71 ± 0.09 4.37 

[C4C1im][NTf2] 6.893 ± 0.004 6.67 ± 0.12 3.35 

[C5C1im][NTf2] 6.981 ± 0.005 6.67 ± 0.09 4.66 

[C7C1im][NTf2] 6.819 ± 0.006 6.72 ± 0.16 1.48 

[C9C1im][NTf2] 6.840 ± 0.004 6.72 ± 0.13 1.79 

[C11C1im][NTf2] 6.889 ± 0.004 6.78 ± 0.11 1.61 

[C1C1im][NTf2] 6.925 ± 0.003 6.63 ± 0.11 4.44 

[C2C2im][NTf2] 6.966 ± 0.003 6.75 ± 0.07 3.19 

[C3C3im][NTf2] 6.939 ± 0.008 6.75 ± 0.09 2.80 

[C4C4im][NTf2] 6.855 ± 0.004 6.71 ± 0.09 2.16 

[C5C5im][NTf2] 6.870 ± 0.007 6.75 ± 0.08 1.77 

[C6C6im][NTf2] 6.893 ± 0.005 6.80 ± 0.14 1.36 

[C7C7im][NTf2] 6.878 ± 0.004 6.77 ± 0.14 1.59 

[C8C8im][NTf2] 6.898 ± 0.004 6.84 ± 0.15 0.85 

[C10C10im][NTf2] 6.947 ± 0.004 6.87 ± 0.14 1.12 

aStandard uncertainties, u, are u(T) = 0.02 K, and ur(p) = 0.05. 

bExpanded uncertainty with approximately 95% level of confidence. 

cPercentage average relative deviation on αp between the water-saturated and pure ILs.  

The representation of the thermal expansion coefficient for the water-saturated ILs along 

with the pure ILs,182 at 323.15 K and 0.1 MPa, as a function of the cation structure and 

alkyl side chain length is depicted in Figure 4.22. Although a straight dependence of αp 

with the alkyl chain length is not observed, there are pronounced effects on general 

trends according to the alkyl chain length increase that agree well those observed with 

pure ILs.182 

The results obtained from the estimation of the solubility using equations 4.29 and 4.30 

at 298.15 K are reported in Table 4.19. Albeit with some deviations, this approximation 

can be used to estimate water saturation values when no experimental data are available 

while foreseeing an initial screening on ILs to be applied in a particular application. These 

close values are also an indication that the volumetric mixing properties of the two IL 

series and water follow a near ideal behavior. 
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Figure 4.22. Thermal expansion coefficient of pure182 and water-saturated ILs at 323.15 K 

and 0.1 MPa as a function of the cation structure (alkyl side chain length increase). The 

full and empty symbols represent water-saturated and pure ILs, respectively. Colorful 

symbols correspond to isomers, and black symbols correspond to ILs with no 

corresponding isomers. 

Viscosity of Water-Saturated Ionic Liquids 

The viscosity data for water-saturated ILs were determined from (298.15 to 363.15) K and 

the detailed values are given in Tables S4.10 and S4.11 of Appendix 4. Figure 4.23 shows 

the viscosity results obtained in this work alongside with the deviations between the pure 

ILs, previously reported,182,421 and the water-saturated ILs. The viscosity of water-

saturated ILs increases with the increase on the size of the alkyl side chain, following the 

general trend already shown for pure ILs.182   

It is striking to see the impact of water content in the viscosity of ILs, which significantly 

decreases (from 16% to 51%). Figure 4.23 also reveals the higher viscosity of water-

saturated asymmetric ILs compared to the symmetric isomeric pairs, a pattern already 

reported for pure ILs.182 The isomeric pair [C5C1im][NTf2]/[C3C3im][NTf2] presents the 
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smallest differences for their viscosities at the same temperature, whereas the other 

pairs exhibit more noticeable differences. These differences decrease with increasing 

temperature and increase with the length of the alkyl chain for both series of ILs. 

Moreover, the difference in viscosity between pure and water-saturated ILs is higher in 

the asymmetric series. 
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Figure 4.23. Viscosity of the of the symmetric and asymmetric water-saturated ILs as 

function of temperature, (a, b), respectively, and viscosity relative deviations between the 

pure182,421 and the symmetric and asymmetric water-saturated ILs (c, d), respectively: ( ), 

[C1C1im][NTf2]; (), [C2C1im][NTf2]; (○), [C3C1im][NTf2]; ( ), [C2C2im][NTf2]; (×), 

[C4C1im][NTf2]; (∆), [C5C1im][NTf2]; ( ), [C3C3im][NTf2]; (□), [C7C1im][NTf2]; ( ), 

[C4C4im][NTf2]; (), [C9C1im][NTf2]; ( ), [C5C5im][NTf2]; (), [C11C1im][NTf2] ( ), 

[C6C6im][NTf2]; ( ), [C7C7im][NTf2]; ( ), [C8C8im][NTf2]; and ( ), [C10C10im][NTf2]. 

In recent works we have shown, not only for viscosity but also for other properties, such 

as  vapor pressures, heat capacity and surface tension,182,416,422,423  that both the 

asymmetric [CnC1im][NTf2] and symmetric [CnCnim][NTf2] series of ILs present a trend shift 



 
Chapter 4 – Environmental Impact 

190 
 

in these  properties along the alkyl side chain length increase.182,422,423  Similarly to the 

case of the pure ILs viscosity,182 this trend shift for the water-saturated ILs occurs around 

[C6C1im][NTf2] for the asymmetric ILs and [C6C6im][NTf2] for the symmetric ones, as 

depicted in Figure 4.24. This trend shift is related with the structural organization of the 

liquid above a critical alkyl size (CAS) and, similar to the pure ILs viscosity, it is particularly 

emphasized in the cations with higher symmetry. Some molecular dynamics studies for 

the asymmetric series aiming at understanding the structural shifts observed have been 

already performed,424 while demonstrating the progressive increase and segregation of 

the nonpolar parts (tails) of the cations as the alkyl side chains become larger. The pure 

ILs with shorter alkyl chain lengths also display a clearly discernible odd-even effect on 

the viscosities,182 that albeit the presence of water seems to smooth, is also observed in 

the water-saturated ILs. 
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Figure 4.24. Viscosity dependence of the pure182,421 and water-saturated [NTf2]-based ILs 

studied, at 298.15 K, as a function of the cation structure (alkyl side chain length 

increase). The matching empty and colorful symbols represent, respectively, the pure and 

water-saturated ILs. Colorful symbols correspond to isomers, and black symbols 

correspond to ILs with no corresponding isomers.   
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The fitting parameters resulting from the application of the VFT model are presented in 

Table 4.21. The maximum absolute relative deviation between the correlated and 

experimental values is 2.08%, with an average absolute relative deviation of 0.17%. Thus, 

the application of the Vogel-Tammann-Fulcher correlation to the viscosity data180 

provides a good description of the viscosity dependence of water-saturated ILs as well. 

Table 4.21. Fitting coefficients of the VTF equation and derived energy barrier, E, of 

pure182,421 and water-saturated ILs at 323.15 K and 0.1 MPa.a 

Ionic Liquid 
(Aη ± σ)b / 

mPa·s 
(Bη ± σ)b / K 

(Cη ± σ)b / 
K 

(Ewater-saturated ± σ)b 
/ kJ·mol-1 

(Epure ± σ)b / 
kJ·mol-1 

%ADc 

[C2C1im][NTf2] 0.203 ± 0.007 645.7 ± 11.5 155.8 ± 1.4 20.03 ± 0.76 22.35 ± 0.24 2.32 

[C3C1im][NTf2] 0.181 ± 0.006 671.4 ± 10.2 163.6 ± 1.2 22.90 ± 0.77 25.48 ± 0.15 2.58 

[C4C1im][NTf2] 0.184 ± 0.004 678.0 ± 5.8 166.2 ± 0.7 23.89 ± 0.46 26.41 ± 0.31 2.52 

[C5C1im][NTf2] 0.158 ± 0.002 734.0 ± 3.1 164.8 ± 0.3 25.40 ± 0.24 27.87 ± 0.16 2.47 

[C7C1im][NTf2] 0.164 ± 0.005 742.2 ± 9.1 169.6 ± 0.9 27.34 ± 0.75 29.83 ± 0.09 2.49 

[C9C1im][NTf2] 0.116 ± 0.028 880.0 ± 74.1 161.5 ± 6.5 29.23 ± 5.30 31.50 ± 0.54 2.27 

[C11C1im][NTf2] 0.115 ± 0.012 906.8 ± 31.3 163.5 ± 2.6 30.89 ± 2.31 32.99 ± 0.74 2.10 

[C1C1im][NTf2] 0.227 ± 0.007 600.0 ± 9.3 162.0 ± 1.2 20.06 ± 0.68 23.15 ± 0.37 3.09 

[C2C2im][NTf2] 0.165 ± 0.005 717.1 ± 10.3 147.6 ± 1.2 20.20 ± 0.59 22.33 ± 0.47 2.13 

[C3C3im][NTf2] 0.178 ± 0.003 681.8 ± 5.1 169.5 ± 0.6 25.07 ± 0.43 27.43 ± 0.16 2.36 

[C4C4im][NTf2] 0.144 ± 0.004 768.6 ± 9.3 166.1 ± 0.9 27.07 ± 0.72 28.92 ± 0.25 1.85 

[C5C5im][NTf2] 0.117 ± 0.002 846.5 ± 6.3 164.8 ± 0.6 29.31 ± 0.48 31.21 ± 0.44 1.90 

[C6C6im][NTf2] 0.105 ± 0.001 899.6 ± 2.0 163.6 ± 0.2 30.66 ± 0.15 32.34 ± 0.54 1.68 

[C7C7im][NTf2] 0.093 ± 0.004 953.7 ± 13.3 161.7 ± 1.1 31.75 ± 0.95 33.30 ± 1.30 1.55 

[C8C8im][NTf2] 0.095 ± 0.003 962.7 ± 10.4 163.4 ± 0.8 32.74 ± 0.76 34.47 ± 0.92 1.73 

[C10C10im][NTf2] 0.083 ± 0.004 1034.3 ± 15.5 162.3 ± 1.1 34.70 ± 1.11 35.70 ± 2.70 1.00 

aUncertainties are u(T) = 0.02 K, and ur(p) = 0.05. 

bExpanded uncertainty with an approximately 95% level of confidence. The energy barrier values 

for the pure ionic liquids are from reference.182 

cPercentage average absolute deviation on E between the pure and the water-saturated ILs.  

The calculated energy barrier for the water-saturated ILs, at 323.15 K, together with the 

data for the pure ILs (reported in a previous work182,421), are listed in Table 4.21 and 

depicted in Figure 4.25.  



 
Chapter 4 – Environmental Impact 

192 
 

15

20

25

30

35

40
E

(3
2

3
.1

5
 K

) 
/ 

kJ
·m

o
l-1

Symmetric Asymmetric

[NTf2]-based ILs  

Figure 4.25. Energy barrier of pure182,421 and water-saturated ILs at 323.15 K and 0.1 MPa, 

as a function of the cation structure (alkyl side chain length increase). The matching 

empty and colorful symbols represent, respectively, the pure and water-saturated ILs. 

Colorful symbols correspond to isomers, and black symbols correspond to ILs with no 

corresponding isomers. 

As can be seen in Figure 4.25, and in both series of ILs, the energy barrier increases 

monotonically with the cation alkyl side chain length increase since the van der Waals 

interactions start to overwhelm the cation-anion electrostatic interactions. [C1C1im][NTf2] 

has an outlier behavior for the viscosity and energy barrier according to the increase on 

the alkyl side chains size due to its high charge density afforded by two small methyl 

groups, and as already proved for the same properties regarding the pure IL.182 For ILs 

with the same number of carbon atoms at the aliphatic moieties, i.e., structural isomers, 

the symmetric series of water-saturated ILs display lower energy barrier values, following 

the same trend observed in pure ILs.182 Figure 4.25 also reveals that the presence of 

water reduces the energy barrier of the respective ILs.  

In general, the difference in the energy barrier between water-saturated and pure ILs 

values, correlates well with the total number of carbons in the alkyl side chains, N, either 
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for the symmetric or asymmetric series of ILs – Figure 4.26a. Moreover, the difference of 

the energy barriers at 323.15 K slightly correlates with the mole fraction of water in each 

IL (including both series of compounds) - Figure 4.26b. The observed correlation is a clear 

indication that the presence of water is a major factor contribution for the decreasing of 

the energy barrier in all the ILs investigated, as well as a strong indication that the water 

molecules are solvated and mainly interacting with the polar regions of the IL (IL anion 

and imidazolium high-charge region). In fact, the lower is the energy barrier, the less 

difficult is for the ions to move past each other, which seems to be favored in the 

presence of water due to the weakening of IL-IL interactions. The decrease of viscosity in 

ILs in presence of water is thus a result of a decrease on the energy barrier, which is 

further connected to the water content in each IL. 

EDev = 0.0859 N - 2.8798
R² = 0.7618
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Figure 4.26. Deviation (EDev) between the water-saturated and the pure ILs energy 

barriers at 323.15 K, as a function of: (a) the total number of carbons in the alkyl chain 

length, N; and (b) the experimental mole fraction water solubility, xw (at 298.15 K). 

4.2.7. Conclusions 

The impact of the cation symmetry on the mutual solubilities between ILs and water was 

here evaluated. Despite the hydrophobic label attributed to [NTf2]-based ILs, both series 

dissolve a large amount of water. In particular, solubilities in the order of 0.5 (in mole 

fraction) were found for the monosubstituted ILs. The impact of the structural variation of 

the ILs cations toward their mutual solubilities with water were analyzed and showed that 

the introduction of a methyl group always decreases the solubility. This decrement is 
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more pronounced when the addition of the methyl group is carried to an “N-H” bond. 

Moreover, the solubilities of ILs in water with the same total number of carbons in the 

alkyl side chain are comparable, as they have similar molar volumes, and a useful 

correlation between the solubility of [NTf2]-based ILs and their molar volume was 

evaluated. The thermodynamic functions of solution and solvation were also derived, 

indicating that the solution of the studied ILs in water is entropically driven, and the 

symmetric and asymmetric series of ILs display an increase of circa -5 J·K-1·mol-1 per 

methylene addition in the aliphatic moieties similar to that observed in the alkanes and 

alcohols in water. The predictive results obtained with COSMO-RS for the LLE of the 

systems here studied are in good agreement with the experimental data supporting the 

applicability of this model to predict the solubility of other ionic liquids and water not 

experimentally available. 

For both pure and water-saturated ILs, the density and viscosity values decrease with 

increasing temperature. The density decreases with the increase of the alkyl side chain 

length while the viscosity increases with the size of the aliphatic tails – trend observed 

either for the pure or water-saturated ILs. Although the density is only slightly affected by 

the presence of water, the water solubility in each IL was estimated in a reasonable 

agreement with the experimental solubility data being an indication that the volumetric 

mixing properties of ILs and water follow a near ideal behavior. Furthermore, the water-

saturated symmetric series of ILs generally present lower densities and viscosities than 

their asymmetric counterparts. The water effect on the viscosity trends shows that for 

pure and water-saturated ILs there is a trend shift along the alkyl side chain length. 

Moreover, the presence of water also affects the derived properties, leading to an 

increase of 2% in the thermal expansion coefficients, while the energy barrier is reduced. 

The latter property reveals that the symmetric series of ILs require less energy to move 

freely in the bulk than the asymmetric counterparts. The differences in the energy barrier 

values between the water-saturated and pure ILs closely correlate with the water 

content, meaning that the decrease on viscosity is a direct consequence of the presence 

of water which favor the ions to move past each other. 



 
Chapter 4 – Environmental Impact 

195 
 

4.3. Aqueous solubilities of five N-(diethylaminothiocarbonyl)benzimido derivatives 

at T = 298.15 K 

Bernd Schröder, Mónia A. R. Martins, João A. P. Coutinho & Simão P. Pinho, Chemosphere 

160, 45–53 (2016), DOI: 10.1016/j.chemosphere.2016.06.042 

4.3.1. Abstract 

N-(diethylaminothiocarbonyl)benzimido derivatives are polar multifunctional substances. 

A set of these compounds was synthesized by successive substitution on the enamine 

side, resulting in similar substances with different polarities, providing a set of model 

compounds with respect to the study of substituent effects on physico-chemical 

properties.  Experimental aqueous solubility data, at T = 298.15 K, of N-

(diethylaminothiocarbonyl)benzamidine, PhCNH2NCSNEt2 (1), N-

(diethylaminothiocarbonyl)-N′-phenylbenzamidine, PhCNHPhNCSNEt2 (2), N-

(diethylaminothiocarbonyl)-N´-monoethylbenzamidine, PhCNHEtNCSNEt2 (3), N-

(diethylaminothiocarbonyl)-N′,N′-diethylbenzamidine, PhCNEt2NCSNEt2 (4), and N-

(diethylaminothiocarbonyl)benzimido ethylester, PhCOEtNCSNEt2 (5) were measured at T 

= 298.15 K. The obtained data are supplemented by COSMO-RS aqueous solubility 

predictions as well as other environmentally important partition coefficients. This 

information is shown in a two-dimensional chemical space diagram, providing indications 

about the compartment into which the bulk of the compounds is likely to concentrate. 

The expected quality of COSMO-RS predictions for this type of screening exercise is 

illustrated on a set of pesticides with established thermophysical property data. 

4.3.2. Introduction 

N-(diethylaminothiocarbonyl)benzimido derivatives are relatively stable substances 

belonging to the group of thiourea derivative compounds.425 They are accessible through 

the reaction of coordinated N-Acylthiourea with acid chlorides, followed by further 

derivatization. Members of this family are known chelating agents,426 with potential 

applications e.g., radio pharmaceuticals (99mTc).427 A large number of serine proteinase 

inhibitors has been developed, starting from benzamidine and its derivatives.428–430 
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Reports on the thermochemistry of N-(diethylaminothiocarbonyl)benzimido 

derivatives431,432 and some of their Ni-complexes433 are available. More recently, they 

were systematically examined for their crystalline structures,434,435 with intent to connect 

to their fusion thermodynamics.435 

Here, we report on experimental aqueous solubility data, at T = 298.15 K, of the following 

compounds: N-(diethylaminothiocarbonyl)benzamidine, PhCNH2NCSNEt2 (1), N-

(diethylaminothiocarbonyl)-N′-phenylbenzamidine, PhCNHPhNCSNEt2 (2), N-

(diethylaminothiocarbonyl)-N´-monoethylbenzamidine, PhCNHEtNCSNEt2 (3), N-

(diethylaminothiocarbonyl)-N′,N′-diethylbenzamidine, PhCNEt2NCSNEt2 (4), and N-

(diethylaminothiocarbonyl)benzimido ethylester, PhCOEtNCSNEt2 (5), as shown in Figure 

4.27. These compounds have all the same chemical core structure, only differentiated by 

successive substitution on the enamine side (1-4) or its complete replacement by an ester 

group (5), making them an interesting study subject. They represent a class of rather 

simple, but nevertheless multifunctional compounds, whose thermodynamic properties, 

due to the combination of their functional groups, are not easy to predict. 

Cpd. No. Name Structural formula 

1 N-(diethylaminothiocarbonyl)benzamidine N

S

N

N

H H  

2 N-(diethylaminothiocarbonyl)-N´-phenylbenzamidine 
N

S

N

N

H

 

3 
N-(diethylaminothiocarbonyl)-N´-

monoethylbenzamidine 
N

S

N

N

H  

4 
N-(diethylaminothiocarbonyl)-N´-N´-

diethylbenzamidine 
N

S

N

N

 

5 N-(diethylaminothiocarbonyl)benzimido ethylester N

S

N

O

 

Figure 4.27. Chemical structures of the title compounds. 
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Quite often, accurate experimental data concerning equilibrium partition constants of 

such substances are not available. Furthermore, given the large number of chemicals in 

use, accompanied by frequently incomplete data sets, reliable methods for rapid 

screening of substances for their persistence in the environment are required.436 A first 

screening procedure based on physical-chemical equilibrium partitioning data between 

air, water and octanol can assist in identifying environmental compartments for which 

degradation half-lives might be needed.437  

A computational tool under attention is COSMO-RS, from which a variety of 

environmentally important partition coefficients are available straight from a statistical 

thermodynamic treatment following quantum chemical COSMO calculations. The ability 

of the method to successfully predict environmentally important partition coefficients 

was demonstrated on a variety of occasions, with respect to a diversity of compounds as 

well as properties.438–448 

Hence our principal goals are twofold: to provide a) reliable aqueous solubility data and b) 

check on the predicting performance of COSMO-RS regarding these compounds, with 

respect to the obtained experimental data. Organizing the results in the form of partition 

coefficients in a two-dimensional chemical space diagram provides information about the 

partition behavior of the title compounds once released in the environment. For the sake 

of comparison, structurally related, mostly urea-based pesticides, with established 

thermophysical property data sets were selected and also plotted in the space diagram. 

4.3.3. Experimental 

4.3.3.1. Material 

The synthesis was performed as described in detail elsewhere.425,435 A resume as well as 

details of characterization are given in Appendix 4.2.  

 

 

 



 
Chapter 4 – Environmental Impact 

198 
 

4.3.3.2. Methods 

The experimental solubilities of the N-(diethylaminothiocarbonyl)benzimido derivatives in 

water were determined at T = 298.15 K and at atmospheric pressure. The experimental 

setup, adapted from literature,449–451 is presented in Figure 4.28.  

 

Figure 4.28. Experimental setup for the aqueous solubility measurements. A: Test tubes, 

B: dialysis tubing containing ultra-pure water, C: sampling glass tube, D: rubber cup, E: 

thermostatized bath, F: stirrer. 

Initially, test tubes (A) with solutions with an excess of solid were prepared and a dialysis 

tubing cellulose membrane (B) (D9277 from SIGMA), filled with ultra-pure water. The 

water used was double distilled, passed by a reverse osmosis system and further treated 

with a MilliQ plus 185 water purification apparatus (resistivity: 18.2 MΩ cm; TOC < 5 

μg·dm−3; free of particles > 0.22 μm). The dialysis tubing of around 10 cm length were 

previously humidified for at least 3 hours and cleaned according to the instructions given 

by the manufacturer. As shown by Figure 4.28, one end of the dialysis tubing (B) was 
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closed with a tight knot and the other was fixed to a glass tube (C). This glass tube allows 

the sampling through a rubber cup (D).  

The test tubes solutions were dispersed using an isothermal ultrasonic bath (Branson 250 

& 450 Sonifier) during one hour at 60%, and then allowed to equilibrate in a 

thermostatized Julabo F38 - EH (V2) bath (E) under agitation (F) for at least 24 h, at 298.15 

K. Stirring was carried out by Thermo Scientific™ Cimarec™ Micro Stirrers. This period of 

time proved to be enough to guarantee the saturation. The temperature accuracy of the 

bath was ±0.03 K. 

Samples from the inside of the dialysis membrane were collected using plastic syringes 

maintained at the same temperature of the saturated solution. Solute concentration was 

obtained by UV–vis spectroscopy, using a SHIMADZU UV-1700 PharmaSpec Spectrometer, 

at wavelengths of 270, 267, 269, 243, 281 for N-(diethylaminothiocarbonyl) benzamidine, 

N-(diethylaminothiocarbonyl)- N’,N’-diethylbenzamidine, N-(diethylaminothiocarbonyl)-

N’-monoethylbenzamidine, N-(diethylaminothiocarbonyl)benzimido ethylester and N-

(diethylaminothiocarbonyl)-N’-phenylbenzamidine, respectively. These wavelengths were 

found to be the maximum UV absorption wavelengths for the compounds investigated 

here. Due to the very low aqueous solubilities, solutions of known solute concentration 

were prepared in the binary water + methanol mixed solvent containing 65% (mass 

percentage in solute free basis) of methanol. Diluting this mother solution with the same 

mixed solvent, calibration curves were built relating absorbance and concentration, in the 

solute concentration range expected for aqueous solubility. 

For sampling, approximately 0.5 g of saturated solution was collected from inside the 

dialysis tubing, and diluted in methanol, in order to have the same solvent composition as 

the calibration curve. At least six independent measurements were carried out for each 

average solubility value reported in Table 4.22, where the uncertainty is also given. 

Individual experimental aqueous solubility results are given in Table S4.12.  
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4.3.4. Theoretical approach 

Quantum chemical and COSMO-RS calculations  

To obtain the necessary COSMO files, quantum-chemical optimizations were performed 

for all molecules in the gas phase as well as in the COSMO state, using TURBOMOLE 

TmoleX v.4.0.1.452,453 To generate sets of all relevant conformers, COSMOconfX v.3.0454 

was utilized. The encountered most stable conformers are presented in Table S4.13. The 

possible existence of tautomeric species in the title compounds was subject to previous 

studies. All solid structures of 1-3 exclusively show the enamine (a) structure.434,435,455,456 

At the quantum-chemical level of theory relevant to COSMO-RS, the enamine structures 

are the energetically more favored ones. This holds for the gas-phase as well as for the 

COSMO state, where they are more stable than the respective imino counterparts, in a 

magnitude of 35-55 kJ/mol. Although no reports regarding enamine-imino tautomerism 

of the title compounds in solution exist, experimental work on similar tautomerisms 

suggested that the form with the highest dipole moment will predominate in polar 

solution, e.g. in the case of 3-methylcytosine457 and 1-alkyladenines.458 

Table S4.14 gives an overview about COSMO-RS dipole moments. From these findings, 

the prevalence of the imino form (b) in aqueous solution was assumed for compounds 1 

and 2.   

While pK values of a variety of structural analoga were successfully measured by pH 

potentiometry before, no data for the title compounds could be obtained.426,459 

Hence, at this stage, we assume neutral species being predominant in aqueous solutions 

at environmentally relevant medium pH ranges. Furthermore, pK data of the title 

compounds were estimated using quantum-chemical calculations at the BP-TZVP level of 

theory in combination with a linear free energy relationship, as provided by COSMO-RS in 

its COSMOtherm implementation. The results are given in Table S4.14. They suggest that 

the initial assumption of no significant speciation for all assumed species holds, with 

exception of the imino form of compound 1, for which 30 % of protonated species at 
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pH=7 would require a dissociation correction of 0.005 in log S. With respect to pK1, no 

meaningful data could be produced for compound 5.    

All optimizations were performed at the BP-TZVP as well as the BP-TZVPD-FINE level of 

theory. In order to assure to have reached a true minimum by excluding the appearance 

of imaginary frequencies, the encountered global gas phase minimum was subjected to 

vibrational frequency calculations with AOFORCE, at the respective BP-TZVP level of 

theory. Resulting COSMO energies of the most stable conformers are given in Table S4.13, 

as well. Finally, the physico-chemical properties were estimated, using the parameter file 

BP_TZVP_C30_1401.ctd (for COSMO files created at the BP-TZVP level of theory) and 

BP_TZVPD_FINE_C30_1401.ctd (for COSMO files created at the quantum chemical level 

BP-TZVPD-FINE, with a novel hydrogen bond interaction term and a novel van der Waals 

dispersion term).460 In our work, all COSMO-RS calculations were performed with its 

COSMOtherm implementation.460 In the following, a few more details are given 

concerning the use of COSMO-RS to calculate aqueous solubility and partition 

coefficients. 

Aqueous solubility  

The mole fractions of the solute are refined using the automatic solubility calculation 

option of COSMOtherm: 

1 (P) (1)

10 2 2 2 fuslog ( ) max(0, ) / ( ln(10))x G RT            (4.33) 

where R is the ideal gas constant, T is the absolute temperature, 1

2x  is the mole fraction of 

solid 2 dissolved in the solvent phase 1 at saturation, (P)

2 is the chemical potential of pure 

compound 2, (1)

2 is the chemical potential of compound 2 at infinite dilution in the 

solvent, compound 1. The program possesses experimental free energy of fusion data, 

ΔfusG. 
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Air-water partition coefficient 

Common representations of the Henry’s law constant are depicted in the following 

equations: 

2

21-3 )·molPa·m/(
c

p
H           (4.34) 

with c2 as the molar concentration of the solute, and, furthermore the air-water partition 

coefficient (KAW) is defined accordingly to 











RT

H
ssimensionleK AW log)d/(log        (4.35) 

Octanol-water partition coefficient 

In COSMO-RS, the octanol-water partition coefficient, KOW, is predicted via computation 

of the chemical potentials of the solute at infinite dilution in each of the solvents:  

  W,mx x

OW 10 W O

O,m

log log exp /
V

K RT
V

       
  

      (4.36) 

with x

W  as the chemical potential of compound x in water, and x

O  as the chemical 

potential of the same compound in 1-octanol. Two different KOW coefficients, the so-

called wet and dry, can be calculated, being the last useful to calculate the octanol-air 

partition coefficient (KOA). A ratio of molar volumes VW,m/VO,m of 0.1505 (wet) and 0.1141 

(dry) was used. Besides the density difference of the solvents, their mutual solubility is 

taken into account in the case of KOW (wet), which corresponds to 0.274 mole fraction of 

water in the octanol-rich phase461,462 at 298.15 K.  

Octanol-air and soil sorption coefficients 

The octanol-air coefficient is frequently used to describe partitioning of organic 

substances between air and organic phases in soils, plants and atmospheric aerosols. It 

has been obtained according equation 4.37: 
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log KOA = log KOW(dry) - log KAW       (4.37) 

The data for KOW (dry) can be generated in COSMO-RS using the pure quantum chemical 

approach. Soil-sorption partition coefficients (KOC) are directly accessible from the 

“Environmental Property” section of the current version of the program. 

4.3.5. Results and discussion 

Experimental aqueous solubilities  

Experimental solubility data measured in this work is presented in Table 4.22, including 

the expanded uncertainty for a 95% confidence interval. As expected, uncertainty 

increases with decreasing solubility. The results are, however, very satisfactory since the 

uncertainty divided by the solubility value presents a maximum around 12.1% for 

substance 2, the least soluble, while that statistical parameter is lower than 5% for 

solubility values higher than 1.00E-04 g/gH2O.  

Table 4.22. Experimental aqueous solubilities at 298.15 K and expanded uncertainties (U) 

for a 95% confidence interval. 

Substance Experimental (g·gH2O
-1) U (g·gH2O

-1) 

1 1.280E-04 3.597E-06 

2 8.871E-06 1.071E-06 

3 1.744E-04 9.575E-06 

4 3.168E-04 1.082E-05 

5 3.738E-05 4.199E-06 

The experimental procedure followed here was used in our laboratory for the first time. 

In order to validate the method, the experimental determination of the solubility of 

naphthalene in water at 298.15 K was also carried out, which has a solubility value of the 

same order of magnitude of the studied substances. Exactly the same steps were 
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followed, and the average value of six independent measurements was 3.219E-05 g/gH2O, 

presenting and extended uncertainty of 2.730E-06 g/gH2O. 

In the compilation book by Yalkowsky et al.,463 28 solubility values are available at 298.15 

K. Eliminating four evident outliers, the solubility ranges from 2.957E-05 g/gH2O to 3.450E-

05 g/gH2O, presenting an average of 3.189E-05 g/gH2O. Therefore, the results found in this 

work show the good reliability of the method. 

COSMO-RS calculations: qualitative considerations 

COSMO sigma profiles (of the energetically most stable conformers) and sigma potentials 

of the title compounds are shown in Figure 4.29 and 4.30, respectively. The inspection of 

the sigma profiles highlights differences in the local polarization-charge densities, which 

ultimately define the differentiation in the interaction energies of the surfaces, and 

hence, the magnitude of all related properties to be predicted.  In the histogram, the 

range beyond σ = ±0.01 e·Å-2 is considered as being strongly polar and potentially 

hydrogen-bonding, while the remaining part is weakly to non-polar. All molecules display 

a distinct peak at 0.011 e·Å-2, with exception of 3 and 4, which are slightly shifted towards 

0.014 e·Å-2. The peak familiar to all molecules arises mainly from the negatively polar 

thiocarbonyl sulphur. The largest peak belongs to 5; here, the ester oxygen contribution is 

adding up. On the other side of the histogram, compounds 1 to 3 show potential to form 

intermolecular hydrogen bonds. This is further depicted in the hydrogen-bond moments, 

referring to the BP-TZVP level of theory, as Table S4.14. Compounds 1 to 3 are identified 

being a hydrogen-bond donor.  Dipole moments decrease in the order 4 > 3 > 5 > 1b > 2b. 
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Figure 4.29. Sigma profiles of most stable conformers of the respective N-

(diethylaminothiocarbonyl)benzimido derivatives, BP-TZVP level of theory.  The sigma 

profile of water is plotted as reference. The range beyond σ = ±0.01 e·Å-2 is considered as 

being strongly polar and potentially hydrogen-bonding (with a hydrogen-bond threshold 

value at σhb = 0.0079 e·Å).218 
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Figure 4.30. Sigma potentials of most stable conformers of the respective N-

(diethylaminothiocarbonyl)benzimido derivatives, at T = 298.15 K, BP-TZVP level of 

theory, revealing the effect of successive substitution on the enamine side of the title 

compounds.  The sigma potential of water is plotted as reference. 
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The sigma potential is a measure for the affinity of the system S to a surface of polarity σ. 

Non-polar molecules with purely dielectric behavior exhibit a simple parabola centered at 

σ = 0. Compounds 1 to 3 indicate their hydrogen bonding donor capacity, while the other 

compounds show nearly parabolic behavior in the positive region. The sigma potentials of 

the compounds in the negative region indicate increasingly unfavorable interaction of 

compounds with themselves in the order 2 > 5 > 3 > 4 > 1.  Thermophysical data obtained 

in a crystal-liquid equilibrium study435 of all compounds show (Table S4.15) that 4 exhibits 

the lowest enthalpy of fusion, followed by 1. Additionally, 4 shows a remarkably low 

fusion temperature when compared with the other N-

(diethylaminothiocarbonyl)benzimido derivatives. These results were in agreement with 

the existing crystal packing constraints due to the non-existing intermolecular NH…S 

hydrogen-bond interactions in 4 and 1.455 From all of these qualitative considerations, 

one could preliminarily expect 4 and 1 possessing the highest aqueous solubilities among 

the compounds studied here. 

COSMO-RS calculations: aqueous solubility calculations 

Aqueous solubilities were calculated at T = 298.15 K, both at the BP-TZVP and BP-TZVPD-

FINE level of theory, considering the crystalline state of the title compounds, based on the 

thermophysical fusion data given in Table S4.15. The results are given in Table 4.23 and 

compared with the obtained experimental data. Additionally, prediction results with a 

simpler model as provided by EPI suite WSKOWwin v 1.42 are presented, as well. 

WSKOWwin predicts the water solubility of an organic compound using the compounds 

log octanol-water partition coefficient as provided by the estimation engine from the 

KOWwin program, as well as the respective melting point, with the results being subject 

to certain structure-dependent corrections. In all cases, COSMO-RS tends to 

underestimate aqueous solubilities, more pronounced with the BP-TZVPD-FINE approach. 

Overall performance of WSKOWwin falls in-between both COSMO-RS levels of theory, 

underestimating aqueous solubilities for all compounds except 1.464 
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Table 4.23. Comparison of experimental data and COSMO-RS aqueous solubilities, both at 

the BP-TZVP and BP-TZVPD-FINE level of theory, referring to the crystalline state. 

log SS/(mol·L-1) 

 experimental BP-TZVP BP-TZVPD-FINE WSKOWwin 

1 -3.266 -3.508 -3.371 -2.835 

2 -4.547 -5.704 -5.730 -4.810 

3 -3.180 -3.898 -4.585 -4.798 

4 -2.965 -3.623 -4.981 -5.113 

5 -3.851 -4.869 -5.425 -4.727 

 σ a 0.66 1.26 1.07 

a
C

S,Exp S,Calc

1C

1
log log

N

i

S S
N 

    with σ the standard error, and NC the number of compounds. 

For the title compounds, the BP-TZVP level of theory performs best overall, with a 

standard error σ of 0.66 in log S, and a smallest deviation in log S of 0.2 for compound 1, 

while the highest deviation in log S is 1.0 for compound 5. At the BP-TZVP level of theory, 

the experimental finding of similar magnitudes of aqueous solubilities of compounds 1, 3 

and 4 could be reproduced. For a small set of urea-based pesticides containing similar 

structural features and for which experimental fusion and aqueous solubility data are 

available, a standard error of 0.25 in log S was obtained, slightly underestimating the 

solubilities in all cases except for propachlor, propanil and carbaryl, considering the BP-

TZVP level of theory, as given as Table S4.16 and S4.17.  

To the best of our knowledge, no vapor pressure data of the title compounds are 

reported, yet, neither for the (subcooled) liquid nor the crystalline state. Calorimetrically 

obtained standard molar enthalpies of sublimation are available, though, which represent 

the temperature dependence of the vapor pressure in the crystalline state, and hence 

might serve as an additional indicator of COSMOtherm’s capability to correctly describe 

the energetics of the crystalline phase via the input of experimental free energy of fusion 

data. They are compiled in Table 4.24, together with the COSMO-RS results. The deviation 

for compounds 2 is biggest for both methods and rather distinct from the others.  The 
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overall performance is good and slightly better for BP-TZVP (AAD of 5.9%) than BP-TZVPD-

FINE (AAD of 9.6%). 

Table 4.24. Standard molar enthalpies of sublimation, )K15.298(0
m

g
cr H , of N-

(diethylaminothiocarbonyl)benzimido derivatives. Literature data and COSMO-RS results, 

both at the BP-TZVP and BP-TZVPD-FINE level of theory. 

)K15.298(0
m

g
cr H / kJ·mol-1 

Compound Experimental BP-TZVP BP-TZVPD-FINE 

1 126.0 ± 1.5a 117.7 115.3 

2 159.4 ± 3.3 a 134.8 128.4 

3 141.2 ± 1.2 b 139.7 130.0 

4 122.2 ± 2.0 a 126.0 119.3 

5 135.6 ± 2.6 b 130.9 122.7 

 AAD(%) 5.9 9.6 

aRef.431; bRef.432  

COSMO-RS calculations: further equilibrium partition coefficients as obtained from 

COSMO-RS 

Today, a variety of partitioning property estimation methods is used in the attempt to 

prioritize substances according to their potential environmental hazards. Main targets of 

screening exercises are information about persistence, bioaccumulation potential, toxicity 

and long-range transport potential of existing and new chemicals. Equilibrium partition 

coefficients like log KAW, log KOW, log KOA and log KOC are key parameters in the process. 

Since experimental data are often unavailable, reliable prediction methods are of utmost 

importance. Current prediction methods are consistent only to a certain degree: a 

screening test of 529 substances using four established prediction methods showed a 

mere consistence for ~70% of the set members.443  

Further physico-chemical data relevant for environmental purposes obtained from 

COSMO-RS are presented in Table S4.18. Results for the chosen urea-based pesticides are 

given as Table S4.19. The deviations are given in Table S4.20 and show a good 

performance of COSMO-RS predictions. Table S4.21 compiles data on hybrid air-water 
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partition coefficient of the title compounds, where the experimental component of the 

calculated value stems from this work aqueous solubility measurements, while vapor 

pressures were estimated with COSMO-RS. 

The derived partition coefficients may be introduced into a two-dimensional plot 

describing a hypothetical chemical space as depicted in Figure 4.31. Here, the 

environment is modelled as volumes of air, water, and octanol, where octanol represents 

the organic fraction appearing in soils and sediments.437 More details on the approach are 

given in Appendix 4.2.  

The plot allows a first screening of compounds with respect to their probable distribution 

in the environment once (hypothetically) released. It also gives an idea about the 

deviation between experimental data and COSMO-RS predictions with respect to the 

equilibrium partition coefficients and the impact on chemical space distribution.  

For the title compounds, experimental solubilities are used in the calculation of log KAW, 

all other properties were calculated with COSMO-RS. Since experimental log KOW (dry) 

data were not available, log KOW (wet) data were used throughout. The rather small 

deviations between both, as indicated in Table S4.18 and 4.19, justifies this approach in 

this qualitative screening exercise. 

The 1% and 99% lines in Figure 4.31 divide the KAW/KOW space into regions in which 

partitioning is occurring almost exclusively into one medium. It is likely that degradation 

processes in that medium are most important, and hence, respective data are to be 

collected, in order to proceed with a more complete study of the compound’s behavior 

once released into the environment. For instance, from the title compounds, 2 is to be 

expected to mainly partition into soil and sediment, its rather high log KOW value renders 

the compound prone to be persistent in the environment. The other title compounds will 

partially be found in the water phase, as well; especially, due to their relative lower 

content of carbohydrate fragments, compounds 1 and 4. 
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Figure 4.31. Chemical space diagram of the title compounds and selected urea-based 

pesticides (6 – Diuron; 7 – Fenuron; 8 – Fluometuron; 9 – Linuron; 10 – Barban; 11 – 

Chlorpropham; 12 – Diphenamid; 13 – Propachlor; 14 – Propanil; 15 – Aldicarb; 16 – 

Methomyl; 17 – Carbaryl; 18 – Parafluron; 19 – Triflumuron; 20 – Flufenoxuron; 21 – 

Chlorfluazuron; 22 –Teflubenzuron; 23 – Noviflumuron; 24 – Cyflufenamid; 25 – 

Penthiopyrad; 26 – Flutolanil; 27 – Fluopicolide; 28 – Etoxazole; 29 – Bistrifluron; 30 – 

Hexaflumuron; 31 – Lufenuron; 32 – Novaluron; 33 – Diflubenzuron; 34 – 

Dichlorbenzuron). 
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In a first approximation, the substances of the set are mainly partitioning into soil and the 

aquatic environment. The quality of used input data may alter the detected principal 

environmental compartment of their occurrence.  In our example, the input only differs in 

log KAW, which leads to vertical shift between the data based on experimental aqueous 

solubility data and COSMO-RS solubilities, while all other data are obtained with COSMO-

RS. The air-water partition coefficient is the compound’s property most intimately related 

to aqueous solubility and vapor pressure. Simultaneous over (-or under)estimation of a 

comparable magnitude of aqueous solubilities as well as vapor pressures can largely be 

cancelled out in the Henry’s law constant itself, as was found e.g., in the case of alkylated 

naphthalenes.465 

Until experimental vapor pressures or experimentally determined air-water partition 

coefficients of the title compounds are known for confirmation, the COSMO-RS log KAW 

data provide a reasonable estimate. The shift resulting from the different input data sets 

does, in this specific case, not influence the expected environmental compartment in 

which the bulk of each compound will likely to partition. 

In order to give indications about the adequacy of COSMO-RS to build a preliminary 

chemical space diagram, Figure 4.31 also includes a comparison for a set of urea-based 

pesticides with established consistent thermophysical property data. As can be seen the 

results are promising as the predictions are globally close to the experimental 

information. On the other hand, calculated environmental properties of some compounds 

show rather distinct deviations from experiment, and hence, substantially different 

placements in Figure 4.31. Fenuron and linuron for instance exhibit deviations in their 

aqueous solubilities falling within the expected range. But rather high deviations in their 

vapor pressure predictions are encountered, when compared to recommended data. 

These recommendations are known for their limited quality, e.g. solid vapor pressures of 

linuron.466 Barban and diphenamid, with acceptable to excellent deviations concerning 

vapor pressures and aqueous solubilities, show a remarkable, in terms of magnitude, 

atypical overestimation of their lipophilicity - when compared to experiment. In such 

cases, COSMO-RS can serve as a screening tool for sorting out problematic experimental 

data, given the known difficulties in obtaining them.      
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Furthermore, COSMO-RS results for a set of more modern fluorine-containing 

pesticides467 are included (Table S4.22 and S4.23).  These are mostly benzoylphenyl urea 

derivatives used as commercial insect growth regulants (IGRs). To our best knowledge, no 

agreed-upon consistent thermophysical property data are available in the literature, at 

this point of time (except diflubenzuron). Introducing electron-withdrawing substituents 

often extends a compound’s pesticidal spectrum, but also affects its environmental 

behavior. In the exemplary case of dichlorbenzuron, a 2,6-dichloro benzoyl derivative, 

and diflubenzuron, its 2,6-difluorinated congener, COSMO-RS calculations suggest that 

the substitution of chlorine by fluorine augments the vapor pressure more than it 

increases its aqueous solubility, in relative terms. Next to the therefore increased Henry 

constant, a less pronounced lipophilic character is illustrated in the lower log KOW value of 

diflubenzuron, leading to the spatial separation of both compounds in Figure 4.31.  

Furthermore, dichlorbenzuron is known to degrade in soil within six to twelve months, 

while diflubenzuron has a half-live in soil of about three days.468 The different sizes of the 

introduced halogens lead to distinctively different molecular structures and hence, to 

different metabolic pathways.469  

To obtain further hints on a possible PBT character of the title compounds, another 

screening exercise was performed with the online-calculator PBT Profiler, whose 

estimates are designed for screening-level assessments on persistence (P), 

bioaccumulation (B), and/or toxicity (T).470 

The PBT Profiler expresses (reactivity-based) persistence in single medium half-lives, 

measured in days, in air, water, soil, and sediment. The program first determines the 

media a chemical is most likely to be found in, using a Level III multi-media model where 

advective losses are accounted for. Furthermore, the program provides estimates 

regarding the bioconcentration factor (BCF) as well as the chemical's relative toxicity in 

the form of a long-term toxicity value (Fish ChV). The results with regard to the title 

compounds are given as Table S4.24 and S4.25.  

They suggest that actually all title compounds might be of interest in terms of potential 

PBT characteristics. Their estimated half-life in soil, 75 days, exceeds the EPA criteria of   
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2 months. Therefore, they are estimated to be persistent in the environment, once 

released. All compounds are assigned a chronical toxicity value of fish above EPA 

threshold limits, except 1.  

4.3.6. Conclusions 

The applied aqueous solubility measurement method proved to give reliable and precise 

experimental data. COSMO-RS tends to underestimate aqueous solubilities of the title 

compounds, with respect to the experimental data, yielding best results at the BP-TZVP 

level of theory.  

COSMO-RS is a useful tool to predict the distribution of a species between different 

compartments in preliminary screening exercises with the aim to prioritize compounds 

with potential impacts in the environment. The reliable prediction of physico-chemical 

properties of multi-functional substances remains a challenging task, as well as the 

quantification of numerical hazard estimates with respect to their uncertainties.436,471 

This in turn calls for improvements in the availability of reliable experimental physico-

chemical property data. Although measuring all relevant partition parameters of all multi-

functional compounds is impossible, given their shear number, the opportunity given by 

the technological developments in high-accuracy property determinations should be 

concisely applied. A concerted effort should be focused in measuring sets of polar key 

compounds to be defined, and re-measuring other important compounds where available 

data are of dubious quality, even more so as these data are supposed to serve as the 

future’s foundation of predictive routines. 

4.4. Terpene solubility in water and their environmental distribution 

Mónia A. R. Martins, Liliana P. Silva, Olga Ferreira, Bernd Schröder, João A. P. Coutinho & 

Simão P. Pinho, submitted to Journal of Molecular Liquids. 

4.4.1. Abstract 

Terpenes and terpenoids belong to the largest and most diverse class of natural products. 

Due to the increasing importance of their applications and the emerging perception of 
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their impact on the environment, the available physico-chemical characterization is 

insufficient. In this work the water solubility of geraniol, linalool, DL-citronellol, thymol, 

eugenol, carvacrol and p-cymene, in the temperature range from (298.15 to 323.15) K, 

and at atmospheric pressure, is studied. Due to the low solubility of these compounds a 

novel technique was adopted for their measurements and validated using the aqueous 

solubility data for sparingly soluble aromatic compounds. The thermodynamic properties 

of solution were derived from the experimental data at infinite dilution. It is shown that 

the solubility of terpenes in water is an endothermic process confirming the existence of 

UCST phase diagrams, and only for carvacrol and eugenol is entropically driven. The 

experimental information is shown in a two-dimensional chemical space diagram 

providing indications to their probable distribution in the environment once released. 

4.4.2. Introduction 

Terpenes, and their oxygenated derivatives, terpenoids, belong to what is probably the 

largest and most diverse class of natural compounds. As components of essential oils, 

most of them are extensively used in different industrial sectors such as flavors, 

fragrances, spices, perfumeries, cosmetics, or food additives, and due to their biological 

activity, used for pharmaceutical and medical purposes.9,22,23,30  

On the other hand, on a global scale, the extensive anthropogenic use of terpenes and 

terpenoids associated with their natural emissions from coniferous forests, are one of the 

principal sources of biogenic volatile organic compounds (BVOC).24,472,473 About half of 

global BVOC-emissions originate in isoprene, the terpenes building-block,76 and their role 

in aerosol formation became an important research topic on the chemistry of the 

atmosphere, with a renewed emphasis due to the ongoing climate change debate.24,73,474 

With the increase of the importance of their commercial and industrial applications, 

process-relevant physico-chemical data of terpenes and terpenoids have been retrieved 

over time. Meanwhile, with the increasing number of terpenes applications allied to their 

impact on the environment, right through to implications on a global scale, those data are 

insufficient. Furthermore, the discovery of more compounds with novel structures, and 

interesting bioactivities, to the already classified 55,000 terpenes, enhances the need to 
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establish new methods to efficiently measure the physicochemical properties of terpenes, 

contributing also for the development of predictive models based on molecular 

descriptors, quantum chemistry or equilibrium thermodynamics. 

Besides vapor pressure and octanol-water partition coefficients, aqueous solubility is an 

important parameter to allow an ample description of the distribution of a substance 

amongst the different environmental compartments. Aqueous solubility is therefore an 

essential property in fields such as pharmaceutical sciences, environmental studies or 

chemical engineering. Concerning terpenes only a few works focusing exclusively SLE or 

LLE of binary mixtures of terpenes and water have been published. In 1980, Smyrl and 

LeMaguer78 investigated the solubilities of three terpenic essential oil components in 

water, with or without dissolved solids, at three temperatures. Later, Weidenhamer and 

co-workers77 determined the solubility of 31 biologically active monoterpenes in water by 

chromatography. Miller and Hawthorne475 presented solubilities of D-limonene, carvone, 

eugenol, 1,8-cineole, and nerol in subcritical water; while Fichan et al.11 and Tamura and 

Li476 investigated water solubilities of monoterpenes at 25 oC. By searching compilation 

books such as “Handbook of Aqueous Solubility Data”463 it is possible to gauge the 

limited, and high inconsistency of the available data. 

Amongst the vast range of terpenes, in this work seven showing similar structures and 

important properties or applications, were selected. Geraniol, linalool and DL-citronellol 

are non-cyclic monoterpenoids usually used as repellents.10 Moreover, linalool is used as 

a scent in 60-80% of the perfumed cleaning agents and hygiene products, and as a 

synthetic precursor and chemical intermediate of vitamin D. DL-citronellol is also used as 

raw material for the synthesis of other terpenes.10,30 Thymol, eugenol, carvacrol and p-

cymene are monoterpenoids (p-cymene is a monoterpene) that present an aromatic ring. 

p-Cymene occurs in the ethereal oils and is used to improve the odor of soaps, and as a 

solvent for dyes and varnishes. Carvacrol is a major component of oregano, and is applied 

as a disinfectant while eugenol is a component of clove and cinnamon oils, and both used 

in flavors and in dentistry. Finally, thymol occurs in the oil of thyme and oregano and it is 

applied as a topical antiseptic and antihelmintic.477 This work reports their water solubility 

in the temperature range from (298.15 to 323.15) K using an experimental method 
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recently adapted by us for sparingly soluble solid compounds, and here applied for the 

first time to study the solubility of liquids in water. The new technique was validated 

against data for some well-studied aromatic compounds and the data reported is 

compared with literature values. Additionally, a thermodynamic analysis through the 

thermodynamic properties of solution is explored, and the terpenes first distribution in 

the environmental, predicted. 

4.4.3. Experimental 

4.4.3.1. Material 

The description of the chemicals used in this work is presented on Table 4.25. All 

compounds were stored at 278.15 K and used as received. However, the purity of each 

terpene was checked by 1H, and 13C NMR spectra and GC-MS. The water used was double 

distilled, passed by a reverse osmosis system and further treated with a MilliQ plus 185 

water purification apparatus (resistivity: 18.2 MΩ cm; TOC < 5 μg·dm−3; free of particles > 

0.22 μm). Toluene and p-xylene were used in order to validate the new application of the 

experimental method. 

Table 4.25. Name, structure, supplier, CAS, molar mass (M), and purity (declared by the 

supplier) of the investigated compounds. 

Chemicals Supplier CAS M / g·mol-1 
Mass fraction 

purity 
Wavelength 

/ nm 

Geraniol 
 

Sigma-Aldrich 106-24-1 154.25 0.98 242 

Linalool 
 

Aldrich 78-70-6 154.25 0.97 293 

DL-citronellol 
 

Sigma 106-22-9 156.26 ≈0.95 238 

Thymol 
 

Sigma 89-83-8 150.22 ≥0.995 276 

Eugenol 
 

Aldrich 97-53-0 164.20 0.99 282 

Carvacrol 
 

SAFC 499-75-2 150.22 0.99 275 

p-cymene 
 

Aldrich 99-87-6 134.22 0.99 274 

Toluene 
 

Sigma-Aldrich 108-88-3 92.14 0.998 262 

p-xylene 
 

Acros Organics 1330-20-7 106.16 0.99 275 

Methanol  Fisher Chemical 67-56-1 32.04 0.9999 - 
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4.4.3.2. Methods 

Due to the low solubility values of the compounds under study, an approach adapted 

from Andersson and Schräder (1999); Etzweiler et al. (1995); and Schräder and Andersson 

(2001)449–451 was here adopted. The experimental setup was previously presented (Figure 

4.28)478 and proved to be efficient in the determination of aqueous solubilities of solid 

substances. In this work, toluene and p-xylene, which have a similar structure and 

solubility values of the same order of magnitude with the compounds under analysis, 

were used to validate the method for measuring solubilities of sparingly soluble liquid 

compounds in water.  

The experimental procedure is described in section 4.3.3.2 since it is the same used in the 

previous work. The wavelengths corresponding to the maximum UV absorption are 

indicated in Table 4.25.  

The main advantage of the present technique is to avoid sampling of solute not dissolved, 

but present in micro-emulsions, a common experimental error, which often leads to 

overestimated solubility values. 

4.4.4. Results and discussion 

Method validation 

The experimental procedure used for the aqueous solubility determination was validated 

in the last chapter for solid substances. In this work it is validated for liquid compounds 

using toluene and p-xylene, molecules with similar structure and solubilities values of the 

same order of magnitude of the substances under study. The procedure described above 

was followed, and the solubility in water of toluene and p-xylene determined at various 

temperatures. Results are presented in Table 4.26 and compared in Figure 4.32 with 

values from the extensive and detailed study by Góral et al.479 The results obtained by 

Neely at al., 480 published after that study were also included.  As shown in Figure 4.32, 

the results obtained demonstrate the reliability of the method for the measurement of 

the water solubility of sparingly soluble liquid substances. 
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Figure 4.32. Comparison of the experimental aqueous solubilities of toluene and p-xylene 

with data from literature. The colorful filled symbols represent experimental points 

measured in this work and the open symbols and lines represent experimental and 

calculated data compiled and selected by Góral et al.479 The black filled triangles 

correspond to values measured by Neely at al.480 

Aqueous Solubilities 

The novel experimental aqueous solubility data for the terpenes under study, along with 

the uncertainty for a 95% confidence interval, are presented in Table 4.26 and Figure S4.8 

of Appendix 4. Despite the lower solubilities, results are very satisfactory since the 

coefficient of variation defined as the ratio between the standard deviation to the 

average presents a maximum of 10.8% for linalool at 298.15 K. Is important to mention 

that among the compounds investigated in this work, thymol is the only one that is solid 

at room temperature, with a melting point above 500 K. 

As shown in Table 4.26, with the exception of DL-citronellol the solubility of terpenes in 

water show a monotonical increase with temperature. Moreover, mole fraction 
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solubilities are in the order of 10-4, confirming the “hydrophobic” label usually attributed 

to this class of compounds and showing that the dissolved terpenes can be considered at 

infinite dilution. Concerning the compounds structures, at 298.15 K, the terpene p-

cymene, an alkylbenzene, presents the lowest solubilities while the terpenoid eugenol, a 

phenylpropene, presents the highest, what can be attributed to the presence of 

oxygenated groups. This is the expectable behavior given the increasing hydrophobic 

nature as we move from molecules with oxygenated groups to hydrocarbons. However, 

the temperature dependencies of the solubilities varies widely amongst the various 

compounds studied. From 298.15 to 325.15 K the solubility of geraniol increases around 

12 times, while for DL-citronellol, eugenol and carvacrol only double their solubility, 

turning the measurements more difficult.  

Table 4.26. Experimental mole fraction (xterpene) of terpenes in water as a function of 

temperature and at atmospheric pressure.a 

 104 xterpene 

 298.15 K 303.15 K 308.15 K 313.15 K 318.15 K 325.15 K 

Geraniol 1.027(0.330) 1.390(0.066) 3.747(0.366) 6.429(0.099) 9.222(0.315) 12.652(0.087) 

Linalool 1.808(1.756) 3.320(0.406) 4.723(0.236) 5.920(0.424) 8.438(0.849) 11.080(1.306) 

DL-citronellol 2.177(0.114) 1.874(0.391) 1.866(0.327) 2.082(0.028) 2.487(0.068) 3.084(0.044) 

Thymol 1.180(0.060) 1.327(0.047) 1.457(0.069) 1.689(0.150) 1.890(0.050) - 

Eugenol 2.280(0.083) 2.305(0.522) 2.538(0.275) 2.539(0.150) 2.856(0.932) 3.118(0.920) 

Carvacrol 1.440(0.173) 1.547(0.073) 1.642(0.098) 1.687(0.163) 1.703(0.090) 1.717(0.054) 

p-cymene 0.048(0.002) 0.069(0.003) 0.099(0.005) 0.124(0.004) 0.151(0.016) 0.189(0.007) 

Toluene 1.127(0.048) - 1.178(0.020) 1.203(0.038) - 1.257(0.026) 

p-xylene 0.262(0.028) - 0.307(0.006) - - 0.365(0.009) 

aThe expanded uncertainty for a 95% confidence interval is presented between brackets. The 

standard uncertainty of temperature is u(T) = 0.02 K. 

Carvacrol-thymol and geraniol-linalool are positional isomers and, as expected, their 

solubilities present similar values. However, while from 298.15 to 313.15 K carvacrol 

presents the highest solubility, at 318.15 and 323.15 K thymol is more soluble. Concerning 

the linear alcohols, linalool presents higher solubilities than the others up to 308.15 K, 

above which geraniol is the most soluble. 
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Among the non-cyclic terpenes studied, in general, DL-citronellol is the one presenting 

lower solubilities. This compound presents one double bond less when compared with 

linalool and geraniol, being more soluble at the lowest temperature only. In fact, it is 

relevant to mention the difficulty of measuring the solubility of DL-citronellol at low 

temperatures, due to the very small change in its solubility in that temperature range, 

and some enthalpic effects can be associated when comparing the solubility magnitudes 

of these three compounds. Regarding the aromatic terpenes group, p-cymene and 

eugenol present the lowest and highest solubilities in water, as stated before. Thymol and 

carvacrol present similar solubilities, between those of the other compounds. 

The compounds p-cymene, p-xylene and toluene present very similar structures as can be 

seen in Figure 4.33, and that was the reason why the last two were chosen to validate the 

experimental method here adopted. Like expected, the solubility decreases from toluene 

to p-cymene, with the increase of the number of CH2 groups. 

+CH2 +2CH2

Toluene p-xylene p-cymene

1.127x10-4 0.262x10-4 0.048x10-4

 

Figure 4.33. Structures and mole fraction water solubilities of toluene, p-xylene and p-

cymene at 298.15 K. 

One important objective of this work is to provide accurate experimental data of terpenes 

solubilities in water. However, as mentioned above, the number of terpenes know today 

is about 55,000. It is thus impracticable the study of all these molecules, and predictive 

models, or simple empirical correlations with some readily available parameters, would 

be of great help.  
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Computational methods as COSMO-RS,218 SPARC,481 UNIFAC482 and EPI Suite,483 were 

tested in order to predict or estimate the solubility of the studied terpenes in water. 

However, as can be seen in Table 4.27, none of them was able to predict satisfactorily the 

solubility values, nor even the solubility ranking among the different compounds studied. 

In particular, UNIFAC predicts a decrease on the solubility values when the temperature 

increases. The experimental data here presented is not only of enormous importance to 

assess modeling approaches, but more notably to include modifications in the description 

of these type of molecules, within models such as COSMO-RS, to improve the prediction 

capabilities concerning this vast family of compounds. 

Table 4.27. Experimental and calculated mole fraction (xterpene) of terpenes in water at 

298.15 K. 

104 xterpene This Work COSMO-RS SPARC UNIFAC EPI Suite 

Geraniol 1.027 0.727 0.140 1.738 0.300 

Linalool 1.808 0.615 0.344 6.579 0.801 

DL-citronellol 2.177 0.653 0.222 1.967 0.122 

Thymol 1.180 0.284 1.370 - 0.526 

Eugenol 2.280 0.235 0.267 - 0.830 

Carvacrol 1.440 2.501 2.027 - 0.362 

p-cymene 0.048 0.031 0.027 - 0.038 

Several correlations of the solubility of terpenes in water with some of their properties, 

such as dipolar moment, octanol-water partition coefficient, solubility parameter or 

molar volume at several temperatures were attempted. However, no interesting results 

were achieved. 

Comparison with Literature 

Literature values on terpenes water solubilities were previously reported and are listed in 

Table S4.26 and Figure S4.9 of Appendix 4, along with the experimental values from this 

work. Only experimental data at atmospheric pressure were selected (data points 

predicted or estimated were omitted). Up to date, and to the best of our knowledge, only 
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the values displayed in Table S4.26 were reported. For each terpene only a few reliable 

literature data are available, which poorly or roughly illustrates the behavior with 

temperature and makes the comparison with literature extremely difficult. 

With a few exceptions, linalool and thymol, for which more literature information is 

available, show satisfactory agreement with the data measured in this work. Carvacrol 

presents a maximum relative deviation (RD / % = |xexp - xlit|· xlit
-1) of 20% at 298.15 K. Data 

for DL-citronellol reported in the overlapping temperatures to our measurements, deviate 

more than 100%; with the exception of the value measured by Knobloch et al.484 which 

present RD of about 35%. RD for eugenol range between 16 and more than 100%, and for 

p-cymene range between 32 and 90%, revealing also the high inconsistency among data 

reported by different researchers. The same can be seen in geraniol, where at 298.15 K 

the RD varies between 3-25%, and at 313.15 K is more than 100%. 

The large discrepancies between literature data and the experimental values here 

reported, and between the literature values themselves can be assigned to different 

experimental conditions and techniques used, and to the fact that most of the literature 

values are rather old. In general, taking into account the nature of the compounds here 

investigated, errors may be attributed to deficient saturation and sampling techniques. 

Thus, in this work a special procedure was applied where the use of an isothermal 

ultrasonic bath to speed up the dispersion guarantee the saturation; a binary solvent of 

water and methanol used in dilutions and calibration curves avoid dissolution problems 

what is very important given the hydrophobicity of these compounds; and the use of 

dialysis membranes avoid sampling of non-dissolved solute, which lead to overestimated 

solubility values, usually found by us before its use. In fact, the validation methodology 

implemented by studying the solubility of toluene and p-xylene, also support the data 

presented in this work. 

Thermodynamic Functions 

In order to describe the experimental solubility of terpenes in water and taking into 

account the significant dependence on temperature for the enthalpy of solution, several 

correlations were attempted as those proposed by Tsonopoulos,402 Góral479 and 
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Maczynski et al.485 However, the most suitable was found to be a linear equation that 

considers the harmonic temperature:486,487 













hm

terpene
TT

BAx
11

ln         (4.38) 

where T and Thm are the absolute and harmonic temperatures, respectively; and A and B 

are the fitted parameters.  

Table 4.28 presents the fitted parameters along with the corresponding errors 

considering a confidence level of 95%; where the absolute average relative deviation in 

the experimental mole fraction data is of 5.4 %.   

Table 4.28. Estimated parameters for the mole fraction of terpenes in water estimated 

using Equation 4.38, along with the corresponding errors at the 95% confidence level. 

 
A B / K-1 

Geraniol -7.83 ± -0.23 -10361.19 ± -2554.61 

Linalool -7.60 ± -0.12 -6674.68 ± -1312.55 

DL-citronellol -8.41 ± -0.16 -1456.00 ± -1858.73 

Thymol -8.78 ± -0.05 -1931.58 ± -547.11 

Eugenol -8.26 ± -0.04 -1210.40 ± -479.49 

Carvacrol -8.73 ± -0.03 -663.14 ± -345.81 

p-cymene -11.49 ± -0.08 -5216.52 ± -859.38 

Toluene -9.04 ± -0.01 -420.01 ± -36.83 

Through the temperature dependence of the experimental solubility data and assuming 

infinite dilution of the solubility in water, it is possible to derive the standard molar 

thermodynamic functions of solution: Gibbs energy )( 0

msolG , enthalpy )( 0

msolH  and 

entropy )( 0

msolS , using equations 4.39 – 4.41. Results are presented in Table 4.29. 

pmsol xRTG )ln(0           (4.39) 

p

msol

T

x

RT

H














 ln
2

0

         (4.40) 



 
Chapter 4 – Environmental Impact 

224 
 

 

p

msol
T

xT
RS 














ln0         (4.41) 

where R is the ideal gas constant and subscripts p and m indicates isobaric condition and 

constant composition during the process, respectively.  

Table 4.29. Standard thermodynamic molar properties of solution of terpenes in water at 

Thm = 310.42 K together with the errors at the 95% confidence level. 

 
10 molkJ/  msol H  10 molkJ/  msolG  10 molkJ/  msolhm ST  

Geraniol 86.15 ± 21.24 23.70 ± 0.83 62.45 ± 21.26 

Linalool 55.50 ± 10.91 22.24 ± 2.51 33.25 ± 11.20 

DL-citronellol 12.11 ± 15.45 21.76 ± 0.14 -9.66 ± 15.45 

Thymol 16.06 ± 4.55 23.34 ± 0.13 -7.28 ± 4.55 

Eugenol 10.06 ± 3.99 21.64 ± 0.09 -11.58 ± 3.99 

Carvacrol 5.51 ± 2.88 22.83 ± 0.31 -17.32 ± 2.89 

p-cymene 43.37 ± 7.15 31.63 ± 0.09 11.74 ± 7.15 

Toluene 3.49 ± 0.31 23.46 ± 0.11 -19.97 ± 0.33 

The molar thermodynamic properties of solution reported in Table 4.29 help to explore 

molecular mechanisms behind the solvation phenomena. The positive enthalpies of 

solution show that the dissolution of terpenes in water is an endothermic process and 

confirm the existence of UCST phase diagrams assumed before. Very evidently, geraniol 

and linalool present a very unfavorable enthalpic term when compared with all the other 

terpenes, while an enthalpic-entropic compensation phenomena occurs as eugenol and 

carvacrol show a very unfavorable entropic effect while their solution enthalpy are much 

smaller. Moreover, the standard Gibbs energy of solution increases with the reduction of 

functional groups present in the molecules. Eugenol presents the lowest standard Gibbs 

energy of solution, p-xylene the highest, while the isomers carvacrol and thymol present 

similar values. With only four experimental points the same procedure was applied to 

toluene solubility. The standard enthalpy of solution is 3.49 kJ/mol at the harmonic 

temperature 310.4 K, which is comparable to 4.36 kJ/mol measured by a flow micro-

calorimetric method at 308.2 K,488 and to 4.56 kJ/mol found using the solubility data by 

Neely at al.,480 supporting also the good quality of the experimental data collected in this 
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work, as in the compilation analysis by Hefter489 the enthalpy of solution at 298.15 K, 

calculated from different aqueous solubility sets, are in the range between 1.5 and 4.7 

kJ/mol. 

Environmental Distribution 

The environment is modelled as volumes of air, water, and octanol, where octanol 

represents the organic fraction appearing in soils and sediments. Thus, Gouin et al.437 

proposed a qualitative approach that allows to have a first screen of compounds with 

respect to their probable distribution in the environment once released. This was used by 

us in Chapter 4.3 and is here applied for the first time to terpenes and terpenoids. Here, 

octanol-water (log KOW) and air-water (log KAW) partition coefficients are introduced in a 

two-dimensional plot describing a hypothetical chemical space as represented in Figure 

4.34. Additional details about this approach are given in Appendix 4.3.  

The air-water partition coefficients are most intimately related to aqueous solubility and 

vapor pressure. The experimental aqueous solubility data from this work were used to 

calculate the log KAW, together with vapor pressures collected from literature.82,466,490–494 

Octanol-water partition coefficients were measured experimentally by Griffin et al.495 

Isoprene data, used here as a references, were taken from Mackay et al.466 

The lines in Figure 4.34 (1% and 99%) divide the chemical space into different regions in 

which partitioning is occurring almost exclusively into one medium. In general, terpenes 

are partitioning into the three environmental compartments while toluene, p-xylene and 

isoprene partition exclusively into air due to their extremely high vapor pressure. DL-

citronellol is the only compound that only partition between water and octanol phases. 

Its rather high value of log KOH makes it to be more persistent in the environment. Due to 

its high solubility in water, eugenol will partially be found in the water phase. 
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Figure 4.34. Chemical space diagram of the terpenes investigated in this work and some 

other selected compounds, namely isoprene, toluene and p-xylene. 

4.4.5. Conclusions 

The solubility of seven terpenes in water at six different temperatures was evaluated 

using a new experimental methodology. The new experimental method was successfully 

validated for liquid substances using toluene and p-xylene as model compounds, proving 

to give reliable and precise experimental data. The thermodynamic properties of solution 

were calculated indicate that the solubility of terpenes in water is an endothermic 

process, confirming the existence of UCST phase diagrams and, excepting carvacrol and 
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eugenol, enthalpically driven. A two-dimensional chemical space diagram shows that, in 

general, terpenes partition into the three environmental compartments, while toluene 

and p-xylene partition exclusively into air due to their higher vapor pressure.  

This work contributes and calls for increasing the availability of reliable experimental 

physico-chemical property data of terpenes, which are also of enormous importance to 

the improvement, development and test new computational methods aiming for their 

prediction in such a vast family of compounds. Efforts must be focused in measuring or 

re-measuring basic important properties as mutual solubilities, vapor pressures, and 

octanol-water partition coefficients, where available, are very often of dubious quality. 
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The present work reports a comprehensive study on terpenes properties and phase 

equilibria, that are a contribution for the development of novel terpenes applications, 

their extraction, and studies addressing their environmental fate.  

First, and inspired by the lack of well characterized hydrophobic eutectic mixtures to be 

used in novel processes and products, sustainable hydrophobic solvents based on 

terpenes and monocarboxylic acids – and liquid at room temperature – were successfully 

prepared and characterized. Mixtures between terpenes and monocarboxylic acids form 

normal eutectic solvents while some mixtures of terpenes form deep eutectic solvents.  

To be used in different applications pure terpenes must be extract from essential oils and 

subsequently fractionated, and ionic liquids were here evaluated to that purpose. Results 

show that ILs may replace conventional entrainers applied for the separation processes of 

aliphatic/aromatic hydrocarbons and, concerning terpenes the most effective ILs would 

require polar anions to improve selectivity and non-polar cations to increase capacity. 

Based on the later conclusions, it was decided to design deep eutectic solvents for the 

same purpose. Ammonium salts were combined with fatty alcohols or fatty acids and 

novel DES and simple eutectic mixtures designed and their solid-liquid phase diagrams 

characterized and modeled.  

When envisaging large-scale applications terpenes will inevitably end in the environment. 

Anthropogenic releases allied to their natural emissions are concerning the 

environmentalists. In this context, the solubilities of terpenes in water were determined 

confirming their hydrophobicity and a set of critical properties was estimated and 

recommended.  A derived two-dimensional plot describing a hypothetical chemical space 

shows that in general and despite their low solubility in water, terpenes are partitioning 

into the three environmental compartments. 

Along this work a novel technique for the solubility measurement of sparingly soluble 

compounds in water was developed, validated and successfully applied for several 

compounds. Moreover, aiming at the measurement of activity coefficients at infinite 

dilution in the University of Aveiro, the experimental procedure used in the Warsaw 

University of Technology was here implemented for the first time. In the deep eutectic 
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solvents framework, a visual methodology to measure the solid-liquid phase diagrams of 

mixtures and pure compounds using an automatic glass capillary device was developed 

and validated. 

Future investigations should be focused on the effective proving of the hydrophobicity of 

the new eutectic and deep eutectic mixtures formulated in chapter 2. To that end, the 

water content, mutual solubilities, NMR, TGA, FTIR, viscosities and densities of the pure 

and water saturated mixtures should be measured and evaluated. NMR and FTIR 

spectroscopy will help to explore the mixtures structures and purities and to confirm the 

interaction of the two compounds leading to the eutectic formation. Additionally, their 

effectiveness to extract different biomolecules and metals could be an interesting topic of 

study. A full work on the modeling of these systems using PC-SAFT, UNIFAC or CPA is of 

the utmost importance.  

Another area to further investigate is the use of the new apparatus in Aveiro to measure 

activity coefficients at infinite dilution of terpenes and non-volatile ionic liquids or deep 

eutectic solvents aiming to screen these class of solvents for the terpenes extraction. 

COSMO-RS indicated the more suitable ILs to perform terpenes extraction and 

purification, and these should now be tested experimentally in both, the measurements 

of the activity coefficients at infinite dilution and the real extraction and purification of 

terpenes. Being DES an important neoteric class of solvents, these should be use to the 

same end and screened by using calculation tools as COSMO-RS. The fact that terpenes 

are hydrophobic compounds indicates that hydrophobic DES should be preferred and 

thus further investigated. The same characterization mentioned before for systems 

involving terpenes – formulation, characterization, modeling and extraction ability 

evaluation – must be performed to all mixtures formulated. Being vapor pressure an 

important property that may condition solvents used in industries, it must be additionally 

measured and taking into account in future studies involving DES. 

Moreover, the new solubility apparatus implemented should be used to determine the 

solubility of more terpenes and their mixtures in water at different temperatures, an 

essential property to accurate predict the fate of terpenes in environment. A review 
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focused on the monoterpenes physico-chemical properties that is also an output of this 

work is a useful starting point to select the compounds and properties to investigate next. 

Due to the large number of terpenes, investigation on the prediction methods and 

empirical correlations of the properties measured should always be attempted.  
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