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resumo 
 

 

Consideramos vários problemas com base no problema variacional 
generalizado de Herglotz.  
Dois capítulos são dedicados à extensão do problema variacional generalizado 
de Herglotz para ordem superior e para problemas de primeira ordem com 
atraso no tempo, utilizando uma abordagem variacional.  
Nos últimos quatro capítulos, reescrevemos os problemas de Herglotz na forma 
do controlo ótimo e usamos essa abordagem. Demonstramos equações 
generalizadas de Euler-Lagrange de ordem superior, inicialmente sem e depois 
com atraso no tempo; condições de fronteira de ordem superior; o primeiro 
teorema de Noether para o problema de Herglotz de primeira ordem com atraso 
no tempo; o primeiro teorema de Noether para problemas de ordem superior de 
Herglotz sem e com atraso no tempo; e a existência de leis de conservação de 
Noether numa versão do segundo teorema de Noether do controlo ótimo. 
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abstract 

 
We consider several problems based on Herglotz’s generalized variational 
problem.  
We dedicate two chapters to extensions on Herglotz’s generalized variational 
problem to higher-order and first-order problems with time delay, using a 
variational approach.  
In the last four chapters, we rewrite Herglotz's type problems in the optimal 
control form and use an optimal control approach. We prove generalized higher-
-order Euler-Lagrange equations, first without and then with time delay; higher-  
-order natural boundary conditions; Noether's first theorem for the first-order 
problem of Herglotz with time delay; Noether's first theorem for higher-order 
problems of Herglotz without and with time delay; and existence of Noether 
currents as a version of Noether's second theorem of optimal control. 
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INTRODUCTION

When we sat down together for the �rst time in the end of 2012, with the aim of planning

the following years of my Ph.D. work, we could not imagine we would walk this path. We knew

we would focus in some areas of the Calculus of Variations, but we did not have yet in mind the

idea of crossing the border to the Optimal Control �eld and develop a twofold investigation.

Our attention had already been called to the variational problem proposed by Herglotz,

mostly by the work of Guenther et al. "The Herglotz lectures on contact transformations" [37],

which led us to the original work of Herglotz [39, 40] and to the most recent work at the date

on Herglotz's variational principle, by Georgieva et al. [29, 30, 31, 32, 33].

After that �rst meeting, we agreed to dedicate initially our attention and e�orts in the

attempt of generalizing the �rst-order generalized variational problem of Herglotz to the higher-

-order case. This investigation took us the second semester of 2013 and resulted in the pu-

blication in 2014 of our �rst joint work "Higher-order variational problems of Herglotz" [59],

which is the basis of Chapter 4, and a public communication which constituted the evaluation

of 'Seminário I', one of the �rst year Ph.D. disciplines.

In that �rst paper, we used the classical technique of introducing an admissible variation and

study the necessary conditions of optimality; we also recurred to two important higher-order

results: the higher-order fundamental lemma of the Calculus of Variations [51] and the higher-

-order integration by parts formula [53]. We were then able to prove a higher-order

Euler�Lagrange equation and natural boundary conditions for the generalization of the varia-

tional problem of Herglotz to the higher-order case.

Meanwhile, we had already in mind the study of problems with time delay and we dedicated

the second semester of 2014 to this task. We were aware of the classical results on delayed
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Introduction

problems by El'sgol'c [19], Agrawal [2], Maurer [34] and Hughes [43] but we were also aware

that only recently Frederico and Torres generalized the important Noether's �rst theorem to

Optimal Control problems with time delay [24]. The investigation of Herglotz's type problems

with time delay was long but led to the publication in 2015 of our second paper "Variational

problems of Herglotz type with time delay: DuBois�Reymond condition and Noether's �rst

theorem", which is the basis of Chapter 5.

We based our arguments in the classical ones, introducing again an admissible variation

and making convenient changes of variables. We managed to prove two optimality conditions

for the delayed �rst-order problem of Herglotz: generalized Euler�Lagrange equations and a

DuBois�Reymond condition. Moreover, we studied invariance of the delayed Herglotz's problem

and proved the existence of conservations laws resulting in the main result of the paper: a

Noether's theorem for the �rst-order problem of Herglotz with time delay. This theorem was a

major advance in the Ph.D. work in the sense that it generalized Georgieva's results, which we

considered benchmarks in the generalized variational problems of Herglotz type.

Although 2015 was the more proli�c year, with the publication of three papers, the second

semester of 2014 played a decisive role in the development of our work; the choice of 'Controlo

Ótimo' as an optional discipline of the �rst year of the Ph.D. course was a decisive step to take

this thesis to the Optimal Control �eld. As a result, we started looking at Herglotz's variational

problems as particular cases of Optimal Control problems in the Bolza form.

The new Optimal Control view motivated us to the publication of the paper entitled "An

Optimal Control approach to Herglotz variational problems" [61], which is presented in Chap-

ter 6. In this paper, we used existing Optimal Control results, such as Pontryagin's maximum

principle and DuBois�Reymond condition [57], and Noether's theorem [67]. We made seve-

ral transformations and rewrote Herglotz's �rst-order problem as an Optimal Control problem:

we then applied previous Optimal Control results and derived a generalized Euler�Lagrange

equation, a transversality condition, a DuBois�Reymond necessary optimality condition and

Noether's theorem for Herglotz's fundamental problem, valid for the wider class of piecewise

smooth functions and considering a more general notion of invariance.

With this new look over Herglotz's type problems, it was a quick step from the third to

the forth paper: "Noether's theorem for higher-order variational problems of Herglotz type"

(Chapter 7). We were acquainted with the technique of dealing with �rst-order Herglotz's

type problems as Optimal Control problems and rapidly extended it to the higher-order case by

proving a generalized Euler�Lagrange equation, transversality conditions and DuBois�Reymond
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necessary optimality condition for Herglotz's type higher-order variational problems; but the

biggest contribution of this paper was the proof of a Noether's theorem for higher-order problems

of Herglotz, something that has not yet been done for any kind of trajectories.

By the end of 2015, we were working well on both sides of Calculus of Variations and

Optimal Control and perfectly convinced that we could improve the results of our work on

delayed problem [60]. Namely, we were convinced we could exempt two additional hypotheses

introduced with no justi�cation, but only for technical reasons; and we were convinced we would

be able to disregard them trough the Optimal Control approach. This eventually happened,

and in 2016 we wrote the paper entitled "Higher-order variational problems of Herglotz with

time delay" [63], which we present in Chapter 8.

The main results of this �fth paper are higher-order Euler�Lagrange and DuBois�Reymond

necessary optimality conditions as well as a higher-order Noether type theorem for delayed

variational problems of Herglotz type. We used again the technique of writing the addressed

problem in Bolza's optimal control form, but made a major change inspired by Guinn's work [38]:

we investigated and managed to write the higher-order delayed problem of Herglotz as a non-

-delayed optimal control problem and only then we applied the available results. With these

arguments and results we were able to generalize most of the results of classical calculus of

variations, but also on Herglotz' type problems.

In early 2016, we started thinking and discussion the possibility of writing a thesis and

�nishing the task. We thought, however, that we could go further and produce a more

self-contained document if we addressed a �nal chapter on Noether's second theorem for higher-

-order variational problems of Herglotz type with time delay. We made then the clear decision

of dealing with this �nal chapter using the optimal control approach, namely on the existence

of Noether currents when the generalized variational problem is semi-invariant. This work lead

to the submission of the paper entitled "Noether currents for higher-order variational problems

of Herglotz type with time delay" (Chapter 9), in which we prove a type of Noether's second

theorem for optimal control adapted for the higher-order delayed Herglotz's framework.

To the best of our knowledge, at the date we started thinking in our �rst contribution,

nobody had approached Herglotz type problems since Guenther, Georgieva and their collabora-

tors. We are �attered to notice that our investigation has motivated some of our colleagues,

namely Almeida, who considered the variational problem of Herglotz in the context of scale

calculus [3], Almeida and Malinowska, that considered the variational problem of Herglotz in

the context of fractional calculus [4], and after them Abrunheiro, Machado and Martins, who

3
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did it in the general context of Riemannian manifolds [1].

4



Part I

Synthesis





CHAPTER 1

CLASSICAL CALCULUS OF VARIATIONS

The Calculus of Variations had its beginning in the end of the 17th century with the nowadays

well known Brachistochrone problem proposed by Johann Bernoulli in 1696. The statement

of the Brachistochrone problem is as follows: let two points A and B be given in the vertical

plane. Find the curve along which a weighted particle must follow that, starting from A, it

reaches B in the shortest time under its own gravity.

The problem proposed by Johann Bernoulli attracted the attention of several important

mathematicians including Jakob Bernoulli (Johann's brother), Newton, Leibniz, L'Hôpital and

Euler. The solution to this problem is a cycloid and is called brachistochrone or curve of fastest

descent.

A decisive step in the foundations of the Calculus of Variations was achieved in the 18th

century with the work of Euler and Lagrange who found a systematic way of dealing with this

kind of problems by introducing what is now known as the Euler�Lagrange equation.

In the next century, Jacobi and Weierstrass made signi�cant developments in the area, who

were consolidated in the early 20th century by Hilbert, Noether, Tonelli, Lebesgue, Hadamard

and Herglotz. As noted by Forsyth and cited in [74], Calculus of Variations

"Attracted a rather �ckle attention at more or less isolated intervals in its growth."

The Calculus of Variations deals with the search for extrema for some functional and, in this

sense, can be considered a branch of optimization. The applications of this subject are immense

and extend from physics, to economics, but mainly mechanics (see e.g. [16, 17, 28, 46, 74]).
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Chapter 1. Classical Calculus of Variations

We emphasise as examples Fermat's Principle of Minimum Time in geometrical optics and

Hamilton's Principle in classic mechanics. As referred by Carathéodory in [12]:

"I have never lost sight of the fact that the Calculus of Variations, as it is presented

in Part II, should above all be a servant of mechanics."

The subject is far from dead and, as cited in [74], Stampacchia in 1974 also stated:

"The natural development of the Calculus of Variations has produced new branches

of mathematics which have assumed di�erent aspects and appear quite di�erent

from the Calculus of Variations."

The most basic problem of the classical calculus of variations consists of �nding the trajec-

tories x(·) that extremize (minimize or maximize) the functional

L[x] =

∫ b

a

L(t, x(t), ẋ(t))dt (1.1)

with x(·) ∈ C2([a, b];R), satisfying the boundary conditions x(a) = α and x(b) = β, for some

α, β ∈ R, and L satisfying some smoothness properties.

De�nition 1.1. We say that x(·) is an admissible trajectory to the basic problem of the

calculus of variations (1.1) if x(·) ∈ C2([a, b];R) and satis�es x(a) = α and x(b) = β.

De�nition 1.2. We say that an admissible trajectory x∗(·) is a (relative) extremizer to the

basic problem of the calculus of variations (1.1) if L[x]−L[x∗] has the same signal for all

x that satis�es ‖x − x∗‖0 < ε for some positive real ε, where ‖ · ‖0 denotes the 0−norm,

that is, ‖x‖0 = max
a≤t≤b

|x(t)|.

Euler and Lagrange proved the following necessary optimality condition for the basic problem

of the calculus of variations:

∂L

∂x
(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t)) = 0, (1.2)

called the Euler�Lagrange equation.

De�nition 1.3. We say that an admissible trajectory x(·) is an extremal to the basic

problem of the calculus of variations if it is solution of (1.2).

8



It is well-known that the notions of symmetry and conservation laws play an important role in

physics, engineering and mathematics [67, 73]. The interrelation between symmetry and conser-

vation laws in the context of the Calculus of Variations is given by the �rst Noether theorem [54].

The �rst Noether theorem, usually known simply as Noether's theorem, guarantees that the

invariance of a variational integral under a group of transformations depending smoothly on a

parameter ε implies the existence of a conserved quantity along the Euler�Lagrange extremals.

Such transformations are global transformations. Noether's theorem explains all conservation

laws of mechanics, such as: conservation of energy comes from invariance of the system un-

der time translations; conservation of linear momentum comes from invariance of the system

under spatial translations; and conservation of angular momentum re�ects invariance with re-

spect to spatial rotations. The �rst Noether theorem is nowadays a well-known tool in modern

theoretical physics, engineering and the Calculus of Variations [70]. Inexplicably, it is still not

well-known that the famous paper of Emmy Noether [54] includes another important result:

the second Noether theorem [69]. Noether's second theorem states that if a variational inte-

gral has an in�nite-dimensional Lie algebra of in�nitesimal symmetries parametrized linearly by

r arbitrary functions and their derivatives up to a given order m, then there are r identities

between Euler�Lagrange expressions and their derivatives up to order m. Such transformations

are local transformations because can a�ect every part of the system di�erently.

Noether proved that properties of invariance lead to conservation laws, quantities that

remain constant along extremals. Conservation laws have major applications, both physical and

mathematical. For example, Lax and DiPerna applied conservation laws to the study of shock

waves, Poincaré and Lyapunov used them to initiate stability theory and Morawetz and Strauss

to scattering theory (for more details, see [29]).

In the last decades, Noether's theorems have been formulated in various other contexts:

see [6, 7, 14, 22, 21, 23, 24, 35, 47, 48, 52, 68, 69, 71] and references therein.

We present next a simple version of the �rst Noether theorem, preceded by the respective

de�nition of invariance under a one-parameter group of transformations. We will also present

a version of Noether's second theorem, but only in Chapter 3; we will state there the Optimal

Control version of Noether's second theorem.

De�nition 1.4 (Classical invariance under a one-parameter group of transformations).

9



Chapter 1. Classical Calculus of Variations

Let hε be a one-parameter group C1 invertible transformations

hε : [a, b]× R→ R× R,

hε(t, x(t)) = (T ε(t, x(t)),X ε(t, x(t))),

h0(t, x) = (t, x), ∀(t, x) ∈ [a, b]× R.

The basic problem of the calculus of variations is said to be invariant under the

one-parameter group of transformations hε if for all admissible x(·) the following condition
holds: ∫ b

a

L(t, x(t), ẋ(t))dt =

∫ bε

aε
L

(
T ε,X ε,

dX ε

dT ε

)
dT ε, with

dX ε

dT ε
=

dX ε
dt
dT ε
dt

,

where aε = T ε(a, x(a)) and bε = T ε(b, x(b)).

Theorem 1.5 (First Noether theorem [28, 46, 54, 74]). If the basic problem of the calculus

of variations is invariant under a one-parameter group of transformations in the sense of

De�nition 1.4, then the quantity

∂L

∂ẋ
X +

(
L− ∂L

∂ẋ
ẋ

)
T (1.3)

is constant in t along every extremal of the basic problem of the calculus of variations,

where

T =
∂T ε

∂ε

∣∣∣∣
ε=0

and X =
∂X ε

∂ε

∣∣∣∣
ε=0

.

Meanwhile, several extensions of the basic problem of the calculus of variations were made.

We highlight two: the extension to higher-order problems and the extension to problems with

time delay. The �rst one can be formulated as follows: determine the trajectories x(·) ∈
C2n ([a, b] ;R) such that

L [x] =
∫ b
a
L
(
t, x (t) , ẋ (t) , . . . , x(n) (t)

)
dt→ extr,

subject to

x (a) = α0, x (b) = β0
...

x(n−1) (a) = αn−1, x(n−1) (b) = βn−1

(1.4)

where n ∈ N, a, b ∈ R with a < b and αi, βi ∈ R, i = 0, . . . , n − 1. We assume that the

Lagrangian function L has continuous partial derivatives up to the order n+ 1 with respect to

all its arguments, except with respect to t.
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Theorem 1.6 (Classical higher-order Euler�Lagrange equation [28, 46, 74]). If x(·) is an

extremizer to the higher-order problem of the calculus of variations, then x(·) veri�es the

following higher-order Euler�Lagrange equation:

n∑
j=0

(−1)j
dj

dtj

(
∂L

∂x(j)
(
t, x(t), . . . , x(n)(t)

))
= 0, t ∈ [a, b]. (1.5)

The classical problem of the calculus of variations with time delay consists in extremizing

the functional de�ned by

Lτ [x] =

∫ b

a

L(t, x(t), ẋ(t), x(t− τ), ẋ(t− τ))dt, (1.6)

subject to x(t) = µ(t), t ∈ [a − τ, a], where the Lagrangian L : [a, b] × R4 → R is a C1

function for all arguments, x(·) is a C2 function, τ is a real number such that 0 ≤ τ ≤ b − a
and µ is a given piecewise smooth function.

Theorem 1.7 (Classical Euler�Lagrange equations with time delay [2, 43]). If a trajectory

x(·) is an extremizer to the �rst-order delayed problem (1.6), then x(·) satis�es the delayed
Euler�Lagrange equations

∂L

∂xτ
[x]τ (t+ τ)− d

dt

∂L

∂ẋτ
[x]τ (t+ τ) +

∂L

∂x
[x]τ (t)−

d

dt

∂L

∂ẋ
[x]τ (t) = 0, a ≤ t ≤ b− τ (1.7)

and
∂L

∂x
[x]τ (t)−

d

dt

∂L

∂ẋ
[x]τ (t) = 0, b− τ ≤ t ≤ b, (1.8)

where [x]τ (t) := (t, x(t), ẋ(t), xτ (t), ẋτ (t)) and xτ (resp. ẋτ) refer to trajectories x (resp.

ẋ) evaluated at t− τ.

Remark 1.8. The results of this chapter are trivially generalized for the case of vector

functions x : [a, b]→ Rm, m ∈ N; this is the kind of trajectory that will be considered along

the thesis.
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CHAPTER 2

HERGLOTZ'S VARIATIONAL PROBLEMS

It is well-known that the classical variational principle described in the previous chapter is

a powerful tool in various disciplines such as physics, engineering and mathematics. However,

the classical variational principle cannot describe many important physical processes.

In 1930, Gustav Herglotz [39, 40] proposed a generalized variational principle which genera-

lizes the classical one.

Figure 2.1: Gustav Herglotz, Göttingen, 1932

Gustav Herglotz1 (1881�1953), see Figure 2.1, was a czech-born german mathematical

physicist. Although his work is meaningful, not much of it has become widely known. He studied

1Author of photography: Kay Piene, Source: Ragni Piene and the archives of the Mathematisches

Forschungsinstitut Oberwolfach
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Chapter 2. Herglotz's Variational Problems

and taught mathematics and astronomy in Vienna, Munich and Göttingen. His branches of

work included relativity theory, di�erential equations, number and function theory, geophysics,

astronomy and applied mathematics to theoretical physics. Besides his undeniable scienti�c

contributions, Salomon Bochner [9], who contacted personally with Herglotz, describes him

as possessing great charm and perfect gentlemanliness, while Weisstein's World of Biography

website [75] describes Herglotz as an enchanting lecturer, detailing that his lectures frequently

attracted far more people than the university lecture halls could contain.

Herglotz was motivated to advance with his variational principle by the writings of Lie

and Carathéodory and his own research on contact transformations and its connections with

Hamiltonian systems and Poisson brackets. Several historical details on this matter are available

in [12].

The generalized variational problem proposed by Herglotz in 1930 [39] can be formulated

as follows:
z(b) −→ extr

with ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

subject to z(a) = γ, γ ∈ R,

(H1)

where by extr we mean minimize or maximize. Herglotz's variational problem consists in the

determination of trajectories x(·) ≡ (x1(·), . . . , xm(·)) (and function z(·)) subject to some initial

condition x(a) = α, α ∈ Rm, that extremize the value z(b), where L ∈ C1([a, b]×R2m+1;R),

x(·) ∈ C2([a, b];Rm) and z(·) ∈ C1([a, b];R).

De�nition 2.1 (Admissible pair to problem (H1)). We say that a pair (x(·), z(·)) with

x(·) ∈ C2([a, b];Rm) and z(·) ∈ C1([a, b];R) is an admissible pair to problem (H1) if it

satis�es the equation

ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

subject to z(a) = γ, γ ∈ R.

Observe that equation ż(t) = L(t, x(t), ẋ(t), z(t)) represents a family of di�erential equa-

tions: for each function x a di�erent di�erential equation arises. Therefore, z depends on

x, a fact that can be made explicit by writing z(t, x(t), ẋ(t)) or z[x; t], but for brevity and

convenience of notation it is usual to write simply z(t).

It is clear that Herglotz's problem (H1) reduces to the classical fundamental problem of the

Calculus of Variations (1.1) if the Lagrangian L does not depend on the variable z. In fact, if

14



ż(t) = L(t, x(t), ẋ(t)), t ∈ [a, b], then (H1) is equivalent to the classical variational problem

z(b) =

∫ b

a

L̃(t, x(t), ẋ(t))dt −→ extr,

subject to z(a) = γ, γ ∈ R,
(2.1)

where

L̃(t, x, ẋ) = L(t, x, ẋ) +
γ

b− a
.

Herglotz proved that a necessary optimality condition for a pair (x(·), z(·)) to be a solution

of the generalized variational problem (H1) is given by the system of equations

∂L

∂xi
(t, x(t), ẋ(t), z(t))− d

dt

∂L

∂ẋi
(t, x(t), ẋ(t), z(t))

+
∂L

∂z
(t, x(t), ẋ(t), z(t))

∂L

∂ẋi
(t, x(t), ẋ(t), z(t)) = 0, i = 1, . . . ,m, (2.2)

t ∈ [a, b]. Equations (2.2) are known as the generalized Euler�Lagrange equations.

The system of the Euler�Lagrange equations (2.2) can be written in the condensed form

∂L

∂x
(t, x(t), ẋ(t), z(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t), z(t))

+
∂L

∂z
(t, x(t), ẋ(t), z(t))

∂L

∂ẋ
(t, x(t), ẋ(t), z(t)) = 0, t ∈ [a, b]. (2.3)

Observe that for the classical problem of the Calculus of Variations one has ∂L
∂z

= 0 and

equation (2.3) reduces (with m = 1) to the classical Euler�Lagrange equation (1.2).

De�nition 2.2 (Generalized extremals�cf. [29, 31]). The solutions x(·) ∈ C2([a, b];Rm)

of the generalized Euler�Lagrange equation (2.3) are called generalized extremals.

As reported in [31, 32], unlike the classical variational principle, the variational principle of

Herglotz gives a variational description of non-conservative processes, even when the Lagrangian

is autonomous. For the importance to include nonconservativism in the Calculus of Variations,

we refer the reader to the recent book [50].

According to Guenther [37], the solutions of (2.3) determine implicitly a family of contact

transformations, that is, transformations that take two unions of elements with a common

element and transform them into two new unions of elements, again with a common element.

For the importance and applicability of these transformations in mathematics and physics we

refer the reader to [12, 37, 55].
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The generalized variational problem of Herglotz attracted the interest of the mathematical

community only in 1996, with the publications [36, 37] by Ronald Guenther et al. Guenther

eventually became Georgieva's Ph.D. supervisor; the main goal of Georgieva's thesis was to

generalize the well known Noether's theorems to variational problems of Herglotz type [29, 30,

31, 32, 33].

Before presenting the generalization of the �rst Noether theorem to variational problems

of Herglotz [31, 32], we introduce the de�nition of invariance under a one-parameter group of

transformations:

De�nition 2.3 (Invariance of problem (H1) under a one-parameter group of transforma-

tions [31]). Let hε be a one-parameter family of C1 invertible maps

hε : [a, b]× Rm → R× Rm,

hε(t, x(t)) = (T ε(t, x(t)),X ε(t, x(t))),

h0(t, x) = (t, x), ∀(t, x) ∈ [a, b]× Rm.

Problem (H1) is said to be invariant under the one-parameter group of transformations hε

if for all admissible pairs (x(·), z(·)) one has

d

dε

[
L

(
T ε(t, x(t)),X ε(t, x(t)),

dX ε

dT ε
(t, x(t)), z(T ε(t, x(t)))

)
dT ε

dt
(t, x(t))

] ∣∣∣∣
ε=0

= 0,

where dX ε
dT ε (t, x(t)) =

dXε
dt

(t,x(t))
dT ε
dt

(t,x(t))
.

Theorem 2.4 (First Noether's theorem for the variational problem of Herglotz [31]). If

problem (H1) is invariant under a one-parameter group of transformations in the sense of

De�nition 2.3, then the quantities

λ(t)

[
∂L

∂ẋi
X +

(
L− ∂L

∂ẋi
ẋi(t)

)
T

]
, i = 1, . . . ,m, (2.4)

are conserved along extremals of (H1), where λ(t) = e−
∫ t
a
∂L
∂z
dθ. Moreover, L and its partial

derivatives are evaluated at (t, x(t), ẋ(t), z(t)) and T and X are the in�nitesimal generators

of transformations:

T =
∂T ε

∂ε
(t, x(t))

∣∣∣
ε=0
, X =

∂X ε

∂ε
(t, x(t))

∣∣∣
ε=0
.

Along the thesis we will present a more general notion of invariance than the previous one

and generalize the previous result to higher-order problems of Herglotz with time delay. We will

also prove the existence and deduce expressions of Noether currents for this kind of problem.
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CHAPTER 3

OPTIMAL CONTROL THEORY

Typically, the Classical Calculus of Variations requires, for its applicability, the di�erentia-

bility of the trajectories that solve the problem. Besides that, admissible trajectories take values

on open sets. A more recent branch of mathematics, Optimal Control theory, takes dynamic

optimization to another level. Optimal Control theory su�ered a great development since the

middle part of 20th century with the works of Lev Pontryagin and his co-workers [57], namely

the maximum principle that will be presented within a few paragraphs in its weak form.

The optimal control formulation focuses upon one or more control variables that play the

role of instruments of optimization. The presence of a control variable at centre stage does

alter the basic orientation of the dynamic optimization problem.

The basic problem of optimal control consists in extremizing the functional

J (x(·), u(·)) =

∫ T

0

L(t, x(t), u(t))dt

subject to ẋ(t) = ϕ(t, x(t), u(t)) and x(0) = α, α ∈ Rm, where L, x, u and ϕ verify certain

assumptions.

There are three major equivalent formulations for the optimal control problem: the previous

one, which is Lagrange's, Mayers' and Bolza's forms. We will focus in the basic problem of

optimal control written in the Bolza form:

J (x(·), u(·)) =

∫ b

a

f(t, x(t), u(t))dt+ φ(x(b)) −→ extr

subject to ẋ(t) = ϕ(t, x(t), u(t)) and x(a) = α, α ∈ Rm,

(P )
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where f(·) ∈ C1([a, b] × Rm × Ω;R), φ(·) ∈ C1(Rm;R), ϕ(·) ∈ C1([a, b] × Rm × Ω;Rm),

x(·) ∈ PC1([a, b];Rm) and u(·) ∈ PC([a, b]; Ω), with Ω ⊆ Rr an open set. In the literature

of Optimal Control, x and u are called the state and control variables, respectively, while φ

is known as the pay-o� or salvage term. Note that the classical problem of the Calculus of

Variations is a particular case of problem (P ) with φ(x) ≡ 0, ϕ(t, x, u) = u and Ω = Rm. Note

also that with the optimal control formulation we can trivially approach classical variational

problems in the wider class of piecewise admissible functions.

The notation PC stands for �piecewise continuous� (for the precise meaning of piecewise

continuity and piecewise di�erentiability see, e.g., [45, Sec. 1.1]). When dealing with PC

functions we often write "for t ∈ [a, b]" meaning "for almost all t ∈ [a, b]".

One of the most important results in Optimal Control theory is Pontryagin's maximum prin-

ciple proved in [57]. This result, which is a �rst-order necessary optimality condition, provides

conditions for optimization problems with di�erential equations as constraints. The maximum

principle is still widely used for solving control problems and other problems of dynamic opti-

mization. Moreover, basic necessary optimality conditions from classical Calculus of Variations

follow from Pontryagin's maximum principle.

Theorem 3.1 (Pontryagin's maximum principle for problem (P ) [57]). If a pair (x(·), u(·))
with x(·) ∈ PC1([a, b];Rm) and u(·) ∈ PC([a, b]; Ω) is a solution to problem (P ), then there

exists ψ(·) ∈ PC1([a, b];Rm) such that the following conditions hold:

• the optimality condition

∂H

∂u
(t, x(t), u(t), ψ(t)) = 0; (3.1)

• the adjoint system ẋ(t) = ∂H
∂ψ

(t, x(t), u(t), ψ(t))

ψ̇(t) = −∂H
∂x

(t, x(t), u(t), ψ(t));
(3.2)

• and the transversality condition

ψ(b) = grad(φ(x))(b); (3.3)

where the Hamiltonian H is de�ned by

H(t, x, u, ψ) = f(t, x, u) + ψ · ϕ(t, x, u). (3.4)
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A forth variable arises with the maximum principle, ψ, called the co-state or adjoint variable,

being a generalized "Lagrange multiplier". Like state or control variables, the co-state variable

also depends on time, that is, ψ = ψ(t).

De�nition 3.2 (Pontryagin extremal to (P )). A triplet (x(·), u(·), ψ(·)) with x(·), ψ(·) ∈
PC1([a, b]; Rm) and u(·) ∈ PC([a, b]; Ω) is called a Pontryagin extremal to problem (P ) if

it satis�es the optimality condition (3.1), the adjoint system (3.2) and the transversality

condition (3.3).

A second important result that derives from the maximum principle is the following one. It

relates the total and partial derivatives of the Hamiltonian.

Theorem 3.3 (DuBois�Reymond condition of Optimal Control [57]). If (x(·), u(·), ψ(·))
is a Pontryagin extremal to problem (P ), then the Hamiltonian (3.4) satis�es the equality

dH

dt
(t, x(t), u(t), ψ(t)) =

∂H

∂t
(t, x(t), u(t), ψ(t)), t ∈ [a, b].

The famous (�rst) Noether theorem [54] besides being a fundamental tool of the Calculus

of Variations [71], and modern theoretical physics [25], is also a central tool in Optimal Con-

trol theory [67, 68, 72]. It states that when an optimal control problem is invariant under a

one-parameter family of transformations, then there exists a corresponding conservation law: an

expression that is conserved along all the Pontryagin extremals of the problem (see [67, 68, 72]

and references therein).

Here we use Noether's theorem as found in [67], which is formulated for optimal control

problems in Lagrange form, that is, for problem (P ) with φ ≡ 0. In order to apply the results

of [67] to the Bolza problem (P ), we rewrite it in the following equivalent Lagrange form:

I(x(·), y(·), u(·)) =

∫ b

a

[f(t, x(t), u(t)) + y(t)] dt −→ extr,ẋ(t) = ϕ (t, x(t), u(t)) ,

ẏ(t) = 0,

x(a) = α, y(a) =
φ(x(b))

b− a
.

(3.5)

Before presenting the Noether theorem for the optimal control problem (P ), we need to de�ne

the concept of invariance under a one-parameter group of transformations. Here we apply

the notion of invariance found in [67] to the equivalent optimal control problem (3.5). In

De�nition 3.4 we use the little-o notation.
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De�nition 3.4 (Invariance of problem (P ) under a one-parameter group of transformations

cf. [67]). Let hε be a one-parameter family of invertible C1 maps

hε : [a, b]× Rm × Ω −→ R× Rm × Rr,

hε(t, x, u) = (T ε(t, x, u),X ε(t, x, u),U ε(t, x, u)) ,

h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b]× Rm × Ω.

Problem (P ) is said to be invariant under transformations hε if for all (x(·), u(·)) the

following two conditions hold:

(i) [
f ◦ hε(t, x(t), u(t)) +

φ(x(b))

b− a
+ ξε+ o(ε)

]
dT ε

dt
(t, x(t), u(t))

= f(t, x(t), u(t)) +
φ(x(b))

b− a
(3.6)

for some constant ξ;

(ii)
dX ε

dt
(t, x(t), u(t)) = ϕ ◦ hε(t, x(t), u(t))

dT ε

dt
(t, x(t), u(t)). (3.7)

The next result can be easily obtained from the Noether theorem proved by Torres in [67]

and Pontryagin's maximum principle (Theorem 3.1).

Theorem 3.5 (Noether's theorem for the optimal control problem(P )). If problem (P ) is

invariant in the sense of De�nition 3.4, then the quantity

(b− t)ξ + ψ(t) ·X(t, x(t), u(t))−
[
H(t, x(t), u(t), ψ(t)) +

φ(x(b))

b− a

]
· T (t, x(t), u(t))

is constant in t along every Pontryagin extremal (x(·), u(·), ψ(·)) of problem (P ), where H

is de�ned by (3.4) and

T (t, x(t), u(t)) =
∂T ε

∂ε
(t, x(t), u(t))

∣∣∣∣
ε=0

,

X(t, x(t), u(t)) =
∂X ε

∂ε
(t, x(t), u(t))

∣∣∣∣
ε=0

.

Proof. The result is a simple exercise obtained by applying the Noether theorem of [67]

and the Pontryagin maximum principle (Theorem 3.1) to the equivalent optimal control

problem (3.5) (in particular using the adjoint equation corresponding to the multiplier

associated with the state variable and the respective transversality condition).
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Before presenting Noether's second theorem for the optimal control problem (P ), we need

to introduced the notions of Noether current and semi-invariance under a group of symmetries.

We follow the de�nitions presented in [69].

De�nition 3.6 (Noether current [69]). A function C(t, x(t), u(t), ψ(t)), which is constant

along every Pontryagin extremal (x(·), u(·), ψ(·)), is called a Noether current.

De�nition 3.7 (Semi-invariance of problem (P ) under a group of symmetries [69]). Let

p : [a, b]→ Rd be an arbitrary function of class Cq. Using the notation

α(t) :=
(
t, x(t), u(t), p(t), ṗ(t), . . . , p(q)(t)

)
,

we say that the optimal control problem (P ) is semi-invariant if there exists a C1 transfor-

mation group

g : [a, b]× Rm × Ω× Rd×(q+1) → R× Rm × Rr,

g(α(t)) = (T(α(t)),X(α(t)),U(α(t))) ,
(3.8)

which for p(t) = ṗ(t) = · · · = p(q)(t) = 0 coincides with the identity transformation for all

(t, x, u) ∈ [a, b]× Rm × Ω, satisfying the following conditions:(
θ0 · p(t) + θ1 · ṗ(t) + · · ·+ θq · p(q)(t)

) d
dt
f(t, x(t), u(t)) + f(t, x(t), u(t))

+
φ(x(b))

b− a
+
d

dt
F (α(t)) =

(
f(g(α(t))) +

φ(X(α(b)))

T(α(b))− T(α(a))

)
d

dt
T(α(t))

and
d

dt
X(α(t)) = ϕ (g(α(t)))

d

dt
T(α(t)),

for some function F of class C1 and some θ0, . . . , θq ∈ Rd.

Theorem 3.8 (Noether's second theorem for the optimal control problem (P ) [69]). If

problem (P ) is semi-invariant under a group of symmetries as in De�nition 3.7, then

there are d(q + 1) Noether currents of the form

∂F (α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ θIJ

(
f(t, x(t), u(t)) +

φ(x(b))

b− a

)

+ ψ(t) · ∂X(α(t))

∂p
(I)
J

∣∣∣∣∣
0

− H(t, x(t), u(t), ψ(t))
∂T(α(t))

∂p
(I)
J

∣∣∣∣∣
0

for I = 0, . . . , q, J = 1, . . . , d, where H is de�ned in (3.4) and (∗)|0 stands for

(∗)|p(t)=ṗ(t)=···=p(q)(t)=0.

21





NOTATIONS AND SIMPLIFICATIONS

Throughout this thesis, several notations and simpli�cations are made aiming to simplify

reading.

When dealing with problems with time delay, τ denotes a real number such that 0 ≤ τ <

b−a and we use the notation x(k)τ (t), k = 0, . . . , n, to denote the kth derivative of x evaluated

at t− τ ; often we use xτ (t) for x(0)τ (t) = x(t− τ) and ẋτ (t) for x(1)τ (t) = ẋ(t− τ).

We also introduce an operator that allows simpli�cation of the Lagrangian arguments:

[x; z]nτ (t) :=
(
t, x(t), ẋ(t), . . . , x(n)(t), xτ (t), ẋτ (t), . . . , x

(n)
τ (t), z(t)

)
.

Since this thesis does not focus entirely in higher-order problems with time delay, we also

shorten the previous operator to several other variations, as follows:

[x; z]n(t) :=
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
;

[x; z](t) := (t, x(t), ẋ(t), z(t)) ;

[x]nτ (t) :=
(
t, x(t), ẋ(t), . . . , x(n)(t), xτ (t), ẋτ (t), . . . , x

(n)
τ (t)

)
;

[x; z]τ (t) := (t, x(t), ẋ(t), xτ (t), ẋτ (t), z(t)) ;

[x]τ (t) := (t, x(t), ẋ(t), xτ (t), ẋτ (t)) .

Along the text, we use the standard conventions x(0) = d0x
dt0

= x and
∑j

k=1 Υ(k) = 0

whenever j = 0.
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CHAPTER 4

HIGHER-ORDER VARIATIONAL PROBLEMS OF

HERGLOTZ

In this �rst original chapter, Herglotz's problem (H1) is extended to the higher-order case.

A generalized Euler�Lagrange di�erential equation and transversality optimality conditions are

obtained for higher-order Herglotz-type variational problems. In order to do so, we use the

classical approach of introducing a variation in an admissible trajectory and study the necessary

conditions for the trajectory to be an extremizer; the higher-order fundamental lemma of the

Calculus of Variations and the higher-order integration by parts formulas on time scales proved

by Martins and Torres [51, 53] are also used. Illustrative examples of the new results are also

given.

The higher-order variational problem of Herglotz discussed in this chapter is de�ned as

follows:

Problem (Hn). Determine the trajectories x(·) ∈ C2n([a, b];Rm) and z(·) ∈ C1([a, b];R)

such that:

z(b) −→ extr,

with ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
, t ∈ [a, b],

subject to z(a) = γ, γ ∈ R,

(Hn)

where the Lagrangian L is assumed to satisfy the following hypotheses:

i. L is a C1([a, b]× R(n+1)m+1;R) function;
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ii. functions t 7→ ∂L

∂x(j)
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
and

t 7→ ∂L

∂z

(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
, j = 0, . . . , n, are di�erentiable up to order n

for any admissible trajectory x.

In line with what was said in Chapter 2 about the �rst-order problem of Herglotz, the

generalized higher-order problem (Hn) also generalizes the classical higher-order variational

problem. In fact, if the Lagrangian L is independent of z, then

ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t)

)
, t ∈ [a, b],

z(a) = γ, γ ∈ R,

which implies that the problem under consideration is the classical one:

z(b) =

∫ b

a

L̃
(
t, x(t), ẋ(t), . . . , x(n)(t)

)
dt −→ extr,

where

L̃
(
t, x, ẋ, . . . , x(n)

)
= L

(
t, x, ẋ, . . . , x(n)

)
+

γ

b− a
.

This chapter is organized as follows. In Section 4.1, we recall some results from the classical

Calculus of Variations that are required to derive the main results of this chapter. In Section 4.2,

we obtain the generalized Euler�Lagrange equation for problem (Hn) in the class of functions

x(·) ∈ C2n([a, b];Rm) satisfying given boundary conditions

x(a) = α0, . . . , x
(n−1)(a) = αn−1,

x(b) = β0, . . . , x
(n−1)(b) = βn−1,

(4.1)

where α0, . . ., αn−1, β0, . . . , βn−1 ∈ Rm. The transversality conditions (or natural boundary

conditions) for problem (Hn) are obtained in Section 4.3 and, in Section 4.4, we present some

illustrative examples of application of the new results.

4.1 Preliminary results

We begin with some de�nitions and results that are useful in the sequel.
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4.2. Generalized Euler�Lagrange equations

De�nition 4.1 (Admissible pair to problem (Hn)). We say that (x(·), z(·)) with x(·) ∈
C2n([a, b];Rm) and z(·) ∈ C1([a, b];R) is an admissible pair to problem (Hn) if it satis�es

the equation

ż(t) = L(t, x(t), ẋ(t), · · · , x(n)(t), z(t)), t ∈ [a, b],

with z(a) = γ ∈ R.

De�nition 4.2. We say that η(·) ∈ C2n ([a, b];Rm) is an admissible variation for problem

(Hn) subject to boundary conditions (4.1) if, and only if, η(a) = η(b) = · · · = η(n−1)(a) =

η(n−1)(b) = 0.

Lemma 4.3 (Higher-order integration by parts formulas � cf. [53]). Let n ∈ N, a, b ∈ R,
a < b, and f(·), g(·) ∈ Cn ([a, b];R). The following n equalities hold:

∫ b

a

f(t)g(i)(t)dt =

[
i−1∑
k=0

(−1)kf (k)(t)g(i−1−k)(t)

]b
a

+ (−1)i
∫ b

a

f (i)(t)g(t)dt,

i = 1, . . . , n.

Lemma 4.4 (Higher-order fundamental lemma of the Calculus of Variations � cf. [51]).

Let f0(·), . . . , fn(·) ∈ C([a, b];R). If∫ b

a

(
n∑
i=0

fi(t)η
(i)(t)

)
dt = 0

for all admissible variations η of problem (Hn) with m = 1, subject to boundary conditions

(4.1), then
n∑
i=0

(−1)if
(i)
i (t) = 0,

t ∈ [a, b].

4.2 Generalized Euler�Lagrange equations

The following result gives a necessary condition of Euler�Lagrange type for an admissible

pair (x(·), z(·)) to be an extremizer of the functional z[x; b], where z is de�ned by

ż(t) = L(t, x(t), ẋ(t), · · · , x(n)(t), z(t)), t ∈ [a, b],

and z(a) = γ ∈ R,
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Chapter 4. Higher-order variational problems of Herglotz

where x(·) ≡ (x1(·), . . . , xm(·)) satis�es the boundary conditions (4.1).

In order to simplify expressions, we de�ne [x; z]n(t) :=
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
.

Theorem 4.5 (Generalized higher-order Euler�Lagrange equations). If (x(·), z(·)) is a

solution of problem (Hn) subject to the boundary conditions (4.1), then the following gen-

eralized Euler�Lagrange equations hold:

n∑
j=0

(−1)j
dj

dtj

(
λ(t)

∂L

∂x
(j)
i

[x; z]n(t)

)
= 0, i = 1, . . . ,m, (4.2)

t ∈ [a, b], where λ(t) := e−
∫ t
a
∂L
∂z

[x;z]n(θ)dθ.

Proof. Suppose that x(·) ≡ (x1(·), . . . , xm(·)) is a solution of (Hn) subject to (4.1), and let

η(·) ≡ (η1(·), . . . , ηm(·)) ∈ C2n([a, b];Rm) be an admissible variation. Let ε be an arbitrary

real number. De�ne ζ : [a, b]→ R by

ζ(t) :=
d

dε
z[x+ εη; t]

∣∣∣∣
ε=0

=
d

dε
z
(
t, x(t) + εη(t), ẋ(t) + εη̇(t), . . . , x(n)(t) + εη(n)(t)

) ∣∣∣∣
ε=0

.

Obviously, ζ(a) = 0 and, since z is a minimizer (resp. maximizer), we have

z
(
b, x(b) + εη(b), ẋ(b) + εη̇(b), . . . , x(n)(b) + εη(n)(b)

)
≥ (resp. ≤) z

(
b, x(b), ẋ(b), . . . , x(n)(b)

)
.

Hence, ζ(b) = d
dε
z[x+ εη; b]

∣∣
ε=0

= 0 and because

ζ̇(t) =
d

dt

d

dε
z
(
t, x(t) + εη(t), ẋ(t) + εη̇(t), . . . , x(n)(t) + εη(n)(t)

) ∣∣∣∣
ε=0

=
d

dε

d

dt
z
(
t, x(t) + εη(t), ẋ(t) + εη̇(t), . . . , x(n)(t) + εη(n)(t)

) ∣∣∣∣
ε=0

=
d

dε
L[x+ εη, z]n(t)

∣∣∣∣
ε=0

,

we conclude that

ζ̇(t) =
m∑
i=1

n∑
j=0

(
∂L

∂x
(j)
i

[x; z]n(t)η
(j)
i (t)

)
+
∂L

∂z
[x; z]n(t)

d

dε
z[x+ εη; t]

∣∣∣∣
ε=0

=
m∑
i=1

n∑
j=0

(
∂L

∂x
(j)
i

[x; z]n(t)η
(j)
i (t)

)
+
∂L

∂z
[x; z]n(t)ζ(t).
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4.2. Generalized Euler�Lagrange equations

Thus, ζ satis�es a �rst order linear di�erential equation whose solution is found according

to

ẏ − Py = Q⇔ e−
∫ t
a P (θ)dθy(t)− y(a) =

∫ t

a

e−
∫ s
a P (θ)dθQ(s)ds.

Therefore,

e−
∫ t
a
∂L
∂z

[x;z]n(θ)dθζ(t)− ζ(a) =

∫ t

a

e−
∫ s
a
∂L
∂z

[x;z]n(θ)dθ

(
m∑
i=1

n∑
j=0

∂L

∂x
(j)
i

[x; z]n(s) η
(j)
i (s)

)
ds.

Denoting λ(t) := e−
∫ t
a
∂L
∂z

[x;z]n(θ)dθ, we get

λ(t)ζ(t)− ζ(a) =

∫ t

a

λ(s)

(
m∑
i=1

n∑
j=0

∂L

∂x
(j)
i

[x; z]n(s)η
(j)
i (s)

)
ds.

In particular, for t = b, we have

λ(b)ζ(b)− ζ(a) =

∫ b

a

λ(s)

(
m∑
i=1

n∑
j=0

∂L

∂x
(j)
i

[x; z]n(s)η
(j)
i (s)

)
ds.

Since ζ(t) = 0 for t ∈ {a, b}, the left-hand side of the previous equation vanishes and we

get

0 =

∫ b

a

m∑
i=1

n∑
j=0

λ(s)
∂L

∂x
(j)
i

[x; z]n(s)η
(j)
i (s)ds.

Fix i = 1, . . . ,m and let ηk(s) = 0 for all k 6= i and s ∈ [a, b]. Using the higher-order

fundamental lemma of the Calculus of Variations (Lemma 4.4), we obtain, for each i =

1, . . . ,m, the generalized Euler�Lagrange equation

n∑
j=0

(−1)j
dj

dtj

(
λ(t)

∂L

∂x
(j)
i

[x; z]n(t)

)
= 0,

t ∈ [a, b], proving the intended result.

In order to simplify expressions, and in agreement with Theorem 4.5, from now on we use

the notation λ(t) := e−
∫ t
a
∂L
∂z

[x;z]n(θ)dθ.

If n = 1, the di�erential equation of problem (Hn) reduces to ż(t) = L (t, x(t), ẋ(t), z(t)),

which de�nes the function z of Herglotz's variational principle (H1). This principle is a particular

case of our Theorem 4.5 and is given in Corollary 4.6.
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Chapter 4. Higher-order variational problems of Herglotz

Corollary 4.6 (See e.g. [29, 30, 37, 39]). If (x(·), z(·)) is a solution of the �rst-order

problem of Herglotz (H1) subject to (4.1), then the following equations hold

∂L

∂xi
(t, x(t), ẋ(t), z(t)) +

∂L

∂z
(t, x(t), ẋ(t), z(t))

∂L

∂ẋi
(t, x(t), ẋ(t), z(t))

− d

dt

∂L

∂ẋi
(t, x(t), ẋ(t), z(t)) = 0, (4.3)

for all t ∈ [a, b] and i = 1, . . . ,m.

Observe that when m = 1, (4.3) coincides with (2.3).

Our generalized higher-order Euler�Lagrange equations (4.2) are also a generalization of the

classical Euler�Lagrange equations for higher-order variational problems.

Corollary 4.7 (See, e.g., [28]). Suppose that x(·) is a solution of problem (Hn) subject

to (4.1), and that the Lagrangian L is independent of z. Then x(·) satis�es the classical

higher-order Euler�Lagrange di�erential equations

n∑
j=0

(−1)j
dj

dtj

(
∂L

∂x
(j)
i

(
t, x(t), . . . , x(n)(t)

))
= 0, (4.4)

t ∈ [a, b] and i = 1, . . . ,m.

The system of generalized Euler�Lagrange equations (4.2) can be written in the condensed

form
n∑
j=0

(−1)j
dj

dtj

(
λ(t)

∂L

∂x(j)
[x; z]n(t)

)
= 0, t ∈ [a, b]. (4.5)

From now on, in order to shorten notations and to be visually friendly, we will present our

results in the condensed form.

4.3 Generalized natural boundary conditions

We now consider the case when the values of x(a), . . ., x(n−1)(a), x(b), . . ., x(n−1)(b), are

not necessarily speci�ed.

Theorem 4.8 (Generalized natural boundary conditions). Suppose that (x(·), z(·)) is a so-

lution of problem (Hn). Then (x(·), z(·)) satis�es the generalized Euler�Lagrange equation

(4.5). Moreover,
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4.3. Generalized natural boundary conditions

1. If x(k)(b) is free for some k ∈ {0, . . . , n− 1}, then the natural boundary condition

n−k∑
j=1

(−1)j−1
dj−1

dtj−1

(
λ(t)

∂L

∂x(k+j)
[x; z]n(t)

) ∣∣∣∣∣
t=b

= 0 (4.6)

holds.

2. If x(k)(a) is free for some k ∈ {0, . . . , n− 1}, then the natural boundary condition

n−k∑
j=1

(−1)j−1
dj−1

dtj−1

(
λ(t)

∂L

∂x(k+j)
[x; z]n(t)

) ∣∣∣∣∣
t=a

= 0 (4.7)

holds.

Proof. Suppose that (x(·), z(·)) is a solution of problem (Hn). Let η(·) ∈ C2n([a, b];Rm)

and de�ne the function ζ just like in the proof of Theorem 4.5. From the arbitrariness

of η, and using similar arguments as the ones in the proof of Theorem 4.5, we conclude

that (x(·), z(·)) satis�es the generalized Euler�Lagrange equation (4.5). We now prove

(4.6) (the proof of (4.7) follows exactly the same arguments). Suppose that x(k)(b) is free

for some k ∈ {0, . . . , n − 1}. Let J :=
{
j ∈ {0, . . . , n− 1} : x(j)(a) is given

}
. For any

j ∈ {0, . . . , n − 1}, if j ∈ J , then η(j)(a) = 0; otherwise, we restrict ourselves to those

functions η such that η(j)(a) = 0. For convenience, we also suppose that η(n)(a) = 0.

Using the same arguments as the ones used in the proof of Theorem 4.5, we �nd that ζ

satis�es the �rst order linear di�erential equation

ζ̇(t) =
∂L

∂x
[x; z]n(t)η(t) +

∂L

∂ẋ
[x; z]n(t)η̇(t) + · · ·+ ∂L

∂x(n)
[x; z]n(t)η(n)(t) +

∂L

∂z
[x; z]n(t)ζ(t),

whose solution is found by

λ(t)ζ(t)− ζ(a) =

∫ t

a

n∑
j=0

λ(s)
∂L

∂x(j)
[x; z]n(s)η(j)(s)ds.

Again, since ζ(t) = 0, for t ∈ {a, b}, we get∫ b

a

n∑
j=0

λ(s)
∂L

∂x(j)
[x; z]n(s)η(j)(s)ds = 0

and, therefore,∫ b

a

λ(s)
∂L

∂x
[x; z]n(s)η(s)ds+

n∑
j=1

∫ b

a

λ(s)
∂L

∂x(j)
[x; z]n(s)η(j)(s)ds = 0.
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Using the higher-order integration by parts formula (Lemma 4.3) in the second parcel we

get∫ b

a

λ(s)
∂L

∂x
[x; z]n(s)η(s)ds

+
n∑
j=1

[λ(s)
∂L

∂x(j)
[x; z]n(s)η(j−1)(s) +

j−1∑
i=1

(−1)i
(
λ(s)

∂L

∂x(j)
[x; z]n(s)

)(i)

η(j−1−i)(s)

]b
a

+(−1)j
∫ b

a

(
λ(s)

∂L

∂x(j)
[x; z]n(s)

)(j)

η(s)ds

)
= 0,

which is equivalent to∫ b

a

n∑
j=0

(−1)j
(
λ(s)

∂L

∂x(j)
[x; z]n(s)

)(j)

η(s)ds

+
n∑
j=1

[
λ(s)

∂L

∂x(j)
[x; z]n(s)η(j−1)(s) +

j−1∑
i=1

(−1)i
(
λ(s)

∂L

∂x(j)
[x; z]n(s)

)(i)

η(j−1−i)(s)

]b
a

= 0.

Using the generalized Euler�Lagrange equation (4.2) into the last equation we get

n∑
j=1

[
λ(s)

∂L

∂x(j)
[x; z]n(s)η(j−1)(s) +

j−1∑
i=1

(−1)i
(
λ(s)

∂L

∂x(j)
[x; z]n(s)

)(i)

η(j−1−i)(s)

]b
a

= 0

and since η(a) = η̇(a) = · · · = η(n−1)(a) = 0, we conclude that

n∑
j=1

(
λ(s)

∂L

∂x(j)
[x; z]n(s)η(j−1)(s) +

j−1∑
i=1

(−1)i
(
λ(s)

∂L

∂x(j)
[x; z]n(s)

)(i)

η(j−1−i)(s)

)∣∣∣∣∣
s=b

= 0.

This equation is equivalent to

n−1∑
i=0

(
n−i∑
j=1

(−1)j−1
(
λ(s)

∂L

∂x(i+j)
[x; z]n(s)

)(j−1)

η(i)(s)

)∣∣∣∣∣
s=b

= 0.

Let I :=
{
i ∈ {0, . . . , n− 1} : x(i)(b) is given

}
. Note that k 6∈ I. For any i ∈ {0, . . . , n−1},

if i ∈ I, then η(i)(b) = 0; otherwise, for i 6= k, we restrict ourselves to those functions η

such that η(i)(b) = 0. From the arbitrariness of η(k)(b), it follows that

n−k∑
j=1

(−1)j−1
dj−1

dtj−1

(
λ(s)

∂L

∂x(k+j)
[x; z]n(s)

) ∣∣∣∣∣
s=b

= 0.

This concludes the proof.
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4.4. Illustrative examples

Remark 4.9. If (x(·), z(·)) is a solution to problem (Hn) without any of the 2n bounda-

ry conditions (4.1), then (x(·), z(·)) satis�es the generalized higher-order Euler�Lagrange

equations (4.5), the n transversality conditions (4.6) and the n transversality conditions

(4.7). In general, for each boundary condition missing in (4.1), there is a corresponding

natural boundary condition, as given by Theorem 4.8.

Next we remark that our generalized transversality conditions (4.6) and (4.7) are generaliza-

tions of the classical transversality conditions for higher-order variational problems (cf. ψk = 0,

k = 0, . . . , n− 1, with ψk given as in [71, Section 5]).

Corollary 4.10. Suppose that x(·) is a solution of problem (Hn) with L independent of z.

Then x satis�es the classical higher-order Euler�Lagrange equations (4.4). Moreover,

1. If x(k)(b) is free for some k ∈ {0, . . . , n− 1}, then the natural boundary condition

n−k∑
j=1

(−1)j−1
dj−1

dtj−1

(
∂L

∂x(k+j)

)(
b, ẋ(b), . . . , x(n)(b)

)
= 0

holds.

2. If x(k)(a) is free for some k ∈ {0, . . . , n− 1}, then the natural boundary condition

n−k∑
j=1

(−1)j−1
dj−1

dtj−1

(
∂L

∂x(k+j)

)(
a, ẋ(a), . . . , x(n)(a)

)
= 0

holds.

4.4 Illustrative examples

We illustrate the usefulness of our results with some examples that are not covered by

previous available results in the literature. Let us consider the particular case of Theorem 4.5

with n = 2 and m = 1.

Corollary 4.11. Let z be a solution of ż(t) = L (t, x(t), ẋ(t), ẍ(t), z(t)), t ∈ [a, b], subject

to the boundary conditions z(a) = γ, x(a) = α0, ẋ(a) = α1, x(b) = β0, and ẋ(b) = β1,

where γ, α0, α1, β0, and β1, are given real numbers. If (x(·), z(·)) is a solution of the
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second-order problem of Herglotz, then (x(·), z(·)) satis�es the di�erential equation

∂L

∂x
[x; z]2(t) +

∂L

∂z
[x; z]2(t)

∂L

∂ẋ
[x; z]2(t)− d

dt

∂L

∂ẋ
[x; z]2(t) +

(
∂L

∂z
[x; z]2(t)

)2
∂L

∂ẍ
[x; z]2(t)

− 2
∂L

∂z
[x; z]2(t)

d

dt

∂L

∂ẍ
[x; z]2(t)−

(
d

dt

∂L

∂z
[x; z]2(t)

)
∂L

∂ẍ
[x; z]2(t) +

d2

dt2
∂L

∂ẍ
[x; z]2(t) = 0,

(4.8)

t ∈ [a, b], where [x; z]2(t) = (t, x(t), ẋ(t), ẍ(t), z(t)).

We now apply Corollary 4.11 to concrete situations.

Example 4.12. Let us consider the following Herglotz's higher-order variational problem:

z(1) −→ min,

ż(t) = ẍ2(t) + z2(t), t ∈ [0, 1], z(0) =
1

2
,

x(0) = 0, ẋ(0) = 1, x(1) = 1, ẋ(1) = 1.

(4.9)

For this problem, the necessary optimality condition (4.8) asserts that

x(4)(t)− 4z(t)x(3)(t) +
(
4z2(t)− 2ż(t)

)
x(2)(t) = 0. (4.10)

Solving the system formed by (4.10) and ż(t) = ẍ2(t) + z2(t), subject to the given boundary

conditions, gives the extremal

x(t) = t, z(t) =
1

2− t
,

for which z(1) = 1.

Example 4.13. Consider problem (4.9) with z(0) = z0 free. We show that such problem

is not well de�ned. Indeed, if a solution exists, we obtain the optimality systemx(4)(t)− 4z(t)x(3)(t) + (4z2(t)− 2ż(t))x(2)(t) = 0

ż(t) = ẍ2(t) + z2(t)
(4.11)

subject to x(0) = 0 and ẋ(0) = x(1) = ẋ(1) = 1. It follows that

x(t) = t, z(t) =
z0

1− z0t
,

and we conclude that the problem has no solution: the in�mum is −∞ obtained when

z0 → 1+.
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Example 4.14. Consider now the following problem:

z(1) −→ min,

ż(t) = ẍ2(t) + z(t), t ∈ [0, 1], z(0) = 1,

x(0) = 0, ẋ(0) = 1, x(1) = 1, ẋ(1) = 0.

(4.12)

For problem (4.12), the necessary optimality condition (4.8) asserts that

x(4)(t)− 2x(3)(t) + x(2)(t) = 0. (4.13)

Solving the system formed by (4.13) and ż(t) = ẍ2(t) + z(t), subject to the given boundary

conditions, gives the extremal

x(t) =
(1− t)et+1 + (2t− 1)et + (e− 3)et− e+ 1

e2 − 3e+ 1
,

z(t) =
[(1 + t2)et+2 − 2(2t2 + t+ 2)et+1 + (4t2 + 4t+ 5)et + e4 − 6 e3 + 10 e2 − 2 e− 4] et

(e2 − 3 e+ 1)2
,

for which z(1) =
(e2−e−4)e
e2−3e+1

& 7, 78.

Our last example shows the usefulness of Theorem 4.8.

Example 4.15. We now consider problem (4.12) with ẋ(1) free. In this case, solvingx(4)(t)− 2x(3)(t) + x(2)(t) = 0

ż(t) = ẍ2(t) + z(t)

subject to the boundary conditions z(0) = 1, x(0) = 0, ẋ(0) = 1, x(1) = 1, and the natural

boundary condition (4.6) for n = 2 and k = 1, that in the present situation simpli�es to

ẍ(1) = 0, gives the extremal

x(t) = t, z(t) = et,

for which ẋ(1) = 1 and z(1) = e . 2, 72.

4.5 Conclusions

The results of this chapter generalize both the classical higher-order problem of the Cal-

culus of Variations [28, 46, 74] and the �rst-order Herglot'z problem [39]. We were able to
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prove generalized higher-order Euler�Lagrange equations for higher-order variational problems

of Herglotz and natural boundary conditions for case of unspeci�ed initial or �nal conditions.

The original results of this chapter were published in 2014 in [59]. They were also presented

by the author in the EURO mini Conference on Optimization in the Natural Sciences, February

5�9, 2014, Aveiro, Portugal, in a contributed talk entitled "Higher-order variational problems

of Herglotz-type".
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CHAPTER 5

FIRST-ORDER VARIATIONAL PROBLEMS OF

HERGLOTZ WITH TIME DELAY

In this chapter, we generalize Herglotz's problem (H1) by considering the generalized va-

riational problem of Herglotz in which the trajectories also depend on past arguments.

Dynamical systems with time delay are very important in modelling real-life phenomena

in several �elds, such as mathematics, biology, chemistry, economics and mechanics. Indeed,

several process outcomes are determined not only by variables at present time, but also by

its behaviour in the past. Motivated by the importance of problems with time delay, many

works generalized the classical results of the Calculus of Variations to the delayed case. The

�rst one in this direction seems to have been published by Èl'sgol'c [19]. Since then, several

authors have worked on various aspects of variational problems with time delay arguments

(see [2, 34, 38, 43, 56, 58] and references therein).

Although several generalizations of variational problems have been made, only recently

Frederico and Torres generalized the important Noether's �rst theorem to Optimal Control

problems with time delay [20, 24]. For more recent works on optimal control problems with

time delay see [8, 15, 34] and references therein. The importance of variational problems of

Herglotz, as well as the wide applicability of problems with time delay, allied to the impossibility

of applying the classical Noether theorem to these problems, constituted the main motivation

to the paper [60] who is the basis of the present chapter.

The main goal of this chapter is to extend the generalized Euler�Lagrange equation, the

DuBois�Reymond optimality condition and Noether's theorem to variational problems of Her-
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glotz type with time delay.

Throughout the text, τ denotes a real number such that 0 ≤ τ < b−a. To simplify notation,

we write z[x]τ (t) := z(t, x(t), ẋ(t), xτ (t), ẋτ (t)) and [x; z]τ (t) := (t, x(t), ẋ(t), xτ (t), ẋτ (t), z(t)),

where xτ (t) = x(t − τ) and ẋτ (t) = ẋ(t − τ). When there is no possibility of ambiguity, we

sometimes suppress arguments.

In this chapter we consider the following �rst-order delayed problem of Herglotz type:

Problem (Hτ ). Let τ be a real number such that 0 ≤ τ < b−a. Determine the trajectories

x(·) ∈ C2([a− τ, b];Rm) and z(·) ∈ C1([a, b];R) such that:

z(b) −→ extr,

with ż(t) = L (t, x(t), ẋ(t), x(t− τ), ẋ(t− τ), z(t)) , t ∈ [a, b],

subject to z(a) = γ, γ ∈ R,

and to x(b) = β and x(t) = µ(t), t ∈ [a− τ, a],

(Hτ )

where β ∈ Rm and µ(·) ∈ C2([a− τ, a];Rm) is a given initial function, and the Lagrangian

L is assumed to satisfy the following hypotheses:

i. L is a C1([a, b]× R4m+1;R) function;

ii. functions t 7→ ∂L
∂z

[x; z]τ (t), t 7→ ∂L
∂x(j)

[x; z]τ (t) and t 7→ ∂L

∂x
(j)
τ

[x; z]τ (t), j = 0, 1, are

di�erentiable for any admissible trajectory x.

Observe that the previous problem reduces to the classical fundamental problem of the

Calculus of Variations with time delay if the Lagrangian L does not depend on z. Also note

that problem (Hτ ) reduces to the generalized variational problem of Herglotz (H1) when τ = 0.

The structure of the chapter is as follows. We begin by reviewing some preliminaries about

the generalized variational calculus (without time delay). In particular, we recall the notion of

invariance and the �rst Noether theorem for variational problems of Herglotz type. Our main

results are given thereafter: in Section 5.2, a generalized Euler�Lagrange necessary optimality

condition (Theorem 5.6) and a DuBois�Reymond necessary optimality condition (Theorem 5.9);

and in Section 5.3, a Noether's �rst theorem for variational problems of Herglotz type with time

delay (Theorem 5.14). We end with an illustrative example of our results in Section 5.4.
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5.1 Review of Noether's theorem for variational pro-

blems of Herglotz type

For the convenience of the reader, we present here the de�nition of invariance functional z,

de�ned by ż = L(t, x, ẋ, z) and z(a) = γ, under a one-parameter group of transformations and

we recall Noether's �rst theorem for the generalized variational problem of Herglotz type.

Consider a one-parameter group of in�nitesimal transformations on R1+m,

t̄ = T (t, x, ε), x̄ = X (t, x, ε), (5.1)

in which ε is the parameter and T and X are invertible C1 functions such that T (t, x, 0) = t

and X (t, x, 0) = x. The in�nitesimal representation of transformations (5.1) is given by

t̄ = t+ T (t, x)ε+ o(ε),

x̄ = x+X(t, x)ε+ o(ε),

where T and X denote the �rst degree coe�cients of ε. Explicitly,

T (t, x) =
∂T
∂ε

(t, x, ε)

∣∣∣∣
ε=0

, X(t, x) =
∂X
∂ε

(t, x, ε)

∣∣∣∣
ε=0

.

De�nition 5.1 (Invariance under a one-parameter group of transformations�cf. Propo-

sition 3.1 of [31]). The one-parameter group of transformations (5.1) leaves invariant the

functional z, de�ned by ż = L(t, x, ẋ, z) and z(a) = γ for some �xed real number γ, if

d

dε

[
L

(
t̄, x̄(t̄),

dx̄

dt̄
(t̄), z̄(t̄)

)
· dt̄
dt

] ∣∣∣∣
ε=0

= 0.

We now prove the following useful result.

Lemma 5.2 (Necessary condition for invariance). If the functional z = z[x; t] de�ned by

ż(t) = L(t, x(t), ẋ(t), z(t)) and z(a) = γ, for some �xed real number γ, is invariant under

the one-parameter group of transformations (5.1), then

dz̄

dε
(t)

∣∣∣∣
ε=0

= 0

for each t ∈ [a, b].
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Proof. Note that

dz̄

dt̄
(t̄) = L

(
t̄, x̄(t̄),

dx̄

dt̄
(t̄), z̄(t̄)

)

and by multiplying both sides of the equality by
dt̄

dt
we have, by the chain rule, that

dz̄

dt
(t) =

dz̄

dt̄
(t̄) · dt̄

dt
(t) = L

(
t̄, x̄(t̄),

dx̄

dt̄
(t̄), z̄(t̄)

)
· dt̄
dt

(t).

Now, di�erentiating with respect to ε and setting ε = 0, we �nd, by de�nition of invariance,

that

d

dt

(
dz̄

dε

) ∣∣∣∣
ε=0

=
d

dε

(
dz̄

dt

) ∣∣∣∣
ε=0

=
d

dε

[
L

(
t̄, x̄(t̄),

dx̄

dt̄
(t̄), z̄(t̄)

)
· dt̄
dt

] ∣∣∣∣
ε=0

= 0.

De�ning h(t) :=
dz̄

dε
(t)
∣∣
ε=0

, we get that
dh

dt
(t) = 0 for all t ∈ [a, b], and since we are

supposing the initial condition z(a) to be �xed (z(a) = γ), then z̄(ā) is also �xed (z̄(ā) = γ̄)

and hence d
dε

(z̄(ā))
∣∣∣
ε=0

= 0. Observe that if ā = a, then
dz̄

dε
(a)
∣∣∣
ε=0

= 0; if ā 6= a, then

0 =
d

dε
(z̄(ā))

∣∣∣
ε=0

=
dz̄

dε
(ā)
∣∣∣
ε=0

dā

dε

∣∣∣
ε=0

=
dz̄

dε
(a)
∣∣∣
ε=0
T (a, x)

and because T (a, x) 6= 0, we can write that
dz̄

dε
(a)
∣∣∣
ε=0

= 0. By de�nition of h, this means

that h(a) = 0. Since h is constant on [a, b], we conclude that

h(t) :=
dz̄

dε
(t)

∣∣∣∣
ε=0

= 0

for all t ∈ [a, b].

Theorem 5.3 (Noether's �rst theorem for variational problems of Herglotz type [29, 31]).

If functional z = z[x; t] de�ned by ż = L (t, x(t), ẋ(t), z(t)) and z(a) = γ, for some �xed

real number γ, is invariant under the one-parameter group of transformations (5.1), then

λ(t) ·
([
L[x; z](t)− ẋ∂L

∂ẋ
[x; z](t)

]
T (t, x) +

∂L

∂ẋ
[x; z](t)X(t, x)

)
is conserved along the generalized extremals, where λ(t) := e−

∫ t
a
∂L
∂z

[x;z]τ (θ)dθ.
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5.2 Necessary optimality conditions for Herglotz's pro-

blem with time delay

De�nition 5.4 (Admissible pair to problem (Hτ )). We say that (x(·), z(·)) with x(·) ∈
C2([a−τ, b];Rm) and z(·) ∈ C1([a, b];R) is an admissible pair to problem (Hτ ) if it satis�es

the equation

ż(t) = L (t, x(t), ẋ(t), x(t− τ), ẋ(t− τ), z(t)) , t ∈ [a, b],

subject to z(a) = γ, γ ∈ R,

and to x(b) = β and x(t) = µ(t), t ∈ [a− τ, a].

De�nition 5.5 (Admissible variation). We say that η(·) ∈ C2 ([a− τ, b];Rm) is an admis-

sible variation for problem (Hτ ) if η(t) = 0 for t ∈ [a− τ, a] and η(b) = 0.

The following result gives a necessary condition of Euler�Lagrange type for an admissible

pair (x(·), z(·)) to be a solution of problem (Hτ ).

Theorem 5.6 (Generalized Euler�Lagrange equations for variational problems of Herglotz

type with time delay). If (x(·), z(·)) is a solution of problem (Hτ ), then the following

generalized Euler�Lagrange equations with time delay are satis�ed:

λ(t+ τ)

[
∂L

∂xτ
[x; z]τ (t+ τ)− d

dt

∂L

∂ẋτ
[x; z]τ (t+ τ) +

∂L

∂ẋτ
[x; z]τ (t+ τ)

∂L

∂z
[x; z]τ (t+ τ)

]
+ λ(t)

[
∂L

∂x
[x; z]τ (t)−

d

dt

∂L

∂ẋ
[x; z]τ (t) +

∂L

∂ẋ
[x; z]τ (t)

∂L

∂z
[x; z]τ (t)

]
= 0, (5.2)

a ≤ t ≤ b− τ , where λ(t) := e−
∫ t
a
∂L
∂z

[x;z]τ (θ)dθ, and

∂L

∂x
[x; z]τ (t)−

d

dt

∂L

∂ẋ
[x; z]τ (t) +

∂L

∂ẋ
[x; z]τ (t)

∂L

∂z
[x; z]τ (t) = 0, (5.3)

b− τ ≤ t ≤ b.

Proof. Suppose x(·) ∈ C2([a − τ, b];Rm) is a solution to problem (Hτ ) and let η be an

admissible variation. Let ε be an arbitrary real number and de�ne ζ : [a, b]→ R by

ζ(t) :=
d

dε
z[x+ εη]τ (t)

∣∣∣∣
ε=0

.

Obviously, ζ(a) = 0 and, since z is an extremizer, we conclude that ζ(b) = 0. Observe that

ζ̇(t) =
d

dt

d

dε
z[x+ εη]τ (t)

∣∣∣∣
ε=0

=
d

dε

d

dt
z[x+ εη]τ (t)

∣∣∣∣
ε=0

=
d

dε
L[x+ εη, z]τ (t)

∣∣∣∣
ε=0

,
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which means that

ζ̇(t) =
∂L

∂x
[x; z]τ (t)η(t) +

∂L

∂ẋ
[x; z]τ (t)η̇(t) +

∂L

∂xτ
[x; z]τ (t)η(t− τ)

+
∂L

∂ẋτ
[x; z]τ (t)η̇(t− τ) +

∂L

∂z
[x; z]τ (t)ζ(t).

Consequently, ζ is solution of the �rst order linear di�erential equation

ζ̇ =
∂L

∂x
η(t) +

∂L

∂ẋ
η̇(t) +

∂L

∂xτ
η(t− τ) +

∂L

∂ẋτ
η̇(t− τ) +

∂L

∂z
ζ.

and ζ satis�es the equation

λ(t)ζ(t)− ζ(a) =

∫ t

a

λ(s)

[
∂L

∂x
[x; z]τ (s)η(s) +

∂L

∂ẋ
[x; z]τ (s)η̇(s)

+
∂L

∂xτ
[x; z]τ (s)η(s− τ) +

∂L

∂ẋτ
[x; z]τ (s)η̇(s− τ)

]
ds,

where λ(t) := e−
∫ t
a
∂L
∂z

[x;z]τ (θ)dθ. The previous equation is valid for all t ∈ [a, b], in particular

for t = b and because ζ(a) = ζ(b) = 0, we have∫ b

a

λ(s)

[
∂L

∂x
[x; z]τ (s)η(s) +

∂L

∂ẋ
[x; z]τ (s)η̇(s)

]
ds

+

∫ b

a

λ(s)

[
∂L

∂xτ
[x; z]τ (s)η(s− τ) +

∂L

∂ẋτ
[x; z]τ (s)η̇(s− τ)

]
ds = 0.

Applying the change of variable s = t+ τ in the second integral and recalling that η is null

in [a− τ, a], we obtain that∫ b

a

λ(s)

[
∂L

∂x
[x; z]τ (s)η(s) +

∂L

∂ẋ
[x; z]τ (s)η̇(s)

]
ds

+

∫ b−τ

a

λ(s+ τ)

[
∂L

∂xτ
[x; z]τ (s+ τ)η(s) +

∂L

∂ẋτ
[x; z]τ (s+ τ)η̇(s)

]
ds = 0,

that is,∫ b−τ

a

[
λ(s)

∂L

∂x
[x; z]τ (s) + λ(s+ τ)

∂L

∂xτ
[x; z]τ (s+ τ)

]
η(s)ds

+

∫ b−τ

a

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]
η̇(s)ds

+

∫ b

b−τ
λ(s)

[
∂L

∂x
[x; z]τ (s)η(s) +

∂L

∂ẋ
[x; z]τ (s)η̇(s)

]
ds = 0.
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Integration by parts gives∫ b−τ

a

{
λ(s)

∂L

∂x
[x; z]τ (s) + λ(s+ τ)

∂L

∂xτ
[x; z]τ (s+ τ)

− d

ds

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
η(s)ds

+

[(
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

)
η(s)

]b−τ
a

+

∫ b

b−τ

[
λ(s)

∂L

∂x
[x; z]τ (s)−

d

ds
(λ(s)

∂L

∂ẋ
[x; z]τ (s))

]
η(s)ds

+

[
λ(s)

∂L

∂ẋ
[x; z]τ (s)η(s)

]b
b−τ

= 0.

Since previous equation holds for all admissible variations, it holds also for those admissible

variations η such that η(t) = 0 for all t ∈ [b− τ, b] and, therefore, we get∫ b−τ

a

{
λ(s)

∂L

∂x
[x; z]τ (s) + λ(s+ τ)

∂L

∂xτ
[x; z]τ (s+ τ)

− d

ds

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
η(s)ds = 0.

From the fundamental lemma of the Calculus of Variations (see, e.g., [28]), we conclude

that

λ(t+ τ)
∂L

∂xτ
[x; z]τ (t+ τ) + λ(t)

∂L

∂x
[x; z]τ (t)

− d

dt

[
λ(t+ τ)

∂L

∂ẋτ
[x; z]τ (t+ τ) + λ(t)

∂L

∂ẋ
[x; z]τ (t)

]
= 0

for a ≤ t ≤ b− τ , proving equation (5.2). Now, if we restrict ourselves to those admissible

variations η such that η(t) = 0 for all t ∈ [a, b− τ ] we get∫ b

b−τ

[
λ(s)

∂L

∂x
[x; z]τ (s)−

d

ds
(λ(s)

∂L

∂ẋ
[x; z]τ (s))

]
η(s)ds = 0

and again, from the fundamental lemma of the Calculus of Variations we conclude that

λ(t)
∂L

∂x
[x; z]τ (t)−

d

dt
(λ(t)

∂L

∂ẋ
[x; z]τ (t)) = 0

for b− τ ≤ t ≤ b, proving equation (5.3).
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De�nition 5.7 (Generalized extremals with time delay). Admissible pairs to problem (Hτ )

that are solutions of the Euler�Lagrange equations (5.2)�(5.3) are called generalized ex-

tremals with time delay.

Remark 5.8. Note that if there is no time delay, that is, if τ = 0, then problem (Hτ ) re-

duces to the classical variational problem of Herglotz (H1) and the generalized

Euler�Lagrange equation (2.3) follows from Theorem 5.6.

The following theorem gives a generalization of the DuBois�Reymond condition for classical

variational problems [13] and generalizes the Dubois�Reymond condition for variational problems

with time delay of [24].

Theorem 5.9 (DuBois�Reymond conditions for variational problems of Herglotz type

with time delay). If a pair (x(·), z(·)) is a generalized extremal with time delay such that

∂L

∂xτ
[x; z]τ (t+ τ) · ẋ(t) +

∂L

∂ẋτ
[x; z]τ (t+ τ) · ẍ(t) = 0 (5.4)

for all t ∈ [a− τ, b− τ ], then x(·) satis�es the following equations:

d

dt

{
λ(t)L[x; z]τ (t)− ẋ(t)

[
λ(t)

∂L

∂ẋ
[x; z]τ (t) + λ(t+ τ)

∂L

∂ẋτ
[x; z]τ (t+ τ)

]}
= λ(t)

∂L

∂t
[x; z]τ (t) (5.5)

for a ≤ t ≤ b− τ , and

d

dt

{
λ(t)

[
L[x; z]τ (t)− ẋ(t)

∂L

∂ẋ
[x; z]τ (t)

]}
= λ(t)

∂L

∂t
[x; z]τ (t) (5.6)

for b− τ ≤ t ≤ b.

Proof. In order to prove equation (5.5), let t ∈ [a, b− τ ] be arbitrary. Note that∫ t

a

d

ds

{
λ(s)L[x; z]τ (s)− ẋ(s)

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
ds

=

∫ t

a

{
− ∂L

∂z
[x; z]τ (s)λ(s)L[x; z]τ (s) + λ(s)

[∂L
∂t

[x; z]τ (s) +
∂L

∂x
[x; z]τ (s)ẋ(s)

+
∂L

∂ẋ
[x; z]τ (s)ẍ(s) +

∂L

∂xτ
[x; z]τ (s)ẋ(s− τ) +

∂L

∂ẋτ
[x; z]τ (s)ẍ(s− τ)

+
∂L

∂z
[x; z]τ (s)L[x; z]τ (s)

]
− ẍ(s)

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]
− ẋ(s)

d

ds

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
ds.
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Cancelling symmetrical terms, we get

∫ t

a

d

ds

{
λ(s)L[x; z]τ (s)− ẋ(s)

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
ds

=

∫ t

a

(
λ(s)

∂L

∂t
[x; z]τ (s) + λ(s)

∂L

∂x
[x; z]τ (s)ẋ(s)− ẍ(s)λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

− ẋ(s)
d

ds

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

])
ds

+

∫ t

a

(
λ(s)

∂L

∂xτ
[x; z]τ (s)ẋ(s− τ) + λ(s)

∂L

∂ẋτ
[x; z]τ (s)ẍ(s− τ)

)
ds.

Observe that, by hypothesis (5.4), the last integral is null and by substitution of the

Euler�Lagrange equation (5.2) one gets

∫ t

a

d

ds

{
λ(s)L[x; z]τ (s)− ẋ(s)

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
ds

=

∫ t

a

(
λ(s)

∂L

∂t
[x; z]τ (s)− λ(s+ τ)

[ ∂L
∂xτ

[x; z]τ (s+ τ)ẋ(s) + ẍ(s)
∂L

∂ẋτ
[x; z]τ (s+ τ)

])
ds.

Using hypothesis (5.4) in the right hand side of the last equation, we conclude that

∫ t

a

d

ds

{
λ(s)L[x; z]τ (s)− ẋ(s)

[
λ(s)

∂L

∂ẋ
[x; z]τ (s) + λ(s+ τ)

∂L

∂ẋτ
[x; z]τ (s+ τ)

]}
ds

=

∫ t

a

λ(s)
∂L

∂t
[x; z]τ (s)ds.

Condition (5.5) follows from the arbitrariness of t ∈ [a, b− τ ]. In order to prove equation

(5.6), let t ∈ [b− τ, b] be arbitrary. Note that

∫ b

t

d

ds

{
λ(s)L[x; z]τ (s)− λ(s)ẋ(s)

∂L

∂ẋ
[x; z]τ (s)

}
ds

=

∫ b

t

{
− ∂L

∂z
[x; z]τ (s)λ(s)L[x; z]τ (s) + λ(s)

[∂L
∂t

[x; z]τ (s) +
∂L

∂x
[x; z]τ (s)ẋ(s)

+
∂L

∂ẋ
[x; z]τ (s)ẍ(s) +

∂L

∂xτ
[x; z]τ (s)ẋ(s− τ) +

∂L

∂ẋτ
[x; z]τ (s)ẍ(s− τ)

+
∂L

∂z
[x; z]τ (s)L[x; z]τ (s)

]
− ẍ(s)λ(s)

∂L

∂ẋ
[x; z]τ (s)− ẋ(s)

d

ds

[
λ(s)

∂L

∂ẋ
[x; z]τ (s)

]}
ds.
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Cancelling symmetrical terms, the previous equation becomes∫ b

t

d

ds

{
λ(s)L[x; z]τ (s)− λ(s)ẋ(s)

∂L

∂ẋ
[x; z]τ (s)

}
ds

=

∫ b

t

{
λ(s)

(∂L
∂t

[x; z]τ (s) +
∂L

∂x
[x; z]τ (s)ẋ(s)

)
− ẋ(s)

d

ds

[
λ(s)

∂L

∂ẋ
[x; z]τ (s)

]}
ds

+

∫ b

t

{
λ(s)

( ∂L
∂xτ

[x; z]τ (s)ẋ(s− τ) +
∂L

∂ẋτ
[x; z]τ (s)ẍ(s− τ)

)}
ds.

Substituting the Euler�Lagrange equation (5.3) and using hypothesis (5.4) in the last

integral, we conclude that∫ b

t

d

ds

{
λ(s)L[x; z]τ (s)− λ(s)ẋ(s)

∂L

∂ẋ
[x; z]τ (s)

}
ds =

∫ b

t

λ(s)
∂L

∂t
[x; z]τ (s)ds.

Condition (5.6) follows from the arbitrariness of t ∈ [b− τ, b].

Remark 5.10. For the classical variational problem and for the variational problem of

Herglotz (without delayed arguments), hypothesis (5.4) is trivially satis�ed.

5.3 Noether's theorem for the problem of Herglotz with

time delay

Before presenting the extension of the famous Noether's �rst theorem to variational problems

of Herglotz type with time delay, we introduce the de�nition of invariance under a one-parameter

group of transformations and give two useful necessary conditions for invariance.

De�nition 5.11 (Invariance of problem (Hτ ) under a one-parameter group of transfor-

mations). The one-parameter group of invertible C1 transformations{
t̄ = T (t, x, ε) = t+ T (t, x)ε+ o(ε)

x̄ = X (t, x, ε) = x+X(t, x)ε+ o(ε)
(5.7)

leaves problem (Hτ ) invariant if

d

dε

[
L

(
t̄, x̄(t̄),

dx̄

dt̄
(t̄), x̄(t̄− τ),

dx̄

dt̄
(t̄− τ), z̄(t̄)

)
· dt̄
dt

] ∣∣∣∣
ε=0

= 0.
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Lemma 5.12 (Necessary condition for invariance with time delay I). If problem (Hτ ) is

invariant under the one-parameter group of transformations (5.7), then

dz̄

dε
(t)

∣∣∣∣
ε=0

= 0

for each t ∈ [a, b].

Proof. The proof is very similar to the one of Lemma 5.2.

The next result is a consequence of Lemma 5.12 and is useful in the proof of Noether's �rst

theorem for variational problems of Herglotz with time delay.

Lemma 5.13 (Necessary condition for invariance with time delay II). If problem (Hτ ) is

invariant under the one-parameter group of transformations (5.7), then∫ t

a

λ(s)

[
∂L

∂t
[x; z]τ (s)T (s) +

∂L

∂x
[x; z]τ (s)X(s) +

∂L

∂ẋ
[x; z]τ (s)(Ẋ(s)− ẋ(s)Ṫ (s))

+
∂L

∂xτ
[x; z]τ (s)X(s− τ) +

∂L

∂ẋτ
[x; z]τ (s)

(
Ẋ(s− τ)− ẋ(s− τ)Ṫ (s− τ)

)
+ L[x; z]τ (s)Ṫ (s)

]
ds = 0

(5.8)

for each t ∈ [a, b].

Proof. Since

dz̄

dt
(t) = L

(
t̄, x̄(t̄),

dx̄

dt̄
(t̄), x̄(t̄− τ),

dx̄

dt̄
(t̄− τ), z̄(t̄)

)
· dt̄
dt

(t)

and
dt̄

dt
(t)

∣∣∣∣
ε=0

= 1,
d

dε

dt̄

dt
(t)

∣∣∣∣
ε=0

=
d

dt
T (t, x),

we get

d

dε

(
dz̄

dt

)
(t)

∣∣∣∣
ε=0

=
dL

dε

∣∣∣∣
ε=0

·dt̄
dt

(t)

∣∣∣∣
ε=0

+L · d
dε

dt̄

dt
(t)

∣∣∣∣
ε=0

=
dL

dε

∣∣∣∣
ε=0

+L · d
dt
T (t, x).

De�ning h(t) :=
dz̄

dε
(t)
∣∣
ε=0

,

ḣ(t) =
∂L

∂t

dt̄

dε
(t)

∣∣∣∣
ε=0

+
∂L

∂x

dx̄

dε
(t)

∣∣∣∣
ε=0

+
∂L

∂ẋ

d

dε

dx̄

dt̄
(t)

∣∣∣∣
ε=0

+
∂L

∂xτ

dx̄

dε
(t− τ)

∣∣∣∣
ε=0

+
∂L

∂ẋτ

d

dε

dx̄

dt̄
(t− τ)

∣∣∣∣
ε=0

+
∂L

∂z

dz̄

dε
(t)

∣∣∣∣
ε=0

+LṪ . (5.9)
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Next we prove that
d

dε

dx̄

dt̄

∣∣∣∣
ε=0

= Ẋ − ẋṪ .

Because
dx̄

dt
=
dx̄

dt̄
· dt̄
dt

=
dx̄

dt̄
·
(
∂t̄

∂t
+
∂t̄

∂x
ẋ

)
,

one has

d

dε

dx̄

dt

∣∣∣∣
ε=0

=
d

dε

(
dx̄

dt̄
·
(
∂t̄

∂t
+
∂t̄

∂x
ẋ

)) ∣∣∣∣
ε=0

=
d

dε

(
dx̄

dt̄

) ∣∣∣∣
ε=0

+
dx̄

dt̄

∣∣∣∣
ε=0

· d
dε

(
∂t̄

∂t
+
∂t̄

∂x
ẋ

) ∣∣∣∣
ε=0

.

(5.10)

On the other hand, since

d

dε

dx̄

dt

∣∣∣∣
ε=0

=
d

dε

(
∂x̄

∂t
+
∂x̄

∂x
ẋ

) ∣∣∣∣
ε=0

,

we get from equality (5.10) that

∂

∂t

dx̄

dε

∣∣∣∣
ε=0

+ẋ
∂

∂x

dx̄

dε

∣∣∣∣
ε=0

=
d

dε

dx̄

dt̄

∣∣∣∣
ε=0

+ẋ

(
∂T

∂t
+
∂T

∂x
ẋ

)
and therefore

∂X

∂t
+ ẋ

∂X

∂x
=

d

dε

dx̄

dt̄

∣∣∣∣
ε=0

+ẋṪ ,

which is equivalent to
d

dε

dx̄

dt̄

∣∣∣∣
ε=0

= Ẋ − ẋṪ . (5.11)

Substituting (5.11) into (5.9), we get

ḣ =
∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) +

∂L

∂xτ
X(t− τ)

+
∂L

∂ẋτ
(Ẋ(t− τ)− ẋ(t− τ)Ṫ (t− τ)) +

∂L

∂z
h+ LṪ .

Therefore, h satis�es a �rst order di�erential equation whose solution is

λ(t)h(t)− h(a) =

∫ t

a

λ(s)

[
∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) +

∂L

∂xτ
X(s− τ)

+
∂L

∂ẋτ

(
Ẋ(s− τ)− ẋ(s− τ)Ṫ (s− τ)

)
+ LṪ

]
ds.

Finally, since problem (Hτ ) is invariant under the one-parameter group of transformations

(5.7), we have by Lemma 5.12 that h ≡ 0 and we obtain (5.8).
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The next result establishes an extension of the celebrated Noether �rst theorem to variational

problems of Herglotz type with time delay.

Theorem 5.14 (Noether's �rst theorem for variational problems of Herglotz type with

time delay). If problem (Hτ ) is invariant under the one-parameter group of transformations

(5.7), then the quantities de�ned by[
λ(t)

∂L

∂ẋ
[x; z]τ (t) + λ(t+ τ)

∂L

∂ẋτ
[x; z]τ (t+ τ)

]
X(t)

+

[
λ(t)L[x; z]τ (t)− ẋ(t)

(
λ(t)

∂L

∂ẋ
[x; z]τ (t) + λ(t+ τ)

∂L

∂ẋτ
[x; z]τ (t+ τ)

)]
T (t) (5.12)

for a ≤ t ≤ b− τ , and

λ(t)

[
∂L

∂ẋ
[x; z]τ (t)X(t) + (L[x; z]τ (t)− ẋ(t)

∂L

∂ẋ
[x; z]τ (t))T (t)

]
(5.13)

for b− τ ≤ t ≤ b, are conserved along the generalized extremals with time delay that satisfy

∂L

∂xτ
[x; z]τ (t+ τ) · ẋ(t) +

∂L

∂ẋτ
[x; z]τ (t+ τ) · ẍ(t) = 0 (5.14)

for all t ∈ [a− τ, b− τ ], and

∂L

∂xτ
[x; z]τ (t+ τ)X(t) +

∂L

∂ẋτ
[x; z]τ (t+ τ)

(
Ẋ(t)− ẋ(t)Ṫ (t)

)
= 0 (5.15)

for all t ∈ [a, b− τ ].

Proof. Suppose that problem (Hτ ) is invariant under the one-parameter group of transfor-

mations (5.7) and that x(·) is a solution of the delayed generalized Euler�Lagrange equa-

tions (5.2)�(5.3). From the necessary condition for invariance with time delay II (Lemma

5.13), we get that

∫ t

a

λ(s)

[
∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) +

∂L

∂xτ
X(s− τ)

+
∂L

∂ẋτ

(
Ẋ(s− τ)− ẋ(s− τ)Ṫ (s− τ)

)
+ LṪ

]
ds = 0

for each t ∈ [a, b]. Proceeding with a linear change of variable and noticing that we can
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assume X and T to be null outside [a, b], the previous equation is equivalent to∫ t−τ

a

λ(s)

[
∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) + LṪ

]
+ λ(s+ τ)

[
∂L

∂xτ
(s+ τ)X +

∂L

∂ẋτ
(s+ τ)

(
Ẋ(s)− ẋ(s)Ṫ (s)

)]
ds

+

∫ t

t−τ
λ(s)

[
∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) + LṪ

]
ds = 0. (5.16)

Using hypothesis (5.15), equation (5.16) implies that∫ t

a

λ(s)

[
∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) + LṪ

]
ds = 0.

From the arbitrariness of t ∈ [a, b] we conclude that

∂L

∂t
T +

∂L

∂x
X +

∂L

∂ẋ
(Ẋ − ẋṪ ) + LṪ = 0 (5.17)

for all t ∈ [a, b]. Then, equation (5.16) becomes∫ t−τ

a

(
λ(s)

∂L

∂t
T +

[
λ(s)

∂L

∂x
+ λ(s+ τ)

∂L

∂xτ
(s+ τ)

]
X

+

[
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

]
Ẋ

+

[
λ(s)L− ẋ

(
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

)]
Ṫ
)
ds = 0

for t ∈ [a+ τ, b]. Using integration by parts, one has∫ t−τ

a

(
λ(s)

∂L

∂t
T +

[
λ(s)

∂L

∂x
+ λ(s+ τ)

∂L

∂xτ
(s+ τ)

]
X

− d

ds

[
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

]
X

− d

ds

[
λ(s)L− ẋ

(
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

)]
T
)
ds

+
[(

λ(s)
∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

)
X

+

(
λ(s)L− ẋ

(
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

))
T
]t−τ
a

= 0.

Observe that the terms in X inside the integral are null because x satis�es the delayed

generalized Euler�Lagrange equation on [a, b − τ ] and that, from the DuBois�Reymond

52



5.3. Noether's theorem for the problem of Herglotz with time delay

equation (5.5), the sum of the remaining terms of the integral is zero. This leads to[(
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

)
X

+

(
λ(s)L− ẋ

(
λ(s)

∂L

∂ẋ
+ λ(s+ τ)

∂L

∂ẋτ
(s+ τ)

))
T

]t−τ
a

= 0

for every t ∈ [a+ τ, b], which means that[
λ(s)

∂L

∂ẋ
+ λ(t+ τ)

∂L

∂ẋτ
(t+ τ)

)
X +

(
λ(s)L− ẋ

(
λ(s)

∂L

∂ẋ
+ λ(t+ τ)

∂L

∂ẋτ
(t+ τ)

)]
T

is constant for t ∈ [a, b− τ ]. Consider [t1, t2] ⊆ [b− τ, b]. From equation (5.17) one has∫ t2

t1

(
λ(s)

∂L

∂t
T + λ(s)

∂L

∂x
X + λ(s)

∂L

∂ẋ
Ẋ + λ(s)

(
L− ẋ∂L

∂ẋ

)
Ṫ

)
ds = 0.

Using integration by parts, we get∫ t2

t1

(
λ(s)

∂L

∂t
T + λ(s)

∂L

∂x
X − d

ds

(
λ(s)

∂L

∂ẋ

)
X − d

ds

[
λ(s)

(
L− ẋ∂L

∂ẋ

)]
T

)
ds

+

[
λ(s)

∂L

∂ẋ
X + λ(s)(L− ẋ∂L

∂ẋ
)T

]t2
t1

= 0.

Observe that the terms in X inside the integral are null because x satis�es Euler�Lagrange

equation (5.3) and that, from DuBois�Reymond equation (5.6), the sum of the remaining

terms of the integral is zero. This leads to[
λ(s)

∂L

∂ẋ
X + λ(s)

(
L− ẋ∂L

∂ẋ

)
T

]t2
t1

= 0.

From the arbitrariness of t1, t2 ∈ [b− τ, b], we conclude that

λ(s)
∂L

∂ẋ
X + λ(s)

(
L− ẋ∂L

∂ẋ

)
T

is constant in [b− τ, b]. This ends the proof of our main result.

Remark 5.15. In the classical variational problem and in the variational problem of Her-

glotz, hypotheses (5.14) and (5.15) are trivially satis�ed.

Remark 5.16. Our �rst Noether-type theorem is a generalization of Noether's �rst the-

orem for the classical variational problem of Herglotz type presented in [29, 31], that is,

Theorem 5.3 is a corollary of Theorem 5.14.
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Our results also provide generalizations of the variational results with time delay presented

in [24]. If the Lagrangian does not depend on z, then ∂L
∂z
≡ 0 and λ(t) ≡ 1. In that case,

problem (Hτ ) reduces to the classical variational problem with time delay. The Euler�Lagrange

equations, the DuBois�Reymond conditions and Noether's �rst theorem with time delay ob-

tained by Frederico and Torres in [24] are particular cases of Theorem 5.6, Theorem 5.9 and

Theorem 5.14, respectively.

Corollary 5.17 (See [24]). If x(·) is an extremizer of the functional∫ b

a

L(t, x(t), ẋ(t), x(t− τ), ẋ(t− τ))dt, (5.18)

then x(·) satis�es the Euler�Lagrange equations

∂L

∂xτ
[x]τ (t+ τ)− d

dt

∂L

∂ẋτ
[x]τ (t+ τ) +

∂L

∂x
[x]τ (t)−

d

dt

∂L

∂ẋ
[x]τ (t) = 0, (5.19)

a ≤ t ≤ b− τ , and
∂L

∂x
[x]τ (t)−

d

dt

∂L

∂ẋ
[x]τ (t) = 0, (5.20)

b− τ ≤ t ≤ b.

Corollary 5.18 (Cf. [24]). If x(·) is an extremizer of the functional (5.18) and

∂L

∂xτ
[x]τ (t+ τ) · ẋ(t) +

∂L

∂ẋτ
[x]τ (t+ τ) · ẍ(t) = 0,

t ∈ [a− τ, b− τ ], then x(·) satis�es the DuBois�Reymond equations

d

dt

{
L[x]τ (t)− ẋ(t)

[
∂3L[x]τ (t) +

∂L

∂ẋτ
[x]τ (t+ τ)

]}
=
∂L

∂t
[x]τ (t),

a ≤ t ≤ b− τ , and

d

dt

{
L[x]τ (t)− ẋ(t)

∂L

∂ẋ
[x]τ (t)

}
=
∂L

∂t
[x]τ (t),

b− τ ≤ t ≤ b.

Corollary 5.19 (Cf. [24]). If functional (5.18) is invariant in the sense of De�nition 5.1,

then the quantities[
∂L

∂ẋ
[x]τ (t) +

∂L

∂ẋτ
[x]τ (t+ τ)

]
X(t)

+

[
L[x]τ (t)− ẋ(t)

(
∂L

∂ẋ
[x]τ (t) +

∂L

∂ẋτ
[x]τ (t+ τ)

)]
T (t),
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a ≤ t ≤ b− τ , and

∂L

∂ẋ
[x]τ (t)X(t) + [L[x]τ (t)− ẋ(t)

∂L

∂ẋ
[x]τ (t)]T (t),

b − τ ≤ t ≤ b, are conserved along the solutions of the Euler�Lagrange equations (5.19)�

(5.20) that satisfy

∂L

∂xτ
[x]τ (t+ τ) · ẋ(t) +

∂L

∂ẋτ
[x]τ (t+ τ) · ẍ(t) = 0,

t ∈ [a− τ, b− τ ], and

∂L

∂xτ
[x]τ (t+ τ)X(t) +

∂L

∂ẋτ
[x]τ (t+ τ)

(
Ẋ(t)− ẋ(t)Ṫ (t)

)
= 0,

t ∈ [a, b− τ ].

5.4 Illustrative example

We present an example that shows the usefulness of our results. Consider the following

Herglotz's variational problem with time delay τ = 1 and m = 1:

z(2) −→ extr,

ż(t) = L[x; z]1(t) := (ẋ(t− 1))2 + z(t), t ∈ [0, 2],

x(t) = −t, t ∈ [−1, 0],

x(2) = 1, z(0) = 0.

(5.21)

For this problem, Euler�Lagrange optimality conditions (5.2)�(5.3) given by Theorem 5.6 assert

that ẋ(t)− ẍ(t) = 0, t ∈ [0, 1],

0 = 0, t ∈ [1, 2].

Solving the equation of previous system with the initial condition x(0) = 0, we obtain

x(t) = −k + ket, t ∈ [0, 1],

for some constant k ∈ R. Since in [0, 1] z is de�ned by ż(t) = 1 + z(t), with z(0) = 0, we

obtain

z(t) = et − 1, t ∈ [0, 1].
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In order to illustrate our remaining results (Theorems 5.9 and 5.14), we look for trajectories x

that satisfy hypothesis (5.4): 2ẋ(t) · ẍ(t) = 0, t ∈ [−1, 1]. This condition is trivially satis�ed

in the interval [−1, 0], but leads to k = 0 and, consequently, x(t) = 0 in [0, 1]. Hence, we get

a family xF of generalized extremals with time delay given by

xF(t) =



−t, t ∈ [−1, 0],

0, t ∈ [0, 1],

F(t), t ∈ [1, 2],

1, t = 2,

(5.22)

where the continuous function F is chosen to guarantee that xF is a C2 function. With x

de�ned by (5.22) for some F , and z de�ned in [1, 2] as ż(t) = z(t) with z(1) = e−1, it follows

that z(t) = et−1(e− 1) for t ∈ [1, 2] and, consequently,

z(t) =

et − 1, t ∈ [0, 1],

et−1(e− 1), t ∈ [1, 2],
(5.23)

for which z(2) = e2 − e. Next we show that DuBois�Reymond conditions (5.5)�(5.6) given by

Theorem 5.9 are valid for x and z given by (5.22)�(5.23). In this case, (5.5) reduces to

d

dt

[
λ(t)

(
ẋ2(t− 1) + z(t)

)
− ẋ(t) (2λ(t+ 1)ẋ(t))

]
= 0, t ∈ [0, 1],

which is equivalent to
d

dt

[
λ(t)et

]
= 0, t ∈ [0, 1].

Since λ(t) = e−t, condition (5.5) holds for t ∈ [0, 1]. Similarly, it can be proved that condition

(5.6) holds for t ∈ [1, 2]. Finally, we show the relevance of our main result (Theorem 5.14).

First we de�ne a one-parameter group of transformations on t and x with generators T (t) ≡ 1

and X(t) ≡ 0, respectively. Since the Lagrangian de�ned in (5.21) is autonomous, i.e., does

not depend explicitly on t, then it is invariant in the sense of De�nition 5.11. Observe that in

this case hypothesis (5.15) is trivially satis�ed. Theorem 5.14 asserts that (5.12) and (5.13) are

constant in t, in intervals [0, 1] and [1, 2], respectively, along generalized extremals with time

delay that satisfy hypotheses (5.14) and (5.15). Observe that (5.12) is equal to[
λ(t)L[x; z]1(t)− 2 (ẋ(t))2 λ(t+ 1)

]
T (t) = e−t

[
ẋ2(t− 1) + z(t)

]
= e−t

[
1 + et − 1

]
, t ∈ [0, 1],

which is equal to one. Similarly, it can be easily proved that quantity (5.13) is also constant in

t and equal to 1− e−1.
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5.5 Conclusions

In this chapter, we proved some interesting results for variational problems of Herglotz with

time delay: a generalized Euler�Lagrange necessary optimality condition, a DuBois�Reymond

necessary optimality condition and a Noether's �rst theorem. Our results extend some classical

results for variational problems with time delay [2, 43], but extend also Herglot'z original result

[39] and Georgieva's results on �rst-order Herglot'z type problems [29, 31].

The original results of this chapter were published in 2015 in [60]. They were also presented

by the author in the international conference Optimization 2014, July 28-30, 2014, Guimarães,

Portugal, in a contributed talk entitled "Noether's �rst theorem for variational problems of

Herglotz type with time delay".
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CHAPTER 6

OPTIMAL CONTROL APPROACH TO

HERGLOTZ'S VARIATIONAL PROBLEMS

Since the celebrated work [57] by Pontryagin et al., the Calculus of Variations is seen as part

of Optimal Control. In this chapter we approach the �rst-order Herglotz problem (H1) from

an Optimal Control point of view. While in Chapter 2 and in [32, 37, 39, 59] the admissible

functions are x(·) ∈ C2([a, b];Rm) and z(·) ∈ C1([a, b];R), here we consider (H1) in a wider

class of functions. We consider the following problem:

Problem (H1∗). Determine the trajectories x(·) ∈ PC1([a, b];Rm) and z(·) ∈ PC1([a, b];R)

such that:

z(b) −→ extr

with ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

subject to x(a) = α, z(a) = γ, α ∈ Rm, γ ∈ R,

(H1∗)

where the Lagrangian L is assumed to satisfy the following hypotheses:

i. L ∈ C1([a, b]× R2m × R;R);

ii. functions t 7→ ∂L
∂z

[x; z](t), t 7→ ∂L
∂x

[x; z](t) and t 7→ ∂L
∂ẋ

[x; z](t) are di�erentiable for

any admissible trajectory x.
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We make use of Pontryagin's maximum principle (Theorem 3.1) to generalize the Euler�

�Lagrange equation and the transversality condition for problem (H1) found in [59] to admissible

functions x(·) ∈ PC1([a, b];Rm) and z(·) ∈ PC1([a, b];R) (Theorem 6.2). We use the DuBois�

�Reymond condition of Optimal Control (Theorem 3.3) to obtain a DuBois�Reymond necessary

optimality condition for problem (H1∗) (Theorem 6.4). We also use �rst Noether's theorem

of Optimal Control proved in [67, 68, 72] (cf. Theorem 3.5) to prove a generalization of the

Noether's theorem [31] (Theorem 6.6).

6.1 Necessary optimality conditions for Herglotz' pro-

blems

We begin by introducing some basic de�nitions for the generalized variational problem of

Herglotz (H1∗).

De�nition 6.1 (Admissible pair to problem (H1∗)). We say that (x(·), z(·)) with x(·) ∈
PC1([a, b];Rm) and z(·) ∈ PC1([a, b];R) is an admissible pair to problem (H1∗) if it satis-

�es the equation

ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

and the initial conditions x(a) = α and z(a) = γ, α ∈ Rm, γ ∈ R.

We now present a necessary condition for a pair (x(·), z(·)) to be a solution of problem

(H1∗). The following result generalizes [37, 39, 59] by considering a more general class of

functions.

In order to shorten notations, we use [x; z](t) := (t, x(t), ẋ(t), z(t)). When there is no

possibility of ambiguity, we sometimes suppress arguments.

Theorem 6.2 (Euler�Lagrange equation and transversality condition for problem (H1∗)).

If (x(·), z(·)) is a solution of problem (H1∗), then the Euler�Lagrange equation

∂L

∂x
[x; z](t)− d

dt

(
∂L

∂ẋ

)
[x; z](t) +

∂L

∂z
[x; z](t)

∂L

∂ẋ
[x; z](t) = 0 (6.1)

holds for all t ∈ [a, b]. Moreover, the following transversality condition holds:

∂L

∂ẋ
[x; z](b) = 0. (6.2)
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Proof. Observe that Herglotz's problem (H1∗) is a particular case of problem (P ), de�ned

in the very beginning of Chapter 3, obtained by considering x and z as state variables (two

components of one vectorial state variable), ẋ as the control variable u, and by choosing

f ≡ 0 and φ(x, z) = z. Note that since x(t) ∈ Rm, we have u(t) ∈ Rm (i.e., for Herglotz's

problem (H1∗) one has r = m). In this way, the problem of Herglotz, described as an

optimal control problem, takes the form

z(b) −→ extr,

subject to

ẋ(t) = u(t),

ż(t) = L(t, x(t), u(t), z(t)),

and x(a) = α, z(a) = γ, α ∈ Rm, γ ∈ R.

(6.3)

It follows from Pontryagin's maximum principle (Theorem 3.1) that there exists ψx ∈
PC1([a, b];Rm) and ψz ∈ PC1([a, b];R) such that the following conditions hold:

• the optimality condition

∂H

∂u
(t, x(t), u(t), z(t), ψx(t), ψz(t)) = 0; (6.4)

• the adjoint system

ẋ(t) = ∂H
∂ψx

(t, x(t), u(t), z(t), ψx(t), ψz(t))

ż(t) = ∂H
∂ψz

(t, x(t), u(t), z(t), ψx(t), ψz(t))

ψ̇x(t) = −∂H
∂x

(t, x(t), u(t), z(t), ψx(t), ψz(t))

ψ̇z(t) = −∂H
∂z

(t, x(t), u(t), z(t), ψx(t), ψz(t));

(6.5)

• and the transversality conditions ψx(b) = 0,

ψz(b) = 1,
(6.6)

where the Hamiltonian H is de�ned by

H(t, x, u, z, ψx, ψz) = ψx · u+ ψz · L(t, x, u, z).

Observe that the adjoint system (6.5) implies thatψ̇x = −ψz ∂L∂x
ψ̇z = −ψz ∂L∂z .

(6.7)
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This means that ψz is solution of a �rst-order linear di�erential equation, which is solved

using an integrand factor to �nd that ψz = ke−
∫ t
a
∂L
∂z
dθ with k a constant. From the second

transversality condition in (6.6), we obtain that k = e
∫ b
a
∂L
∂z
dθ and, consequently,

ψz = e
∫ b
t
∂L
∂z
dθ.

The optimality condition (6.4) is equivalent to ψx + ψz
∂L
∂u

= 0 and, after derivation, we

obtain that

ψ̇x = − d

dt

(
ψz
∂L

∂u

)
= −ψ̇z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
= ψz

∂L

∂z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
.

Now, comparing with (6.7), we have

−ψz
∂L

∂x
= ψz

∂L

∂z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
.

Since ψz(t) 6= 0 for all t ∈ [a, b] and ẋ = u, we obtain the generalized Euler�Lagrange

equation (6.1):
∂L

∂x
− d

dt

(
∂L

∂ẋ

)
+
∂L

∂z

∂L

∂ẋ
= 0.

Note that from the optimality condition (6.4) we obtain that ψx = −ψz ∂L∂u = −ψz ∂L∂ẋ , which
together with transversality condition (6.6) for ψx leads to the transversality condition

(6.2):
∂L

∂ẋ
(b, x(b), ẋ(b), z(b)) = 0.

This concludes the proof.

De�nition 6.3 (Extremal to problem (H1∗)). We say that an admissible pair (x(·), z(·))
is an extremal to problem (H1∗) if it satis�es the Euler�Lagrange equation (6.1) and the

transversality condition (6.2).

Theorem 6.4 (DuBois�Reymond condition for problem(H1∗)). If (x(·), z(·)) is a solution

of problem (H1∗), then

d

dt

(
−ψz(t)

∂L

∂ẋ
[x; z](t)ẋ(t) + ψz(t)L[x; z](t)

)
= ψz(t)

∂L

∂t
[x; z](t),

t ∈ [a, b], where ψz(t) = e
∫ b
t
∂L
∂z

[x;z](θ)dθ.

Proof. The result follows from Theorem 3.3, rewriting problem (H1∗) as the optimal control

problem (6.3).
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6.2 Noether's theorem for Herglotz's problem

We start this section by de�ning invariance for problem (H1∗).

De�nition 6.5 (Invariance of problem (H1∗) under a one-parameter group of transforma-

tions). Let hε be a one-parameter family of C1 invertible maps

hε : [a, b]× Rm × R→ R× Rm × R,

hε(t, x(t), z(t)) = (T ε[x; z](t),X ε[x; z](t),Zε[x; z](t)),

with h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a, b]× Rm × R.

Problem (H1∗) is said to be invariant under the one-parameter group of transformations

hε if for all admissible pairs (x(·), z(·)) the following two conditions hold:

(i) (
z(b)

b− a
+ ξε+ o(ε)

)
dT ε

dt
[x; z](t) =

z(b)

b− a
, for some constant ξ; (6.8)

(ii)

dZε

dt
[x; z](t) = L

(
T ε[x; z](t),X ε[x; z](t),

dX ε

dT ε
[x; z](t),Zε[x; z](t)

)
dT ε

dt
[x; z](t),

(6.9)

where
dX ε

dT ε
[x; z](t) =

dX ε
dt

[x; z](t)
dT ε
dt

[x; z](t)
.

Follows the main result of the chapter.

Theorem 6.6 (Noether's theorem for problem (H1∗)). If problem (H1∗) is invariant in

the sense of De�nition 6.5, then the quantity

ψz(t)

[
∂L

∂ẋ
[x; z](t)X[x; z](t)−Z[x; z](t)+

(
L[x; z](t)− ∂L

∂ẋ
[x; z](t)ẋ(t)

)
T [x; z](t)

]
(6.10)

is constant in t along every extremal of problem (H1∗), where

T [x; z](t) =
∂T ε

∂ε
[x; z](t)

∣∣∣∣
ε=0

,

X[x; z](t) =
∂X ε

∂ε
[x; z](t)

∣∣∣∣
ε=0

,

Z[x; z](t) =
∂Zε

∂ε
[x; z](t)

∣∣∣∣
ε=0

and ψz(t) = e
∫ b
t
∂L
∂z

[x;z](θ)dθ.
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Proof. As before, we rewrite problem (H1∗) in the equivalent optimal control form (6.3),

where x and z are the state variables and u = ẋ the control. We prove that if problem

(H1∗) is invariant in the sense of De�nition 6.5, then problem (6.3) is invariant in the sense

of De�nition 3.4. First, observe that if equation (6.8) holds, then (3.6) holds for problem

(6.3): here f ≡ 0, φ(x, z) = z and (3.6) simpli�es to
[
z(b)
b−a + ξε+ o(ε)

]
dT ε
dt

[x; z](t) = z(b)
b−a .

Note that the �rst equation of the control system of problem (6.3) (u(t) = ẋ(t)) de�nes

naturally U ε := dX ε
dT ε , that is,

dX ε

dt
[x; z](t) = U ε[x; z](t)

dT ε

dt
[x; z](t). (6.11)

Hence, if equation (6.9) and (6.11) holds, then there is also invariance of the control system

of (6.3) in the sense of (3.7) and consequently problem (6.3) is invariant in the sense of

De�nition 3.4. We are now in conditions to apply Theorem 3.5 to problem (6.3), which

guarantees that the quantity

(b− t)ξ + ψx(t) ·X(t, x(t), u(t), z(t)) + ψz(t) · Z(t, x(t), u(t), z(t))

−
(
H(t, x(t), u(t), z(t), ψx(t), ψz(t)) +

z(b)

b− a

)
· T (t, x(t), u(t), z(t))

is constant in t along every Pontryagin extremal of problem (6.3), where

H(t, x, u, z, ψx, ψz) = ψxu+ ψzL(t, x, u, z).

This means that the quantity

(b− t)ξ + ψx(t)X[x; z](t) + ψz(t)Z[x; z](t)

−
(
ψx(t)ẋ(t) + ψz(t)L[x; z](t) +

z(b)

b− a

)
T [x; z](t)

is constant in t along all extremals of problem (H1∗), where

ψx(t) = −ψz(t)
∂L

∂u
[x; z](t) = −ψz(t)

∂L

∂ẋ
[x; z](t).

Equivalently,

(b− t)ξ − z(b)

b− a
T [x; z](t)− ψz(t)

[
∂L

∂ẋ
[x; z](t)X[x; z](t)− Z[x; z](t)

+

(
L[x; z](t)− ∂L

∂ẋ
[x; z](t)ẋ(t)

)
T [x; z](t)

]
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is a constant along the extremals. To conclude the proof, we just need to prove that the

quantity

(b− t)ξ − z(b)

b− a
T [x; z](t) (6.12)

is a constant. From the invariance condition (6.8) we know that

(z(b) + ξ(b− a)ε+ o(ε))
dT ε

dt
[x; z](t) = z(b).

Integrating from a to t, we conclude that

(z(b) + ξ(b− a)ε+ o(ε)) T ε[x; z](t)

= z(b)(t− a) + (z(b) + ξ(b− a)ε+ o(ε)) T ε[x; z](a). (6.13)

Di�erentiating (6.13) with respect to ε, and then putting ε = 0, we obtain

ξ(b− a)t+ z(b)T [x; z](t) = ξ(b− a)a+ z(b)T [x; z](a). (6.14)

We conclude from (6.14) that expression (6.12) is the constant (b − a)ξ − z(b)
b−aT [x; z](a).

This ends the proof.

6.3 Conclusions

We introduced a di�erent approach to the generalized variational problem of Herglotz, by

looking to Herglotz's problem as an optimal control problem. A Noether type theorem for

Herglotz's problem was �rst proved by Georgieva and Guenther in [31]: under the condition of

invariance

d

dε

[
L

(
T ε[x; z](t),X ε[x; z](t),

dX ε

dT ε
[x; z](t), z (T ε[x; z](t))

)
dT ε

dt
[x; z](t)

] ∣∣∣∣
ε=0

= 0, (6.15)

they obtained

λ(t)

[
∂L

∂ẋ
[x; z](t)X[x; z](t) +

(
L[x; z](t)− ∂L

∂ẋ
[x; z](t)ẋ(t)

)
T [x; z](t)

]
, (6.16)

where λ(t) = e−
∫ t
a
∂L
∂z

[x;z](θ)dθ, as a conserved quantity along the extremals of problem (H1∗).

Our results improve those of [31] in three ways: (i) we consider a wider class of piecewise

admissible functions; (ii) we consider a more general notion of invariance whose transformations
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T ε, X ε and Zε may also depend on velocities, i.e., on ẋ(t) (note that if (6.9) holds with

Zε[x; z] = z, then (6.15) also holds); (iii) the conserved quantity (6.16), up to multiplication

by a constant, is a particular case of (6.10) when there is no transformation in z (Z = ∂Zε
∂ε

∣∣
ε=0

=

0).

The approach introduced in this chapter will be explored further in the following chapters

in order to deal with higher-order problems and delayed problems.

The original results of this chapter were published in 2015 in [61]. They were also presented

by the author in the 5th Iberian Mathematical Meeting, October 3�5, 2014, Aveiro, Portugal,

in a contributed talk entitled "An Optimal Control approach to Herglotz variational problems".
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CHAPTER 7

OPTIMAL CONTROL APPROACH TO

HIGHER-ORDER VARIATIONAL PROBLEMS OF

HERGLOTZ

In this chapter, we approach higher-order variational problems of Herglotz type from an opti-

mal control point of view. Using Optimal Control theory, we derive a generalized Euler�Lagrange

equation, transversality conditions, DuBois�Reymond necessary optimality condition and

Noether's theorem for Herglotz's type higher-order variational problems, valid for piecewise

smooth functions.

In [59] (presented in Chapter 4), we have introduced higher-order variational problems of

Herglotz type and obtained a generalized Euler�Lagrange equation and transversality conditions

for these problems. In particular, we considered the problem of determining the trajectories x(·)
and z(·) such that:

z(b) −→ extr

with ż(t) = L(t, x(t), ẋ(t), . . . , x(n)(t), z(t)), t ∈ [a, b],

subject to z(a) = γ, γ ∈ R.

We proved (see Theorem 4.5) that if a pair (x(·), z(·)) is a solution of the previous higher-order

problem, then it satis�es the higher-order generalized Euler�Lagrange equation

n∑
j=0

(−1)j
dj

dtj

(
ψz(t)

∂L

∂x(j)
[x; z]n(t)

)
= 0, t ∈ [a, b],
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and the transversality conditions ψj(b) = ψj(a) = 0, for j = 1, . . . , n, where

ψz(t) = e
∫ b
t
∂L
∂z

[x;z]n(θ)dθ

ψj(t) =
∑n−j

i=0 (−1)i+1 di

dti

(
ψz(t)

∂L
∂x(i+j)

[x; z]n(t)
)
, j = 1, . . . , n.

While in [59] the admissible functions are x(·) ∈ C2n([a, b];Rm) and z(·) ∈ C1([a, b];R),

here we extend the higher-order Herglotz's problem to the wider class of functions x(·) ∈
PCn([a, b];Rm) and z(·) ∈ PC1([a, b];R).

Problem (Hn∗). Determine the trajectories x(·) ∈ PCn([a, b];Rm) and function z(·) ∈
PC1([a, b];R) such that:

z(b) −→ extr,

with ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
, t ∈ [a, b],

subject to z(a) = γ, γ ∈ R, and

x(a) = α0, ẋ(a) = α1, . . . , x
(n−1)(a) = αn−1, α0, α1, . . . , αn−1 ∈ Rm,

(Hn∗)

where the Lagrangian L is assumed to satisfy the following hypotheses:

i. L is a C1([a, b]× R(n+1)m+1;R) function;

ii. functions t 7→ ∂L
∂z

[x; z]n(t) and t 7→ ∂L
∂x(j)

[x; z]n(t) , j = 0, . . . , n, are di�erentiable up

to order n for any admissible pair (x(·), z(·)).

In this work we show how the results on the higher-order variational problem of Herglotz

(Hn) obtained in [59] can be generalized by using the theory of Optimal Control. Similarly

to the �rst-order case (see [61], presented in Chapter 6) we rewrite the generalized higher-

-order variational problem of Herglotz (Hn∗) as a standard optimal control problem (P ), and

then we apply available results of Optimal Control theory. In detail, we extend the higher-order

Euler�Lagrange equation and the transversality conditions for problem (Hn) found in [59] to ad-

missible functions x(·) ∈ PCn([a, b];Rm) and z(·) ∈ PC1([a, b];R) (Theorem 7.2); we obtain

a DuBois�Reymond necessary optimality condition (Theorem 7.4); and we generalize the �rst

Noether theorem to higher-order variational problems of Herglotz type (Hn∗) (Theorem 7.6).
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7.1 Necessary optimality conditions for higher-order Her-

glotz's problems

We begin by introducing some de�nitions for the higher-order variational problem of Herglotz

(Hn∗).

De�nition 7.1 (Admissible pair to problem (Hn∗)). We say that (x(·), z(·)) with x(·) ∈
PCn([a, b];Rm) and z(·) ∈ PC1([a, b];R) is an admissible pair to problem (Hn∗) if it

satis�es the equation

ż(t) = L(t, x(t), ẋ(t), · · · , x(n)(t), z(t)), t ∈ [a, b],

and the initial conditions z(a) = γ ∈ R and

x(a) = α0, ẋ(a) = α1, . . . , x
(n−1)(a) = αn−1, α0, α1, . . . , αn−1 ∈ Rm.

We now present a necessary condition for a pair (x(·), z(·)) to be a solution of problem

(Hn∗). The following result generalizes [59] by considering a more general class of functions.

When there is no possibility of ambiguity, we sometimes suppress arguments.

Theorem 7.2 (Higher-order Euler�Lagrange equation and transversality conditions for

problem (Hn∗)). If (x(·), z(·)) is a solution of problem (Hn∗), then the Euler�Lagrange

equation
n∑
j=0

(−1)j
dj

dtj

(
ψz(t)

∂L

∂x(j)
[x; z]n(t)

)
= 0 (7.1)

holds, for t ∈ [a, b]. Moreover, the following transversality conditions hold:

ψj(b) = 0, j = 1, . . . , n, (7.2)

where ψz(t) = e
∫ b
t
∂L
∂z

[x;z]n(θ)dθ

ψj(t) =
∑n−j

i=0 (−1)i+1 di

dti

(
ψz(t)

∂L
∂x(i+j)

[x; z]n(t)
)
, j = 1, . . . , n.

(7.3)

Proof. Observe that the higher-order problem of Herglotz (Hn∗) is a particular case of

problem (P ) when we consider a n + 1 coordinates state variable (x0, x1, . . . , xn−1, z)

with x0 = x, x1 = ẋ, . . . , xn−1 = x(n−1), a control u = x(n) and choose f ≡ 0 and

φ(x0, . . . , xn−1, z) = z.
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The higher-order problem of Herglotz can now be described as an optimal control

problem as follows:

z(b) −→ extr

ẋ0(t) = x1(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t),
...

ẋn−2(t) = xn−1(t),

ẋn−1(t) = u(t) = xn(t),

ż(t) = L(t, x0(t), . . . , xn−1(t), u(t), z(t)),

z(a) = γ, γ ∈ R, and

x0(a) = α0, . . . , xn−1(a) = αn−1, α0, . . . , αn−1 ∈ Rm.

(7.4)

From Pontryagin's Maximum Principle for problem (P ) (Theorem 3.1), there are

(ψ1, . . . , ψn, ψz) ∈ PC1([a, b]; Rn×m+1) such that the following conditions hold:

• the optimality condition

∂H

∂u
(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)) = 0, (7.5)

• the adjoint system
ẋj−1(t) = ∂H

∂ψj
(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)), j = 1, . . . , n,

ψ̇j(t) = − ∂H
∂xj−1

(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)), j = 1, . . . , n,

ψ̇z(t) = −∂H
∂z

(t, x0(t), . . . , xn−1(t), u(t), z(t), ψ1(t), . . . , ψn(t), ψz(t)),

(7.6)

• the transversality conditionsψj(b) = 0, j = 1, . . . , n,

ψz(b) = 1,
(7.7)
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where the Hamiltonian H is de�ned by

H(t, x0, . . . , xn−1, u, z, ψ1, . . . , ψn, ψz)

= ψ1 · x1 + . . .+ ψn−1 · xn−1 + ψn · u+ ψz · L(t, x0, . . . , xn−1, u, z).

Observe that the optimality condition (7.5) implies that ψn = −ψz ∂L∂u and that the adjoint

system (7.6) implies that
ψ̇1 = −ψz ∂L∂x0 ,

ψ̇j = −ψj−1 − ψz ∂L
∂xj−1

, for j = 2, . . . , n,

ψ̇z = −ψz ∂L∂z .

Hence, ψz is solution of a �rst-order linear di�erential equation, which is solved using

an integrand factor to �nd that ψz(t) = ke−
∫ t
a
∂L
∂z
dθ with k a constant. From the last

transversality condition in (7.7), we obtain that k = e
∫ b
a
∂L
∂z
dθ and, consequently,

ψz(t) = e
∫ b
t
∂L
∂z
dθ.

Note also that for j = n we obtain ψ̇n = −ψn−1 − ψz ∂L
∂xn−1

, which is equivalent to

ψn−1 =
d

dt

(
ψz

∂L

∂xn

)
− ψz

∂L

∂xn−1
.

By di�erentiation of the previous expression, we obtain that

ψ̇n−1 =
d2

dt2

(
ψz

∂L

∂xn

)
− d

dt

(
ψz

∂L

∂xn−1

)
and noting that ψ̇n−1 = −ψn−2 − ψz ∂L

∂xn−2
, we �nd an expression for ψn−2:

ψn−2 = − d2

dt2

(
ψz

∂L

∂xn

)
+
d

dt

(
ψz

∂L

∂xn−1

)
− ψz

∂L

∂xn−2
.

Similarly, we obtain that

ψn−3 =
d3

dt3

(
ψz

∂L

∂xn

)
− d2

dt2

(
ψz

∂L

∂xn−1

)
+
d

dt

(
ψz

∂L

∂xn−2

)
− ψz

∂L

∂xn−3
.

Applying the same argument to the next multipliers and noting that ψ1 = −ψ̇2 − ψz ∂L∂x1 ,
we have

ψ̇1 = −ψz
∂L

∂x0

= (−1)n
dn

dtn

(
ψz

∂L

∂xn

)
+ (−1)n−1

dn−1

dtn−1

(
ψz

∂L

∂xn−1

)
+ · · · − d

dt

(
ψz

∂L

∂x1

)
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or, equivalently,

(−1)n
dn

dtn

(
ψz

∂L

∂xn

)
+ (−1)n−1

dn−1

dtn−1

(
ψz

∂L

∂xn−1

)
+ · · · − d

dt

(
ψz

∂L

∂x1

)
+ ψz

∂L

∂x0
= 0.

Rewriting previous equation in terms of problem (Hn∗) and in the form of a summation,

one gets
n∑
j=0

(−1)j
dj

dtj

(
ψz

∂L

∂x(j)

)
= 0

as intended. Observe also that we were also able to derive expressions for the multipliers:

ψj =

n−j∑
i=0

(−1)i
di

dti

(
−ψz

∂L

∂x(i+j)

)
, j = 1, . . . , n,

which together with (7.7) lead to the transversality conditions

n−j∑
i=0

(−1)i
di

dti

(
ψz

∂L

∂x(i+j)

) ∣∣∣∣
t=b

= 0, j = 1, . . . , n.

This concludes the proof.

De�nition 7.3 (Extremal to problem (Hn∗)). We say that an admissible pair (x(·), z(·))
is an extremal of problem (Hn∗) if it satis�es the Euler�Lagrange equation (7.1) and the

transversality conditions (7.2).

Next we present the DuBois�Reymond condition for the higher-order variational problem of

Herglotz (Hn∗).

Theorem 7.4 (DuBois�Reymond condition for problem(Hn∗)). If (x(·), z(·)) is a solution

of problem (Hn∗), then

d

dt

(
n∑
i=1

ψi(t)x
(i)(t) + ψz(t)L[x; z]n(t)

)
= ψz(t)

∂L

∂t
[x; z]n(t),

where ψz(t) and ψi(t) are de�ned in (7.3).

Proof. Rewrite (Hn∗) as the optimal control problem (7.4) and apply Theorem 3.3.
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7.2 Higher-order Noether's symmetry theorem

We begin by introducing the de�nition of invariance under a one-parameter group of trans-

formations.

De�nition 7.5 (Invariance of problem (Hn∗) under a one-parameter group of transforma-

tions). Let hε be a one-parameter family of invertible C1 maps hε : [a, b] × Rm × R −→
R× Rm × R,

hε(t, x(t), z(t)) = (T ε[x; z]n(t),X ε[x; z]n(t),Zε[x; z]n(t)),

with h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a, b]× Rm × R.

Problem (Hn∗) is said to be invariant under the one-parameter group of transformations

hε if for all admissible pairs (x(·), z(·)) the following two conditions hold:

(i) (
z(b)

b− a
+ ξε+ o(ε)

)
dT ε

dt
[x; z]n(t) =

z(b)

b− a
, for some constant ξ; (7.8)

(ii)

dZε

dt
[x; z]n(t) = L

(
T ε[x; z]n(t),X ε[x; z]n(t),

dX ε

dT ε
[x; z]n(t), . . .

. . . ,
dnX ε

d(T ε)n
[x; z]n(t),Zε[x; z]n(t)

)
dT ε

dt
[x; z]n(t), (7.9)

where

dX ε

dT ε
[x; z]n(t) =

dX ε
dt

[x; z]n(t)
dT ε
dt

[x; z]n(t)
and

diX ε

d(T ε)i
[x; z]n(t) =

d
dt

(
di−1X ε
d(T ε)i−1 [x; z]n(t)

)
dT ε
dt

[x; z]n(t)
(7.10)

for i = 2, . . . , n.

Next we present the main result of this chapter.

Theorem 7.6 (Noether's theorem for problem(Hn∗)). If problem (Hn∗) is invariant in

the sense of De�nition 7.5, then the quantity

n∑
i=1

ψi(t)Xi−1[x; z]n(t) + ψz(t)Z[x; z]n(t)

−

(
n∑
i=1

ψi(t)x
(i)(t) + ψz(t)L[x; z]n(t)

)
T [x; z]n(t)
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is constant in t along every extremal to problem (Hn∗), where

T =
∂T ε

∂ε

∣∣∣∣
ε=0

, X0 =
∂X ε

∂ε

∣∣∣∣
ε=0

, Z =
∂Zε

∂ε

∣∣∣∣
ε=0

,

Xi =
d

dt
Xi−1 − x(i)

d

dt

(
∂T ε

∂ε

∣∣∣∣
ε=0

)
for i = 1, . . . , n− 1,

ψi is de�ned by (7.3) and ψz(t) = e
∫ b
t
∂L
∂z
dθ.

Proof. As before, we deal with problem (Hn∗) in its equivalent optimal control form (7.4).

We now prove that if problem (Hn∗) is invariant in the sense of De�nition 7.5, then (7.4) is

invariant in the sense of De�nition 3.4. First, observe that if (7.8) holds, then (3.6) holds

for (7.4) with f ≡ 0 and φ(x0, . . . , xn−1, z) = z. Second, note that the control system of

(7.4) de�nes naturally U ε :=
dX εn−1

dT ε and X ε
i :=

dX εi−1

dT ε , that is,
dX εi−1

dt
[x; z]n(t) = X ε

i [x; z]n(t)dT
ε

dt
[x; z]n(t), i = 1, . . . , n− 1,

dX εn−1

dt
[x; z]n(t) = U ε[x; z]n(t)dT

ε

dt
[x; z]n(t).

(7.11)

This means that if (7.9) and (7.11) hold, then there is also invariance in the sense of

(3.7) and problem (7.4) is invariant in the sense of De�nition 3.4. This invariance gives

conditions to apply Theorem 3.5 to problem (7.4), which assures that the quantity

(b− t)ξ +
n∑
i=1

ψi(t)Xi−1[x; z]n(t) + ψz(t)Z[x; z]n(t)

−

[
n∑
i=1

ψi(t)xi(t) + ψz(t)L[x; z]n(t) +
φ(x(b))

b− a

]
T [x; z]n(t),

where Xi = ∂
∂ε

diX ε
d(T ε)i

∣∣∣
ε=0

, is constant in t along every Pontryagin extremal of problem (7.4).

This means that the quantity

(b− t)ξ − φ(x(b))

b− a
T [x; z]n(t) +

n∑
i=1

ψi(t)Xi−1[x; z]n(t) + ψz(t)Z[x; z]n(t)

−

[
n∑
i=1

ψi(t)x
(i)(t) + ψz(t)L[x; z]n(t)

]
T [x; z]n(t)

is constant in t along every extremal of problem (Hn∗). Observe that X0 = ∂X ε
∂ε

∣∣
ε=0

, which
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together with (7.10) lead to

Xi =
∂

∂ε

diX ε

d(T ε)i

∣∣∣∣
ε=0

=
∂

∂ε

 d
dt

(
di−1X ε
d(T ε)i−1

)
dT ε
dt

∣∣∣∣∣
ε=0

=
d

dt

(
∂

∂ε

di−1X ε

d(T ε)i−1

∣∣∣∣
ε=0

)
− x(i) d

dt

(
∂T ε

∂ε

∣∣∣∣
ε=0

)
=

d

dt
Xi−1 − x(i)

d

dt

(
∂T ε

∂ε

∣∣∣∣
ε=0

)
.

To end the proof we only need to prove that the quantity

(b− t)ξ − z(b)

b− a
T [x; z]n(t) (7.12)

is a constant. But this has already been done in the previous chapter in the proof of

Theorem 6.6, from where we concluded that expression (7.12) is the constant

(b− a)ξ − z(b)T [x; z]n(a)

b− a
.

The proof is then complete.

7.3 Conclusions

In this chapter we investigated the higher-order variational problem of Herglotz from an

optimal control point of view. The higher-order generalized Euler�Lagrange equation and the

transversality conditions proved in [59] were obtained in the wider class of piecewise admissible

functions. Moreover, we proved two important new results: a DuBois�Reymond necessary

condition and Noether's theorem for higher-order variational problems of Herglotz type.

The original results of this chapter were published in 2015 in [62]. They were also presented

by the author in the AMS-EMS-SPM International Meeting 2015, June 10�13, 2015, Porto,

Portugal, in a contributed talk entitled "Noether's theorem for higher-order variational problems

of Herglotz type", and in the Portuguese Meeting on Optimal Control EPCO 2015, September

15, 2015, Guimarães, Portugal, in a contributed talk entitled "An optimal control approach to

higher-order variational problems of Herglotz type".
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CHAPTER 8

OPTIMAL CONTROL APPROACH TO

HIGHER-ORDER DELAYED VARIATIONAL

PROBLEMS OF HERGLOTZ

In this chapter, we focus again on time delayed problems. As already mentioned in Chapter 5,

variational problems with time delay play an important role in the modelling of phenomena in

several �elds.

The main goal of this chapter is to generalize the results of [59, 60, 61, 62] (presented in

the previous four chapters) by considering higher-order variational problems of Herglotz type

with time delay, proving the corresponding Euler�Lagrange equations, transversality conditions,

the DuBois�Reymond necessary optimality condition and Noether's �rst theorem. In particular,

in relation to our previous work with time delay [60] (see Chapter 5), we improved its results

by considering a wider class of admissible functions. Moreover, we extend the results of [60] to

the higher-order case. Precisely, we generalize several Herglotz's based problems: (H1), (Hτ ),

(H1∗) and (Hn∗), by considering the following higher-order variational problem with time delay:

Problem (Hn∗
τ ). Let τ be a real number such that 0 ≤ τ < b− a. Determine the piecewise
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trajectories x(·) ∈ PCn([a− τ, b];Rm) and the function z(·) ∈ PC1([a, b];R) such that:

z(b) −→ extr,

with the pair (x(·), z(·)) satisfying for all t ∈ [a, b] :

ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t), x(t− τ), ẋ(t− τ), . . . , x(n)(t− τ), z(t)

)
,

subject to z(a) = γ ∈ R

and x(k)(t) = µ(k)(t), for all t ∈ [a− τ, a], k = 0, . . . , n− 1,

(Hn∗
τ )

where µ(·) ∈ PCn([a−τ, a];Rm) is a given initial function and the Lagrangian L is assumed

to satisfy the following hypotheses:

i. L ∈ C1([a, b]× R2m(n+1)+1;R);

ii. functions t 7→ ∂L
∂z

[x; z]nτ (t), t 7→ ∂L
∂x(j)

[x; z]nτ (t) and t 7→ ∂L

∂x
(j)
τ

[x; z]nτ (t) , k = 0, . . . , n,

are di�erentiable up to order n for any admissible trajectory x.

In the rest of the chapter we use the notation

[x; z]nτ (t) :=
(
t, x(t), ẋ(t), . . . , x(n)(t), xτ (t), ẋτ (t), . . . , x

(n)
τ (t), z(t)

)
.

The structure of the chapter is as follows. In Section 8.1, we use a very interesting technique

that allows to deal with a delayed problem as a non-delayed one. In Section 8.2, we formulate

and prove higher-order Euler�Lagrange equations and transversality conditions for generalized

variational problems with time delay (Theorem 8.3) and the DuBois�Reymond optimality con-

dition (Theorem 8.7). Finally, in Section 8.3, we prove a Noether's theorem for higher-order

variational problems of Herglotz type with time delay (Theorem 8.10).

8.1 Reduction to a non-delayed problem

We generalize the technique of reduction of a delayed �rst-order optimal control problem to

a non-delayed problem proposed by Guinn in [38] to our higher-order delayed problem. In order

to reduce the higher-order problem of Herglotz with time delay to a non-delayed �rst-order

problem, we assume, without loss of generality, the initial time to be zero (a = 0) and the �nal

time to be an integer multiple of τ , that is, b = Nτ for N ∈ N (see Remark 8.1). We divide

the interval [a, b] into N equal parts and �x t ∈ [0, τ ]. We also introduce the variables xk;i and

zj with k = 0, . . . , n, i = 0, . . . , N , and j = 1, . . . , N + 1. The variable k is related to the
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order of the derivative of x, i is related to the ith subinterval of [−τ,Nτ ], and j is related to

the jth subinterval of [0, (N + 1)τ ] as follows:

xk;i(t) = x(k)(t+ (i− 1)τ), zj(t) = z(t+ (j − 1)τ),

żj(t) = Lj(t), xk;N+1(t) = 0, żN+1(t) = LN+1 = 0
(8.1)

with

Lj(t) := L
(
t+ (j − 1)τ, x0;j(t), . . . , xn;j(t), x0;j−1(t), . . . , xn;j−1(t), zj(t)

)
.

Finally, the higher-order problem of Herglotz with time delay (Hn
τ ) can be written as an

optimal control problem without time delay as follows:

zN(τ) −→ extr, subject to

ẋk;i(t) = xk+1;i(t),

xk;N+1(t) = 0,

żj(t) = Lj(t),

żN+1(t) = LN+1(t) = 0

for all t ∈ [0, τ ], k = 0, . . . , n− 1, i = 0, . . . , N, j = 1, . . . , N,

and with the initial conditions

xk;0(0) = µ(k)(−τ), xk;i(0) = xk;i−1(τ),

z1(0) = γ, γ ∈ R, zj(0) = zj−1(τ), for i ≥ 1 and j ≥ 2.

(8.2)

In this form we look to xk;i and zj as state variables and to ui := xn;i as control variables.

Remark 8.1. We considered the case of b being an integer multiple of τ . If b is not an

integer multiple of τ , then there is an integer N such that (N − 1)τ < b < Nτ . In that

case, the only modi�cation required in the change of variables given in (8.1) is to consider

the variables xk;N , k = 0, . . . , n, and żN as de�ned in (8.1) for t ∈ [0, b − (N − 1)τ ] and

zero for t ∈]b− (N −1)τ, τ ]. With this slight change, the function to be extremized remains

the same and we can consider, without loss of generality, b to be an integer multiple of τ .

8.2 Necessary optimality conditions for higher-order Her-

glotz's problems with time delay

Before the proof of the �rst result of this chapter we introduce some de�nitions concerning

the variational problem of Herglotz with time delay (Hn∗
τ ).
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De�nition 8.2 (Admissible pair to problem (Hn∗
τ )). We say that (x(·), z(·)) with x(·) ∈

PCn([a − τ, b];Rm) and z(·) ∈ PC1([a, b];R) is an admissible pair to problem (Hn∗
τ ) if it

satis�es the equation

ż(t) = L[x; z]nτ (t), t ∈ [a, b],

subject to

z(a) = γ, x(k)(t) = µ(k)(t)

for all k = 0, 1, . . . , n− 1, t ∈ [a− τ, a] and γ ∈ R.

We now prove a necessary condition for a pair (x(·), z(·)) to be an extremizer to problem

(Hn∗
τ ). Along the proofs we sometimes suppress arguments for expressions whose arguments

have been clearly stated before.

Theorem 8.3 (Higher-order delayed Euler�Lagrange and transversality conditions). If

(x(·), z(·)) is a solution of problem (Hn∗
τ ), then the two Euler�Lagrange equations

n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t) + ψz(t+ τ)

∂L

∂x
(l)
τ

[x; z]nτ (t+ τ)

)
= 0, (8.3)

for t ∈ [a, b− τ ], and

n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t)

)
= 0, (8.4)

for t ∈ [b− τ, b] and ψz de�ned by

ψz(t) = e
∫ b
t
∂L
∂z

[x;z]nτ (θ)dθ, t ∈ [a, b],

hold. Furthermore, the following transversality conditions hold:

n−k∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]nτ (t)

) ∣∣∣∣
t=b

= 0, (8.5)

k = 1, . . . , n.

Proof. In order to prove both Euler�Lagrange equations, consider problem (Hn∗
τ ) in the

non-delayed optimal control form (8.2). Applying Pontryagin's maximum principle for

problem (P ) to problem (Hn∗
τ ) in the form (8.2), we conclude that there are multipliers

80



8.2. Necessary optimality conditions for higher-order Herglotz's problems with time delay

φk;i and ψj for k = 1, . . . , n, i = 0, . . . , N and j = 1, . . . , N + 1, such that, with the

Hamiltonian de�ned by

H =
n∑
l=1

(
N∑
i=0

φl;i(t) · xl;i(t)

)
+

N+1∑
j=1

ψj(t)Lj(t), (8.6)

the following conditions hold:

• the optimality conditions
∂H

∂ui
= 0,

• the adjoint system 

ẋk−1;i = ∂H
∂φk;i

,

żj = ∂H
∂ψj

,

φ̇k;i = − ∂H
∂xk−1;i ,

ψ̇j = −∂H
∂zj
,

• the transversality conditions φk;i(τ) = 0,

ψj(τ) = 1.

Observe that the forth equation in the adjoint system is equivalent to the di�erential

equation ψ̇j = −ψj ∂Lj∂zj
. Together with the transversality condition, we obtain that the

multipliers ψj, j = 1, . . . , N + 1, are given by

ψj(t) = e
∫ τ
t

∂Lj
∂zj

dθ
. (8.7)

From the third equation in the adjoint system, we obtain that

φ̇k;i = −φk−1;i − ψi
∂Li

∂xk−1;i
− ψi+1

∂Li+1

∂xk−1;i
, (8.8)

k, i = 1, . . . , n, which for the particular case of k = n reduces to

φ̇n;i = −φn−1;i − ψi
∂Li

∂xn−1;i
− ψi+1

∂Li+1

∂xn−1;i
.

This equality, together with the di�erentiation of the optimality condition

φ̇n;i =− d

dt

(
ψi
∂Li
∂ui

)
− d

dt

(
ψi+1

∂Li+1

∂ui

)
=− d

dt

(
ψi

∂Li
∂xn;i

+ ψi+1
∂Li+1

∂xn;i

)
,

81



Chapter 8. Optimal Control approach to higher-order delayed variational problems of Herglotz

leads to

φn−1;i = −ψi
∂Li

∂xn−1;i
− ψi+1

∂Li+1

∂xn−1;i
+
d

dt

(
ψi

∂Li
∂xn;i

+ ψi+1
∂Li+1

∂xn;i

)
.

By di�erentiation of the previous expression and comparison with (8.8) for k = n− 1, we

�nd the expression for φn−2;i:

φn−2;i = −ψi
∂Li

∂xn−2;i
− ψi+1

∂Li+1

∂xn−2;i

+
d

dt

(
ψi

∂Li
∂xn−1;i

+ ψi+1
∂Li+1

∂xn−1;i

)
− d2

dt2

(
ψi

∂Li
∂xn;i

+ ψi+1
∂Li+1

∂xn;i

)
.

Using recursively the technique of derivation of φk;i and comparison with (8.8), we �nd the

expression for φk;i (k = 1, . . . , n):

φk;i =
n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψi

∂Li
∂xl+k;i

+ ψi+1
∂Li+1

∂xl+k;i

)
, i = 1, . . . , N. (8.9)

Considering φ1;i given by the previous equation and comparing it with

φ1;i = −φ̇2;i − ψi
∂Li
∂x1;i

− ψi+1
∂Li+1

∂x1;i
,

given by (8.8) for k = 2, we obtain that

n∑
l=0

(−1)l
dl

dtl

(
ψi
∂Li
∂xl;i

+ ψi+1
∂Li+1

∂xl;i

)
= 0, i = 1, . . . , N. (8.10)

Since LN+1 = 0, the previous equation for i = N reduces to

n∑
l=0

(−1)l
dl

dtl

(
ψN

∂LN
∂xl;N

)
= 0. (8.11)

The �nal step is to rewrite the results obtained inverting the changes of variables (8.1).

For this purpose, de�ne ψz(t), t ∈ [0, b+ τ ], by

ψz(t) = ψi(t− (i− 1)τ), (i− 1)τ ≤ t ≤ iτ, i = 1, . . . , N + 1,

and φk(t), k = 1, . . . , n, t ∈ [−τ, b], by

φk(t) = φk;i(t− (i− 1)τ), (i− 1)τ ≤ t ≤ iτ, i = 1, . . . , N.

This allows to write

ψz(t) = e
∫ b
t
∂L
∂z

[x;z]nτ (θ)dθ, t ∈ [a, b], (8.12)
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and

φk(t) =
n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψz(t+ τ)

∂L

∂x
(l+k)
τ

[x; z]nτ (t+ τ)

)
, t ∈ [a− τ, a],

φk(t) =
n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]nτ (t)

+ψz(t+ τ)
∂L

∂x
(l+k)
τ

[x; z]nτ (t+ τ)

)
, t ∈ [a, b],

(8.13)

k = 1, . . . , n. Note that if t ∈ [b− τ, b], then L[x; z]nτ (t+ τ) is, by de�nition, null. Finally,

equations (8.10)�(8.11) lead to the Euler�Lagrange equations for the higher-order problem

of Herglotz with time delay (Hn∗
τ ):

n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t) + ψz(t+ τ)

∂L

∂x
(l)
τ

[x, z]nτ (t+ τ)

)
= 0

for t ∈ [a, b− τ ] and
n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t)

)
= 0

for t ∈ [b − τ, b]. From (8.9) and the transversality conditions for φk;i, we obtain the

transversality conditions φk(b) = 0, that is,

n−k∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]nτ (t)

) ∣∣∣∣
t=b

= 0,

k = 1, . . . , n.

De�nition 8.4 (Extremal to problem (Hn∗
τ )). We say that an admissible pair (x(·), z(·))

is an extremal to problem (Hn∗
τ ) if it satis�es the Euler�Lagrange equations (8.3)�(8.4) and

the transversality conditions (8.5).

Theorem 8.3 gives a generalization of the Euler�Lagrange equation and transversality condi-

tions for the higher-order problem of Herglotz presented by the authors in [59] (see Chapter 4).

It is also a generalization of the results in [61, 62] (see Chapters 6-7).

Corollary 8.5 (cf. [59, 62]). If (x(·), z(·)) is a solution of the higher-order problem of

Herglotz

z(b) −→ extr,

ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
, t ∈ [a, b],

z(a) = γ ∈ R, x(k)(a) = αk, αk ∈ Rm, k = 0, . . . , n− 1,

(8.14)
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then the Euler�Lagrange equation

n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]n0 (t)

)
= 0

holds for t ∈ [a, b], where ψz is de�ned in (8.12). Furthermore, the following transversality

conditions hold:
n−k∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]n0 (t)

) ∣∣∣∣
t=b

= 0,

k = 1, . . . , n.

Proof. Consider Theorem 8.3 with no delay, that is, with τ = 0. Recall that [x; z]nτ (t) :=(
t, x(t), ẋ(t), . . . , x(n)(t), xτ (t), ẋτ (t), . . . , x

(n)
τ (t), z(t)

)
.

Theorem 8.3 is also a generalization of the Euler�Lagrange equations for the �rst-order

problem of Herglotz with time delay obtained in [60] (see Chapter 5).

Corollary 8.6 (cf. [60]). If (x(·), z(·)) is a solution of the �rst-order problem of Herglotz

with time delay

z(b) −→ extr,

ż(t) = L (t, x(t), ẋ(t), x(t− τ), ẋ(t− τ), z(t)) , t ∈ [a, b],

z(a) = γ ∈ R, x(t) = µ(t), t ∈ [a− τ, a],

(8.15)

for a given piecewise initial function µ, then the Euler�Lagrange equations

ψz(t)
∂L

∂x
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂xτ
[x, z]1τ (t+ τ)

− d

dt

(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂ẋτ
[x, z]1τ (t+ τ)

)
= 0,

for t ∈ [a, b− τ ], and

ψz(t)
∂L

∂x
[x; z]1τ (t)−

d

dt

(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

)
= 0,

for t ∈ [b− τ, b], hold.

Proof. Consider Theorem 8.3 with n = 1.
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Theorem 8.7 (Higher-order delayed DuBois�Reymond condition). If the pair (x(·), z(·))
is a solution of problem (Hn∗

τ ), then

d

dt

(
n∑
k=1

φk(t) · x(k)(t) + ψz(t)L[x; z]nτ (t)

)
= ψz(t)

∂L

∂t
[x; z]nτ (t), (8.16)

where ψz and φk are de�ned by (8.12) and (8.13), respectively.

Proof. Consider problem (Hn∗
τ ) in the formulation given by (8.2). Theorem 3.3 asserts

that dH
dt

= ∂H
∂t

for H given by (8.6). We obtain (8.16) by writing H in the variables φk and

ψz.

Theorem 8.7 is also a generalization of the DuBois�Reymond condition presented in [60]

for the �rst-order problem of Herglotz with time delay. In that paper, for technical reasons, we

added an additional hypothesis that we are able to avoid here.

Corollary 8.8 (cf. [60]). If (x(·), z(·)) is a solution of �rst-order problem of Herglotz with

time delay (8.15), then

ψz(t)
∂L

∂t
[x; z]1τ (t) =

d

dt

(
ψz(t)L[x; z]1τ (t)

−
(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂ẋτ
[x; z]1τ (t+ τ)

)
ẋ(t)

)
,

where ψz is de�ned by (8.12).

Proof. Consider Theorem 8.7 with n = 1.

8.3 Higher-order Noether's symmetry theorem with time

delay

Before presenting a Noether theorem to problem (Hn∗
τ ), we introduce the notion of inva-

riance under a one-parameter group of transformations.

De�nition 8.9 (Invariance of problem (Hn∗
τ ) under a one-parameter group of transforma-

tions). Let hε be a one-parameter family of invertible C1 maps hε : [a− τ, b]×Rm×R −→
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R× Rm × R,

hε(t, x(t), z(t)) = (T ε[x; z]nτ (t),X ε[x; z]nτ (t),Zε[x; z]nτ (t)),

h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a− τ, b]× Rm × R.

Problem (Hn∗
τ ) is said to be invariant under the transformations hε, if for all admissible

pairs (x(·), z(·)) the following two conditions hold:(
z(b)

b− a
+ ξε+ o(ε)

)
dT ε

dt
[x; z]nτ (t) =

z(b)

b− a
(8.17)

for some constant ξ and

dZε

dt
[x; z]nτ (t) =

dT ε

dt
[x; z]nτ (t)L

(
T ε[x; z]nτ (t),X ε[x; z]nτ (t),

dX ε

dT ε
[x; z]nτ (t), . . . ,

dnX ε

d(T ε)n
[x; z]nτ (t),X ε[x, z]nτ (t− τ),

dX ε

dT ε
[x, z]nτ (t− τ), . . . ,

dnX ε

d(T ε)n
[x, z]nτ (t− τ),Zε[x; z]nτ (t)

)
,

(8.18)

where

dX ε

dT ε
[x; z]nτ (t) =

dX ε
dt

[x; z]nτ (t)
dT ε
dt

[x; z]nτ (t)
,

dkX ε

d(T ε)k
[x; z]nτ (t) =

d
dt

(
dk−1X ε
d(T ε)k−1 [x; z]nτ (t)

)
dT ε
dt

[x; z]nτ (t)
,

k = 2, . . . , n.

Now we generalize the higher-order Noether's theorem of [62] (see Chapter 7) to the more

general case of variational problems of Herglotz type with time delay.

Theorem 8.10 (Higher-order delayed Noether's theorem). If problem (Hn∗
τ ) is invariant

in the sense of De�nition 8.9, then the quantity

n∑
k=1

φk(t) ·Xk−1[x; z]nτ (t) + ψz(t)Z[x; z]nτ (t)

−

[
n∑
k=1

φk(t) · x(k)(t) + ψz(t)L[x; z]nτ (t)

]
T [x; z]nτ (t)
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is constant in t along all extremals of problem (Hn∗
τ ), where the generators of the one-

-parameter family of maps are given by

T =
∂T ε

∂ε

∣∣∣∣
ε=0

, X0 =
∂X ε

∂ε

∣∣∣∣
ε=0

, Z =
∂Zε

∂ε

∣∣∣∣
ε=0

,

Xk =
d

dt
Xk−1 − x(k)

d

dt

(
∂T ε

∂ε

∣∣∣∣
ε=0

)
, k = 1, . . . , n− 1,

and ψz, φk are de�ned by (8.12)�(8.13).

Proof. We start by considering problem (Hn∗
τ ) in its non-delayed optimal control form (8.2).

The �rst step is to prove that if problem (Hn∗
τ ) is invariant in the sense of De�nition 8.9,

then (8.2) is invariant in the sense of De�nition 3.4. In order to do that, observe that

(8.17) is equivalent to (
zN(τ)

Nτ
+ ξε+ o(ε)

)
dT ε

dt
[x; z]nτ (t) =

zN(τ)

Nτ

and de�ning ξτ := ξN we have(
zN(τ)

τ
+ ξτε+ o(ε)

)
dT ε

dt
[x; z]nτ (t) =

zN(τ)

τ
, for some ξτ . (8.19)

Observe also that the control system of (8.2) de�nes X ε
k :=

dX εk−1

dT ε , that is,

dX ε
k−1

dt
[x; z]nτ (t) = X ε

k [x; z]nτ (t)
dT ε

dt
[x; z]nτ (t), k = 1, . . . , n.

Let

Xk;i[x; z]nτ (t) := X ε
k [x; z]nτ (t+ (i− 1)τ),

Ti[x; z]nτ (t) := T ε[x; z]nτ (t+ (i− 1)τ),

Zj[x; z]nτ (t) := Zε[x; z]nτ (t+ (j − 1)τ).

One has
dXk;i
dt

[x; z]nτ (t) = Xk+1;i[x; z]nτ (t)
dTi
dt

[x; z]nτ (t) (8.20)

and

dZj
dt

[x; z]nτ (t) = Lj
(
T εj [x; z]nτ (t),X ε[x; z]nτ (t);Zε[x; z]nτ (t)

) dTj
dt

[x; z]nτ (t), (8.21)

k = 0, . . . , n − 1, i = 0, . . . N , j = 1, . . . , N . Equalities (8.19)�(8.21) prove that problem

(8.2) is invariant in the sense of De�nition 3.4. This allow us to advance to the second
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step: to apply Theorem 3.5 to the non-delayed optimal control problem (8.2). This theorem

guarantees that the quantity

(τ − t)ξτ +
n∑
k=1

N∑
i=0

φk;i(t) ·Xk−1;i[x; z]nτ (t) +
N∑
j=1

ψj(t)Zj[x; z]nτ (t)

−

[
n∑
k=1

N∑
i=0

φk;i(t) · xk;i(t) +
N∑
j=1

ψj(t)Lj[x; z]nτ (t) +
zN(τ)

τ

]
T [x; z]nτ (t)

is constant in t along the extremals of (8.2), where Xk;i = ∂
∂ε

dkX εk;i
d(T ε)k

∣∣∣
ε=0

and Zi = ∂
∂ε

dZεi
d(T ε)

∣∣∣
ε=0

.

Rewriting in the original variables, we obtain

(τ − t)ξτ +
n∑
k=1

φk(t) ·Xk−1[x; z]nτ (t) + ψz(t)Z[x; z]nτ (t)

−

[
n∑
k=1

φk(t) · x(k)(t) + ψz(t)L[x; z]nτ (t) +
zN(τ)

τ

]
T [x; z]nτ (t)

constant in t along the extremals of (8.2). The third step is to prove that

(τ − t)ξτ −
zN(τ)

τ
T [x; z]nτ (t) (8.22)

is constant in t. That will be done in a very similar way to the proof of Theorem 6.6. From

the invariance condition (8.19), we know that(
zN(τ)

τ
+ ξτ ε+ o(ε)

)
dT ε

dt
[x; z]nτ (t) =

zN(τ)

τ
.

Integrating from 0 to t we conclude that(
zN(τ)

τ
+ ξτε+ o(ε)

)
T ε[x; z]nτ (t) =

zN(τ)

τ
t+

(
zN(τ)

τ
+ ξτ ε+ o(ε)

)
T ε[x; z]nτ (0).

Di�erentiating this equality with respect to ε, and then putting ε = 0, we get

ξτ t+
zN(τ)

τ
T [x; z]nτ (t) =

zN(τ)

τ
T [x; z]nτ (0). (8.23)

We conclude from (8.23) that expression (8.22) is the constant

τξτ −
zN(τ)

τ
T [x; z]nτ (0).

88



8.3. Higher-order Noether's symmetry theorem with time delay

Hence,

n∑
k=1

φk(t) ·Xk−1[x; z]nτ (t) + ψz(t)Z[x; z]nτ (t)

−

[
n∑
k=1

φk(t) · x(k)(t) + ψz(t)L[x; z]nτ (t)

]
T [x; z]nτ (t)

is constant in t along the extremals of problem (8.2). Finally, observe that X0 = ∂X ε
∂ε

∣∣
ε=0

and

Xk =
∂

∂ε

dkX ε

d(T ε)k

∣∣∣∣
ε=0

=
∂

∂ε

 d
dt

(
dk−1X ε
d(T ε)k−1

)
dT ε
dt

∣∣∣∣∣
ε=0

=
d

dt

(
∂

∂ε

dk−1X ε

d(T ε)k−1

∣∣∣∣
ε=0

)
− x(k) d

dt

(
∂T ε

∂ε

∣∣∣∣
ε=0

)
=

d

dt
Xk−1 − x(k)

d

dt

(
∂T ε

∂ε

∣∣∣∣
ε=0

)
,

k = 1, . . . , n− 1. This concludes the proof.

Corollary 8.11 (cf. [62]). If the higher-order problem of Herglotz (8.14) is invariant in

the sense of De�nition 8.9, then the quantity

n∑
k=1

φ̃k(t) ·Xk−1[x; z]n0 (t) + ψz(t)Z[x; z]n0 (t)

−

[
n∑
k=1

φ̃k(t) · x(k)(t) + ψz(t)L[x; z]n0 (t)

]
T [x; z]n0 (t)

is constant in t along any extremal of the problem, where

φ̃k(t) =
n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]n0 (t)

)
,

k = 1, . . . , n, and ψz is given by (8.12).

Proof. Consider Theorem 8.10 with τ = 0.

Theorem 8.10 is a generalization of Noether's theorem [60] for the �rst-order problem

of Herglotz with time delay. Besides the improvement of dealing with piecewise di�erentiable

functions instead of di�erentiable, the theorem presents a similar conserved quantity but without

the imposition of two additional hypotheses (5.4)-(5.15) required in [60] (see Chapter 5).

Moreover, the current de�nition of invariance is more general than the one considered in [60].
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Corollary 8.12 (cf. [60]). If the �rst-order problem of Herglotz with time delay (8.15) is

invariant in the sense of De�nition 8.9, then the quantity(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂ẋτ
[x; z]1τ (t+ τ)

)
X0[x; z]1τ (t)

+ ψz(t)Z[x; z]1τ (t) +

[
−
(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

+ψz(t+ τ)
∂L

∂ẋτ
[x; z]1τ (t+ τ)

)
ẋ(t) + ψz(t)L[x; z]1τ (t)

]
T [x; z]1τ (t)

is constant in t ∈ [a, b] along any extremal of the problem.

Proof. Consider Theorem 8.10 with n = 1.

Remark 8.13. If t ∈ [b − τ, b], then L[x; z]nτ (t + τ) is, by de�nition, null (see (8.1)) and

the constant of Corollary 8.12 reduces to(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

)
X0[x; z]1τ (t) + ψz(t)Z[x; z]1τ (t)

+

[
−
(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

)
ẋ(t) + ψz(t)L[x; z]1τ (t)

]
T [x; z]1τ (t)

for t ∈ [b− τ, b], which is the second constant quantity of [60].

8.4 Conclusions

Optimal Control is a convenient tool to deal with delayed and non-delayed Herglotz type

variational problems. In this chapter we have shown how some of the central results from the

classical Calculus of Variations can be proved for higher-order Herglotz variational problems

with time delay from analogous and well-known Optimal Control results. The techniques here

developed can now be used to obtain other results. For example, our Optimal Control approach

can be employed together with [69] to derive an extension of the second Noether theorem of

Optimal Control to the delayed or non-delayed Herglotz's framework (see Chapter 9).

The original results of this chapter were published in 2016 in [63]. They were also presented

by the author in 2016 in a meeting of the Center for Research Development in Mathematics and

Applications (CIDMA), January 21-22, 2016 Aveiro, Portugal, in a talk entitled "Higher-order

variational problems of Herglotz type with time delay".
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CHAPTER 9

NOETHER CURRENTS FOR HIGHER-ORDER

VARIATIONAL PROBLEMS OF HERGLOTZ WITH

TIME DELAY

This �nal chapter is concerned with higher-order delayed variational problems of Herglotz

type, which are invariant under a certain symmetry group of transformations. Such problems

were �rst studied in 1918 by Emmy Noether for the particular case of �rst-order variational

problems without time delay [54]. In her famous paper [54], Noether proved two remarkable

theorems that relate the invariance of a variational integral with properties of its Euler�Lagrange

equations. Since most physical systems can be described by using Lagrangians and their asso-

ciated actions, the importance of Noether's two theorems is obvious [5].

As already seen in previous chapters, the �rst Noether's theorem, usually simply called

Noether's theorem, ensures the existence of r conserved quantities along the Euler�Lagrange

extremals when the variational integral is invariant with respect to a continuous symmetry

transformation that depend on r parameters [71]. Noether's theorem explains all conserva-

tion laws of mechanics, for instance, invariance under translation in time implies conservation

of energy; conservation of linear momentum comes from invariance of the system under spa-

cial translations; invariance under rotations in the base space yields conservation of angular

momentum.

The second Noether's theorem, less known than the �rst one, applies to variational pro-

blems that are invariant under a certain group of transformations that depends on arbitrary
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functions and their derivatives up to some order [69]. In contrast to Noether's theorem, where

the transformations are global, in Noether's second theorem the transformations are local: they

can a�ect every part of the system di�erently. Noether's second theorem has applications in

several �elds, such as, general relativity, hydromechanics, electrodynamics, and quantum chro-

modynamics [27, 44, 65]. Extensions of both Noether's theorems to optimal control problems

were �rst obtained in [67, 68, 69, 72]. For systems with time delay see [24, 47, 48].

Motivated by the important applications of Noether's second theorem [48] and the applicabi-

lity of higher-order dynamic systems with time delay in modelling real-life phenomena [8, 26,

66], as well as the importance of variational problems of Herglotz [37, 39], our goal in this

chapter is to study generalized variational problems that are invariant under a certain group of

transformations that depends on arbitrary functions and their derivatives up to some order, and

deduce expressions for Noether currents, that is, expressions that are constant in time along

the extremals.

Our work is related with the second Noether theorem for Optimal Control in the sense of [69],

and is particularly useful because provides necessary conditions for the search of extremals.

There are other di�erent results on the Calculus of Variations, also related with the notion of

invariance under a certain group of transformations that depends on arbitrary functions and

their derivatives [32, 49], but they are concerned with Noether identities and not with Noether

currents as we do here.

The chapter is organized in two sections. In Section 9.1, we prove our main results: the

second Noether theorem for higher�order problems of Herglotz with time delay (Theorem 9.3)

and two important corollaries (Corollary 9.4 and 9.5). We �nish the chapter with an illustrative

example (Section 9.2).

In this chapter we consider the generalized variational problem (Hn∗
τ ) of Chapter 8.

9.1 Noether's second theorem for higher-order varia-

tional problems of Herglotz with time delay

The central idea of the proof of this chapter's main result, Noether's second theorem for

the higher-order variational problem of Herglotz type with time delay, is to rewrite problem

(Hn∗
τ ) as a non-delayed optimal control problem. This procedure is done inspired by the ideas

presented in [38] and [63] in a way as done in Chapter 8 (see Section 8.1).
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Before presenting a second Noether's theorem to problem (Hn∗
τ ), we de�ne semi-invariance

of problem (Hn∗
τ ) under a group of symmetries.

De�nition 9.1 (Semi-invariance of problem (Hn∗
τ ) under a group of symmetries). Let

p : [a, b]→ Rd be a Cq arbitrary function of the independent variable. We say that problem

(Hn∗
τ ) is semi-invariant under a symmetry group g if there exists a C1 transformation

group

g : [a, b]× R2m(n+1)+1 × Rd×(q+1) → R× Rm × R, (9.1)

g(α(t)) = (T(α(t)),X(α(t)),Z(α(t))) ,

with α(t) standing for

(
t, x(t), ẋ(t), . . . , x(n)(t), x(t− τ), ẋ(t− τ), . . . , x(n)(t− τ), z(t), p(t), ṗ(t), . . . , p(q)(t)

)
,

which for p(t) = ṗ(t) = · · · = p(q)(t) = 0 coincides with the identity transformation for all

(t, x, z) ∈ [a− τ, b]× Rm × R, and satis�es the two equations

z(b)

b− a
+
d

dt
F (α(t)) =

Z(α(b))

T(α(b))− T(α(a))

d

dt
T(α(t)) (9.2)

and
d

dt
Z(α(t)) = L(g(α(t)))

d

dt
T(α(t)), (9.3)

for some function F of class C1, where

d

dT
X(α(t)) =

d
dt
X(α(t))

d
dt
T(α(t))

and
dk

dTk
X(α(t)) =

d
dt

(
dk−1

dTk−1X(α(t))
)

d
dt
T(α(t))

,

k = 2, . . . , n.

Remark 9.2. The group of transformations g (9.1) is usually called a gauge symmetry of

the optimal control problem, in order to emphasize the fact that the transformations depend

on arbitrary functions and, therefore, have local nature.

We are now in a position to formulate and prove the main result of this chapter.

Theorem 9.3 (Noether's second theorem for problem (Hn∗
τ )). If problem (Hn∗

τ ) is semi-

-invariant under a group of symmetries as in De�nition 9.1, then there are d(q+1) Noether
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currents of the form

∂F (α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ θIJ
z(b)

b− a

+
n∑
k=1

φk(t) ·
∂

∂p
(I)
J

(
dk−1

dTk−1
X(α(t))

)∣∣∣∣∣
0

+ ψz(t) ·
∂Z(α(t))

∂p
(I)
J

∣∣∣∣∣
0

−H(t, x(t), ẋ(t), . . . , x(n)(t), z(t), φ1(t), . . . , φn(t), ψz(t))
∂T(α(t))

∂p
(I)
J

∣∣∣∣∣
0

,

t ∈ [a, b], for I = 0, . . . , q, J = 1, . . . , d, and θIJ ∈ Rd, where H,ψz and φk and are de�ned,

respectively, by (8.6)�(8.12)�(8.13) and (∗)|0 stands for (∗)|p(t)=ṗ(t)=···=p(q)(t)=0.

Proof. In order to prove the result, we start by considering problem (Hn∗
τ ) in its optimal

control and non-delayed form (8.2). First, we prove that if (Hn∗
τ ) is semi-invariant under

a group of symmetries as in De�nition 9.1, then the non-delayed optimal control problem

(8.2) is invariant in the sense of De�nition 3.7. Observe that if (9.2) holds, then there is

F̃ of class C1 such that

zN(τ)

τ
+
d

dt
F̃ (α(t)) =

ZN(α(τ))

T(α(τ))

d

dt
T(α(t)). (9.4)

Now, de�ning

Xk;i(α(t)) :=
dk

dTk
X(α(t+ (i− 1)τ)),

Ti(α(t)) := T(α(t+ (i− 1)τ)),

Zj(α(t)) := Z(α(t+ (j − 1)τ))

for �xed t ∈ [0, τ ], we have

d

dt
Xk;i(α(t)) = Xk+1;i(α(t))

d

dt
Ti(α(t)) (9.5)

and
d

dt
Zj(α(t)) = Lj (g(α(t)))

d

dt
Tj(α(t)), (9.6)

for k = 0, . . . , n−1, i = 0, . . . N , and j = 1, . . . , N . From (9.4)�(9.6), we conclude that the

non-delayed optimal control problem (8.2) is semi-invariant in the sense of De�nition 3.7.

This kind of semi-invariance is the required condition for application of the second Noether
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theorem for Optimal Control (Theorem 3.8), which asserts the existence of d(q+1) Noether

currents of the form

∂F (α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ θIJ
zN(τ)

τ
+

n∑
k=1

N∑
i=0

φk;i(t) ·
∂Xk−1;i(α(t))

∂p
(I)
J

∣∣∣∣∣
0

+
N∑
j=1

ψj(t) ·
∂Zj(α(t))

∂p
(I)
J

∣∣∣∣∣
0

−

[
n∑
k=1

N∑
i=0

φk;i(t) · xk;i(t) +
N∑
j=1

ψj(t)Lj(t)

]
∂T(α(t))

∂p
(I)
J

∣∣∣∣∣
0

,

t ∈ [0, τ ], for I = 0, . . . , q, J = 1, . . . , d, where ψj and φk;i are de�ned in (8.7)�(8.9):

φk;i(t) = φk(t+ (i− 1)τ) and ψj(t) = ψz(t+ (i− 1)τ),

for i = 0, . . . , N and j = 1, . . . , N . Finally, we rewrite the result in the original variables,

obtaining that there are d(q + 1) Noether currents of the form

∂F (α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ θIJ
z(b)

b− a
+

n∑
k=1

φk(t) ·
∂Xk(α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ ψz(t) ·
∂Z(α(t))

∂p
(I)
J

∣∣∣∣∣
0

− H(t, x(t), ẋ(t), . . . , x(n)(t), z(t), φ1(t), . . . , φn(t), ψz(t))
∂T(α(t))

∂p
(I)
J

∣∣∣∣∣
0

.

This concludes the proof.

Our result is new even for �rst-order generalized variational problems.

Corollary 9.4. If the �rst-order problem of Herglotz with time delay

z(b) −→ extr,

ż(t) = L (t, x(t), ẋ(t), x(t− τ), ẋ(t− τ), z(t)) , t ∈ [a, b],

z(a) = γ ∈ R, x(t) = µ(t), t ∈ [a− τ, a],

where µ is a given piecewise di�erentiable initial function, is semi-invariant in the sense

of De�nition 9.1, then there exist d(q + 1) Noether currents of the form

∂F (α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ θIJ
z(b)

b− a
+ φ1(t) ·

∂X(α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ ψz(t) ·
∂Z(α(t))

∂p
(I)
J

∣∣∣∣∣
0

−
[
φ1(t)ẋ(t) + ψz(t)L[x; z]1τ (t)

] ∂T(α(t))

∂p
(I)
J

∣∣∣∣∣
0

,

t ∈ [a, b], for I = 0, . . . , q, J = 1, . . . , d, where φ1 is given by (8.13) and ψz by (8.12).
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Proof. Consider Theorem 9.3 with n = 1.

As a corollary of Corollary 9.4, we obtain a new result for delayed classical problems of the

Calculus of Variations.

Corollary 9.5. If the �rst-order variational problem with time delay∫ b

a

L(t, x(t), ẋ(t), x(t− τ), ẋ(t− τ))dt −→ extr,

with x(t) = µ(t), t ∈ [a − τ, a], for a given piecewise di�erentiable initial function µ, is

semi-invariant in the sense of De�nition 9.1, then there exists d(q + 1) Noether currents

of the form

∂F (α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ φ1(t) ·
∂X(α(t))

∂p
(I)
J

∣∣∣∣∣
0

+ θIJ
z(b)

b− a

−
[
φ1(t)ẋ(t) + L (t, x(t), ẋ(t), x(t− τ), ẋ(t− τ))

]∂T(α(t))

∂p
(I)
J

∣∣∣∣∣
0

,

t ∈ [a, b], for I = 0, . . . , q, J = 1, . . . , d,, where φ1 is given by (8.13).

Proof. Consider Corollary 9.4 with L not depending on z.

9.2 Illustrative example

In order to illustrate our results, we present a simple example that cannot be covered

using available results in the literature. Consider an arbitrary interval [a, b] and let τ ∈ R
be a nonnegative real number such that τ < b − a. We address the following problem with

m = d = q = 1:

z(b)→ extr,

ż(t) = x(t− τ)z(t), t ∈ [a, b],

subject to z(a) = γ, x(t) = µ(t), t ∈ [a− τ, a],

(9.7)

where µ(·) ∈ PC1([a − τ, a];R) is a given initial function. Let p be a C1([a, b];R) function

and consider the C1 group of symmetries

g(α(t)) =

(
t+ p(t),

x(t− τ)

1 + ṗ(t)
, z(t)

)
,
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that is,
T(α(t)) = T (t, p(t)) = t+ p(t),

X(α(t)) = X (x(t− τ), ṗ(t)) =
x(t− τ)

1 + ṗ(t)
,

Z(α(t)) = Z (z(t)) = z(t),

which for p(t) = ṗ(t) = 0, t ∈ [a, b], reduce to the identity transformations. Observe that the

problem under study is semi-invariant. Indeed, (9.2) is veri�ed with

F (t) =
z(b)

b− a+ p(b)− p(a)
(t+ p(t))− z(b)

b− a
t

and (9.3) is also valid because

d

dt
Z(α(t)) = ż(t) =

x(t− τ)

1 + ṗ(t)
z(t)(1 + ṗ(t)) = L(g(α(t)))

d

dt
T(α(t)).

From Theorem 9.3, we have that there are two Noether currents of the form

∂F (α(t))

∂p(I)

∣∣∣∣
0

+ θI
z(b)

b− a
+ φ1(t) ·

∂X(α(t))

∂p(I)

∣∣∣∣
0

+ ψz(t) ·
∂Z(α(t))

∂p(I)

∣∣∣∣
0

−
[
φ1(t)ẋ(t) + ψz(t)L[x; z]1τ (t)

] ∂T(α(t))

∂p(I)

∣∣∣∣
0

, I = 0, 1.

Noting that φ1(t) = 0 and ψz(t) = e
∫ b
t x(s−τ)ds, t ∈ [a, b], the second Noether current reduces

to a constant while the �rst gives a nontrivial conclusion: it asserts that

x(t− τ)z(t)e
∫ b
t x(s−τ)ds

is constant along the extremals of problem (9.7).

9.3 Conclusions

We have deduced new necessary conditions for higher-order generalized variational problems

with time delay that are semi-invariant under a group of transformations that depends on

arbitrary functions. The conditions are potentially useful, because for many variational problems,

the Euler�Lagrange equations and transversality conditions are not enough to obtain an explicit

solution. The main result of this chapter is new even for classical delayed variational problems.

The original results of this chapter were in 2017 accepted for publication [64].
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In this thesis, we generalized the variational problem of Herglotz in several directions. We

used classical variational techniques to prove higher-order results such as generalized

Euler�Lagrange equations and natural boundary conditions, but also to prove �rst-order results

on the delayed problem of Herglotz: Euler�Lagrange equations, DuBois�Reymond condition

and Noether's �rst theorem.

We made a major change of approach when we started looking at Herglotz's based problems

on their optimal control form. We were then able to generalize Herglotz's [39] and Georgieva's

[29] �rst-order results to the wider class of piecewise di�erentiable functions. We continued on

this path and proved several other important and new results valid for piecewise di�erentiable

functions: Euler�Lagrange equations, Dubois�Reymond optimality condition and Noether's �rst

theorem for the higher-order generalized problem of Herglotz.

We managed to improve and generalize our �rst-order delayed results to the higher-order

case. After rewriting the main problem in the optimal control form, we also described it

as a non-delayed problem, proving then Euler�Lagrange equations, transversality conditions,

Dubois�Reymond condition and Noether's �rst and second theorems for the higher-order pro-

blem of Herglotz with time delay.

This thesis introduced new results and a new approach to generalized variational problems of

Herglotz type. However, there are still many open questions related with this kind of problems.

Some possible directions for future work are:

- to consider the isoperimetric problem, that is, when the admissible trajectories satisfy the

boundaries conditions x(a) = α, x(b) = β, z(a) = γ and are such that the functional
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∫ b
a
G(t, x(t), ẋ(t), z(t))dt, for some �xed Lagrangian G, takes a �xed real value l;

- to consider the free terminal point problem, that is, we intend to �nd the value of

T ∈ [a, b], such that the value of z(T ) is maximum (or minimum), where x(a) = α,

z(a) = γ and no constraint is imposed on x(T );

- to prove su�cient conditions for variational problems of Herglotz type.

We would also like to generalize the variational problem of Herglotz to the context of time

scales calculus. The theory of time scales had its beginning in 1988 with the Ph.D. thesis

of Hilger [41], providing a powerful theory that unify discrete and continuous mathematics in

one theory [10, 11]. With a short time this uni�cation aspect has been supplemented by the

extension and generalization features. The time scale calculus allows to consider more complex

time domains, such as q-scales, periodics numbers or hybrid domains, that are important for

applications. For this reason, we believe that it is relevant to consider variational problems of

Herglotz in such a general context.
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